kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
44
45 struct nvme_rdma_device {
46         struct ib_device        *dev;
47         struct ib_pd            *pd;
48         struct kref             ref;
49         struct list_head        entry;
50 };
51
52 struct nvme_rdma_qe {
53         struct ib_cqe           cqe;
54         void                    *data;
55         u64                     dma;
56 };
57
58 struct nvme_rdma_queue;
59 struct nvme_rdma_request {
60         struct nvme_request     req;
61         struct ib_mr            *mr;
62         struct nvme_rdma_qe     sqe;
63         union nvme_result       result;
64         __le16                  status;
65         refcount_t              ref;
66         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
67         u32                     num_sge;
68         int                     nents;
69         struct ib_reg_wr        reg_wr;
70         struct ib_cqe           reg_cqe;
71         struct nvme_rdma_queue  *queue;
72         struct sg_table         sg_table;
73         struct scatterlist      first_sgl[];
74 };
75
76 enum nvme_rdma_queue_flags {
77         NVME_RDMA_Q_ALLOCATED           = 0,
78         NVME_RDMA_Q_LIVE                = 1,
79         NVME_RDMA_Q_TR_READY            = 2,
80 };
81
82 struct nvme_rdma_queue {
83         struct nvme_rdma_qe     *rsp_ring;
84         int                     queue_size;
85         size_t                  cmnd_capsule_len;
86         struct nvme_rdma_ctrl   *ctrl;
87         struct nvme_rdma_device *device;
88         struct ib_cq            *ib_cq;
89         struct ib_qp            *qp;
90
91         unsigned long           flags;
92         struct rdma_cm_id       *cm_id;
93         int                     cm_error;
94         struct completion       cm_done;
95 };
96
97 struct nvme_rdma_ctrl {
98         /* read only in the hot path */
99         struct nvme_rdma_queue  *queues;
100
101         /* other member variables */
102         struct blk_mq_tag_set   tag_set;
103         struct work_struct      err_work;
104
105         struct nvme_rdma_qe     async_event_sqe;
106
107         struct delayed_work     reconnect_work;
108
109         struct list_head        list;
110
111         struct blk_mq_tag_set   admin_tag_set;
112         struct nvme_rdma_device *device;
113
114         u32                     max_fr_pages;
115
116         struct sockaddr_storage addr;
117         struct sockaddr_storage src_addr;
118
119         struct nvme_ctrl        ctrl;
120 };
121
122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
123 {
124         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
125 }
126
127 static LIST_HEAD(device_list);
128 static DEFINE_MUTEX(device_list_mutex);
129
130 static LIST_HEAD(nvme_rdma_ctrl_list);
131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
132
133 /*
134  * Disabling this option makes small I/O goes faster, but is fundamentally
135  * unsafe.  With it turned off we will have to register a global rkey that
136  * allows read and write access to all physical memory.
137  */
138 static bool register_always = true;
139 module_param(register_always, bool, 0444);
140 MODULE_PARM_DESC(register_always,
141          "Use memory registration even for contiguous memory regions");
142
143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
144                 struct rdma_cm_event *event);
145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
146
147 static const struct blk_mq_ops nvme_rdma_mq_ops;
148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
149
150 /* XXX: really should move to a generic header sooner or later.. */
151 static inline void put_unaligned_le24(u32 val, u8 *p)
152 {
153         *p++ = val;
154         *p++ = val >> 8;
155         *p++ = val >> 16;
156 }
157
158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
159 {
160         return queue - queue->ctrl->queues;
161 }
162
163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
164 {
165         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
166 }
167
168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
169                 size_t capsule_size, enum dma_data_direction dir)
170 {
171         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
172         kfree(qe->data);
173 }
174
175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
176                 size_t capsule_size, enum dma_data_direction dir)
177 {
178         qe->data = kzalloc(capsule_size, GFP_KERNEL);
179         if (!qe->data)
180                 return -ENOMEM;
181
182         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
183         if (ib_dma_mapping_error(ibdev, qe->dma)) {
184                 kfree(qe->data);
185                 return -ENOMEM;
186         }
187
188         return 0;
189 }
190
191 static void nvme_rdma_free_ring(struct ib_device *ibdev,
192                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
193                 size_t capsule_size, enum dma_data_direction dir)
194 {
195         int i;
196
197         for (i = 0; i < ib_queue_size; i++)
198                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
199         kfree(ring);
200 }
201
202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
203                 size_t ib_queue_size, size_t capsule_size,
204                 enum dma_data_direction dir)
205 {
206         struct nvme_rdma_qe *ring;
207         int i;
208
209         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
210         if (!ring)
211                 return NULL;
212
213         for (i = 0; i < ib_queue_size; i++) {
214                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
215                         goto out_free_ring;
216         }
217
218         return ring;
219
220 out_free_ring:
221         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
222         return NULL;
223 }
224
225 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
226 {
227         pr_debug("QP event %s (%d)\n",
228                  ib_event_msg(event->event), event->event);
229
230 }
231
232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
233 {
234         wait_for_completion_interruptible_timeout(&queue->cm_done,
235                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
236         return queue->cm_error;
237 }
238
239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
240 {
241         struct nvme_rdma_device *dev = queue->device;
242         struct ib_qp_init_attr init_attr;
243         int ret;
244
245         memset(&init_attr, 0, sizeof(init_attr));
246         init_attr.event_handler = nvme_rdma_qp_event;
247         /* +1 for drain */
248         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
249         /* +1 for drain */
250         init_attr.cap.max_recv_wr = queue->queue_size + 1;
251         init_attr.cap.max_recv_sge = 1;
252         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
253         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
254         init_attr.qp_type = IB_QPT_RC;
255         init_attr.send_cq = queue->ib_cq;
256         init_attr.recv_cq = queue->ib_cq;
257
258         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
259
260         queue->qp = queue->cm_id->qp;
261         return ret;
262 }
263
264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
265                 struct request *rq, unsigned int hctx_idx)
266 {
267         struct nvme_rdma_ctrl *ctrl = set->driver_data;
268         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
269         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
270         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
271         struct nvme_rdma_device *dev = queue->device;
272
273         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
274                         DMA_TO_DEVICE);
275 }
276
277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
278                 struct request *rq, unsigned int hctx_idx,
279                 unsigned int numa_node)
280 {
281         struct nvme_rdma_ctrl *ctrl = set->driver_data;
282         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
284         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
285         struct nvme_rdma_device *dev = queue->device;
286         struct ib_device *ibdev = dev->dev;
287         int ret;
288
289         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
290                         DMA_TO_DEVICE);
291         if (ret)
292                 return ret;
293
294         req->queue = queue;
295
296         return 0;
297 }
298
299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
300                 unsigned int hctx_idx)
301 {
302         struct nvme_rdma_ctrl *ctrl = data;
303         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
304
305         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
306
307         hctx->driver_data = queue;
308         return 0;
309 }
310
311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
312                 unsigned int hctx_idx)
313 {
314         struct nvme_rdma_ctrl *ctrl = data;
315         struct nvme_rdma_queue *queue = &ctrl->queues[0];
316
317         BUG_ON(hctx_idx != 0);
318
319         hctx->driver_data = queue;
320         return 0;
321 }
322
323 static void nvme_rdma_free_dev(struct kref *ref)
324 {
325         struct nvme_rdma_device *ndev =
326                 container_of(ref, struct nvme_rdma_device, ref);
327
328         mutex_lock(&device_list_mutex);
329         list_del(&ndev->entry);
330         mutex_unlock(&device_list_mutex);
331
332         ib_dealloc_pd(ndev->pd);
333         kfree(ndev);
334 }
335
336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
337 {
338         kref_put(&dev->ref, nvme_rdma_free_dev);
339 }
340
341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
342 {
343         return kref_get_unless_zero(&dev->ref);
344 }
345
346 static struct nvme_rdma_device *
347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
348 {
349         struct nvme_rdma_device *ndev;
350
351         mutex_lock(&device_list_mutex);
352         list_for_each_entry(ndev, &device_list, entry) {
353                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
354                     nvme_rdma_dev_get(ndev))
355                         goto out_unlock;
356         }
357
358         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
359         if (!ndev)
360                 goto out_err;
361
362         ndev->dev = cm_id->device;
363         kref_init(&ndev->ref);
364
365         ndev->pd = ib_alloc_pd(ndev->dev,
366                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
367         if (IS_ERR(ndev->pd))
368                 goto out_free_dev;
369
370         if (!(ndev->dev->attrs.device_cap_flags &
371               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
372                 dev_err(&ndev->dev->dev,
373                         "Memory registrations not supported.\n");
374                 goto out_free_pd;
375         }
376
377         list_add(&ndev->entry, &device_list);
378 out_unlock:
379         mutex_unlock(&device_list_mutex);
380         return ndev;
381
382 out_free_pd:
383         ib_dealloc_pd(ndev->pd);
384 out_free_dev:
385         kfree(ndev);
386 out_err:
387         mutex_unlock(&device_list_mutex);
388         return NULL;
389 }
390
391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
392 {
393         struct nvme_rdma_device *dev;
394         struct ib_device *ibdev;
395
396         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
397                 return;
398
399         dev = queue->device;
400         ibdev = dev->dev;
401
402         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
403
404         /*
405          * The cm_id object might have been destroyed during RDMA connection
406          * establishment error flow to avoid getting other cma events, thus
407          * the destruction of the QP shouldn't use rdma_cm API.
408          */
409         ib_destroy_qp(queue->qp);
410         ib_free_cq(queue->ib_cq);
411
412         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
413                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
414
415         nvme_rdma_dev_put(dev);
416 }
417
418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
419 {
420         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
421                      ibdev->attrs.max_fast_reg_page_list_len);
422 }
423
424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
425 {
426         struct ib_device *ibdev;
427         const int send_wr_factor = 3;                   /* MR, SEND, INV */
428         const int cq_factor = send_wr_factor + 1;       /* + RECV */
429         int comp_vector, idx = nvme_rdma_queue_idx(queue);
430         int ret;
431
432         queue->device = nvme_rdma_find_get_device(queue->cm_id);
433         if (!queue->device) {
434                 dev_err(queue->cm_id->device->dev.parent,
435                         "no client data found!\n");
436                 return -ECONNREFUSED;
437         }
438         ibdev = queue->device->dev;
439
440         /*
441          * Spread I/O queues completion vectors according their queue index.
442          * Admin queues can always go on completion vector 0.
443          */
444         comp_vector = idx == 0 ? idx : idx - 1;
445
446         /* +1 for ib_stop_cq */
447         queue->ib_cq = ib_alloc_cq(ibdev, queue,
448                                 cq_factor * queue->queue_size + 1,
449                                 comp_vector, IB_POLL_SOFTIRQ);
450         if (IS_ERR(queue->ib_cq)) {
451                 ret = PTR_ERR(queue->ib_cq);
452                 goto out_put_dev;
453         }
454
455         ret = nvme_rdma_create_qp(queue, send_wr_factor);
456         if (ret)
457                 goto out_destroy_ib_cq;
458
459         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
460                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
461         if (!queue->rsp_ring) {
462                 ret = -ENOMEM;
463                 goto out_destroy_qp;
464         }
465
466         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
467                               queue->queue_size,
468                               IB_MR_TYPE_MEM_REG,
469                               nvme_rdma_get_max_fr_pages(ibdev));
470         if (ret) {
471                 dev_err(queue->ctrl->ctrl.device,
472                         "failed to initialize MR pool sized %d for QID %d\n",
473                         queue->queue_size, idx);
474                 goto out_destroy_ring;
475         }
476
477         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
478
479         return 0;
480
481 out_destroy_ring:
482         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
483                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
484 out_destroy_qp:
485         rdma_destroy_qp(queue->cm_id);
486 out_destroy_ib_cq:
487         ib_free_cq(queue->ib_cq);
488 out_put_dev:
489         nvme_rdma_dev_put(queue->device);
490         return ret;
491 }
492
493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
494                 int idx, size_t queue_size)
495 {
496         struct nvme_rdma_queue *queue;
497         struct sockaddr *src_addr = NULL;
498         int ret;
499
500         queue = &ctrl->queues[idx];
501         queue->ctrl = ctrl;
502         init_completion(&queue->cm_done);
503
504         if (idx > 0)
505                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
506         else
507                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
508
509         queue->queue_size = queue_size;
510
511         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
512                         RDMA_PS_TCP, IB_QPT_RC);
513         if (IS_ERR(queue->cm_id)) {
514                 dev_info(ctrl->ctrl.device,
515                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
516                 return PTR_ERR(queue->cm_id);
517         }
518
519         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
520                 src_addr = (struct sockaddr *)&ctrl->src_addr;
521
522         queue->cm_error = -ETIMEDOUT;
523         ret = rdma_resolve_addr(queue->cm_id, src_addr,
524                         (struct sockaddr *)&ctrl->addr,
525                         NVME_RDMA_CONNECT_TIMEOUT_MS);
526         if (ret) {
527                 dev_info(ctrl->ctrl.device,
528                         "rdma_resolve_addr failed (%d).\n", ret);
529                 goto out_destroy_cm_id;
530         }
531
532         ret = nvme_rdma_wait_for_cm(queue);
533         if (ret) {
534                 dev_info(ctrl->ctrl.device,
535                         "rdma connection establishment failed (%d)\n", ret);
536                 goto out_destroy_cm_id;
537         }
538
539         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
540
541         return 0;
542
543 out_destroy_cm_id:
544         rdma_destroy_id(queue->cm_id);
545         nvme_rdma_destroy_queue_ib(queue);
546         return ret;
547 }
548
549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
550 {
551         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
552                 return;
553
554         rdma_disconnect(queue->cm_id);
555         ib_drain_qp(queue->qp);
556 }
557
558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
559 {
560         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
561                 return;
562
563         if (nvme_rdma_queue_idx(queue) == 0) {
564                 nvme_rdma_free_qe(queue->device->dev,
565                         &queue->ctrl->async_event_sqe,
566                         sizeof(struct nvme_command), DMA_TO_DEVICE);
567         }
568
569         nvme_rdma_destroy_queue_ib(queue);
570         rdma_destroy_id(queue->cm_id);
571 }
572
573 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
574 {
575         int i;
576
577         for (i = 1; i < ctrl->ctrl.queue_count; i++)
578                 nvme_rdma_free_queue(&ctrl->queues[i]);
579 }
580
581 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
582 {
583         int i;
584
585         for (i = 1; i < ctrl->ctrl.queue_count; i++)
586                 nvme_rdma_stop_queue(&ctrl->queues[i]);
587 }
588
589 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
590 {
591         int ret;
592
593         if (idx)
594                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
595         else
596                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
597
598         if (!ret)
599                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
600         else
601                 dev_info(ctrl->ctrl.device,
602                         "failed to connect queue: %d ret=%d\n", idx, ret);
603         return ret;
604 }
605
606 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
607 {
608         int i, ret = 0;
609
610         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
611                 ret = nvme_rdma_start_queue(ctrl, i);
612                 if (ret)
613                         goto out_stop_queues;
614         }
615
616         return 0;
617
618 out_stop_queues:
619         for (i--; i >= 1; i--)
620                 nvme_rdma_stop_queue(&ctrl->queues[i]);
621         return ret;
622 }
623
624 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
625 {
626         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
627         struct ib_device *ibdev = ctrl->device->dev;
628         unsigned int nr_io_queues;
629         int i, ret;
630
631         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
632
633         /*
634          * we map queues according to the device irq vectors for
635          * optimal locality so we don't need more queues than
636          * completion vectors.
637          */
638         nr_io_queues = min_t(unsigned int, nr_io_queues,
639                                 ibdev->num_comp_vectors);
640
641         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
642         if (ret)
643                 return ret;
644
645         ctrl->ctrl.queue_count = nr_io_queues + 1;
646         if (ctrl->ctrl.queue_count < 2)
647                 return 0;
648
649         dev_info(ctrl->ctrl.device,
650                 "creating %d I/O queues.\n", nr_io_queues);
651
652         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
653                 ret = nvme_rdma_alloc_queue(ctrl, i,
654                                 ctrl->ctrl.sqsize + 1);
655                 if (ret)
656                         goto out_free_queues;
657         }
658
659         return 0;
660
661 out_free_queues:
662         for (i--; i >= 1; i--)
663                 nvme_rdma_free_queue(&ctrl->queues[i]);
664
665         return ret;
666 }
667
668 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
669                 struct blk_mq_tag_set *set)
670 {
671         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
672
673         blk_mq_free_tag_set(set);
674         nvme_rdma_dev_put(ctrl->device);
675 }
676
677 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
678                 bool admin)
679 {
680         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
681         struct blk_mq_tag_set *set;
682         int ret;
683
684         if (admin) {
685                 set = &ctrl->admin_tag_set;
686                 memset(set, 0, sizeof(*set));
687                 set->ops = &nvme_rdma_admin_mq_ops;
688                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
689                 set->reserved_tags = 2; /* connect + keep-alive */
690                 set->numa_node = NUMA_NO_NODE;
691                 set->cmd_size = sizeof(struct nvme_rdma_request) +
692                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
693                 set->driver_data = ctrl;
694                 set->nr_hw_queues = 1;
695                 set->timeout = ADMIN_TIMEOUT;
696                 set->flags = BLK_MQ_F_NO_SCHED;
697         } else {
698                 set = &ctrl->tag_set;
699                 memset(set, 0, sizeof(*set));
700                 set->ops = &nvme_rdma_mq_ops;
701                 set->queue_depth = nctrl->opts->queue_size;
702                 set->reserved_tags = 1; /* fabric connect */
703                 set->numa_node = NUMA_NO_NODE;
704                 set->flags = BLK_MQ_F_SHOULD_MERGE;
705                 set->cmd_size = sizeof(struct nvme_rdma_request) +
706                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
707                 set->driver_data = ctrl;
708                 set->nr_hw_queues = nctrl->queue_count - 1;
709                 set->timeout = NVME_IO_TIMEOUT;
710         }
711
712         ret = blk_mq_alloc_tag_set(set);
713         if (ret)
714                 goto out;
715
716         /*
717          * We need a reference on the device as long as the tag_set is alive,
718          * as the MRs in the request structures need a valid ib_device.
719          */
720         ret = nvme_rdma_dev_get(ctrl->device);
721         if (!ret) {
722                 ret = -EINVAL;
723                 goto out_free_tagset;
724         }
725
726         return set;
727
728 out_free_tagset:
729         blk_mq_free_tag_set(set);
730 out:
731         return ERR_PTR(ret);
732 }
733
734 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
735                 bool remove)
736 {
737         nvme_rdma_stop_queue(&ctrl->queues[0]);
738         if (remove) {
739                 blk_cleanup_queue(ctrl->ctrl.admin_q);
740                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
741         }
742         nvme_rdma_free_queue(&ctrl->queues[0]);
743 }
744
745 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
746                 bool new)
747 {
748         int error;
749
750         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
751         if (error)
752                 return error;
753
754         ctrl->device = ctrl->queues[0].device;
755
756         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
757
758         if (new) {
759                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
760                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
761                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
762                         goto out_free_queue;
763                 }
764
765                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
766                 if (IS_ERR(ctrl->ctrl.admin_q)) {
767                         error = PTR_ERR(ctrl->ctrl.admin_q);
768                         goto out_free_tagset;
769                 }
770         }
771
772         error = nvme_rdma_start_queue(ctrl, 0);
773         if (error)
774                 goto out_cleanup_queue;
775
776         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
777                         &ctrl->ctrl.cap);
778         if (error) {
779                 dev_err(ctrl->ctrl.device,
780                         "prop_get NVME_REG_CAP failed\n");
781                 goto out_stop_queue;
782         }
783
784         ctrl->ctrl.sqsize =
785                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
786
787         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
788         if (error)
789                 goto out_stop_queue;
790
791         ctrl->ctrl.max_hw_sectors =
792                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
793
794         error = nvme_init_identify(&ctrl->ctrl);
795         if (error)
796                 goto out_stop_queue;
797
798         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
799                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
800                         DMA_TO_DEVICE);
801         if (error)
802                 goto out_stop_queue;
803
804         return 0;
805
806 out_stop_queue:
807         nvme_rdma_stop_queue(&ctrl->queues[0]);
808 out_cleanup_queue:
809         if (new)
810                 blk_cleanup_queue(ctrl->ctrl.admin_q);
811 out_free_tagset:
812         if (new)
813                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
814 out_free_queue:
815         nvme_rdma_free_queue(&ctrl->queues[0]);
816         return error;
817 }
818
819 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
820                 bool remove)
821 {
822         nvme_rdma_stop_io_queues(ctrl);
823         if (remove) {
824                 blk_cleanup_queue(ctrl->ctrl.connect_q);
825                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
826         }
827         nvme_rdma_free_io_queues(ctrl);
828 }
829
830 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
831 {
832         int ret;
833
834         ret = nvme_rdma_alloc_io_queues(ctrl);
835         if (ret)
836                 return ret;
837
838         if (new) {
839                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
840                 if (IS_ERR(ctrl->ctrl.tagset)) {
841                         ret = PTR_ERR(ctrl->ctrl.tagset);
842                         goto out_free_io_queues;
843                 }
844
845                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
846                 if (IS_ERR(ctrl->ctrl.connect_q)) {
847                         ret = PTR_ERR(ctrl->ctrl.connect_q);
848                         goto out_free_tag_set;
849                 }
850         } else {
851                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
852                         ctrl->ctrl.queue_count - 1);
853         }
854
855         ret = nvme_rdma_start_io_queues(ctrl);
856         if (ret)
857                 goto out_cleanup_connect_q;
858
859         return 0;
860
861 out_cleanup_connect_q:
862         if (new)
863                 blk_cleanup_queue(ctrl->ctrl.connect_q);
864 out_free_tag_set:
865         if (new)
866                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
867 out_free_io_queues:
868         nvme_rdma_free_io_queues(ctrl);
869         return ret;
870 }
871
872 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
873 {
874         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
875
876         cancel_work_sync(&ctrl->err_work);
877         cancel_delayed_work_sync(&ctrl->reconnect_work);
878 }
879
880 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
881 {
882         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
883
884         if (list_empty(&ctrl->list))
885                 goto free_ctrl;
886
887         mutex_lock(&nvme_rdma_ctrl_mutex);
888         list_del(&ctrl->list);
889         mutex_unlock(&nvme_rdma_ctrl_mutex);
890
891         kfree(ctrl->queues);
892         nvmf_free_options(nctrl->opts);
893 free_ctrl:
894         kfree(ctrl);
895 }
896
897 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
898 {
899         /* If we are resetting/deleting then do nothing */
900         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
901                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
902                         ctrl->ctrl.state == NVME_CTRL_LIVE);
903                 return;
904         }
905
906         if (nvmf_should_reconnect(&ctrl->ctrl)) {
907                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
908                         ctrl->ctrl.opts->reconnect_delay);
909                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
910                                 ctrl->ctrl.opts->reconnect_delay * HZ);
911         } else {
912                 nvme_delete_ctrl(&ctrl->ctrl);
913         }
914 }
915
916 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
917 {
918         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
919                         struct nvme_rdma_ctrl, reconnect_work);
920         bool changed;
921         int ret;
922
923         ++ctrl->ctrl.nr_reconnects;
924
925         ret = nvme_rdma_configure_admin_queue(ctrl, false);
926         if (ret)
927                 goto requeue;
928
929         if (ctrl->ctrl.queue_count > 1) {
930                 ret = nvme_rdma_configure_io_queues(ctrl, false);
931                 if (ret)
932                         goto destroy_admin;
933         }
934
935         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
936         if (!changed) {
937                 /* state change failure is ok if we're in DELETING state */
938                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
939                 return;
940         }
941
942         nvme_start_ctrl(&ctrl->ctrl);
943
944         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
945                         ctrl->ctrl.nr_reconnects);
946
947         ctrl->ctrl.nr_reconnects = 0;
948
949         return;
950
951 destroy_admin:
952         nvme_rdma_destroy_admin_queue(ctrl, false);
953 requeue:
954         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
955                         ctrl->ctrl.nr_reconnects);
956         nvme_rdma_reconnect_or_remove(ctrl);
957 }
958
959 static void nvme_rdma_error_recovery_work(struct work_struct *work)
960 {
961         struct nvme_rdma_ctrl *ctrl = container_of(work,
962                         struct nvme_rdma_ctrl, err_work);
963
964         nvme_stop_keep_alive(&ctrl->ctrl);
965
966         if (ctrl->ctrl.queue_count > 1) {
967                 nvme_stop_queues(&ctrl->ctrl);
968                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
969                                         nvme_cancel_request, &ctrl->ctrl);
970                 nvme_rdma_destroy_io_queues(ctrl, false);
971         }
972
973         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
974         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
975                                 nvme_cancel_request, &ctrl->ctrl);
976         nvme_rdma_destroy_admin_queue(ctrl, false);
977
978         /*
979          * queues are not a live anymore, so restart the queues to fail fast
980          * new IO
981          */
982         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
983         nvme_start_queues(&ctrl->ctrl);
984
985         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
986                 /* state change failure is ok if we're in DELETING state */
987                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
988                 return;
989         }
990
991         nvme_rdma_reconnect_or_remove(ctrl);
992 }
993
994 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
995 {
996         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
997                 return;
998
999         queue_work(nvme_wq, &ctrl->err_work);
1000 }
1001
1002 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1003                 const char *op)
1004 {
1005         struct nvme_rdma_queue *queue = cq->cq_context;
1006         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1007
1008         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1009                 dev_info(ctrl->ctrl.device,
1010                              "%s for CQE 0x%p failed with status %s (%d)\n",
1011                              op, wc->wr_cqe,
1012                              ib_wc_status_msg(wc->status), wc->status);
1013         nvme_rdma_error_recovery(ctrl);
1014 }
1015
1016 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1017 {
1018         if (unlikely(wc->status != IB_WC_SUCCESS))
1019                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1020 }
1021
1022 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1023 {
1024         struct nvme_rdma_request *req =
1025                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1026         struct request *rq = blk_mq_rq_from_pdu(req);
1027
1028         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1029                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1030                 return;
1031         }
1032
1033         if (refcount_dec_and_test(&req->ref))
1034                 nvme_end_request(rq, req->status, req->result);
1035
1036 }
1037
1038 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1039                 struct nvme_rdma_request *req)
1040 {
1041         struct ib_send_wr *bad_wr;
1042         struct ib_send_wr wr = {
1043                 .opcode             = IB_WR_LOCAL_INV,
1044                 .next               = NULL,
1045                 .num_sge            = 0,
1046                 .send_flags         = IB_SEND_SIGNALED,
1047                 .ex.invalidate_rkey = req->mr->rkey,
1048         };
1049
1050         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1051         wr.wr_cqe = &req->reg_cqe;
1052
1053         return ib_post_send(queue->qp, &wr, &bad_wr);
1054 }
1055
1056 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1057                 struct request *rq)
1058 {
1059         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1060         struct nvme_rdma_device *dev = queue->device;
1061         struct ib_device *ibdev = dev->dev;
1062
1063         if (!blk_rq_payload_bytes(rq))
1064                 return;
1065
1066         if (req->mr) {
1067                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1068                 req->mr = NULL;
1069         }
1070
1071         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1072                         req->nents, rq_data_dir(rq) ==
1073                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1074
1075         nvme_cleanup_cmd(rq);
1076         sg_free_table_chained(&req->sg_table, true);
1077 }
1078
1079 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1080 {
1081         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1082
1083         sg->addr = 0;
1084         put_unaligned_le24(0, sg->length);
1085         put_unaligned_le32(0, sg->key);
1086         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1087         return 0;
1088 }
1089
1090 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1091                 struct nvme_rdma_request *req, struct nvme_command *c)
1092 {
1093         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1094
1095         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1096         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1097         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1098
1099         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1100         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1101         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1102
1103         req->num_sge++;
1104         return 0;
1105 }
1106
1107 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1108                 struct nvme_rdma_request *req, struct nvme_command *c)
1109 {
1110         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1111
1112         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1113         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1114         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1115         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1116         return 0;
1117 }
1118
1119 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1120                 struct nvme_rdma_request *req, struct nvme_command *c,
1121                 int count)
1122 {
1123         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1124         int nr;
1125
1126         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1127         if (WARN_ON_ONCE(!req->mr))
1128                 return -EAGAIN;
1129
1130         /*
1131          * Align the MR to a 4K page size to match the ctrl page size and
1132          * the block virtual boundary.
1133          */
1134         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1135         if (unlikely(nr < count)) {
1136                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1137                 req->mr = NULL;
1138                 if (nr < 0)
1139                         return nr;
1140                 return -EINVAL;
1141         }
1142
1143         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1144
1145         req->reg_cqe.done = nvme_rdma_memreg_done;
1146         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1147         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1148         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1149         req->reg_wr.wr.num_sge = 0;
1150         req->reg_wr.mr = req->mr;
1151         req->reg_wr.key = req->mr->rkey;
1152         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1153                              IB_ACCESS_REMOTE_READ |
1154                              IB_ACCESS_REMOTE_WRITE;
1155
1156         sg->addr = cpu_to_le64(req->mr->iova);
1157         put_unaligned_le24(req->mr->length, sg->length);
1158         put_unaligned_le32(req->mr->rkey, sg->key);
1159         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1160                         NVME_SGL_FMT_INVALIDATE;
1161
1162         return 0;
1163 }
1164
1165 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1166                 struct request *rq, struct nvme_command *c)
1167 {
1168         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1169         struct nvme_rdma_device *dev = queue->device;
1170         struct ib_device *ibdev = dev->dev;
1171         int count, ret;
1172
1173         req->num_sge = 1;
1174         refcount_set(&req->ref, 2); /* send and recv completions */
1175
1176         c->common.flags |= NVME_CMD_SGL_METABUF;
1177
1178         if (!blk_rq_payload_bytes(rq))
1179                 return nvme_rdma_set_sg_null(c);
1180
1181         req->sg_table.sgl = req->first_sgl;
1182         ret = sg_alloc_table_chained(&req->sg_table,
1183                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1184         if (ret)
1185                 return -ENOMEM;
1186
1187         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1188
1189         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1190                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1191         if (unlikely(count <= 0)) {
1192                 ret = -EIO;
1193                 goto out_free_table;
1194         }
1195
1196         if (count == 1) {
1197                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1198                     blk_rq_payload_bytes(rq) <=
1199                                 nvme_rdma_inline_data_size(queue)) {
1200                         ret = nvme_rdma_map_sg_inline(queue, req, c);
1201                         goto out;
1202                 }
1203
1204                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1205                         ret = nvme_rdma_map_sg_single(queue, req, c);
1206                         goto out;
1207                 }
1208         }
1209
1210         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1211 out:
1212         if (unlikely(ret))
1213                 goto out_unmap_sg;
1214
1215         return 0;
1216
1217 out_unmap_sg:
1218         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1219                         req->nents, rq_data_dir(rq) ==
1220                         WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1221 out_free_table:
1222         sg_free_table_chained(&req->sg_table, true);
1223         return ret;
1224 }
1225
1226 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1227 {
1228         struct nvme_rdma_qe *qe =
1229                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1230         struct nvme_rdma_request *req =
1231                 container_of(qe, struct nvme_rdma_request, sqe);
1232         struct request *rq = blk_mq_rq_from_pdu(req);
1233
1234         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1235                 nvme_rdma_wr_error(cq, wc, "SEND");
1236                 return;
1237         }
1238
1239         if (refcount_dec_and_test(&req->ref))
1240                 nvme_end_request(rq, req->status, req->result);
1241 }
1242
1243 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1244                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1245                 struct ib_send_wr *first)
1246 {
1247         struct ib_send_wr wr, *bad_wr;
1248         int ret;
1249
1250         sge->addr   = qe->dma;
1251         sge->length = sizeof(struct nvme_command),
1252         sge->lkey   = queue->device->pd->local_dma_lkey;
1253
1254         wr.next       = NULL;
1255         wr.wr_cqe     = &qe->cqe;
1256         wr.sg_list    = sge;
1257         wr.num_sge    = num_sge;
1258         wr.opcode     = IB_WR_SEND;
1259         wr.send_flags = IB_SEND_SIGNALED;
1260
1261         if (first)
1262                 first->next = &wr;
1263         else
1264                 first = &wr;
1265
1266         ret = ib_post_send(queue->qp, first, &bad_wr);
1267         if (unlikely(ret)) {
1268                 dev_err(queue->ctrl->ctrl.device,
1269                              "%s failed with error code %d\n", __func__, ret);
1270         }
1271         return ret;
1272 }
1273
1274 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1275                 struct nvme_rdma_qe *qe)
1276 {
1277         struct ib_recv_wr wr, *bad_wr;
1278         struct ib_sge list;
1279         int ret;
1280
1281         list.addr   = qe->dma;
1282         list.length = sizeof(struct nvme_completion);
1283         list.lkey   = queue->device->pd->local_dma_lkey;
1284
1285         qe->cqe.done = nvme_rdma_recv_done;
1286
1287         wr.next     = NULL;
1288         wr.wr_cqe   = &qe->cqe;
1289         wr.sg_list  = &list;
1290         wr.num_sge  = 1;
1291
1292         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1293         if (unlikely(ret)) {
1294                 dev_err(queue->ctrl->ctrl.device,
1295                         "%s failed with error code %d\n", __func__, ret);
1296         }
1297         return ret;
1298 }
1299
1300 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1301 {
1302         u32 queue_idx = nvme_rdma_queue_idx(queue);
1303
1304         if (queue_idx == 0)
1305                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1306         return queue->ctrl->tag_set.tags[queue_idx - 1];
1307 }
1308
1309 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1310 {
1311         if (unlikely(wc->status != IB_WC_SUCCESS))
1312                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1313 }
1314
1315 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1316 {
1317         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1318         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1319         struct ib_device *dev = queue->device->dev;
1320         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1321         struct nvme_command *cmd = sqe->data;
1322         struct ib_sge sge;
1323         int ret;
1324
1325         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1326
1327         memset(cmd, 0, sizeof(*cmd));
1328         cmd->common.opcode = nvme_admin_async_event;
1329         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1330         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1331         nvme_rdma_set_sg_null(cmd);
1332
1333         sqe->cqe.done = nvme_rdma_async_done;
1334
1335         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1336                         DMA_TO_DEVICE);
1337
1338         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1339         WARN_ON_ONCE(ret);
1340 }
1341
1342 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1343                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1344 {
1345         struct request *rq;
1346         struct nvme_rdma_request *req;
1347         int ret = 0;
1348
1349         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1350         if (!rq) {
1351                 dev_err(queue->ctrl->ctrl.device,
1352                         "tag 0x%x on QP %#x not found\n",
1353                         cqe->command_id, queue->qp->qp_num);
1354                 nvme_rdma_error_recovery(queue->ctrl);
1355                 return ret;
1356         }
1357         req = blk_mq_rq_to_pdu(rq);
1358
1359         req->status = cqe->status;
1360         req->result = cqe->result;
1361
1362         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1363                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1364                         dev_err(queue->ctrl->ctrl.device,
1365                                 "Bogus remote invalidation for rkey %#x\n",
1366                                 req->mr->rkey);
1367                         nvme_rdma_error_recovery(queue->ctrl);
1368                 }
1369         } else if (req->mr) {
1370                 ret = nvme_rdma_inv_rkey(queue, req);
1371                 if (unlikely(ret < 0)) {
1372                         dev_err(queue->ctrl->ctrl.device,
1373                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1374                                 req->mr->rkey, ret);
1375                         nvme_rdma_error_recovery(queue->ctrl);
1376                 }
1377                 /* the local invalidation completion will end the request */
1378                 return 0;
1379         }
1380
1381         if (refcount_dec_and_test(&req->ref)) {
1382                 if (rq->tag == tag)
1383                         ret = 1;
1384                 nvme_end_request(rq, req->status, req->result);
1385         }
1386
1387         return ret;
1388 }
1389
1390 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1391 {
1392         struct nvme_rdma_qe *qe =
1393                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1394         struct nvme_rdma_queue *queue = cq->cq_context;
1395         struct ib_device *ibdev = queue->device->dev;
1396         struct nvme_completion *cqe = qe->data;
1397         const size_t len = sizeof(struct nvme_completion);
1398         int ret = 0;
1399
1400         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1401                 nvme_rdma_wr_error(cq, wc, "RECV");
1402                 return 0;
1403         }
1404
1405         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1406         /*
1407          * AEN requests are special as they don't time out and can
1408          * survive any kind of queue freeze and often don't respond to
1409          * aborts.  We don't even bother to allocate a struct request
1410          * for them but rather special case them here.
1411          */
1412         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1413                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1414                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1415                                 &cqe->result);
1416         else
1417                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1418         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1419
1420         nvme_rdma_post_recv(queue, qe);
1421         return ret;
1422 }
1423
1424 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1425 {
1426         __nvme_rdma_recv_done(cq, wc, -1);
1427 }
1428
1429 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1430 {
1431         int ret, i;
1432
1433         for (i = 0; i < queue->queue_size; i++) {
1434                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1435                 if (ret)
1436                         goto out_destroy_queue_ib;
1437         }
1438
1439         return 0;
1440
1441 out_destroy_queue_ib:
1442         nvme_rdma_destroy_queue_ib(queue);
1443         return ret;
1444 }
1445
1446 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1447                 struct rdma_cm_event *ev)
1448 {
1449         struct rdma_cm_id *cm_id = queue->cm_id;
1450         int status = ev->status;
1451         const char *rej_msg;
1452         const struct nvme_rdma_cm_rej *rej_data;
1453         u8 rej_data_len;
1454
1455         rej_msg = rdma_reject_msg(cm_id, status);
1456         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1457
1458         if (rej_data && rej_data_len >= sizeof(u16)) {
1459                 u16 sts = le16_to_cpu(rej_data->sts);
1460
1461                 dev_err(queue->ctrl->ctrl.device,
1462                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1463                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1464         } else {
1465                 dev_err(queue->ctrl->ctrl.device,
1466                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1467         }
1468
1469         return -ECONNRESET;
1470 }
1471
1472 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1473 {
1474         int ret;
1475
1476         ret = nvme_rdma_create_queue_ib(queue);
1477         if (ret)
1478                 return ret;
1479
1480         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1481         if (ret) {
1482                 dev_err(queue->ctrl->ctrl.device,
1483                         "rdma_resolve_route failed (%d).\n",
1484                         queue->cm_error);
1485                 goto out_destroy_queue;
1486         }
1487
1488         return 0;
1489
1490 out_destroy_queue:
1491         nvme_rdma_destroy_queue_ib(queue);
1492         return ret;
1493 }
1494
1495 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1496 {
1497         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1498         struct rdma_conn_param param = { };
1499         struct nvme_rdma_cm_req priv = { };
1500         int ret;
1501
1502         param.qp_num = queue->qp->qp_num;
1503         param.flow_control = 1;
1504
1505         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1506         /* maximum retry count */
1507         param.retry_count = 7;
1508         param.rnr_retry_count = 7;
1509         param.private_data = &priv;
1510         param.private_data_len = sizeof(priv);
1511
1512         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1513         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1514         /*
1515          * set the admin queue depth to the minimum size
1516          * specified by the Fabrics standard.
1517          */
1518         if (priv.qid == 0) {
1519                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1520                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1521         } else {
1522                 /*
1523                  * current interpretation of the fabrics spec
1524                  * is at minimum you make hrqsize sqsize+1, or a
1525                  * 1's based representation of sqsize.
1526                  */
1527                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1528                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1529         }
1530
1531         ret = rdma_connect(queue->cm_id, &param);
1532         if (ret) {
1533                 dev_err(ctrl->ctrl.device,
1534                         "rdma_connect failed (%d).\n", ret);
1535                 goto out_destroy_queue_ib;
1536         }
1537
1538         return 0;
1539
1540 out_destroy_queue_ib:
1541         nvme_rdma_destroy_queue_ib(queue);
1542         return ret;
1543 }
1544
1545 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1546                 struct rdma_cm_event *ev)
1547 {
1548         struct nvme_rdma_queue *queue = cm_id->context;
1549         int cm_error = 0;
1550
1551         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1552                 rdma_event_msg(ev->event), ev->event,
1553                 ev->status, cm_id);
1554
1555         switch (ev->event) {
1556         case RDMA_CM_EVENT_ADDR_RESOLVED:
1557                 cm_error = nvme_rdma_addr_resolved(queue);
1558                 break;
1559         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1560                 cm_error = nvme_rdma_route_resolved(queue);
1561                 break;
1562         case RDMA_CM_EVENT_ESTABLISHED:
1563                 queue->cm_error = nvme_rdma_conn_established(queue);
1564                 /* complete cm_done regardless of success/failure */
1565                 complete(&queue->cm_done);
1566                 return 0;
1567         case RDMA_CM_EVENT_REJECTED:
1568                 nvme_rdma_destroy_queue_ib(queue);
1569                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1570                 break;
1571         case RDMA_CM_EVENT_ROUTE_ERROR:
1572         case RDMA_CM_EVENT_CONNECT_ERROR:
1573         case RDMA_CM_EVENT_UNREACHABLE:
1574                 nvme_rdma_destroy_queue_ib(queue);
1575         case RDMA_CM_EVENT_ADDR_ERROR:
1576                 dev_dbg(queue->ctrl->ctrl.device,
1577                         "CM error event %d\n", ev->event);
1578                 cm_error = -ECONNRESET;
1579                 break;
1580         case RDMA_CM_EVENT_DISCONNECTED:
1581         case RDMA_CM_EVENT_ADDR_CHANGE:
1582         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1583                 dev_dbg(queue->ctrl->ctrl.device,
1584                         "disconnect received - connection closed\n");
1585                 nvme_rdma_error_recovery(queue->ctrl);
1586                 break;
1587         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1588                 /* device removal is handled via the ib_client API */
1589                 break;
1590         default:
1591                 dev_err(queue->ctrl->ctrl.device,
1592                         "Unexpected RDMA CM event (%d)\n", ev->event);
1593                 nvme_rdma_error_recovery(queue->ctrl);
1594                 break;
1595         }
1596
1597         if (cm_error) {
1598                 queue->cm_error = cm_error;
1599                 complete(&queue->cm_done);
1600         }
1601
1602         return 0;
1603 }
1604
1605 static enum blk_eh_timer_return
1606 nvme_rdma_timeout(struct request *rq, bool reserved)
1607 {
1608         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1609
1610         dev_warn(req->queue->ctrl->ctrl.device,
1611                  "I/O %d QID %d timeout, reset controller\n",
1612                  rq->tag, nvme_rdma_queue_idx(req->queue));
1613
1614         /* queue error recovery */
1615         nvme_rdma_error_recovery(req->queue->ctrl);
1616
1617         /* fail with DNR on cmd timeout */
1618         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1619
1620         return BLK_EH_DONE;
1621 }
1622
1623 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1624                 const struct blk_mq_queue_data *bd)
1625 {
1626         struct nvme_ns *ns = hctx->queue->queuedata;
1627         struct nvme_rdma_queue *queue = hctx->driver_data;
1628         struct request *rq = bd->rq;
1629         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1630         struct nvme_rdma_qe *sqe = &req->sqe;
1631         struct nvme_command *c = sqe->data;
1632         struct ib_device *dev;
1633         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1634         blk_status_t ret;
1635         int err;
1636
1637         WARN_ON_ONCE(rq->tag < 0);
1638
1639         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1640                 return nvmf_fail_nonready_command(rq);
1641
1642         dev = queue->device->dev;
1643         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1644                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1645
1646         ret = nvme_setup_cmd(ns, rq, c);
1647         if (ret)
1648                 return ret;
1649
1650         blk_mq_start_request(rq);
1651
1652         err = nvme_rdma_map_data(queue, rq, c);
1653         if (unlikely(err < 0)) {
1654                 dev_err(queue->ctrl->ctrl.device,
1655                              "Failed to map data (%d)\n", err);
1656                 nvme_cleanup_cmd(rq);
1657                 goto err;
1658         }
1659
1660         sqe->cqe.done = nvme_rdma_send_done;
1661
1662         ib_dma_sync_single_for_device(dev, sqe->dma,
1663                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1664
1665         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1666                         req->mr ? &req->reg_wr.wr : NULL);
1667         if (unlikely(err)) {
1668                 nvme_rdma_unmap_data(queue, rq);
1669                 goto err;
1670         }
1671
1672         return BLK_STS_OK;
1673 err:
1674         if (err == -ENOMEM || err == -EAGAIN)
1675                 return BLK_STS_RESOURCE;
1676         return BLK_STS_IOERR;
1677 }
1678
1679 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1680 {
1681         struct nvme_rdma_queue *queue = hctx->driver_data;
1682         struct ib_cq *cq = queue->ib_cq;
1683         struct ib_wc wc;
1684         int found = 0;
1685
1686         while (ib_poll_cq(cq, 1, &wc) > 0) {
1687                 struct ib_cqe *cqe = wc.wr_cqe;
1688
1689                 if (cqe) {
1690                         if (cqe->done == nvme_rdma_recv_done)
1691                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1692                         else
1693                                 cqe->done(cq, &wc);
1694                 }
1695         }
1696
1697         return found;
1698 }
1699
1700 static void nvme_rdma_complete_rq(struct request *rq)
1701 {
1702         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1703
1704         nvme_rdma_unmap_data(req->queue, rq);
1705         nvme_complete_rq(rq);
1706 }
1707
1708 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1709 {
1710         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1711
1712         return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1713 }
1714
1715 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1716         .queue_rq       = nvme_rdma_queue_rq,
1717         .complete       = nvme_rdma_complete_rq,
1718         .init_request   = nvme_rdma_init_request,
1719         .exit_request   = nvme_rdma_exit_request,
1720         .init_hctx      = nvme_rdma_init_hctx,
1721         .poll           = nvme_rdma_poll,
1722         .timeout        = nvme_rdma_timeout,
1723         .map_queues     = nvme_rdma_map_queues,
1724 };
1725
1726 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1727         .queue_rq       = nvme_rdma_queue_rq,
1728         .complete       = nvme_rdma_complete_rq,
1729         .init_request   = nvme_rdma_init_request,
1730         .exit_request   = nvme_rdma_exit_request,
1731         .init_hctx      = nvme_rdma_init_admin_hctx,
1732         .timeout        = nvme_rdma_timeout,
1733 };
1734
1735 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1736 {
1737         if (ctrl->ctrl.queue_count > 1) {
1738                 nvme_stop_queues(&ctrl->ctrl);
1739                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1740                                         nvme_cancel_request, &ctrl->ctrl);
1741                 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1742         }
1743
1744         if (shutdown)
1745                 nvme_shutdown_ctrl(&ctrl->ctrl);
1746         else
1747                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1748
1749         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1750         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1751                                 nvme_cancel_request, &ctrl->ctrl);
1752         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1753         nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1754 }
1755
1756 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1757 {
1758         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1759 }
1760
1761 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1762 {
1763         struct nvme_rdma_ctrl *ctrl =
1764                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1765         int ret;
1766         bool changed;
1767
1768         nvme_stop_ctrl(&ctrl->ctrl);
1769         nvme_rdma_shutdown_ctrl(ctrl, false);
1770
1771         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1772                 /* state change failure should never happen */
1773                 WARN_ON_ONCE(1);
1774                 return;
1775         }
1776
1777         ret = nvme_rdma_configure_admin_queue(ctrl, false);
1778         if (ret)
1779                 goto out_fail;
1780
1781         if (ctrl->ctrl.queue_count > 1) {
1782                 ret = nvme_rdma_configure_io_queues(ctrl, false);
1783                 if (ret)
1784                         goto out_fail;
1785         }
1786
1787         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1788         if (!changed) {
1789                 /* state change failure is ok if we're in DELETING state */
1790                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1791                 return;
1792         }
1793
1794         nvme_start_ctrl(&ctrl->ctrl);
1795
1796         return;
1797
1798 out_fail:
1799         ++ctrl->ctrl.nr_reconnects;
1800         nvme_rdma_reconnect_or_remove(ctrl);
1801 }
1802
1803 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1804         .name                   = "rdma",
1805         .module                 = THIS_MODULE,
1806         .flags                  = NVME_F_FABRICS,
1807         .reg_read32             = nvmf_reg_read32,
1808         .reg_read64             = nvmf_reg_read64,
1809         .reg_write32            = nvmf_reg_write32,
1810         .free_ctrl              = nvme_rdma_free_ctrl,
1811         .submit_async_event     = nvme_rdma_submit_async_event,
1812         .delete_ctrl            = nvme_rdma_delete_ctrl,
1813         .get_address            = nvmf_get_address,
1814         .stop_ctrl              = nvme_rdma_stop_ctrl,
1815 };
1816
1817 static inline bool
1818 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1819         struct nvmf_ctrl_options *opts)
1820 {
1821         char *stdport = __stringify(NVME_RDMA_IP_PORT);
1822
1823
1824         if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1825             strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1826                 return false;
1827
1828         if (opts->mask & NVMF_OPT_TRSVCID &&
1829             ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1830                 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1831                         return false;
1832         } else if (opts->mask & NVMF_OPT_TRSVCID) {
1833                 if (strcmp(opts->trsvcid, stdport))
1834                         return false;
1835         } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1836                 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1837                         return false;
1838         }
1839         /* else, it's a match as both have stdport. Fall to next checks */
1840
1841         /*
1842          * checking the local address is rough. In most cases, one
1843          * is not specified and the host port is selected by the stack.
1844          *
1845          * Assume no match if:
1846          *  local address is specified and address is not the same
1847          *  local address is not specified but remote is, or vice versa
1848          *    (admin using specific host_traddr when it matters).
1849          */
1850         if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1851             ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1852                 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1853                         return false;
1854         } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1855                    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1856                 return false;
1857         /*
1858          * if neither controller had an host port specified, assume it's
1859          * a match as everything else matched.
1860          */
1861
1862         return true;
1863 }
1864
1865 /*
1866  * Fails a connection request if it matches an existing controller
1867  * (association) with the same tuple:
1868  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1869  *
1870  * if local address is not specified in the request, it will match an
1871  * existing controller with all the other parameters the same and no
1872  * local port address specified as well.
1873  *
1874  * The ports don't need to be compared as they are intrinsically
1875  * already matched by the port pointers supplied.
1876  */
1877 static bool
1878 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1879 {
1880         struct nvme_rdma_ctrl *ctrl;
1881         bool found = false;
1882
1883         mutex_lock(&nvme_rdma_ctrl_mutex);
1884         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1885                 found = __nvme_rdma_options_match(ctrl, opts);
1886                 if (found)
1887                         break;
1888         }
1889         mutex_unlock(&nvme_rdma_ctrl_mutex);
1890
1891         return found;
1892 }
1893
1894 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1895                 struct nvmf_ctrl_options *opts)
1896 {
1897         struct nvme_rdma_ctrl *ctrl;
1898         int ret;
1899         bool changed;
1900         char *port;
1901
1902         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1903         if (!ctrl)
1904                 return ERR_PTR(-ENOMEM);
1905         ctrl->ctrl.opts = opts;
1906         INIT_LIST_HEAD(&ctrl->list);
1907
1908         if (opts->mask & NVMF_OPT_TRSVCID)
1909                 port = opts->trsvcid;
1910         else
1911                 port = __stringify(NVME_RDMA_IP_PORT);
1912
1913         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1914                         opts->traddr, port, &ctrl->addr);
1915         if (ret) {
1916                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1917                 goto out_free_ctrl;
1918         }
1919
1920         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1921                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1922                         opts->host_traddr, NULL, &ctrl->src_addr);
1923                 if (ret) {
1924                         pr_err("malformed src address passed: %s\n",
1925                                opts->host_traddr);
1926                         goto out_free_ctrl;
1927                 }
1928         }
1929
1930         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1931                 ret = -EALREADY;
1932                 goto out_free_ctrl;
1933         }
1934
1935         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1936                                 0 /* no quirks, we're perfect! */);
1937         if (ret)
1938                 goto out_free_ctrl;
1939
1940         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1941                         nvme_rdma_reconnect_ctrl_work);
1942         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1943         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1944
1945         ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1946         ctrl->ctrl.sqsize = opts->queue_size - 1;
1947         ctrl->ctrl.kato = opts->kato;
1948
1949         ret = -ENOMEM;
1950         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1951                                 GFP_KERNEL);
1952         if (!ctrl->queues)
1953                 goto out_uninit_ctrl;
1954
1955         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1956         WARN_ON_ONCE(!changed);
1957
1958         ret = nvme_rdma_configure_admin_queue(ctrl, true);
1959         if (ret)
1960                 goto out_kfree_queues;
1961
1962         /* sanity check icdoff */
1963         if (ctrl->ctrl.icdoff) {
1964                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1965                 ret = -EINVAL;
1966                 goto out_remove_admin_queue;
1967         }
1968
1969         /* sanity check keyed sgls */
1970         if (!(ctrl->ctrl.sgls & (1 << 2))) {
1971                 dev_err(ctrl->ctrl.device,
1972                         "Mandatory keyed sgls are not supported!\n");
1973                 ret = -EINVAL;
1974                 goto out_remove_admin_queue;
1975         }
1976
1977         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1978                 /* warn if maxcmd is lower than queue_size */
1979                 dev_warn(ctrl->ctrl.device,
1980                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1981                         opts->queue_size, ctrl->ctrl.maxcmd);
1982                 opts->queue_size = ctrl->ctrl.maxcmd;
1983         }
1984
1985         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1986                 /* warn if sqsize is lower than queue_size */
1987                 dev_warn(ctrl->ctrl.device,
1988                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1989                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1990                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1991         }
1992
1993         if (opts->nr_io_queues) {
1994                 ret = nvme_rdma_configure_io_queues(ctrl, true);
1995                 if (ret)
1996                         goto out_remove_admin_queue;
1997         }
1998
1999         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2000         WARN_ON_ONCE(!changed);
2001
2002         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2003                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2004
2005         nvme_get_ctrl(&ctrl->ctrl);
2006
2007         mutex_lock(&nvme_rdma_ctrl_mutex);
2008         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2009         mutex_unlock(&nvme_rdma_ctrl_mutex);
2010
2011         nvme_start_ctrl(&ctrl->ctrl);
2012
2013         return &ctrl->ctrl;
2014
2015 out_remove_admin_queue:
2016         nvme_rdma_destroy_admin_queue(ctrl, true);
2017 out_kfree_queues:
2018         kfree(ctrl->queues);
2019 out_uninit_ctrl:
2020         nvme_uninit_ctrl(&ctrl->ctrl);
2021         nvme_put_ctrl(&ctrl->ctrl);
2022         if (ret > 0)
2023                 ret = -EIO;
2024         return ERR_PTR(ret);
2025 out_free_ctrl:
2026         kfree(ctrl);
2027         return ERR_PTR(ret);
2028 }
2029
2030 static struct nvmf_transport_ops nvme_rdma_transport = {
2031         .name           = "rdma",
2032         .module         = THIS_MODULE,
2033         .required_opts  = NVMF_OPT_TRADDR,
2034         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2035                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2036         .create_ctrl    = nvme_rdma_create_ctrl,
2037 };
2038
2039 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2040 {
2041         struct nvme_rdma_ctrl *ctrl;
2042         struct nvme_rdma_device *ndev;
2043         bool found = false;
2044
2045         mutex_lock(&device_list_mutex);
2046         list_for_each_entry(ndev, &device_list, entry) {
2047                 if (ndev->dev == ib_device) {
2048                         found = true;
2049                         break;
2050                 }
2051         }
2052         mutex_unlock(&device_list_mutex);
2053
2054         if (!found)
2055                 return;
2056
2057         /* Delete all controllers using this device */
2058         mutex_lock(&nvme_rdma_ctrl_mutex);
2059         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2060                 if (ctrl->device->dev != ib_device)
2061                         continue;
2062                 nvme_delete_ctrl(&ctrl->ctrl);
2063         }
2064         mutex_unlock(&nvme_rdma_ctrl_mutex);
2065
2066         flush_workqueue(nvme_delete_wq);
2067 }
2068
2069 static struct ib_client nvme_rdma_ib_client = {
2070         .name   = "nvme_rdma",
2071         .remove = nvme_rdma_remove_one
2072 };
2073
2074 static int __init nvme_rdma_init_module(void)
2075 {
2076         int ret;
2077
2078         ret = ib_register_client(&nvme_rdma_ib_client);
2079         if (ret)
2080                 return ret;
2081
2082         ret = nvmf_register_transport(&nvme_rdma_transport);
2083         if (ret)
2084                 goto err_unreg_client;
2085
2086         return 0;
2087
2088 err_unreg_client:
2089         ib_unregister_client(&nvme_rdma_ib_client);
2090         return ret;
2091 }
2092
2093 static void __exit nvme_rdma_cleanup_module(void)
2094 {
2095         nvmf_unregister_transport(&nvme_rdma_transport);
2096         ib_unregister_client(&nvme_rdma_ib_client);
2097 }
2098
2099 module_init(nvme_rdma_init_module);
2100 module_exit(nvme_rdma_cleanup_module);
2101
2102 MODULE_LICENSE("GPL v2");