Documentation: Fix 'file_mapped' -> 'mapped_file'
[sfrench/cifs-2.6.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 enum nvme_fc_queue_flags {
34         NVME_FC_Q_CONNECTED = (1 << 0),
35 };
36
37 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
38
39 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
40
41 struct nvme_fc_queue {
42         struct nvme_fc_ctrl     *ctrl;
43         struct device           *dev;
44         struct blk_mq_hw_ctx    *hctx;
45         void                    *lldd_handle;
46         size_t                  cmnd_capsule_len;
47         u32                     qnum;
48         u32                     rqcnt;
49         u32                     seqno;
50
51         u64                     connection_id;
52         atomic_t                csn;
53
54         unsigned long           flags;
55 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
56
57 enum nvme_fcop_flags {
58         FCOP_FLAGS_TERMIO       = (1 << 0),
59         FCOP_FLAGS_RELEASED     = (1 << 1),
60         FCOP_FLAGS_COMPLETE     = (1 << 2),
61         FCOP_FLAGS_AEN          = (1 << 3),
62 };
63
64 struct nvmefc_ls_req_op {
65         struct nvmefc_ls_req    ls_req;
66
67         struct nvme_fc_rport    *rport;
68         struct nvme_fc_queue    *queue;
69         struct request          *rq;
70         u32                     flags;
71
72         int                     ls_error;
73         struct completion       ls_done;
74         struct list_head        lsreq_list;     /* rport->ls_req_list */
75         bool                    req_queued;
76 };
77
78 enum nvme_fcpop_state {
79         FCPOP_STATE_UNINIT      = 0,
80         FCPOP_STATE_IDLE        = 1,
81         FCPOP_STATE_ACTIVE      = 2,
82         FCPOP_STATE_ABORTED     = 3,
83         FCPOP_STATE_COMPLETE    = 4,
84 };
85
86 struct nvme_fc_fcp_op {
87         struct nvme_request     nreq;           /*
88                                                  * nvme/host/core.c
89                                                  * requires this to be
90                                                  * the 1st element in the
91                                                  * private structure
92                                                  * associated with the
93                                                  * request.
94                                                  */
95         struct nvmefc_fcp_req   fcp_req;
96
97         struct nvme_fc_ctrl     *ctrl;
98         struct nvme_fc_queue    *queue;
99         struct request          *rq;
100
101         atomic_t                state;
102         u32                     flags;
103         u32                     rqno;
104         u32                     nents;
105
106         struct nvme_fc_cmd_iu   cmd_iu;
107         struct nvme_fc_ersp_iu  rsp_iu;
108 };
109
110 struct nvme_fc_lport {
111         struct nvme_fc_local_port       localport;
112
113         struct ida                      endp_cnt;
114         struct list_head                port_list;      /* nvme_fc_port_list */
115         struct list_head                endp_list;
116         struct device                   *dev;   /* physical device for dma */
117         struct nvme_fc_port_template    *ops;
118         struct kref                     ref;
119         atomic_t                        act_rport_cnt;
120 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
121
122 struct nvme_fc_rport {
123         struct nvme_fc_remote_port      remoteport;
124
125         struct list_head                endp_list; /* for lport->endp_list */
126         struct list_head                ctrl_list;
127         struct list_head                ls_req_list;
128         struct device                   *dev;   /* physical device for dma */
129         struct nvme_fc_lport            *lport;
130         spinlock_t                      lock;
131         struct kref                     ref;
132         atomic_t                        act_ctrl_cnt;
133         unsigned long                   dev_loss_end;
134 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
135
136 enum nvme_fcctrl_flags {
137         FCCTRL_TERMIO           = (1 << 0),
138 };
139
140 struct nvme_fc_ctrl {
141         spinlock_t              lock;
142         struct nvme_fc_queue    *queues;
143         struct device           *dev;
144         struct nvme_fc_lport    *lport;
145         struct nvme_fc_rport    *rport;
146         u32                     cnum;
147
148         bool                    assoc_active;
149         u64                     association_id;
150
151         struct list_head        ctrl_list;      /* rport->ctrl_list */
152
153         struct blk_mq_tag_set   admin_tag_set;
154         struct blk_mq_tag_set   tag_set;
155
156         struct delayed_work     connect_work;
157
158         struct kref             ref;
159         u32                     flags;
160         u32                     iocnt;
161         wait_queue_head_t       ioabort_wait;
162
163         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
164
165         struct nvme_ctrl        ctrl;
166 };
167
168 static inline struct nvme_fc_ctrl *
169 to_fc_ctrl(struct nvme_ctrl *ctrl)
170 {
171         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
172 }
173
174 static inline struct nvme_fc_lport *
175 localport_to_lport(struct nvme_fc_local_port *portptr)
176 {
177         return container_of(portptr, struct nvme_fc_lport, localport);
178 }
179
180 static inline struct nvme_fc_rport *
181 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
182 {
183         return container_of(portptr, struct nvme_fc_rport, remoteport);
184 }
185
186 static inline struct nvmefc_ls_req_op *
187 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
188 {
189         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
190 }
191
192 static inline struct nvme_fc_fcp_op *
193 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
194 {
195         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
196 }
197
198
199
200 /* *************************** Globals **************************** */
201
202
203 static DEFINE_SPINLOCK(nvme_fc_lock);
204
205 static LIST_HEAD(nvme_fc_lport_list);
206 static DEFINE_IDA(nvme_fc_local_port_cnt);
207 static DEFINE_IDA(nvme_fc_ctrl_cnt);
208
209
210
211 /*
212  * These items are short-term. They will eventually be moved into
213  * a generic FC class. See comments in module init.
214  */
215 static struct class *fc_class;
216 static struct device *fc_udev_device;
217
218
219 /* *********************** FC-NVME Port Management ************************ */
220
221 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
222                         struct nvme_fc_queue *, unsigned int);
223
224 static void
225 nvme_fc_free_lport(struct kref *ref)
226 {
227         struct nvme_fc_lport *lport =
228                 container_of(ref, struct nvme_fc_lport, ref);
229         unsigned long flags;
230
231         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
232         WARN_ON(!list_empty(&lport->endp_list));
233
234         /* remove from transport list */
235         spin_lock_irqsave(&nvme_fc_lock, flags);
236         list_del(&lport->port_list);
237         spin_unlock_irqrestore(&nvme_fc_lock, flags);
238
239         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240         ida_destroy(&lport->endp_cnt);
241
242         put_device(lport->dev);
243
244         kfree(lport);
245 }
246
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
249 {
250         kref_put(&lport->ref, nvme_fc_free_lport);
251 }
252
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
255 {
256         return kref_get_unless_zero(&lport->ref);
257 }
258
259
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262                         struct nvme_fc_port_template *ops,
263                         struct device *dev)
264 {
265         struct nvme_fc_lport *lport;
266         unsigned long flags;
267
268         spin_lock_irqsave(&nvme_fc_lock, flags);
269
270         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271                 if (lport->localport.node_name != pinfo->node_name ||
272                     lport->localport.port_name != pinfo->port_name)
273                         continue;
274
275                 if (lport->dev != dev) {
276                         lport = ERR_PTR(-EXDEV);
277                         goto out_done;
278                 }
279
280                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281                         lport = ERR_PTR(-EEXIST);
282                         goto out_done;
283                 }
284
285                 if (!nvme_fc_lport_get(lport)) {
286                         /*
287                          * fails if ref cnt already 0. If so,
288                          * act as if lport already deleted
289                          */
290                         lport = NULL;
291                         goto out_done;
292                 }
293
294                 /* resume the lport */
295
296                 lport->ops = ops;
297                 lport->localport.port_role = pinfo->port_role;
298                 lport->localport.port_id = pinfo->port_id;
299                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
300
301                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
302
303                 return lport;
304         }
305
306         lport = NULL;
307
308 out_done:
309         spin_unlock_irqrestore(&nvme_fc_lock, flags);
310
311         return lport;
312 }
313
314 /**
315  * nvme_fc_register_localport - transport entry point called by an
316  *                              LLDD to register the existence of a NVME
317  *                              host FC port.
318  * @pinfo:     pointer to information about the port to be registered
319  * @template:  LLDD entrypoints and operational parameters for the port
320  * @dev:       physical hardware device node port corresponds to. Will be
321  *             used for DMA mappings
322  * @lport_p:   pointer to a local port pointer. Upon success, the routine
323  *             will allocate a nvme_fc_local_port structure and place its
324  *             address in the local port pointer. Upon failure, local port
325  *             pointer will be set to 0.
326  *
327  * Returns:
328  * a completion status. Must be 0 upon success; a negative errno
329  * (ex: -ENXIO) upon failure.
330  */
331 int
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333                         struct nvme_fc_port_template *template,
334                         struct device *dev,
335                         struct nvme_fc_local_port **portptr)
336 {
337         struct nvme_fc_lport *newrec;
338         unsigned long flags;
339         int ret, idx;
340
341         if (!template->localport_delete || !template->remoteport_delete ||
342             !template->ls_req || !template->fcp_io ||
343             !template->ls_abort || !template->fcp_abort ||
344             !template->max_hw_queues || !template->max_sgl_segments ||
345             !template->max_dif_sgl_segments || !template->dma_boundary) {
346                 ret = -EINVAL;
347                 goto out_reghost_failed;
348         }
349
350         /*
351          * look to see if there is already a localport that had been
352          * deregistered and in the process of waiting for all the
353          * references to fully be removed.  If the references haven't
354          * expired, we can simply re-enable the localport. Remoteports
355          * and controller reconnections should resume naturally.
356          */
357         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
358
359         /* found an lport, but something about its state is bad */
360         if (IS_ERR(newrec)) {
361                 ret = PTR_ERR(newrec);
362                 goto out_reghost_failed;
363
364         /* found existing lport, which was resumed */
365         } else if (newrec) {
366                 *portptr = &newrec->localport;
367                 return 0;
368         }
369
370         /* nothing found - allocate a new localport struct */
371
372         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
373                          GFP_KERNEL);
374         if (!newrec) {
375                 ret = -ENOMEM;
376                 goto out_reghost_failed;
377         }
378
379         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
380         if (idx < 0) {
381                 ret = -ENOSPC;
382                 goto out_fail_kfree;
383         }
384
385         if (!get_device(dev) && dev) {
386                 ret = -ENODEV;
387                 goto out_ida_put;
388         }
389
390         INIT_LIST_HEAD(&newrec->port_list);
391         INIT_LIST_HEAD(&newrec->endp_list);
392         kref_init(&newrec->ref);
393         atomic_set(&newrec->act_rport_cnt, 0);
394         newrec->ops = template;
395         newrec->dev = dev;
396         ida_init(&newrec->endp_cnt);
397         newrec->localport.private = &newrec[1];
398         newrec->localport.node_name = pinfo->node_name;
399         newrec->localport.port_name = pinfo->port_name;
400         newrec->localport.port_role = pinfo->port_role;
401         newrec->localport.port_id = pinfo->port_id;
402         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
403         newrec->localport.port_num = idx;
404
405         spin_lock_irqsave(&nvme_fc_lock, flags);
406         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
407         spin_unlock_irqrestore(&nvme_fc_lock, flags);
408
409         if (dev)
410                 dma_set_seg_boundary(dev, template->dma_boundary);
411
412         *portptr = &newrec->localport;
413         return 0;
414
415 out_ida_put:
416         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
417 out_fail_kfree:
418         kfree(newrec);
419 out_reghost_failed:
420         *portptr = NULL;
421
422         return ret;
423 }
424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
425
426 /**
427  * nvme_fc_unregister_localport - transport entry point called by an
428  *                              LLDD to deregister/remove a previously
429  *                              registered a NVME host FC port.
430  * @localport: pointer to the (registered) local port that is to be
431  *             deregistered.
432  *
433  * Returns:
434  * a completion status. Must be 0 upon success; a negative errno
435  * (ex: -ENXIO) upon failure.
436  */
437 int
438 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
439 {
440         struct nvme_fc_lport *lport = localport_to_lport(portptr);
441         unsigned long flags;
442
443         if (!portptr)
444                 return -EINVAL;
445
446         spin_lock_irqsave(&nvme_fc_lock, flags);
447
448         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
449                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
450                 return -EINVAL;
451         }
452         portptr->port_state = FC_OBJSTATE_DELETED;
453
454         spin_unlock_irqrestore(&nvme_fc_lock, flags);
455
456         if (atomic_read(&lport->act_rport_cnt) == 0)
457                 lport->ops->localport_delete(&lport->localport);
458
459         nvme_fc_lport_put(lport);
460
461         return 0;
462 }
463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
464
465 /*
466  * TRADDR strings, per FC-NVME are fixed format:
467  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
468  * udev event will only differ by prefix of what field is
469  * being specified:
470  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
471  *  19 + 43 + null_fudge = 64 characters
472  */
473 #define FCNVME_TRADDR_LENGTH            64
474
475 static void
476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
477                 struct nvme_fc_rport *rport)
478 {
479         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
480         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
481         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
482
483         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
484                 return;
485
486         snprintf(hostaddr, sizeof(hostaddr),
487                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
488                 lport->localport.node_name, lport->localport.port_name);
489         snprintf(tgtaddr, sizeof(tgtaddr),
490                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
491                 rport->remoteport.node_name, rport->remoteport.port_name);
492         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
493 }
494
495 static void
496 nvme_fc_free_rport(struct kref *ref)
497 {
498         struct nvme_fc_rport *rport =
499                 container_of(ref, struct nvme_fc_rport, ref);
500         struct nvme_fc_lport *lport =
501                         localport_to_lport(rport->remoteport.localport);
502         unsigned long flags;
503
504         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
505         WARN_ON(!list_empty(&rport->ctrl_list));
506
507         /* remove from lport list */
508         spin_lock_irqsave(&nvme_fc_lock, flags);
509         list_del(&rport->endp_list);
510         spin_unlock_irqrestore(&nvme_fc_lock, flags);
511
512         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
513
514         kfree(rport);
515
516         nvme_fc_lport_put(lport);
517 }
518
519 static void
520 nvme_fc_rport_put(struct nvme_fc_rport *rport)
521 {
522         kref_put(&rport->ref, nvme_fc_free_rport);
523 }
524
525 static int
526 nvme_fc_rport_get(struct nvme_fc_rport *rport)
527 {
528         return kref_get_unless_zero(&rport->ref);
529 }
530
531 static void
532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
533 {
534         switch (ctrl->ctrl.state) {
535         case NVME_CTRL_NEW:
536         case NVME_CTRL_RECONNECTING:
537                 /*
538                  * As all reconnects were suppressed, schedule a
539                  * connect.
540                  */
541                 dev_info(ctrl->ctrl.device,
542                         "NVME-FC{%d}: connectivity re-established. "
543                         "Attempting reconnect\n", ctrl->cnum);
544
545                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
546                 break;
547
548         case NVME_CTRL_RESETTING:
549                 /*
550                  * Controller is already in the process of terminating the
551                  * association. No need to do anything further. The reconnect
552                  * step will naturally occur after the reset completes.
553                  */
554                 break;
555
556         default:
557                 /* no action to take - let it delete */
558                 break;
559         }
560 }
561
562 static struct nvme_fc_rport *
563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
564                                 struct nvme_fc_port_info *pinfo)
565 {
566         struct nvme_fc_rport *rport;
567         struct nvme_fc_ctrl *ctrl;
568         unsigned long flags;
569
570         spin_lock_irqsave(&nvme_fc_lock, flags);
571
572         list_for_each_entry(rport, &lport->endp_list, endp_list) {
573                 if (rport->remoteport.node_name != pinfo->node_name ||
574                     rport->remoteport.port_name != pinfo->port_name)
575                         continue;
576
577                 if (!nvme_fc_rport_get(rport)) {
578                         rport = ERR_PTR(-ENOLCK);
579                         goto out_done;
580                 }
581
582                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
583
584                 spin_lock_irqsave(&rport->lock, flags);
585
586                 /* has it been unregistered */
587                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
588                         /* means lldd called us twice */
589                         spin_unlock_irqrestore(&rport->lock, flags);
590                         nvme_fc_rport_put(rport);
591                         return ERR_PTR(-ESTALE);
592                 }
593
594                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
595                 rport->dev_loss_end = 0;
596
597                 /*
598                  * kick off a reconnect attempt on all associations to the
599                  * remote port. A successful reconnects will resume i/o.
600                  */
601                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
602                         nvme_fc_resume_controller(ctrl);
603
604                 spin_unlock_irqrestore(&rport->lock, flags);
605
606                 return rport;
607         }
608
609         rport = NULL;
610
611 out_done:
612         spin_unlock_irqrestore(&nvme_fc_lock, flags);
613
614         return rport;
615 }
616
617 static inline void
618 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
619                         struct nvme_fc_port_info *pinfo)
620 {
621         if (pinfo->dev_loss_tmo)
622                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
623         else
624                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
625 }
626
627 /**
628  * nvme_fc_register_remoteport - transport entry point called by an
629  *                              LLDD to register the existence of a NVME
630  *                              subsystem FC port on its fabric.
631  * @localport: pointer to the (registered) local port that the remote
632  *             subsystem port is connected to.
633  * @pinfo:     pointer to information about the port to be registered
634  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
635  *             will allocate a nvme_fc_remote_port structure and place its
636  *             address in the remote port pointer. Upon failure, remote port
637  *             pointer will be set to 0.
638  *
639  * Returns:
640  * a completion status. Must be 0 upon success; a negative errno
641  * (ex: -ENXIO) upon failure.
642  */
643 int
644 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
645                                 struct nvme_fc_port_info *pinfo,
646                                 struct nvme_fc_remote_port **portptr)
647 {
648         struct nvme_fc_lport *lport = localport_to_lport(localport);
649         struct nvme_fc_rport *newrec;
650         unsigned long flags;
651         int ret, idx;
652
653         if (!nvme_fc_lport_get(lport)) {
654                 ret = -ESHUTDOWN;
655                 goto out_reghost_failed;
656         }
657
658         /*
659          * look to see if there is already a remoteport that is waiting
660          * for a reconnect (within dev_loss_tmo) with the same WWN's.
661          * If so, transition to it and reconnect.
662          */
663         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
664
665         /* found an rport, but something about its state is bad */
666         if (IS_ERR(newrec)) {
667                 ret = PTR_ERR(newrec);
668                 goto out_lport_put;
669
670         /* found existing rport, which was resumed */
671         } else if (newrec) {
672                 nvme_fc_lport_put(lport);
673                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
674                 nvme_fc_signal_discovery_scan(lport, newrec);
675                 *portptr = &newrec->remoteport;
676                 return 0;
677         }
678
679         /* nothing found - allocate a new remoteport struct */
680
681         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
682                          GFP_KERNEL);
683         if (!newrec) {
684                 ret = -ENOMEM;
685                 goto out_lport_put;
686         }
687
688         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
689         if (idx < 0) {
690                 ret = -ENOSPC;
691                 goto out_kfree_rport;
692         }
693
694         INIT_LIST_HEAD(&newrec->endp_list);
695         INIT_LIST_HEAD(&newrec->ctrl_list);
696         INIT_LIST_HEAD(&newrec->ls_req_list);
697         kref_init(&newrec->ref);
698         atomic_set(&newrec->act_ctrl_cnt, 0);
699         spin_lock_init(&newrec->lock);
700         newrec->remoteport.localport = &lport->localport;
701         newrec->dev = lport->dev;
702         newrec->lport = lport;
703         newrec->remoteport.private = &newrec[1];
704         newrec->remoteport.port_role = pinfo->port_role;
705         newrec->remoteport.node_name = pinfo->node_name;
706         newrec->remoteport.port_name = pinfo->port_name;
707         newrec->remoteport.port_id = pinfo->port_id;
708         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
709         newrec->remoteport.port_num = idx;
710         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
711
712         spin_lock_irqsave(&nvme_fc_lock, flags);
713         list_add_tail(&newrec->endp_list, &lport->endp_list);
714         spin_unlock_irqrestore(&nvme_fc_lock, flags);
715
716         nvme_fc_signal_discovery_scan(lport, newrec);
717
718         *portptr = &newrec->remoteport;
719         return 0;
720
721 out_kfree_rport:
722         kfree(newrec);
723 out_lport_put:
724         nvme_fc_lport_put(lport);
725 out_reghost_failed:
726         *portptr = NULL;
727         return ret;
728 }
729 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
730
731 static int
732 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
733 {
734         struct nvmefc_ls_req_op *lsop;
735         unsigned long flags;
736
737 restart:
738         spin_lock_irqsave(&rport->lock, flags);
739
740         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
741                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
742                         lsop->flags |= FCOP_FLAGS_TERMIO;
743                         spin_unlock_irqrestore(&rport->lock, flags);
744                         rport->lport->ops->ls_abort(&rport->lport->localport,
745                                                 &rport->remoteport,
746                                                 &lsop->ls_req);
747                         goto restart;
748                 }
749         }
750         spin_unlock_irqrestore(&rport->lock, flags);
751
752         return 0;
753 }
754
755 static void
756 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
757 {
758         dev_info(ctrl->ctrl.device,
759                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
760                 "Reconnect", ctrl->cnum);
761
762         switch (ctrl->ctrl.state) {
763         case NVME_CTRL_NEW:
764         case NVME_CTRL_LIVE:
765                 /*
766                  * Schedule a controller reset. The reset will terminate the
767                  * association and schedule the reconnect timer.  Reconnects
768                  * will be attempted until either the ctlr_loss_tmo
769                  * (max_retries * connect_delay) expires or the remoteport's
770                  * dev_loss_tmo expires.
771                  */
772                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
773                         dev_warn(ctrl->ctrl.device,
774                                 "NVME-FC{%d}: Couldn't schedule reset. "
775                                 "Deleting controller.\n",
776                                 ctrl->cnum);
777                         nvme_delete_ctrl(&ctrl->ctrl);
778                 }
779                 break;
780
781         case NVME_CTRL_RECONNECTING:
782                 /*
783                  * The association has already been terminated and the
784                  * controller is attempting reconnects.  No need to do anything
785                  * futher.  Reconnects will be attempted until either the
786                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
787                  * remoteport's dev_loss_tmo expires.
788                  */
789                 break;
790
791         case NVME_CTRL_RESETTING:
792                 /*
793                  * Controller is already in the process of terminating the
794                  * association.  No need to do anything further. The reconnect
795                  * step will kick in naturally after the association is
796                  * terminated.
797                  */
798                 break;
799
800         case NVME_CTRL_DELETING:
801         default:
802                 /* no action to take - let it delete */
803                 break;
804         }
805 }
806
807 /**
808  * nvme_fc_unregister_remoteport - transport entry point called by an
809  *                              LLDD to deregister/remove a previously
810  *                              registered a NVME subsystem FC port.
811  * @remoteport: pointer to the (registered) remote port that is to be
812  *              deregistered.
813  *
814  * Returns:
815  * a completion status. Must be 0 upon success; a negative errno
816  * (ex: -ENXIO) upon failure.
817  */
818 int
819 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
820 {
821         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
822         struct nvme_fc_ctrl *ctrl;
823         unsigned long flags;
824
825         if (!portptr)
826                 return -EINVAL;
827
828         spin_lock_irqsave(&rport->lock, flags);
829
830         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
831                 spin_unlock_irqrestore(&rport->lock, flags);
832                 return -EINVAL;
833         }
834         portptr->port_state = FC_OBJSTATE_DELETED;
835
836         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
837
838         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
839                 /* if dev_loss_tmo==0, dev loss is immediate */
840                 if (!portptr->dev_loss_tmo) {
841                         dev_warn(ctrl->ctrl.device,
842                                 "NVME-FC{%d}: controller connectivity lost. "
843                                 "Deleting controller.\n",
844                                 ctrl->cnum);
845                         nvme_delete_ctrl(&ctrl->ctrl);
846                 } else
847                         nvme_fc_ctrl_connectivity_loss(ctrl);
848         }
849
850         spin_unlock_irqrestore(&rport->lock, flags);
851
852         nvme_fc_abort_lsops(rport);
853
854         if (atomic_read(&rport->act_ctrl_cnt) == 0)
855                 rport->lport->ops->remoteport_delete(portptr);
856
857         /*
858          * release the reference, which will allow, if all controllers
859          * go away, which should only occur after dev_loss_tmo occurs,
860          * for the rport to be torn down.
861          */
862         nvme_fc_rport_put(rport);
863
864         return 0;
865 }
866 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
867
868 /**
869  * nvme_fc_rescan_remoteport - transport entry point called by an
870  *                              LLDD to request a nvme device rescan.
871  * @remoteport: pointer to the (registered) remote port that is to be
872  *              rescanned.
873  *
874  * Returns: N/A
875  */
876 void
877 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
878 {
879         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
880
881         nvme_fc_signal_discovery_scan(rport->lport, rport);
882 }
883 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
884
885 int
886 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
887                         u32 dev_loss_tmo)
888 {
889         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
890         unsigned long flags;
891
892         spin_lock_irqsave(&rport->lock, flags);
893
894         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
895                 spin_unlock_irqrestore(&rport->lock, flags);
896                 return -EINVAL;
897         }
898
899         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
900         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
901
902         spin_unlock_irqrestore(&rport->lock, flags);
903
904         return 0;
905 }
906 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
907
908
909 /* *********************** FC-NVME DMA Handling **************************** */
910
911 /*
912  * The fcloop device passes in a NULL device pointer. Real LLD's will
913  * pass in a valid device pointer. If NULL is passed to the dma mapping
914  * routines, depending on the platform, it may or may not succeed, and
915  * may crash.
916  *
917  * As such:
918  * Wrapper all the dma routines and check the dev pointer.
919  *
920  * If simple mappings (return just a dma address, we'll noop them,
921  * returning a dma address of 0.
922  *
923  * On more complex mappings (dma_map_sg), a pseudo routine fills
924  * in the scatter list, setting all dma addresses to 0.
925  */
926
927 static inline dma_addr_t
928 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
929                 enum dma_data_direction dir)
930 {
931         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
932 }
933
934 static inline int
935 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
936 {
937         return dev ? dma_mapping_error(dev, dma_addr) : 0;
938 }
939
940 static inline void
941 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
942         enum dma_data_direction dir)
943 {
944         if (dev)
945                 dma_unmap_single(dev, addr, size, dir);
946 }
947
948 static inline void
949 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
950                 enum dma_data_direction dir)
951 {
952         if (dev)
953                 dma_sync_single_for_cpu(dev, addr, size, dir);
954 }
955
956 static inline void
957 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
958                 enum dma_data_direction dir)
959 {
960         if (dev)
961                 dma_sync_single_for_device(dev, addr, size, dir);
962 }
963
964 /* pseudo dma_map_sg call */
965 static int
966 fc_map_sg(struct scatterlist *sg, int nents)
967 {
968         struct scatterlist *s;
969         int i;
970
971         WARN_ON(nents == 0 || sg[0].length == 0);
972
973         for_each_sg(sg, s, nents, i) {
974                 s->dma_address = 0L;
975 #ifdef CONFIG_NEED_SG_DMA_LENGTH
976                 s->dma_length = s->length;
977 #endif
978         }
979         return nents;
980 }
981
982 static inline int
983 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
984                 enum dma_data_direction dir)
985 {
986         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
987 }
988
989 static inline void
990 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
991                 enum dma_data_direction dir)
992 {
993         if (dev)
994                 dma_unmap_sg(dev, sg, nents, dir);
995 }
996
997 /* *********************** FC-NVME LS Handling **************************** */
998
999 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1000 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1001
1002
1003 static void
1004 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1005 {
1006         struct nvme_fc_rport *rport = lsop->rport;
1007         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1008         unsigned long flags;
1009
1010         spin_lock_irqsave(&rport->lock, flags);
1011
1012         if (!lsop->req_queued) {
1013                 spin_unlock_irqrestore(&rport->lock, flags);
1014                 return;
1015         }
1016
1017         list_del(&lsop->lsreq_list);
1018
1019         lsop->req_queued = false;
1020
1021         spin_unlock_irqrestore(&rport->lock, flags);
1022
1023         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1024                                   (lsreq->rqstlen + lsreq->rsplen),
1025                                   DMA_BIDIRECTIONAL);
1026
1027         nvme_fc_rport_put(rport);
1028 }
1029
1030 static int
1031 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1032                 struct nvmefc_ls_req_op *lsop,
1033                 void (*done)(struct nvmefc_ls_req *req, int status))
1034 {
1035         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1036         unsigned long flags;
1037         int ret = 0;
1038
1039         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1040                 return -ECONNREFUSED;
1041
1042         if (!nvme_fc_rport_get(rport))
1043                 return -ESHUTDOWN;
1044
1045         lsreq->done = done;
1046         lsop->rport = rport;
1047         lsop->req_queued = false;
1048         INIT_LIST_HEAD(&lsop->lsreq_list);
1049         init_completion(&lsop->ls_done);
1050
1051         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1052                                   lsreq->rqstlen + lsreq->rsplen,
1053                                   DMA_BIDIRECTIONAL);
1054         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1055                 ret = -EFAULT;
1056                 goto out_putrport;
1057         }
1058         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1059
1060         spin_lock_irqsave(&rport->lock, flags);
1061
1062         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1063
1064         lsop->req_queued = true;
1065
1066         spin_unlock_irqrestore(&rport->lock, flags);
1067
1068         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1069                                         &rport->remoteport, lsreq);
1070         if (ret)
1071                 goto out_unlink;
1072
1073         return 0;
1074
1075 out_unlink:
1076         lsop->ls_error = ret;
1077         spin_lock_irqsave(&rport->lock, flags);
1078         lsop->req_queued = false;
1079         list_del(&lsop->lsreq_list);
1080         spin_unlock_irqrestore(&rport->lock, flags);
1081         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1082                                   (lsreq->rqstlen + lsreq->rsplen),
1083                                   DMA_BIDIRECTIONAL);
1084 out_putrport:
1085         nvme_fc_rport_put(rport);
1086
1087         return ret;
1088 }
1089
1090 static void
1091 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1092 {
1093         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1094
1095         lsop->ls_error = status;
1096         complete(&lsop->ls_done);
1097 }
1098
1099 static int
1100 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1101 {
1102         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1103         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1104         int ret;
1105
1106         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1107
1108         if (!ret) {
1109                 /*
1110                  * No timeout/not interruptible as we need the struct
1111                  * to exist until the lldd calls us back. Thus mandate
1112                  * wait until driver calls back. lldd responsible for
1113                  * the timeout action
1114                  */
1115                 wait_for_completion(&lsop->ls_done);
1116
1117                 __nvme_fc_finish_ls_req(lsop);
1118
1119                 ret = lsop->ls_error;
1120         }
1121
1122         if (ret)
1123                 return ret;
1124
1125         /* ACC or RJT payload ? */
1126         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1127                 return -ENXIO;
1128
1129         return 0;
1130 }
1131
1132 static int
1133 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1134                 struct nvmefc_ls_req_op *lsop,
1135                 void (*done)(struct nvmefc_ls_req *req, int status))
1136 {
1137         /* don't wait for completion */
1138
1139         return __nvme_fc_send_ls_req(rport, lsop, done);
1140 }
1141
1142 /* Validation Error indexes into the string table below */
1143 enum {
1144         VERR_NO_ERROR           = 0,
1145         VERR_LSACC              = 1,
1146         VERR_LSDESC_RQST        = 2,
1147         VERR_LSDESC_RQST_LEN    = 3,
1148         VERR_ASSOC_ID           = 4,
1149         VERR_ASSOC_ID_LEN       = 5,
1150         VERR_CONN_ID            = 6,
1151         VERR_CONN_ID_LEN        = 7,
1152         VERR_CR_ASSOC           = 8,
1153         VERR_CR_ASSOC_ACC_LEN   = 9,
1154         VERR_CR_CONN            = 10,
1155         VERR_CR_CONN_ACC_LEN    = 11,
1156         VERR_DISCONN            = 12,
1157         VERR_DISCONN_ACC_LEN    = 13,
1158 };
1159
1160 static char *validation_errors[] = {
1161         "OK",
1162         "Not LS_ACC",
1163         "Not LSDESC_RQST",
1164         "Bad LSDESC_RQST Length",
1165         "Not Association ID",
1166         "Bad Association ID Length",
1167         "Not Connection ID",
1168         "Bad Connection ID Length",
1169         "Not CR_ASSOC Rqst",
1170         "Bad CR_ASSOC ACC Length",
1171         "Not CR_CONN Rqst",
1172         "Bad CR_CONN ACC Length",
1173         "Not Disconnect Rqst",
1174         "Bad Disconnect ACC Length",
1175 };
1176
1177 static int
1178 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1179         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1180 {
1181         struct nvmefc_ls_req_op *lsop;
1182         struct nvmefc_ls_req *lsreq;
1183         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1184         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1185         int ret, fcret = 0;
1186
1187         lsop = kzalloc((sizeof(*lsop) +
1188                          ctrl->lport->ops->lsrqst_priv_sz +
1189                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1190         if (!lsop) {
1191                 ret = -ENOMEM;
1192                 goto out_no_memory;
1193         }
1194         lsreq = &lsop->ls_req;
1195
1196         lsreq->private = (void *)&lsop[1];
1197         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1198                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1199         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200
1201         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1202         assoc_rqst->desc_list_len =
1203                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1204
1205         assoc_rqst->assoc_cmd.desc_tag =
1206                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1207         assoc_rqst->assoc_cmd.desc_len =
1208                         fcnvme_lsdesc_len(
1209                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1210
1211         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1212         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
1213         /* Linux supports only Dynamic controllers */
1214         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1215         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1216         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1217                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1218         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1219                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1220
1221         lsop->queue = queue;
1222         lsreq->rqstaddr = assoc_rqst;
1223         lsreq->rqstlen = sizeof(*assoc_rqst);
1224         lsreq->rspaddr = assoc_acc;
1225         lsreq->rsplen = sizeof(*assoc_acc);
1226         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1227
1228         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1229         if (ret)
1230                 goto out_free_buffer;
1231
1232         /* process connect LS completion */
1233
1234         /* validate the ACC response */
1235         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1236                 fcret = VERR_LSACC;
1237         else if (assoc_acc->hdr.desc_list_len !=
1238                         fcnvme_lsdesc_len(
1239                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1240                 fcret = VERR_CR_ASSOC_ACC_LEN;
1241         else if (assoc_acc->hdr.rqst.desc_tag !=
1242                         cpu_to_be32(FCNVME_LSDESC_RQST))
1243                 fcret = VERR_LSDESC_RQST;
1244         else if (assoc_acc->hdr.rqst.desc_len !=
1245                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1246                 fcret = VERR_LSDESC_RQST_LEN;
1247         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1248                 fcret = VERR_CR_ASSOC;
1249         else if (assoc_acc->associd.desc_tag !=
1250                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1251                 fcret = VERR_ASSOC_ID;
1252         else if (assoc_acc->associd.desc_len !=
1253                         fcnvme_lsdesc_len(
1254                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1255                 fcret = VERR_ASSOC_ID_LEN;
1256         else if (assoc_acc->connectid.desc_tag !=
1257                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1258                 fcret = VERR_CONN_ID;
1259         else if (assoc_acc->connectid.desc_len !=
1260                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1261                 fcret = VERR_CONN_ID_LEN;
1262
1263         if (fcret) {
1264                 ret = -EBADF;
1265                 dev_err(ctrl->dev,
1266                         "q %d connect failed: %s\n",
1267                         queue->qnum, validation_errors[fcret]);
1268         } else {
1269                 ctrl->association_id =
1270                         be64_to_cpu(assoc_acc->associd.association_id);
1271                 queue->connection_id =
1272                         be64_to_cpu(assoc_acc->connectid.connection_id);
1273                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1274         }
1275
1276 out_free_buffer:
1277         kfree(lsop);
1278 out_no_memory:
1279         if (ret)
1280                 dev_err(ctrl->dev,
1281                         "queue %d connect admin queue failed (%d).\n",
1282                         queue->qnum, ret);
1283         return ret;
1284 }
1285
1286 static int
1287 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1288                         u16 qsize, u16 ersp_ratio)
1289 {
1290         struct nvmefc_ls_req_op *lsop;
1291         struct nvmefc_ls_req *lsreq;
1292         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1293         struct fcnvme_ls_cr_conn_acc *conn_acc;
1294         int ret, fcret = 0;
1295
1296         lsop = kzalloc((sizeof(*lsop) +
1297                          ctrl->lport->ops->lsrqst_priv_sz +
1298                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1299         if (!lsop) {
1300                 ret = -ENOMEM;
1301                 goto out_no_memory;
1302         }
1303         lsreq = &lsop->ls_req;
1304
1305         lsreq->private = (void *)&lsop[1];
1306         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1307                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1308         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1309
1310         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1311         conn_rqst->desc_list_len = cpu_to_be32(
1312                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1313                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1314
1315         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1316         conn_rqst->associd.desc_len =
1317                         fcnvme_lsdesc_len(
1318                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1319         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1320         conn_rqst->connect_cmd.desc_tag =
1321                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1322         conn_rqst->connect_cmd.desc_len =
1323                         fcnvme_lsdesc_len(
1324                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1325         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1326         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1327         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1328
1329         lsop->queue = queue;
1330         lsreq->rqstaddr = conn_rqst;
1331         lsreq->rqstlen = sizeof(*conn_rqst);
1332         lsreq->rspaddr = conn_acc;
1333         lsreq->rsplen = sizeof(*conn_acc);
1334         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1335
1336         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1337         if (ret)
1338                 goto out_free_buffer;
1339
1340         /* process connect LS completion */
1341
1342         /* validate the ACC response */
1343         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1344                 fcret = VERR_LSACC;
1345         else if (conn_acc->hdr.desc_list_len !=
1346                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1347                 fcret = VERR_CR_CONN_ACC_LEN;
1348         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1349                 fcret = VERR_LSDESC_RQST;
1350         else if (conn_acc->hdr.rqst.desc_len !=
1351                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1352                 fcret = VERR_LSDESC_RQST_LEN;
1353         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1354                 fcret = VERR_CR_CONN;
1355         else if (conn_acc->connectid.desc_tag !=
1356                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1357                 fcret = VERR_CONN_ID;
1358         else if (conn_acc->connectid.desc_len !=
1359                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1360                 fcret = VERR_CONN_ID_LEN;
1361
1362         if (fcret) {
1363                 ret = -EBADF;
1364                 dev_err(ctrl->dev,
1365                         "q %d connect failed: %s\n",
1366                         queue->qnum, validation_errors[fcret]);
1367         } else {
1368                 queue->connection_id =
1369                         be64_to_cpu(conn_acc->connectid.connection_id);
1370                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1371         }
1372
1373 out_free_buffer:
1374         kfree(lsop);
1375 out_no_memory:
1376         if (ret)
1377                 dev_err(ctrl->dev,
1378                         "queue %d connect command failed (%d).\n",
1379                         queue->qnum, ret);
1380         return ret;
1381 }
1382
1383 static void
1384 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1385 {
1386         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1387
1388         __nvme_fc_finish_ls_req(lsop);
1389
1390         /* fc-nvme iniator doesn't care about success or failure of cmd */
1391
1392         kfree(lsop);
1393 }
1394
1395 /*
1396  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1397  * the FC-NVME Association.  Terminating the association also
1398  * terminates the FC-NVME connections (per queue, both admin and io
1399  * queues) that are part of the association. E.g. things are torn
1400  * down, and the related FC-NVME Association ID and Connection IDs
1401  * become invalid.
1402  *
1403  * The behavior of the fc-nvme initiator is such that it's
1404  * understanding of the association and connections will implicitly
1405  * be torn down. The action is implicit as it may be due to a loss of
1406  * connectivity with the fc-nvme target, so you may never get a
1407  * response even if you tried.  As such, the action of this routine
1408  * is to asynchronously send the LS, ignore any results of the LS, and
1409  * continue on with terminating the association. If the fc-nvme target
1410  * is present and receives the LS, it too can tear down.
1411  */
1412 static void
1413 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1414 {
1415         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1416         struct fcnvme_ls_disconnect_acc *discon_acc;
1417         struct nvmefc_ls_req_op *lsop;
1418         struct nvmefc_ls_req *lsreq;
1419         int ret;
1420
1421         lsop = kzalloc((sizeof(*lsop) +
1422                          ctrl->lport->ops->lsrqst_priv_sz +
1423                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1424                         GFP_KERNEL);
1425         if (!lsop)
1426                 /* couldn't sent it... too bad */
1427                 return;
1428
1429         lsreq = &lsop->ls_req;
1430
1431         lsreq->private = (void *)&lsop[1];
1432         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1433                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1434         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1435
1436         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1437         discon_rqst->desc_list_len = cpu_to_be32(
1438                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1439                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1440
1441         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1442         discon_rqst->associd.desc_len =
1443                         fcnvme_lsdesc_len(
1444                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1445
1446         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1447
1448         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1449                                                 FCNVME_LSDESC_DISCONN_CMD);
1450         discon_rqst->discon_cmd.desc_len =
1451                         fcnvme_lsdesc_len(
1452                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1453         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1454         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1455
1456         lsreq->rqstaddr = discon_rqst;
1457         lsreq->rqstlen = sizeof(*discon_rqst);
1458         lsreq->rspaddr = discon_acc;
1459         lsreq->rsplen = sizeof(*discon_acc);
1460         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1461
1462         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1463                                 nvme_fc_disconnect_assoc_done);
1464         if (ret)
1465                 kfree(lsop);
1466
1467         /* only meaningful part to terminating the association */
1468         ctrl->association_id = 0;
1469 }
1470
1471
1472 /* *********************** NVME Ctrl Routines **************************** */
1473
1474 static void __nvme_fc_final_op_cleanup(struct request *rq);
1475 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1476
1477 static int
1478 nvme_fc_reinit_request(void *data, struct request *rq)
1479 {
1480         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1481         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1482
1483         memset(cmdiu, 0, sizeof(*cmdiu));
1484         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1485         cmdiu->fc_id = NVME_CMD_FC_ID;
1486         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1487         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1488
1489         return 0;
1490 }
1491
1492 static void
1493 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1494                 struct nvme_fc_fcp_op *op)
1495 {
1496         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1497                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1498         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1499                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1500
1501         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1502 }
1503
1504 static void
1505 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1506                 unsigned int hctx_idx)
1507 {
1508         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1509
1510         return __nvme_fc_exit_request(set->driver_data, op);
1511 }
1512
1513 static int
1514 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1515 {
1516         int state;
1517
1518         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1519         if (state != FCPOP_STATE_ACTIVE) {
1520                 atomic_set(&op->state, state);
1521                 return -ECANCELED;
1522         }
1523
1524         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1525                                         &ctrl->rport->remoteport,
1526                                         op->queue->lldd_handle,
1527                                         &op->fcp_req);
1528
1529         return 0;
1530 }
1531
1532 static void
1533 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1534 {
1535         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1536         unsigned long flags;
1537         int i, ret;
1538
1539         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1540                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1541                         continue;
1542
1543                 spin_lock_irqsave(&ctrl->lock, flags);
1544                 if (ctrl->flags & FCCTRL_TERMIO) {
1545                         ctrl->iocnt++;
1546                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1547                 }
1548                 spin_unlock_irqrestore(&ctrl->lock, flags);
1549
1550                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1551                 if (ret) {
1552                         /*
1553                          * if __nvme_fc_abort_op failed the io wasn't
1554                          * active. Thus this call path is running in
1555                          * parallel to the io complete. Treat as non-error.
1556                          */
1557
1558                         /* back out the flags/counters */
1559                         spin_lock_irqsave(&ctrl->lock, flags);
1560                         if (ctrl->flags & FCCTRL_TERMIO)
1561                                 ctrl->iocnt--;
1562                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1563                         spin_unlock_irqrestore(&ctrl->lock, flags);
1564                         return;
1565                 }
1566         }
1567 }
1568
1569 static inline int
1570 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1571                 struct nvme_fc_fcp_op *op)
1572 {
1573         unsigned long flags;
1574         bool complete_rq = false;
1575
1576         spin_lock_irqsave(&ctrl->lock, flags);
1577         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1578                 if (ctrl->flags & FCCTRL_TERMIO) {
1579                         if (!--ctrl->iocnt)
1580                                 wake_up(&ctrl->ioabort_wait);
1581                 }
1582         }
1583         if (op->flags & FCOP_FLAGS_RELEASED)
1584                 complete_rq = true;
1585         else
1586                 op->flags |= FCOP_FLAGS_COMPLETE;
1587         spin_unlock_irqrestore(&ctrl->lock, flags);
1588
1589         return complete_rq;
1590 }
1591
1592 static void
1593 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1594 {
1595         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1596         struct request *rq = op->rq;
1597         struct nvmefc_fcp_req *freq = &op->fcp_req;
1598         struct nvme_fc_ctrl *ctrl = op->ctrl;
1599         struct nvme_fc_queue *queue = op->queue;
1600         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1601         struct nvme_command *sqe = &op->cmd_iu.sqe;
1602         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1603         union nvme_result result;
1604         bool terminate_assoc = true;
1605
1606         /*
1607          * WARNING:
1608          * The current linux implementation of a nvme controller
1609          * allocates a single tag set for all io queues and sizes
1610          * the io queues to fully hold all possible tags. Thus, the
1611          * implementation does not reference or care about the sqhd
1612          * value as it never needs to use the sqhd/sqtail pointers
1613          * for submission pacing.
1614          *
1615          * This affects the FC-NVME implementation in two ways:
1616          * 1) As the value doesn't matter, we don't need to waste
1617          *    cycles extracting it from ERSPs and stamping it in the
1618          *    cases where the transport fabricates CQEs on successful
1619          *    completions.
1620          * 2) The FC-NVME implementation requires that delivery of
1621          *    ERSP completions are to go back to the nvme layer in order
1622          *    relative to the rsn, such that the sqhd value will always
1623          *    be "in order" for the nvme layer. As the nvme layer in
1624          *    linux doesn't care about sqhd, there's no need to return
1625          *    them in order.
1626          *
1627          * Additionally:
1628          * As the core nvme layer in linux currently does not look at
1629          * every field in the cqe - in cases where the FC transport must
1630          * fabricate a CQE, the following fields will not be set as they
1631          * are not referenced:
1632          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1633          *
1634          * Failure or error of an individual i/o, in a transport
1635          * detected fashion unrelated to the nvme completion status,
1636          * potentially cause the initiator and target sides to get out
1637          * of sync on SQ head/tail (aka outstanding io count allowed).
1638          * Per FC-NVME spec, failure of an individual command requires
1639          * the connection to be terminated, which in turn requires the
1640          * association to be terminated.
1641          */
1642
1643         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1644                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1645
1646         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED ||
1647                         op->flags & FCOP_FLAGS_TERMIO)
1648                 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1649         else if (freq->status)
1650                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1651
1652         /*
1653          * For the linux implementation, if we have an unsuccesful
1654          * status, they blk-mq layer can typically be called with the
1655          * non-zero status and the content of the cqe isn't important.
1656          */
1657         if (status)
1658                 goto done;
1659
1660         /*
1661          * command completed successfully relative to the wire
1662          * protocol. However, validate anything received and
1663          * extract the status and result from the cqe (create it
1664          * where necessary).
1665          */
1666
1667         switch (freq->rcv_rsplen) {
1668
1669         case 0:
1670         case NVME_FC_SIZEOF_ZEROS_RSP:
1671                 /*
1672                  * No response payload or 12 bytes of payload (which
1673                  * should all be zeros) are considered successful and
1674                  * no payload in the CQE by the transport.
1675                  */
1676                 if (freq->transferred_length !=
1677                         be32_to_cpu(op->cmd_iu.data_len)) {
1678                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1679                         goto done;
1680                 }
1681                 result.u64 = 0;
1682                 break;
1683
1684         case sizeof(struct nvme_fc_ersp_iu):
1685                 /*
1686                  * The ERSP IU contains a full completion with CQE.
1687                  * Validate ERSP IU and look at cqe.
1688                  */
1689                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1690                                         (freq->rcv_rsplen / 4) ||
1691                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1692                                         freq->transferred_length ||
1693                              op->rsp_iu.status_code ||
1694                              sqe->common.command_id != cqe->command_id)) {
1695                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1696                         goto done;
1697                 }
1698                 result = cqe->result;
1699                 status = cqe->status;
1700                 break;
1701
1702         default:
1703                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1704                 goto done;
1705         }
1706
1707         terminate_assoc = false;
1708
1709 done:
1710         if (op->flags & FCOP_FLAGS_AEN) {
1711                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1712                 __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1713                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1714                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1715                 nvme_fc_ctrl_put(ctrl);
1716                 goto check_error;
1717         }
1718
1719         /*
1720          * Force failures of commands if we're killing the controller
1721          * or have an error on a command used to create an new association
1722          */
1723         if (status &&
1724             (blk_queue_dying(rq->q) ||
1725              ctrl->ctrl.state == NVME_CTRL_NEW ||
1726              ctrl->ctrl.state == NVME_CTRL_RECONNECTING))
1727                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1728
1729         if (__nvme_fc_fcpop_chk_teardowns(ctrl, op))
1730                 __nvme_fc_final_op_cleanup(rq);
1731         else
1732                 nvme_end_request(rq, status, result);
1733
1734 check_error:
1735         if (terminate_assoc)
1736                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1737 }
1738
1739 static int
1740 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1741                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1742                 struct request *rq, u32 rqno)
1743 {
1744         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1745         int ret = 0;
1746
1747         memset(op, 0, sizeof(*op));
1748         op->fcp_req.cmdaddr = &op->cmd_iu;
1749         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1750         op->fcp_req.rspaddr = &op->rsp_iu;
1751         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1752         op->fcp_req.done = nvme_fc_fcpio_done;
1753         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1754         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1755         op->ctrl = ctrl;
1756         op->queue = queue;
1757         op->rq = rq;
1758         op->rqno = rqno;
1759
1760         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1761         cmdiu->fc_id = NVME_CMD_FC_ID;
1762         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1763
1764         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1765                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1766         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1767                 dev_err(ctrl->dev,
1768                         "FCP Op failed - cmdiu dma mapping failed.\n");
1769                 ret = EFAULT;
1770                 goto out_on_error;
1771         }
1772
1773         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1774                                 &op->rsp_iu, sizeof(op->rsp_iu),
1775                                 DMA_FROM_DEVICE);
1776         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1777                 dev_err(ctrl->dev,
1778                         "FCP Op failed - rspiu dma mapping failed.\n");
1779                 ret = EFAULT;
1780         }
1781
1782         atomic_set(&op->state, FCPOP_STATE_IDLE);
1783 out_on_error:
1784         return ret;
1785 }
1786
1787 static int
1788 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1789                 unsigned int hctx_idx, unsigned int numa_node)
1790 {
1791         struct nvme_fc_ctrl *ctrl = set->driver_data;
1792         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1793         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1794         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1795
1796         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1797 }
1798
1799 static int
1800 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1801 {
1802         struct nvme_fc_fcp_op *aen_op;
1803         struct nvme_fc_cmd_iu *cmdiu;
1804         struct nvme_command *sqe;
1805         void *private;
1806         int i, ret;
1807
1808         aen_op = ctrl->aen_ops;
1809         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1810                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1811                                                 GFP_KERNEL);
1812                 if (!private)
1813                         return -ENOMEM;
1814
1815                 cmdiu = &aen_op->cmd_iu;
1816                 sqe = &cmdiu->sqe;
1817                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1818                                 aen_op, (struct request *)NULL,
1819                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1820                 if (ret) {
1821                         kfree(private);
1822                         return ret;
1823                 }
1824
1825                 aen_op->flags = FCOP_FLAGS_AEN;
1826                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1827                 aen_op->fcp_req.private = private;
1828
1829                 memset(sqe, 0, sizeof(*sqe));
1830                 sqe->common.opcode = nvme_admin_async_event;
1831                 /* Note: core layer may overwrite the sqe.command_id value */
1832                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1833         }
1834         return 0;
1835 }
1836
1837 static void
1838 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1839 {
1840         struct nvme_fc_fcp_op *aen_op;
1841         int i;
1842
1843         aen_op = ctrl->aen_ops;
1844         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1845                 if (!aen_op->fcp_req.private)
1846                         continue;
1847
1848                 __nvme_fc_exit_request(ctrl, aen_op);
1849
1850                 kfree(aen_op->fcp_req.private);
1851                 aen_op->fcp_req.private = NULL;
1852         }
1853 }
1854
1855 static inline void
1856 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1857                 unsigned int qidx)
1858 {
1859         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1860
1861         hctx->driver_data = queue;
1862         queue->hctx = hctx;
1863 }
1864
1865 static int
1866 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1867                 unsigned int hctx_idx)
1868 {
1869         struct nvme_fc_ctrl *ctrl = data;
1870
1871         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1872
1873         return 0;
1874 }
1875
1876 static int
1877 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1878                 unsigned int hctx_idx)
1879 {
1880         struct nvme_fc_ctrl *ctrl = data;
1881
1882         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1883
1884         return 0;
1885 }
1886
1887 static void
1888 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1889 {
1890         struct nvme_fc_queue *queue;
1891
1892         queue = &ctrl->queues[idx];
1893         memset(queue, 0, sizeof(*queue));
1894         queue->ctrl = ctrl;
1895         queue->qnum = idx;
1896         atomic_set(&queue->csn, 1);
1897         queue->dev = ctrl->dev;
1898
1899         if (idx > 0)
1900                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1901         else
1902                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1903
1904         /*
1905          * Considered whether we should allocate buffers for all SQEs
1906          * and CQEs and dma map them - mapping their respective entries
1907          * into the request structures (kernel vm addr and dma address)
1908          * thus the driver could use the buffers/mappings directly.
1909          * It only makes sense if the LLDD would use them for its
1910          * messaging api. It's very unlikely most adapter api's would use
1911          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1912          * structures were used instead.
1913          */
1914 }
1915
1916 /*
1917  * This routine terminates a queue at the transport level.
1918  * The transport has already ensured that all outstanding ios on
1919  * the queue have been terminated.
1920  * The transport will send a Disconnect LS request to terminate
1921  * the queue's connection. Termination of the admin queue will also
1922  * terminate the association at the target.
1923  */
1924 static void
1925 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1926 {
1927         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1928                 return;
1929
1930         /*
1931          * Current implementation never disconnects a single queue.
1932          * It always terminates a whole association. So there is never
1933          * a disconnect(queue) LS sent to the target.
1934          */
1935
1936         queue->connection_id = 0;
1937         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1938 }
1939
1940 static void
1941 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1942         struct nvme_fc_queue *queue, unsigned int qidx)
1943 {
1944         if (ctrl->lport->ops->delete_queue)
1945                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1946                                 queue->lldd_handle);
1947         queue->lldd_handle = NULL;
1948 }
1949
1950 static void
1951 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1952 {
1953         int i;
1954
1955         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1956                 nvme_fc_free_queue(&ctrl->queues[i]);
1957 }
1958
1959 static int
1960 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1961         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1962 {
1963         int ret = 0;
1964
1965         queue->lldd_handle = NULL;
1966         if (ctrl->lport->ops->create_queue)
1967                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1968                                 qidx, qsize, &queue->lldd_handle);
1969
1970         return ret;
1971 }
1972
1973 static void
1974 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1975 {
1976         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1977         int i;
1978
1979         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1980                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1981 }
1982
1983 static int
1984 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1985 {
1986         struct nvme_fc_queue *queue = &ctrl->queues[1];
1987         int i, ret;
1988
1989         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1990                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1991                 if (ret)
1992                         goto delete_queues;
1993         }
1994
1995         return 0;
1996
1997 delete_queues:
1998         for (; i >= 0; i--)
1999                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2000         return ret;
2001 }
2002
2003 static int
2004 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2005 {
2006         int i, ret = 0;
2007
2008         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2009                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2010                                         (qsize / 5));
2011                 if (ret)
2012                         break;
2013                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2014                 if (ret)
2015                         break;
2016         }
2017
2018         return ret;
2019 }
2020
2021 static void
2022 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2023 {
2024         int i;
2025
2026         for (i = 1; i < ctrl->ctrl.queue_count; i++)
2027                 nvme_fc_init_queue(ctrl, i);
2028 }
2029
2030 static void
2031 nvme_fc_ctrl_free(struct kref *ref)
2032 {
2033         struct nvme_fc_ctrl *ctrl =
2034                 container_of(ref, struct nvme_fc_ctrl, ref);
2035         unsigned long flags;
2036
2037         if (ctrl->ctrl.tagset) {
2038                 blk_cleanup_queue(ctrl->ctrl.connect_q);
2039                 blk_mq_free_tag_set(&ctrl->tag_set);
2040         }
2041
2042         /* remove from rport list */
2043         spin_lock_irqsave(&ctrl->rport->lock, flags);
2044         list_del(&ctrl->ctrl_list);
2045         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2046
2047         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2048         blk_cleanup_queue(ctrl->ctrl.admin_q);
2049         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2050
2051         kfree(ctrl->queues);
2052
2053         put_device(ctrl->dev);
2054         nvme_fc_rport_put(ctrl->rport);
2055
2056         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2057         if (ctrl->ctrl.opts)
2058                 nvmf_free_options(ctrl->ctrl.opts);
2059         kfree(ctrl);
2060 }
2061
2062 static void
2063 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2064 {
2065         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2066 }
2067
2068 static int
2069 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2070 {
2071         return kref_get_unless_zero(&ctrl->ref);
2072 }
2073
2074 /*
2075  * All accesses from nvme core layer done - can now free the
2076  * controller. Called after last nvme_put_ctrl() call
2077  */
2078 static void
2079 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2080 {
2081         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2082
2083         WARN_ON(nctrl != &ctrl->ctrl);
2084
2085         nvme_fc_ctrl_put(ctrl);
2086 }
2087
2088 static void
2089 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2090 {
2091         /* only proceed if in LIVE state - e.g. on first error */
2092         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2093                 return;
2094
2095         dev_warn(ctrl->ctrl.device,
2096                 "NVME-FC{%d}: transport association error detected: %s\n",
2097                 ctrl->cnum, errmsg);
2098         dev_warn(ctrl->ctrl.device,
2099                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2100
2101         nvme_reset_ctrl(&ctrl->ctrl);
2102 }
2103
2104 static enum blk_eh_timer_return
2105 nvme_fc_timeout(struct request *rq, bool reserved)
2106 {
2107         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2108         struct nvme_fc_ctrl *ctrl = op->ctrl;
2109         int ret;
2110
2111         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2112                         atomic_read(&op->state) == FCPOP_STATE_ABORTED)
2113                 return BLK_EH_RESET_TIMER;
2114
2115         ret = __nvme_fc_abort_op(ctrl, op);
2116         if (ret)
2117                 /* io wasn't active to abort */
2118                 return BLK_EH_NOT_HANDLED;
2119
2120         /*
2121          * we can't individually ABTS an io without affecting the queue,
2122          * thus killing the queue, adn thus the association.
2123          * So resolve by performing a controller reset, which will stop
2124          * the host/io stack, terminate the association on the link,
2125          * and recreate an association on the link.
2126          */
2127         nvme_fc_error_recovery(ctrl, "io timeout error");
2128
2129         /*
2130          * the io abort has been initiated. Have the reset timer
2131          * restarted and the abort completion will complete the io
2132          * shortly. Avoids a synchronous wait while the abort finishes.
2133          */
2134         return BLK_EH_RESET_TIMER;
2135 }
2136
2137 static int
2138 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2139                 struct nvme_fc_fcp_op *op)
2140 {
2141         struct nvmefc_fcp_req *freq = &op->fcp_req;
2142         enum dma_data_direction dir;
2143         int ret;
2144
2145         freq->sg_cnt = 0;
2146
2147         if (!blk_rq_payload_bytes(rq))
2148                 return 0;
2149
2150         freq->sg_table.sgl = freq->first_sgl;
2151         ret = sg_alloc_table_chained(&freq->sg_table,
2152                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2153         if (ret)
2154                 return -ENOMEM;
2155
2156         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2157         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2158         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2159         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2160                                 op->nents, dir);
2161         if (unlikely(freq->sg_cnt <= 0)) {
2162                 sg_free_table_chained(&freq->sg_table, true);
2163                 freq->sg_cnt = 0;
2164                 return -EFAULT;
2165         }
2166
2167         /*
2168          * TODO: blk_integrity_rq(rq)  for DIF
2169          */
2170         return 0;
2171 }
2172
2173 static void
2174 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2175                 struct nvme_fc_fcp_op *op)
2176 {
2177         struct nvmefc_fcp_req *freq = &op->fcp_req;
2178
2179         if (!freq->sg_cnt)
2180                 return;
2181
2182         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2183                                 ((rq_data_dir(rq) == WRITE) ?
2184                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
2185
2186         nvme_cleanup_cmd(rq);
2187
2188         sg_free_table_chained(&freq->sg_table, true);
2189
2190         freq->sg_cnt = 0;
2191 }
2192
2193 /*
2194  * In FC, the queue is a logical thing. At transport connect, the target
2195  * creates its "queue" and returns a handle that is to be given to the
2196  * target whenever it posts something to the corresponding SQ.  When an
2197  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2198  * command contained within the SQE, an io, and assigns a FC exchange
2199  * to it. The SQE and the associated SQ handle are sent in the initial
2200  * CMD IU sents on the exchange. All transfers relative to the io occur
2201  * as part of the exchange.  The CQE is the last thing for the io,
2202  * which is transferred (explicitly or implicitly) with the RSP IU
2203  * sent on the exchange. After the CQE is received, the FC exchange is
2204  * terminaed and the Exchange may be used on a different io.
2205  *
2206  * The transport to LLDD api has the transport making a request for a
2207  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2208  * resource and transfers the command. The LLDD will then process all
2209  * steps to complete the io. Upon completion, the transport done routine
2210  * is called.
2211  *
2212  * So - while the operation is outstanding to the LLDD, there is a link
2213  * level FC exchange resource that is also outstanding. This must be
2214  * considered in all cleanup operations.
2215  */
2216 static blk_status_t
2217 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2218         struct nvme_fc_fcp_op *op, u32 data_len,
2219         enum nvmefc_fcp_datadir io_dir)
2220 {
2221         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2222         struct nvme_command *sqe = &cmdiu->sqe;
2223         u32 csn;
2224         int ret;
2225
2226         /*
2227          * before attempting to send the io, check to see if we believe
2228          * the target device is present
2229          */
2230         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2231                 goto busy;
2232
2233         if (!nvme_fc_ctrl_get(ctrl))
2234                 return BLK_STS_IOERR;
2235
2236         /* format the FC-NVME CMD IU and fcp_req */
2237         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2238         csn = atomic_inc_return(&queue->csn);
2239         cmdiu->csn = cpu_to_be32(csn);
2240         cmdiu->data_len = cpu_to_be32(data_len);
2241         switch (io_dir) {
2242         case NVMEFC_FCP_WRITE:
2243                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2244                 break;
2245         case NVMEFC_FCP_READ:
2246                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2247                 break;
2248         case NVMEFC_FCP_NODATA:
2249                 cmdiu->flags = 0;
2250                 break;
2251         }
2252         op->fcp_req.payload_length = data_len;
2253         op->fcp_req.io_dir = io_dir;
2254         op->fcp_req.transferred_length = 0;
2255         op->fcp_req.rcv_rsplen = 0;
2256         op->fcp_req.status = NVME_SC_SUCCESS;
2257         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2258
2259         /*
2260          * validate per fabric rules, set fields mandated by fabric spec
2261          * as well as those by FC-NVME spec.
2262          */
2263         WARN_ON_ONCE(sqe->common.metadata);
2264         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2265
2266         /*
2267          * format SQE DPTR field per FC-NVME rules:
2268          *    type=0x5     Transport SGL Data Block Descriptor
2269          *    subtype=0xA  Transport-specific value
2270          *    address=0
2271          *    length=length of the data series
2272          */
2273         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2274                                         NVME_SGL_FMT_TRANSPORT_A;
2275         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2276         sqe->rw.dptr.sgl.addr = 0;
2277
2278         if (!(op->flags & FCOP_FLAGS_AEN)) {
2279                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2280                 if (ret < 0) {
2281                         nvme_cleanup_cmd(op->rq);
2282                         nvme_fc_ctrl_put(ctrl);
2283                         if (ret == -ENOMEM || ret == -EAGAIN)
2284                                 return BLK_STS_RESOURCE;
2285                         return BLK_STS_IOERR;
2286                 }
2287         }
2288
2289         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2290                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2291
2292         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2293
2294         if (!(op->flags & FCOP_FLAGS_AEN))
2295                 blk_mq_start_request(op->rq);
2296
2297         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2298                                         &ctrl->rport->remoteport,
2299                                         queue->lldd_handle, &op->fcp_req);
2300
2301         if (ret) {
2302                 if (!(op->flags & FCOP_FLAGS_AEN))
2303                         nvme_fc_unmap_data(ctrl, op->rq, op);
2304
2305                 nvme_fc_ctrl_put(ctrl);
2306
2307                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2308                                 ret != -EBUSY)
2309                         return BLK_STS_IOERR;
2310
2311                 goto busy;
2312         }
2313
2314         return BLK_STS_OK;
2315
2316 busy:
2317         if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
2318                 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
2319
2320         return BLK_STS_RESOURCE;
2321 }
2322
2323 static blk_status_t
2324 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2325                         const struct blk_mq_queue_data *bd)
2326 {
2327         struct nvme_ns *ns = hctx->queue->queuedata;
2328         struct nvme_fc_queue *queue = hctx->driver_data;
2329         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2330         struct request *rq = bd->rq;
2331         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2332         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2333         struct nvme_command *sqe = &cmdiu->sqe;
2334         enum nvmefc_fcp_datadir io_dir;
2335         u32 data_len;
2336         blk_status_t ret;
2337
2338         ret = nvme_setup_cmd(ns, rq, sqe);
2339         if (ret)
2340                 return ret;
2341
2342         data_len = blk_rq_payload_bytes(rq);
2343         if (data_len)
2344                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2345                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2346         else
2347                 io_dir = NVMEFC_FCP_NODATA;
2348
2349         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2350 }
2351
2352 static struct blk_mq_tags *
2353 nvme_fc_tagset(struct nvme_fc_queue *queue)
2354 {
2355         if (queue->qnum == 0)
2356                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2357
2358         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2359 }
2360
2361 static int
2362 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2363
2364 {
2365         struct nvme_fc_queue *queue = hctx->driver_data;
2366         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2367         struct request *req;
2368         struct nvme_fc_fcp_op *op;
2369
2370         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2371         if (!req)
2372                 return 0;
2373
2374         op = blk_mq_rq_to_pdu(req);
2375
2376         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2377                  (ctrl->lport->ops->poll_queue))
2378                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2379                                                  queue->lldd_handle);
2380
2381         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2382 }
2383
2384 static void
2385 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2386 {
2387         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2388         struct nvme_fc_fcp_op *aen_op;
2389         unsigned long flags;
2390         bool terminating = false;
2391         blk_status_t ret;
2392
2393         spin_lock_irqsave(&ctrl->lock, flags);
2394         if (ctrl->flags & FCCTRL_TERMIO)
2395                 terminating = true;
2396         spin_unlock_irqrestore(&ctrl->lock, flags);
2397
2398         if (terminating)
2399                 return;
2400
2401         aen_op = &ctrl->aen_ops[0];
2402
2403         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2404                                         NVMEFC_FCP_NODATA);
2405         if (ret)
2406                 dev_err(ctrl->ctrl.device,
2407                         "failed async event work\n");
2408 }
2409
2410 static void
2411 __nvme_fc_final_op_cleanup(struct request *rq)
2412 {
2413         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2414         struct nvme_fc_ctrl *ctrl = op->ctrl;
2415
2416         atomic_set(&op->state, FCPOP_STATE_IDLE);
2417         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2418                         FCOP_FLAGS_COMPLETE);
2419
2420         nvme_fc_unmap_data(ctrl, rq, op);
2421         nvme_complete_rq(rq);
2422         nvme_fc_ctrl_put(ctrl);
2423
2424 }
2425
2426 static void
2427 nvme_fc_complete_rq(struct request *rq)
2428 {
2429         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2430         struct nvme_fc_ctrl *ctrl = op->ctrl;
2431         unsigned long flags;
2432         bool completed = false;
2433
2434         /*
2435          * the core layer, on controller resets after calling
2436          * nvme_shutdown_ctrl(), calls complete_rq without our
2437          * calling blk_mq_complete_request(), thus there may still
2438          * be live i/o outstanding with the LLDD. Means transport has
2439          * to track complete calls vs fcpio_done calls to know what
2440          * path to take on completes and dones.
2441          */
2442         spin_lock_irqsave(&ctrl->lock, flags);
2443         if (op->flags & FCOP_FLAGS_COMPLETE)
2444                 completed = true;
2445         else
2446                 op->flags |= FCOP_FLAGS_RELEASED;
2447         spin_unlock_irqrestore(&ctrl->lock, flags);
2448
2449         if (completed)
2450                 __nvme_fc_final_op_cleanup(rq);
2451 }
2452
2453 /*
2454  * This routine is used by the transport when it needs to find active
2455  * io on a queue that is to be terminated. The transport uses
2456  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2457  * this routine to kill them on a 1 by 1 basis.
2458  *
2459  * As FC allocates FC exchange for each io, the transport must contact
2460  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2461  * After terminating the exchange the LLDD will call the transport's
2462  * normal io done path for the request, but it will have an aborted
2463  * status. The done path will return the io request back to the block
2464  * layer with an error status.
2465  */
2466 static void
2467 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2468 {
2469         struct nvme_ctrl *nctrl = data;
2470         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2471         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2472         unsigned long flags;
2473         int status;
2474
2475         if (!blk_mq_request_started(req))
2476                 return;
2477
2478         spin_lock_irqsave(&ctrl->lock, flags);
2479         if (ctrl->flags & FCCTRL_TERMIO) {
2480                 ctrl->iocnt++;
2481                 op->flags |= FCOP_FLAGS_TERMIO;
2482         }
2483         spin_unlock_irqrestore(&ctrl->lock, flags);
2484
2485         status = __nvme_fc_abort_op(ctrl, op);
2486         if (status) {
2487                 /*
2488                  * if __nvme_fc_abort_op failed the io wasn't
2489                  * active. Thus this call path is running in
2490                  * parallel to the io complete. Treat as non-error.
2491                  */
2492
2493                 /* back out the flags/counters */
2494                 spin_lock_irqsave(&ctrl->lock, flags);
2495                 if (ctrl->flags & FCCTRL_TERMIO)
2496                         ctrl->iocnt--;
2497                 op->flags &= ~FCOP_FLAGS_TERMIO;
2498                 spin_unlock_irqrestore(&ctrl->lock, flags);
2499                 return;
2500         }
2501 }
2502
2503
2504 static const struct blk_mq_ops nvme_fc_mq_ops = {
2505         .queue_rq       = nvme_fc_queue_rq,
2506         .complete       = nvme_fc_complete_rq,
2507         .init_request   = nvme_fc_init_request,
2508         .exit_request   = nvme_fc_exit_request,
2509         .init_hctx      = nvme_fc_init_hctx,
2510         .poll           = nvme_fc_poll,
2511         .timeout        = nvme_fc_timeout,
2512 };
2513
2514 static int
2515 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2516 {
2517         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2518         unsigned int nr_io_queues;
2519         int ret;
2520
2521         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2522                                 ctrl->lport->ops->max_hw_queues);
2523         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2524         if (ret) {
2525                 dev_info(ctrl->ctrl.device,
2526                         "set_queue_count failed: %d\n", ret);
2527                 return ret;
2528         }
2529
2530         ctrl->ctrl.queue_count = nr_io_queues + 1;
2531         if (!nr_io_queues)
2532                 return 0;
2533
2534         nvme_fc_init_io_queues(ctrl);
2535
2536         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2537         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2538         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2539         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2540         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2541         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2542         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2543                                         (SG_CHUNK_SIZE *
2544                                                 sizeof(struct scatterlist)) +
2545                                         ctrl->lport->ops->fcprqst_priv_sz;
2546         ctrl->tag_set.driver_data = ctrl;
2547         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2548         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2549
2550         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2551         if (ret)
2552                 return ret;
2553
2554         ctrl->ctrl.tagset = &ctrl->tag_set;
2555
2556         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2557         if (IS_ERR(ctrl->ctrl.connect_q)) {
2558                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2559                 goto out_free_tag_set;
2560         }
2561
2562         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2563         if (ret)
2564                 goto out_cleanup_blk_queue;
2565
2566         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2567         if (ret)
2568                 goto out_delete_hw_queues;
2569
2570         return 0;
2571
2572 out_delete_hw_queues:
2573         nvme_fc_delete_hw_io_queues(ctrl);
2574 out_cleanup_blk_queue:
2575         blk_cleanup_queue(ctrl->ctrl.connect_q);
2576 out_free_tag_set:
2577         blk_mq_free_tag_set(&ctrl->tag_set);
2578         nvme_fc_free_io_queues(ctrl);
2579
2580         /* force put free routine to ignore io queues */
2581         ctrl->ctrl.tagset = NULL;
2582
2583         return ret;
2584 }
2585
2586 static int
2587 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2588 {
2589         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2590         unsigned int nr_io_queues;
2591         int ret;
2592
2593         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2594                                 ctrl->lport->ops->max_hw_queues);
2595         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2596         if (ret) {
2597                 dev_info(ctrl->ctrl.device,
2598                         "set_queue_count failed: %d\n", ret);
2599                 return ret;
2600         }
2601
2602         ctrl->ctrl.queue_count = nr_io_queues + 1;
2603         /* check for io queues existing */
2604         if (ctrl->ctrl.queue_count == 1)
2605                 return 0;
2606
2607         nvme_fc_init_io_queues(ctrl);
2608
2609         ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2610         if (ret)
2611                 goto out_free_io_queues;
2612
2613         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2614         if (ret)
2615                 goto out_free_io_queues;
2616
2617         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2618         if (ret)
2619                 goto out_delete_hw_queues;
2620
2621         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2622
2623         return 0;
2624
2625 out_delete_hw_queues:
2626         nvme_fc_delete_hw_io_queues(ctrl);
2627 out_free_io_queues:
2628         nvme_fc_free_io_queues(ctrl);
2629         return ret;
2630 }
2631
2632 static void
2633 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2634 {
2635         struct nvme_fc_lport *lport = rport->lport;
2636
2637         atomic_inc(&lport->act_rport_cnt);
2638 }
2639
2640 static void
2641 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2642 {
2643         struct nvme_fc_lport *lport = rport->lport;
2644         u32 cnt;
2645
2646         cnt = atomic_dec_return(&lport->act_rport_cnt);
2647         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2648                 lport->ops->localport_delete(&lport->localport);
2649 }
2650
2651 static int
2652 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2653 {
2654         struct nvme_fc_rport *rport = ctrl->rport;
2655         u32 cnt;
2656
2657         if (ctrl->assoc_active)
2658                 return 1;
2659
2660         ctrl->assoc_active = true;
2661         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2662         if (cnt == 1)
2663                 nvme_fc_rport_active_on_lport(rport);
2664
2665         return 0;
2666 }
2667
2668 static int
2669 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2670 {
2671         struct nvme_fc_rport *rport = ctrl->rport;
2672         struct nvme_fc_lport *lport = rport->lport;
2673         u32 cnt;
2674
2675         /* ctrl->assoc_active=false will be set independently */
2676
2677         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2678         if (cnt == 0) {
2679                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2680                         lport->ops->remoteport_delete(&rport->remoteport);
2681                 nvme_fc_rport_inactive_on_lport(rport);
2682         }
2683
2684         return 0;
2685 }
2686
2687 /*
2688  * This routine restarts the controller on the host side, and
2689  * on the link side, recreates the controller association.
2690  */
2691 static int
2692 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2693 {
2694         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2695         int ret;
2696         bool changed;
2697
2698         ++ctrl->ctrl.nr_reconnects;
2699
2700         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2701                 return -ENODEV;
2702
2703         if (nvme_fc_ctlr_active_on_rport(ctrl))
2704                 return -ENOTUNIQ;
2705
2706         /*
2707          * Create the admin queue
2708          */
2709
2710         nvme_fc_init_queue(ctrl, 0);
2711
2712         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2713                                 NVME_AQ_BLK_MQ_DEPTH);
2714         if (ret)
2715                 goto out_free_queue;
2716
2717         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2718                                 NVME_AQ_BLK_MQ_DEPTH,
2719                                 (NVME_AQ_BLK_MQ_DEPTH / 4));
2720         if (ret)
2721                 goto out_delete_hw_queue;
2722
2723         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2724                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2725
2726         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2727         if (ret)
2728                 goto out_disconnect_admin_queue;
2729
2730         /*
2731          * Check controller capabilities
2732          *
2733          * todo:- add code to check if ctrl attributes changed from
2734          * prior connection values
2735          */
2736
2737         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2738         if (ret) {
2739                 dev_err(ctrl->ctrl.device,
2740                         "prop_get NVME_REG_CAP failed\n");
2741                 goto out_disconnect_admin_queue;
2742         }
2743
2744         ctrl->ctrl.sqsize =
2745                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2746
2747         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2748         if (ret)
2749                 goto out_disconnect_admin_queue;
2750
2751         ctrl->ctrl.max_hw_sectors =
2752                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2753
2754         ret = nvme_init_identify(&ctrl->ctrl);
2755         if (ret)
2756                 goto out_disconnect_admin_queue;
2757
2758         /* sanity checks */
2759
2760         /* FC-NVME does not have other data in the capsule */
2761         if (ctrl->ctrl.icdoff) {
2762                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2763                                 ctrl->ctrl.icdoff);
2764                 goto out_disconnect_admin_queue;
2765         }
2766
2767         /* FC-NVME supports normal SGL Data Block Descriptors */
2768
2769         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2770                 /* warn if maxcmd is lower than queue_size */
2771                 dev_warn(ctrl->ctrl.device,
2772                         "queue_size %zu > ctrl maxcmd %u, reducing "
2773                         "to queue_size\n",
2774                         opts->queue_size, ctrl->ctrl.maxcmd);
2775                 opts->queue_size = ctrl->ctrl.maxcmd;
2776         }
2777
2778         ret = nvme_fc_init_aen_ops(ctrl);
2779         if (ret)
2780                 goto out_term_aen_ops;
2781
2782         /*
2783          * Create the io queues
2784          */
2785
2786         if (ctrl->ctrl.queue_count > 1) {
2787                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2788                         ret = nvme_fc_create_io_queues(ctrl);
2789                 else
2790                         ret = nvme_fc_reinit_io_queues(ctrl);
2791                 if (ret)
2792                         goto out_term_aen_ops;
2793         }
2794
2795         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2796
2797         ctrl->ctrl.nr_reconnects = 0;
2798
2799         if (changed)
2800                 nvme_start_ctrl(&ctrl->ctrl);
2801
2802         return 0;       /* Success */
2803
2804 out_term_aen_ops:
2805         nvme_fc_term_aen_ops(ctrl);
2806 out_disconnect_admin_queue:
2807         /* send a Disconnect(association) LS to fc-nvme target */
2808         nvme_fc_xmt_disconnect_assoc(ctrl);
2809 out_delete_hw_queue:
2810         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2811 out_free_queue:
2812         nvme_fc_free_queue(&ctrl->queues[0]);
2813         ctrl->assoc_active = false;
2814         nvme_fc_ctlr_inactive_on_rport(ctrl);
2815
2816         return ret;
2817 }
2818
2819 /*
2820  * This routine stops operation of the controller on the host side.
2821  * On the host os stack side: Admin and IO queues are stopped,
2822  *   outstanding ios on them terminated via FC ABTS.
2823  * On the link side: the association is terminated.
2824  */
2825 static void
2826 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2827 {
2828         unsigned long flags;
2829
2830         if (!ctrl->assoc_active)
2831                 return;
2832         ctrl->assoc_active = false;
2833
2834         spin_lock_irqsave(&ctrl->lock, flags);
2835         ctrl->flags |= FCCTRL_TERMIO;
2836         ctrl->iocnt = 0;
2837         spin_unlock_irqrestore(&ctrl->lock, flags);
2838
2839         /*
2840          * If io queues are present, stop them and terminate all outstanding
2841          * ios on them. As FC allocates FC exchange for each io, the
2842          * transport must contact the LLDD to terminate the exchange,
2843          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2844          * to tell us what io's are busy and invoke a transport routine
2845          * to kill them with the LLDD.  After terminating the exchange
2846          * the LLDD will call the transport's normal io done path, but it
2847          * will have an aborted status. The done path will return the
2848          * io requests back to the block layer as part of normal completions
2849          * (but with error status).
2850          */
2851         if (ctrl->ctrl.queue_count > 1) {
2852                 nvme_stop_queues(&ctrl->ctrl);
2853                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2854                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2855         }
2856
2857         /*
2858          * Other transports, which don't have link-level contexts bound
2859          * to sqe's, would try to gracefully shutdown the controller by
2860          * writing the registers for shutdown and polling (call
2861          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2862          * just aborted and we will wait on those contexts, and given
2863          * there was no indication of how live the controlelr is on the
2864          * link, don't send more io to create more contexts for the
2865          * shutdown. Let the controller fail via keepalive failure if
2866          * its still present.
2867          */
2868
2869         /*
2870          * clean up the admin queue. Same thing as above.
2871          * use blk_mq_tagset_busy_itr() and the transport routine to
2872          * terminate the exchanges.
2873          */
2874         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2875                 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2876         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2877                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2878
2879         /* kill the aens as they are a separate path */
2880         nvme_fc_abort_aen_ops(ctrl);
2881
2882         /* wait for all io that had to be aborted */
2883         spin_lock_irq(&ctrl->lock);
2884         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2885         ctrl->flags &= ~FCCTRL_TERMIO;
2886         spin_unlock_irq(&ctrl->lock);
2887
2888         nvme_fc_term_aen_ops(ctrl);
2889
2890         /*
2891          * send a Disconnect(association) LS to fc-nvme target
2892          * Note: could have been sent at top of process, but
2893          * cleaner on link traffic if after the aborts complete.
2894          * Note: if association doesn't exist, association_id will be 0
2895          */
2896         if (ctrl->association_id)
2897                 nvme_fc_xmt_disconnect_assoc(ctrl);
2898
2899         if (ctrl->ctrl.tagset) {
2900                 nvme_fc_delete_hw_io_queues(ctrl);
2901                 nvme_fc_free_io_queues(ctrl);
2902         }
2903
2904         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2905         nvme_fc_free_queue(&ctrl->queues[0]);
2906
2907         nvme_fc_ctlr_inactive_on_rport(ctrl);
2908 }
2909
2910 static void
2911 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2912 {
2913         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2914
2915         cancel_delayed_work_sync(&ctrl->connect_work);
2916         /*
2917          * kill the association on the link side.  this will block
2918          * waiting for io to terminate
2919          */
2920         nvme_fc_delete_association(ctrl);
2921 }
2922
2923 static void
2924 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2925 {
2926         struct nvme_fc_rport *rport = ctrl->rport;
2927         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2928         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2929         bool recon = true;
2930
2931         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING)
2932                 return;
2933
2934         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2935                 dev_info(ctrl->ctrl.device,
2936                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2937                         ctrl->cnum, status);
2938         else if (time_after_eq(jiffies, rport->dev_loss_end))
2939                 recon = false;
2940
2941         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2942                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2943                         dev_info(ctrl->ctrl.device,
2944                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2945                                 "seconds\n",
2946                                 ctrl->cnum, recon_delay / HZ);
2947                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2948                         recon_delay = rport->dev_loss_end - jiffies;
2949
2950                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2951         } else {
2952                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2953                         dev_warn(ctrl->ctrl.device,
2954                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2955                                 "reached. Removing controller\n",
2956                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2957                 else
2958                         dev_warn(ctrl->ctrl.device,
2959                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2960                                 "while waiting for remoteport connectivity. "
2961                                 "Removing controller\n", ctrl->cnum,
2962                                 portptr->dev_loss_tmo);
2963                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2964         }
2965 }
2966
2967 static void
2968 nvme_fc_reset_ctrl_work(struct work_struct *work)
2969 {
2970         struct nvme_fc_ctrl *ctrl =
2971                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2972         int ret;
2973
2974         nvme_stop_ctrl(&ctrl->ctrl);
2975
2976         /* will block will waiting for io to terminate */
2977         nvme_fc_delete_association(ctrl);
2978
2979         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
2980                 dev_err(ctrl->ctrl.device,
2981                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2982                         "to RECONNECTING\n", ctrl->cnum);
2983                 return;
2984         }
2985
2986         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2987                 ret = nvme_fc_create_association(ctrl);
2988         else
2989                 ret = -ENOTCONN;
2990
2991         if (ret)
2992                 nvme_fc_reconnect_or_delete(ctrl, ret);
2993         else
2994                 dev_info(ctrl->ctrl.device,
2995                         "NVME-FC{%d}: controller reset complete\n",
2996                         ctrl->cnum);
2997 }
2998
2999 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3000         .name                   = "fc",
3001         .module                 = THIS_MODULE,
3002         .flags                  = NVME_F_FABRICS,
3003         .reg_read32             = nvmf_reg_read32,
3004         .reg_read64             = nvmf_reg_read64,
3005         .reg_write32            = nvmf_reg_write32,
3006         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
3007         .submit_async_event     = nvme_fc_submit_async_event,
3008         .delete_ctrl            = nvme_fc_delete_ctrl,
3009         .get_address            = nvmf_get_address,
3010         .reinit_request         = nvme_fc_reinit_request,
3011 };
3012
3013 static void
3014 nvme_fc_connect_ctrl_work(struct work_struct *work)
3015 {
3016         int ret;
3017
3018         struct nvme_fc_ctrl *ctrl =
3019                         container_of(to_delayed_work(work),
3020                                 struct nvme_fc_ctrl, connect_work);
3021
3022         ret = nvme_fc_create_association(ctrl);
3023         if (ret)
3024                 nvme_fc_reconnect_or_delete(ctrl, ret);
3025         else
3026                 dev_info(ctrl->ctrl.device,
3027                         "NVME-FC{%d}: controller reconnect complete\n",
3028                         ctrl->cnum);
3029 }
3030
3031
3032 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3033         .queue_rq       = nvme_fc_queue_rq,
3034         .complete       = nvme_fc_complete_rq,
3035         .init_request   = nvme_fc_init_request,
3036         .exit_request   = nvme_fc_exit_request,
3037         .init_hctx      = nvme_fc_init_admin_hctx,
3038         .timeout        = nvme_fc_timeout,
3039 };
3040
3041
3042 /*
3043  * Fails a controller request if it matches an existing controller
3044  * (association) with the same tuple:
3045  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3046  *
3047  * The ports don't need to be compared as they are intrinsically
3048  * already matched by the port pointers supplied.
3049  */
3050 static bool
3051 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3052                 struct nvmf_ctrl_options *opts)
3053 {
3054         struct nvme_fc_ctrl *ctrl;
3055         unsigned long flags;
3056         bool found = false;
3057
3058         spin_lock_irqsave(&rport->lock, flags);
3059         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3060                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3061                 if (found)
3062                         break;
3063         }
3064         spin_unlock_irqrestore(&rport->lock, flags);
3065
3066         return found;
3067 }
3068
3069 static struct nvme_ctrl *
3070 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3071         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3072 {
3073         struct nvme_fc_ctrl *ctrl;
3074         unsigned long flags;
3075         int ret, idx, retry;
3076
3077         if (!(rport->remoteport.port_role &
3078             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3079                 ret = -EBADR;
3080                 goto out_fail;
3081         }
3082
3083         if (!opts->duplicate_connect &&
3084             nvme_fc_existing_controller(rport, opts)) {
3085                 ret = -EALREADY;
3086                 goto out_fail;
3087         }
3088
3089         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3090         if (!ctrl) {
3091                 ret = -ENOMEM;
3092                 goto out_fail;
3093         }
3094
3095         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3096         if (idx < 0) {
3097                 ret = -ENOSPC;
3098                 goto out_free_ctrl;
3099         }
3100
3101         ctrl->ctrl.opts = opts;
3102         INIT_LIST_HEAD(&ctrl->ctrl_list);
3103         ctrl->lport = lport;
3104         ctrl->rport = rport;
3105         ctrl->dev = lport->dev;
3106         ctrl->cnum = idx;
3107         ctrl->assoc_active = false;
3108         init_waitqueue_head(&ctrl->ioabort_wait);
3109
3110         get_device(ctrl->dev);
3111         kref_init(&ctrl->ref);
3112
3113         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3114         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3115         spin_lock_init(&ctrl->lock);
3116
3117         /* io queue count */
3118         ctrl->ctrl.queue_count = min_t(unsigned int,
3119                                 opts->nr_io_queues,
3120                                 lport->ops->max_hw_queues);
3121         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3122
3123         ctrl->ctrl.sqsize = opts->queue_size - 1;
3124         ctrl->ctrl.kato = opts->kato;
3125
3126         ret = -ENOMEM;
3127         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3128                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3129         if (!ctrl->queues)
3130                 goto out_free_ida;
3131
3132         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3133         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3134         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3135         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3136         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3137         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3138                                         (SG_CHUNK_SIZE *
3139                                                 sizeof(struct scatterlist)) +
3140                                         ctrl->lport->ops->fcprqst_priv_sz;
3141         ctrl->admin_tag_set.driver_data = ctrl;
3142         ctrl->admin_tag_set.nr_hw_queues = 1;
3143         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3144         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3145
3146         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3147         if (ret)
3148                 goto out_free_queues;
3149         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3150
3151         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3152         if (IS_ERR(ctrl->ctrl.admin_q)) {
3153                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3154                 goto out_free_admin_tag_set;
3155         }
3156
3157         /*
3158          * Would have been nice to init io queues tag set as well.
3159          * However, we require interaction from the controller
3160          * for max io queue count before we can do so.
3161          * Defer this to the connect path.
3162          */
3163
3164         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3165         if (ret)
3166                 goto out_cleanup_admin_q;
3167
3168         /* at this point, teardown path changes to ref counting on nvme ctrl */
3169
3170         spin_lock_irqsave(&rport->lock, flags);
3171         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3172         spin_unlock_irqrestore(&rport->lock, flags);
3173
3174         /*
3175          * It's possible that transactions used to create the association
3176          * may fail. Examples: CreateAssociation LS or CreateIOConnection
3177          * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3178          * command times out for one of the actions to init the controller
3179          * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3180          * transport errors (frame drop, LS failure) inherently must kill
3181          * the association. The transport is coded so that any command used
3182          * to create the association (prior to a LIVE state transition
3183          * while NEW or RECONNECTING) will fail if it completes in error or
3184          * times out.
3185          *
3186          * As such: as the connect request was mostly likely due to a
3187          * udev event that discovered the remote port, meaning there is
3188          * not an admin or script there to restart if the connect
3189          * request fails, retry the initial connection creation up to
3190          * three times before giving up and declaring failure.
3191          */
3192         for (retry = 0; retry < 3; retry++) {
3193                 ret = nvme_fc_create_association(ctrl);
3194                 if (!ret)
3195                         break;
3196         }
3197
3198         if (ret) {
3199                 /* couldn't schedule retry - fail out */
3200                 dev_err(ctrl->ctrl.device,
3201                         "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3202
3203                 ctrl->ctrl.opts = NULL;
3204
3205                 /* initiate nvme ctrl ref counting teardown */
3206                 nvme_uninit_ctrl(&ctrl->ctrl);
3207                 nvme_put_ctrl(&ctrl->ctrl);
3208
3209                 /* Remove core ctrl ref. */
3210                 nvme_put_ctrl(&ctrl->ctrl);
3211
3212                 /* as we're past the point where we transition to the ref
3213                  * counting teardown path, if we return a bad pointer here,
3214                  * the calling routine, thinking it's prior to the
3215                  * transition, will do an rport put. Since the teardown
3216                  * path also does a rport put, we do an extra get here to
3217                  * so proper order/teardown happens.
3218                  */
3219                 nvme_fc_rport_get(rport);
3220
3221                 if (ret > 0)
3222                         ret = -EIO;
3223                 return ERR_PTR(ret);
3224         }
3225
3226         nvme_get_ctrl(&ctrl->ctrl);
3227
3228         dev_info(ctrl->ctrl.device,
3229                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3230                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3231
3232         return &ctrl->ctrl;
3233
3234 out_cleanup_admin_q:
3235         blk_cleanup_queue(ctrl->ctrl.admin_q);
3236 out_free_admin_tag_set:
3237         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3238 out_free_queues:
3239         kfree(ctrl->queues);
3240 out_free_ida:
3241         put_device(ctrl->dev);
3242         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3243 out_free_ctrl:
3244         kfree(ctrl);
3245 out_fail:
3246         /* exit via here doesn't follow ctlr ref points */
3247         return ERR_PTR(ret);
3248 }
3249
3250
3251 struct nvmet_fc_traddr {
3252         u64     nn;
3253         u64     pn;
3254 };
3255
3256 static int
3257 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3258 {
3259         u64 token64;
3260
3261         if (match_u64(sstr, &token64))
3262                 return -EINVAL;
3263         *val = token64;
3264
3265         return 0;
3266 }
3267
3268 /*
3269  * This routine validates and extracts the WWN's from the TRADDR string.
3270  * As kernel parsers need the 0x to determine number base, universally
3271  * build string to parse with 0x prefix before parsing name strings.
3272  */
3273 static int
3274 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3275 {
3276         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3277         substring_t wwn = { name, &name[sizeof(name)-1] };
3278         int nnoffset, pnoffset;
3279
3280         /* validate it string one of the 2 allowed formats */
3281         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3282                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3283                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3284                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3285                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3286                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3287                                                 NVME_FC_TRADDR_OXNNLEN;
3288         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3289                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3290                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3291                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3292                 nnoffset = NVME_FC_TRADDR_NNLEN;
3293                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3294         } else
3295                 goto out_einval;
3296
3297         name[0] = '0';
3298         name[1] = 'x';
3299         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3300
3301         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3302         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3303                 goto out_einval;
3304
3305         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3306         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3307                 goto out_einval;
3308
3309         return 0;
3310
3311 out_einval:
3312         pr_warn("%s: bad traddr string\n", __func__);
3313         return -EINVAL;
3314 }
3315
3316 static struct nvme_ctrl *
3317 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3318 {
3319         struct nvme_fc_lport *lport;
3320         struct nvme_fc_rport *rport;
3321         struct nvme_ctrl *ctrl;
3322         struct nvmet_fc_traddr laddr = { 0L, 0L };
3323         struct nvmet_fc_traddr raddr = { 0L, 0L };
3324         unsigned long flags;
3325         int ret;
3326
3327         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3328         if (ret || !raddr.nn || !raddr.pn)
3329                 return ERR_PTR(-EINVAL);
3330
3331         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3332         if (ret || !laddr.nn || !laddr.pn)
3333                 return ERR_PTR(-EINVAL);
3334
3335         /* find the host and remote ports to connect together */
3336         spin_lock_irqsave(&nvme_fc_lock, flags);
3337         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3338                 if (lport->localport.node_name != laddr.nn ||
3339                     lport->localport.port_name != laddr.pn)
3340                         continue;
3341
3342                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3343                         if (rport->remoteport.node_name != raddr.nn ||
3344                             rport->remoteport.port_name != raddr.pn)
3345                                 continue;
3346
3347                         /* if fail to get reference fall through. Will error */
3348                         if (!nvme_fc_rport_get(rport))
3349                                 break;
3350
3351                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3352
3353                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3354                         if (IS_ERR(ctrl))
3355                                 nvme_fc_rport_put(rport);
3356                         return ctrl;
3357                 }
3358         }
3359         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3360
3361         return ERR_PTR(-ENOENT);
3362 }
3363
3364
3365 static struct nvmf_transport_ops nvme_fc_transport = {
3366         .name           = "fc",
3367         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3368         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3369         .create_ctrl    = nvme_fc_create_ctrl,
3370 };
3371
3372 static int __init nvme_fc_init_module(void)
3373 {
3374         int ret;
3375
3376         /*
3377          * NOTE:
3378          * It is expected that in the future the kernel will combine
3379          * the FC-isms that are currently under scsi and now being
3380          * added to by NVME into a new standalone FC class. The SCSI
3381          * and NVME protocols and their devices would be under this
3382          * new FC class.
3383          *
3384          * As we need something to post FC-specific udev events to,
3385          * specifically for nvme probe events, start by creating the
3386          * new device class.  When the new standalone FC class is
3387          * put in place, this code will move to a more generic
3388          * location for the class.
3389          */
3390         fc_class = class_create(THIS_MODULE, "fc");
3391         if (IS_ERR(fc_class)) {
3392                 pr_err("couldn't register class fc\n");
3393                 return PTR_ERR(fc_class);
3394         }
3395
3396         /*
3397          * Create a device for the FC-centric udev events
3398          */
3399         fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3400                                 "fc_udev_device");
3401         if (IS_ERR(fc_udev_device)) {
3402                 pr_err("couldn't create fc_udev device!\n");
3403                 ret = PTR_ERR(fc_udev_device);
3404                 goto out_destroy_class;
3405         }
3406
3407         ret = nvmf_register_transport(&nvme_fc_transport);
3408         if (ret)
3409                 goto out_destroy_device;
3410
3411         return 0;
3412
3413 out_destroy_device:
3414         device_destroy(fc_class, MKDEV(0, 0));
3415 out_destroy_class:
3416         class_destroy(fc_class);
3417         return ret;
3418 }
3419
3420 static void __exit nvme_fc_exit_module(void)
3421 {
3422         /* sanity check - all lports should be removed */
3423         if (!list_empty(&nvme_fc_lport_list))
3424                 pr_warn("%s: localport list not empty\n", __func__);
3425
3426         nvmf_unregister_transport(&nvme_fc_transport);
3427
3428         ida_destroy(&nvme_fc_local_port_cnt);
3429         ida_destroy(&nvme_fc_ctrl_cnt);
3430
3431         device_destroy(fc_class, MKDEV(0, 0));
3432         class_destroy(fc_class);
3433 }
3434
3435 module_init(nvme_fc_init_module);
3436 module_exit(nvme_fc_exit_module);
3437
3438 MODULE_LICENSE("GPL v2");