Merge branch 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
44
45 struct nvme_rdma_device {
46         struct ib_device        *dev;
47         struct ib_pd            *pd;
48         struct kref             ref;
49         struct list_head        entry;
50         unsigned int            num_inline_segments;
51 };
52
53 struct nvme_rdma_qe {
54         struct ib_cqe           cqe;
55         void                    *data;
56         u64                     dma;
57 };
58
59 struct nvme_rdma_queue;
60 struct nvme_rdma_request {
61         struct nvme_request     req;
62         struct ib_mr            *mr;
63         struct nvme_rdma_qe     sqe;
64         union nvme_result       result;
65         __le16                  status;
66         refcount_t              ref;
67         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68         u32                     num_sge;
69         int                     nents;
70         struct ib_reg_wr        reg_wr;
71         struct ib_cqe           reg_cqe;
72         struct nvme_rdma_queue  *queue;
73         struct sg_table         sg_table;
74         struct scatterlist      first_sgl[];
75 };
76
77 enum nvme_rdma_queue_flags {
78         NVME_RDMA_Q_ALLOCATED           = 0,
79         NVME_RDMA_Q_LIVE                = 1,
80         NVME_RDMA_Q_TR_READY            = 2,
81 };
82
83 struct nvme_rdma_queue {
84         struct nvme_rdma_qe     *rsp_ring;
85         int                     queue_size;
86         size_t                  cmnd_capsule_len;
87         struct nvme_rdma_ctrl   *ctrl;
88         struct nvme_rdma_device *device;
89         struct ib_cq            *ib_cq;
90         struct ib_qp            *qp;
91
92         unsigned long           flags;
93         struct rdma_cm_id       *cm_id;
94         int                     cm_error;
95         struct completion       cm_done;
96 };
97
98 struct nvme_rdma_ctrl {
99         /* read only in the hot path */
100         struct nvme_rdma_queue  *queues;
101
102         /* other member variables */
103         struct blk_mq_tag_set   tag_set;
104         struct work_struct      err_work;
105
106         struct nvme_rdma_qe     async_event_sqe;
107
108         struct delayed_work     reconnect_work;
109
110         struct list_head        list;
111
112         struct blk_mq_tag_set   admin_tag_set;
113         struct nvme_rdma_device *device;
114
115         u32                     max_fr_pages;
116
117         struct sockaddr_storage addr;
118         struct sockaddr_storage src_addr;
119
120         struct nvme_ctrl        ctrl;
121         bool                    use_inline_data;
122         u32                     io_queues[HCTX_MAX_TYPES];
123 };
124
125 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
126 {
127         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
128 }
129
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132
133 static LIST_HEAD(nvme_rdma_ctrl_list);
134 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
135
136 /*
137  * Disabling this option makes small I/O goes faster, but is fundamentally
138  * unsafe.  With it turned off we will have to register a global rkey that
139  * allows read and write access to all physical memory.
140  */
141 static bool register_always = true;
142 module_param(register_always, bool, 0444);
143 MODULE_PARM_DESC(register_always,
144          "Use memory registration even for contiguous memory regions");
145
146 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
147                 struct rdma_cm_event *event);
148 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
149
150 static const struct blk_mq_ops nvme_rdma_mq_ops;
151 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
152
153 /* XXX: really should move to a generic header sooner or later.. */
154 static inline void put_unaligned_le24(u32 val, u8 *p)
155 {
156         *p++ = val;
157         *p++ = val >> 8;
158         *p++ = val >> 16;
159 }
160
161 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
162 {
163         return queue - queue->ctrl->queues;
164 }
165
166 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
167 {
168         return nvme_rdma_queue_idx(queue) >
169                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
170                 queue->ctrl->io_queues[HCTX_TYPE_READ];
171 }
172
173 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
174 {
175         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
176 }
177
178 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
179                 size_t capsule_size, enum dma_data_direction dir)
180 {
181         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
182         kfree(qe->data);
183 }
184
185 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
186                 size_t capsule_size, enum dma_data_direction dir)
187 {
188         qe->data = kzalloc(capsule_size, GFP_KERNEL);
189         if (!qe->data)
190                 return -ENOMEM;
191
192         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
193         if (ib_dma_mapping_error(ibdev, qe->dma)) {
194                 kfree(qe->data);
195                 qe->data = NULL;
196                 return -ENOMEM;
197         }
198
199         return 0;
200 }
201
202 static void nvme_rdma_free_ring(struct ib_device *ibdev,
203                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
204                 size_t capsule_size, enum dma_data_direction dir)
205 {
206         int i;
207
208         for (i = 0; i < ib_queue_size; i++)
209                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
210         kfree(ring);
211 }
212
213 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
214                 size_t ib_queue_size, size_t capsule_size,
215                 enum dma_data_direction dir)
216 {
217         struct nvme_rdma_qe *ring;
218         int i;
219
220         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
221         if (!ring)
222                 return NULL;
223
224         for (i = 0; i < ib_queue_size; i++) {
225                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
226                         goto out_free_ring;
227         }
228
229         return ring;
230
231 out_free_ring:
232         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
233         return NULL;
234 }
235
236 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
237 {
238         pr_debug("QP event %s (%d)\n",
239                  ib_event_msg(event->event), event->event);
240
241 }
242
243 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
244 {
245         int ret;
246
247         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
248                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
249         if (ret < 0)
250                 return ret;
251         if (ret == 0)
252                 return -ETIMEDOUT;
253         WARN_ON_ONCE(queue->cm_error > 0);
254         return queue->cm_error;
255 }
256
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259         struct nvme_rdma_device *dev = queue->device;
260         struct ib_qp_init_attr init_attr;
261         int ret;
262
263         memset(&init_attr, 0, sizeof(init_attr));
264         init_attr.event_handler = nvme_rdma_qp_event;
265         /* +1 for drain */
266         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267         /* +1 for drain */
268         init_attr.cap.max_recv_wr = queue->queue_size + 1;
269         init_attr.cap.max_recv_sge = 1;
270         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272         init_attr.qp_type = IB_QPT_RC;
273         init_attr.send_cq = queue->ib_cq;
274         init_attr.recv_cq = queue->ib_cq;
275
276         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
277
278         queue->qp = queue->cm_id->qp;
279         return ret;
280 }
281
282 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
283                 struct request *rq, unsigned int hctx_idx)
284 {
285         struct nvme_rdma_ctrl *ctrl = set->driver_data;
286         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
287         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
288         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
289         struct nvme_rdma_device *dev = queue->device;
290
291         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
292                         DMA_TO_DEVICE);
293 }
294
295 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
296                 struct request *rq, unsigned int hctx_idx,
297                 unsigned int numa_node)
298 {
299         struct nvme_rdma_ctrl *ctrl = set->driver_data;
300         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
301         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
302         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
303         struct nvme_rdma_device *dev = queue->device;
304         struct ib_device *ibdev = dev->dev;
305         int ret;
306
307         nvme_req(rq)->ctrl = &ctrl->ctrl;
308         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
309                         DMA_TO_DEVICE);
310         if (ret)
311                 return ret;
312
313         req->queue = queue;
314
315         return 0;
316 }
317
318 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
319                 unsigned int hctx_idx)
320 {
321         struct nvme_rdma_ctrl *ctrl = data;
322         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
323
324         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
325
326         hctx->driver_data = queue;
327         return 0;
328 }
329
330 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
331                 unsigned int hctx_idx)
332 {
333         struct nvme_rdma_ctrl *ctrl = data;
334         struct nvme_rdma_queue *queue = &ctrl->queues[0];
335
336         BUG_ON(hctx_idx != 0);
337
338         hctx->driver_data = queue;
339         return 0;
340 }
341
342 static void nvme_rdma_free_dev(struct kref *ref)
343 {
344         struct nvme_rdma_device *ndev =
345                 container_of(ref, struct nvme_rdma_device, ref);
346
347         mutex_lock(&device_list_mutex);
348         list_del(&ndev->entry);
349         mutex_unlock(&device_list_mutex);
350
351         ib_dealloc_pd(ndev->pd);
352         kfree(ndev);
353 }
354
355 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
356 {
357         kref_put(&dev->ref, nvme_rdma_free_dev);
358 }
359
360 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
361 {
362         return kref_get_unless_zero(&dev->ref);
363 }
364
365 static struct nvme_rdma_device *
366 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
367 {
368         struct nvme_rdma_device *ndev;
369
370         mutex_lock(&device_list_mutex);
371         list_for_each_entry(ndev, &device_list, entry) {
372                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
373                     nvme_rdma_dev_get(ndev))
374                         goto out_unlock;
375         }
376
377         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
378         if (!ndev)
379                 goto out_err;
380
381         ndev->dev = cm_id->device;
382         kref_init(&ndev->ref);
383
384         ndev->pd = ib_alloc_pd(ndev->dev,
385                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
386         if (IS_ERR(ndev->pd))
387                 goto out_free_dev;
388
389         if (!(ndev->dev->attrs.device_cap_flags &
390               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
391                 dev_err(&ndev->dev->dev,
392                         "Memory registrations not supported.\n");
393                 goto out_free_pd;
394         }
395
396         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
397                                         ndev->dev->attrs.max_send_sge - 1);
398         list_add(&ndev->entry, &device_list);
399 out_unlock:
400         mutex_unlock(&device_list_mutex);
401         return ndev;
402
403 out_free_pd:
404         ib_dealloc_pd(ndev->pd);
405 out_free_dev:
406         kfree(ndev);
407 out_err:
408         mutex_unlock(&device_list_mutex);
409         return NULL;
410 }
411
412 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
413 {
414         struct nvme_rdma_device *dev;
415         struct ib_device *ibdev;
416
417         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
418                 return;
419
420         dev = queue->device;
421         ibdev = dev->dev;
422
423         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
424
425         /*
426          * The cm_id object might have been destroyed during RDMA connection
427          * establishment error flow to avoid getting other cma events, thus
428          * the destruction of the QP shouldn't use rdma_cm API.
429          */
430         ib_destroy_qp(queue->qp);
431         ib_free_cq(queue->ib_cq);
432
433         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
434                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
435
436         nvme_rdma_dev_put(dev);
437 }
438
439 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
440 {
441         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
442                      ibdev->attrs.max_fast_reg_page_list_len);
443 }
444
445 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
446 {
447         struct ib_device *ibdev;
448         const int send_wr_factor = 3;                   /* MR, SEND, INV */
449         const int cq_factor = send_wr_factor + 1;       /* + RECV */
450         int comp_vector, idx = nvme_rdma_queue_idx(queue);
451         enum ib_poll_context poll_ctx;
452         int ret;
453
454         queue->device = nvme_rdma_find_get_device(queue->cm_id);
455         if (!queue->device) {
456                 dev_err(queue->cm_id->device->dev.parent,
457                         "no client data found!\n");
458                 return -ECONNREFUSED;
459         }
460         ibdev = queue->device->dev;
461
462         /*
463          * Spread I/O queues completion vectors according their queue index.
464          * Admin queues can always go on completion vector 0.
465          */
466         comp_vector = idx == 0 ? idx : idx - 1;
467
468         /* Polling queues need direct cq polling context */
469         if (nvme_rdma_poll_queue(queue))
470                 poll_ctx = IB_POLL_DIRECT;
471         else
472                 poll_ctx = IB_POLL_SOFTIRQ;
473
474         /* +1 for ib_stop_cq */
475         queue->ib_cq = ib_alloc_cq(ibdev, queue,
476                                 cq_factor * queue->queue_size + 1,
477                                 comp_vector, poll_ctx);
478         if (IS_ERR(queue->ib_cq)) {
479                 ret = PTR_ERR(queue->ib_cq);
480                 goto out_put_dev;
481         }
482
483         ret = nvme_rdma_create_qp(queue, send_wr_factor);
484         if (ret)
485                 goto out_destroy_ib_cq;
486
487         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
488                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
489         if (!queue->rsp_ring) {
490                 ret = -ENOMEM;
491                 goto out_destroy_qp;
492         }
493
494         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
495                               queue->queue_size,
496                               IB_MR_TYPE_MEM_REG,
497                               nvme_rdma_get_max_fr_pages(ibdev));
498         if (ret) {
499                 dev_err(queue->ctrl->ctrl.device,
500                         "failed to initialize MR pool sized %d for QID %d\n",
501                         queue->queue_size, idx);
502                 goto out_destroy_ring;
503         }
504
505         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
506
507         return 0;
508
509 out_destroy_ring:
510         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
511                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
512 out_destroy_qp:
513         rdma_destroy_qp(queue->cm_id);
514 out_destroy_ib_cq:
515         ib_free_cq(queue->ib_cq);
516 out_put_dev:
517         nvme_rdma_dev_put(queue->device);
518         return ret;
519 }
520
521 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
522                 int idx, size_t queue_size)
523 {
524         struct nvme_rdma_queue *queue;
525         struct sockaddr *src_addr = NULL;
526         int ret;
527
528         queue = &ctrl->queues[idx];
529         queue->ctrl = ctrl;
530         init_completion(&queue->cm_done);
531
532         if (idx > 0)
533                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
534         else
535                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
536
537         queue->queue_size = queue_size;
538
539         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
540                         RDMA_PS_TCP, IB_QPT_RC);
541         if (IS_ERR(queue->cm_id)) {
542                 dev_info(ctrl->ctrl.device,
543                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
544                 return PTR_ERR(queue->cm_id);
545         }
546
547         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
548                 src_addr = (struct sockaddr *)&ctrl->src_addr;
549
550         queue->cm_error = -ETIMEDOUT;
551         ret = rdma_resolve_addr(queue->cm_id, src_addr,
552                         (struct sockaddr *)&ctrl->addr,
553                         NVME_RDMA_CONNECT_TIMEOUT_MS);
554         if (ret) {
555                 dev_info(ctrl->ctrl.device,
556                         "rdma_resolve_addr failed (%d).\n", ret);
557                 goto out_destroy_cm_id;
558         }
559
560         ret = nvme_rdma_wait_for_cm(queue);
561         if (ret) {
562                 dev_info(ctrl->ctrl.device,
563                         "rdma connection establishment failed (%d)\n", ret);
564                 goto out_destroy_cm_id;
565         }
566
567         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
568
569         return 0;
570
571 out_destroy_cm_id:
572         rdma_destroy_id(queue->cm_id);
573         nvme_rdma_destroy_queue_ib(queue);
574         return ret;
575 }
576
577 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
578 {
579         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
580                 return;
581
582         rdma_disconnect(queue->cm_id);
583         ib_drain_qp(queue->qp);
584 }
585
586 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
587 {
588         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
589                 return;
590
591         nvme_rdma_destroy_queue_ib(queue);
592         rdma_destroy_id(queue->cm_id);
593 }
594
595 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
596 {
597         int i;
598
599         for (i = 1; i < ctrl->ctrl.queue_count; i++)
600                 nvme_rdma_free_queue(&ctrl->queues[i]);
601 }
602
603 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
604 {
605         int i;
606
607         for (i = 1; i < ctrl->ctrl.queue_count; i++)
608                 nvme_rdma_stop_queue(&ctrl->queues[i]);
609 }
610
611 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
612 {
613         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
614         bool poll = nvme_rdma_poll_queue(queue);
615         int ret;
616
617         if (idx)
618                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
619         else
620                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
621
622         if (!ret)
623                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
624         else
625                 dev_info(ctrl->ctrl.device,
626                         "failed to connect queue: %d ret=%d\n", idx, ret);
627         return ret;
628 }
629
630 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
631 {
632         int i, ret = 0;
633
634         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
635                 ret = nvme_rdma_start_queue(ctrl, i);
636                 if (ret)
637                         goto out_stop_queues;
638         }
639
640         return 0;
641
642 out_stop_queues:
643         for (i--; i >= 1; i--)
644                 nvme_rdma_stop_queue(&ctrl->queues[i]);
645         return ret;
646 }
647
648 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
649 {
650         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
651         struct ib_device *ibdev = ctrl->device->dev;
652         unsigned int nr_io_queues;
653         int i, ret;
654
655         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
656
657         /*
658          * we map queues according to the device irq vectors for
659          * optimal locality so we don't need more queues than
660          * completion vectors.
661          */
662         nr_io_queues = min_t(unsigned int, nr_io_queues,
663                                 ibdev->num_comp_vectors);
664
665         if (opts->nr_write_queues) {
666                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
667                                 min(opts->nr_write_queues, nr_io_queues);
668                 nr_io_queues += ctrl->io_queues[HCTX_TYPE_DEFAULT];
669         } else {
670                 ctrl->io_queues[HCTX_TYPE_DEFAULT] = nr_io_queues;
671         }
672
673         ctrl->io_queues[HCTX_TYPE_READ] = nr_io_queues;
674
675         if (opts->nr_poll_queues) {
676                 ctrl->io_queues[HCTX_TYPE_POLL] =
677                         min(opts->nr_poll_queues, num_online_cpus());
678                 nr_io_queues += ctrl->io_queues[HCTX_TYPE_POLL];
679         }
680
681         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
682         if (ret)
683                 return ret;
684
685         ctrl->ctrl.queue_count = nr_io_queues + 1;
686         if (ctrl->ctrl.queue_count < 2)
687                 return 0;
688
689         dev_info(ctrl->ctrl.device,
690                 "creating %d I/O queues.\n", nr_io_queues);
691
692         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
693                 ret = nvme_rdma_alloc_queue(ctrl, i,
694                                 ctrl->ctrl.sqsize + 1);
695                 if (ret)
696                         goto out_free_queues;
697         }
698
699         return 0;
700
701 out_free_queues:
702         for (i--; i >= 1; i--)
703                 nvme_rdma_free_queue(&ctrl->queues[i]);
704
705         return ret;
706 }
707
708 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
709                 struct blk_mq_tag_set *set)
710 {
711         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
712
713         blk_mq_free_tag_set(set);
714         nvme_rdma_dev_put(ctrl->device);
715 }
716
717 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
718                 bool admin)
719 {
720         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
721         struct blk_mq_tag_set *set;
722         int ret;
723
724         if (admin) {
725                 set = &ctrl->admin_tag_set;
726                 memset(set, 0, sizeof(*set));
727                 set->ops = &nvme_rdma_admin_mq_ops;
728                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
729                 set->reserved_tags = 2; /* connect + keep-alive */
730                 set->numa_node = nctrl->numa_node;
731                 set->cmd_size = sizeof(struct nvme_rdma_request) +
732                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
733                 set->driver_data = ctrl;
734                 set->nr_hw_queues = 1;
735                 set->timeout = ADMIN_TIMEOUT;
736                 set->flags = BLK_MQ_F_NO_SCHED;
737         } else {
738                 set = &ctrl->tag_set;
739                 memset(set, 0, sizeof(*set));
740                 set->ops = &nvme_rdma_mq_ops;
741                 set->queue_depth = nctrl->sqsize + 1;
742                 set->reserved_tags = 1; /* fabric connect */
743                 set->numa_node = nctrl->numa_node;
744                 set->flags = BLK_MQ_F_SHOULD_MERGE;
745                 set->cmd_size = sizeof(struct nvme_rdma_request) +
746                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
747                 set->driver_data = ctrl;
748                 set->nr_hw_queues = nctrl->queue_count - 1;
749                 set->timeout = NVME_IO_TIMEOUT;
750                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
751         }
752
753         ret = blk_mq_alloc_tag_set(set);
754         if (ret)
755                 goto out;
756
757         /*
758          * We need a reference on the device as long as the tag_set is alive,
759          * as the MRs in the request structures need a valid ib_device.
760          */
761         ret = nvme_rdma_dev_get(ctrl->device);
762         if (!ret) {
763                 ret = -EINVAL;
764                 goto out_free_tagset;
765         }
766
767         return set;
768
769 out_free_tagset:
770         blk_mq_free_tag_set(set);
771 out:
772         return ERR_PTR(ret);
773 }
774
775 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
776                 bool remove)
777 {
778         if (remove) {
779                 blk_cleanup_queue(ctrl->ctrl.admin_q);
780                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
781         }
782         if (ctrl->async_event_sqe.data) {
783                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
784                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
785                 ctrl->async_event_sqe.data = NULL;
786         }
787         nvme_rdma_free_queue(&ctrl->queues[0]);
788 }
789
790 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
791                 bool new)
792 {
793         int error;
794
795         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
796         if (error)
797                 return error;
798
799         ctrl->device = ctrl->queues[0].device;
800         ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
801
802         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
803
804         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
805                         sizeof(struct nvme_command), DMA_TO_DEVICE);
806         if (error)
807                 goto out_free_queue;
808
809         if (new) {
810                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
811                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
812                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
813                         goto out_free_async_qe;
814                 }
815
816                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
817                 if (IS_ERR(ctrl->ctrl.admin_q)) {
818                         error = PTR_ERR(ctrl->ctrl.admin_q);
819                         goto out_free_tagset;
820                 }
821         }
822
823         error = nvme_rdma_start_queue(ctrl, 0);
824         if (error)
825                 goto out_cleanup_queue;
826
827         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
828                         &ctrl->ctrl.cap);
829         if (error) {
830                 dev_err(ctrl->ctrl.device,
831                         "prop_get NVME_REG_CAP failed\n");
832                 goto out_stop_queue;
833         }
834
835         ctrl->ctrl.sqsize =
836                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
837
838         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
839         if (error)
840                 goto out_stop_queue;
841
842         ctrl->ctrl.max_hw_sectors =
843                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
844
845         error = nvme_init_identify(&ctrl->ctrl);
846         if (error)
847                 goto out_stop_queue;
848
849         return 0;
850
851 out_stop_queue:
852         nvme_rdma_stop_queue(&ctrl->queues[0]);
853 out_cleanup_queue:
854         if (new)
855                 blk_cleanup_queue(ctrl->ctrl.admin_q);
856 out_free_tagset:
857         if (new)
858                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
859 out_free_async_qe:
860         nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
861                 sizeof(struct nvme_command), DMA_TO_DEVICE);
862         ctrl->async_event_sqe.data = NULL;
863 out_free_queue:
864         nvme_rdma_free_queue(&ctrl->queues[0]);
865         return error;
866 }
867
868 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
869                 bool remove)
870 {
871         if (remove) {
872                 blk_cleanup_queue(ctrl->ctrl.connect_q);
873                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
874         }
875         nvme_rdma_free_io_queues(ctrl);
876 }
877
878 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
879 {
880         int ret;
881
882         ret = nvme_rdma_alloc_io_queues(ctrl);
883         if (ret)
884                 return ret;
885
886         if (new) {
887                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
888                 if (IS_ERR(ctrl->ctrl.tagset)) {
889                         ret = PTR_ERR(ctrl->ctrl.tagset);
890                         goto out_free_io_queues;
891                 }
892
893                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
894                 if (IS_ERR(ctrl->ctrl.connect_q)) {
895                         ret = PTR_ERR(ctrl->ctrl.connect_q);
896                         goto out_free_tag_set;
897                 }
898         } else {
899                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
900                         ctrl->ctrl.queue_count - 1);
901         }
902
903         ret = nvme_rdma_start_io_queues(ctrl);
904         if (ret)
905                 goto out_cleanup_connect_q;
906
907         return 0;
908
909 out_cleanup_connect_q:
910         if (new)
911                 blk_cleanup_queue(ctrl->ctrl.connect_q);
912 out_free_tag_set:
913         if (new)
914                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
915 out_free_io_queues:
916         nvme_rdma_free_io_queues(ctrl);
917         return ret;
918 }
919
920 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
921                 bool remove)
922 {
923         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
924         nvme_rdma_stop_queue(&ctrl->queues[0]);
925         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
926                         &ctrl->ctrl);
927         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
928         nvme_rdma_destroy_admin_queue(ctrl, remove);
929 }
930
931 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
932                 bool remove)
933 {
934         if (ctrl->ctrl.queue_count > 1) {
935                 nvme_stop_queues(&ctrl->ctrl);
936                 nvme_rdma_stop_io_queues(ctrl);
937                 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
938                                 &ctrl->ctrl);
939                 if (remove)
940                         nvme_start_queues(&ctrl->ctrl);
941                 nvme_rdma_destroy_io_queues(ctrl, remove);
942         }
943 }
944
945 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
946 {
947         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
948
949         cancel_work_sync(&ctrl->err_work);
950         cancel_delayed_work_sync(&ctrl->reconnect_work);
951 }
952
953 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
954 {
955         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
956
957         if (list_empty(&ctrl->list))
958                 goto free_ctrl;
959
960         mutex_lock(&nvme_rdma_ctrl_mutex);
961         list_del(&ctrl->list);
962         mutex_unlock(&nvme_rdma_ctrl_mutex);
963
964         nvmf_free_options(nctrl->opts);
965 free_ctrl:
966         kfree(ctrl->queues);
967         kfree(ctrl);
968 }
969
970 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
971 {
972         /* If we are resetting/deleting then do nothing */
973         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
974                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
975                         ctrl->ctrl.state == NVME_CTRL_LIVE);
976                 return;
977         }
978
979         if (nvmf_should_reconnect(&ctrl->ctrl)) {
980                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
981                         ctrl->ctrl.opts->reconnect_delay);
982                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
983                                 ctrl->ctrl.opts->reconnect_delay * HZ);
984         } else {
985                 nvme_delete_ctrl(&ctrl->ctrl);
986         }
987 }
988
989 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
990 {
991         int ret = -EINVAL;
992         bool changed;
993
994         ret = nvme_rdma_configure_admin_queue(ctrl, new);
995         if (ret)
996                 return ret;
997
998         if (ctrl->ctrl.icdoff) {
999                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1000                 goto destroy_admin;
1001         }
1002
1003         if (!(ctrl->ctrl.sgls & (1 << 2))) {
1004                 dev_err(ctrl->ctrl.device,
1005                         "Mandatory keyed sgls are not supported!\n");
1006                 goto destroy_admin;
1007         }
1008
1009         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1010                 dev_warn(ctrl->ctrl.device,
1011                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1012                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1013         }
1014
1015         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1016                 dev_warn(ctrl->ctrl.device,
1017                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1018                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1019                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1020         }
1021
1022         if (ctrl->ctrl.sgls & (1 << 20))
1023                 ctrl->use_inline_data = true;
1024
1025         if (ctrl->ctrl.queue_count > 1) {
1026                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1027                 if (ret)
1028                         goto destroy_admin;
1029         }
1030
1031         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1032         if (!changed) {
1033                 /* state change failure is ok if we're in DELETING state */
1034                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1035                 ret = -EINVAL;
1036                 goto destroy_io;
1037         }
1038
1039         nvme_start_ctrl(&ctrl->ctrl);
1040         return 0;
1041
1042 destroy_io:
1043         if (ctrl->ctrl.queue_count > 1)
1044                 nvme_rdma_destroy_io_queues(ctrl, new);
1045 destroy_admin:
1046         nvme_rdma_stop_queue(&ctrl->queues[0]);
1047         nvme_rdma_destroy_admin_queue(ctrl, new);
1048         return ret;
1049 }
1050
1051 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1052 {
1053         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1054                         struct nvme_rdma_ctrl, reconnect_work);
1055
1056         ++ctrl->ctrl.nr_reconnects;
1057
1058         if (nvme_rdma_setup_ctrl(ctrl, false))
1059                 goto requeue;
1060
1061         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1062                         ctrl->ctrl.nr_reconnects);
1063
1064         ctrl->ctrl.nr_reconnects = 0;
1065
1066         return;
1067
1068 requeue:
1069         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1070                         ctrl->ctrl.nr_reconnects);
1071         nvme_rdma_reconnect_or_remove(ctrl);
1072 }
1073
1074 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1075 {
1076         struct nvme_rdma_ctrl *ctrl = container_of(work,
1077                         struct nvme_rdma_ctrl, err_work);
1078
1079         nvme_stop_keep_alive(&ctrl->ctrl);
1080         nvme_rdma_teardown_io_queues(ctrl, false);
1081         nvme_start_queues(&ctrl->ctrl);
1082         nvme_rdma_teardown_admin_queue(ctrl, false);
1083
1084         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1085                 /* state change failure is ok if we're in DELETING state */
1086                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1087                 return;
1088         }
1089
1090         nvme_rdma_reconnect_or_remove(ctrl);
1091 }
1092
1093 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1094 {
1095         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1096                 return;
1097
1098         queue_work(nvme_wq, &ctrl->err_work);
1099 }
1100
1101 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1102                 const char *op)
1103 {
1104         struct nvme_rdma_queue *queue = cq->cq_context;
1105         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1106
1107         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1108                 dev_info(ctrl->ctrl.device,
1109                              "%s for CQE 0x%p failed with status %s (%d)\n",
1110                              op, wc->wr_cqe,
1111                              ib_wc_status_msg(wc->status), wc->status);
1112         nvme_rdma_error_recovery(ctrl);
1113 }
1114
1115 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1116 {
1117         if (unlikely(wc->status != IB_WC_SUCCESS))
1118                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1119 }
1120
1121 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1122 {
1123         struct nvme_rdma_request *req =
1124                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1125         struct request *rq = blk_mq_rq_from_pdu(req);
1126
1127         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1128                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1129                 return;
1130         }
1131
1132         if (refcount_dec_and_test(&req->ref))
1133                 nvme_end_request(rq, req->status, req->result);
1134
1135 }
1136
1137 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1138                 struct nvme_rdma_request *req)
1139 {
1140         struct ib_send_wr wr = {
1141                 .opcode             = IB_WR_LOCAL_INV,
1142                 .next               = NULL,
1143                 .num_sge            = 0,
1144                 .send_flags         = IB_SEND_SIGNALED,
1145                 .ex.invalidate_rkey = req->mr->rkey,
1146         };
1147
1148         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1149         wr.wr_cqe = &req->reg_cqe;
1150
1151         return ib_post_send(queue->qp, &wr, NULL);
1152 }
1153
1154 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1155                 struct request *rq)
1156 {
1157         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1158         struct nvme_rdma_device *dev = queue->device;
1159         struct ib_device *ibdev = dev->dev;
1160
1161         if (!blk_rq_payload_bytes(rq))
1162                 return;
1163
1164         if (req->mr) {
1165                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1166                 req->mr = NULL;
1167         }
1168
1169         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1170                         req->nents, rq_data_dir(rq) ==
1171                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1172
1173         nvme_cleanup_cmd(rq);
1174         sg_free_table_chained(&req->sg_table, true);
1175 }
1176
1177 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1178 {
1179         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1180
1181         sg->addr = 0;
1182         put_unaligned_le24(0, sg->length);
1183         put_unaligned_le32(0, sg->key);
1184         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1185         return 0;
1186 }
1187
1188 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1189                 struct nvme_rdma_request *req, struct nvme_command *c,
1190                 int count)
1191 {
1192         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1193         struct scatterlist *sgl = req->sg_table.sgl;
1194         struct ib_sge *sge = &req->sge[1];
1195         u32 len = 0;
1196         int i;
1197
1198         for (i = 0; i < count; i++, sgl++, sge++) {
1199                 sge->addr = sg_dma_address(sgl);
1200                 sge->length = sg_dma_len(sgl);
1201                 sge->lkey = queue->device->pd->local_dma_lkey;
1202                 len += sge->length;
1203         }
1204
1205         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1206         sg->length = cpu_to_le32(len);
1207         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1208
1209         req->num_sge += count;
1210         return 0;
1211 }
1212
1213 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1214                 struct nvme_rdma_request *req, struct nvme_command *c)
1215 {
1216         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1217
1218         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1219         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1220         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1221         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1222         return 0;
1223 }
1224
1225 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1226                 struct nvme_rdma_request *req, struct nvme_command *c,
1227                 int count)
1228 {
1229         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1230         int nr;
1231
1232         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1233         if (WARN_ON_ONCE(!req->mr))
1234                 return -EAGAIN;
1235
1236         /*
1237          * Align the MR to a 4K page size to match the ctrl page size and
1238          * the block virtual boundary.
1239          */
1240         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1241         if (unlikely(nr < count)) {
1242                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1243                 req->mr = NULL;
1244                 if (nr < 0)
1245                         return nr;
1246                 return -EINVAL;
1247         }
1248
1249         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1250
1251         req->reg_cqe.done = nvme_rdma_memreg_done;
1252         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1253         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1254         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1255         req->reg_wr.wr.num_sge = 0;
1256         req->reg_wr.mr = req->mr;
1257         req->reg_wr.key = req->mr->rkey;
1258         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1259                              IB_ACCESS_REMOTE_READ |
1260                              IB_ACCESS_REMOTE_WRITE;
1261
1262         sg->addr = cpu_to_le64(req->mr->iova);
1263         put_unaligned_le24(req->mr->length, sg->length);
1264         put_unaligned_le32(req->mr->rkey, sg->key);
1265         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1266                         NVME_SGL_FMT_INVALIDATE;
1267
1268         return 0;
1269 }
1270
1271 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1272                 struct request *rq, struct nvme_command *c)
1273 {
1274         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1275         struct nvme_rdma_device *dev = queue->device;
1276         struct ib_device *ibdev = dev->dev;
1277         int count, ret;
1278
1279         req->num_sge = 1;
1280         refcount_set(&req->ref, 2); /* send and recv completions */
1281
1282         c->common.flags |= NVME_CMD_SGL_METABUF;
1283
1284         if (!blk_rq_payload_bytes(rq))
1285                 return nvme_rdma_set_sg_null(c);
1286
1287         req->sg_table.sgl = req->first_sgl;
1288         ret = sg_alloc_table_chained(&req->sg_table,
1289                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1290         if (ret)
1291                 return -ENOMEM;
1292
1293         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1294
1295         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1296                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1297         if (unlikely(count <= 0)) {
1298                 ret = -EIO;
1299                 goto out_free_table;
1300         }
1301
1302         if (count <= dev->num_inline_segments) {
1303                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1304                     queue->ctrl->use_inline_data &&
1305                     blk_rq_payload_bytes(rq) <=
1306                                 nvme_rdma_inline_data_size(queue)) {
1307                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1308                         goto out;
1309                 }
1310
1311                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1312                         ret = nvme_rdma_map_sg_single(queue, req, c);
1313                         goto out;
1314                 }
1315         }
1316
1317         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1318 out:
1319         if (unlikely(ret))
1320                 goto out_unmap_sg;
1321
1322         return 0;
1323
1324 out_unmap_sg:
1325         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1326                         req->nents, rq_data_dir(rq) ==
1327                         WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1328 out_free_table:
1329         sg_free_table_chained(&req->sg_table, true);
1330         return ret;
1331 }
1332
1333 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1334 {
1335         struct nvme_rdma_qe *qe =
1336                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1337         struct nvme_rdma_request *req =
1338                 container_of(qe, struct nvme_rdma_request, sqe);
1339         struct request *rq = blk_mq_rq_from_pdu(req);
1340
1341         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1342                 nvme_rdma_wr_error(cq, wc, "SEND");
1343                 return;
1344         }
1345
1346         if (refcount_dec_and_test(&req->ref))
1347                 nvme_end_request(rq, req->status, req->result);
1348 }
1349
1350 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1351                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1352                 struct ib_send_wr *first)
1353 {
1354         struct ib_send_wr wr;
1355         int ret;
1356
1357         sge->addr   = qe->dma;
1358         sge->length = sizeof(struct nvme_command),
1359         sge->lkey   = queue->device->pd->local_dma_lkey;
1360
1361         wr.next       = NULL;
1362         wr.wr_cqe     = &qe->cqe;
1363         wr.sg_list    = sge;
1364         wr.num_sge    = num_sge;
1365         wr.opcode     = IB_WR_SEND;
1366         wr.send_flags = IB_SEND_SIGNALED;
1367
1368         if (first)
1369                 first->next = &wr;
1370         else
1371                 first = &wr;
1372
1373         ret = ib_post_send(queue->qp, first, NULL);
1374         if (unlikely(ret)) {
1375                 dev_err(queue->ctrl->ctrl.device,
1376                              "%s failed with error code %d\n", __func__, ret);
1377         }
1378         return ret;
1379 }
1380
1381 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1382                 struct nvme_rdma_qe *qe)
1383 {
1384         struct ib_recv_wr wr;
1385         struct ib_sge list;
1386         int ret;
1387
1388         list.addr   = qe->dma;
1389         list.length = sizeof(struct nvme_completion);
1390         list.lkey   = queue->device->pd->local_dma_lkey;
1391
1392         qe->cqe.done = nvme_rdma_recv_done;
1393
1394         wr.next     = NULL;
1395         wr.wr_cqe   = &qe->cqe;
1396         wr.sg_list  = &list;
1397         wr.num_sge  = 1;
1398
1399         ret = ib_post_recv(queue->qp, &wr, NULL);
1400         if (unlikely(ret)) {
1401                 dev_err(queue->ctrl->ctrl.device,
1402                         "%s failed with error code %d\n", __func__, ret);
1403         }
1404         return ret;
1405 }
1406
1407 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1408 {
1409         u32 queue_idx = nvme_rdma_queue_idx(queue);
1410
1411         if (queue_idx == 0)
1412                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1413         return queue->ctrl->tag_set.tags[queue_idx - 1];
1414 }
1415
1416 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1417 {
1418         if (unlikely(wc->status != IB_WC_SUCCESS))
1419                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1420 }
1421
1422 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1423 {
1424         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1425         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1426         struct ib_device *dev = queue->device->dev;
1427         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1428         struct nvme_command *cmd = sqe->data;
1429         struct ib_sge sge;
1430         int ret;
1431
1432         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1433
1434         memset(cmd, 0, sizeof(*cmd));
1435         cmd->common.opcode = nvme_admin_async_event;
1436         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1437         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1438         nvme_rdma_set_sg_null(cmd);
1439
1440         sqe->cqe.done = nvme_rdma_async_done;
1441
1442         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1443                         DMA_TO_DEVICE);
1444
1445         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1446         WARN_ON_ONCE(ret);
1447 }
1448
1449 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1450                 struct nvme_completion *cqe, struct ib_wc *wc)
1451 {
1452         struct request *rq;
1453         struct nvme_rdma_request *req;
1454
1455         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1456         if (!rq) {
1457                 dev_err(queue->ctrl->ctrl.device,
1458                         "tag 0x%x on QP %#x not found\n",
1459                         cqe->command_id, queue->qp->qp_num);
1460                 nvme_rdma_error_recovery(queue->ctrl);
1461                 return;
1462         }
1463         req = blk_mq_rq_to_pdu(rq);
1464
1465         req->status = cqe->status;
1466         req->result = cqe->result;
1467
1468         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1469                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1470                         dev_err(queue->ctrl->ctrl.device,
1471                                 "Bogus remote invalidation for rkey %#x\n",
1472                                 req->mr->rkey);
1473                         nvme_rdma_error_recovery(queue->ctrl);
1474                 }
1475         } else if (req->mr) {
1476                 int ret;
1477
1478                 ret = nvme_rdma_inv_rkey(queue, req);
1479                 if (unlikely(ret < 0)) {
1480                         dev_err(queue->ctrl->ctrl.device,
1481                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1482                                 req->mr->rkey, ret);
1483                         nvme_rdma_error_recovery(queue->ctrl);
1484                 }
1485                 /* the local invalidation completion will end the request */
1486                 return;
1487         }
1488
1489         if (refcount_dec_and_test(&req->ref))
1490                 nvme_end_request(rq, req->status, req->result);
1491 }
1492
1493 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1494 {
1495         struct nvme_rdma_qe *qe =
1496                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1497         struct nvme_rdma_queue *queue = cq->cq_context;
1498         struct ib_device *ibdev = queue->device->dev;
1499         struct nvme_completion *cqe = qe->data;
1500         const size_t len = sizeof(struct nvme_completion);
1501
1502         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1503                 nvme_rdma_wr_error(cq, wc, "RECV");
1504                 return;
1505         }
1506
1507         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1508         /*
1509          * AEN requests are special as they don't time out and can
1510          * survive any kind of queue freeze and often don't respond to
1511          * aborts.  We don't even bother to allocate a struct request
1512          * for them but rather special case them here.
1513          */
1514         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1515                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1516                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1517                                 &cqe->result);
1518         else
1519                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1520         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1521
1522         nvme_rdma_post_recv(queue, qe);
1523 }
1524
1525 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1526 {
1527         int ret, i;
1528
1529         for (i = 0; i < queue->queue_size; i++) {
1530                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1531                 if (ret)
1532                         goto out_destroy_queue_ib;
1533         }
1534
1535         return 0;
1536
1537 out_destroy_queue_ib:
1538         nvme_rdma_destroy_queue_ib(queue);
1539         return ret;
1540 }
1541
1542 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1543                 struct rdma_cm_event *ev)
1544 {
1545         struct rdma_cm_id *cm_id = queue->cm_id;
1546         int status = ev->status;
1547         const char *rej_msg;
1548         const struct nvme_rdma_cm_rej *rej_data;
1549         u8 rej_data_len;
1550
1551         rej_msg = rdma_reject_msg(cm_id, status);
1552         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1553
1554         if (rej_data && rej_data_len >= sizeof(u16)) {
1555                 u16 sts = le16_to_cpu(rej_data->sts);
1556
1557                 dev_err(queue->ctrl->ctrl.device,
1558                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1559                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1560         } else {
1561                 dev_err(queue->ctrl->ctrl.device,
1562                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1563         }
1564
1565         return -ECONNRESET;
1566 }
1567
1568 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1569 {
1570         int ret;
1571
1572         ret = nvme_rdma_create_queue_ib(queue);
1573         if (ret)
1574                 return ret;
1575
1576         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1577         if (ret) {
1578                 dev_err(queue->ctrl->ctrl.device,
1579                         "rdma_resolve_route failed (%d).\n",
1580                         queue->cm_error);
1581                 goto out_destroy_queue;
1582         }
1583
1584         return 0;
1585
1586 out_destroy_queue:
1587         nvme_rdma_destroy_queue_ib(queue);
1588         return ret;
1589 }
1590
1591 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1592 {
1593         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1594         struct rdma_conn_param param = { };
1595         struct nvme_rdma_cm_req priv = { };
1596         int ret;
1597
1598         param.qp_num = queue->qp->qp_num;
1599         param.flow_control = 1;
1600
1601         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1602         /* maximum retry count */
1603         param.retry_count = 7;
1604         param.rnr_retry_count = 7;
1605         param.private_data = &priv;
1606         param.private_data_len = sizeof(priv);
1607
1608         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1609         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1610         /*
1611          * set the admin queue depth to the minimum size
1612          * specified by the Fabrics standard.
1613          */
1614         if (priv.qid == 0) {
1615                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1616                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1617         } else {
1618                 /*
1619                  * current interpretation of the fabrics spec
1620                  * is at minimum you make hrqsize sqsize+1, or a
1621                  * 1's based representation of sqsize.
1622                  */
1623                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1624                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1625         }
1626
1627         ret = rdma_connect(queue->cm_id, &param);
1628         if (ret) {
1629                 dev_err(ctrl->ctrl.device,
1630                         "rdma_connect failed (%d).\n", ret);
1631                 goto out_destroy_queue_ib;
1632         }
1633
1634         return 0;
1635
1636 out_destroy_queue_ib:
1637         nvme_rdma_destroy_queue_ib(queue);
1638         return ret;
1639 }
1640
1641 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1642                 struct rdma_cm_event *ev)
1643 {
1644         struct nvme_rdma_queue *queue = cm_id->context;
1645         int cm_error = 0;
1646
1647         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1648                 rdma_event_msg(ev->event), ev->event,
1649                 ev->status, cm_id);
1650
1651         switch (ev->event) {
1652         case RDMA_CM_EVENT_ADDR_RESOLVED:
1653                 cm_error = nvme_rdma_addr_resolved(queue);
1654                 break;
1655         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1656                 cm_error = nvme_rdma_route_resolved(queue);
1657                 break;
1658         case RDMA_CM_EVENT_ESTABLISHED:
1659                 queue->cm_error = nvme_rdma_conn_established(queue);
1660                 /* complete cm_done regardless of success/failure */
1661                 complete(&queue->cm_done);
1662                 return 0;
1663         case RDMA_CM_EVENT_REJECTED:
1664                 nvme_rdma_destroy_queue_ib(queue);
1665                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1666                 break;
1667         case RDMA_CM_EVENT_ROUTE_ERROR:
1668         case RDMA_CM_EVENT_CONNECT_ERROR:
1669         case RDMA_CM_EVENT_UNREACHABLE:
1670                 nvme_rdma_destroy_queue_ib(queue);
1671                 /* fall through */
1672         case RDMA_CM_EVENT_ADDR_ERROR:
1673                 dev_dbg(queue->ctrl->ctrl.device,
1674                         "CM error event %d\n", ev->event);
1675                 cm_error = -ECONNRESET;
1676                 break;
1677         case RDMA_CM_EVENT_DISCONNECTED:
1678         case RDMA_CM_EVENT_ADDR_CHANGE:
1679         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1680                 dev_dbg(queue->ctrl->ctrl.device,
1681                         "disconnect received - connection closed\n");
1682                 nvme_rdma_error_recovery(queue->ctrl);
1683                 break;
1684         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1685                 /* device removal is handled via the ib_client API */
1686                 break;
1687         default:
1688                 dev_err(queue->ctrl->ctrl.device,
1689                         "Unexpected RDMA CM event (%d)\n", ev->event);
1690                 nvme_rdma_error_recovery(queue->ctrl);
1691                 break;
1692         }
1693
1694         if (cm_error) {
1695                 queue->cm_error = cm_error;
1696                 complete(&queue->cm_done);
1697         }
1698
1699         return 0;
1700 }
1701
1702 static enum blk_eh_timer_return
1703 nvme_rdma_timeout(struct request *rq, bool reserved)
1704 {
1705         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1706         struct nvme_rdma_queue *queue = req->queue;
1707         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1708
1709         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1710                  rq->tag, nvme_rdma_queue_idx(queue));
1711
1712         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1713                 /*
1714                  * Teardown immediately if controller times out while starting
1715                  * or we are already started error recovery. all outstanding
1716                  * requests are completed on shutdown, so we return BLK_EH_DONE.
1717                  */
1718                 flush_work(&ctrl->err_work);
1719                 nvme_rdma_teardown_io_queues(ctrl, false);
1720                 nvme_rdma_teardown_admin_queue(ctrl, false);
1721                 return BLK_EH_DONE;
1722         }
1723
1724         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1725         nvme_rdma_error_recovery(ctrl);
1726
1727         return BLK_EH_RESET_TIMER;
1728 }
1729
1730 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1731                 const struct blk_mq_queue_data *bd)
1732 {
1733         struct nvme_ns *ns = hctx->queue->queuedata;
1734         struct nvme_rdma_queue *queue = hctx->driver_data;
1735         struct request *rq = bd->rq;
1736         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1737         struct nvme_rdma_qe *sqe = &req->sqe;
1738         struct nvme_command *c = sqe->data;
1739         struct ib_device *dev;
1740         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1741         blk_status_t ret;
1742         int err;
1743
1744         WARN_ON_ONCE(rq->tag < 0);
1745
1746         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1747                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1748
1749         dev = queue->device->dev;
1750         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1751                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1752
1753         ret = nvme_setup_cmd(ns, rq, c);
1754         if (ret)
1755                 return ret;
1756
1757         blk_mq_start_request(rq);
1758
1759         err = nvme_rdma_map_data(queue, rq, c);
1760         if (unlikely(err < 0)) {
1761                 dev_err(queue->ctrl->ctrl.device,
1762                              "Failed to map data (%d)\n", err);
1763                 nvme_cleanup_cmd(rq);
1764                 goto err;
1765         }
1766
1767         sqe->cqe.done = nvme_rdma_send_done;
1768
1769         ib_dma_sync_single_for_device(dev, sqe->dma,
1770                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1771
1772         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1773                         req->mr ? &req->reg_wr.wr : NULL);
1774         if (unlikely(err)) {
1775                 nvme_rdma_unmap_data(queue, rq);
1776                 goto err;
1777         }
1778
1779         return BLK_STS_OK;
1780 err:
1781         if (err == -ENOMEM || err == -EAGAIN)
1782                 return BLK_STS_RESOURCE;
1783         return BLK_STS_IOERR;
1784 }
1785
1786 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1787 {
1788         struct nvme_rdma_queue *queue = hctx->driver_data;
1789
1790         return ib_process_cq_direct(queue->ib_cq, -1);
1791 }
1792
1793 static void nvme_rdma_complete_rq(struct request *rq)
1794 {
1795         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1796
1797         nvme_rdma_unmap_data(req->queue, rq);
1798         nvme_complete_rq(rq);
1799 }
1800
1801 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1802 {
1803         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1804
1805         set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1806         set->map[HCTX_TYPE_DEFAULT].nr_queues =
1807                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1808         set->map[HCTX_TYPE_READ].nr_queues = ctrl->io_queues[HCTX_TYPE_READ];
1809         if (ctrl->ctrl.opts->nr_write_queues) {
1810                 /* separate read/write queues */
1811                 set->map[HCTX_TYPE_READ].queue_offset =
1812                                 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1813         } else {
1814                 /* mixed read/write queues */
1815                 set->map[HCTX_TYPE_READ].queue_offset = 0;
1816         }
1817         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1818                         ctrl->device->dev, 0);
1819         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1820                         ctrl->device->dev, 0);
1821
1822         if (ctrl->ctrl.opts->nr_poll_queues) {
1823                 set->map[HCTX_TYPE_POLL].nr_queues =
1824                                 ctrl->io_queues[HCTX_TYPE_POLL];
1825                 set->map[HCTX_TYPE_POLL].queue_offset =
1826                                 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1827                 if (ctrl->ctrl.opts->nr_write_queues)
1828                         set->map[HCTX_TYPE_POLL].queue_offset +=
1829                                 ctrl->io_queues[HCTX_TYPE_READ];
1830                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1831         }
1832         return 0;
1833 }
1834
1835 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1836         .queue_rq       = nvme_rdma_queue_rq,
1837         .complete       = nvme_rdma_complete_rq,
1838         .init_request   = nvme_rdma_init_request,
1839         .exit_request   = nvme_rdma_exit_request,
1840         .init_hctx      = nvme_rdma_init_hctx,
1841         .timeout        = nvme_rdma_timeout,
1842         .map_queues     = nvme_rdma_map_queues,
1843         .poll           = nvme_rdma_poll,
1844 };
1845
1846 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1847         .queue_rq       = nvme_rdma_queue_rq,
1848         .complete       = nvme_rdma_complete_rq,
1849         .init_request   = nvme_rdma_init_request,
1850         .exit_request   = nvme_rdma_exit_request,
1851         .init_hctx      = nvme_rdma_init_admin_hctx,
1852         .timeout        = nvme_rdma_timeout,
1853 };
1854
1855 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1856 {
1857         nvme_rdma_teardown_io_queues(ctrl, shutdown);
1858         if (shutdown)
1859                 nvme_shutdown_ctrl(&ctrl->ctrl);
1860         else
1861                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1862         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1863 }
1864
1865 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1866 {
1867         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1868 }
1869
1870 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1871 {
1872         struct nvme_rdma_ctrl *ctrl =
1873                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1874
1875         nvme_stop_ctrl(&ctrl->ctrl);
1876         nvme_rdma_shutdown_ctrl(ctrl, false);
1877
1878         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1879                 /* state change failure should never happen */
1880                 WARN_ON_ONCE(1);
1881                 return;
1882         }
1883
1884         if (nvme_rdma_setup_ctrl(ctrl, false))
1885                 goto out_fail;
1886
1887         return;
1888
1889 out_fail:
1890         ++ctrl->ctrl.nr_reconnects;
1891         nvme_rdma_reconnect_or_remove(ctrl);
1892 }
1893
1894 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1895         .name                   = "rdma",
1896         .module                 = THIS_MODULE,
1897         .flags                  = NVME_F_FABRICS,
1898         .reg_read32             = nvmf_reg_read32,
1899         .reg_read64             = nvmf_reg_read64,
1900         .reg_write32            = nvmf_reg_write32,
1901         .free_ctrl              = nvme_rdma_free_ctrl,
1902         .submit_async_event     = nvme_rdma_submit_async_event,
1903         .delete_ctrl            = nvme_rdma_delete_ctrl,
1904         .get_address            = nvmf_get_address,
1905         .stop_ctrl              = nvme_rdma_stop_ctrl,
1906 };
1907
1908 /*
1909  * Fails a connection request if it matches an existing controller
1910  * (association) with the same tuple:
1911  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1912  *
1913  * if local address is not specified in the request, it will match an
1914  * existing controller with all the other parameters the same and no
1915  * local port address specified as well.
1916  *
1917  * The ports don't need to be compared as they are intrinsically
1918  * already matched by the port pointers supplied.
1919  */
1920 static bool
1921 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1922 {
1923         struct nvme_rdma_ctrl *ctrl;
1924         bool found = false;
1925
1926         mutex_lock(&nvme_rdma_ctrl_mutex);
1927         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1928                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1929                 if (found)
1930                         break;
1931         }
1932         mutex_unlock(&nvme_rdma_ctrl_mutex);
1933
1934         return found;
1935 }
1936
1937 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1938                 struct nvmf_ctrl_options *opts)
1939 {
1940         struct nvme_rdma_ctrl *ctrl;
1941         int ret;
1942         bool changed;
1943
1944         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1945         if (!ctrl)
1946                 return ERR_PTR(-ENOMEM);
1947         ctrl->ctrl.opts = opts;
1948         INIT_LIST_HEAD(&ctrl->list);
1949
1950         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1951                 opts->trsvcid =
1952                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1953                 if (!opts->trsvcid) {
1954                         ret = -ENOMEM;
1955                         goto out_free_ctrl;
1956                 }
1957                 opts->mask |= NVMF_OPT_TRSVCID;
1958         }
1959
1960         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1961                         opts->traddr, opts->trsvcid, &ctrl->addr);
1962         if (ret) {
1963                 pr_err("malformed address passed: %s:%s\n",
1964                         opts->traddr, opts->trsvcid);
1965                 goto out_free_ctrl;
1966         }
1967
1968         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1969                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1970                         opts->host_traddr, NULL, &ctrl->src_addr);
1971                 if (ret) {
1972                         pr_err("malformed src address passed: %s\n",
1973                                opts->host_traddr);
1974                         goto out_free_ctrl;
1975                 }
1976         }
1977
1978         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1979                 ret = -EALREADY;
1980                 goto out_free_ctrl;
1981         }
1982
1983         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1984                         nvme_rdma_reconnect_ctrl_work);
1985         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1986         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1987
1988         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
1989                                 opts->nr_poll_queues + 1;
1990         ctrl->ctrl.sqsize = opts->queue_size - 1;
1991         ctrl->ctrl.kato = opts->kato;
1992
1993         ret = -ENOMEM;
1994         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1995                                 GFP_KERNEL);
1996         if (!ctrl->queues)
1997                 goto out_free_ctrl;
1998
1999         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2000                                 0 /* no quirks, we're perfect! */);
2001         if (ret)
2002                 goto out_kfree_queues;
2003
2004         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2005         WARN_ON_ONCE(!changed);
2006
2007         ret = nvme_rdma_setup_ctrl(ctrl, true);
2008         if (ret)
2009                 goto out_uninit_ctrl;
2010
2011         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2012                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2013
2014         nvme_get_ctrl(&ctrl->ctrl);
2015
2016         mutex_lock(&nvme_rdma_ctrl_mutex);
2017         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2018         mutex_unlock(&nvme_rdma_ctrl_mutex);
2019
2020         return &ctrl->ctrl;
2021
2022 out_uninit_ctrl:
2023         nvme_uninit_ctrl(&ctrl->ctrl);
2024         nvme_put_ctrl(&ctrl->ctrl);
2025         if (ret > 0)
2026                 ret = -EIO;
2027         return ERR_PTR(ret);
2028 out_kfree_queues:
2029         kfree(ctrl->queues);
2030 out_free_ctrl:
2031         kfree(ctrl);
2032         return ERR_PTR(ret);
2033 }
2034
2035 static struct nvmf_transport_ops nvme_rdma_transport = {
2036         .name           = "rdma",
2037         .module         = THIS_MODULE,
2038         .required_opts  = NVMF_OPT_TRADDR,
2039         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2040                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2041                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES,
2042         .create_ctrl    = nvme_rdma_create_ctrl,
2043 };
2044
2045 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2046 {
2047         struct nvme_rdma_ctrl *ctrl;
2048         struct nvme_rdma_device *ndev;
2049         bool found = false;
2050
2051         mutex_lock(&device_list_mutex);
2052         list_for_each_entry(ndev, &device_list, entry) {
2053                 if (ndev->dev == ib_device) {
2054                         found = true;
2055                         break;
2056                 }
2057         }
2058         mutex_unlock(&device_list_mutex);
2059
2060         if (!found)
2061                 return;
2062
2063         /* Delete all controllers using this device */
2064         mutex_lock(&nvme_rdma_ctrl_mutex);
2065         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2066                 if (ctrl->device->dev != ib_device)
2067                         continue;
2068                 nvme_delete_ctrl(&ctrl->ctrl);
2069         }
2070         mutex_unlock(&nvme_rdma_ctrl_mutex);
2071
2072         flush_workqueue(nvme_delete_wq);
2073 }
2074
2075 static struct ib_client nvme_rdma_ib_client = {
2076         .name   = "nvme_rdma",
2077         .remove = nvme_rdma_remove_one
2078 };
2079
2080 static int __init nvme_rdma_init_module(void)
2081 {
2082         int ret;
2083
2084         ret = ib_register_client(&nvme_rdma_ib_client);
2085         if (ret)
2086                 return ret;
2087
2088         ret = nvmf_register_transport(&nvme_rdma_transport);
2089         if (ret)
2090                 goto err_unreg_client;
2091
2092         return 0;
2093
2094 err_unreg_client:
2095         ib_unregister_client(&nvme_rdma_ib_client);
2096         return ret;
2097 }
2098
2099 static void __exit nvme_rdma_cleanup_module(void)
2100 {
2101         nvmf_unregister_transport(&nvme_rdma_transport);
2102         ib_unregister_client(&nvme_rdma_ib_client);
2103 }
2104
2105 module_init(nvme_rdma_init_module);
2106 module_exit(nvme_rdma_cleanup_module);
2107
2108 MODULE_LICENSE("GPL v2");