f4efe289dc7bc2caa8ce3c2a1a44b97e66cd0324
[sfrench/cifs-2.6.git] / drivers / nvme / target / core.c
1 /*
2  * Common code for the NVMe target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/rculist.h>
18 #include <linux/pci-p2pdma.h>
19
20 #include "nvmet.h"
21
22 struct workqueue_struct *buffered_io_wq;
23 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
24 static DEFINE_IDA(cntlid_ida);
25
26 /*
27  * This read/write semaphore is used to synchronize access to configuration
28  * information on a target system that will result in discovery log page
29  * information change for at least one host.
30  * The full list of resources to protected by this semaphore is:
31  *
32  *  - subsystems list
33  *  - per-subsystem allowed hosts list
34  *  - allow_any_host subsystem attribute
35  *  - nvmet_genctr
36  *  - the nvmet_transports array
37  *
38  * When updating any of those lists/structures write lock should be obtained,
39  * while when reading (popolating discovery log page or checking host-subsystem
40  * link) read lock is obtained to allow concurrent reads.
41  */
42 DECLARE_RWSEM(nvmet_config_sem);
43
44 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
45 u64 nvmet_ana_chgcnt;
46 DECLARE_RWSEM(nvmet_ana_sem);
47
48 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
49                 const char *subsysnqn);
50
51 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
52                 size_t len)
53 {
54         if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
55                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
56         return 0;
57 }
58
59 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
60 {
61         if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
62                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
63         return 0;
64 }
65
66 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
67 {
68         if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len)
69                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
70         return 0;
71 }
72
73 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
74 {
75         struct nvmet_ns *ns;
76
77         if (list_empty(&subsys->namespaces))
78                 return 0;
79
80         ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
81         return ns->nsid;
82 }
83
84 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
85 {
86         return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
87 }
88
89 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
90 {
91         struct nvmet_req *req;
92
93         while (1) {
94                 mutex_lock(&ctrl->lock);
95                 if (!ctrl->nr_async_event_cmds) {
96                         mutex_unlock(&ctrl->lock);
97                         return;
98                 }
99
100                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
101                 mutex_unlock(&ctrl->lock);
102                 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
103         }
104 }
105
106 static void nvmet_async_event_work(struct work_struct *work)
107 {
108         struct nvmet_ctrl *ctrl =
109                 container_of(work, struct nvmet_ctrl, async_event_work);
110         struct nvmet_async_event *aen;
111         struct nvmet_req *req;
112
113         while (1) {
114                 mutex_lock(&ctrl->lock);
115                 aen = list_first_entry_or_null(&ctrl->async_events,
116                                 struct nvmet_async_event, entry);
117                 if (!aen || !ctrl->nr_async_event_cmds) {
118                         mutex_unlock(&ctrl->lock);
119                         return;
120                 }
121
122                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
123                 nvmet_set_result(req, nvmet_async_event_result(aen));
124
125                 list_del(&aen->entry);
126                 kfree(aen);
127
128                 mutex_unlock(&ctrl->lock);
129                 nvmet_req_complete(req, 0);
130         }
131 }
132
133 static void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
134                 u8 event_info, u8 log_page)
135 {
136         struct nvmet_async_event *aen;
137
138         aen = kmalloc(sizeof(*aen), GFP_KERNEL);
139         if (!aen)
140                 return;
141
142         aen->event_type = event_type;
143         aen->event_info = event_info;
144         aen->log_page = log_page;
145
146         mutex_lock(&ctrl->lock);
147         list_add_tail(&aen->entry, &ctrl->async_events);
148         mutex_unlock(&ctrl->lock);
149
150         schedule_work(&ctrl->async_event_work);
151 }
152
153 static bool nvmet_aen_disabled(struct nvmet_ctrl *ctrl, u32 aen)
154 {
155         if (!(READ_ONCE(ctrl->aen_enabled) & aen))
156                 return true;
157         return test_and_set_bit(aen, &ctrl->aen_masked);
158 }
159
160 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
161 {
162         u32 i;
163
164         mutex_lock(&ctrl->lock);
165         if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
166                 goto out_unlock;
167
168         for (i = 0; i < ctrl->nr_changed_ns; i++) {
169                 if (ctrl->changed_ns_list[i] == nsid)
170                         goto out_unlock;
171         }
172
173         if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
174                 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
175                 ctrl->nr_changed_ns = U32_MAX;
176                 goto out_unlock;
177         }
178
179         ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
180 out_unlock:
181         mutex_unlock(&ctrl->lock);
182 }
183
184 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
185 {
186         struct nvmet_ctrl *ctrl;
187
188         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
189                 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
190                 if (nvmet_aen_disabled(ctrl, NVME_AEN_CFG_NS_ATTR))
191                         continue;
192                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
193                                 NVME_AER_NOTICE_NS_CHANGED,
194                                 NVME_LOG_CHANGED_NS);
195         }
196 }
197
198 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
199                 struct nvmet_port *port)
200 {
201         struct nvmet_ctrl *ctrl;
202
203         mutex_lock(&subsys->lock);
204         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
205                 if (port && ctrl->port != port)
206                         continue;
207                 if (nvmet_aen_disabled(ctrl, NVME_AEN_CFG_ANA_CHANGE))
208                         continue;
209                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
210                                 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
211         }
212         mutex_unlock(&subsys->lock);
213 }
214
215 void nvmet_port_send_ana_event(struct nvmet_port *port)
216 {
217         struct nvmet_subsys_link *p;
218
219         down_read(&nvmet_config_sem);
220         list_for_each_entry(p, &port->subsystems, entry)
221                 nvmet_send_ana_event(p->subsys, port);
222         up_read(&nvmet_config_sem);
223 }
224
225 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
226 {
227         int ret = 0;
228
229         down_write(&nvmet_config_sem);
230         if (nvmet_transports[ops->type])
231                 ret = -EINVAL;
232         else
233                 nvmet_transports[ops->type] = ops;
234         up_write(&nvmet_config_sem);
235
236         return ret;
237 }
238 EXPORT_SYMBOL_GPL(nvmet_register_transport);
239
240 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
241 {
242         down_write(&nvmet_config_sem);
243         nvmet_transports[ops->type] = NULL;
244         up_write(&nvmet_config_sem);
245 }
246 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
247
248 int nvmet_enable_port(struct nvmet_port *port)
249 {
250         const struct nvmet_fabrics_ops *ops;
251         int ret;
252
253         lockdep_assert_held(&nvmet_config_sem);
254
255         ops = nvmet_transports[port->disc_addr.trtype];
256         if (!ops) {
257                 up_write(&nvmet_config_sem);
258                 request_module("nvmet-transport-%d", port->disc_addr.trtype);
259                 down_write(&nvmet_config_sem);
260                 ops = nvmet_transports[port->disc_addr.trtype];
261                 if (!ops) {
262                         pr_err("transport type %d not supported\n",
263                                 port->disc_addr.trtype);
264                         return -EINVAL;
265                 }
266         }
267
268         if (!try_module_get(ops->owner))
269                 return -EINVAL;
270
271         ret = ops->add_port(port);
272         if (ret) {
273                 module_put(ops->owner);
274                 return ret;
275         }
276
277         /* If the transport didn't set inline_data_size, then disable it. */
278         if (port->inline_data_size < 0)
279                 port->inline_data_size = 0;
280
281         port->enabled = true;
282         return 0;
283 }
284
285 void nvmet_disable_port(struct nvmet_port *port)
286 {
287         const struct nvmet_fabrics_ops *ops;
288
289         lockdep_assert_held(&nvmet_config_sem);
290
291         port->enabled = false;
292
293         ops = nvmet_transports[port->disc_addr.trtype];
294         ops->remove_port(port);
295         module_put(ops->owner);
296 }
297
298 static void nvmet_keep_alive_timer(struct work_struct *work)
299 {
300         struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
301                         struct nvmet_ctrl, ka_work);
302
303         pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
304                 ctrl->cntlid, ctrl->kato);
305
306         nvmet_ctrl_fatal_error(ctrl);
307 }
308
309 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
310 {
311         pr_debug("ctrl %d start keep-alive timer for %d secs\n",
312                 ctrl->cntlid, ctrl->kato);
313
314         INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
315         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
316 }
317
318 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
319 {
320         pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
321
322         cancel_delayed_work_sync(&ctrl->ka_work);
323 }
324
325 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
326                 __le32 nsid)
327 {
328         struct nvmet_ns *ns;
329
330         list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
331                 if (ns->nsid == le32_to_cpu(nsid))
332                         return ns;
333         }
334
335         return NULL;
336 }
337
338 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
339 {
340         struct nvmet_ns *ns;
341
342         rcu_read_lock();
343         ns = __nvmet_find_namespace(ctrl, nsid);
344         if (ns)
345                 percpu_ref_get(&ns->ref);
346         rcu_read_unlock();
347
348         return ns;
349 }
350
351 static void nvmet_destroy_namespace(struct percpu_ref *ref)
352 {
353         struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
354
355         complete(&ns->disable_done);
356 }
357
358 void nvmet_put_namespace(struct nvmet_ns *ns)
359 {
360         percpu_ref_put(&ns->ref);
361 }
362
363 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
364 {
365         nvmet_bdev_ns_disable(ns);
366         nvmet_file_ns_disable(ns);
367 }
368
369 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
370 {
371         int ret;
372         struct pci_dev *p2p_dev;
373
374         if (!ns->use_p2pmem)
375                 return 0;
376
377         if (!ns->bdev) {
378                 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
379                 return -EINVAL;
380         }
381
382         if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
383                 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
384                        ns->device_path);
385                 return -EINVAL;
386         }
387
388         if (ns->p2p_dev) {
389                 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
390                 if (ret < 0)
391                         return -EINVAL;
392         } else {
393                 /*
394                  * Right now we just check that there is p2pmem available so
395                  * we can report an error to the user right away if there
396                  * is not. We'll find the actual device to use once we
397                  * setup the controller when the port's device is available.
398                  */
399
400                 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
401                 if (!p2p_dev) {
402                         pr_err("no peer-to-peer memory is available for %s\n",
403                                ns->device_path);
404                         return -EINVAL;
405                 }
406
407                 pci_dev_put(p2p_dev);
408         }
409
410         return 0;
411 }
412
413 /*
414  * Note: ctrl->subsys->lock should be held when calling this function
415  */
416 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
417                                     struct nvmet_ns *ns)
418 {
419         struct device *clients[2];
420         struct pci_dev *p2p_dev;
421         int ret;
422
423         if (!ctrl->p2p_client)
424                 return;
425
426         if (ns->p2p_dev) {
427                 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
428                 if (ret < 0)
429                         return;
430
431                 p2p_dev = pci_dev_get(ns->p2p_dev);
432         } else {
433                 clients[0] = ctrl->p2p_client;
434                 clients[1] = nvmet_ns_dev(ns);
435
436                 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
437                 if (!p2p_dev) {
438                         pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
439                                dev_name(ctrl->p2p_client), ns->device_path);
440                         return;
441                 }
442         }
443
444         ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
445         if (ret < 0)
446                 pci_dev_put(p2p_dev);
447
448         pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
449                 ns->nsid);
450 }
451
452 int nvmet_ns_enable(struct nvmet_ns *ns)
453 {
454         struct nvmet_subsys *subsys = ns->subsys;
455         struct nvmet_ctrl *ctrl;
456         int ret;
457
458         mutex_lock(&subsys->lock);
459         ret = -EMFILE;
460         if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
461                 goto out_unlock;
462         ret = 0;
463         if (ns->enabled)
464                 goto out_unlock;
465
466         ret = nvmet_bdev_ns_enable(ns);
467         if (ret == -ENOTBLK)
468                 ret = nvmet_file_ns_enable(ns);
469         if (ret)
470                 goto out_unlock;
471
472         ret = nvmet_p2pmem_ns_enable(ns);
473         if (ret)
474                 goto out_unlock;
475
476         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
477                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
478
479         ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
480                                 0, GFP_KERNEL);
481         if (ret)
482                 goto out_dev_put;
483
484         if (ns->nsid > subsys->max_nsid)
485                 subsys->max_nsid = ns->nsid;
486
487         /*
488          * The namespaces list needs to be sorted to simplify the implementation
489          * of the Identify Namepace List subcommand.
490          */
491         if (list_empty(&subsys->namespaces)) {
492                 list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
493         } else {
494                 struct nvmet_ns *old;
495
496                 list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
497                         BUG_ON(ns->nsid == old->nsid);
498                         if (ns->nsid < old->nsid)
499                                 break;
500                 }
501
502                 list_add_tail_rcu(&ns->dev_link, &old->dev_link);
503         }
504         subsys->nr_namespaces++;
505
506         nvmet_ns_changed(subsys, ns->nsid);
507         ns->enabled = true;
508         ret = 0;
509 out_unlock:
510         mutex_unlock(&subsys->lock);
511         return ret;
512 out_dev_put:
513         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
514                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
515
516         nvmet_ns_dev_disable(ns);
517         goto out_unlock;
518 }
519
520 void nvmet_ns_disable(struct nvmet_ns *ns)
521 {
522         struct nvmet_subsys *subsys = ns->subsys;
523         struct nvmet_ctrl *ctrl;
524
525         mutex_lock(&subsys->lock);
526         if (!ns->enabled)
527                 goto out_unlock;
528
529         ns->enabled = false;
530         list_del_rcu(&ns->dev_link);
531         if (ns->nsid == subsys->max_nsid)
532                 subsys->max_nsid = nvmet_max_nsid(subsys);
533
534         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
535                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
536
537         mutex_unlock(&subsys->lock);
538
539         /*
540          * Now that we removed the namespaces from the lookup list, we
541          * can kill the per_cpu ref and wait for any remaining references
542          * to be dropped, as well as a RCU grace period for anyone only
543          * using the namepace under rcu_read_lock().  Note that we can't
544          * use call_rcu here as we need to ensure the namespaces have
545          * been fully destroyed before unloading the module.
546          */
547         percpu_ref_kill(&ns->ref);
548         synchronize_rcu();
549         wait_for_completion(&ns->disable_done);
550         percpu_ref_exit(&ns->ref);
551
552         mutex_lock(&subsys->lock);
553
554         subsys->nr_namespaces--;
555         nvmet_ns_changed(subsys, ns->nsid);
556         nvmet_ns_dev_disable(ns);
557 out_unlock:
558         mutex_unlock(&subsys->lock);
559 }
560
561 void nvmet_ns_free(struct nvmet_ns *ns)
562 {
563         nvmet_ns_disable(ns);
564
565         down_write(&nvmet_ana_sem);
566         nvmet_ana_group_enabled[ns->anagrpid]--;
567         up_write(&nvmet_ana_sem);
568
569         kfree(ns->device_path);
570         kfree(ns);
571 }
572
573 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
574 {
575         struct nvmet_ns *ns;
576
577         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
578         if (!ns)
579                 return NULL;
580
581         INIT_LIST_HEAD(&ns->dev_link);
582         init_completion(&ns->disable_done);
583
584         ns->nsid = nsid;
585         ns->subsys = subsys;
586
587         down_write(&nvmet_ana_sem);
588         ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
589         nvmet_ana_group_enabled[ns->anagrpid]++;
590         up_write(&nvmet_ana_sem);
591
592         uuid_gen(&ns->uuid);
593         ns->buffered_io = false;
594
595         return ns;
596 }
597
598 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
599 {
600         u32 old_sqhd, new_sqhd;
601         u16 sqhd;
602
603         if (status)
604                 nvmet_set_status(req, status);
605
606         if (req->sq->size) {
607                 do {
608                         old_sqhd = req->sq->sqhd;
609                         new_sqhd = (old_sqhd + 1) % req->sq->size;
610                 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
611                                         old_sqhd);
612         }
613         sqhd = req->sq->sqhd & 0x0000FFFF;
614         req->rsp->sq_head = cpu_to_le16(sqhd);
615         req->rsp->sq_id = cpu_to_le16(req->sq->qid);
616         req->rsp->command_id = req->cmd->common.command_id;
617
618         if (req->ns)
619                 nvmet_put_namespace(req->ns);
620         req->ops->queue_response(req);
621 }
622
623 void nvmet_req_complete(struct nvmet_req *req, u16 status)
624 {
625         __nvmet_req_complete(req, status);
626         percpu_ref_put(&req->sq->ref);
627 }
628 EXPORT_SYMBOL_GPL(nvmet_req_complete);
629
630 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
631                 u16 qid, u16 size)
632 {
633         cq->qid = qid;
634         cq->size = size;
635
636         ctrl->cqs[qid] = cq;
637 }
638
639 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
640                 u16 qid, u16 size)
641 {
642         sq->sqhd = 0;
643         sq->qid = qid;
644         sq->size = size;
645
646         ctrl->sqs[qid] = sq;
647 }
648
649 static void nvmet_confirm_sq(struct percpu_ref *ref)
650 {
651         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
652
653         complete(&sq->confirm_done);
654 }
655
656 void nvmet_sq_destroy(struct nvmet_sq *sq)
657 {
658         /*
659          * If this is the admin queue, complete all AERs so that our
660          * queue doesn't have outstanding requests on it.
661          */
662         if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
663                 nvmet_async_events_free(sq->ctrl);
664         percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
665         wait_for_completion(&sq->confirm_done);
666         wait_for_completion(&sq->free_done);
667         percpu_ref_exit(&sq->ref);
668
669         if (sq->ctrl) {
670                 nvmet_ctrl_put(sq->ctrl);
671                 sq->ctrl = NULL; /* allows reusing the queue later */
672         }
673 }
674 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
675
676 static void nvmet_sq_free(struct percpu_ref *ref)
677 {
678         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
679
680         complete(&sq->free_done);
681 }
682
683 int nvmet_sq_init(struct nvmet_sq *sq)
684 {
685         int ret;
686
687         ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
688         if (ret) {
689                 pr_err("percpu_ref init failed!\n");
690                 return ret;
691         }
692         init_completion(&sq->free_done);
693         init_completion(&sq->confirm_done);
694
695         return 0;
696 }
697 EXPORT_SYMBOL_GPL(nvmet_sq_init);
698
699 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
700                 struct nvmet_ns *ns)
701 {
702         enum nvme_ana_state state = port->ana_state[ns->anagrpid];
703
704         if (unlikely(state == NVME_ANA_INACCESSIBLE))
705                 return NVME_SC_ANA_INACCESSIBLE;
706         if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
707                 return NVME_SC_ANA_PERSISTENT_LOSS;
708         if (unlikely(state == NVME_ANA_CHANGE))
709                 return NVME_SC_ANA_TRANSITION;
710         return 0;
711 }
712
713 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
714 {
715         if (unlikely(req->ns->readonly)) {
716                 switch (req->cmd->common.opcode) {
717                 case nvme_cmd_read:
718                 case nvme_cmd_flush:
719                         break;
720                 default:
721                         return NVME_SC_NS_WRITE_PROTECTED;
722                 }
723         }
724
725         return 0;
726 }
727
728 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
729 {
730         struct nvme_command *cmd = req->cmd;
731         u16 ret;
732
733         ret = nvmet_check_ctrl_status(req, cmd);
734         if (unlikely(ret))
735                 return ret;
736
737         req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
738         if (unlikely(!req->ns))
739                 return NVME_SC_INVALID_NS | NVME_SC_DNR;
740         ret = nvmet_check_ana_state(req->port, req->ns);
741         if (unlikely(ret))
742                 return ret;
743         ret = nvmet_io_cmd_check_access(req);
744         if (unlikely(ret))
745                 return ret;
746
747         if (req->ns->file)
748                 return nvmet_file_parse_io_cmd(req);
749         else
750                 return nvmet_bdev_parse_io_cmd(req);
751 }
752
753 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
754                 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
755 {
756         u8 flags = req->cmd->common.flags;
757         u16 status;
758
759         req->cq = cq;
760         req->sq = sq;
761         req->ops = ops;
762         req->sg = NULL;
763         req->sg_cnt = 0;
764         req->transfer_len = 0;
765         req->rsp->status = 0;
766         req->ns = NULL;
767
768         /* no support for fused commands yet */
769         if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
770                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
771                 goto fail;
772         }
773
774         /*
775          * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
776          * contains an address of a single contiguous physical buffer that is
777          * byte aligned.
778          */
779         if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
780                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
781                 goto fail;
782         }
783
784         if (unlikely(!req->sq->ctrl))
785                 /* will return an error for any Non-connect command: */
786                 status = nvmet_parse_connect_cmd(req);
787         else if (likely(req->sq->qid != 0))
788                 status = nvmet_parse_io_cmd(req);
789         else if (req->cmd->common.opcode == nvme_fabrics_command)
790                 status = nvmet_parse_fabrics_cmd(req);
791         else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
792                 status = nvmet_parse_discovery_cmd(req);
793         else
794                 status = nvmet_parse_admin_cmd(req);
795
796         if (status)
797                 goto fail;
798
799         if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
800                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
801                 goto fail;
802         }
803
804         return true;
805
806 fail:
807         __nvmet_req_complete(req, status);
808         return false;
809 }
810 EXPORT_SYMBOL_GPL(nvmet_req_init);
811
812 void nvmet_req_uninit(struct nvmet_req *req)
813 {
814         percpu_ref_put(&req->sq->ref);
815         if (req->ns)
816                 nvmet_put_namespace(req->ns);
817 }
818 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
819
820 void nvmet_req_execute(struct nvmet_req *req)
821 {
822         if (unlikely(req->data_len != req->transfer_len))
823                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
824         else
825                 req->execute(req);
826 }
827 EXPORT_SYMBOL_GPL(nvmet_req_execute);
828
829 int nvmet_req_alloc_sgl(struct nvmet_req *req)
830 {
831         struct pci_dev *p2p_dev = NULL;
832
833         if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
834                 if (req->sq->ctrl && req->ns)
835                         p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
836                                                     req->ns->nsid);
837
838                 req->p2p_dev = NULL;
839                 if (req->sq->qid && p2p_dev) {
840                         req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
841                                                        req->transfer_len);
842                         if (req->sg) {
843                                 req->p2p_dev = p2p_dev;
844                                 return 0;
845                         }
846                 }
847
848                 /*
849                  * If no P2P memory was available we fallback to using
850                  * regular memory
851                  */
852         }
853
854         req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
855         if (!req->sg)
856                 return -ENOMEM;
857
858         return 0;
859 }
860 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
861
862 void nvmet_req_free_sgl(struct nvmet_req *req)
863 {
864         if (req->p2p_dev)
865                 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
866         else
867                 sgl_free(req->sg);
868
869         req->sg = NULL;
870         req->sg_cnt = 0;
871 }
872 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
873
874 static inline bool nvmet_cc_en(u32 cc)
875 {
876         return (cc >> NVME_CC_EN_SHIFT) & 0x1;
877 }
878
879 static inline u8 nvmet_cc_css(u32 cc)
880 {
881         return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
882 }
883
884 static inline u8 nvmet_cc_mps(u32 cc)
885 {
886         return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
887 }
888
889 static inline u8 nvmet_cc_ams(u32 cc)
890 {
891         return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
892 }
893
894 static inline u8 nvmet_cc_shn(u32 cc)
895 {
896         return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
897 }
898
899 static inline u8 nvmet_cc_iosqes(u32 cc)
900 {
901         return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
902 }
903
904 static inline u8 nvmet_cc_iocqes(u32 cc)
905 {
906         return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
907 }
908
909 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
910 {
911         lockdep_assert_held(&ctrl->lock);
912
913         if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
914             nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
915             nvmet_cc_mps(ctrl->cc) != 0 ||
916             nvmet_cc_ams(ctrl->cc) != 0 ||
917             nvmet_cc_css(ctrl->cc) != 0) {
918                 ctrl->csts = NVME_CSTS_CFS;
919                 return;
920         }
921
922         ctrl->csts = NVME_CSTS_RDY;
923
924         /*
925          * Controllers that are not yet enabled should not really enforce the
926          * keep alive timeout, but we still want to track a timeout and cleanup
927          * in case a host died before it enabled the controller.  Hence, simply
928          * reset the keep alive timer when the controller is enabled.
929          */
930         mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
931 }
932
933 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
934 {
935         lockdep_assert_held(&ctrl->lock);
936
937         /* XXX: tear down queues? */
938         ctrl->csts &= ~NVME_CSTS_RDY;
939         ctrl->cc = 0;
940 }
941
942 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
943 {
944         u32 old;
945
946         mutex_lock(&ctrl->lock);
947         old = ctrl->cc;
948         ctrl->cc = new;
949
950         if (nvmet_cc_en(new) && !nvmet_cc_en(old))
951                 nvmet_start_ctrl(ctrl);
952         if (!nvmet_cc_en(new) && nvmet_cc_en(old))
953                 nvmet_clear_ctrl(ctrl);
954         if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
955                 nvmet_clear_ctrl(ctrl);
956                 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
957         }
958         if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
959                 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
960         mutex_unlock(&ctrl->lock);
961 }
962
963 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
964 {
965         /* command sets supported: NVMe command set: */
966         ctrl->cap = (1ULL << 37);
967         /* CC.EN timeout in 500msec units: */
968         ctrl->cap |= (15ULL << 24);
969         /* maximum queue entries supported: */
970         ctrl->cap |= NVMET_QUEUE_SIZE - 1;
971 }
972
973 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
974                 struct nvmet_req *req, struct nvmet_ctrl **ret)
975 {
976         struct nvmet_subsys *subsys;
977         struct nvmet_ctrl *ctrl;
978         u16 status = 0;
979
980         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
981         if (!subsys) {
982                 pr_warn("connect request for invalid subsystem %s!\n",
983                         subsysnqn);
984                 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
985                 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
986         }
987
988         mutex_lock(&subsys->lock);
989         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
990                 if (ctrl->cntlid == cntlid) {
991                         if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
992                                 pr_warn("hostnqn mismatch.\n");
993                                 continue;
994                         }
995                         if (!kref_get_unless_zero(&ctrl->ref))
996                                 continue;
997
998                         *ret = ctrl;
999                         goto out;
1000                 }
1001         }
1002
1003         pr_warn("could not find controller %d for subsys %s / host %s\n",
1004                 cntlid, subsysnqn, hostnqn);
1005         req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1006         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1007
1008 out:
1009         mutex_unlock(&subsys->lock);
1010         nvmet_subsys_put(subsys);
1011         return status;
1012 }
1013
1014 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1015 {
1016         if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1017                 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1018                        cmd->common.opcode, req->sq->qid);
1019                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1020         }
1021
1022         if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1023                 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1024                        cmd->common.opcode, req->sq->qid);
1025                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1026         }
1027         return 0;
1028 }
1029
1030 static bool __nvmet_host_allowed(struct nvmet_subsys *subsys,
1031                 const char *hostnqn)
1032 {
1033         struct nvmet_host_link *p;
1034
1035         if (subsys->allow_any_host)
1036                 return true;
1037
1038         list_for_each_entry(p, &subsys->hosts, entry) {
1039                 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1040                         return true;
1041         }
1042
1043         return false;
1044 }
1045
1046 static bool nvmet_host_discovery_allowed(struct nvmet_req *req,
1047                 const char *hostnqn)
1048 {
1049         struct nvmet_subsys_link *s;
1050
1051         list_for_each_entry(s, &req->port->subsystems, entry) {
1052                 if (__nvmet_host_allowed(s->subsys, hostnqn))
1053                         return true;
1054         }
1055
1056         return false;
1057 }
1058
1059 bool nvmet_host_allowed(struct nvmet_req *req, struct nvmet_subsys *subsys,
1060                 const char *hostnqn)
1061 {
1062         lockdep_assert_held(&nvmet_config_sem);
1063
1064         if (subsys->type == NVME_NQN_DISC)
1065                 return nvmet_host_discovery_allowed(req, hostnqn);
1066         else
1067                 return __nvmet_host_allowed(subsys, hostnqn);
1068 }
1069
1070 /*
1071  * Note: ctrl->subsys->lock should be held when calling this function
1072  */
1073 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1074                 struct nvmet_req *req)
1075 {
1076         struct nvmet_ns *ns;
1077
1078         if (!req->p2p_client)
1079                 return;
1080
1081         ctrl->p2p_client = get_device(req->p2p_client);
1082
1083         list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
1084                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1085 }
1086
1087 /*
1088  * Note: ctrl->subsys->lock should be held when calling this function
1089  */
1090 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1091 {
1092         struct radix_tree_iter iter;
1093         void __rcu **slot;
1094
1095         radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1096                 pci_dev_put(radix_tree_deref_slot(slot));
1097
1098         put_device(ctrl->p2p_client);
1099 }
1100
1101 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1102                 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1103 {
1104         struct nvmet_subsys *subsys;
1105         struct nvmet_ctrl *ctrl;
1106         int ret;
1107         u16 status;
1108
1109         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1110         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1111         if (!subsys) {
1112                 pr_warn("connect request for invalid subsystem %s!\n",
1113                         subsysnqn);
1114                 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1115                 goto out;
1116         }
1117
1118         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1119         down_read(&nvmet_config_sem);
1120         if (!nvmet_host_allowed(req, subsys, hostnqn)) {
1121                 pr_info("connect by host %s for subsystem %s not allowed\n",
1122                         hostnqn, subsysnqn);
1123                 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1124                 up_read(&nvmet_config_sem);
1125                 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1126                 goto out_put_subsystem;
1127         }
1128         up_read(&nvmet_config_sem);
1129
1130         status = NVME_SC_INTERNAL;
1131         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1132         if (!ctrl)
1133                 goto out_put_subsystem;
1134         mutex_init(&ctrl->lock);
1135
1136         nvmet_init_cap(ctrl);
1137
1138         ctrl->port = req->port;
1139
1140         INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1141         INIT_LIST_HEAD(&ctrl->async_events);
1142         INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1143
1144         memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1145         memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1146
1147         kref_init(&ctrl->ref);
1148         ctrl->subsys = subsys;
1149         WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1150
1151         ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1152                         sizeof(__le32), GFP_KERNEL);
1153         if (!ctrl->changed_ns_list)
1154                 goto out_free_ctrl;
1155
1156         ctrl->cqs = kcalloc(subsys->max_qid + 1,
1157                         sizeof(struct nvmet_cq *),
1158                         GFP_KERNEL);
1159         if (!ctrl->cqs)
1160                 goto out_free_changed_ns_list;
1161
1162         ctrl->sqs = kcalloc(subsys->max_qid + 1,
1163                         sizeof(struct nvmet_sq *),
1164                         GFP_KERNEL);
1165         if (!ctrl->sqs)
1166                 goto out_free_cqs;
1167
1168         ret = ida_simple_get(&cntlid_ida,
1169                              NVME_CNTLID_MIN, NVME_CNTLID_MAX,
1170                              GFP_KERNEL);
1171         if (ret < 0) {
1172                 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1173                 goto out_free_sqs;
1174         }
1175         ctrl->cntlid = ret;
1176
1177         ctrl->ops = req->ops;
1178         if (ctrl->subsys->type == NVME_NQN_DISC) {
1179                 /* Don't accept keep-alive timeout for discovery controllers */
1180                 if (kato) {
1181                         status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
1182                         goto out_remove_ida;
1183                 }
1184
1185                 /*
1186                  * Discovery controllers use some arbitrary high value in order
1187                  * to cleanup stale discovery sessions
1188                  *
1189                  * From the latest base diff RC:
1190                  * "The Keep Alive command is not supported by
1191                  * Discovery controllers. A transport may specify a
1192                  * fixed Discovery controller activity timeout value
1193                  * (e.g., 2 minutes).  If no commands are received
1194                  * by a Discovery controller within that time
1195                  * period, the controller may perform the
1196                  * actions for Keep Alive Timer expiration".
1197                  */
1198                 ctrl->kato = NVMET_DISC_KATO;
1199         } else {
1200                 /* keep-alive timeout in seconds */
1201                 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1202         }
1203         nvmet_start_keep_alive_timer(ctrl);
1204
1205         mutex_lock(&subsys->lock);
1206         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1207         nvmet_setup_p2p_ns_map(ctrl, req);
1208         mutex_unlock(&subsys->lock);
1209
1210         *ctrlp = ctrl;
1211         return 0;
1212
1213 out_remove_ida:
1214         ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1215 out_free_sqs:
1216         kfree(ctrl->sqs);
1217 out_free_cqs:
1218         kfree(ctrl->cqs);
1219 out_free_changed_ns_list:
1220         kfree(ctrl->changed_ns_list);
1221 out_free_ctrl:
1222         kfree(ctrl);
1223 out_put_subsystem:
1224         nvmet_subsys_put(subsys);
1225 out:
1226         return status;
1227 }
1228
1229 static void nvmet_ctrl_free(struct kref *ref)
1230 {
1231         struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1232         struct nvmet_subsys *subsys = ctrl->subsys;
1233
1234         mutex_lock(&subsys->lock);
1235         nvmet_release_p2p_ns_map(ctrl);
1236         list_del(&ctrl->subsys_entry);
1237         mutex_unlock(&subsys->lock);
1238
1239         nvmet_stop_keep_alive_timer(ctrl);
1240
1241         flush_work(&ctrl->async_event_work);
1242         cancel_work_sync(&ctrl->fatal_err_work);
1243
1244         ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1245
1246         kfree(ctrl->sqs);
1247         kfree(ctrl->cqs);
1248         kfree(ctrl->changed_ns_list);
1249         kfree(ctrl);
1250
1251         nvmet_subsys_put(subsys);
1252 }
1253
1254 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1255 {
1256         kref_put(&ctrl->ref, nvmet_ctrl_free);
1257 }
1258
1259 static void nvmet_fatal_error_handler(struct work_struct *work)
1260 {
1261         struct nvmet_ctrl *ctrl =
1262                         container_of(work, struct nvmet_ctrl, fatal_err_work);
1263
1264         pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1265         ctrl->ops->delete_ctrl(ctrl);
1266 }
1267
1268 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1269 {
1270         mutex_lock(&ctrl->lock);
1271         if (!(ctrl->csts & NVME_CSTS_CFS)) {
1272                 ctrl->csts |= NVME_CSTS_CFS;
1273                 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1274                 schedule_work(&ctrl->fatal_err_work);
1275         }
1276         mutex_unlock(&ctrl->lock);
1277 }
1278 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1279
1280 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1281                 const char *subsysnqn)
1282 {
1283         struct nvmet_subsys_link *p;
1284
1285         if (!port)
1286                 return NULL;
1287
1288         if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1289                 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1290                         return NULL;
1291                 return nvmet_disc_subsys;
1292         }
1293
1294         down_read(&nvmet_config_sem);
1295         list_for_each_entry(p, &port->subsystems, entry) {
1296                 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1297                                 NVMF_NQN_SIZE)) {
1298                         if (!kref_get_unless_zero(&p->subsys->ref))
1299                                 break;
1300                         up_read(&nvmet_config_sem);
1301                         return p->subsys;
1302                 }
1303         }
1304         up_read(&nvmet_config_sem);
1305         return NULL;
1306 }
1307
1308 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1309                 enum nvme_subsys_type type)
1310 {
1311         struct nvmet_subsys *subsys;
1312
1313         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1314         if (!subsys)
1315                 return NULL;
1316
1317         subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1318         /* generate a random serial number as our controllers are ephemeral: */
1319         get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1320
1321         switch (type) {
1322         case NVME_NQN_NVME:
1323                 subsys->max_qid = NVMET_NR_QUEUES;
1324                 break;
1325         case NVME_NQN_DISC:
1326                 subsys->max_qid = 0;
1327                 break;
1328         default:
1329                 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1330                 kfree(subsys);
1331                 return NULL;
1332         }
1333         subsys->type = type;
1334         subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1335                         GFP_KERNEL);
1336         if (!subsys->subsysnqn) {
1337                 kfree(subsys);
1338                 return NULL;
1339         }
1340
1341         kref_init(&subsys->ref);
1342
1343         mutex_init(&subsys->lock);
1344         INIT_LIST_HEAD(&subsys->namespaces);
1345         INIT_LIST_HEAD(&subsys->ctrls);
1346         INIT_LIST_HEAD(&subsys->hosts);
1347
1348         return subsys;
1349 }
1350
1351 static void nvmet_subsys_free(struct kref *ref)
1352 {
1353         struct nvmet_subsys *subsys =
1354                 container_of(ref, struct nvmet_subsys, ref);
1355
1356         WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1357
1358         kfree(subsys->subsysnqn);
1359         kfree(subsys);
1360 }
1361
1362 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1363 {
1364         struct nvmet_ctrl *ctrl;
1365
1366         mutex_lock(&subsys->lock);
1367         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1368                 ctrl->ops->delete_ctrl(ctrl);
1369         mutex_unlock(&subsys->lock);
1370 }
1371
1372 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1373 {
1374         kref_put(&subsys->ref, nvmet_subsys_free);
1375 }
1376
1377 static int __init nvmet_init(void)
1378 {
1379         int error;
1380
1381         nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1382
1383         buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1384                         WQ_MEM_RECLAIM, 0);
1385         if (!buffered_io_wq) {
1386                 error = -ENOMEM;
1387                 goto out;
1388         }
1389
1390         error = nvmet_init_discovery();
1391         if (error)
1392                 goto out_free_work_queue;
1393
1394         error = nvmet_init_configfs();
1395         if (error)
1396                 goto out_exit_discovery;
1397         return 0;
1398
1399 out_exit_discovery:
1400         nvmet_exit_discovery();
1401 out_free_work_queue:
1402         destroy_workqueue(buffered_io_wq);
1403 out:
1404         return error;
1405 }
1406
1407 static void __exit nvmet_exit(void)
1408 {
1409         nvmet_exit_configfs();
1410         nvmet_exit_discovery();
1411         ida_destroy(&cntlid_ida);
1412         destroy_workqueue(buffered_io_wq);
1413
1414         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1415         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1416 }
1417
1418 module_init(nvmet_init);
1419 module_exit(nvmet_exit);
1420
1421 MODULE_LICENSE("GPL v2");