Merge tag 'trace-v4.14-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rosted...
[sfrench/cifs-2.6.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH  \
39         (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42 enum nvme_fc_queue_flags {
43         NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45
46 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
47
48 struct nvme_fc_queue {
49         struct nvme_fc_ctrl     *ctrl;
50         struct device           *dev;
51         struct blk_mq_hw_ctx    *hctx;
52         void                    *lldd_handle;
53         int                     queue_size;
54         size_t                  cmnd_capsule_len;
55         u32                     qnum;
56         u32                     rqcnt;
57         u32                     seqno;
58
59         u64                     connection_id;
60         atomic_t                csn;
61
62         unsigned long           flags;
63 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
64
65 enum nvme_fcop_flags {
66         FCOP_FLAGS_TERMIO       = (1 << 0),
67         FCOP_FLAGS_RELEASED     = (1 << 1),
68         FCOP_FLAGS_COMPLETE     = (1 << 2),
69         FCOP_FLAGS_AEN          = (1 << 3),
70 };
71
72 struct nvmefc_ls_req_op {
73         struct nvmefc_ls_req    ls_req;
74
75         struct nvme_fc_rport    *rport;
76         struct nvme_fc_queue    *queue;
77         struct request          *rq;
78         u32                     flags;
79
80         int                     ls_error;
81         struct completion       ls_done;
82         struct list_head        lsreq_list;     /* rport->ls_req_list */
83         bool                    req_queued;
84 };
85
86 enum nvme_fcpop_state {
87         FCPOP_STATE_UNINIT      = 0,
88         FCPOP_STATE_IDLE        = 1,
89         FCPOP_STATE_ACTIVE      = 2,
90         FCPOP_STATE_ABORTED     = 3,
91         FCPOP_STATE_COMPLETE    = 4,
92 };
93
94 struct nvme_fc_fcp_op {
95         struct nvme_request     nreq;           /*
96                                                  * nvme/host/core.c
97                                                  * requires this to be
98                                                  * the 1st element in the
99                                                  * private structure
100                                                  * associated with the
101                                                  * request.
102                                                  */
103         struct nvmefc_fcp_req   fcp_req;
104
105         struct nvme_fc_ctrl     *ctrl;
106         struct nvme_fc_queue    *queue;
107         struct request          *rq;
108
109         atomic_t                state;
110         u32                     flags;
111         u32                     rqno;
112         u32                     nents;
113
114         struct nvme_fc_cmd_iu   cmd_iu;
115         struct nvme_fc_ersp_iu  rsp_iu;
116 };
117
118 struct nvme_fc_lport {
119         struct nvme_fc_local_port       localport;
120
121         struct ida                      endp_cnt;
122         struct list_head                port_list;      /* nvme_fc_port_list */
123         struct list_head                endp_list;
124         struct device                   *dev;   /* physical device for dma */
125         struct nvme_fc_port_template    *ops;
126         struct kref                     ref;
127 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
128
129 struct nvme_fc_rport {
130         struct nvme_fc_remote_port      remoteport;
131
132         struct list_head                endp_list; /* for lport->endp_list */
133         struct list_head                ctrl_list;
134         struct list_head                ls_req_list;
135         struct device                   *dev;   /* physical device for dma */
136         struct nvme_fc_lport            *lport;
137         spinlock_t                      lock;
138         struct kref                     ref;
139 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
140
141 enum nvme_fcctrl_flags {
142         FCCTRL_TERMIO           = (1 << 0),
143 };
144
145 struct nvme_fc_ctrl {
146         spinlock_t              lock;
147         struct nvme_fc_queue    *queues;
148         struct device           *dev;
149         struct nvme_fc_lport    *lport;
150         struct nvme_fc_rport    *rport;
151         u32                     cnum;
152
153         u64                     association_id;
154
155         struct list_head        ctrl_list;      /* rport->ctrl_list */
156
157         struct blk_mq_tag_set   admin_tag_set;
158         struct blk_mq_tag_set   tag_set;
159
160         struct work_struct      delete_work;
161         struct delayed_work     connect_work;
162
163         struct kref             ref;
164         u32                     flags;
165         u32                     iocnt;
166         wait_queue_head_t       ioabort_wait;
167
168         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
169
170         struct nvme_ctrl        ctrl;
171 };
172
173 static inline struct nvme_fc_ctrl *
174 to_fc_ctrl(struct nvme_ctrl *ctrl)
175 {
176         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
177 }
178
179 static inline struct nvme_fc_lport *
180 localport_to_lport(struct nvme_fc_local_port *portptr)
181 {
182         return container_of(portptr, struct nvme_fc_lport, localport);
183 }
184
185 static inline struct nvme_fc_rport *
186 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
187 {
188         return container_of(portptr, struct nvme_fc_rport, remoteport);
189 }
190
191 static inline struct nvmefc_ls_req_op *
192 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
193 {
194         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
195 }
196
197 static inline struct nvme_fc_fcp_op *
198 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
199 {
200         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
201 }
202
203
204
205 /* *************************** Globals **************************** */
206
207
208 static DEFINE_SPINLOCK(nvme_fc_lock);
209
210 static LIST_HEAD(nvme_fc_lport_list);
211 static DEFINE_IDA(nvme_fc_local_port_cnt);
212 static DEFINE_IDA(nvme_fc_ctrl_cnt);
213
214
215
216
217 /* *********************** FC-NVME Port Management ************************ */
218
219 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
221                         struct nvme_fc_queue *, unsigned int);
222
223 static void
224 nvme_fc_free_lport(struct kref *ref)
225 {
226         struct nvme_fc_lport *lport =
227                 container_of(ref, struct nvme_fc_lport, ref);
228         unsigned long flags;
229
230         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
231         WARN_ON(!list_empty(&lport->endp_list));
232
233         /* remove from transport list */
234         spin_lock_irqsave(&nvme_fc_lock, flags);
235         list_del(&lport->port_list);
236         spin_unlock_irqrestore(&nvme_fc_lock, flags);
237
238         /* let the LLDD know we've finished tearing it down */
239         lport->ops->localport_delete(&lport->localport);
240
241         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
242         ida_destroy(&lport->endp_cnt);
243
244         put_device(lport->dev);
245
246         kfree(lport);
247 }
248
249 static void
250 nvme_fc_lport_put(struct nvme_fc_lport *lport)
251 {
252         kref_put(&lport->ref, nvme_fc_free_lport);
253 }
254
255 static int
256 nvme_fc_lport_get(struct nvme_fc_lport *lport)
257 {
258         return kref_get_unless_zero(&lport->ref);
259 }
260
261
262 static struct nvme_fc_lport *
263 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo)
264 {
265         struct nvme_fc_lport *lport;
266         unsigned long flags;
267
268         spin_lock_irqsave(&nvme_fc_lock, flags);
269
270         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271                 if (lport->localport.node_name != pinfo->node_name ||
272                     lport->localport.port_name != pinfo->port_name)
273                         continue;
274
275                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
276                         lport = ERR_PTR(-EEXIST);
277                         goto out_done;
278                 }
279
280                 if (!nvme_fc_lport_get(lport)) {
281                         /*
282                          * fails if ref cnt already 0. If so,
283                          * act as if lport already deleted
284                          */
285                         lport = NULL;
286                         goto out_done;
287                 }
288
289                 /* resume the lport */
290
291                 lport->localport.port_role = pinfo->port_role;
292                 lport->localport.port_id = pinfo->port_id;
293                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
294
295                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
296
297                 return lport;
298         }
299
300         lport = NULL;
301
302 out_done:
303         spin_unlock_irqrestore(&nvme_fc_lock, flags);
304
305         return lport;
306 }
307
308 /**
309  * nvme_fc_register_localport - transport entry point called by an
310  *                              LLDD to register the existence of a NVME
311  *                              host FC port.
312  * @pinfo:     pointer to information about the port to be registered
313  * @template:  LLDD entrypoints and operational parameters for the port
314  * @dev:       physical hardware device node port corresponds to. Will be
315  *             used for DMA mappings
316  * @lport_p:   pointer to a local port pointer. Upon success, the routine
317  *             will allocate a nvme_fc_local_port structure and place its
318  *             address in the local port pointer. Upon failure, local port
319  *             pointer will be set to 0.
320  *
321  * Returns:
322  * a completion status. Must be 0 upon success; a negative errno
323  * (ex: -ENXIO) upon failure.
324  */
325 int
326 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
327                         struct nvme_fc_port_template *template,
328                         struct device *dev,
329                         struct nvme_fc_local_port **portptr)
330 {
331         struct nvme_fc_lport *newrec;
332         unsigned long flags;
333         int ret, idx;
334
335         if (!template->localport_delete || !template->remoteport_delete ||
336             !template->ls_req || !template->fcp_io ||
337             !template->ls_abort || !template->fcp_abort ||
338             !template->max_hw_queues || !template->max_sgl_segments ||
339             !template->max_dif_sgl_segments || !template->dma_boundary) {
340                 ret = -EINVAL;
341                 goto out_reghost_failed;
342         }
343
344         /*
345          * look to see if there is already a localport that had been
346          * deregistered and in the process of waiting for all the
347          * references to fully be removed.  If the references haven't
348          * expired, we can simply re-enable the localport. Remoteports
349          * and controller reconnections should resume naturally.
350          */
351         newrec = nvme_fc_attach_to_unreg_lport(pinfo);
352
353         /* found an lport, but something about its state is bad */
354         if (IS_ERR(newrec)) {
355                 ret = PTR_ERR(newrec);
356                 goto out_reghost_failed;
357
358         /* found existing lport, which was resumed */
359         } else if (newrec) {
360                 *portptr = &newrec->localport;
361                 return 0;
362         }
363
364         /* nothing found - allocate a new localport struct */
365
366         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
367                          GFP_KERNEL);
368         if (!newrec) {
369                 ret = -ENOMEM;
370                 goto out_reghost_failed;
371         }
372
373         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
374         if (idx < 0) {
375                 ret = -ENOSPC;
376                 goto out_fail_kfree;
377         }
378
379         if (!get_device(dev) && dev) {
380                 ret = -ENODEV;
381                 goto out_ida_put;
382         }
383
384         INIT_LIST_HEAD(&newrec->port_list);
385         INIT_LIST_HEAD(&newrec->endp_list);
386         kref_init(&newrec->ref);
387         newrec->ops = template;
388         newrec->dev = dev;
389         ida_init(&newrec->endp_cnt);
390         newrec->localport.private = &newrec[1];
391         newrec->localport.node_name = pinfo->node_name;
392         newrec->localport.port_name = pinfo->port_name;
393         newrec->localport.port_role = pinfo->port_role;
394         newrec->localport.port_id = pinfo->port_id;
395         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
396         newrec->localport.port_num = idx;
397
398         spin_lock_irqsave(&nvme_fc_lock, flags);
399         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
400         spin_unlock_irqrestore(&nvme_fc_lock, flags);
401
402         if (dev)
403                 dma_set_seg_boundary(dev, template->dma_boundary);
404
405         *portptr = &newrec->localport;
406         return 0;
407
408 out_ida_put:
409         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
410 out_fail_kfree:
411         kfree(newrec);
412 out_reghost_failed:
413         *portptr = NULL;
414
415         return ret;
416 }
417 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
418
419 /**
420  * nvme_fc_unregister_localport - transport entry point called by an
421  *                              LLDD to deregister/remove a previously
422  *                              registered a NVME host FC port.
423  * @localport: pointer to the (registered) local port that is to be
424  *             deregistered.
425  *
426  * Returns:
427  * a completion status. Must be 0 upon success; a negative errno
428  * (ex: -ENXIO) upon failure.
429  */
430 int
431 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
432 {
433         struct nvme_fc_lport *lport = localport_to_lport(portptr);
434         unsigned long flags;
435
436         if (!portptr)
437                 return -EINVAL;
438
439         spin_lock_irqsave(&nvme_fc_lock, flags);
440
441         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
442                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
443                 return -EINVAL;
444         }
445         portptr->port_state = FC_OBJSTATE_DELETED;
446
447         spin_unlock_irqrestore(&nvme_fc_lock, flags);
448
449         nvme_fc_lport_put(lport);
450
451         return 0;
452 }
453 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
454
455 /**
456  * nvme_fc_register_remoteport - transport entry point called by an
457  *                              LLDD to register the existence of a NVME
458  *                              subsystem FC port on its fabric.
459  * @localport: pointer to the (registered) local port that the remote
460  *             subsystem port is connected to.
461  * @pinfo:     pointer to information about the port to be registered
462  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
463  *             will allocate a nvme_fc_remote_port structure and place its
464  *             address in the remote port pointer. Upon failure, remote port
465  *             pointer will be set to 0.
466  *
467  * Returns:
468  * a completion status. Must be 0 upon success; a negative errno
469  * (ex: -ENXIO) upon failure.
470  */
471 int
472 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
473                                 struct nvme_fc_port_info *pinfo,
474                                 struct nvme_fc_remote_port **portptr)
475 {
476         struct nvme_fc_lport *lport = localport_to_lport(localport);
477         struct nvme_fc_rport *newrec;
478         unsigned long flags;
479         int ret, idx;
480
481         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
482                          GFP_KERNEL);
483         if (!newrec) {
484                 ret = -ENOMEM;
485                 goto out_reghost_failed;
486         }
487
488         if (!nvme_fc_lport_get(lport)) {
489                 ret = -ESHUTDOWN;
490                 goto out_kfree_rport;
491         }
492
493         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
494         if (idx < 0) {
495                 ret = -ENOSPC;
496                 goto out_lport_put;
497         }
498
499         INIT_LIST_HEAD(&newrec->endp_list);
500         INIT_LIST_HEAD(&newrec->ctrl_list);
501         INIT_LIST_HEAD(&newrec->ls_req_list);
502         kref_init(&newrec->ref);
503         spin_lock_init(&newrec->lock);
504         newrec->remoteport.localport = &lport->localport;
505         newrec->dev = lport->dev;
506         newrec->lport = lport;
507         newrec->remoteport.private = &newrec[1];
508         newrec->remoteport.port_role = pinfo->port_role;
509         newrec->remoteport.node_name = pinfo->node_name;
510         newrec->remoteport.port_name = pinfo->port_name;
511         newrec->remoteport.port_id = pinfo->port_id;
512         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
513         newrec->remoteport.port_num = idx;
514
515         spin_lock_irqsave(&nvme_fc_lock, flags);
516         list_add_tail(&newrec->endp_list, &lport->endp_list);
517         spin_unlock_irqrestore(&nvme_fc_lock, flags);
518
519         *portptr = &newrec->remoteport;
520         return 0;
521
522 out_lport_put:
523         nvme_fc_lport_put(lport);
524 out_kfree_rport:
525         kfree(newrec);
526 out_reghost_failed:
527         *portptr = NULL;
528         return ret;
529 }
530 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
531
532 static void
533 nvme_fc_free_rport(struct kref *ref)
534 {
535         struct nvme_fc_rport *rport =
536                 container_of(ref, struct nvme_fc_rport, ref);
537         struct nvme_fc_lport *lport =
538                         localport_to_lport(rport->remoteport.localport);
539         unsigned long flags;
540
541         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
542         WARN_ON(!list_empty(&rport->ctrl_list));
543
544         /* remove from lport list */
545         spin_lock_irqsave(&nvme_fc_lock, flags);
546         list_del(&rport->endp_list);
547         spin_unlock_irqrestore(&nvme_fc_lock, flags);
548
549         /* let the LLDD know we've finished tearing it down */
550         lport->ops->remoteport_delete(&rport->remoteport);
551
552         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
553
554         kfree(rport);
555
556         nvme_fc_lport_put(lport);
557 }
558
559 static void
560 nvme_fc_rport_put(struct nvme_fc_rport *rport)
561 {
562         kref_put(&rport->ref, nvme_fc_free_rport);
563 }
564
565 static int
566 nvme_fc_rport_get(struct nvme_fc_rport *rport)
567 {
568         return kref_get_unless_zero(&rport->ref);
569 }
570
571 static int
572 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
573 {
574         struct nvmefc_ls_req_op *lsop;
575         unsigned long flags;
576
577 restart:
578         spin_lock_irqsave(&rport->lock, flags);
579
580         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
581                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
582                         lsop->flags |= FCOP_FLAGS_TERMIO;
583                         spin_unlock_irqrestore(&rport->lock, flags);
584                         rport->lport->ops->ls_abort(&rport->lport->localport,
585                                                 &rport->remoteport,
586                                                 &lsop->ls_req);
587                         goto restart;
588                 }
589         }
590         spin_unlock_irqrestore(&rport->lock, flags);
591
592         return 0;
593 }
594
595 /**
596  * nvme_fc_unregister_remoteport - transport entry point called by an
597  *                              LLDD to deregister/remove a previously
598  *                              registered a NVME subsystem FC port.
599  * @remoteport: pointer to the (registered) remote port that is to be
600  *              deregistered.
601  *
602  * Returns:
603  * a completion status. Must be 0 upon success; a negative errno
604  * (ex: -ENXIO) upon failure.
605  */
606 int
607 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
608 {
609         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
610         struct nvme_fc_ctrl *ctrl;
611         unsigned long flags;
612
613         if (!portptr)
614                 return -EINVAL;
615
616         spin_lock_irqsave(&rport->lock, flags);
617
618         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
619                 spin_unlock_irqrestore(&rport->lock, flags);
620                 return -EINVAL;
621         }
622         portptr->port_state = FC_OBJSTATE_DELETED;
623
624         /* tear down all associations to the remote port */
625         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
626                 __nvme_fc_del_ctrl(ctrl);
627
628         spin_unlock_irqrestore(&rport->lock, flags);
629
630         nvme_fc_abort_lsops(rport);
631
632         nvme_fc_rport_put(rport);
633         return 0;
634 }
635 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
636
637
638 /* *********************** FC-NVME DMA Handling **************************** */
639
640 /*
641  * The fcloop device passes in a NULL device pointer. Real LLD's will
642  * pass in a valid device pointer. If NULL is passed to the dma mapping
643  * routines, depending on the platform, it may or may not succeed, and
644  * may crash.
645  *
646  * As such:
647  * Wrapper all the dma routines and check the dev pointer.
648  *
649  * If simple mappings (return just a dma address, we'll noop them,
650  * returning a dma address of 0.
651  *
652  * On more complex mappings (dma_map_sg), a pseudo routine fills
653  * in the scatter list, setting all dma addresses to 0.
654  */
655
656 static inline dma_addr_t
657 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
658                 enum dma_data_direction dir)
659 {
660         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
661 }
662
663 static inline int
664 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
665 {
666         return dev ? dma_mapping_error(dev, dma_addr) : 0;
667 }
668
669 static inline void
670 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
671         enum dma_data_direction dir)
672 {
673         if (dev)
674                 dma_unmap_single(dev, addr, size, dir);
675 }
676
677 static inline void
678 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
679                 enum dma_data_direction dir)
680 {
681         if (dev)
682                 dma_sync_single_for_cpu(dev, addr, size, dir);
683 }
684
685 static inline void
686 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
687                 enum dma_data_direction dir)
688 {
689         if (dev)
690                 dma_sync_single_for_device(dev, addr, size, dir);
691 }
692
693 /* pseudo dma_map_sg call */
694 static int
695 fc_map_sg(struct scatterlist *sg, int nents)
696 {
697         struct scatterlist *s;
698         int i;
699
700         WARN_ON(nents == 0 || sg[0].length == 0);
701
702         for_each_sg(sg, s, nents, i) {
703                 s->dma_address = 0L;
704 #ifdef CONFIG_NEED_SG_DMA_LENGTH
705                 s->dma_length = s->length;
706 #endif
707         }
708         return nents;
709 }
710
711 static inline int
712 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
713                 enum dma_data_direction dir)
714 {
715         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
716 }
717
718 static inline void
719 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
720                 enum dma_data_direction dir)
721 {
722         if (dev)
723                 dma_unmap_sg(dev, sg, nents, dir);
724 }
725
726
727 /* *********************** FC-NVME LS Handling **************************** */
728
729 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
730 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
731
732
733 static void
734 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
735 {
736         struct nvme_fc_rport *rport = lsop->rport;
737         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
738         unsigned long flags;
739
740         spin_lock_irqsave(&rport->lock, flags);
741
742         if (!lsop->req_queued) {
743                 spin_unlock_irqrestore(&rport->lock, flags);
744                 return;
745         }
746
747         list_del(&lsop->lsreq_list);
748
749         lsop->req_queued = false;
750
751         spin_unlock_irqrestore(&rport->lock, flags);
752
753         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
754                                   (lsreq->rqstlen + lsreq->rsplen),
755                                   DMA_BIDIRECTIONAL);
756
757         nvme_fc_rport_put(rport);
758 }
759
760 static int
761 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
762                 struct nvmefc_ls_req_op *lsop,
763                 void (*done)(struct nvmefc_ls_req *req, int status))
764 {
765         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
766         unsigned long flags;
767         int ret = 0;
768
769         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
770                 return -ECONNREFUSED;
771
772         if (!nvme_fc_rport_get(rport))
773                 return -ESHUTDOWN;
774
775         lsreq->done = done;
776         lsop->rport = rport;
777         lsop->req_queued = false;
778         INIT_LIST_HEAD(&lsop->lsreq_list);
779         init_completion(&lsop->ls_done);
780
781         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
782                                   lsreq->rqstlen + lsreq->rsplen,
783                                   DMA_BIDIRECTIONAL);
784         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
785                 ret = -EFAULT;
786                 goto out_putrport;
787         }
788         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
789
790         spin_lock_irqsave(&rport->lock, flags);
791
792         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
793
794         lsop->req_queued = true;
795
796         spin_unlock_irqrestore(&rport->lock, flags);
797
798         ret = rport->lport->ops->ls_req(&rport->lport->localport,
799                                         &rport->remoteport, lsreq);
800         if (ret)
801                 goto out_unlink;
802
803         return 0;
804
805 out_unlink:
806         lsop->ls_error = ret;
807         spin_lock_irqsave(&rport->lock, flags);
808         lsop->req_queued = false;
809         list_del(&lsop->lsreq_list);
810         spin_unlock_irqrestore(&rport->lock, flags);
811         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
812                                   (lsreq->rqstlen + lsreq->rsplen),
813                                   DMA_BIDIRECTIONAL);
814 out_putrport:
815         nvme_fc_rport_put(rport);
816
817         return ret;
818 }
819
820 static void
821 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
822 {
823         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
824
825         lsop->ls_error = status;
826         complete(&lsop->ls_done);
827 }
828
829 static int
830 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
831 {
832         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
833         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
834         int ret;
835
836         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
837
838         if (!ret) {
839                 /*
840                  * No timeout/not interruptible as we need the struct
841                  * to exist until the lldd calls us back. Thus mandate
842                  * wait until driver calls back. lldd responsible for
843                  * the timeout action
844                  */
845                 wait_for_completion(&lsop->ls_done);
846
847                 __nvme_fc_finish_ls_req(lsop);
848
849                 ret = lsop->ls_error;
850         }
851
852         if (ret)
853                 return ret;
854
855         /* ACC or RJT payload ? */
856         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
857                 return -ENXIO;
858
859         return 0;
860 }
861
862 static int
863 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
864                 struct nvmefc_ls_req_op *lsop,
865                 void (*done)(struct nvmefc_ls_req *req, int status))
866 {
867         /* don't wait for completion */
868
869         return __nvme_fc_send_ls_req(rport, lsop, done);
870 }
871
872 /* Validation Error indexes into the string table below */
873 enum {
874         VERR_NO_ERROR           = 0,
875         VERR_LSACC              = 1,
876         VERR_LSDESC_RQST        = 2,
877         VERR_LSDESC_RQST_LEN    = 3,
878         VERR_ASSOC_ID           = 4,
879         VERR_ASSOC_ID_LEN       = 5,
880         VERR_CONN_ID            = 6,
881         VERR_CONN_ID_LEN        = 7,
882         VERR_CR_ASSOC           = 8,
883         VERR_CR_ASSOC_ACC_LEN   = 9,
884         VERR_CR_CONN            = 10,
885         VERR_CR_CONN_ACC_LEN    = 11,
886         VERR_DISCONN            = 12,
887         VERR_DISCONN_ACC_LEN    = 13,
888 };
889
890 static char *validation_errors[] = {
891         "OK",
892         "Not LS_ACC",
893         "Not LSDESC_RQST",
894         "Bad LSDESC_RQST Length",
895         "Not Association ID",
896         "Bad Association ID Length",
897         "Not Connection ID",
898         "Bad Connection ID Length",
899         "Not CR_ASSOC Rqst",
900         "Bad CR_ASSOC ACC Length",
901         "Not CR_CONN Rqst",
902         "Bad CR_CONN ACC Length",
903         "Not Disconnect Rqst",
904         "Bad Disconnect ACC Length",
905 };
906
907 static int
908 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
909         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
910 {
911         struct nvmefc_ls_req_op *lsop;
912         struct nvmefc_ls_req *lsreq;
913         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
914         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
915         int ret, fcret = 0;
916
917         lsop = kzalloc((sizeof(*lsop) +
918                          ctrl->lport->ops->lsrqst_priv_sz +
919                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
920         if (!lsop) {
921                 ret = -ENOMEM;
922                 goto out_no_memory;
923         }
924         lsreq = &lsop->ls_req;
925
926         lsreq->private = (void *)&lsop[1];
927         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
928                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
929         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
930
931         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
932         assoc_rqst->desc_list_len =
933                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
934
935         assoc_rqst->assoc_cmd.desc_tag =
936                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
937         assoc_rqst->assoc_cmd.desc_len =
938                         fcnvme_lsdesc_len(
939                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
940
941         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
942         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
943         /* Linux supports only Dynamic controllers */
944         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
945         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
946         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
947                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
948         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
949                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
950
951         lsop->queue = queue;
952         lsreq->rqstaddr = assoc_rqst;
953         lsreq->rqstlen = sizeof(*assoc_rqst);
954         lsreq->rspaddr = assoc_acc;
955         lsreq->rsplen = sizeof(*assoc_acc);
956         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
957
958         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
959         if (ret)
960                 goto out_free_buffer;
961
962         /* process connect LS completion */
963
964         /* validate the ACC response */
965         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
966                 fcret = VERR_LSACC;
967         else if (assoc_acc->hdr.desc_list_len !=
968                         fcnvme_lsdesc_len(
969                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
970                 fcret = VERR_CR_ASSOC_ACC_LEN;
971         else if (assoc_acc->hdr.rqst.desc_tag !=
972                         cpu_to_be32(FCNVME_LSDESC_RQST))
973                 fcret = VERR_LSDESC_RQST;
974         else if (assoc_acc->hdr.rqst.desc_len !=
975                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
976                 fcret = VERR_LSDESC_RQST_LEN;
977         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
978                 fcret = VERR_CR_ASSOC;
979         else if (assoc_acc->associd.desc_tag !=
980                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
981                 fcret = VERR_ASSOC_ID;
982         else if (assoc_acc->associd.desc_len !=
983                         fcnvme_lsdesc_len(
984                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
985                 fcret = VERR_ASSOC_ID_LEN;
986         else if (assoc_acc->connectid.desc_tag !=
987                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
988                 fcret = VERR_CONN_ID;
989         else if (assoc_acc->connectid.desc_len !=
990                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
991                 fcret = VERR_CONN_ID_LEN;
992
993         if (fcret) {
994                 ret = -EBADF;
995                 dev_err(ctrl->dev,
996                         "q %d connect failed: %s\n",
997                         queue->qnum, validation_errors[fcret]);
998         } else {
999                 ctrl->association_id =
1000                         be64_to_cpu(assoc_acc->associd.association_id);
1001                 queue->connection_id =
1002                         be64_to_cpu(assoc_acc->connectid.connection_id);
1003                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1004         }
1005
1006 out_free_buffer:
1007         kfree(lsop);
1008 out_no_memory:
1009         if (ret)
1010                 dev_err(ctrl->dev,
1011                         "queue %d connect admin queue failed (%d).\n",
1012                         queue->qnum, ret);
1013         return ret;
1014 }
1015
1016 static int
1017 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1018                         u16 qsize, u16 ersp_ratio)
1019 {
1020         struct nvmefc_ls_req_op *lsop;
1021         struct nvmefc_ls_req *lsreq;
1022         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1023         struct fcnvme_ls_cr_conn_acc *conn_acc;
1024         int ret, fcret = 0;
1025
1026         lsop = kzalloc((sizeof(*lsop) +
1027                          ctrl->lport->ops->lsrqst_priv_sz +
1028                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1029         if (!lsop) {
1030                 ret = -ENOMEM;
1031                 goto out_no_memory;
1032         }
1033         lsreq = &lsop->ls_req;
1034
1035         lsreq->private = (void *)&lsop[1];
1036         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1037                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1038         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1039
1040         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1041         conn_rqst->desc_list_len = cpu_to_be32(
1042                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1043                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1044
1045         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1046         conn_rqst->associd.desc_len =
1047                         fcnvme_lsdesc_len(
1048                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1049         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1050         conn_rqst->connect_cmd.desc_tag =
1051                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1052         conn_rqst->connect_cmd.desc_len =
1053                         fcnvme_lsdesc_len(
1054                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1055         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1056         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1057         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1058
1059         lsop->queue = queue;
1060         lsreq->rqstaddr = conn_rqst;
1061         lsreq->rqstlen = sizeof(*conn_rqst);
1062         lsreq->rspaddr = conn_acc;
1063         lsreq->rsplen = sizeof(*conn_acc);
1064         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1065
1066         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1067         if (ret)
1068                 goto out_free_buffer;
1069
1070         /* process connect LS completion */
1071
1072         /* validate the ACC response */
1073         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1074                 fcret = VERR_LSACC;
1075         else if (conn_acc->hdr.desc_list_len !=
1076                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1077                 fcret = VERR_CR_CONN_ACC_LEN;
1078         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1079                 fcret = VERR_LSDESC_RQST;
1080         else if (conn_acc->hdr.rqst.desc_len !=
1081                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1082                 fcret = VERR_LSDESC_RQST_LEN;
1083         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1084                 fcret = VERR_CR_CONN;
1085         else if (conn_acc->connectid.desc_tag !=
1086                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1087                 fcret = VERR_CONN_ID;
1088         else if (conn_acc->connectid.desc_len !=
1089                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1090                 fcret = VERR_CONN_ID_LEN;
1091
1092         if (fcret) {
1093                 ret = -EBADF;
1094                 dev_err(ctrl->dev,
1095                         "q %d connect failed: %s\n",
1096                         queue->qnum, validation_errors[fcret]);
1097         } else {
1098                 queue->connection_id =
1099                         be64_to_cpu(conn_acc->connectid.connection_id);
1100                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1101         }
1102
1103 out_free_buffer:
1104         kfree(lsop);
1105 out_no_memory:
1106         if (ret)
1107                 dev_err(ctrl->dev,
1108                         "queue %d connect command failed (%d).\n",
1109                         queue->qnum, ret);
1110         return ret;
1111 }
1112
1113 static void
1114 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1115 {
1116         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1117
1118         __nvme_fc_finish_ls_req(lsop);
1119
1120         /* fc-nvme iniator doesn't care about success or failure of cmd */
1121
1122         kfree(lsop);
1123 }
1124
1125 /*
1126  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1127  * the FC-NVME Association.  Terminating the association also
1128  * terminates the FC-NVME connections (per queue, both admin and io
1129  * queues) that are part of the association. E.g. things are torn
1130  * down, and the related FC-NVME Association ID and Connection IDs
1131  * become invalid.
1132  *
1133  * The behavior of the fc-nvme initiator is such that it's
1134  * understanding of the association and connections will implicitly
1135  * be torn down. The action is implicit as it may be due to a loss of
1136  * connectivity with the fc-nvme target, so you may never get a
1137  * response even if you tried.  As such, the action of this routine
1138  * is to asynchronously send the LS, ignore any results of the LS, and
1139  * continue on with terminating the association. If the fc-nvme target
1140  * is present and receives the LS, it too can tear down.
1141  */
1142 static void
1143 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1144 {
1145         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1146         struct fcnvme_ls_disconnect_acc *discon_acc;
1147         struct nvmefc_ls_req_op *lsop;
1148         struct nvmefc_ls_req *lsreq;
1149         int ret;
1150
1151         lsop = kzalloc((sizeof(*lsop) +
1152                          ctrl->lport->ops->lsrqst_priv_sz +
1153                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1154                         GFP_KERNEL);
1155         if (!lsop)
1156                 /* couldn't sent it... too bad */
1157                 return;
1158
1159         lsreq = &lsop->ls_req;
1160
1161         lsreq->private = (void *)&lsop[1];
1162         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1163                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1164         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1165
1166         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1167         discon_rqst->desc_list_len = cpu_to_be32(
1168                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1169                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1170
1171         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1172         discon_rqst->associd.desc_len =
1173                         fcnvme_lsdesc_len(
1174                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1175
1176         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1177
1178         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1179                                                 FCNVME_LSDESC_DISCONN_CMD);
1180         discon_rqst->discon_cmd.desc_len =
1181                         fcnvme_lsdesc_len(
1182                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1183         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1184         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1185
1186         lsreq->rqstaddr = discon_rqst;
1187         lsreq->rqstlen = sizeof(*discon_rqst);
1188         lsreq->rspaddr = discon_acc;
1189         lsreq->rsplen = sizeof(*discon_acc);
1190         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1191
1192         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1193                                 nvme_fc_disconnect_assoc_done);
1194         if (ret)
1195                 kfree(lsop);
1196
1197         /* only meaningful part to terminating the association */
1198         ctrl->association_id = 0;
1199 }
1200
1201
1202 /* *********************** NVME Ctrl Routines **************************** */
1203
1204 static void __nvme_fc_final_op_cleanup(struct request *rq);
1205 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1206
1207 static int
1208 nvme_fc_reinit_request(void *data, struct request *rq)
1209 {
1210         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1211         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1212
1213         memset(cmdiu, 0, sizeof(*cmdiu));
1214         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1215         cmdiu->fc_id = NVME_CMD_FC_ID;
1216         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1217         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1218
1219         return 0;
1220 }
1221
1222 static void
1223 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1224                 struct nvme_fc_fcp_op *op)
1225 {
1226         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1227                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1228         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1229                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1230
1231         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1232 }
1233
1234 static void
1235 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1236                 unsigned int hctx_idx)
1237 {
1238         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1239
1240         return __nvme_fc_exit_request(set->driver_data, op);
1241 }
1242
1243 static int
1244 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1245 {
1246         int state;
1247
1248         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1249         if (state != FCPOP_STATE_ACTIVE) {
1250                 atomic_set(&op->state, state);
1251                 return -ECANCELED;
1252         }
1253
1254         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1255                                         &ctrl->rport->remoteport,
1256                                         op->queue->lldd_handle,
1257                                         &op->fcp_req);
1258
1259         return 0;
1260 }
1261
1262 static void
1263 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1264 {
1265         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1266         unsigned long flags;
1267         int i, ret;
1268
1269         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1270                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1271                         continue;
1272
1273                 spin_lock_irqsave(&ctrl->lock, flags);
1274                 if (ctrl->flags & FCCTRL_TERMIO) {
1275                         ctrl->iocnt++;
1276                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1277                 }
1278                 spin_unlock_irqrestore(&ctrl->lock, flags);
1279
1280                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1281                 if (ret) {
1282                         /*
1283                          * if __nvme_fc_abort_op failed the io wasn't
1284                          * active. Thus this call path is running in
1285                          * parallel to the io complete. Treat as non-error.
1286                          */
1287
1288                         /* back out the flags/counters */
1289                         spin_lock_irqsave(&ctrl->lock, flags);
1290                         if (ctrl->flags & FCCTRL_TERMIO)
1291                                 ctrl->iocnt--;
1292                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1293                         spin_unlock_irqrestore(&ctrl->lock, flags);
1294                         return;
1295                 }
1296         }
1297 }
1298
1299 static inline int
1300 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1301                 struct nvme_fc_fcp_op *op)
1302 {
1303         unsigned long flags;
1304         bool complete_rq = false;
1305
1306         spin_lock_irqsave(&ctrl->lock, flags);
1307         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1308                 if (ctrl->flags & FCCTRL_TERMIO) {
1309                         if (!--ctrl->iocnt)
1310                                 wake_up(&ctrl->ioabort_wait);
1311                 }
1312         }
1313         if (op->flags & FCOP_FLAGS_RELEASED)
1314                 complete_rq = true;
1315         else
1316                 op->flags |= FCOP_FLAGS_COMPLETE;
1317         spin_unlock_irqrestore(&ctrl->lock, flags);
1318
1319         return complete_rq;
1320 }
1321
1322 static void
1323 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1324 {
1325         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1326         struct request *rq = op->rq;
1327         struct nvmefc_fcp_req *freq = &op->fcp_req;
1328         struct nvme_fc_ctrl *ctrl = op->ctrl;
1329         struct nvme_fc_queue *queue = op->queue;
1330         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1331         struct nvme_command *sqe = &op->cmd_iu.sqe;
1332         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1333         union nvme_result result;
1334         bool complete_rq, terminate_assoc = true;
1335
1336         /*
1337          * WARNING:
1338          * The current linux implementation of a nvme controller
1339          * allocates a single tag set for all io queues and sizes
1340          * the io queues to fully hold all possible tags. Thus, the
1341          * implementation does not reference or care about the sqhd
1342          * value as it never needs to use the sqhd/sqtail pointers
1343          * for submission pacing.
1344          *
1345          * This affects the FC-NVME implementation in two ways:
1346          * 1) As the value doesn't matter, we don't need to waste
1347          *    cycles extracting it from ERSPs and stamping it in the
1348          *    cases where the transport fabricates CQEs on successful
1349          *    completions.
1350          * 2) The FC-NVME implementation requires that delivery of
1351          *    ERSP completions are to go back to the nvme layer in order
1352          *    relative to the rsn, such that the sqhd value will always
1353          *    be "in order" for the nvme layer. As the nvme layer in
1354          *    linux doesn't care about sqhd, there's no need to return
1355          *    them in order.
1356          *
1357          * Additionally:
1358          * As the core nvme layer in linux currently does not look at
1359          * every field in the cqe - in cases where the FC transport must
1360          * fabricate a CQE, the following fields will not be set as they
1361          * are not referenced:
1362          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1363          *
1364          * Failure or error of an individual i/o, in a transport
1365          * detected fashion unrelated to the nvme completion status,
1366          * potentially cause the initiator and target sides to get out
1367          * of sync on SQ head/tail (aka outstanding io count allowed).
1368          * Per FC-NVME spec, failure of an individual command requires
1369          * the connection to be terminated, which in turn requires the
1370          * association to be terminated.
1371          */
1372
1373         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1374                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1375
1376         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1377                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1378         else if (freq->status)
1379                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1380
1381         /*
1382          * For the linux implementation, if we have an unsuccesful
1383          * status, they blk-mq layer can typically be called with the
1384          * non-zero status and the content of the cqe isn't important.
1385          */
1386         if (status)
1387                 goto done;
1388
1389         /*
1390          * command completed successfully relative to the wire
1391          * protocol. However, validate anything received and
1392          * extract the status and result from the cqe (create it
1393          * where necessary).
1394          */
1395
1396         switch (freq->rcv_rsplen) {
1397
1398         case 0:
1399         case NVME_FC_SIZEOF_ZEROS_RSP:
1400                 /*
1401                  * No response payload or 12 bytes of payload (which
1402                  * should all be zeros) are considered successful and
1403                  * no payload in the CQE by the transport.
1404                  */
1405                 if (freq->transferred_length !=
1406                         be32_to_cpu(op->cmd_iu.data_len)) {
1407                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1408                         goto done;
1409                 }
1410                 result.u64 = 0;
1411                 break;
1412
1413         case sizeof(struct nvme_fc_ersp_iu):
1414                 /*
1415                  * The ERSP IU contains a full completion with CQE.
1416                  * Validate ERSP IU and look at cqe.
1417                  */
1418                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1419                                         (freq->rcv_rsplen / 4) ||
1420                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1421                                         freq->transferred_length ||
1422                              op->rsp_iu.status_code ||
1423                              sqe->common.command_id != cqe->command_id)) {
1424                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1425                         goto done;
1426                 }
1427                 result = cqe->result;
1428                 status = cqe->status;
1429                 break;
1430
1431         default:
1432                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1433                 goto done;
1434         }
1435
1436         terminate_assoc = false;
1437
1438 done:
1439         if (op->flags & FCOP_FLAGS_AEN) {
1440                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1441                 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1442                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1443                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1444                 nvme_fc_ctrl_put(ctrl);
1445                 goto check_error;
1446         }
1447
1448         complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1449         if (!complete_rq) {
1450                 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1451                         status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1452                         if (blk_queue_dying(rq->q))
1453                                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1454                 }
1455                 nvme_end_request(rq, status, result);
1456         } else
1457                 __nvme_fc_final_op_cleanup(rq);
1458
1459 check_error:
1460         if (terminate_assoc)
1461                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1462 }
1463
1464 static int
1465 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1466                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1467                 struct request *rq, u32 rqno)
1468 {
1469         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1470         int ret = 0;
1471
1472         memset(op, 0, sizeof(*op));
1473         op->fcp_req.cmdaddr = &op->cmd_iu;
1474         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1475         op->fcp_req.rspaddr = &op->rsp_iu;
1476         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1477         op->fcp_req.done = nvme_fc_fcpio_done;
1478         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1479         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1480         op->ctrl = ctrl;
1481         op->queue = queue;
1482         op->rq = rq;
1483         op->rqno = rqno;
1484
1485         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1486         cmdiu->fc_id = NVME_CMD_FC_ID;
1487         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1488
1489         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1490                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1491         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1492                 dev_err(ctrl->dev,
1493                         "FCP Op failed - cmdiu dma mapping failed.\n");
1494                 ret = EFAULT;
1495                 goto out_on_error;
1496         }
1497
1498         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1499                                 &op->rsp_iu, sizeof(op->rsp_iu),
1500                                 DMA_FROM_DEVICE);
1501         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1502                 dev_err(ctrl->dev,
1503                         "FCP Op failed - rspiu dma mapping failed.\n");
1504                 ret = EFAULT;
1505         }
1506
1507         atomic_set(&op->state, FCPOP_STATE_IDLE);
1508 out_on_error:
1509         return ret;
1510 }
1511
1512 static int
1513 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1514                 unsigned int hctx_idx, unsigned int numa_node)
1515 {
1516         struct nvme_fc_ctrl *ctrl = set->driver_data;
1517         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1518         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1519         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1520
1521         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1522 }
1523
1524 static int
1525 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1526 {
1527         struct nvme_fc_fcp_op *aen_op;
1528         struct nvme_fc_cmd_iu *cmdiu;
1529         struct nvme_command *sqe;
1530         void *private;
1531         int i, ret;
1532
1533         aen_op = ctrl->aen_ops;
1534         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1535                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1536                                                 GFP_KERNEL);
1537                 if (!private)
1538                         return -ENOMEM;
1539
1540                 cmdiu = &aen_op->cmd_iu;
1541                 sqe = &cmdiu->sqe;
1542                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1543                                 aen_op, (struct request *)NULL,
1544                                 (AEN_CMDID_BASE + i));
1545                 if (ret) {
1546                         kfree(private);
1547                         return ret;
1548                 }
1549
1550                 aen_op->flags = FCOP_FLAGS_AEN;
1551                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1552                 aen_op->fcp_req.private = private;
1553
1554                 memset(sqe, 0, sizeof(*sqe));
1555                 sqe->common.opcode = nvme_admin_async_event;
1556                 /* Note: core layer may overwrite the sqe.command_id value */
1557                 sqe->common.command_id = AEN_CMDID_BASE + i;
1558         }
1559         return 0;
1560 }
1561
1562 static void
1563 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1564 {
1565         struct nvme_fc_fcp_op *aen_op;
1566         int i;
1567
1568         aen_op = ctrl->aen_ops;
1569         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1570                 if (!aen_op->fcp_req.private)
1571                         continue;
1572
1573                 __nvme_fc_exit_request(ctrl, aen_op);
1574
1575                 kfree(aen_op->fcp_req.private);
1576                 aen_op->fcp_req.private = NULL;
1577         }
1578 }
1579
1580 static inline void
1581 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1582                 unsigned int qidx)
1583 {
1584         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1585
1586         hctx->driver_data = queue;
1587         queue->hctx = hctx;
1588 }
1589
1590 static int
1591 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1592                 unsigned int hctx_idx)
1593 {
1594         struct nvme_fc_ctrl *ctrl = data;
1595
1596         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1597
1598         return 0;
1599 }
1600
1601 static int
1602 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1603                 unsigned int hctx_idx)
1604 {
1605         struct nvme_fc_ctrl *ctrl = data;
1606
1607         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1608
1609         return 0;
1610 }
1611
1612 static void
1613 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1614 {
1615         struct nvme_fc_queue *queue;
1616
1617         queue = &ctrl->queues[idx];
1618         memset(queue, 0, sizeof(*queue));
1619         queue->ctrl = ctrl;
1620         queue->qnum = idx;
1621         atomic_set(&queue->csn, 1);
1622         queue->dev = ctrl->dev;
1623
1624         if (idx > 0)
1625                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1626         else
1627                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1628
1629         queue->queue_size = queue_size;
1630
1631         /*
1632          * Considered whether we should allocate buffers for all SQEs
1633          * and CQEs and dma map them - mapping their respective entries
1634          * into the request structures (kernel vm addr and dma address)
1635          * thus the driver could use the buffers/mappings directly.
1636          * It only makes sense if the LLDD would use them for its
1637          * messaging api. It's very unlikely most adapter api's would use
1638          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1639          * structures were used instead.
1640          */
1641 }
1642
1643 /*
1644  * This routine terminates a queue at the transport level.
1645  * The transport has already ensured that all outstanding ios on
1646  * the queue have been terminated.
1647  * The transport will send a Disconnect LS request to terminate
1648  * the queue's connection. Termination of the admin queue will also
1649  * terminate the association at the target.
1650  */
1651 static void
1652 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1653 {
1654         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1655                 return;
1656
1657         /*
1658          * Current implementation never disconnects a single queue.
1659          * It always terminates a whole association. So there is never
1660          * a disconnect(queue) LS sent to the target.
1661          */
1662
1663         queue->connection_id = 0;
1664         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1665 }
1666
1667 static void
1668 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1669         struct nvme_fc_queue *queue, unsigned int qidx)
1670 {
1671         if (ctrl->lport->ops->delete_queue)
1672                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1673                                 queue->lldd_handle);
1674         queue->lldd_handle = NULL;
1675 }
1676
1677 static void
1678 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1679 {
1680         int i;
1681
1682         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1683                 nvme_fc_free_queue(&ctrl->queues[i]);
1684 }
1685
1686 static int
1687 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1688         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1689 {
1690         int ret = 0;
1691
1692         queue->lldd_handle = NULL;
1693         if (ctrl->lport->ops->create_queue)
1694                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1695                                 qidx, qsize, &queue->lldd_handle);
1696
1697         return ret;
1698 }
1699
1700 static void
1701 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1702 {
1703         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1704         int i;
1705
1706         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1707                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1708 }
1709
1710 static int
1711 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1712 {
1713         struct nvme_fc_queue *queue = &ctrl->queues[1];
1714         int i, ret;
1715
1716         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1717                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1718                 if (ret)
1719                         goto delete_queues;
1720         }
1721
1722         return 0;
1723
1724 delete_queues:
1725         for (; i >= 0; i--)
1726                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1727         return ret;
1728 }
1729
1730 static int
1731 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1732 {
1733         int i, ret = 0;
1734
1735         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1736                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1737                                         (qsize / 5));
1738                 if (ret)
1739                         break;
1740                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1741                 if (ret)
1742                         break;
1743         }
1744
1745         return ret;
1746 }
1747
1748 static void
1749 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1750 {
1751         int i;
1752
1753         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1754                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1755 }
1756
1757 static void
1758 nvme_fc_ctrl_free(struct kref *ref)
1759 {
1760         struct nvme_fc_ctrl *ctrl =
1761                 container_of(ref, struct nvme_fc_ctrl, ref);
1762         unsigned long flags;
1763
1764         if (ctrl->ctrl.tagset) {
1765                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1766                 blk_mq_free_tag_set(&ctrl->tag_set);
1767         }
1768
1769         /* remove from rport list */
1770         spin_lock_irqsave(&ctrl->rport->lock, flags);
1771         list_del(&ctrl->ctrl_list);
1772         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1773
1774         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1775         blk_cleanup_queue(ctrl->ctrl.admin_q);
1776         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1777
1778         kfree(ctrl->queues);
1779
1780         put_device(ctrl->dev);
1781         nvme_fc_rport_put(ctrl->rport);
1782
1783         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1784         if (ctrl->ctrl.opts)
1785                 nvmf_free_options(ctrl->ctrl.opts);
1786         kfree(ctrl);
1787 }
1788
1789 static void
1790 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1791 {
1792         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1793 }
1794
1795 static int
1796 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1797 {
1798         return kref_get_unless_zero(&ctrl->ref);
1799 }
1800
1801 /*
1802  * All accesses from nvme core layer done - can now free the
1803  * controller. Called after last nvme_put_ctrl() call
1804  */
1805 static void
1806 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1807 {
1808         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1809
1810         WARN_ON(nctrl != &ctrl->ctrl);
1811
1812         nvme_fc_ctrl_put(ctrl);
1813 }
1814
1815 static void
1816 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1817 {
1818         /* only proceed if in LIVE state - e.g. on first error */
1819         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
1820                 return;
1821
1822         dev_warn(ctrl->ctrl.device,
1823                 "NVME-FC{%d}: transport association error detected: %s\n",
1824                 ctrl->cnum, errmsg);
1825         dev_warn(ctrl->ctrl.device,
1826                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1827
1828         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1829                 dev_err(ctrl->ctrl.device,
1830                         "NVME-FC{%d}: error_recovery: Couldn't change state "
1831                         "to RECONNECTING\n", ctrl->cnum);
1832                 return;
1833         }
1834
1835         nvme_reset_ctrl(&ctrl->ctrl);
1836 }
1837
1838 static enum blk_eh_timer_return
1839 nvme_fc_timeout(struct request *rq, bool reserved)
1840 {
1841         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1842         struct nvme_fc_ctrl *ctrl = op->ctrl;
1843         int ret;
1844
1845         if (reserved)
1846                 return BLK_EH_RESET_TIMER;
1847
1848         ret = __nvme_fc_abort_op(ctrl, op);
1849         if (ret)
1850                 /* io wasn't active to abort consider it done */
1851                 return BLK_EH_HANDLED;
1852
1853         /*
1854          * we can't individually ABTS an io without affecting the queue,
1855          * thus killing the queue, adn thus the association.
1856          * So resolve by performing a controller reset, which will stop
1857          * the host/io stack, terminate the association on the link,
1858          * and recreate an association on the link.
1859          */
1860         nvme_fc_error_recovery(ctrl, "io timeout error");
1861
1862         return BLK_EH_HANDLED;
1863 }
1864
1865 static int
1866 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1867                 struct nvme_fc_fcp_op *op)
1868 {
1869         struct nvmefc_fcp_req *freq = &op->fcp_req;
1870         enum dma_data_direction dir;
1871         int ret;
1872
1873         freq->sg_cnt = 0;
1874
1875         if (!blk_rq_payload_bytes(rq))
1876                 return 0;
1877
1878         freq->sg_table.sgl = freq->first_sgl;
1879         ret = sg_alloc_table_chained(&freq->sg_table,
1880                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1881         if (ret)
1882                 return -ENOMEM;
1883
1884         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1885         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1886         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1887         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1888                                 op->nents, dir);
1889         if (unlikely(freq->sg_cnt <= 0)) {
1890                 sg_free_table_chained(&freq->sg_table, true);
1891                 freq->sg_cnt = 0;
1892                 return -EFAULT;
1893         }
1894
1895         /*
1896          * TODO: blk_integrity_rq(rq)  for DIF
1897          */
1898         return 0;
1899 }
1900
1901 static void
1902 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1903                 struct nvme_fc_fcp_op *op)
1904 {
1905         struct nvmefc_fcp_req *freq = &op->fcp_req;
1906
1907         if (!freq->sg_cnt)
1908                 return;
1909
1910         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1911                                 ((rq_data_dir(rq) == WRITE) ?
1912                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1913
1914         nvme_cleanup_cmd(rq);
1915
1916         sg_free_table_chained(&freq->sg_table, true);
1917
1918         freq->sg_cnt = 0;
1919 }
1920
1921 /*
1922  * In FC, the queue is a logical thing. At transport connect, the target
1923  * creates its "queue" and returns a handle that is to be given to the
1924  * target whenever it posts something to the corresponding SQ.  When an
1925  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1926  * command contained within the SQE, an io, and assigns a FC exchange
1927  * to it. The SQE and the associated SQ handle are sent in the initial
1928  * CMD IU sents on the exchange. All transfers relative to the io occur
1929  * as part of the exchange.  The CQE is the last thing for the io,
1930  * which is transferred (explicitly or implicitly) with the RSP IU
1931  * sent on the exchange. After the CQE is received, the FC exchange is
1932  * terminaed and the Exchange may be used on a different io.
1933  *
1934  * The transport to LLDD api has the transport making a request for a
1935  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1936  * resource and transfers the command. The LLDD will then process all
1937  * steps to complete the io. Upon completion, the transport done routine
1938  * is called.
1939  *
1940  * So - while the operation is outstanding to the LLDD, there is a link
1941  * level FC exchange resource that is also outstanding. This must be
1942  * considered in all cleanup operations.
1943  */
1944 static blk_status_t
1945 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1946         struct nvme_fc_fcp_op *op, u32 data_len,
1947         enum nvmefc_fcp_datadir io_dir)
1948 {
1949         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1950         struct nvme_command *sqe = &cmdiu->sqe;
1951         u32 csn;
1952         int ret;
1953
1954         /*
1955          * before attempting to send the io, check to see if we believe
1956          * the target device is present
1957          */
1958         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1959                 goto busy;
1960
1961         if (!nvme_fc_ctrl_get(ctrl))
1962                 return BLK_STS_IOERR;
1963
1964         /* format the FC-NVME CMD IU and fcp_req */
1965         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1966         csn = atomic_inc_return(&queue->csn);
1967         cmdiu->csn = cpu_to_be32(csn);
1968         cmdiu->data_len = cpu_to_be32(data_len);
1969         switch (io_dir) {
1970         case NVMEFC_FCP_WRITE:
1971                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1972                 break;
1973         case NVMEFC_FCP_READ:
1974                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1975                 break;
1976         case NVMEFC_FCP_NODATA:
1977                 cmdiu->flags = 0;
1978                 break;
1979         }
1980         op->fcp_req.payload_length = data_len;
1981         op->fcp_req.io_dir = io_dir;
1982         op->fcp_req.transferred_length = 0;
1983         op->fcp_req.rcv_rsplen = 0;
1984         op->fcp_req.status = NVME_SC_SUCCESS;
1985         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1986
1987         /*
1988          * validate per fabric rules, set fields mandated by fabric spec
1989          * as well as those by FC-NVME spec.
1990          */
1991         WARN_ON_ONCE(sqe->common.metadata);
1992         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1993
1994         /*
1995          * format SQE DPTR field per FC-NVME rules:
1996          *    type=0x5     Transport SGL Data Block Descriptor
1997          *    subtype=0xA  Transport-specific value
1998          *    address=0
1999          *    length=length of the data series
2000          */
2001         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2002                                         NVME_SGL_FMT_TRANSPORT_A;
2003         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2004         sqe->rw.dptr.sgl.addr = 0;
2005
2006         if (!(op->flags & FCOP_FLAGS_AEN)) {
2007                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2008                 if (ret < 0) {
2009                         nvme_cleanup_cmd(op->rq);
2010                         nvme_fc_ctrl_put(ctrl);
2011                         if (ret == -ENOMEM || ret == -EAGAIN)
2012                                 return BLK_STS_RESOURCE;
2013                         return BLK_STS_IOERR;
2014                 }
2015         }
2016
2017         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2018                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2019
2020         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2021
2022         if (!(op->flags & FCOP_FLAGS_AEN))
2023                 blk_mq_start_request(op->rq);
2024
2025         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2026                                         &ctrl->rport->remoteport,
2027                                         queue->lldd_handle, &op->fcp_req);
2028
2029         if (ret) {
2030                 if (!(op->flags & FCOP_FLAGS_AEN))
2031                         nvme_fc_unmap_data(ctrl, op->rq, op);
2032
2033                 nvme_fc_ctrl_put(ctrl);
2034
2035                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2036                                 ret != -EBUSY)
2037                         return BLK_STS_IOERR;
2038
2039                 goto busy;
2040         }
2041
2042         return BLK_STS_OK;
2043
2044 busy:
2045         if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
2046                 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
2047
2048         return BLK_STS_RESOURCE;
2049 }
2050
2051 static blk_status_t
2052 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2053                         const struct blk_mq_queue_data *bd)
2054 {
2055         struct nvme_ns *ns = hctx->queue->queuedata;
2056         struct nvme_fc_queue *queue = hctx->driver_data;
2057         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2058         struct request *rq = bd->rq;
2059         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2060         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2061         struct nvme_command *sqe = &cmdiu->sqe;
2062         enum nvmefc_fcp_datadir io_dir;
2063         u32 data_len;
2064         blk_status_t ret;
2065
2066         ret = nvme_setup_cmd(ns, rq, sqe);
2067         if (ret)
2068                 return ret;
2069
2070         data_len = blk_rq_payload_bytes(rq);
2071         if (data_len)
2072                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2073                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2074         else
2075                 io_dir = NVMEFC_FCP_NODATA;
2076
2077         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2078 }
2079
2080 static struct blk_mq_tags *
2081 nvme_fc_tagset(struct nvme_fc_queue *queue)
2082 {
2083         if (queue->qnum == 0)
2084                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2085
2086         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2087 }
2088
2089 static int
2090 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2091
2092 {
2093         struct nvme_fc_queue *queue = hctx->driver_data;
2094         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2095         struct request *req;
2096         struct nvme_fc_fcp_op *op;
2097
2098         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2099         if (!req)
2100                 return 0;
2101
2102         op = blk_mq_rq_to_pdu(req);
2103
2104         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2105                  (ctrl->lport->ops->poll_queue))
2106                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2107                                                  queue->lldd_handle);
2108
2109         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2110 }
2111
2112 static void
2113 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2114 {
2115         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2116         struct nvme_fc_fcp_op *aen_op;
2117         unsigned long flags;
2118         bool terminating = false;
2119         blk_status_t ret;
2120
2121         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2122                 return;
2123
2124         spin_lock_irqsave(&ctrl->lock, flags);
2125         if (ctrl->flags & FCCTRL_TERMIO)
2126                 terminating = true;
2127         spin_unlock_irqrestore(&ctrl->lock, flags);
2128
2129         if (terminating)
2130                 return;
2131
2132         aen_op = &ctrl->aen_ops[aer_idx];
2133
2134         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2135                                         NVMEFC_FCP_NODATA);
2136         if (ret)
2137                 dev_err(ctrl->ctrl.device,
2138                         "failed async event work [%d]\n", aer_idx);
2139 }
2140
2141 static void
2142 __nvme_fc_final_op_cleanup(struct request *rq)
2143 {
2144         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2145         struct nvme_fc_ctrl *ctrl = op->ctrl;
2146
2147         atomic_set(&op->state, FCPOP_STATE_IDLE);
2148         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2149                         FCOP_FLAGS_COMPLETE);
2150
2151         nvme_fc_unmap_data(ctrl, rq, op);
2152         nvme_complete_rq(rq);
2153         nvme_fc_ctrl_put(ctrl);
2154
2155 }
2156
2157 static void
2158 nvme_fc_complete_rq(struct request *rq)
2159 {
2160         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2161         struct nvme_fc_ctrl *ctrl = op->ctrl;
2162         unsigned long flags;
2163         bool completed = false;
2164
2165         /*
2166          * the core layer, on controller resets after calling
2167          * nvme_shutdown_ctrl(), calls complete_rq without our
2168          * calling blk_mq_complete_request(), thus there may still
2169          * be live i/o outstanding with the LLDD. Means transport has
2170          * to track complete calls vs fcpio_done calls to know what
2171          * path to take on completes and dones.
2172          */
2173         spin_lock_irqsave(&ctrl->lock, flags);
2174         if (op->flags & FCOP_FLAGS_COMPLETE)
2175                 completed = true;
2176         else
2177                 op->flags |= FCOP_FLAGS_RELEASED;
2178         spin_unlock_irqrestore(&ctrl->lock, flags);
2179
2180         if (completed)
2181                 __nvme_fc_final_op_cleanup(rq);
2182 }
2183
2184 /*
2185  * This routine is used by the transport when it needs to find active
2186  * io on a queue that is to be terminated. The transport uses
2187  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2188  * this routine to kill them on a 1 by 1 basis.
2189  *
2190  * As FC allocates FC exchange for each io, the transport must contact
2191  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2192  * After terminating the exchange the LLDD will call the transport's
2193  * normal io done path for the request, but it will have an aborted
2194  * status. The done path will return the io request back to the block
2195  * layer with an error status.
2196  */
2197 static void
2198 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2199 {
2200         struct nvme_ctrl *nctrl = data;
2201         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2202         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2203         unsigned long flags;
2204         int status;
2205
2206         if (!blk_mq_request_started(req))
2207                 return;
2208
2209         spin_lock_irqsave(&ctrl->lock, flags);
2210         if (ctrl->flags & FCCTRL_TERMIO) {
2211                 ctrl->iocnt++;
2212                 op->flags |= FCOP_FLAGS_TERMIO;
2213         }
2214         spin_unlock_irqrestore(&ctrl->lock, flags);
2215
2216         status = __nvme_fc_abort_op(ctrl, op);
2217         if (status) {
2218                 /*
2219                  * if __nvme_fc_abort_op failed the io wasn't
2220                  * active. Thus this call path is running in
2221                  * parallel to the io complete. Treat as non-error.
2222                  */
2223
2224                 /* back out the flags/counters */
2225                 spin_lock_irqsave(&ctrl->lock, flags);
2226                 if (ctrl->flags & FCCTRL_TERMIO)
2227                         ctrl->iocnt--;
2228                 op->flags &= ~FCOP_FLAGS_TERMIO;
2229                 spin_unlock_irqrestore(&ctrl->lock, flags);
2230                 return;
2231         }
2232 }
2233
2234
2235 static const struct blk_mq_ops nvme_fc_mq_ops = {
2236         .queue_rq       = nvme_fc_queue_rq,
2237         .complete       = nvme_fc_complete_rq,
2238         .init_request   = nvme_fc_init_request,
2239         .exit_request   = nvme_fc_exit_request,
2240         .init_hctx      = nvme_fc_init_hctx,
2241         .poll           = nvme_fc_poll,
2242         .timeout        = nvme_fc_timeout,
2243 };
2244
2245 static int
2246 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2247 {
2248         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2249         unsigned int nr_io_queues;
2250         int ret;
2251
2252         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2253                                 ctrl->lport->ops->max_hw_queues);
2254         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2255         if (ret) {
2256                 dev_info(ctrl->ctrl.device,
2257                         "set_queue_count failed: %d\n", ret);
2258                 return ret;
2259         }
2260
2261         ctrl->ctrl.queue_count = nr_io_queues + 1;
2262         if (!nr_io_queues)
2263                 return 0;
2264
2265         nvme_fc_init_io_queues(ctrl);
2266
2267         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2268         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2269         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2270         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2271         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2272         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2273         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2274                                         (SG_CHUNK_SIZE *
2275                                                 sizeof(struct scatterlist)) +
2276                                         ctrl->lport->ops->fcprqst_priv_sz;
2277         ctrl->tag_set.driver_data = ctrl;
2278         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2279         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2280
2281         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2282         if (ret)
2283                 return ret;
2284
2285         ctrl->ctrl.tagset = &ctrl->tag_set;
2286
2287         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2288         if (IS_ERR(ctrl->ctrl.connect_q)) {
2289                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2290                 goto out_free_tag_set;
2291         }
2292
2293         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2294         if (ret)
2295                 goto out_cleanup_blk_queue;
2296
2297         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2298         if (ret)
2299                 goto out_delete_hw_queues;
2300
2301         return 0;
2302
2303 out_delete_hw_queues:
2304         nvme_fc_delete_hw_io_queues(ctrl);
2305 out_cleanup_blk_queue:
2306         blk_cleanup_queue(ctrl->ctrl.connect_q);
2307 out_free_tag_set:
2308         blk_mq_free_tag_set(&ctrl->tag_set);
2309         nvme_fc_free_io_queues(ctrl);
2310
2311         /* force put free routine to ignore io queues */
2312         ctrl->ctrl.tagset = NULL;
2313
2314         return ret;
2315 }
2316
2317 static int
2318 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2319 {
2320         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2321         unsigned int nr_io_queues;
2322         int ret;
2323
2324         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2325                                 ctrl->lport->ops->max_hw_queues);
2326         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2327         if (ret) {
2328                 dev_info(ctrl->ctrl.device,
2329                         "set_queue_count failed: %d\n", ret);
2330                 return ret;
2331         }
2332
2333         ctrl->ctrl.queue_count = nr_io_queues + 1;
2334         /* check for io queues existing */
2335         if (ctrl->ctrl.queue_count == 1)
2336                 return 0;
2337
2338         nvme_fc_init_io_queues(ctrl);
2339
2340         ret = blk_mq_reinit_tagset(&ctrl->tag_set, nvme_fc_reinit_request);
2341         if (ret)
2342                 goto out_free_io_queues;
2343
2344         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2345         if (ret)
2346                 goto out_free_io_queues;
2347
2348         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2349         if (ret)
2350                 goto out_delete_hw_queues;
2351
2352         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2353
2354         return 0;
2355
2356 out_delete_hw_queues:
2357         nvme_fc_delete_hw_io_queues(ctrl);
2358 out_free_io_queues:
2359         nvme_fc_free_io_queues(ctrl);
2360         return ret;
2361 }
2362
2363 /*
2364  * This routine restarts the controller on the host side, and
2365  * on the link side, recreates the controller association.
2366  */
2367 static int
2368 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2369 {
2370         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2371         u32 segs;
2372         int ret;
2373         bool changed;
2374
2375         ++ctrl->ctrl.nr_reconnects;
2376
2377         /*
2378          * Create the admin queue
2379          */
2380
2381         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2382
2383         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2384                                 NVME_FC_AQ_BLKMQ_DEPTH);
2385         if (ret)
2386                 goto out_free_queue;
2387
2388         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2389                                 NVME_FC_AQ_BLKMQ_DEPTH,
2390                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2391         if (ret)
2392                 goto out_delete_hw_queue;
2393
2394         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2395                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2396
2397         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2398         if (ret)
2399                 goto out_disconnect_admin_queue;
2400
2401         /*
2402          * Check controller capabilities
2403          *
2404          * todo:- add code to check if ctrl attributes changed from
2405          * prior connection values
2406          */
2407
2408         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2409         if (ret) {
2410                 dev_err(ctrl->ctrl.device,
2411                         "prop_get NVME_REG_CAP failed\n");
2412                 goto out_disconnect_admin_queue;
2413         }
2414
2415         ctrl->ctrl.sqsize =
2416                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2417
2418         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2419         if (ret)
2420                 goto out_disconnect_admin_queue;
2421
2422         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2423                         ctrl->lport->ops->max_sgl_segments);
2424         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2425
2426         ret = nvme_init_identify(&ctrl->ctrl);
2427         if (ret)
2428                 goto out_disconnect_admin_queue;
2429
2430         /* sanity checks */
2431
2432         /* FC-NVME does not have other data in the capsule */
2433         if (ctrl->ctrl.icdoff) {
2434                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2435                                 ctrl->ctrl.icdoff);
2436                 goto out_disconnect_admin_queue;
2437         }
2438
2439         /* FC-NVME supports normal SGL Data Block Descriptors */
2440
2441         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2442                 /* warn if maxcmd is lower than queue_size */
2443                 dev_warn(ctrl->ctrl.device,
2444                         "queue_size %zu > ctrl maxcmd %u, reducing "
2445                         "to queue_size\n",
2446                         opts->queue_size, ctrl->ctrl.maxcmd);
2447                 opts->queue_size = ctrl->ctrl.maxcmd;
2448         }
2449
2450         ret = nvme_fc_init_aen_ops(ctrl);
2451         if (ret)
2452                 goto out_term_aen_ops;
2453
2454         /*
2455          * Create the io queues
2456          */
2457
2458         if (ctrl->ctrl.queue_count > 1) {
2459                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2460                         ret = nvme_fc_create_io_queues(ctrl);
2461                 else
2462                         ret = nvme_fc_reinit_io_queues(ctrl);
2463                 if (ret)
2464                         goto out_term_aen_ops;
2465         }
2466
2467         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2468         WARN_ON_ONCE(!changed);
2469
2470         ctrl->ctrl.nr_reconnects = 0;
2471
2472         nvme_start_ctrl(&ctrl->ctrl);
2473
2474         return 0;       /* Success */
2475
2476 out_term_aen_ops:
2477         nvme_fc_term_aen_ops(ctrl);
2478 out_disconnect_admin_queue:
2479         /* send a Disconnect(association) LS to fc-nvme target */
2480         nvme_fc_xmt_disconnect_assoc(ctrl);
2481 out_delete_hw_queue:
2482         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2483 out_free_queue:
2484         nvme_fc_free_queue(&ctrl->queues[0]);
2485
2486         return ret;
2487 }
2488
2489 /*
2490  * This routine stops operation of the controller on the host side.
2491  * On the host os stack side: Admin and IO queues are stopped,
2492  *   outstanding ios on them terminated via FC ABTS.
2493  * On the link side: the association is terminated.
2494  */
2495 static void
2496 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2497 {
2498         unsigned long flags;
2499
2500         spin_lock_irqsave(&ctrl->lock, flags);
2501         ctrl->flags |= FCCTRL_TERMIO;
2502         ctrl->iocnt = 0;
2503         spin_unlock_irqrestore(&ctrl->lock, flags);
2504
2505         /*
2506          * If io queues are present, stop them and terminate all outstanding
2507          * ios on them. As FC allocates FC exchange for each io, the
2508          * transport must contact the LLDD to terminate the exchange,
2509          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2510          * to tell us what io's are busy and invoke a transport routine
2511          * to kill them with the LLDD.  After terminating the exchange
2512          * the LLDD will call the transport's normal io done path, but it
2513          * will have an aborted status. The done path will return the
2514          * io requests back to the block layer as part of normal completions
2515          * (but with error status).
2516          */
2517         if (ctrl->ctrl.queue_count > 1) {
2518                 nvme_stop_queues(&ctrl->ctrl);
2519                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2520                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2521         }
2522
2523         /*
2524          * Other transports, which don't have link-level contexts bound
2525          * to sqe's, would try to gracefully shutdown the controller by
2526          * writing the registers for shutdown and polling (call
2527          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2528          * just aborted and we will wait on those contexts, and given
2529          * there was no indication of how live the controlelr is on the
2530          * link, don't send more io to create more contexts for the
2531          * shutdown. Let the controller fail via keepalive failure if
2532          * its still present.
2533          */
2534
2535         /*
2536          * clean up the admin queue. Same thing as above.
2537          * use blk_mq_tagset_busy_itr() and the transport routine to
2538          * terminate the exchanges.
2539          */
2540         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2541         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2542                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2543
2544         /* kill the aens as they are a separate path */
2545         nvme_fc_abort_aen_ops(ctrl);
2546
2547         /* wait for all io that had to be aborted */
2548         spin_lock_irqsave(&ctrl->lock, flags);
2549         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2550         ctrl->flags &= ~FCCTRL_TERMIO;
2551         spin_unlock_irqrestore(&ctrl->lock, flags);
2552
2553         nvme_fc_term_aen_ops(ctrl);
2554
2555         /*
2556          * send a Disconnect(association) LS to fc-nvme target
2557          * Note: could have been sent at top of process, but
2558          * cleaner on link traffic if after the aborts complete.
2559          * Note: if association doesn't exist, association_id will be 0
2560          */
2561         if (ctrl->association_id)
2562                 nvme_fc_xmt_disconnect_assoc(ctrl);
2563
2564         if (ctrl->ctrl.tagset) {
2565                 nvme_fc_delete_hw_io_queues(ctrl);
2566                 nvme_fc_free_io_queues(ctrl);
2567         }
2568
2569         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2570         nvme_fc_free_queue(&ctrl->queues[0]);
2571 }
2572
2573 static void
2574 nvme_fc_delete_ctrl_work(struct work_struct *work)
2575 {
2576         struct nvme_fc_ctrl *ctrl =
2577                 container_of(work, struct nvme_fc_ctrl, delete_work);
2578
2579         cancel_work_sync(&ctrl->ctrl.reset_work);
2580         cancel_delayed_work_sync(&ctrl->connect_work);
2581         nvme_stop_ctrl(&ctrl->ctrl);
2582         nvme_remove_namespaces(&ctrl->ctrl);
2583         /*
2584          * kill the association on the link side.  this will block
2585          * waiting for io to terminate
2586          */
2587         nvme_fc_delete_association(ctrl);
2588
2589         /*
2590          * tear down the controller
2591          * After the last reference on the nvme ctrl is removed,
2592          * the transport nvme_fc_nvme_ctrl_freed() callback will be
2593          * invoked. From there, the transport will tear down it's
2594          * logical queues and association.
2595          */
2596         nvme_uninit_ctrl(&ctrl->ctrl);
2597
2598         nvme_put_ctrl(&ctrl->ctrl);
2599 }
2600
2601 static bool
2602 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2603 {
2604         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2605                 return true;
2606
2607         if (!queue_work(nvme_wq, &ctrl->delete_work))
2608                 return true;
2609
2610         return false;
2611 }
2612
2613 static int
2614 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2615 {
2616         return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2617 }
2618
2619 /*
2620  * Request from nvme core layer to delete the controller
2621  */
2622 static int
2623 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2624 {
2625         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2626         int ret;
2627
2628         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2629                 return -EBUSY;
2630
2631         ret = __nvme_fc_del_ctrl(ctrl);
2632
2633         if (!ret)
2634                 flush_workqueue(nvme_wq);
2635
2636         nvme_put_ctrl(&ctrl->ctrl);
2637
2638         return ret;
2639 }
2640
2641 static void
2642 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2643 {
2644         /* If we are resetting/deleting then do nothing */
2645         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2646                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2647                         ctrl->ctrl.state == NVME_CTRL_LIVE);
2648                 return;
2649         }
2650
2651         dev_info(ctrl->ctrl.device,
2652                 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2653                 ctrl->cnum, status);
2654
2655         if (nvmf_should_reconnect(&ctrl->ctrl)) {
2656                 dev_info(ctrl->ctrl.device,
2657                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2658                         ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2659                 queue_delayed_work(nvme_wq, &ctrl->connect_work,
2660                                 ctrl->ctrl.opts->reconnect_delay * HZ);
2661         } else {
2662                 dev_warn(ctrl->ctrl.device,
2663                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2664                                 "reached. Removing controller\n",
2665                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2666                 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2667         }
2668 }
2669
2670 static void
2671 nvme_fc_reset_ctrl_work(struct work_struct *work)
2672 {
2673         struct nvme_fc_ctrl *ctrl =
2674                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2675         int ret;
2676
2677         nvme_stop_ctrl(&ctrl->ctrl);
2678         /* will block will waiting for io to terminate */
2679         nvme_fc_delete_association(ctrl);
2680
2681         ret = nvme_fc_create_association(ctrl);
2682         if (ret)
2683                 nvme_fc_reconnect_or_delete(ctrl, ret);
2684         else
2685                 dev_info(ctrl->ctrl.device,
2686                         "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2687 }
2688
2689 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2690         .name                   = "fc",
2691         .module                 = THIS_MODULE,
2692         .flags                  = NVME_F_FABRICS,
2693         .reg_read32             = nvmf_reg_read32,
2694         .reg_read64             = nvmf_reg_read64,
2695         .reg_write32            = nvmf_reg_write32,
2696         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2697         .submit_async_event     = nvme_fc_submit_async_event,
2698         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2699         .get_address            = nvmf_get_address,
2700 };
2701
2702 static void
2703 nvme_fc_connect_ctrl_work(struct work_struct *work)
2704 {
2705         int ret;
2706
2707         struct nvme_fc_ctrl *ctrl =
2708                         container_of(to_delayed_work(work),
2709                                 struct nvme_fc_ctrl, connect_work);
2710
2711         ret = nvme_fc_create_association(ctrl);
2712         if (ret)
2713                 nvme_fc_reconnect_or_delete(ctrl, ret);
2714         else
2715                 dev_info(ctrl->ctrl.device,
2716                         "NVME-FC{%d}: controller reconnect complete\n",
2717                         ctrl->cnum);
2718 }
2719
2720
2721 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2722         .queue_rq       = nvme_fc_queue_rq,
2723         .complete       = nvme_fc_complete_rq,
2724         .init_request   = nvme_fc_init_request,
2725         .exit_request   = nvme_fc_exit_request,
2726         .init_hctx      = nvme_fc_init_admin_hctx,
2727         .timeout        = nvme_fc_timeout,
2728 };
2729
2730
2731 static struct nvme_ctrl *
2732 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2733         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2734 {
2735         struct nvme_fc_ctrl *ctrl;
2736         unsigned long flags;
2737         int ret, idx;
2738
2739         if (!(rport->remoteport.port_role &
2740             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2741                 ret = -EBADR;
2742                 goto out_fail;
2743         }
2744
2745         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2746         if (!ctrl) {
2747                 ret = -ENOMEM;
2748                 goto out_fail;
2749         }
2750
2751         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2752         if (idx < 0) {
2753                 ret = -ENOSPC;
2754                 goto out_free_ctrl;
2755         }
2756
2757         ctrl->ctrl.opts = opts;
2758         INIT_LIST_HEAD(&ctrl->ctrl_list);
2759         ctrl->lport = lport;
2760         ctrl->rport = rport;
2761         ctrl->dev = lport->dev;
2762         ctrl->cnum = idx;
2763
2764         get_device(ctrl->dev);
2765         kref_init(&ctrl->ref);
2766
2767         INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2768         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
2769         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2770         spin_lock_init(&ctrl->lock);
2771
2772         /* io queue count */
2773         ctrl->ctrl.queue_count = min_t(unsigned int,
2774                                 opts->nr_io_queues,
2775                                 lport->ops->max_hw_queues);
2776         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
2777
2778         ctrl->ctrl.sqsize = opts->queue_size - 1;
2779         ctrl->ctrl.kato = opts->kato;
2780
2781         ret = -ENOMEM;
2782         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
2783                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
2784         if (!ctrl->queues)
2785                 goto out_free_ida;
2786
2787         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2788         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2789         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2790         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2791         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2792         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2793                                         (SG_CHUNK_SIZE *
2794                                                 sizeof(struct scatterlist)) +
2795                                         ctrl->lport->ops->fcprqst_priv_sz;
2796         ctrl->admin_tag_set.driver_data = ctrl;
2797         ctrl->admin_tag_set.nr_hw_queues = 1;
2798         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2799
2800         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2801         if (ret)
2802                 goto out_free_queues;
2803         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
2804
2805         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2806         if (IS_ERR(ctrl->ctrl.admin_q)) {
2807                 ret = PTR_ERR(ctrl->ctrl.admin_q);
2808                 goto out_free_admin_tag_set;
2809         }
2810
2811         /*
2812          * Would have been nice to init io queues tag set as well.
2813          * However, we require interaction from the controller
2814          * for max io queue count before we can do so.
2815          * Defer this to the connect path.
2816          */
2817
2818         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2819         if (ret)
2820                 goto out_cleanup_admin_q;
2821
2822         /* at this point, teardown path changes to ref counting on nvme ctrl */
2823
2824         spin_lock_irqsave(&rport->lock, flags);
2825         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2826         spin_unlock_irqrestore(&rport->lock, flags);
2827
2828         ret = nvme_fc_create_association(ctrl);
2829         if (ret) {
2830                 ctrl->ctrl.opts = NULL;
2831                 /* initiate nvme ctrl ref counting teardown */
2832                 nvme_uninit_ctrl(&ctrl->ctrl);
2833                 nvme_put_ctrl(&ctrl->ctrl);
2834
2835                 /* Remove core ctrl ref. */
2836                 nvme_put_ctrl(&ctrl->ctrl);
2837
2838                 /* as we're past the point where we transition to the ref
2839                  * counting teardown path, if we return a bad pointer here,
2840                  * the calling routine, thinking it's prior to the
2841                  * transition, will do an rport put. Since the teardown
2842                  * path also does a rport put, we do an extra get here to
2843                  * so proper order/teardown happens.
2844                  */
2845                 nvme_fc_rport_get(rport);
2846
2847                 if (ret > 0)
2848                         ret = -EIO;
2849                 return ERR_PTR(ret);
2850         }
2851
2852         kref_get(&ctrl->ctrl.kref);
2853
2854         dev_info(ctrl->ctrl.device,
2855                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2856                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2857
2858         return &ctrl->ctrl;
2859
2860 out_cleanup_admin_q:
2861         blk_cleanup_queue(ctrl->ctrl.admin_q);
2862 out_free_admin_tag_set:
2863         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2864 out_free_queues:
2865         kfree(ctrl->queues);
2866 out_free_ida:
2867         put_device(ctrl->dev);
2868         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2869 out_free_ctrl:
2870         kfree(ctrl);
2871 out_fail:
2872         /* exit via here doesn't follow ctlr ref points */
2873         return ERR_PTR(ret);
2874 }
2875
2876
2877 struct nvmet_fc_traddr {
2878         u64     nn;
2879         u64     pn;
2880 };
2881
2882 static int
2883 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2884 {
2885         u64 token64;
2886
2887         if (match_u64(sstr, &token64))
2888                 return -EINVAL;
2889         *val = token64;
2890
2891         return 0;
2892 }
2893
2894 /*
2895  * This routine validates and extracts the WWN's from the TRADDR string.
2896  * As kernel parsers need the 0x to determine number base, universally
2897  * build string to parse with 0x prefix before parsing name strings.
2898  */
2899 static int
2900 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2901 {
2902         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2903         substring_t wwn = { name, &name[sizeof(name)-1] };
2904         int nnoffset, pnoffset;
2905
2906         /* validate it string one of the 2 allowed formats */
2907         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2908                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2909                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2910                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2911                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2912                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2913                                                 NVME_FC_TRADDR_OXNNLEN;
2914         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2915                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2916                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2917                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2918                 nnoffset = NVME_FC_TRADDR_NNLEN;
2919                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2920         } else
2921                 goto out_einval;
2922
2923         name[0] = '0';
2924         name[1] = 'x';
2925         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2926
2927         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2928         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2929                 goto out_einval;
2930
2931         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2932         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2933                 goto out_einval;
2934
2935         return 0;
2936
2937 out_einval:
2938         pr_warn("%s: bad traddr string\n", __func__);
2939         return -EINVAL;
2940 }
2941
2942 static struct nvme_ctrl *
2943 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2944 {
2945         struct nvme_fc_lport *lport;
2946         struct nvme_fc_rport *rport;
2947         struct nvme_ctrl *ctrl;
2948         struct nvmet_fc_traddr laddr = { 0L, 0L };
2949         struct nvmet_fc_traddr raddr = { 0L, 0L };
2950         unsigned long flags;
2951         int ret;
2952
2953         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
2954         if (ret || !raddr.nn || !raddr.pn)
2955                 return ERR_PTR(-EINVAL);
2956
2957         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
2958         if (ret || !laddr.nn || !laddr.pn)
2959                 return ERR_PTR(-EINVAL);
2960
2961         /* find the host and remote ports to connect together */
2962         spin_lock_irqsave(&nvme_fc_lock, flags);
2963         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2964                 if (lport->localport.node_name != laddr.nn ||
2965                     lport->localport.port_name != laddr.pn)
2966                         continue;
2967
2968                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2969                         if (rport->remoteport.node_name != raddr.nn ||
2970                             rport->remoteport.port_name != raddr.pn)
2971                                 continue;
2972
2973                         /* if fail to get reference fall through. Will error */
2974                         if (!nvme_fc_rport_get(rport))
2975                                 break;
2976
2977                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2978
2979                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2980                         if (IS_ERR(ctrl))
2981                                 nvme_fc_rport_put(rport);
2982                         return ctrl;
2983                 }
2984         }
2985         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2986
2987         return ERR_PTR(-ENOENT);
2988 }
2989
2990
2991 static struct nvmf_transport_ops nvme_fc_transport = {
2992         .name           = "fc",
2993         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2994         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2995         .create_ctrl    = nvme_fc_create_ctrl,
2996 };
2997
2998 static int __init nvme_fc_init_module(void)
2999 {
3000         return nvmf_register_transport(&nvme_fc_transport);
3001 }
3002
3003 static void __exit nvme_fc_exit_module(void)
3004 {
3005         /* sanity check - all lports should be removed */
3006         if (!list_empty(&nvme_fc_lport_list))
3007                 pr_warn("%s: localport list not empty\n", __func__);
3008
3009         nvmf_unregister_transport(&nvme_fc_transport);
3010
3011         ida_destroy(&nvme_fc_local_port_cnt);
3012         ida_destroy(&nvme_fc_ctrl_cnt);
3013 }
3014
3015 module_init(nvme_fc_init_module);
3016 module_exit(nvme_fc_exit_module);
3017
3018 MODULE_LICENSE("GPL v2");