Merge tag 'i3c/fixes-for-5.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / nvme / host / multipath.c
1 /*
2  * Copyright (c) 2017-2018 Christoph Hellwig.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  */
13
14 #include <linux/moduleparam.h>
15 #include <trace/events/block.h>
16 #include "nvme.h"
17
18 static bool multipath = true;
19 module_param(multipath, bool, 0444);
20 MODULE_PARM_DESC(multipath,
21         "turn on native support for multiple controllers per subsystem");
22
23 inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
24 {
25         return multipath && ctrl->subsys && (ctrl->subsys->cmic & (1 << 3));
26 }
27
28 /*
29  * If multipathing is enabled we need to always use the subsystem instance
30  * number for numbering our devices to avoid conflicts between subsystems that
31  * have multiple controllers and thus use the multipath-aware subsystem node
32  * and those that have a single controller and use the controller node
33  * directly.
34  */
35 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
36                         struct nvme_ctrl *ctrl, int *flags)
37 {
38         if (!multipath) {
39                 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
40         } else if (ns->head->disk) {
41                 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
42                                 ctrl->cntlid, ns->head->instance);
43                 *flags = GENHD_FL_HIDDEN;
44         } else {
45                 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
46                                 ns->head->instance);
47         }
48 }
49
50 void nvme_failover_req(struct request *req)
51 {
52         struct nvme_ns *ns = req->q->queuedata;
53         u16 status = nvme_req(req)->status;
54         unsigned long flags;
55
56         spin_lock_irqsave(&ns->head->requeue_lock, flags);
57         blk_steal_bios(&ns->head->requeue_list, req);
58         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
59         blk_mq_end_request(req, 0);
60
61         switch (status & 0x7ff) {
62         case NVME_SC_ANA_TRANSITION:
63         case NVME_SC_ANA_INACCESSIBLE:
64         case NVME_SC_ANA_PERSISTENT_LOSS:
65                 /*
66                  * If we got back an ANA error we know the controller is alive,
67                  * but not ready to serve this namespaces.  The spec suggests
68                  * we should update our general state here, but due to the fact
69                  * that the admin and I/O queues are not serialized that is
70                  * fundamentally racy.  So instead just clear the current path,
71                  * mark the the path as pending and kick of a re-read of the ANA
72                  * log page ASAP.
73                  */
74                 nvme_mpath_clear_current_path(ns);
75                 if (ns->ctrl->ana_log_buf) {
76                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
77                         queue_work(nvme_wq, &ns->ctrl->ana_work);
78                 }
79                 break;
80         case NVME_SC_HOST_PATH_ERROR:
81                 /*
82                  * Temporary transport disruption in talking to the controller.
83                  * Try to send on a new path.
84                  */
85                 nvme_mpath_clear_current_path(ns);
86                 break;
87         default:
88                 /*
89                  * Reset the controller for any non-ANA error as we don't know
90                  * what caused the error.
91                  */
92                 nvme_reset_ctrl(ns->ctrl);
93                 break;
94         }
95
96         kblockd_schedule_work(&ns->head->requeue_work);
97 }
98
99 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
100 {
101         struct nvme_ns *ns;
102
103         down_read(&ctrl->namespaces_rwsem);
104         list_for_each_entry(ns, &ctrl->namespaces, list) {
105                 if (ns->head->disk)
106                         kblockd_schedule_work(&ns->head->requeue_work);
107         }
108         up_read(&ctrl->namespaces_rwsem);
109 }
110
111 static const char *nvme_ana_state_names[] = {
112         [0]                             = "invalid state",
113         [NVME_ANA_OPTIMIZED]            = "optimized",
114         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
115         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
116         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
117         [NVME_ANA_CHANGE]               = "change",
118 };
119
120 void nvme_mpath_clear_current_path(struct nvme_ns *ns)
121 {
122         struct nvme_ns_head *head = ns->head;
123         int node;
124
125         if (!head)
126                 return;
127
128         for_each_node(node) {
129                 if (ns == rcu_access_pointer(head->current_path[node]))
130                         rcu_assign_pointer(head->current_path[node], NULL);
131         }
132 }
133
134 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
135 {
136         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
137         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
138
139         list_for_each_entry_rcu(ns, &head->list, siblings) {
140                 if (ns->ctrl->state != NVME_CTRL_LIVE ||
141                     test_bit(NVME_NS_ANA_PENDING, &ns->flags))
142                         continue;
143
144                 distance = node_distance(node, ns->ctrl->numa_node);
145
146                 switch (ns->ana_state) {
147                 case NVME_ANA_OPTIMIZED:
148                         if (distance < found_distance) {
149                                 found_distance = distance;
150                                 found = ns;
151                         }
152                         break;
153                 case NVME_ANA_NONOPTIMIZED:
154                         if (distance < fallback_distance) {
155                                 fallback_distance = distance;
156                                 fallback = ns;
157                         }
158                         break;
159                 default:
160                         break;
161                 }
162         }
163
164         if (!found)
165                 found = fallback;
166         if (found)
167                 rcu_assign_pointer(head->current_path[node], found);
168         return found;
169 }
170
171 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
172 {
173         return ns->ctrl->state == NVME_CTRL_LIVE &&
174                 ns->ana_state == NVME_ANA_OPTIMIZED;
175 }
176
177 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
178 {
179         int node = numa_node_id();
180         struct nvme_ns *ns;
181
182         ns = srcu_dereference(head->current_path[node], &head->srcu);
183         if (unlikely(!ns || !nvme_path_is_optimized(ns)))
184                 ns = __nvme_find_path(head, node);
185         return ns;
186 }
187
188 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
189                 struct bio *bio)
190 {
191         struct nvme_ns_head *head = q->queuedata;
192         struct device *dev = disk_to_dev(head->disk);
193         struct nvme_ns *ns;
194         blk_qc_t ret = BLK_QC_T_NONE;
195         int srcu_idx;
196
197         srcu_idx = srcu_read_lock(&head->srcu);
198         ns = nvme_find_path(head);
199         if (likely(ns)) {
200                 bio->bi_disk = ns->disk;
201                 bio->bi_opf |= REQ_NVME_MPATH;
202                 trace_block_bio_remap(bio->bi_disk->queue, bio,
203                                       disk_devt(ns->head->disk),
204                                       bio->bi_iter.bi_sector);
205                 ret = direct_make_request(bio);
206         } else if (!list_empty_careful(&head->list)) {
207                 dev_warn_ratelimited(dev, "no path available - requeuing I/O\n");
208
209                 spin_lock_irq(&head->requeue_lock);
210                 bio_list_add(&head->requeue_list, bio);
211                 spin_unlock_irq(&head->requeue_lock);
212         } else {
213                 dev_warn_ratelimited(dev, "no path - failing I/O\n");
214
215                 bio->bi_status = BLK_STS_IOERR;
216                 bio_endio(bio);
217         }
218
219         srcu_read_unlock(&head->srcu, srcu_idx);
220         return ret;
221 }
222
223 static void nvme_requeue_work(struct work_struct *work)
224 {
225         struct nvme_ns_head *head =
226                 container_of(work, struct nvme_ns_head, requeue_work);
227         struct bio *bio, *next;
228
229         spin_lock_irq(&head->requeue_lock);
230         next = bio_list_get(&head->requeue_list);
231         spin_unlock_irq(&head->requeue_lock);
232
233         while ((bio = next) != NULL) {
234                 next = bio->bi_next;
235                 bio->bi_next = NULL;
236
237                 /*
238                  * Reset disk to the mpath node and resubmit to select a new
239                  * path.
240                  */
241                 bio->bi_disk = head->disk;
242                 generic_make_request(bio);
243         }
244 }
245
246 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
247 {
248         struct request_queue *q;
249         bool vwc = false;
250
251         mutex_init(&head->lock);
252         bio_list_init(&head->requeue_list);
253         spin_lock_init(&head->requeue_lock);
254         INIT_WORK(&head->requeue_work, nvme_requeue_work);
255
256         /*
257          * Add a multipath node if the subsystems supports multiple controllers.
258          * We also do this for private namespaces as the namespace sharing data could
259          * change after a rescan.
260          */
261         if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
262                 return 0;
263
264         q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
265         if (!q)
266                 goto out;
267         q->queuedata = head;
268         blk_queue_make_request(q, nvme_ns_head_make_request);
269         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
270         /* set to a default value for 512 until disk is validated */
271         blk_queue_logical_block_size(q, 512);
272         blk_set_stacking_limits(&q->limits);
273
274         /* we need to propagate up the VMC settings */
275         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
276                 vwc = true;
277         blk_queue_write_cache(q, vwc, vwc);
278
279         head->disk = alloc_disk(0);
280         if (!head->disk)
281                 goto out_cleanup_queue;
282         head->disk->fops = &nvme_ns_head_ops;
283         head->disk->private_data = head;
284         head->disk->queue = q;
285         head->disk->flags = GENHD_FL_EXT_DEVT;
286         sprintf(head->disk->disk_name, "nvme%dn%d",
287                         ctrl->subsys->instance, head->instance);
288         return 0;
289
290 out_cleanup_queue:
291         blk_cleanup_queue(q);
292 out:
293         return -ENOMEM;
294 }
295
296 static void nvme_mpath_set_live(struct nvme_ns *ns)
297 {
298         struct nvme_ns_head *head = ns->head;
299
300         lockdep_assert_held(&ns->head->lock);
301
302         if (!head->disk)
303                 return;
304
305         if (!(head->disk->flags & GENHD_FL_UP))
306                 device_add_disk(&head->subsys->dev, head->disk,
307                                 nvme_ns_id_attr_groups);
308
309         if (nvme_path_is_optimized(ns)) {
310                 int node, srcu_idx;
311
312                 srcu_idx = srcu_read_lock(&head->srcu);
313                 for_each_node(node)
314                         __nvme_find_path(head, node);
315                 srcu_read_unlock(&head->srcu, srcu_idx);
316         }
317
318         kblockd_schedule_work(&ns->head->requeue_work);
319 }
320
321 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
322                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
323                         void *))
324 {
325         void *base = ctrl->ana_log_buf;
326         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
327         int error, i;
328
329         lockdep_assert_held(&ctrl->ana_lock);
330
331         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
332                 struct nvme_ana_group_desc *desc = base + offset;
333                 u32 nr_nsids = le32_to_cpu(desc->nnsids);
334                 size_t nsid_buf_size = nr_nsids * sizeof(__le32);
335
336                 if (WARN_ON_ONCE(desc->grpid == 0))
337                         return -EINVAL;
338                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
339                         return -EINVAL;
340                 if (WARN_ON_ONCE(desc->state == 0))
341                         return -EINVAL;
342                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
343                         return -EINVAL;
344
345                 offset += sizeof(*desc);
346                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
347                         return -EINVAL;
348
349                 error = cb(ctrl, desc, data);
350                 if (error)
351                         return error;
352
353                 offset += nsid_buf_size;
354                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
355                         return -EINVAL;
356         }
357
358         return 0;
359 }
360
361 static inline bool nvme_state_is_live(enum nvme_ana_state state)
362 {
363         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
364 }
365
366 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
367                 struct nvme_ns *ns)
368 {
369         enum nvme_ana_state old;
370
371         mutex_lock(&ns->head->lock);
372         old = ns->ana_state;
373         ns->ana_grpid = le32_to_cpu(desc->grpid);
374         ns->ana_state = desc->state;
375         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
376
377         if (nvme_state_is_live(ns->ana_state) && !nvme_state_is_live(old))
378                 nvme_mpath_set_live(ns);
379         mutex_unlock(&ns->head->lock);
380 }
381
382 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
383                 struct nvme_ana_group_desc *desc, void *data)
384 {
385         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
386         unsigned *nr_change_groups = data;
387         struct nvme_ns *ns;
388
389         dev_info(ctrl->device, "ANA group %d: %s.\n",
390                         le32_to_cpu(desc->grpid),
391                         nvme_ana_state_names[desc->state]);
392
393         if (desc->state == NVME_ANA_CHANGE)
394                 (*nr_change_groups)++;
395
396         if (!nr_nsids)
397                 return 0;
398
399         down_write(&ctrl->namespaces_rwsem);
400         list_for_each_entry(ns, &ctrl->namespaces, list) {
401                 if (ns->head->ns_id != le32_to_cpu(desc->nsids[n]))
402                         continue;
403                 nvme_update_ns_ana_state(desc, ns);
404                 if (++n == nr_nsids)
405                         break;
406         }
407         up_write(&ctrl->namespaces_rwsem);
408         WARN_ON_ONCE(n < nr_nsids);
409         return 0;
410 }
411
412 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only)
413 {
414         u32 nr_change_groups = 0;
415         int error;
416
417         mutex_lock(&ctrl->ana_lock);
418         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA,
419                         groups_only ? NVME_ANA_LOG_RGO : 0,
420                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
421         if (error) {
422                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
423                 goto out_unlock;
424         }
425
426         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
427                         nvme_update_ana_state);
428         if (error)
429                 goto out_unlock;
430
431         /*
432          * In theory we should have an ANATT timer per group as they might enter
433          * the change state at different times.  But that is a lot of overhead
434          * just to protect against a target that keeps entering new changes
435          * states while never finishing previous ones.  But we'll still
436          * eventually time out once all groups are in change state, so this
437          * isn't a big deal.
438          *
439          * We also double the ANATT value to provide some slack for transports
440          * or AEN processing overhead.
441          */
442         if (nr_change_groups)
443                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
444         else
445                 del_timer_sync(&ctrl->anatt_timer);
446 out_unlock:
447         mutex_unlock(&ctrl->ana_lock);
448         return error;
449 }
450
451 static void nvme_ana_work(struct work_struct *work)
452 {
453         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
454
455         nvme_read_ana_log(ctrl, false);
456 }
457
458 static void nvme_anatt_timeout(struct timer_list *t)
459 {
460         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
461
462         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
463         nvme_reset_ctrl(ctrl);
464 }
465
466 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
467 {
468         if (!nvme_ctrl_use_ana(ctrl))
469                 return;
470         del_timer_sync(&ctrl->anatt_timer);
471         cancel_work_sync(&ctrl->ana_work);
472 }
473
474 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
475                 char *buf)
476 {
477         return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
478 }
479 DEVICE_ATTR_RO(ana_grpid);
480
481 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
482                 char *buf)
483 {
484         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
485
486         return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
487 }
488 DEVICE_ATTR_RO(ana_state);
489
490 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
491                 struct nvme_ana_group_desc *desc, void *data)
492 {
493         struct nvme_ns *ns = data;
494
495         if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
496                 nvme_update_ns_ana_state(desc, ns);
497                 return -ENXIO; /* just break out of the loop */
498         }
499
500         return 0;
501 }
502
503 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
504 {
505         if (nvme_ctrl_use_ana(ns->ctrl)) {
506                 mutex_lock(&ns->ctrl->ana_lock);
507                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
508                 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
509                 mutex_unlock(&ns->ctrl->ana_lock);
510         } else {
511                 mutex_lock(&ns->head->lock);
512                 ns->ana_state = NVME_ANA_OPTIMIZED; 
513                 nvme_mpath_set_live(ns);
514                 mutex_unlock(&ns->head->lock);
515         }
516 }
517
518 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
519 {
520         if (!head->disk)
521                 return;
522         if (head->disk->flags & GENHD_FL_UP)
523                 del_gendisk(head->disk);
524         blk_set_queue_dying(head->disk->queue);
525         /* make sure all pending bios are cleaned up */
526         kblockd_schedule_work(&head->requeue_work);
527         flush_work(&head->requeue_work);
528         blk_cleanup_queue(head->disk->queue);
529         put_disk(head->disk);
530 }
531
532 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
533 {
534         int error;
535
536         if (!nvme_ctrl_use_ana(ctrl))
537                 return 0;
538
539         ctrl->anacap = id->anacap;
540         ctrl->anatt = id->anatt;
541         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
542         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
543
544         mutex_init(&ctrl->ana_lock);
545         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
546         ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
547                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
548         ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
549
550         if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
551                 dev_err(ctrl->device,
552                         "ANA log page size (%zd) larger than MDTS (%d).\n",
553                         ctrl->ana_log_size,
554                         ctrl->max_hw_sectors << SECTOR_SHIFT);
555                 dev_err(ctrl->device, "disabling ANA support.\n");
556                 return 0;
557         }
558
559         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
560         ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
561         if (!ctrl->ana_log_buf) {
562                 error = -ENOMEM;
563                 goto out;
564         }
565
566         error = nvme_read_ana_log(ctrl, true);
567         if (error)
568                 goto out_free_ana_log_buf;
569         return 0;
570 out_free_ana_log_buf:
571         kfree(ctrl->ana_log_buf);
572         ctrl->ana_log_buf = NULL;
573 out:
574         return error;
575 }
576
577 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
578 {
579         kfree(ctrl->ana_log_buf);
580         ctrl->ana_log_buf = NULL;
581 }
582