Merge tag 'for-4.15-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[sfrench/cifs-2.6.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned int admin_timeout = 60;
38 module_param(admin_timeout, uint, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned int nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54
55 static unsigned long default_ps_max_latency_us = 100000;
56 module_param(default_ps_max_latency_us, ulong, 0644);
57 MODULE_PARM_DESC(default_ps_max_latency_us,
58                  "max power saving latency for new devices; use PM QOS to change per device");
59
60 static bool force_apst;
61 module_param(force_apst, bool, 0644);
62 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
63
64 static bool streams;
65 module_param(streams, bool, 0644);
66 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
67
68 struct workqueue_struct *nvme_wq;
69 EXPORT_SYMBOL_GPL(nvme_wq);
70
71 static DEFINE_IDA(nvme_subsystems_ida);
72 static LIST_HEAD(nvme_subsystems);
73 static DEFINE_MUTEX(nvme_subsystems_lock);
74
75 static DEFINE_IDA(nvme_instance_ida);
76 static dev_t nvme_chr_devt;
77 static struct class *nvme_class;
78 static struct class *nvme_subsys_class;
79
80 static void nvme_ns_remove(struct nvme_ns *ns);
81 static int nvme_revalidate_disk(struct gendisk *disk);
82
83 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
84 {
85         return cpu_to_le32((((size / 4) - 1) << 16) | lid);
86 }
87
88 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
89 {
90         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
91                 return -EBUSY;
92         if (!queue_work(nvme_wq, &ctrl->reset_work))
93                 return -EBUSY;
94         return 0;
95 }
96 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
97
98 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
99 {
100         int ret;
101
102         ret = nvme_reset_ctrl(ctrl);
103         if (!ret)
104                 flush_work(&ctrl->reset_work);
105         return ret;
106 }
107
108 static void nvme_delete_ctrl_work(struct work_struct *work)
109 {
110         struct nvme_ctrl *ctrl =
111                 container_of(work, struct nvme_ctrl, delete_work);
112
113         flush_work(&ctrl->reset_work);
114         nvme_stop_ctrl(ctrl);
115         nvme_remove_namespaces(ctrl);
116         ctrl->ops->delete_ctrl(ctrl);
117         nvme_uninit_ctrl(ctrl);
118         nvme_put_ctrl(ctrl);
119 }
120
121 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
122 {
123         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
124                 return -EBUSY;
125         if (!queue_work(nvme_wq, &ctrl->delete_work))
126                 return -EBUSY;
127         return 0;
128 }
129 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
130
131 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
132 {
133         int ret = 0;
134
135         /*
136          * Keep a reference until the work is flushed since ->delete_ctrl
137          * can free the controller.
138          */
139         nvme_get_ctrl(ctrl);
140         ret = nvme_delete_ctrl(ctrl);
141         if (!ret)
142                 flush_work(&ctrl->delete_work);
143         nvme_put_ctrl(ctrl);
144         return ret;
145 }
146 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
147
148 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
149 {
150         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
151 }
152
153 static blk_status_t nvme_error_status(struct request *req)
154 {
155         switch (nvme_req(req)->status & 0x7ff) {
156         case NVME_SC_SUCCESS:
157                 return BLK_STS_OK;
158         case NVME_SC_CAP_EXCEEDED:
159                 return BLK_STS_NOSPC;
160         case NVME_SC_ONCS_NOT_SUPPORTED:
161                 return BLK_STS_NOTSUPP;
162         case NVME_SC_WRITE_FAULT:
163         case NVME_SC_READ_ERROR:
164         case NVME_SC_UNWRITTEN_BLOCK:
165         case NVME_SC_ACCESS_DENIED:
166         case NVME_SC_READ_ONLY:
167                 return BLK_STS_MEDIUM;
168         case NVME_SC_GUARD_CHECK:
169         case NVME_SC_APPTAG_CHECK:
170         case NVME_SC_REFTAG_CHECK:
171         case NVME_SC_INVALID_PI:
172                 return BLK_STS_PROTECTION;
173         case NVME_SC_RESERVATION_CONFLICT:
174                 return BLK_STS_NEXUS;
175         default:
176                 return BLK_STS_IOERR;
177         }
178 }
179
180 static inline bool nvme_req_needs_retry(struct request *req)
181 {
182         if (blk_noretry_request(req))
183                 return false;
184         if (nvme_req(req)->status & NVME_SC_DNR)
185                 return false;
186         if (nvme_req(req)->retries >= nvme_max_retries)
187                 return false;
188         return true;
189 }
190
191 void nvme_complete_rq(struct request *req)
192 {
193         if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
194                 if (nvme_req_needs_failover(req)) {
195                         nvme_failover_req(req);
196                         return;
197                 }
198
199                 if (!blk_queue_dying(req->q)) {
200                         nvme_req(req)->retries++;
201                         blk_mq_requeue_request(req, true);
202                         return;
203                 }
204         }
205
206         blk_mq_end_request(req, nvme_error_status(req));
207 }
208 EXPORT_SYMBOL_GPL(nvme_complete_rq);
209
210 void nvme_cancel_request(struct request *req, void *data, bool reserved)
211 {
212         if (!blk_mq_request_started(req))
213                 return;
214
215         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
216                                 "Cancelling I/O %d", req->tag);
217
218         nvme_req(req)->status = NVME_SC_ABORT_REQ;
219         blk_mq_complete_request(req);
220
221 }
222 EXPORT_SYMBOL_GPL(nvme_cancel_request);
223
224 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
225                 enum nvme_ctrl_state new_state)
226 {
227         enum nvme_ctrl_state old_state;
228         unsigned long flags;
229         bool changed = false;
230
231         spin_lock_irqsave(&ctrl->lock, flags);
232
233         old_state = ctrl->state;
234         switch (new_state) {
235         case NVME_CTRL_LIVE:
236                 switch (old_state) {
237                 case NVME_CTRL_NEW:
238                 case NVME_CTRL_RESETTING:
239                 case NVME_CTRL_RECONNECTING:
240                         changed = true;
241                         /* FALLTHRU */
242                 default:
243                         break;
244                 }
245                 break;
246         case NVME_CTRL_RESETTING:
247                 switch (old_state) {
248                 case NVME_CTRL_NEW:
249                 case NVME_CTRL_LIVE:
250                         changed = true;
251                         /* FALLTHRU */
252                 default:
253                         break;
254                 }
255                 break;
256         case NVME_CTRL_RECONNECTING:
257                 switch (old_state) {
258                 case NVME_CTRL_LIVE:
259                 case NVME_CTRL_RESETTING:
260                         changed = true;
261                         /* FALLTHRU */
262                 default:
263                         break;
264                 }
265                 break;
266         case NVME_CTRL_DELETING:
267                 switch (old_state) {
268                 case NVME_CTRL_LIVE:
269                 case NVME_CTRL_RESETTING:
270                 case NVME_CTRL_RECONNECTING:
271                         changed = true;
272                         /* FALLTHRU */
273                 default:
274                         break;
275                 }
276                 break;
277         case NVME_CTRL_DEAD:
278                 switch (old_state) {
279                 case NVME_CTRL_DELETING:
280                         changed = true;
281                         /* FALLTHRU */
282                 default:
283                         break;
284                 }
285                 break;
286         default:
287                 break;
288         }
289
290         if (changed)
291                 ctrl->state = new_state;
292
293         spin_unlock_irqrestore(&ctrl->lock, flags);
294         if (changed && ctrl->state == NVME_CTRL_LIVE)
295                 nvme_kick_requeue_lists(ctrl);
296         return changed;
297 }
298 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
299
300 static void nvme_free_ns_head(struct kref *ref)
301 {
302         struct nvme_ns_head *head =
303                 container_of(ref, struct nvme_ns_head, ref);
304
305         nvme_mpath_remove_disk(head);
306         ida_simple_remove(&head->subsys->ns_ida, head->instance);
307         list_del_init(&head->entry);
308         cleanup_srcu_struct(&head->srcu);
309         kfree(head);
310 }
311
312 static void nvme_put_ns_head(struct nvme_ns_head *head)
313 {
314         kref_put(&head->ref, nvme_free_ns_head);
315 }
316
317 static void nvme_free_ns(struct kref *kref)
318 {
319         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
320
321         if (ns->ndev)
322                 nvme_nvm_unregister(ns);
323
324         put_disk(ns->disk);
325         nvme_put_ns_head(ns->head);
326         nvme_put_ctrl(ns->ctrl);
327         kfree(ns);
328 }
329
330 static void nvme_put_ns(struct nvme_ns *ns)
331 {
332         kref_put(&ns->kref, nvme_free_ns);
333 }
334
335 struct request *nvme_alloc_request(struct request_queue *q,
336                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
337 {
338         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
339         struct request *req;
340
341         if (qid == NVME_QID_ANY) {
342                 req = blk_mq_alloc_request(q, op, flags);
343         } else {
344                 req = blk_mq_alloc_request_hctx(q, op, flags,
345                                 qid ? qid - 1 : 0);
346         }
347         if (IS_ERR(req))
348                 return req;
349
350         req->cmd_flags |= REQ_FAILFAST_DRIVER;
351         nvme_req(req)->cmd = cmd;
352
353         return req;
354 }
355 EXPORT_SYMBOL_GPL(nvme_alloc_request);
356
357 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
358 {
359         struct nvme_command c;
360
361         memset(&c, 0, sizeof(c));
362
363         c.directive.opcode = nvme_admin_directive_send;
364         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
365         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
366         c.directive.dtype = NVME_DIR_IDENTIFY;
367         c.directive.tdtype = NVME_DIR_STREAMS;
368         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
369
370         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
371 }
372
373 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
374 {
375         return nvme_toggle_streams(ctrl, false);
376 }
377
378 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
379 {
380         return nvme_toggle_streams(ctrl, true);
381 }
382
383 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
384                                   struct streams_directive_params *s, u32 nsid)
385 {
386         struct nvme_command c;
387
388         memset(&c, 0, sizeof(c));
389         memset(s, 0, sizeof(*s));
390
391         c.directive.opcode = nvme_admin_directive_recv;
392         c.directive.nsid = cpu_to_le32(nsid);
393         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
394         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
395         c.directive.dtype = NVME_DIR_STREAMS;
396
397         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
398 }
399
400 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
401 {
402         struct streams_directive_params s;
403         int ret;
404
405         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
406                 return 0;
407         if (!streams)
408                 return 0;
409
410         ret = nvme_enable_streams(ctrl);
411         if (ret)
412                 return ret;
413
414         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
415         if (ret)
416                 return ret;
417
418         ctrl->nssa = le16_to_cpu(s.nssa);
419         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
420                 dev_info(ctrl->device, "too few streams (%u) available\n",
421                                         ctrl->nssa);
422                 nvme_disable_streams(ctrl);
423                 return 0;
424         }
425
426         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
427         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
428         return 0;
429 }
430
431 /*
432  * Check if 'req' has a write hint associated with it. If it does, assign
433  * a valid namespace stream to the write.
434  */
435 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
436                                      struct request *req, u16 *control,
437                                      u32 *dsmgmt)
438 {
439         enum rw_hint streamid = req->write_hint;
440
441         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
442                 streamid = 0;
443         else {
444                 streamid--;
445                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
446                         return;
447
448                 *control |= NVME_RW_DTYPE_STREAMS;
449                 *dsmgmt |= streamid << 16;
450         }
451
452         if (streamid < ARRAY_SIZE(req->q->write_hints))
453                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
454 }
455
456 static inline void nvme_setup_flush(struct nvme_ns *ns,
457                 struct nvme_command *cmnd)
458 {
459         memset(cmnd, 0, sizeof(*cmnd));
460         cmnd->common.opcode = nvme_cmd_flush;
461         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
462 }
463
464 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
465                 struct nvme_command *cmnd)
466 {
467         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
468         struct nvme_dsm_range *range;
469         struct bio *bio;
470
471         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
472         if (!range)
473                 return BLK_STS_RESOURCE;
474
475         __rq_for_each_bio(bio, req) {
476                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
477                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
478
479                 range[n].cattr = cpu_to_le32(0);
480                 range[n].nlb = cpu_to_le32(nlb);
481                 range[n].slba = cpu_to_le64(slba);
482                 n++;
483         }
484
485         if (WARN_ON_ONCE(n != segments)) {
486                 kfree(range);
487                 return BLK_STS_IOERR;
488         }
489
490         memset(cmnd, 0, sizeof(*cmnd));
491         cmnd->dsm.opcode = nvme_cmd_dsm;
492         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
493         cmnd->dsm.nr = cpu_to_le32(segments - 1);
494         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
495
496         req->special_vec.bv_page = virt_to_page(range);
497         req->special_vec.bv_offset = offset_in_page(range);
498         req->special_vec.bv_len = sizeof(*range) * segments;
499         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
500
501         return BLK_STS_OK;
502 }
503
504 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
505                 struct request *req, struct nvme_command *cmnd)
506 {
507         struct nvme_ctrl *ctrl = ns->ctrl;
508         u16 control = 0;
509         u32 dsmgmt = 0;
510
511         if (req->cmd_flags & REQ_FUA)
512                 control |= NVME_RW_FUA;
513         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
514                 control |= NVME_RW_LR;
515
516         if (req->cmd_flags & REQ_RAHEAD)
517                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
518
519         memset(cmnd, 0, sizeof(*cmnd));
520         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
521         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
522         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
523         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
524
525         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
526                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
527
528         if (ns->ms) {
529                 /*
530                  * If formated with metadata, the block layer always provides a
531                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
532                  * we enable the PRACT bit for protection information or set the
533                  * namespace capacity to zero to prevent any I/O.
534                  */
535                 if (!blk_integrity_rq(req)) {
536                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
537                                 return BLK_STS_NOTSUPP;
538                         control |= NVME_RW_PRINFO_PRACT;
539                 }
540
541                 switch (ns->pi_type) {
542                 case NVME_NS_DPS_PI_TYPE3:
543                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
544                         break;
545                 case NVME_NS_DPS_PI_TYPE1:
546                 case NVME_NS_DPS_PI_TYPE2:
547                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
548                                         NVME_RW_PRINFO_PRCHK_REF;
549                         cmnd->rw.reftag = cpu_to_le32(
550                                         nvme_block_nr(ns, blk_rq_pos(req)));
551                         break;
552                 }
553         }
554
555         cmnd->rw.control = cpu_to_le16(control);
556         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
557         return 0;
558 }
559
560 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
561                 struct nvme_command *cmd)
562 {
563         blk_status_t ret = BLK_STS_OK;
564
565         if (!(req->rq_flags & RQF_DONTPREP)) {
566                 nvme_req(req)->retries = 0;
567                 nvme_req(req)->flags = 0;
568                 req->rq_flags |= RQF_DONTPREP;
569         }
570
571         switch (req_op(req)) {
572         case REQ_OP_DRV_IN:
573         case REQ_OP_DRV_OUT:
574                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
575                 break;
576         case REQ_OP_FLUSH:
577                 nvme_setup_flush(ns, cmd);
578                 break;
579         case REQ_OP_WRITE_ZEROES:
580                 /* currently only aliased to deallocate for a few ctrls: */
581         case REQ_OP_DISCARD:
582                 ret = nvme_setup_discard(ns, req, cmd);
583                 break;
584         case REQ_OP_READ:
585         case REQ_OP_WRITE:
586                 ret = nvme_setup_rw(ns, req, cmd);
587                 break;
588         default:
589                 WARN_ON_ONCE(1);
590                 return BLK_STS_IOERR;
591         }
592
593         cmd->common.command_id = req->tag;
594         return ret;
595 }
596 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
597
598 /*
599  * Returns 0 on success.  If the result is negative, it's a Linux error code;
600  * if the result is positive, it's an NVM Express status code
601  */
602 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
603                 union nvme_result *result, void *buffer, unsigned bufflen,
604                 unsigned timeout, int qid, int at_head,
605                 blk_mq_req_flags_t flags)
606 {
607         struct request *req;
608         int ret;
609
610         req = nvme_alloc_request(q, cmd, flags, qid);
611         if (IS_ERR(req))
612                 return PTR_ERR(req);
613
614         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
615
616         if (buffer && bufflen) {
617                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
618                 if (ret)
619                         goto out;
620         }
621
622         blk_execute_rq(req->q, NULL, req, at_head);
623         if (result)
624                 *result = nvme_req(req)->result;
625         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
626                 ret = -EINTR;
627         else
628                 ret = nvme_req(req)->status;
629  out:
630         blk_mq_free_request(req);
631         return ret;
632 }
633 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
634
635 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
636                 void *buffer, unsigned bufflen)
637 {
638         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
639                         NVME_QID_ANY, 0, 0);
640 }
641 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
642
643 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
644                 unsigned len, u32 seed, bool write)
645 {
646         struct bio_integrity_payload *bip;
647         int ret = -ENOMEM;
648         void *buf;
649
650         buf = kmalloc(len, GFP_KERNEL);
651         if (!buf)
652                 goto out;
653
654         ret = -EFAULT;
655         if (write && copy_from_user(buf, ubuf, len))
656                 goto out_free_meta;
657
658         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
659         if (IS_ERR(bip)) {
660                 ret = PTR_ERR(bip);
661                 goto out_free_meta;
662         }
663
664         bip->bip_iter.bi_size = len;
665         bip->bip_iter.bi_sector = seed;
666         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
667                         offset_in_page(buf));
668         if (ret == len)
669                 return buf;
670         ret = -ENOMEM;
671 out_free_meta:
672         kfree(buf);
673 out:
674         return ERR_PTR(ret);
675 }
676
677 static int nvme_submit_user_cmd(struct request_queue *q,
678                 struct nvme_command *cmd, void __user *ubuffer,
679                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
680                 u32 meta_seed, u32 *result, unsigned timeout)
681 {
682         bool write = nvme_is_write(cmd);
683         struct nvme_ns *ns = q->queuedata;
684         struct gendisk *disk = ns ? ns->disk : NULL;
685         struct request *req;
686         struct bio *bio = NULL;
687         void *meta = NULL;
688         int ret;
689
690         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
691         if (IS_ERR(req))
692                 return PTR_ERR(req);
693
694         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
695
696         if (ubuffer && bufflen) {
697                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
698                                 GFP_KERNEL);
699                 if (ret)
700                         goto out;
701                 bio = req->bio;
702                 bio->bi_disk = disk;
703                 if (disk && meta_buffer && meta_len) {
704                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
705                                         meta_seed, write);
706                         if (IS_ERR(meta)) {
707                                 ret = PTR_ERR(meta);
708                                 goto out_unmap;
709                         }
710                 }
711         }
712
713         blk_execute_rq(req->q, disk, req, 0);
714         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
715                 ret = -EINTR;
716         else
717                 ret = nvme_req(req)->status;
718         if (result)
719                 *result = le32_to_cpu(nvme_req(req)->result.u32);
720         if (meta && !ret && !write) {
721                 if (copy_to_user(meta_buffer, meta, meta_len))
722                         ret = -EFAULT;
723         }
724         kfree(meta);
725  out_unmap:
726         if (bio)
727                 blk_rq_unmap_user(bio);
728  out:
729         blk_mq_free_request(req);
730         return ret;
731 }
732
733 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
734 {
735         struct nvme_ctrl *ctrl = rq->end_io_data;
736
737         blk_mq_free_request(rq);
738
739         if (status) {
740                 dev_err(ctrl->device,
741                         "failed nvme_keep_alive_end_io error=%d\n",
742                                 status);
743                 return;
744         }
745
746         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
747 }
748
749 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
750 {
751         struct nvme_command c;
752         struct request *rq;
753
754         memset(&c, 0, sizeof(c));
755         c.common.opcode = nvme_admin_keep_alive;
756
757         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
758                         NVME_QID_ANY);
759         if (IS_ERR(rq))
760                 return PTR_ERR(rq);
761
762         rq->timeout = ctrl->kato * HZ;
763         rq->end_io_data = ctrl;
764
765         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
766
767         return 0;
768 }
769
770 static void nvme_keep_alive_work(struct work_struct *work)
771 {
772         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
773                         struct nvme_ctrl, ka_work);
774
775         if (nvme_keep_alive(ctrl)) {
776                 /* allocation failure, reset the controller */
777                 dev_err(ctrl->device, "keep-alive failed\n");
778                 nvme_reset_ctrl(ctrl);
779                 return;
780         }
781 }
782
783 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
784 {
785         if (unlikely(ctrl->kato == 0))
786                 return;
787
788         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
789         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
790 }
791 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
792
793 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
794 {
795         if (unlikely(ctrl->kato == 0))
796                 return;
797
798         cancel_delayed_work_sync(&ctrl->ka_work);
799 }
800 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
801
802 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
803 {
804         struct nvme_command c = { };
805         int error;
806
807         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
808         c.identify.opcode = nvme_admin_identify;
809         c.identify.cns = NVME_ID_CNS_CTRL;
810
811         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
812         if (!*id)
813                 return -ENOMEM;
814
815         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
816                         sizeof(struct nvme_id_ctrl));
817         if (error)
818                 kfree(*id);
819         return error;
820 }
821
822 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
823                 struct nvme_ns_ids *ids)
824 {
825         struct nvme_command c = { };
826         int status;
827         void *data;
828         int pos;
829         int len;
830
831         c.identify.opcode = nvme_admin_identify;
832         c.identify.nsid = cpu_to_le32(nsid);
833         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
834
835         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
836         if (!data)
837                 return -ENOMEM;
838
839         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
840                                       NVME_IDENTIFY_DATA_SIZE);
841         if (status)
842                 goto free_data;
843
844         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
845                 struct nvme_ns_id_desc *cur = data + pos;
846
847                 if (cur->nidl == 0)
848                         break;
849
850                 switch (cur->nidt) {
851                 case NVME_NIDT_EUI64:
852                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
853                                 dev_warn(ctrl->device,
854                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
855                                          cur->nidl);
856                                 goto free_data;
857                         }
858                         len = NVME_NIDT_EUI64_LEN;
859                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
860                         break;
861                 case NVME_NIDT_NGUID:
862                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
863                                 dev_warn(ctrl->device,
864                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
865                                          cur->nidl);
866                                 goto free_data;
867                         }
868                         len = NVME_NIDT_NGUID_LEN;
869                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
870                         break;
871                 case NVME_NIDT_UUID:
872                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
873                                 dev_warn(ctrl->device,
874                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
875                                          cur->nidl);
876                                 goto free_data;
877                         }
878                         len = NVME_NIDT_UUID_LEN;
879                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
880                         break;
881                 default:
882                         /* Skip unnkown types */
883                         len = cur->nidl;
884                         break;
885                 }
886
887                 len += sizeof(*cur);
888         }
889 free_data:
890         kfree(data);
891         return status;
892 }
893
894 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
895 {
896         struct nvme_command c = { };
897
898         c.identify.opcode = nvme_admin_identify;
899         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
900         c.identify.nsid = cpu_to_le32(nsid);
901         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
902 }
903
904 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
905                 unsigned nsid)
906 {
907         struct nvme_id_ns *id;
908         struct nvme_command c = { };
909         int error;
910
911         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
912         c.identify.opcode = nvme_admin_identify;
913         c.identify.nsid = cpu_to_le32(nsid);
914         c.identify.cns = NVME_ID_CNS_NS;
915
916         id = kmalloc(sizeof(*id), GFP_KERNEL);
917         if (!id)
918                 return NULL;
919
920         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
921         if (error) {
922                 dev_warn(ctrl->device, "Identify namespace failed\n");
923                 kfree(id);
924                 return NULL;
925         }
926
927         return id;
928 }
929
930 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
931                       void *buffer, size_t buflen, u32 *result)
932 {
933         struct nvme_command c;
934         union nvme_result res;
935         int ret;
936
937         memset(&c, 0, sizeof(c));
938         c.features.opcode = nvme_admin_set_features;
939         c.features.fid = cpu_to_le32(fid);
940         c.features.dword11 = cpu_to_le32(dword11);
941
942         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
943                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
944         if (ret >= 0 && result)
945                 *result = le32_to_cpu(res.u32);
946         return ret;
947 }
948
949 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
950 {
951         u32 q_count = (*count - 1) | ((*count - 1) << 16);
952         u32 result;
953         int status, nr_io_queues;
954
955         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
956                         &result);
957         if (status < 0)
958                 return status;
959
960         /*
961          * Degraded controllers might return an error when setting the queue
962          * count.  We still want to be able to bring them online and offer
963          * access to the admin queue, as that might be only way to fix them up.
964          */
965         if (status > 0) {
966                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
967                 *count = 0;
968         } else {
969                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
970                 *count = min(*count, nr_io_queues);
971         }
972
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
976
977 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
978 {
979         struct nvme_user_io io;
980         struct nvme_command c;
981         unsigned length, meta_len;
982         void __user *metadata;
983
984         if (copy_from_user(&io, uio, sizeof(io)))
985                 return -EFAULT;
986         if (io.flags)
987                 return -EINVAL;
988
989         switch (io.opcode) {
990         case nvme_cmd_write:
991         case nvme_cmd_read:
992         case nvme_cmd_compare:
993                 break;
994         default:
995                 return -EINVAL;
996         }
997
998         length = (io.nblocks + 1) << ns->lba_shift;
999         meta_len = (io.nblocks + 1) * ns->ms;
1000         metadata = (void __user *)(uintptr_t)io.metadata;
1001
1002         if (ns->ext) {
1003                 length += meta_len;
1004                 meta_len = 0;
1005         } else if (meta_len) {
1006                 if ((io.metadata & 3) || !io.metadata)
1007                         return -EINVAL;
1008         }
1009
1010         memset(&c, 0, sizeof(c));
1011         c.rw.opcode = io.opcode;
1012         c.rw.flags = io.flags;
1013         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1014         c.rw.slba = cpu_to_le64(io.slba);
1015         c.rw.length = cpu_to_le16(io.nblocks);
1016         c.rw.control = cpu_to_le16(io.control);
1017         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1018         c.rw.reftag = cpu_to_le32(io.reftag);
1019         c.rw.apptag = cpu_to_le16(io.apptag);
1020         c.rw.appmask = cpu_to_le16(io.appmask);
1021
1022         return nvme_submit_user_cmd(ns->queue, &c,
1023                         (void __user *)(uintptr_t)io.addr, length,
1024                         metadata, meta_len, io.slba, NULL, 0);
1025 }
1026
1027 static u32 nvme_known_admin_effects(u8 opcode)
1028 {
1029         switch (opcode) {
1030         case nvme_admin_format_nvm:
1031                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1032                                         NVME_CMD_EFFECTS_CSE_MASK;
1033         case nvme_admin_sanitize_nvm:
1034                 return NVME_CMD_EFFECTS_CSE_MASK;
1035         default:
1036                 break;
1037         }
1038         return 0;
1039 }
1040
1041 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1042                                                                 u8 opcode)
1043 {
1044         u32 effects = 0;
1045
1046         if (ns) {
1047                 if (ctrl->effects)
1048                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1049                 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1050                         dev_warn(ctrl->device,
1051                                  "IO command:%02x has unhandled effects:%08x\n",
1052                                  opcode, effects);
1053                 return 0;
1054         }
1055
1056         if (ctrl->effects)
1057                 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1058         else
1059                 effects = nvme_known_admin_effects(opcode);
1060
1061         /*
1062          * For simplicity, IO to all namespaces is quiesced even if the command
1063          * effects say only one namespace is affected.
1064          */
1065         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1066                 nvme_start_freeze(ctrl);
1067                 nvme_wait_freeze(ctrl);
1068         }
1069         return effects;
1070 }
1071
1072 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1073 {
1074         struct nvme_ns *ns;
1075
1076         mutex_lock(&ctrl->namespaces_mutex);
1077         list_for_each_entry(ns, &ctrl->namespaces, list) {
1078                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1079                         nvme_ns_remove(ns);
1080         }
1081         mutex_unlock(&ctrl->namespaces_mutex);
1082 }
1083
1084 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1085 {
1086         /*
1087          * Revalidate LBA changes prior to unfreezing. This is necessary to
1088          * prevent memory corruption if a logical block size was changed by
1089          * this command.
1090          */
1091         if (effects & NVME_CMD_EFFECTS_LBCC)
1092                 nvme_update_formats(ctrl);
1093         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1094                 nvme_unfreeze(ctrl);
1095         if (effects & NVME_CMD_EFFECTS_CCC)
1096                 nvme_init_identify(ctrl);
1097         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1098                 nvme_queue_scan(ctrl);
1099 }
1100
1101 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1102                         struct nvme_passthru_cmd __user *ucmd)
1103 {
1104         struct nvme_passthru_cmd cmd;
1105         struct nvme_command c;
1106         unsigned timeout = 0;
1107         u32 effects;
1108         int status;
1109
1110         if (!capable(CAP_SYS_ADMIN))
1111                 return -EACCES;
1112         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1113                 return -EFAULT;
1114         if (cmd.flags)
1115                 return -EINVAL;
1116
1117         memset(&c, 0, sizeof(c));
1118         c.common.opcode = cmd.opcode;
1119         c.common.flags = cmd.flags;
1120         c.common.nsid = cpu_to_le32(cmd.nsid);
1121         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1122         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1123         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1124         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1125         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1126         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1127         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1128         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1129
1130         if (cmd.timeout_ms)
1131                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1132
1133         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1134         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1135                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1136                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1137                         0, &cmd.result, timeout);
1138         nvme_passthru_end(ctrl, effects);
1139
1140         if (status >= 0) {
1141                 if (put_user(cmd.result, &ucmd->result))
1142                         return -EFAULT;
1143         }
1144
1145         return status;
1146 }
1147
1148 /*
1149  * Issue ioctl requests on the first available path.  Note that unlike normal
1150  * block layer requests we will not retry failed request on another controller.
1151  */
1152 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1153                 struct nvme_ns_head **head, int *srcu_idx)
1154 {
1155 #ifdef CONFIG_NVME_MULTIPATH
1156         if (disk->fops == &nvme_ns_head_ops) {
1157                 *head = disk->private_data;
1158                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1159                 return nvme_find_path(*head);
1160         }
1161 #endif
1162         *head = NULL;
1163         *srcu_idx = -1;
1164         return disk->private_data;
1165 }
1166
1167 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1168 {
1169         if (head)
1170                 srcu_read_unlock(&head->srcu, idx);
1171 }
1172
1173 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1174 {
1175         switch (cmd) {
1176         case NVME_IOCTL_ID:
1177                 force_successful_syscall_return();
1178                 return ns->head->ns_id;
1179         case NVME_IOCTL_ADMIN_CMD:
1180                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1181         case NVME_IOCTL_IO_CMD:
1182                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1183         case NVME_IOCTL_SUBMIT_IO:
1184                 return nvme_submit_io(ns, (void __user *)arg);
1185         default:
1186 #ifdef CONFIG_NVM
1187                 if (ns->ndev)
1188                         return nvme_nvm_ioctl(ns, cmd, arg);
1189 #endif
1190                 if (is_sed_ioctl(cmd))
1191                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
1192                                          (void __user *) arg);
1193                 return -ENOTTY;
1194         }
1195 }
1196
1197 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1198                 unsigned int cmd, unsigned long arg)
1199 {
1200         struct nvme_ns_head *head = NULL;
1201         struct nvme_ns *ns;
1202         int srcu_idx, ret;
1203
1204         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1205         if (unlikely(!ns))
1206                 ret = -EWOULDBLOCK;
1207         else
1208                 ret = nvme_ns_ioctl(ns, cmd, arg);
1209         nvme_put_ns_from_disk(head, srcu_idx);
1210         return ret;
1211 }
1212
1213 static int nvme_open(struct block_device *bdev, fmode_t mode)
1214 {
1215         struct nvme_ns *ns = bdev->bd_disk->private_data;
1216
1217 #ifdef CONFIG_NVME_MULTIPATH
1218         /* should never be called due to GENHD_FL_HIDDEN */
1219         if (WARN_ON_ONCE(ns->head->disk))
1220                 return -ENXIO;
1221 #endif
1222         if (!kref_get_unless_zero(&ns->kref))
1223                 return -ENXIO;
1224         return 0;
1225 }
1226
1227 static void nvme_release(struct gendisk *disk, fmode_t mode)
1228 {
1229         nvme_put_ns(disk->private_data);
1230 }
1231
1232 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1233 {
1234         /* some standard values */
1235         geo->heads = 1 << 6;
1236         geo->sectors = 1 << 5;
1237         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1238         return 0;
1239 }
1240
1241 #ifdef CONFIG_BLK_DEV_INTEGRITY
1242 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1243 {
1244         struct blk_integrity integrity;
1245
1246         memset(&integrity, 0, sizeof(integrity));
1247         switch (pi_type) {
1248         case NVME_NS_DPS_PI_TYPE3:
1249                 integrity.profile = &t10_pi_type3_crc;
1250                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1251                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1252                 break;
1253         case NVME_NS_DPS_PI_TYPE1:
1254         case NVME_NS_DPS_PI_TYPE2:
1255                 integrity.profile = &t10_pi_type1_crc;
1256                 integrity.tag_size = sizeof(u16);
1257                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1258                 break;
1259         default:
1260                 integrity.profile = NULL;
1261                 break;
1262         }
1263         integrity.tuple_size = ms;
1264         blk_integrity_register(disk, &integrity);
1265         blk_queue_max_integrity_segments(disk->queue, 1);
1266 }
1267 #else
1268 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1269 {
1270 }
1271 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1272
1273 static void nvme_set_chunk_size(struct nvme_ns *ns)
1274 {
1275         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1276         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1277 }
1278
1279 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1280                 unsigned stream_alignment, struct request_queue *queue)
1281 {
1282         u32 size = queue_logical_block_size(queue);
1283
1284         if (stream_alignment)
1285                 size *= stream_alignment;
1286
1287         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1288                         NVME_DSM_MAX_RANGES);
1289
1290         queue->limits.discard_alignment = size;
1291         queue->limits.discard_granularity = size;
1292
1293         blk_queue_max_discard_sectors(queue, UINT_MAX);
1294         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1295         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, queue);
1296
1297         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1298                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1299 }
1300
1301 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1302                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1303 {
1304         memset(ids, 0, sizeof(*ids));
1305
1306         if (ctrl->vs >= NVME_VS(1, 1, 0))
1307                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1308         if (ctrl->vs >= NVME_VS(1, 2, 0))
1309                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1310         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1311                  /* Don't treat error as fatal we potentially
1312                   * already have a NGUID or EUI-64
1313                   */
1314                 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1315                         dev_warn(ctrl->device,
1316                                  "%s: Identify Descriptors failed\n", __func__);
1317         }
1318 }
1319
1320 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1321 {
1322         return !uuid_is_null(&ids->uuid) ||
1323                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1324                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1325 }
1326
1327 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1328 {
1329         return uuid_equal(&a->uuid, &b->uuid) &&
1330                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1331                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1332 }
1333
1334 static void nvme_update_disk_info(struct gendisk *disk,
1335                 struct nvme_ns *ns, struct nvme_id_ns *id)
1336 {
1337         sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1338         unsigned stream_alignment = 0;
1339
1340         if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1341                 stream_alignment = ns->sws * ns->sgs;
1342
1343         blk_mq_freeze_queue(disk->queue);
1344         blk_integrity_unregister(disk);
1345
1346         blk_queue_logical_block_size(disk->queue, 1 << ns->lba_shift);
1347         if (ns->ms && !ns->ext &&
1348             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1349                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1350         if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1351                 capacity = 0;
1352         set_capacity(disk, capacity);
1353
1354         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1355                 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1356         blk_mq_unfreeze_queue(disk->queue);
1357 }
1358
1359 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1360 {
1361         struct nvme_ns *ns = disk->private_data;
1362
1363         /*
1364          * If identify namespace failed, use default 512 byte block size so
1365          * block layer can use before failing read/write for 0 capacity.
1366          */
1367         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1368         if (ns->lba_shift == 0)
1369                 ns->lba_shift = 9;
1370         ns->noiob = le16_to_cpu(id->noiob);
1371         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1372         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1373         /* the PI implementation requires metadata equal t10 pi tuple size */
1374         if (ns->ms == sizeof(struct t10_pi_tuple))
1375                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1376         else
1377                 ns->pi_type = 0;
1378
1379         if (ns->noiob)
1380                 nvme_set_chunk_size(ns);
1381         nvme_update_disk_info(disk, ns, id);
1382 #ifdef CONFIG_NVME_MULTIPATH
1383         if (ns->head->disk)
1384                 nvme_update_disk_info(ns->head->disk, ns, id);
1385 #endif
1386 }
1387
1388 static int nvme_revalidate_disk(struct gendisk *disk)
1389 {
1390         struct nvme_ns *ns = disk->private_data;
1391         struct nvme_ctrl *ctrl = ns->ctrl;
1392         struct nvme_id_ns *id;
1393         struct nvme_ns_ids ids;
1394         int ret = 0;
1395
1396         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1397                 set_capacity(disk, 0);
1398                 return -ENODEV;
1399         }
1400
1401         id = nvme_identify_ns(ctrl, ns->head->ns_id);
1402         if (!id)
1403                 return -ENODEV;
1404
1405         if (id->ncap == 0) {
1406                 ret = -ENODEV;
1407                 goto out;
1408         }
1409
1410         __nvme_revalidate_disk(disk, id);
1411         nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1412         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1413                 dev_err(ctrl->device,
1414                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1415                 ret = -ENODEV;
1416         }
1417
1418 out:
1419         kfree(id);
1420         return ret;
1421 }
1422
1423 static char nvme_pr_type(enum pr_type type)
1424 {
1425         switch (type) {
1426         case PR_WRITE_EXCLUSIVE:
1427                 return 1;
1428         case PR_EXCLUSIVE_ACCESS:
1429                 return 2;
1430         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1431                 return 3;
1432         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1433                 return 4;
1434         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1435                 return 5;
1436         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1437                 return 6;
1438         default:
1439                 return 0;
1440         }
1441 };
1442
1443 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1444                                 u64 key, u64 sa_key, u8 op)
1445 {
1446         struct nvme_ns_head *head = NULL;
1447         struct nvme_ns *ns;
1448         struct nvme_command c;
1449         int srcu_idx, ret;
1450         u8 data[16] = { 0, };
1451
1452         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1453         if (unlikely(!ns))
1454                 return -EWOULDBLOCK;
1455
1456         put_unaligned_le64(key, &data[0]);
1457         put_unaligned_le64(sa_key, &data[8]);
1458
1459         memset(&c, 0, sizeof(c));
1460         c.common.opcode = op;
1461         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1462         c.common.cdw10[0] = cpu_to_le32(cdw10);
1463
1464         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1465         nvme_put_ns_from_disk(head, srcu_idx);
1466         return ret;
1467 }
1468
1469 static int nvme_pr_register(struct block_device *bdev, u64 old,
1470                 u64 new, unsigned flags)
1471 {
1472         u32 cdw10;
1473
1474         if (flags & ~PR_FL_IGNORE_KEY)
1475                 return -EOPNOTSUPP;
1476
1477         cdw10 = old ? 2 : 0;
1478         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1479         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1480         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1481 }
1482
1483 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1484                 enum pr_type type, unsigned flags)
1485 {
1486         u32 cdw10;
1487
1488         if (flags & ~PR_FL_IGNORE_KEY)
1489                 return -EOPNOTSUPP;
1490
1491         cdw10 = nvme_pr_type(type) << 8;
1492         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1493         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1494 }
1495
1496 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1497                 enum pr_type type, bool abort)
1498 {
1499         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1500         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1501 }
1502
1503 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1504 {
1505         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1506         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1507 }
1508
1509 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1510 {
1511         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1512         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1513 }
1514
1515 static const struct pr_ops nvme_pr_ops = {
1516         .pr_register    = nvme_pr_register,
1517         .pr_reserve     = nvme_pr_reserve,
1518         .pr_release     = nvme_pr_release,
1519         .pr_preempt     = nvme_pr_preempt,
1520         .pr_clear       = nvme_pr_clear,
1521 };
1522
1523 #ifdef CONFIG_BLK_SED_OPAL
1524 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1525                 bool send)
1526 {
1527         struct nvme_ctrl *ctrl = data;
1528         struct nvme_command cmd;
1529
1530         memset(&cmd, 0, sizeof(cmd));
1531         if (send)
1532                 cmd.common.opcode = nvme_admin_security_send;
1533         else
1534                 cmd.common.opcode = nvme_admin_security_recv;
1535         cmd.common.nsid = 0;
1536         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1537         cmd.common.cdw10[1] = cpu_to_le32(len);
1538
1539         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1540                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1541 }
1542 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1543 #endif /* CONFIG_BLK_SED_OPAL */
1544
1545 static const struct block_device_operations nvme_fops = {
1546         .owner          = THIS_MODULE,
1547         .ioctl          = nvme_ioctl,
1548         .compat_ioctl   = nvme_ioctl,
1549         .open           = nvme_open,
1550         .release        = nvme_release,
1551         .getgeo         = nvme_getgeo,
1552         .revalidate_disk= nvme_revalidate_disk,
1553         .pr_ops         = &nvme_pr_ops,
1554 };
1555
1556 #ifdef CONFIG_NVME_MULTIPATH
1557 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1558 {
1559         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1560
1561         if (!kref_get_unless_zero(&head->ref))
1562                 return -ENXIO;
1563         return 0;
1564 }
1565
1566 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1567 {
1568         nvme_put_ns_head(disk->private_data);
1569 }
1570
1571 const struct block_device_operations nvme_ns_head_ops = {
1572         .owner          = THIS_MODULE,
1573         .open           = nvme_ns_head_open,
1574         .release        = nvme_ns_head_release,
1575         .ioctl          = nvme_ioctl,
1576         .compat_ioctl   = nvme_ioctl,
1577         .getgeo         = nvme_getgeo,
1578         .pr_ops         = &nvme_pr_ops,
1579 };
1580 #endif /* CONFIG_NVME_MULTIPATH */
1581
1582 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1583 {
1584         unsigned long timeout =
1585                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1586         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1587         int ret;
1588
1589         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1590                 if (csts == ~0)
1591                         return -ENODEV;
1592                 if ((csts & NVME_CSTS_RDY) == bit)
1593                         break;
1594
1595                 msleep(100);
1596                 if (fatal_signal_pending(current))
1597                         return -EINTR;
1598                 if (time_after(jiffies, timeout)) {
1599                         dev_err(ctrl->device,
1600                                 "Device not ready; aborting %s\n", enabled ?
1601                                                 "initialisation" : "reset");
1602                         return -ENODEV;
1603                 }
1604         }
1605
1606         return ret;
1607 }
1608
1609 /*
1610  * If the device has been passed off to us in an enabled state, just clear
1611  * the enabled bit.  The spec says we should set the 'shutdown notification
1612  * bits', but doing so may cause the device to complete commands to the
1613  * admin queue ... and we don't know what memory that might be pointing at!
1614  */
1615 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1616 {
1617         int ret;
1618
1619         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1620         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1621
1622         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1623         if (ret)
1624                 return ret;
1625
1626         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1627                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1628
1629         return nvme_wait_ready(ctrl, cap, false);
1630 }
1631 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1632
1633 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1634 {
1635         /*
1636          * Default to a 4K page size, with the intention to update this
1637          * path in the future to accomodate architectures with differing
1638          * kernel and IO page sizes.
1639          */
1640         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1641         int ret;
1642
1643         if (page_shift < dev_page_min) {
1644                 dev_err(ctrl->device,
1645                         "Minimum device page size %u too large for host (%u)\n",
1646                         1 << dev_page_min, 1 << page_shift);
1647                 return -ENODEV;
1648         }
1649
1650         ctrl->page_size = 1 << page_shift;
1651
1652         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1653         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1654         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1655         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1656         ctrl->ctrl_config |= NVME_CC_ENABLE;
1657
1658         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1659         if (ret)
1660                 return ret;
1661         return nvme_wait_ready(ctrl, cap, true);
1662 }
1663 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1664
1665 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1666 {
1667         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1668         u32 csts;
1669         int ret;
1670
1671         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1672         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1673
1674         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1675         if (ret)
1676                 return ret;
1677
1678         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1679                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1680                         break;
1681
1682                 msleep(100);
1683                 if (fatal_signal_pending(current))
1684                         return -EINTR;
1685                 if (time_after(jiffies, timeout)) {
1686                         dev_err(ctrl->device,
1687                                 "Device shutdown incomplete; abort shutdown\n");
1688                         return -ENODEV;
1689                 }
1690         }
1691
1692         return ret;
1693 }
1694 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1695
1696 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1697                 struct request_queue *q)
1698 {
1699         bool vwc = false;
1700
1701         if (ctrl->max_hw_sectors) {
1702                 u32 max_segments =
1703                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1704
1705                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1706                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1707         }
1708         if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1709                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1710         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1711         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1712                 vwc = true;
1713         blk_queue_write_cache(q, vwc, vwc);
1714 }
1715
1716 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1717 {
1718         __le64 ts;
1719         int ret;
1720
1721         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1722                 return 0;
1723
1724         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1725         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1726                         NULL);
1727         if (ret)
1728                 dev_warn_once(ctrl->device,
1729                         "could not set timestamp (%d)\n", ret);
1730         return ret;
1731 }
1732
1733 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1734 {
1735         /*
1736          * APST (Autonomous Power State Transition) lets us program a
1737          * table of power state transitions that the controller will
1738          * perform automatically.  We configure it with a simple
1739          * heuristic: we are willing to spend at most 2% of the time
1740          * transitioning between power states.  Therefore, when running
1741          * in any given state, we will enter the next lower-power
1742          * non-operational state after waiting 50 * (enlat + exlat)
1743          * microseconds, as long as that state's exit latency is under
1744          * the requested maximum latency.
1745          *
1746          * We will not autonomously enter any non-operational state for
1747          * which the total latency exceeds ps_max_latency_us.  Users
1748          * can set ps_max_latency_us to zero to turn off APST.
1749          */
1750
1751         unsigned apste;
1752         struct nvme_feat_auto_pst *table;
1753         u64 max_lat_us = 0;
1754         int max_ps = -1;
1755         int ret;
1756
1757         /*
1758          * If APST isn't supported or if we haven't been initialized yet,
1759          * then don't do anything.
1760          */
1761         if (!ctrl->apsta)
1762                 return 0;
1763
1764         if (ctrl->npss > 31) {
1765                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1766                 return 0;
1767         }
1768
1769         table = kzalloc(sizeof(*table), GFP_KERNEL);
1770         if (!table)
1771                 return 0;
1772
1773         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1774                 /* Turn off APST. */
1775                 apste = 0;
1776                 dev_dbg(ctrl->device, "APST disabled\n");
1777         } else {
1778                 __le64 target = cpu_to_le64(0);
1779                 int state;
1780
1781                 /*
1782                  * Walk through all states from lowest- to highest-power.
1783                  * According to the spec, lower-numbered states use more
1784                  * power.  NPSS, despite the name, is the index of the
1785                  * lowest-power state, not the number of states.
1786                  */
1787                 for (state = (int)ctrl->npss; state >= 0; state--) {
1788                         u64 total_latency_us, exit_latency_us, transition_ms;
1789
1790                         if (target)
1791                                 table->entries[state] = target;
1792
1793                         /*
1794                          * Don't allow transitions to the deepest state
1795                          * if it's quirked off.
1796                          */
1797                         if (state == ctrl->npss &&
1798                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1799                                 continue;
1800
1801                         /*
1802                          * Is this state a useful non-operational state for
1803                          * higher-power states to autonomously transition to?
1804                          */
1805                         if (!(ctrl->psd[state].flags &
1806                               NVME_PS_FLAGS_NON_OP_STATE))
1807                                 continue;
1808
1809                         exit_latency_us =
1810                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1811                         if (exit_latency_us > ctrl->ps_max_latency_us)
1812                                 continue;
1813
1814                         total_latency_us =
1815                                 exit_latency_us +
1816                                 le32_to_cpu(ctrl->psd[state].entry_lat);
1817
1818                         /*
1819                          * This state is good.  Use it as the APST idle
1820                          * target for higher power states.
1821                          */
1822                         transition_ms = total_latency_us + 19;
1823                         do_div(transition_ms, 20);
1824                         if (transition_ms > (1 << 24) - 1)
1825                                 transition_ms = (1 << 24) - 1;
1826
1827                         target = cpu_to_le64((state << 3) |
1828                                              (transition_ms << 8));
1829
1830                         if (max_ps == -1)
1831                                 max_ps = state;
1832
1833                         if (total_latency_us > max_lat_us)
1834                                 max_lat_us = total_latency_us;
1835                 }
1836
1837                 apste = 1;
1838
1839                 if (max_ps == -1) {
1840                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1841                 } else {
1842                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1843                                 max_ps, max_lat_us, (int)sizeof(*table), table);
1844                 }
1845         }
1846
1847         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1848                                 table, sizeof(*table), NULL);
1849         if (ret)
1850                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1851
1852         kfree(table);
1853         return ret;
1854 }
1855
1856 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1857 {
1858         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1859         u64 latency;
1860
1861         switch (val) {
1862         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1863         case PM_QOS_LATENCY_ANY:
1864                 latency = U64_MAX;
1865                 break;
1866
1867         default:
1868                 latency = val;
1869         }
1870
1871         if (ctrl->ps_max_latency_us != latency) {
1872                 ctrl->ps_max_latency_us = latency;
1873                 nvme_configure_apst(ctrl);
1874         }
1875 }
1876
1877 struct nvme_core_quirk_entry {
1878         /*
1879          * NVMe model and firmware strings are padded with spaces.  For
1880          * simplicity, strings in the quirk table are padded with NULLs
1881          * instead.
1882          */
1883         u16 vid;
1884         const char *mn;
1885         const char *fr;
1886         unsigned long quirks;
1887 };
1888
1889 static const struct nvme_core_quirk_entry core_quirks[] = {
1890         {
1891                 /*
1892                  * This Toshiba device seems to die using any APST states.  See:
1893                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1894                  */
1895                 .vid = 0x1179,
1896                 .mn = "THNSF5256GPUK TOSHIBA",
1897                 .quirks = NVME_QUIRK_NO_APST,
1898         }
1899 };
1900
1901 /* match is null-terminated but idstr is space-padded. */
1902 static bool string_matches(const char *idstr, const char *match, size_t len)
1903 {
1904         size_t matchlen;
1905
1906         if (!match)
1907                 return true;
1908
1909         matchlen = strlen(match);
1910         WARN_ON_ONCE(matchlen > len);
1911
1912         if (memcmp(idstr, match, matchlen))
1913                 return false;
1914
1915         for (; matchlen < len; matchlen++)
1916                 if (idstr[matchlen] != ' ')
1917                         return false;
1918
1919         return true;
1920 }
1921
1922 static bool quirk_matches(const struct nvme_id_ctrl *id,
1923                           const struct nvme_core_quirk_entry *q)
1924 {
1925         return q->vid == le16_to_cpu(id->vid) &&
1926                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1927                 string_matches(id->fr, q->fr, sizeof(id->fr));
1928 }
1929
1930 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
1931                 struct nvme_id_ctrl *id)
1932 {
1933         size_t nqnlen;
1934         int off;
1935
1936         nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1937         if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1938                 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
1939                 return;
1940         }
1941
1942         if (ctrl->vs >= NVME_VS(1, 2, 1))
1943                 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1944
1945         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1946         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
1947                         "nqn.2014.08.org.nvmexpress:%4x%4x",
1948                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1949         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
1950         off += sizeof(id->sn);
1951         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
1952         off += sizeof(id->mn);
1953         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
1954 }
1955
1956 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
1957 {
1958         ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
1959         kfree(subsys);
1960 }
1961
1962 static void nvme_release_subsystem(struct device *dev)
1963 {
1964         __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
1965 }
1966
1967 static void nvme_destroy_subsystem(struct kref *ref)
1968 {
1969         struct nvme_subsystem *subsys =
1970                         container_of(ref, struct nvme_subsystem, ref);
1971
1972         mutex_lock(&nvme_subsystems_lock);
1973         list_del(&subsys->entry);
1974         mutex_unlock(&nvme_subsystems_lock);
1975
1976         ida_destroy(&subsys->ns_ida);
1977         device_del(&subsys->dev);
1978         put_device(&subsys->dev);
1979 }
1980
1981 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
1982 {
1983         kref_put(&subsys->ref, nvme_destroy_subsystem);
1984 }
1985
1986 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
1987 {
1988         struct nvme_subsystem *subsys;
1989
1990         lockdep_assert_held(&nvme_subsystems_lock);
1991
1992         list_for_each_entry(subsys, &nvme_subsystems, entry) {
1993                 if (strcmp(subsys->subnqn, subsysnqn))
1994                         continue;
1995                 if (!kref_get_unless_zero(&subsys->ref))
1996                         continue;
1997                 return subsys;
1998         }
1999
2000         return NULL;
2001 }
2002
2003 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2004         struct device_attribute subsys_attr_##_name = \
2005                 __ATTR(_name, _mode, _show, NULL)
2006
2007 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2008                                     struct device_attribute *attr,
2009                                     char *buf)
2010 {
2011         struct nvme_subsystem *subsys =
2012                 container_of(dev, struct nvme_subsystem, dev);
2013
2014         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2015 }
2016 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2017
2018 #define nvme_subsys_show_str_function(field)                            \
2019 static ssize_t subsys_##field##_show(struct device *dev,                \
2020                             struct device_attribute *attr, char *buf)   \
2021 {                                                                       \
2022         struct nvme_subsystem *subsys =                                 \
2023                 container_of(dev, struct nvme_subsystem, dev);          \
2024         return sprintf(buf, "%.*s\n",                                   \
2025                        (int)sizeof(subsys->field), subsys->field);      \
2026 }                                                                       \
2027 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2028
2029 nvme_subsys_show_str_function(model);
2030 nvme_subsys_show_str_function(serial);
2031 nvme_subsys_show_str_function(firmware_rev);
2032
2033 static struct attribute *nvme_subsys_attrs[] = {
2034         &subsys_attr_model.attr,
2035         &subsys_attr_serial.attr,
2036         &subsys_attr_firmware_rev.attr,
2037         &subsys_attr_subsysnqn.attr,
2038         NULL,
2039 };
2040
2041 static struct attribute_group nvme_subsys_attrs_group = {
2042         .attrs = nvme_subsys_attrs,
2043 };
2044
2045 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2046         &nvme_subsys_attrs_group,
2047         NULL,
2048 };
2049
2050 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2051 {
2052         struct nvme_subsystem *subsys, *found;
2053         int ret;
2054
2055         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2056         if (!subsys)
2057                 return -ENOMEM;
2058         ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2059         if (ret < 0) {
2060                 kfree(subsys);
2061                 return ret;
2062         }
2063         subsys->instance = ret;
2064         mutex_init(&subsys->lock);
2065         kref_init(&subsys->ref);
2066         INIT_LIST_HEAD(&subsys->ctrls);
2067         INIT_LIST_HEAD(&subsys->nsheads);
2068         nvme_init_subnqn(subsys, ctrl, id);
2069         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2070         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2071         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2072         subsys->vendor_id = le16_to_cpu(id->vid);
2073         subsys->cmic = id->cmic;
2074
2075         subsys->dev.class = nvme_subsys_class;
2076         subsys->dev.release = nvme_release_subsystem;
2077         subsys->dev.groups = nvme_subsys_attrs_groups;
2078         dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2079         device_initialize(&subsys->dev);
2080
2081         mutex_lock(&nvme_subsystems_lock);
2082         found = __nvme_find_get_subsystem(subsys->subnqn);
2083         if (found) {
2084                 /*
2085                  * Verify that the subsystem actually supports multiple
2086                  * controllers, else bail out.
2087                  */
2088                 if (!(id->cmic & (1 << 1))) {
2089                         dev_err(ctrl->device,
2090                                 "ignoring ctrl due to duplicate subnqn (%s).\n",
2091                                 found->subnqn);
2092                         nvme_put_subsystem(found);
2093                         ret = -EINVAL;
2094                         goto out_unlock;
2095                 }
2096
2097                 __nvme_release_subsystem(subsys);
2098                 subsys = found;
2099         } else {
2100                 ret = device_add(&subsys->dev);
2101                 if (ret) {
2102                         dev_err(ctrl->device,
2103                                 "failed to register subsystem device.\n");
2104                         goto out_unlock;
2105                 }
2106                 ida_init(&subsys->ns_ida);
2107                 list_add_tail(&subsys->entry, &nvme_subsystems);
2108         }
2109
2110         ctrl->subsys = subsys;
2111         mutex_unlock(&nvme_subsystems_lock);
2112
2113         if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2114                         dev_name(ctrl->device))) {
2115                 dev_err(ctrl->device,
2116                         "failed to create sysfs link from subsystem.\n");
2117                 /* the transport driver will eventually put the subsystem */
2118                 return -EINVAL;
2119         }
2120
2121         mutex_lock(&subsys->lock);
2122         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2123         mutex_unlock(&subsys->lock);
2124
2125         return 0;
2126
2127 out_unlock:
2128         mutex_unlock(&nvme_subsystems_lock);
2129         put_device(&subsys->dev);
2130         return ret;
2131 }
2132
2133 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2134                         size_t size)
2135 {
2136         struct nvme_command c = { };
2137
2138         c.common.opcode = nvme_admin_get_log_page;
2139         c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2140         c.common.cdw10[0] = nvme_get_log_dw10(log_page, size);
2141
2142         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2143 }
2144
2145 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2146 {
2147         int ret;
2148
2149         if (!ctrl->effects)
2150                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2151
2152         if (!ctrl->effects)
2153                 return 0;
2154
2155         ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2156                                         sizeof(*ctrl->effects));
2157         if (ret) {
2158                 kfree(ctrl->effects);
2159                 ctrl->effects = NULL;
2160         }
2161         return ret;
2162 }
2163
2164 /*
2165  * Initialize the cached copies of the Identify data and various controller
2166  * register in our nvme_ctrl structure.  This should be called as soon as
2167  * the admin queue is fully up and running.
2168  */
2169 int nvme_init_identify(struct nvme_ctrl *ctrl)
2170 {
2171         struct nvme_id_ctrl *id;
2172         u64 cap;
2173         int ret, page_shift;
2174         u32 max_hw_sectors;
2175         bool prev_apst_enabled;
2176
2177         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2178         if (ret) {
2179                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2180                 return ret;
2181         }
2182
2183         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2184         if (ret) {
2185                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2186                 return ret;
2187         }
2188         page_shift = NVME_CAP_MPSMIN(cap) + 12;
2189
2190         if (ctrl->vs >= NVME_VS(1, 1, 0))
2191                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2192
2193         ret = nvme_identify_ctrl(ctrl, &id);
2194         if (ret) {
2195                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2196                 return -EIO;
2197         }
2198
2199         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2200                 ret = nvme_get_effects_log(ctrl);
2201                 if (ret < 0)
2202                         return ret;
2203         }
2204
2205         if (!ctrl->identified) {
2206                 int i;
2207
2208                 ret = nvme_init_subsystem(ctrl, id);
2209                 if (ret)
2210                         goto out_free;
2211
2212                 /*
2213                  * Check for quirks.  Quirk can depend on firmware version,
2214                  * so, in principle, the set of quirks present can change
2215                  * across a reset.  As a possible future enhancement, we
2216                  * could re-scan for quirks every time we reinitialize
2217                  * the device, but we'd have to make sure that the driver
2218                  * behaves intelligently if the quirks change.
2219                  */
2220                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2221                         if (quirk_matches(id, &core_quirks[i]))
2222                                 ctrl->quirks |= core_quirks[i].quirks;
2223                 }
2224         }
2225
2226         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2227                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2228                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2229         }
2230
2231         ctrl->oacs = le16_to_cpu(id->oacs);
2232         ctrl->oncs = le16_to_cpup(&id->oncs);
2233         atomic_set(&ctrl->abort_limit, id->acl + 1);
2234         ctrl->vwc = id->vwc;
2235         ctrl->cntlid = le16_to_cpup(&id->cntlid);
2236         if (id->mdts)
2237                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2238         else
2239                 max_hw_sectors = UINT_MAX;
2240         ctrl->max_hw_sectors =
2241                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2242
2243         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2244         ctrl->sgls = le32_to_cpu(id->sgls);
2245         ctrl->kas = le16_to_cpu(id->kas);
2246
2247         if (id->rtd3e) {
2248                 /* us -> s */
2249                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2250
2251                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2252                                                  shutdown_timeout, 60);
2253
2254                 if (ctrl->shutdown_timeout != shutdown_timeout)
2255                         dev_warn(ctrl->device,
2256                                  "Shutdown timeout set to %u seconds\n",
2257                                  ctrl->shutdown_timeout);
2258         } else
2259                 ctrl->shutdown_timeout = shutdown_timeout;
2260
2261         ctrl->npss = id->npss;
2262         ctrl->apsta = id->apsta;
2263         prev_apst_enabled = ctrl->apst_enabled;
2264         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2265                 if (force_apst && id->apsta) {
2266                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2267                         ctrl->apst_enabled = true;
2268                 } else {
2269                         ctrl->apst_enabled = false;
2270                 }
2271         } else {
2272                 ctrl->apst_enabled = id->apsta;
2273         }
2274         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2275
2276         if (ctrl->ops->flags & NVME_F_FABRICS) {
2277                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2278                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2279                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2280                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2281
2282                 /*
2283                  * In fabrics we need to verify the cntlid matches the
2284                  * admin connect
2285                  */
2286                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2287                         ret = -EINVAL;
2288                         goto out_free;
2289                 }
2290
2291                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2292                         dev_err(ctrl->device,
2293                                 "keep-alive support is mandatory for fabrics\n");
2294                         ret = -EINVAL;
2295                         goto out_free;
2296                 }
2297         } else {
2298                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2299                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2300                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2301                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2302                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2303         }
2304
2305         kfree(id);
2306
2307         if (ctrl->apst_enabled && !prev_apst_enabled)
2308                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2309         else if (!ctrl->apst_enabled && prev_apst_enabled)
2310                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2311
2312         ret = nvme_configure_apst(ctrl);
2313         if (ret < 0)
2314                 return ret;
2315         
2316         ret = nvme_configure_timestamp(ctrl);
2317         if (ret < 0)
2318                 return ret;
2319
2320         ret = nvme_configure_directives(ctrl);
2321         if (ret < 0)
2322                 return ret;
2323
2324         ctrl->identified = true;
2325
2326         return 0;
2327
2328 out_free:
2329         kfree(id);
2330         return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(nvme_init_identify);
2333
2334 static int nvme_dev_open(struct inode *inode, struct file *file)
2335 {
2336         struct nvme_ctrl *ctrl =
2337                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2338
2339         if (ctrl->state != NVME_CTRL_LIVE)
2340                 return -EWOULDBLOCK;
2341         file->private_data = ctrl;
2342         return 0;
2343 }
2344
2345 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2346 {
2347         struct nvme_ns *ns;
2348         int ret;
2349
2350         mutex_lock(&ctrl->namespaces_mutex);
2351         if (list_empty(&ctrl->namespaces)) {
2352                 ret = -ENOTTY;
2353                 goto out_unlock;
2354         }
2355
2356         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2357         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2358                 dev_warn(ctrl->device,
2359                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2360                 ret = -EINVAL;
2361                 goto out_unlock;
2362         }
2363
2364         dev_warn(ctrl->device,
2365                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2366         kref_get(&ns->kref);
2367         mutex_unlock(&ctrl->namespaces_mutex);
2368
2369         ret = nvme_user_cmd(ctrl, ns, argp);
2370         nvme_put_ns(ns);
2371         return ret;
2372
2373 out_unlock:
2374         mutex_unlock(&ctrl->namespaces_mutex);
2375         return ret;
2376 }
2377
2378 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2379                 unsigned long arg)
2380 {
2381         struct nvme_ctrl *ctrl = file->private_data;
2382         void __user *argp = (void __user *)arg;
2383
2384         switch (cmd) {
2385         case NVME_IOCTL_ADMIN_CMD:
2386                 return nvme_user_cmd(ctrl, NULL, argp);
2387         case NVME_IOCTL_IO_CMD:
2388                 return nvme_dev_user_cmd(ctrl, argp);
2389         case NVME_IOCTL_RESET:
2390                 dev_warn(ctrl->device, "resetting controller\n");
2391                 return nvme_reset_ctrl_sync(ctrl);
2392         case NVME_IOCTL_SUBSYS_RESET:
2393                 return nvme_reset_subsystem(ctrl);
2394         case NVME_IOCTL_RESCAN:
2395                 nvme_queue_scan(ctrl);
2396                 return 0;
2397         default:
2398                 return -ENOTTY;
2399         }
2400 }
2401
2402 static const struct file_operations nvme_dev_fops = {
2403         .owner          = THIS_MODULE,
2404         .open           = nvme_dev_open,
2405         .unlocked_ioctl = nvme_dev_ioctl,
2406         .compat_ioctl   = nvme_dev_ioctl,
2407 };
2408
2409 static ssize_t nvme_sysfs_reset(struct device *dev,
2410                                 struct device_attribute *attr, const char *buf,
2411                                 size_t count)
2412 {
2413         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2414         int ret;
2415
2416         ret = nvme_reset_ctrl_sync(ctrl);
2417         if (ret < 0)
2418                 return ret;
2419         return count;
2420 }
2421 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2422
2423 static ssize_t nvme_sysfs_rescan(struct device *dev,
2424                                 struct device_attribute *attr, const char *buf,
2425                                 size_t count)
2426 {
2427         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2428
2429         nvme_queue_scan(ctrl);
2430         return count;
2431 }
2432 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2433
2434 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2435 {
2436         struct gendisk *disk = dev_to_disk(dev);
2437
2438         if (disk->fops == &nvme_fops)
2439                 return nvme_get_ns_from_dev(dev)->head;
2440         else
2441                 return disk->private_data;
2442 }
2443
2444 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2445                 char *buf)
2446 {
2447         struct nvme_ns_head *head = dev_to_ns_head(dev);
2448         struct nvme_ns_ids *ids = &head->ids;
2449         struct nvme_subsystem *subsys = head->subsys;
2450         int serial_len = sizeof(subsys->serial);
2451         int model_len = sizeof(subsys->model);
2452
2453         if (!uuid_is_null(&ids->uuid))
2454                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2455
2456         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2457                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2458
2459         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2460                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2461
2462         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2463                                   subsys->serial[serial_len - 1] == '\0'))
2464                 serial_len--;
2465         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2466                                  subsys->model[model_len - 1] == '\0'))
2467                 model_len--;
2468
2469         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2470                 serial_len, subsys->serial, model_len, subsys->model,
2471                 head->ns_id);
2472 }
2473 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2474
2475 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2476                 char *buf)
2477 {
2478         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2479 }
2480 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2481
2482 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2483                 char *buf)
2484 {
2485         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2486
2487         /* For backward compatibility expose the NGUID to userspace if
2488          * we have no UUID set
2489          */
2490         if (uuid_is_null(&ids->uuid)) {
2491                 printk_ratelimited(KERN_WARNING
2492                                    "No UUID available providing old NGUID\n");
2493                 return sprintf(buf, "%pU\n", ids->nguid);
2494         }
2495         return sprintf(buf, "%pU\n", &ids->uuid);
2496 }
2497 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2498
2499 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2500                 char *buf)
2501 {
2502         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2503 }
2504 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2505
2506 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2507                 char *buf)
2508 {
2509         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2510 }
2511 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2512
2513 static struct attribute *nvme_ns_id_attrs[] = {
2514         &dev_attr_wwid.attr,
2515         &dev_attr_uuid.attr,
2516         &dev_attr_nguid.attr,
2517         &dev_attr_eui.attr,
2518         &dev_attr_nsid.attr,
2519         NULL,
2520 };
2521
2522 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2523                 struct attribute *a, int n)
2524 {
2525         struct device *dev = container_of(kobj, struct device, kobj);
2526         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2527
2528         if (a == &dev_attr_uuid.attr) {
2529                 if (uuid_is_null(&ids->uuid) &&
2530                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2531                         return 0;
2532         }
2533         if (a == &dev_attr_nguid.attr) {
2534                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2535                         return 0;
2536         }
2537         if (a == &dev_attr_eui.attr) {
2538                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2539                         return 0;
2540         }
2541         return a->mode;
2542 }
2543
2544 const struct attribute_group nvme_ns_id_attr_group = {
2545         .attrs          = nvme_ns_id_attrs,
2546         .is_visible     = nvme_ns_id_attrs_are_visible,
2547 };
2548
2549 #define nvme_show_str_function(field)                                           \
2550 static ssize_t  field##_show(struct device *dev,                                \
2551                             struct device_attribute *attr, char *buf)           \
2552 {                                                                               \
2553         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2554         return sprintf(buf, "%.*s\n",                                           \
2555                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
2556 }                                                                               \
2557 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2558
2559 nvme_show_str_function(model);
2560 nvme_show_str_function(serial);
2561 nvme_show_str_function(firmware_rev);
2562
2563 #define nvme_show_int_function(field)                                           \
2564 static ssize_t  field##_show(struct device *dev,                                \
2565                             struct device_attribute *attr, char *buf)           \
2566 {                                                                               \
2567         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2568         return sprintf(buf, "%d\n", ctrl->field);       \
2569 }                                                                               \
2570 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2571
2572 nvme_show_int_function(cntlid);
2573
2574 static ssize_t nvme_sysfs_delete(struct device *dev,
2575                                 struct device_attribute *attr, const char *buf,
2576                                 size_t count)
2577 {
2578         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2579
2580         if (device_remove_file_self(dev, attr))
2581                 nvme_delete_ctrl_sync(ctrl);
2582         return count;
2583 }
2584 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2585
2586 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2587                                          struct device_attribute *attr,
2588                                          char *buf)
2589 {
2590         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2591
2592         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2593 }
2594 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2595
2596 static ssize_t nvme_sysfs_show_state(struct device *dev,
2597                                      struct device_attribute *attr,
2598                                      char *buf)
2599 {
2600         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2601         static const char *const state_name[] = {
2602                 [NVME_CTRL_NEW]         = "new",
2603                 [NVME_CTRL_LIVE]        = "live",
2604                 [NVME_CTRL_RESETTING]   = "resetting",
2605                 [NVME_CTRL_RECONNECTING]= "reconnecting",
2606                 [NVME_CTRL_DELETING]    = "deleting",
2607                 [NVME_CTRL_DEAD]        = "dead",
2608         };
2609
2610         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2611             state_name[ctrl->state])
2612                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2613
2614         return sprintf(buf, "unknown state\n");
2615 }
2616
2617 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2618
2619 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2620                                          struct device_attribute *attr,
2621                                          char *buf)
2622 {
2623         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2624
2625         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2626 }
2627 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2628
2629 static ssize_t nvme_sysfs_show_address(struct device *dev,
2630                                          struct device_attribute *attr,
2631                                          char *buf)
2632 {
2633         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2634
2635         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2636 }
2637 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2638
2639 static struct attribute *nvme_dev_attrs[] = {
2640         &dev_attr_reset_controller.attr,
2641         &dev_attr_rescan_controller.attr,
2642         &dev_attr_model.attr,
2643         &dev_attr_serial.attr,
2644         &dev_attr_firmware_rev.attr,
2645         &dev_attr_cntlid.attr,
2646         &dev_attr_delete_controller.attr,
2647         &dev_attr_transport.attr,
2648         &dev_attr_subsysnqn.attr,
2649         &dev_attr_address.attr,
2650         &dev_attr_state.attr,
2651         NULL
2652 };
2653
2654 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2655                 struct attribute *a, int n)
2656 {
2657         struct device *dev = container_of(kobj, struct device, kobj);
2658         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2659
2660         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2661                 return 0;
2662         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2663                 return 0;
2664
2665         return a->mode;
2666 }
2667
2668 static struct attribute_group nvme_dev_attrs_group = {
2669         .attrs          = nvme_dev_attrs,
2670         .is_visible     = nvme_dev_attrs_are_visible,
2671 };
2672
2673 static const struct attribute_group *nvme_dev_attr_groups[] = {
2674         &nvme_dev_attrs_group,
2675         NULL,
2676 };
2677
2678 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2679                 unsigned nsid)
2680 {
2681         struct nvme_ns_head *h;
2682
2683         lockdep_assert_held(&subsys->lock);
2684
2685         list_for_each_entry(h, &subsys->nsheads, entry) {
2686                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2687                         return h;
2688         }
2689
2690         return NULL;
2691 }
2692
2693 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2694                 struct nvme_ns_head *new)
2695 {
2696         struct nvme_ns_head *h;
2697
2698         lockdep_assert_held(&subsys->lock);
2699
2700         list_for_each_entry(h, &subsys->nsheads, entry) {
2701                 if (nvme_ns_ids_valid(&new->ids) &&
2702                     nvme_ns_ids_equal(&new->ids, &h->ids))
2703                         return -EINVAL;
2704         }
2705
2706         return 0;
2707 }
2708
2709 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2710                 unsigned nsid, struct nvme_id_ns *id)
2711 {
2712         struct nvme_ns_head *head;
2713         int ret = -ENOMEM;
2714
2715         head = kzalloc(sizeof(*head), GFP_KERNEL);
2716         if (!head)
2717                 goto out;
2718         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2719         if (ret < 0)
2720                 goto out_free_head;
2721         head->instance = ret;
2722         INIT_LIST_HEAD(&head->list);
2723         init_srcu_struct(&head->srcu);
2724         head->subsys = ctrl->subsys;
2725         head->ns_id = nsid;
2726         kref_init(&head->ref);
2727
2728         nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2729
2730         ret = __nvme_check_ids(ctrl->subsys, head);
2731         if (ret) {
2732                 dev_err(ctrl->device,
2733                         "duplicate IDs for nsid %d\n", nsid);
2734                 goto out_cleanup_srcu;
2735         }
2736
2737         ret = nvme_mpath_alloc_disk(ctrl, head);
2738         if (ret)
2739                 goto out_cleanup_srcu;
2740
2741         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2742         return head;
2743 out_cleanup_srcu:
2744         cleanup_srcu_struct(&head->srcu);
2745         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2746 out_free_head:
2747         kfree(head);
2748 out:
2749         return ERR_PTR(ret);
2750 }
2751
2752 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2753                 struct nvme_id_ns *id, bool *new)
2754 {
2755         struct nvme_ctrl *ctrl = ns->ctrl;
2756         bool is_shared = id->nmic & (1 << 0);
2757         struct nvme_ns_head *head = NULL;
2758         int ret = 0;
2759
2760         mutex_lock(&ctrl->subsys->lock);
2761         if (is_shared)
2762                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2763         if (!head) {
2764                 head = nvme_alloc_ns_head(ctrl, nsid, id);
2765                 if (IS_ERR(head)) {
2766                         ret = PTR_ERR(head);
2767                         goto out_unlock;
2768                 }
2769
2770                 *new = true;
2771         } else {
2772                 struct nvme_ns_ids ids;
2773
2774                 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2775                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2776                         dev_err(ctrl->device,
2777                                 "IDs don't match for shared namespace %d\n",
2778                                         nsid);
2779                         ret = -EINVAL;
2780                         goto out_unlock;
2781                 }
2782
2783                 *new = false;
2784         }
2785
2786         list_add_tail(&ns->siblings, &head->list);
2787         ns->head = head;
2788
2789 out_unlock:
2790         mutex_unlock(&ctrl->subsys->lock);
2791         return ret;
2792 }
2793
2794 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2795 {
2796         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2797         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2798
2799         return nsa->head->ns_id - nsb->head->ns_id;
2800 }
2801
2802 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2803 {
2804         struct nvme_ns *ns, *ret = NULL;
2805
2806         mutex_lock(&ctrl->namespaces_mutex);
2807         list_for_each_entry(ns, &ctrl->namespaces, list) {
2808                 if (ns->head->ns_id == nsid) {
2809                         if (!kref_get_unless_zero(&ns->kref))
2810                                 continue;
2811                         ret = ns;
2812                         break;
2813                 }
2814                 if (ns->head->ns_id > nsid)
2815                         break;
2816         }
2817         mutex_unlock(&ctrl->namespaces_mutex);
2818         return ret;
2819 }
2820
2821 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2822 {
2823         struct streams_directive_params s;
2824         int ret;
2825
2826         if (!ctrl->nr_streams)
2827                 return 0;
2828
2829         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2830         if (ret)
2831                 return ret;
2832
2833         ns->sws = le32_to_cpu(s.sws);
2834         ns->sgs = le16_to_cpu(s.sgs);
2835
2836         if (ns->sws) {
2837                 unsigned int bs = 1 << ns->lba_shift;
2838
2839                 blk_queue_io_min(ns->queue, bs * ns->sws);
2840                 if (ns->sgs)
2841                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2842         }
2843
2844         return 0;
2845 }
2846
2847 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2848 {
2849         struct nvme_ns *ns;
2850         struct gendisk *disk;
2851         struct nvme_id_ns *id;
2852         char disk_name[DISK_NAME_LEN];
2853         int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2854         bool new = true;
2855
2856         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2857         if (!ns)
2858                 return;
2859
2860         ns->queue = blk_mq_init_queue(ctrl->tagset);
2861         if (IS_ERR(ns->queue))
2862                 goto out_free_ns;
2863         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2864         ns->queue->queuedata = ns;
2865         ns->ctrl = ctrl;
2866
2867         kref_init(&ns->kref);
2868         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2869
2870         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2871         nvme_set_queue_limits(ctrl, ns->queue);
2872         nvme_setup_streams_ns(ctrl, ns);
2873
2874         id = nvme_identify_ns(ctrl, nsid);
2875         if (!id)
2876                 goto out_free_queue;
2877
2878         if (id->ncap == 0)
2879                 goto out_free_id;
2880
2881         if (nvme_init_ns_head(ns, nsid, id, &new))
2882                 goto out_free_id;
2883         
2884 #ifdef CONFIG_NVME_MULTIPATH
2885         /*
2886          * If multipathing is enabled we need to always use the subsystem
2887          * instance number for numbering our devices to avoid conflicts
2888          * between subsystems that have multiple controllers and thus use
2889          * the multipath-aware subsystem node and those that have a single
2890          * controller and use the controller node directly.
2891          */
2892         if (ns->head->disk) {
2893                 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
2894                                 ctrl->cntlid, ns->head->instance);
2895                 flags = GENHD_FL_HIDDEN;
2896         } else {
2897                 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
2898                                 ns->head->instance);
2899         }
2900 #else
2901         /*
2902          * But without the multipath code enabled, multiple controller per
2903          * subsystems are visible as devices and thus we cannot use the
2904          * subsystem instance.
2905          */
2906         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
2907 #endif
2908
2909         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
2910                 if (nvme_nvm_register(ns, disk_name, node)) {
2911                         dev_warn(ctrl->device, "LightNVM init failure\n");
2912                         goto out_unlink_ns;
2913                 }
2914         }
2915
2916         disk = alloc_disk_node(0, node);
2917         if (!disk)
2918                 goto out_unlink_ns;
2919
2920         disk->fops = &nvme_fops;
2921         disk->private_data = ns;
2922         disk->queue = ns->queue;
2923         disk->flags = flags;
2924         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2925         ns->disk = disk;
2926
2927         __nvme_revalidate_disk(disk, id);
2928
2929         mutex_lock(&ctrl->namespaces_mutex);
2930         list_add_tail(&ns->list, &ctrl->namespaces);
2931         mutex_unlock(&ctrl->namespaces_mutex);
2932
2933         nvme_get_ctrl(ctrl);
2934
2935         kfree(id);
2936
2937         device_add_disk(ctrl->device, ns->disk);
2938         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2939                                         &nvme_ns_id_attr_group))
2940                 pr_warn("%s: failed to create sysfs group for identification\n",
2941                         ns->disk->disk_name);
2942         if (ns->ndev && nvme_nvm_register_sysfs(ns))
2943                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2944                         ns->disk->disk_name);
2945
2946         if (new)
2947                 nvme_mpath_add_disk(ns->head);
2948         nvme_mpath_add_disk_links(ns);
2949         return;
2950  out_unlink_ns:
2951         mutex_lock(&ctrl->subsys->lock);
2952         list_del_rcu(&ns->siblings);
2953         mutex_unlock(&ctrl->subsys->lock);
2954  out_free_id:
2955         kfree(id);
2956  out_free_queue:
2957         blk_cleanup_queue(ns->queue);
2958  out_free_ns:
2959         kfree(ns);
2960 }
2961
2962 static void nvme_ns_remove(struct nvme_ns *ns)
2963 {
2964         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2965                 return;
2966
2967         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2968                 if (blk_get_integrity(ns->disk))
2969                         blk_integrity_unregister(ns->disk);
2970                 nvme_mpath_remove_disk_links(ns);
2971                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2972                                         &nvme_ns_id_attr_group);
2973                 if (ns->ndev)
2974                         nvme_nvm_unregister_sysfs(ns);
2975                 del_gendisk(ns->disk);
2976                 blk_cleanup_queue(ns->queue);
2977         }
2978
2979         mutex_lock(&ns->ctrl->subsys->lock);
2980         nvme_mpath_clear_current_path(ns);
2981         list_del_rcu(&ns->siblings);
2982         mutex_unlock(&ns->ctrl->subsys->lock);
2983
2984         mutex_lock(&ns->ctrl->namespaces_mutex);
2985         list_del_init(&ns->list);
2986         mutex_unlock(&ns->ctrl->namespaces_mutex);
2987
2988         synchronize_srcu(&ns->head->srcu);
2989         nvme_put_ns(ns);
2990 }
2991
2992 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2993 {
2994         struct nvme_ns *ns;
2995
2996         ns = nvme_find_get_ns(ctrl, nsid);
2997         if (ns) {
2998                 if (ns->disk && revalidate_disk(ns->disk))
2999                         nvme_ns_remove(ns);
3000                 nvme_put_ns(ns);
3001         } else
3002                 nvme_alloc_ns(ctrl, nsid);
3003 }
3004
3005 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3006                                         unsigned nsid)
3007 {
3008         struct nvme_ns *ns, *next;
3009
3010         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3011                 if (ns->head->ns_id > nsid)
3012                         nvme_ns_remove(ns);
3013         }
3014 }
3015
3016 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3017 {
3018         struct nvme_ns *ns;
3019         __le32 *ns_list;
3020         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3021         int ret = 0;
3022
3023         ns_list = kzalloc(0x1000, GFP_KERNEL);
3024         if (!ns_list)
3025                 return -ENOMEM;
3026
3027         for (i = 0; i < num_lists; i++) {
3028                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3029                 if (ret)
3030                         goto free;
3031
3032                 for (j = 0; j < min(nn, 1024U); j++) {
3033                         nsid = le32_to_cpu(ns_list[j]);
3034                         if (!nsid)
3035                                 goto out;
3036
3037                         nvme_validate_ns(ctrl, nsid);
3038
3039                         while (++prev < nsid) {
3040                                 ns = nvme_find_get_ns(ctrl, prev);
3041                                 if (ns) {
3042                                         nvme_ns_remove(ns);
3043                                         nvme_put_ns(ns);
3044                                 }
3045                         }
3046                 }
3047                 nn -= j;
3048         }
3049  out:
3050         nvme_remove_invalid_namespaces(ctrl, prev);
3051  free:
3052         kfree(ns_list);
3053         return ret;
3054 }
3055
3056 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3057 {
3058         unsigned i;
3059
3060         for (i = 1; i <= nn; i++)
3061                 nvme_validate_ns(ctrl, i);
3062
3063         nvme_remove_invalid_namespaces(ctrl, nn);
3064 }
3065
3066 static void nvme_scan_work(struct work_struct *work)
3067 {
3068         struct nvme_ctrl *ctrl =
3069                 container_of(work, struct nvme_ctrl, scan_work);
3070         struct nvme_id_ctrl *id;
3071         unsigned nn;
3072
3073         if (ctrl->state != NVME_CTRL_LIVE)
3074                 return;
3075
3076         if (nvme_identify_ctrl(ctrl, &id))
3077                 return;
3078
3079         nn = le32_to_cpu(id->nn);
3080         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3081             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3082                 if (!nvme_scan_ns_list(ctrl, nn))
3083                         goto done;
3084         }
3085         nvme_scan_ns_sequential(ctrl, nn);
3086  done:
3087         mutex_lock(&ctrl->namespaces_mutex);
3088         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3089         mutex_unlock(&ctrl->namespaces_mutex);
3090         kfree(id);
3091 }
3092
3093 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3094 {
3095         /*
3096          * Do not queue new scan work when a controller is reset during
3097          * removal.
3098          */
3099         if (ctrl->state == NVME_CTRL_LIVE)
3100                 queue_work(nvme_wq, &ctrl->scan_work);
3101 }
3102 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3103
3104 /*
3105  * This function iterates the namespace list unlocked to allow recovery from
3106  * controller failure. It is up to the caller to ensure the namespace list is
3107  * not modified by scan work while this function is executing.
3108  */
3109 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3110 {
3111         struct nvme_ns *ns, *next;
3112
3113         /*
3114          * The dead states indicates the controller was not gracefully
3115          * disconnected. In that case, we won't be able to flush any data while
3116          * removing the namespaces' disks; fail all the queues now to avoid
3117          * potentially having to clean up the failed sync later.
3118          */
3119         if (ctrl->state == NVME_CTRL_DEAD)
3120                 nvme_kill_queues(ctrl);
3121
3122         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
3123                 nvme_ns_remove(ns);
3124 }
3125 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3126
3127 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3128 {
3129         char *envp[2] = { NULL, NULL };
3130         u32 aen_result = ctrl->aen_result;
3131
3132         ctrl->aen_result = 0;
3133         if (!aen_result)
3134                 return;
3135
3136         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3137         if (!envp[0])
3138                 return;
3139         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3140         kfree(envp[0]);
3141 }
3142
3143 static void nvme_async_event_work(struct work_struct *work)
3144 {
3145         struct nvme_ctrl *ctrl =
3146                 container_of(work, struct nvme_ctrl, async_event_work);
3147
3148         nvme_aen_uevent(ctrl);
3149         ctrl->ops->submit_async_event(ctrl);
3150 }
3151
3152 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3153 {
3154
3155         u32 csts;
3156
3157         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3158                 return false;
3159
3160         if (csts == ~0)
3161                 return false;
3162
3163         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3164 }
3165
3166 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3167 {
3168         struct nvme_fw_slot_info_log *log;
3169
3170         log = kmalloc(sizeof(*log), GFP_KERNEL);
3171         if (!log)
3172                 return;
3173
3174         if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3175                 dev_warn(ctrl->device,
3176                                 "Get FW SLOT INFO log error\n");
3177         kfree(log);
3178 }
3179
3180 static void nvme_fw_act_work(struct work_struct *work)
3181 {
3182         struct nvme_ctrl *ctrl = container_of(work,
3183                                 struct nvme_ctrl, fw_act_work);
3184         unsigned long fw_act_timeout;
3185
3186         if (ctrl->mtfa)
3187                 fw_act_timeout = jiffies +
3188                                 msecs_to_jiffies(ctrl->mtfa * 100);
3189         else
3190                 fw_act_timeout = jiffies +
3191                                 msecs_to_jiffies(admin_timeout * 1000);
3192
3193         nvme_stop_queues(ctrl);
3194         while (nvme_ctrl_pp_status(ctrl)) {
3195                 if (time_after(jiffies, fw_act_timeout)) {
3196                         dev_warn(ctrl->device,
3197                                 "Fw activation timeout, reset controller\n");
3198                         nvme_reset_ctrl(ctrl);
3199                         break;
3200                 }
3201                 msleep(100);
3202         }
3203
3204         if (ctrl->state != NVME_CTRL_LIVE)
3205                 return;
3206
3207         nvme_start_queues(ctrl);
3208         /* read FW slot information to clear the AER */
3209         nvme_get_fw_slot_info(ctrl);
3210 }
3211
3212 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3213                 union nvme_result *res)
3214 {
3215         u32 result = le32_to_cpu(res->u32);
3216
3217         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3218                 return;
3219
3220         switch (result & 0x7) {
3221         case NVME_AER_ERROR:
3222         case NVME_AER_SMART:
3223         case NVME_AER_CSS:
3224         case NVME_AER_VS:
3225                 ctrl->aen_result = result;
3226                 break;
3227         default:
3228                 break;
3229         }
3230
3231         switch (result & 0xff07) {
3232         case NVME_AER_NOTICE_NS_CHANGED:
3233                 dev_info(ctrl->device, "rescanning\n");
3234                 nvme_queue_scan(ctrl);
3235                 break;
3236         case NVME_AER_NOTICE_FW_ACT_STARTING:
3237                 queue_work(nvme_wq, &ctrl->fw_act_work);
3238                 break;
3239         default:
3240                 dev_warn(ctrl->device, "async event result %08x\n", result);
3241         }
3242         queue_work(nvme_wq, &ctrl->async_event_work);
3243 }
3244 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3245
3246 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3247 {
3248         nvme_stop_keep_alive(ctrl);
3249         flush_work(&ctrl->async_event_work);
3250         flush_work(&ctrl->scan_work);
3251         cancel_work_sync(&ctrl->fw_act_work);
3252 }
3253 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3254
3255 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3256 {
3257         if (ctrl->kato)
3258                 nvme_start_keep_alive(ctrl);
3259
3260         if (ctrl->queue_count > 1) {
3261                 nvme_queue_scan(ctrl);
3262                 queue_work(nvme_wq, &ctrl->async_event_work);
3263                 nvme_start_queues(ctrl);
3264         }
3265 }
3266 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3267
3268 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3269 {
3270         cdev_device_del(&ctrl->cdev, ctrl->device);
3271 }
3272 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3273
3274 static void nvme_free_ctrl(struct device *dev)
3275 {
3276         struct nvme_ctrl *ctrl =
3277                 container_of(dev, struct nvme_ctrl, ctrl_device);
3278         struct nvme_subsystem *subsys = ctrl->subsys;
3279
3280         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3281         kfree(ctrl->effects);
3282
3283         if (subsys) {
3284                 mutex_lock(&subsys->lock);
3285                 list_del(&ctrl->subsys_entry);
3286                 mutex_unlock(&subsys->lock);
3287                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3288         }
3289
3290         ctrl->ops->free_ctrl(ctrl);
3291
3292         if (subsys)
3293                 nvme_put_subsystem(subsys);
3294 }
3295
3296 /*
3297  * Initialize a NVMe controller structures.  This needs to be called during
3298  * earliest initialization so that we have the initialized structured around
3299  * during probing.
3300  */
3301 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3302                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3303 {
3304         int ret;
3305
3306         ctrl->state = NVME_CTRL_NEW;
3307         spin_lock_init(&ctrl->lock);
3308         INIT_LIST_HEAD(&ctrl->namespaces);
3309         mutex_init(&ctrl->namespaces_mutex);
3310         ctrl->dev = dev;
3311         ctrl->ops = ops;
3312         ctrl->quirks = quirks;
3313         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3314         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3315         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3316         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3317
3318         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3319         if (ret < 0)
3320                 goto out;
3321         ctrl->instance = ret;
3322
3323         device_initialize(&ctrl->ctrl_device);
3324         ctrl->device = &ctrl->ctrl_device;
3325         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3326         ctrl->device->class = nvme_class;
3327         ctrl->device->parent = ctrl->dev;
3328         ctrl->device->groups = nvme_dev_attr_groups;
3329         ctrl->device->release = nvme_free_ctrl;
3330         dev_set_drvdata(ctrl->device, ctrl);
3331         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3332         if (ret)
3333                 goto out_release_instance;
3334
3335         cdev_init(&ctrl->cdev, &nvme_dev_fops);
3336         ctrl->cdev.owner = ops->module;
3337         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3338         if (ret)
3339                 goto out_free_name;
3340
3341         /*
3342          * Initialize latency tolerance controls.  The sysfs files won't
3343          * be visible to userspace unless the device actually supports APST.
3344          */
3345         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3346         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3347                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3348
3349         return 0;
3350 out_free_name:
3351         kfree_const(dev->kobj.name);
3352 out_release_instance:
3353         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3354 out:
3355         return ret;
3356 }
3357 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3358
3359 /**
3360  * nvme_kill_queues(): Ends all namespace queues
3361  * @ctrl: the dead controller that needs to end
3362  *
3363  * Call this function when the driver determines it is unable to get the
3364  * controller in a state capable of servicing IO.
3365  */
3366 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3367 {
3368         struct nvme_ns *ns;
3369
3370         mutex_lock(&ctrl->namespaces_mutex);
3371
3372         /* Forcibly unquiesce queues to avoid blocking dispatch */
3373         if (ctrl->admin_q)
3374                 blk_mq_unquiesce_queue(ctrl->admin_q);
3375
3376         list_for_each_entry(ns, &ctrl->namespaces, list) {
3377                 /*
3378                  * Revalidating a dead namespace sets capacity to 0. This will
3379                  * end buffered writers dirtying pages that can't be synced.
3380                  */
3381                 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3382                         continue;
3383                 revalidate_disk(ns->disk);
3384                 blk_set_queue_dying(ns->queue);
3385
3386                 /* Forcibly unquiesce queues to avoid blocking dispatch */
3387                 blk_mq_unquiesce_queue(ns->queue);
3388         }
3389         mutex_unlock(&ctrl->namespaces_mutex);
3390 }
3391 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3392
3393 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3394 {
3395         struct nvme_ns *ns;
3396
3397         mutex_lock(&ctrl->namespaces_mutex);
3398         list_for_each_entry(ns, &ctrl->namespaces, list)
3399                 blk_mq_unfreeze_queue(ns->queue);
3400         mutex_unlock(&ctrl->namespaces_mutex);
3401 }
3402 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3403
3404 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3405 {
3406         struct nvme_ns *ns;
3407
3408         mutex_lock(&ctrl->namespaces_mutex);
3409         list_for_each_entry(ns, &ctrl->namespaces, list) {
3410                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3411                 if (timeout <= 0)
3412                         break;
3413         }
3414         mutex_unlock(&ctrl->namespaces_mutex);
3415 }
3416 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3417
3418 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3419 {
3420         struct nvme_ns *ns;
3421
3422         mutex_lock(&ctrl->namespaces_mutex);
3423         list_for_each_entry(ns, &ctrl->namespaces, list)
3424                 blk_mq_freeze_queue_wait(ns->queue);
3425         mutex_unlock(&ctrl->namespaces_mutex);
3426 }
3427 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3428
3429 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3430 {
3431         struct nvme_ns *ns;
3432
3433         mutex_lock(&ctrl->namespaces_mutex);
3434         list_for_each_entry(ns, &ctrl->namespaces, list)
3435                 blk_freeze_queue_start(ns->queue);
3436         mutex_unlock(&ctrl->namespaces_mutex);
3437 }
3438 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3439
3440 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3441 {
3442         struct nvme_ns *ns;
3443
3444         mutex_lock(&ctrl->namespaces_mutex);
3445         list_for_each_entry(ns, &ctrl->namespaces, list)
3446                 blk_mq_quiesce_queue(ns->queue);
3447         mutex_unlock(&ctrl->namespaces_mutex);
3448 }
3449 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3450
3451 void nvme_start_queues(struct nvme_ctrl *ctrl)
3452 {
3453         struct nvme_ns *ns;
3454
3455         mutex_lock(&ctrl->namespaces_mutex);
3456         list_for_each_entry(ns, &ctrl->namespaces, list)
3457                 blk_mq_unquiesce_queue(ns->queue);
3458         mutex_unlock(&ctrl->namespaces_mutex);
3459 }
3460 EXPORT_SYMBOL_GPL(nvme_start_queues);
3461
3462 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3463 {
3464         if (!ctrl->ops->reinit_request)
3465                 return 0;
3466
3467         return blk_mq_tagset_iter(set, set->driver_data,
3468                         ctrl->ops->reinit_request);
3469 }
3470 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3471
3472 int __init nvme_core_init(void)
3473 {
3474         int result;
3475
3476         nvme_wq = alloc_workqueue("nvme-wq",
3477                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3478         if (!nvme_wq)
3479                 return -ENOMEM;
3480
3481         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3482         if (result < 0)
3483                 goto destroy_wq;
3484
3485         nvme_class = class_create(THIS_MODULE, "nvme");
3486         if (IS_ERR(nvme_class)) {
3487                 result = PTR_ERR(nvme_class);
3488                 goto unregister_chrdev;
3489         }
3490
3491         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3492         if (IS_ERR(nvme_subsys_class)) {
3493                 result = PTR_ERR(nvme_subsys_class);
3494                 goto destroy_class;
3495         }
3496         return 0;
3497
3498 destroy_class:
3499         class_destroy(nvme_class);
3500 unregister_chrdev:
3501         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3502 destroy_wq:
3503         destroy_workqueue(nvme_wq);
3504         return result;
3505 }
3506
3507 void nvme_core_exit(void)
3508 {
3509         ida_destroy(&nvme_subsystems_ida);
3510         class_destroy(nvme_subsys_class);
3511         class_destroy(nvme_class);
3512         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3513         destroy_workqueue(nvme_wq);
3514 }
3515
3516 MODULE_LICENSE("GPL");
3517 MODULE_VERSION("1.0");
3518 module_init(nvme_core_init);
3519 module_exit(nvme_core_exit);