Merge branch 'timers/urgent' into timers/core
[sfrench/cifs-2.6.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned int admin_timeout = 60;
38 module_param(admin_timeout, uint, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned int nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54
55 static unsigned long default_ps_max_latency_us = 100000;
56 module_param(default_ps_max_latency_us, ulong, 0644);
57 MODULE_PARM_DESC(default_ps_max_latency_us,
58                  "max power saving latency for new devices; use PM QOS to change per device");
59
60 static bool force_apst;
61 module_param(force_apst, bool, 0644);
62 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
63
64 static bool streams;
65 module_param(streams, bool, 0644);
66 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
67
68 struct workqueue_struct *nvme_wq;
69 EXPORT_SYMBOL_GPL(nvme_wq);
70
71 static DEFINE_IDA(nvme_subsystems_ida);
72 static LIST_HEAD(nvme_subsystems);
73 static DEFINE_MUTEX(nvme_subsystems_lock);
74
75 static DEFINE_IDA(nvme_instance_ida);
76 static dev_t nvme_chr_devt;
77 static struct class *nvme_class;
78 static struct class *nvme_subsys_class;
79
80 static void nvme_ns_remove(struct nvme_ns *ns);
81 static int nvme_revalidate_disk(struct gendisk *disk);
82
83 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
84 {
85         return cpu_to_le32((((size / 4) - 1) << 16) | lid);
86 }
87
88 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
89 {
90         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
91                 return -EBUSY;
92         if (!queue_work(nvme_wq, &ctrl->reset_work))
93                 return -EBUSY;
94         return 0;
95 }
96 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
97
98 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
99 {
100         int ret;
101
102         ret = nvme_reset_ctrl(ctrl);
103         if (!ret)
104                 flush_work(&ctrl->reset_work);
105         return ret;
106 }
107
108 static void nvme_delete_ctrl_work(struct work_struct *work)
109 {
110         struct nvme_ctrl *ctrl =
111                 container_of(work, struct nvme_ctrl, delete_work);
112
113         flush_work(&ctrl->reset_work);
114         nvme_stop_ctrl(ctrl);
115         nvme_remove_namespaces(ctrl);
116         ctrl->ops->delete_ctrl(ctrl);
117         nvme_uninit_ctrl(ctrl);
118         nvme_put_ctrl(ctrl);
119 }
120
121 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
122 {
123         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
124                 return -EBUSY;
125         if (!queue_work(nvme_wq, &ctrl->delete_work))
126                 return -EBUSY;
127         return 0;
128 }
129 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
130
131 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
132 {
133         int ret = 0;
134
135         /*
136          * Keep a reference until the work is flushed since ->delete_ctrl
137          * can free the controller.
138          */
139         nvme_get_ctrl(ctrl);
140         ret = nvme_delete_ctrl(ctrl);
141         if (!ret)
142                 flush_work(&ctrl->delete_work);
143         nvme_put_ctrl(ctrl);
144         return ret;
145 }
146 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
147
148 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
149 {
150         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
151 }
152
153 static blk_status_t nvme_error_status(struct request *req)
154 {
155         switch (nvme_req(req)->status & 0x7ff) {
156         case NVME_SC_SUCCESS:
157                 return BLK_STS_OK;
158         case NVME_SC_CAP_EXCEEDED:
159                 return BLK_STS_NOSPC;
160         case NVME_SC_ONCS_NOT_SUPPORTED:
161                 return BLK_STS_NOTSUPP;
162         case NVME_SC_WRITE_FAULT:
163         case NVME_SC_READ_ERROR:
164         case NVME_SC_UNWRITTEN_BLOCK:
165         case NVME_SC_ACCESS_DENIED:
166         case NVME_SC_READ_ONLY:
167                 return BLK_STS_MEDIUM;
168         case NVME_SC_GUARD_CHECK:
169         case NVME_SC_APPTAG_CHECK:
170         case NVME_SC_REFTAG_CHECK:
171         case NVME_SC_INVALID_PI:
172                 return BLK_STS_PROTECTION;
173         case NVME_SC_RESERVATION_CONFLICT:
174                 return BLK_STS_NEXUS;
175         default:
176                 return BLK_STS_IOERR;
177         }
178 }
179
180 static inline bool nvme_req_needs_retry(struct request *req)
181 {
182         if (blk_noretry_request(req))
183                 return false;
184         if (nvme_req(req)->status & NVME_SC_DNR)
185                 return false;
186         if (nvme_req(req)->retries >= nvme_max_retries)
187                 return false;
188         return true;
189 }
190
191 void nvme_complete_rq(struct request *req)
192 {
193         if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
194                 if (nvme_req_needs_failover(req)) {
195                         nvme_failover_req(req);
196                         return;
197                 }
198
199                 if (!blk_queue_dying(req->q)) {
200                         nvme_req(req)->retries++;
201                         blk_mq_requeue_request(req, true);
202                         return;
203                 }
204         }
205
206         blk_mq_end_request(req, nvme_error_status(req));
207 }
208 EXPORT_SYMBOL_GPL(nvme_complete_rq);
209
210 void nvme_cancel_request(struct request *req, void *data, bool reserved)
211 {
212         if (!blk_mq_request_started(req))
213                 return;
214
215         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
216                                 "Cancelling I/O %d", req->tag);
217
218         nvme_req(req)->status = NVME_SC_ABORT_REQ;
219         blk_mq_complete_request(req);
220
221 }
222 EXPORT_SYMBOL_GPL(nvme_cancel_request);
223
224 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
225                 enum nvme_ctrl_state new_state)
226 {
227         enum nvme_ctrl_state old_state;
228         unsigned long flags;
229         bool changed = false;
230
231         spin_lock_irqsave(&ctrl->lock, flags);
232
233         old_state = ctrl->state;
234         switch (new_state) {
235         case NVME_CTRL_LIVE:
236                 switch (old_state) {
237                 case NVME_CTRL_NEW:
238                 case NVME_CTRL_RESETTING:
239                 case NVME_CTRL_RECONNECTING:
240                         changed = true;
241                         /* FALLTHRU */
242                 default:
243                         break;
244                 }
245                 break;
246         case NVME_CTRL_RESETTING:
247                 switch (old_state) {
248                 case NVME_CTRL_NEW:
249                 case NVME_CTRL_LIVE:
250                         changed = true;
251                         /* FALLTHRU */
252                 default:
253                         break;
254                 }
255                 break;
256         case NVME_CTRL_RECONNECTING:
257                 switch (old_state) {
258                 case NVME_CTRL_LIVE:
259                 case NVME_CTRL_RESETTING:
260                         changed = true;
261                         /* FALLTHRU */
262                 default:
263                         break;
264                 }
265                 break;
266         case NVME_CTRL_DELETING:
267                 switch (old_state) {
268                 case NVME_CTRL_LIVE:
269                 case NVME_CTRL_RESETTING:
270                 case NVME_CTRL_RECONNECTING:
271                         changed = true;
272                         /* FALLTHRU */
273                 default:
274                         break;
275                 }
276                 break;
277         case NVME_CTRL_DEAD:
278                 switch (old_state) {
279                 case NVME_CTRL_DELETING:
280                         changed = true;
281                         /* FALLTHRU */
282                 default:
283                         break;
284                 }
285                 break;
286         default:
287                 break;
288         }
289
290         if (changed)
291                 ctrl->state = new_state;
292
293         spin_unlock_irqrestore(&ctrl->lock, flags);
294         if (changed && ctrl->state == NVME_CTRL_LIVE)
295                 nvme_kick_requeue_lists(ctrl);
296         return changed;
297 }
298 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
299
300 static void nvme_free_ns_head(struct kref *ref)
301 {
302         struct nvme_ns_head *head =
303                 container_of(ref, struct nvme_ns_head, ref);
304
305         nvme_mpath_remove_disk(head);
306         ida_simple_remove(&head->subsys->ns_ida, head->instance);
307         list_del_init(&head->entry);
308         cleanup_srcu_struct(&head->srcu);
309         kfree(head);
310 }
311
312 static void nvme_put_ns_head(struct nvme_ns_head *head)
313 {
314         kref_put(&head->ref, nvme_free_ns_head);
315 }
316
317 static void nvme_free_ns(struct kref *kref)
318 {
319         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
320
321         if (ns->ndev)
322                 nvme_nvm_unregister(ns);
323
324         put_disk(ns->disk);
325         nvme_put_ns_head(ns->head);
326         nvme_put_ctrl(ns->ctrl);
327         kfree(ns);
328 }
329
330 static void nvme_put_ns(struct nvme_ns *ns)
331 {
332         kref_put(&ns->kref, nvme_free_ns);
333 }
334
335 struct request *nvme_alloc_request(struct request_queue *q,
336                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
337 {
338         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
339         struct request *req;
340
341         if (qid == NVME_QID_ANY) {
342                 req = blk_mq_alloc_request(q, op, flags);
343         } else {
344                 req = blk_mq_alloc_request_hctx(q, op, flags,
345                                 qid ? qid - 1 : 0);
346         }
347         if (IS_ERR(req))
348                 return req;
349
350         req->cmd_flags |= REQ_FAILFAST_DRIVER;
351         nvme_req(req)->cmd = cmd;
352
353         return req;
354 }
355 EXPORT_SYMBOL_GPL(nvme_alloc_request);
356
357 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
358 {
359         struct nvme_command c;
360
361         memset(&c, 0, sizeof(c));
362
363         c.directive.opcode = nvme_admin_directive_send;
364         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
365         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
366         c.directive.dtype = NVME_DIR_IDENTIFY;
367         c.directive.tdtype = NVME_DIR_STREAMS;
368         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
369
370         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
371 }
372
373 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
374 {
375         return nvme_toggle_streams(ctrl, false);
376 }
377
378 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
379 {
380         return nvme_toggle_streams(ctrl, true);
381 }
382
383 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
384                                   struct streams_directive_params *s, u32 nsid)
385 {
386         struct nvme_command c;
387
388         memset(&c, 0, sizeof(c));
389         memset(s, 0, sizeof(*s));
390
391         c.directive.opcode = nvme_admin_directive_recv;
392         c.directive.nsid = cpu_to_le32(nsid);
393         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
394         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
395         c.directive.dtype = NVME_DIR_STREAMS;
396
397         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
398 }
399
400 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
401 {
402         struct streams_directive_params s;
403         int ret;
404
405         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
406                 return 0;
407         if (!streams)
408                 return 0;
409
410         ret = nvme_enable_streams(ctrl);
411         if (ret)
412                 return ret;
413
414         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
415         if (ret)
416                 return ret;
417
418         ctrl->nssa = le16_to_cpu(s.nssa);
419         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
420                 dev_info(ctrl->device, "too few streams (%u) available\n",
421                                         ctrl->nssa);
422                 nvme_disable_streams(ctrl);
423                 return 0;
424         }
425
426         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
427         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
428         return 0;
429 }
430
431 /*
432  * Check if 'req' has a write hint associated with it. If it does, assign
433  * a valid namespace stream to the write.
434  */
435 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
436                                      struct request *req, u16 *control,
437                                      u32 *dsmgmt)
438 {
439         enum rw_hint streamid = req->write_hint;
440
441         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
442                 streamid = 0;
443         else {
444                 streamid--;
445                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
446                         return;
447
448                 *control |= NVME_RW_DTYPE_STREAMS;
449                 *dsmgmt |= streamid << 16;
450         }
451
452         if (streamid < ARRAY_SIZE(req->q->write_hints))
453                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
454 }
455
456 static inline void nvme_setup_flush(struct nvme_ns *ns,
457                 struct nvme_command *cmnd)
458 {
459         memset(cmnd, 0, sizeof(*cmnd));
460         cmnd->common.opcode = nvme_cmd_flush;
461         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
462 }
463
464 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
465                 struct nvme_command *cmnd)
466 {
467         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
468         struct nvme_dsm_range *range;
469         struct bio *bio;
470
471         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
472         if (!range)
473                 return BLK_STS_RESOURCE;
474
475         __rq_for_each_bio(bio, req) {
476                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
477                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
478
479                 range[n].cattr = cpu_to_le32(0);
480                 range[n].nlb = cpu_to_le32(nlb);
481                 range[n].slba = cpu_to_le64(slba);
482                 n++;
483         }
484
485         if (WARN_ON_ONCE(n != segments)) {
486                 kfree(range);
487                 return BLK_STS_IOERR;
488         }
489
490         memset(cmnd, 0, sizeof(*cmnd));
491         cmnd->dsm.opcode = nvme_cmd_dsm;
492         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
493         cmnd->dsm.nr = cpu_to_le32(segments - 1);
494         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
495
496         req->special_vec.bv_page = virt_to_page(range);
497         req->special_vec.bv_offset = offset_in_page(range);
498         req->special_vec.bv_len = sizeof(*range) * segments;
499         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
500
501         return BLK_STS_OK;
502 }
503
504 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
505                 struct request *req, struct nvme_command *cmnd)
506 {
507         struct nvme_ctrl *ctrl = ns->ctrl;
508         u16 control = 0;
509         u32 dsmgmt = 0;
510
511         if (req->cmd_flags & REQ_FUA)
512                 control |= NVME_RW_FUA;
513         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
514                 control |= NVME_RW_LR;
515
516         if (req->cmd_flags & REQ_RAHEAD)
517                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
518
519         memset(cmnd, 0, sizeof(*cmnd));
520         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
521         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
522         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
523         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
524
525         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
526                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
527
528         if (ns->ms) {
529                 /*
530                  * If formated with metadata, the block layer always provides a
531                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
532                  * we enable the PRACT bit for protection information or set the
533                  * namespace capacity to zero to prevent any I/O.
534                  */
535                 if (!blk_integrity_rq(req)) {
536                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
537                                 return BLK_STS_NOTSUPP;
538                         control |= NVME_RW_PRINFO_PRACT;
539                 }
540
541                 switch (ns->pi_type) {
542                 case NVME_NS_DPS_PI_TYPE3:
543                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
544                         break;
545                 case NVME_NS_DPS_PI_TYPE1:
546                 case NVME_NS_DPS_PI_TYPE2:
547                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
548                                         NVME_RW_PRINFO_PRCHK_REF;
549                         cmnd->rw.reftag = cpu_to_le32(
550                                         nvme_block_nr(ns, blk_rq_pos(req)));
551                         break;
552                 }
553         }
554
555         cmnd->rw.control = cpu_to_le16(control);
556         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
557         return 0;
558 }
559
560 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
561                 struct nvme_command *cmd)
562 {
563         blk_status_t ret = BLK_STS_OK;
564
565         if (!(req->rq_flags & RQF_DONTPREP)) {
566                 nvme_req(req)->retries = 0;
567                 nvme_req(req)->flags = 0;
568                 req->rq_flags |= RQF_DONTPREP;
569         }
570
571         switch (req_op(req)) {
572         case REQ_OP_DRV_IN:
573         case REQ_OP_DRV_OUT:
574                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
575                 break;
576         case REQ_OP_FLUSH:
577                 nvme_setup_flush(ns, cmd);
578                 break;
579         case REQ_OP_WRITE_ZEROES:
580                 /* currently only aliased to deallocate for a few ctrls: */
581         case REQ_OP_DISCARD:
582                 ret = nvme_setup_discard(ns, req, cmd);
583                 break;
584         case REQ_OP_READ:
585         case REQ_OP_WRITE:
586                 ret = nvme_setup_rw(ns, req, cmd);
587                 break;
588         default:
589                 WARN_ON_ONCE(1);
590                 return BLK_STS_IOERR;
591         }
592
593         cmd->common.command_id = req->tag;
594         return ret;
595 }
596 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
597
598 /*
599  * Returns 0 on success.  If the result is negative, it's a Linux error code;
600  * if the result is positive, it's an NVM Express status code
601  */
602 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
603                 union nvme_result *result, void *buffer, unsigned bufflen,
604                 unsigned timeout, int qid, int at_head,
605                 blk_mq_req_flags_t flags)
606 {
607         struct request *req;
608         int ret;
609
610         req = nvme_alloc_request(q, cmd, flags, qid);
611         if (IS_ERR(req))
612                 return PTR_ERR(req);
613
614         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
615
616         if (buffer && bufflen) {
617                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
618                 if (ret)
619                         goto out;
620         }
621
622         blk_execute_rq(req->q, NULL, req, at_head);
623         if (result)
624                 *result = nvme_req(req)->result;
625         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
626                 ret = -EINTR;
627         else
628                 ret = nvme_req(req)->status;
629  out:
630         blk_mq_free_request(req);
631         return ret;
632 }
633 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
634
635 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
636                 void *buffer, unsigned bufflen)
637 {
638         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
639                         NVME_QID_ANY, 0, 0);
640 }
641 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
642
643 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
644                 unsigned len, u32 seed, bool write)
645 {
646         struct bio_integrity_payload *bip;
647         int ret = -ENOMEM;
648         void *buf;
649
650         buf = kmalloc(len, GFP_KERNEL);
651         if (!buf)
652                 goto out;
653
654         ret = -EFAULT;
655         if (write && copy_from_user(buf, ubuf, len))
656                 goto out_free_meta;
657
658         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
659         if (IS_ERR(bip)) {
660                 ret = PTR_ERR(bip);
661                 goto out_free_meta;
662         }
663
664         bip->bip_iter.bi_size = len;
665         bip->bip_iter.bi_sector = seed;
666         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
667                         offset_in_page(buf));
668         if (ret == len)
669                 return buf;
670         ret = -ENOMEM;
671 out_free_meta:
672         kfree(buf);
673 out:
674         return ERR_PTR(ret);
675 }
676
677 static int nvme_submit_user_cmd(struct request_queue *q,
678                 struct nvme_command *cmd, void __user *ubuffer,
679                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
680                 u32 meta_seed, u32 *result, unsigned timeout)
681 {
682         bool write = nvme_is_write(cmd);
683         struct nvme_ns *ns = q->queuedata;
684         struct gendisk *disk = ns ? ns->disk : NULL;
685         struct request *req;
686         struct bio *bio = NULL;
687         void *meta = NULL;
688         int ret;
689
690         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
691         if (IS_ERR(req))
692                 return PTR_ERR(req);
693
694         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
695
696         if (ubuffer && bufflen) {
697                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
698                                 GFP_KERNEL);
699                 if (ret)
700                         goto out;
701                 bio = req->bio;
702                 bio->bi_disk = disk;
703                 if (disk && meta_buffer && meta_len) {
704                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
705                                         meta_seed, write);
706                         if (IS_ERR(meta)) {
707                                 ret = PTR_ERR(meta);
708                                 goto out_unmap;
709                         }
710                 }
711         }
712
713         blk_execute_rq(req->q, disk, req, 0);
714         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
715                 ret = -EINTR;
716         else
717                 ret = nvme_req(req)->status;
718         if (result)
719                 *result = le32_to_cpu(nvme_req(req)->result.u32);
720         if (meta && !ret && !write) {
721                 if (copy_to_user(meta_buffer, meta, meta_len))
722                         ret = -EFAULT;
723         }
724         kfree(meta);
725  out_unmap:
726         if (bio)
727                 blk_rq_unmap_user(bio);
728  out:
729         blk_mq_free_request(req);
730         return ret;
731 }
732
733 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
734 {
735         struct nvme_ctrl *ctrl = rq->end_io_data;
736
737         blk_mq_free_request(rq);
738
739         if (status) {
740                 dev_err(ctrl->device,
741                         "failed nvme_keep_alive_end_io error=%d\n",
742                                 status);
743                 return;
744         }
745
746         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
747 }
748
749 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
750 {
751         struct nvme_command c;
752         struct request *rq;
753
754         memset(&c, 0, sizeof(c));
755         c.common.opcode = nvme_admin_keep_alive;
756
757         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
758                         NVME_QID_ANY);
759         if (IS_ERR(rq))
760                 return PTR_ERR(rq);
761
762         rq->timeout = ctrl->kato * HZ;
763         rq->end_io_data = ctrl;
764
765         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
766
767         return 0;
768 }
769
770 static void nvme_keep_alive_work(struct work_struct *work)
771 {
772         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
773                         struct nvme_ctrl, ka_work);
774
775         if (nvme_keep_alive(ctrl)) {
776                 /* allocation failure, reset the controller */
777                 dev_err(ctrl->device, "keep-alive failed\n");
778                 nvme_reset_ctrl(ctrl);
779                 return;
780         }
781 }
782
783 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
784 {
785         if (unlikely(ctrl->kato == 0))
786                 return;
787
788         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
789         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
790 }
791 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
792
793 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
794 {
795         if (unlikely(ctrl->kato == 0))
796                 return;
797
798         cancel_delayed_work_sync(&ctrl->ka_work);
799 }
800 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
801
802 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
803 {
804         struct nvme_command c = { };
805         int error;
806
807         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
808         c.identify.opcode = nvme_admin_identify;
809         c.identify.cns = NVME_ID_CNS_CTRL;
810
811         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
812         if (!*id)
813                 return -ENOMEM;
814
815         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
816                         sizeof(struct nvme_id_ctrl));
817         if (error)
818                 kfree(*id);
819         return error;
820 }
821
822 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
823                 struct nvme_ns_ids *ids)
824 {
825         struct nvme_command c = { };
826         int status;
827         void *data;
828         int pos;
829         int len;
830
831         c.identify.opcode = nvme_admin_identify;
832         c.identify.nsid = cpu_to_le32(nsid);
833         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
834
835         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
836         if (!data)
837                 return -ENOMEM;
838
839         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
840                                       NVME_IDENTIFY_DATA_SIZE);
841         if (status)
842                 goto free_data;
843
844         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
845                 struct nvme_ns_id_desc *cur = data + pos;
846
847                 if (cur->nidl == 0)
848                         break;
849
850                 switch (cur->nidt) {
851                 case NVME_NIDT_EUI64:
852                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
853                                 dev_warn(ctrl->device,
854                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
855                                          cur->nidl);
856                                 goto free_data;
857                         }
858                         len = NVME_NIDT_EUI64_LEN;
859                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
860                         break;
861                 case NVME_NIDT_NGUID:
862                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
863                                 dev_warn(ctrl->device,
864                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
865                                          cur->nidl);
866                                 goto free_data;
867                         }
868                         len = NVME_NIDT_NGUID_LEN;
869                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
870                         break;
871                 case NVME_NIDT_UUID:
872                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
873                                 dev_warn(ctrl->device,
874                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
875                                          cur->nidl);
876                                 goto free_data;
877                         }
878                         len = NVME_NIDT_UUID_LEN;
879                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
880                         break;
881                 default:
882                         /* Skip unnkown types */
883                         len = cur->nidl;
884                         break;
885                 }
886
887                 len += sizeof(*cur);
888         }
889 free_data:
890         kfree(data);
891         return status;
892 }
893
894 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
895 {
896         struct nvme_command c = { };
897
898         c.identify.opcode = nvme_admin_identify;
899         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
900         c.identify.nsid = cpu_to_le32(nsid);
901         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
902 }
903
904 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
905                 unsigned nsid)
906 {
907         struct nvme_id_ns *id;
908         struct nvme_command c = { };
909         int error;
910
911         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
912         c.identify.opcode = nvme_admin_identify;
913         c.identify.nsid = cpu_to_le32(nsid);
914         c.identify.cns = NVME_ID_CNS_NS;
915
916         id = kmalloc(sizeof(*id), GFP_KERNEL);
917         if (!id)
918                 return NULL;
919
920         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
921         if (error) {
922                 dev_warn(ctrl->device, "Identify namespace failed\n");
923                 kfree(id);
924                 return NULL;
925         }
926
927         return id;
928 }
929
930 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
931                       void *buffer, size_t buflen, u32 *result)
932 {
933         struct nvme_command c;
934         union nvme_result res;
935         int ret;
936
937         memset(&c, 0, sizeof(c));
938         c.features.opcode = nvme_admin_set_features;
939         c.features.fid = cpu_to_le32(fid);
940         c.features.dword11 = cpu_to_le32(dword11);
941
942         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
943                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
944         if (ret >= 0 && result)
945                 *result = le32_to_cpu(res.u32);
946         return ret;
947 }
948
949 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
950 {
951         u32 q_count = (*count - 1) | ((*count - 1) << 16);
952         u32 result;
953         int status, nr_io_queues;
954
955         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
956                         &result);
957         if (status < 0)
958                 return status;
959
960         /*
961          * Degraded controllers might return an error when setting the queue
962          * count.  We still want to be able to bring them online and offer
963          * access to the admin queue, as that might be only way to fix them up.
964          */
965         if (status > 0) {
966                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
967                 *count = 0;
968         } else {
969                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
970                 *count = min(*count, nr_io_queues);
971         }
972
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
976
977 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
978 {
979         struct nvme_user_io io;
980         struct nvme_command c;
981         unsigned length, meta_len;
982         void __user *metadata;
983
984         if (copy_from_user(&io, uio, sizeof(io)))
985                 return -EFAULT;
986         if (io.flags)
987                 return -EINVAL;
988
989         switch (io.opcode) {
990         case nvme_cmd_write:
991         case nvme_cmd_read:
992         case nvme_cmd_compare:
993                 break;
994         default:
995                 return -EINVAL;
996         }
997
998         length = (io.nblocks + 1) << ns->lba_shift;
999         meta_len = (io.nblocks + 1) * ns->ms;
1000         metadata = (void __user *)(uintptr_t)io.metadata;
1001
1002         if (ns->ext) {
1003                 length += meta_len;
1004                 meta_len = 0;
1005         } else if (meta_len) {
1006                 if ((io.metadata & 3) || !io.metadata)
1007                         return -EINVAL;
1008         }
1009
1010         memset(&c, 0, sizeof(c));
1011         c.rw.opcode = io.opcode;
1012         c.rw.flags = io.flags;
1013         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1014         c.rw.slba = cpu_to_le64(io.slba);
1015         c.rw.length = cpu_to_le16(io.nblocks);
1016         c.rw.control = cpu_to_le16(io.control);
1017         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1018         c.rw.reftag = cpu_to_le32(io.reftag);
1019         c.rw.apptag = cpu_to_le16(io.apptag);
1020         c.rw.appmask = cpu_to_le16(io.appmask);
1021
1022         return nvme_submit_user_cmd(ns->queue, &c,
1023                         (void __user *)(uintptr_t)io.addr, length,
1024                         metadata, meta_len, io.slba, NULL, 0);
1025 }
1026
1027 static u32 nvme_known_admin_effects(u8 opcode)
1028 {
1029         switch (opcode) {
1030         case nvme_admin_format_nvm:
1031                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1032                                         NVME_CMD_EFFECTS_CSE_MASK;
1033         case nvme_admin_sanitize_nvm:
1034                 return NVME_CMD_EFFECTS_CSE_MASK;
1035         default:
1036                 break;
1037         }
1038         return 0;
1039 }
1040
1041 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1042                                                                 u8 opcode)
1043 {
1044         u32 effects = 0;
1045
1046         if (ns) {
1047                 if (ctrl->effects)
1048                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1049                 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1050                         dev_warn(ctrl->device,
1051                                  "IO command:%02x has unhandled effects:%08x\n",
1052                                  opcode, effects);
1053                 return 0;
1054         }
1055
1056         if (ctrl->effects)
1057                 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1058         else
1059                 effects = nvme_known_admin_effects(opcode);
1060
1061         /*
1062          * For simplicity, IO to all namespaces is quiesced even if the command
1063          * effects say only one namespace is affected.
1064          */
1065         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1066                 nvme_start_freeze(ctrl);
1067                 nvme_wait_freeze(ctrl);
1068         }
1069         return effects;
1070 }
1071
1072 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1073 {
1074         struct nvme_ns *ns;
1075
1076         mutex_lock(&ctrl->namespaces_mutex);
1077         list_for_each_entry(ns, &ctrl->namespaces, list) {
1078                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1079                         nvme_ns_remove(ns);
1080         }
1081         mutex_unlock(&ctrl->namespaces_mutex);
1082 }
1083
1084 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1085 {
1086         /*
1087          * Revalidate LBA changes prior to unfreezing. This is necessary to
1088          * prevent memory corruption if a logical block size was changed by
1089          * this command.
1090          */
1091         if (effects & NVME_CMD_EFFECTS_LBCC)
1092                 nvme_update_formats(ctrl);
1093         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1094                 nvme_unfreeze(ctrl);
1095         if (effects & NVME_CMD_EFFECTS_CCC)
1096                 nvme_init_identify(ctrl);
1097         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1098                 nvme_queue_scan(ctrl);
1099 }
1100
1101 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1102                         struct nvme_passthru_cmd __user *ucmd)
1103 {
1104         struct nvme_passthru_cmd cmd;
1105         struct nvme_command c;
1106         unsigned timeout = 0;
1107         u32 effects;
1108         int status;
1109
1110         if (!capable(CAP_SYS_ADMIN))
1111                 return -EACCES;
1112         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1113                 return -EFAULT;
1114         if (cmd.flags)
1115                 return -EINVAL;
1116
1117         memset(&c, 0, sizeof(c));
1118         c.common.opcode = cmd.opcode;
1119         c.common.flags = cmd.flags;
1120         c.common.nsid = cpu_to_le32(cmd.nsid);
1121         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1122         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1123         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1124         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1125         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1126         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1127         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1128         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1129
1130         if (cmd.timeout_ms)
1131                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1132
1133         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1134         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1135                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1136                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1137                         0, &cmd.result, timeout);
1138         nvme_passthru_end(ctrl, effects);
1139
1140         if (status >= 0) {
1141                 if (put_user(cmd.result, &ucmd->result))
1142                         return -EFAULT;
1143         }
1144
1145         return status;
1146 }
1147
1148 /*
1149  * Issue ioctl requests on the first available path.  Note that unlike normal
1150  * block layer requests we will not retry failed request on another controller.
1151  */
1152 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1153                 struct nvme_ns_head **head, int *srcu_idx)
1154 {
1155 #ifdef CONFIG_NVME_MULTIPATH
1156         if (disk->fops == &nvme_ns_head_ops) {
1157                 *head = disk->private_data;
1158                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1159                 return nvme_find_path(*head);
1160         }
1161 #endif
1162         *head = NULL;
1163         *srcu_idx = -1;
1164         return disk->private_data;
1165 }
1166
1167 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1168 {
1169         if (head)
1170                 srcu_read_unlock(&head->srcu, idx);
1171 }
1172
1173 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1174 {
1175         switch (cmd) {
1176         case NVME_IOCTL_ID:
1177                 force_successful_syscall_return();
1178                 return ns->head->ns_id;
1179         case NVME_IOCTL_ADMIN_CMD:
1180                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1181         case NVME_IOCTL_IO_CMD:
1182                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1183         case NVME_IOCTL_SUBMIT_IO:
1184                 return nvme_submit_io(ns, (void __user *)arg);
1185         default:
1186 #ifdef CONFIG_NVM
1187                 if (ns->ndev)
1188                         return nvme_nvm_ioctl(ns, cmd, arg);
1189 #endif
1190                 if (is_sed_ioctl(cmd))
1191                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
1192                                          (void __user *) arg);
1193                 return -ENOTTY;
1194         }
1195 }
1196
1197 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1198                 unsigned int cmd, unsigned long arg)
1199 {
1200         struct nvme_ns_head *head = NULL;
1201         struct nvme_ns *ns;
1202         int srcu_idx, ret;
1203
1204         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1205         if (unlikely(!ns))
1206                 ret = -EWOULDBLOCK;
1207         else
1208                 ret = nvme_ns_ioctl(ns, cmd, arg);
1209         nvme_put_ns_from_disk(head, srcu_idx);
1210         return ret;
1211 }
1212
1213 static int nvme_open(struct block_device *bdev, fmode_t mode)
1214 {
1215         struct nvme_ns *ns = bdev->bd_disk->private_data;
1216
1217 #ifdef CONFIG_NVME_MULTIPATH
1218         /* should never be called due to GENHD_FL_HIDDEN */
1219         if (WARN_ON_ONCE(ns->head->disk))
1220                 return -ENXIO;
1221 #endif
1222         if (!kref_get_unless_zero(&ns->kref))
1223                 return -ENXIO;
1224         return 0;
1225 }
1226
1227 static void nvme_release(struct gendisk *disk, fmode_t mode)
1228 {
1229         nvme_put_ns(disk->private_data);
1230 }
1231
1232 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1233 {
1234         /* some standard values */
1235         geo->heads = 1 << 6;
1236         geo->sectors = 1 << 5;
1237         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1238         return 0;
1239 }
1240
1241 #ifdef CONFIG_BLK_DEV_INTEGRITY
1242 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1243 {
1244         struct blk_integrity integrity;
1245
1246         memset(&integrity, 0, sizeof(integrity));
1247         switch (pi_type) {
1248         case NVME_NS_DPS_PI_TYPE3:
1249                 integrity.profile = &t10_pi_type3_crc;
1250                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1251                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1252                 break;
1253         case NVME_NS_DPS_PI_TYPE1:
1254         case NVME_NS_DPS_PI_TYPE2:
1255                 integrity.profile = &t10_pi_type1_crc;
1256                 integrity.tag_size = sizeof(u16);
1257                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1258                 break;
1259         default:
1260                 integrity.profile = NULL;
1261                 break;
1262         }
1263         integrity.tuple_size = ms;
1264         blk_integrity_register(disk, &integrity);
1265         blk_queue_max_integrity_segments(disk->queue, 1);
1266 }
1267 #else
1268 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1269 {
1270 }
1271 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1272
1273 static void nvme_set_chunk_size(struct nvme_ns *ns)
1274 {
1275         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1276         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1277 }
1278
1279 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1280                 unsigned stream_alignment, struct request_queue *queue)
1281 {
1282         u32 size = queue_logical_block_size(queue);
1283
1284         if (stream_alignment)
1285                 size *= stream_alignment;
1286
1287         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1288                         NVME_DSM_MAX_RANGES);
1289
1290         queue->limits.discard_alignment = 0;
1291         queue->limits.discard_granularity = size;
1292
1293         blk_queue_max_discard_sectors(queue, UINT_MAX);
1294         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1295         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, queue);
1296
1297         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1298                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1299 }
1300
1301 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1302                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1303 {
1304         memset(ids, 0, sizeof(*ids));
1305
1306         if (ctrl->vs >= NVME_VS(1, 1, 0))
1307                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1308         if (ctrl->vs >= NVME_VS(1, 2, 0))
1309                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1310         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1311                  /* Don't treat error as fatal we potentially
1312                   * already have a NGUID or EUI-64
1313                   */
1314                 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1315                         dev_warn(ctrl->device,
1316                                  "%s: Identify Descriptors failed\n", __func__);
1317         }
1318 }
1319
1320 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1321 {
1322         return !uuid_is_null(&ids->uuid) ||
1323                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1324                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1325 }
1326
1327 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1328 {
1329         return uuid_equal(&a->uuid, &b->uuid) &&
1330                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1331                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1332 }
1333
1334 static void nvme_update_disk_info(struct gendisk *disk,
1335                 struct nvme_ns *ns, struct nvme_id_ns *id)
1336 {
1337         sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1338         unsigned short bs = 1 << ns->lba_shift;
1339         unsigned stream_alignment = 0;
1340
1341         if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1342                 stream_alignment = ns->sws * ns->sgs;
1343
1344         blk_mq_freeze_queue(disk->queue);
1345         blk_integrity_unregister(disk);
1346
1347         blk_queue_logical_block_size(disk->queue, bs);
1348         blk_queue_physical_block_size(disk->queue, bs);
1349         blk_queue_io_min(disk->queue, bs);
1350
1351         if (ns->ms && !ns->ext &&
1352             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1353                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1354         if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1355                 capacity = 0;
1356         set_capacity(disk, capacity);
1357
1358         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1359                 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1360         blk_mq_unfreeze_queue(disk->queue);
1361 }
1362
1363 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1364 {
1365         struct nvme_ns *ns = disk->private_data;
1366
1367         /*
1368          * If identify namespace failed, use default 512 byte block size so
1369          * block layer can use before failing read/write for 0 capacity.
1370          */
1371         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1372         if (ns->lba_shift == 0)
1373                 ns->lba_shift = 9;
1374         ns->noiob = le16_to_cpu(id->noiob);
1375         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1376         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1377         /* the PI implementation requires metadata equal t10 pi tuple size */
1378         if (ns->ms == sizeof(struct t10_pi_tuple))
1379                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1380         else
1381                 ns->pi_type = 0;
1382
1383         if (ns->noiob)
1384                 nvme_set_chunk_size(ns);
1385         nvme_update_disk_info(disk, ns, id);
1386 #ifdef CONFIG_NVME_MULTIPATH
1387         if (ns->head->disk)
1388                 nvme_update_disk_info(ns->head->disk, ns, id);
1389 #endif
1390 }
1391
1392 static int nvme_revalidate_disk(struct gendisk *disk)
1393 {
1394         struct nvme_ns *ns = disk->private_data;
1395         struct nvme_ctrl *ctrl = ns->ctrl;
1396         struct nvme_id_ns *id;
1397         struct nvme_ns_ids ids;
1398         int ret = 0;
1399
1400         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1401                 set_capacity(disk, 0);
1402                 return -ENODEV;
1403         }
1404
1405         id = nvme_identify_ns(ctrl, ns->head->ns_id);
1406         if (!id)
1407                 return -ENODEV;
1408
1409         if (id->ncap == 0) {
1410                 ret = -ENODEV;
1411                 goto out;
1412         }
1413
1414         __nvme_revalidate_disk(disk, id);
1415         nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1416         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1417                 dev_err(ctrl->device,
1418                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1419                 ret = -ENODEV;
1420         }
1421
1422 out:
1423         kfree(id);
1424         return ret;
1425 }
1426
1427 static char nvme_pr_type(enum pr_type type)
1428 {
1429         switch (type) {
1430         case PR_WRITE_EXCLUSIVE:
1431                 return 1;
1432         case PR_EXCLUSIVE_ACCESS:
1433                 return 2;
1434         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1435                 return 3;
1436         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1437                 return 4;
1438         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1439                 return 5;
1440         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1441                 return 6;
1442         default:
1443                 return 0;
1444         }
1445 };
1446
1447 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1448                                 u64 key, u64 sa_key, u8 op)
1449 {
1450         struct nvme_ns_head *head = NULL;
1451         struct nvme_ns *ns;
1452         struct nvme_command c;
1453         int srcu_idx, ret;
1454         u8 data[16] = { 0, };
1455
1456         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1457         if (unlikely(!ns))
1458                 return -EWOULDBLOCK;
1459
1460         put_unaligned_le64(key, &data[0]);
1461         put_unaligned_le64(sa_key, &data[8]);
1462
1463         memset(&c, 0, sizeof(c));
1464         c.common.opcode = op;
1465         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1466         c.common.cdw10[0] = cpu_to_le32(cdw10);
1467
1468         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1469         nvme_put_ns_from_disk(head, srcu_idx);
1470         return ret;
1471 }
1472
1473 static int nvme_pr_register(struct block_device *bdev, u64 old,
1474                 u64 new, unsigned flags)
1475 {
1476         u32 cdw10;
1477
1478         if (flags & ~PR_FL_IGNORE_KEY)
1479                 return -EOPNOTSUPP;
1480
1481         cdw10 = old ? 2 : 0;
1482         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1483         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1484         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1485 }
1486
1487 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1488                 enum pr_type type, unsigned flags)
1489 {
1490         u32 cdw10;
1491
1492         if (flags & ~PR_FL_IGNORE_KEY)
1493                 return -EOPNOTSUPP;
1494
1495         cdw10 = nvme_pr_type(type) << 8;
1496         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1497         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1498 }
1499
1500 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1501                 enum pr_type type, bool abort)
1502 {
1503         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1504         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1505 }
1506
1507 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1508 {
1509         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1510         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1511 }
1512
1513 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1514 {
1515         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1516         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1517 }
1518
1519 static const struct pr_ops nvme_pr_ops = {
1520         .pr_register    = nvme_pr_register,
1521         .pr_reserve     = nvme_pr_reserve,
1522         .pr_release     = nvme_pr_release,
1523         .pr_preempt     = nvme_pr_preempt,
1524         .pr_clear       = nvme_pr_clear,
1525 };
1526
1527 #ifdef CONFIG_BLK_SED_OPAL
1528 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1529                 bool send)
1530 {
1531         struct nvme_ctrl *ctrl = data;
1532         struct nvme_command cmd;
1533
1534         memset(&cmd, 0, sizeof(cmd));
1535         if (send)
1536                 cmd.common.opcode = nvme_admin_security_send;
1537         else
1538                 cmd.common.opcode = nvme_admin_security_recv;
1539         cmd.common.nsid = 0;
1540         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1541         cmd.common.cdw10[1] = cpu_to_le32(len);
1542
1543         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1544                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1545 }
1546 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1547 #endif /* CONFIG_BLK_SED_OPAL */
1548
1549 static const struct block_device_operations nvme_fops = {
1550         .owner          = THIS_MODULE,
1551         .ioctl          = nvme_ioctl,
1552         .compat_ioctl   = nvme_ioctl,
1553         .open           = nvme_open,
1554         .release        = nvme_release,
1555         .getgeo         = nvme_getgeo,
1556         .revalidate_disk= nvme_revalidate_disk,
1557         .pr_ops         = &nvme_pr_ops,
1558 };
1559
1560 #ifdef CONFIG_NVME_MULTIPATH
1561 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1562 {
1563         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1564
1565         if (!kref_get_unless_zero(&head->ref))
1566                 return -ENXIO;
1567         return 0;
1568 }
1569
1570 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1571 {
1572         nvme_put_ns_head(disk->private_data);
1573 }
1574
1575 const struct block_device_operations nvme_ns_head_ops = {
1576         .owner          = THIS_MODULE,
1577         .open           = nvme_ns_head_open,
1578         .release        = nvme_ns_head_release,
1579         .ioctl          = nvme_ioctl,
1580         .compat_ioctl   = nvme_ioctl,
1581         .getgeo         = nvme_getgeo,
1582         .pr_ops         = &nvme_pr_ops,
1583 };
1584 #endif /* CONFIG_NVME_MULTIPATH */
1585
1586 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1587 {
1588         unsigned long timeout =
1589                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1590         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1591         int ret;
1592
1593         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1594                 if (csts == ~0)
1595                         return -ENODEV;
1596                 if ((csts & NVME_CSTS_RDY) == bit)
1597                         break;
1598
1599                 msleep(100);
1600                 if (fatal_signal_pending(current))
1601                         return -EINTR;
1602                 if (time_after(jiffies, timeout)) {
1603                         dev_err(ctrl->device,
1604                                 "Device not ready; aborting %s\n", enabled ?
1605                                                 "initialisation" : "reset");
1606                         return -ENODEV;
1607                 }
1608         }
1609
1610         return ret;
1611 }
1612
1613 /*
1614  * If the device has been passed off to us in an enabled state, just clear
1615  * the enabled bit.  The spec says we should set the 'shutdown notification
1616  * bits', but doing so may cause the device to complete commands to the
1617  * admin queue ... and we don't know what memory that might be pointing at!
1618  */
1619 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1620 {
1621         int ret;
1622
1623         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1624         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1625
1626         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1627         if (ret)
1628                 return ret;
1629
1630         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1631                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1632
1633         return nvme_wait_ready(ctrl, cap, false);
1634 }
1635 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1636
1637 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1638 {
1639         /*
1640          * Default to a 4K page size, with the intention to update this
1641          * path in the future to accomodate architectures with differing
1642          * kernel and IO page sizes.
1643          */
1644         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1645         int ret;
1646
1647         if (page_shift < dev_page_min) {
1648                 dev_err(ctrl->device,
1649                         "Minimum device page size %u too large for host (%u)\n",
1650                         1 << dev_page_min, 1 << page_shift);
1651                 return -ENODEV;
1652         }
1653
1654         ctrl->page_size = 1 << page_shift;
1655
1656         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1657         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1658         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1659         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1660         ctrl->ctrl_config |= NVME_CC_ENABLE;
1661
1662         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1663         if (ret)
1664                 return ret;
1665         return nvme_wait_ready(ctrl, cap, true);
1666 }
1667 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1668
1669 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1670 {
1671         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1672         u32 csts;
1673         int ret;
1674
1675         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1676         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1677
1678         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1679         if (ret)
1680                 return ret;
1681
1682         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1683                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1684                         break;
1685
1686                 msleep(100);
1687                 if (fatal_signal_pending(current))
1688                         return -EINTR;
1689                 if (time_after(jiffies, timeout)) {
1690                         dev_err(ctrl->device,
1691                                 "Device shutdown incomplete; abort shutdown\n");
1692                         return -ENODEV;
1693                 }
1694         }
1695
1696         return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1699
1700 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1701                 struct request_queue *q)
1702 {
1703         bool vwc = false;
1704
1705         if (ctrl->max_hw_sectors) {
1706                 u32 max_segments =
1707                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1708
1709                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1710                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1711         }
1712         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1713             is_power_of_2(ctrl->max_hw_sectors))
1714                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1715         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1716         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1717                 vwc = true;
1718         blk_queue_write_cache(q, vwc, vwc);
1719 }
1720
1721 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1722 {
1723         __le64 ts;
1724         int ret;
1725
1726         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1727                 return 0;
1728
1729         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1730         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1731                         NULL);
1732         if (ret)
1733                 dev_warn_once(ctrl->device,
1734                         "could not set timestamp (%d)\n", ret);
1735         return ret;
1736 }
1737
1738 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1739 {
1740         /*
1741          * APST (Autonomous Power State Transition) lets us program a
1742          * table of power state transitions that the controller will
1743          * perform automatically.  We configure it with a simple
1744          * heuristic: we are willing to spend at most 2% of the time
1745          * transitioning between power states.  Therefore, when running
1746          * in any given state, we will enter the next lower-power
1747          * non-operational state after waiting 50 * (enlat + exlat)
1748          * microseconds, as long as that state's exit latency is under
1749          * the requested maximum latency.
1750          *
1751          * We will not autonomously enter any non-operational state for
1752          * which the total latency exceeds ps_max_latency_us.  Users
1753          * can set ps_max_latency_us to zero to turn off APST.
1754          */
1755
1756         unsigned apste;
1757         struct nvme_feat_auto_pst *table;
1758         u64 max_lat_us = 0;
1759         int max_ps = -1;
1760         int ret;
1761
1762         /*
1763          * If APST isn't supported or if we haven't been initialized yet,
1764          * then don't do anything.
1765          */
1766         if (!ctrl->apsta)
1767                 return 0;
1768
1769         if (ctrl->npss > 31) {
1770                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1771                 return 0;
1772         }
1773
1774         table = kzalloc(sizeof(*table), GFP_KERNEL);
1775         if (!table)
1776                 return 0;
1777
1778         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1779                 /* Turn off APST. */
1780                 apste = 0;
1781                 dev_dbg(ctrl->device, "APST disabled\n");
1782         } else {
1783                 __le64 target = cpu_to_le64(0);
1784                 int state;
1785
1786                 /*
1787                  * Walk through all states from lowest- to highest-power.
1788                  * According to the spec, lower-numbered states use more
1789                  * power.  NPSS, despite the name, is the index of the
1790                  * lowest-power state, not the number of states.
1791                  */
1792                 for (state = (int)ctrl->npss; state >= 0; state--) {
1793                         u64 total_latency_us, exit_latency_us, transition_ms;
1794
1795                         if (target)
1796                                 table->entries[state] = target;
1797
1798                         /*
1799                          * Don't allow transitions to the deepest state
1800                          * if it's quirked off.
1801                          */
1802                         if (state == ctrl->npss &&
1803                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1804                                 continue;
1805
1806                         /*
1807                          * Is this state a useful non-operational state for
1808                          * higher-power states to autonomously transition to?
1809                          */
1810                         if (!(ctrl->psd[state].flags &
1811                               NVME_PS_FLAGS_NON_OP_STATE))
1812                                 continue;
1813
1814                         exit_latency_us =
1815                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1816                         if (exit_latency_us > ctrl->ps_max_latency_us)
1817                                 continue;
1818
1819                         total_latency_us =
1820                                 exit_latency_us +
1821                                 le32_to_cpu(ctrl->psd[state].entry_lat);
1822
1823                         /*
1824                          * This state is good.  Use it as the APST idle
1825                          * target for higher power states.
1826                          */
1827                         transition_ms = total_latency_us + 19;
1828                         do_div(transition_ms, 20);
1829                         if (transition_ms > (1 << 24) - 1)
1830                                 transition_ms = (1 << 24) - 1;
1831
1832                         target = cpu_to_le64((state << 3) |
1833                                              (transition_ms << 8));
1834
1835                         if (max_ps == -1)
1836                                 max_ps = state;
1837
1838                         if (total_latency_us > max_lat_us)
1839                                 max_lat_us = total_latency_us;
1840                 }
1841
1842                 apste = 1;
1843
1844                 if (max_ps == -1) {
1845                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1846                 } else {
1847                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1848                                 max_ps, max_lat_us, (int)sizeof(*table), table);
1849                 }
1850         }
1851
1852         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1853                                 table, sizeof(*table), NULL);
1854         if (ret)
1855                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1856
1857         kfree(table);
1858         return ret;
1859 }
1860
1861 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1862 {
1863         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1864         u64 latency;
1865
1866         switch (val) {
1867         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1868         case PM_QOS_LATENCY_ANY:
1869                 latency = U64_MAX;
1870                 break;
1871
1872         default:
1873                 latency = val;
1874         }
1875
1876         if (ctrl->ps_max_latency_us != latency) {
1877                 ctrl->ps_max_latency_us = latency;
1878                 nvme_configure_apst(ctrl);
1879         }
1880 }
1881
1882 struct nvme_core_quirk_entry {
1883         /*
1884          * NVMe model and firmware strings are padded with spaces.  For
1885          * simplicity, strings in the quirk table are padded with NULLs
1886          * instead.
1887          */
1888         u16 vid;
1889         const char *mn;
1890         const char *fr;
1891         unsigned long quirks;
1892 };
1893
1894 static const struct nvme_core_quirk_entry core_quirks[] = {
1895         {
1896                 /*
1897                  * This Toshiba device seems to die using any APST states.  See:
1898                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1899                  */
1900                 .vid = 0x1179,
1901                 .mn = "THNSF5256GPUK TOSHIBA",
1902                 .quirks = NVME_QUIRK_NO_APST,
1903         }
1904 };
1905
1906 /* match is null-terminated but idstr is space-padded. */
1907 static bool string_matches(const char *idstr, const char *match, size_t len)
1908 {
1909         size_t matchlen;
1910
1911         if (!match)
1912                 return true;
1913
1914         matchlen = strlen(match);
1915         WARN_ON_ONCE(matchlen > len);
1916
1917         if (memcmp(idstr, match, matchlen))
1918                 return false;
1919
1920         for (; matchlen < len; matchlen++)
1921                 if (idstr[matchlen] != ' ')
1922                         return false;
1923
1924         return true;
1925 }
1926
1927 static bool quirk_matches(const struct nvme_id_ctrl *id,
1928                           const struct nvme_core_quirk_entry *q)
1929 {
1930         return q->vid == le16_to_cpu(id->vid) &&
1931                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1932                 string_matches(id->fr, q->fr, sizeof(id->fr));
1933 }
1934
1935 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
1936                 struct nvme_id_ctrl *id)
1937 {
1938         size_t nqnlen;
1939         int off;
1940
1941         nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1942         if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1943                 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
1944                 return;
1945         }
1946
1947         if (ctrl->vs >= NVME_VS(1, 2, 1))
1948                 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1949
1950         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1951         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
1952                         "nqn.2014.08.org.nvmexpress:%4x%4x",
1953                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1954         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
1955         off += sizeof(id->sn);
1956         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
1957         off += sizeof(id->mn);
1958         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
1959 }
1960
1961 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
1962 {
1963         ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
1964         kfree(subsys);
1965 }
1966
1967 static void nvme_release_subsystem(struct device *dev)
1968 {
1969         __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
1970 }
1971
1972 static void nvme_destroy_subsystem(struct kref *ref)
1973 {
1974         struct nvme_subsystem *subsys =
1975                         container_of(ref, struct nvme_subsystem, ref);
1976
1977         mutex_lock(&nvme_subsystems_lock);
1978         list_del(&subsys->entry);
1979         mutex_unlock(&nvme_subsystems_lock);
1980
1981         ida_destroy(&subsys->ns_ida);
1982         device_del(&subsys->dev);
1983         put_device(&subsys->dev);
1984 }
1985
1986 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
1987 {
1988         kref_put(&subsys->ref, nvme_destroy_subsystem);
1989 }
1990
1991 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
1992 {
1993         struct nvme_subsystem *subsys;
1994
1995         lockdep_assert_held(&nvme_subsystems_lock);
1996
1997         list_for_each_entry(subsys, &nvme_subsystems, entry) {
1998                 if (strcmp(subsys->subnqn, subsysnqn))
1999                         continue;
2000                 if (!kref_get_unless_zero(&subsys->ref))
2001                         continue;
2002                 return subsys;
2003         }
2004
2005         return NULL;
2006 }
2007
2008 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2009         struct device_attribute subsys_attr_##_name = \
2010                 __ATTR(_name, _mode, _show, NULL)
2011
2012 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2013                                     struct device_attribute *attr,
2014                                     char *buf)
2015 {
2016         struct nvme_subsystem *subsys =
2017                 container_of(dev, struct nvme_subsystem, dev);
2018
2019         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2020 }
2021 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2022
2023 #define nvme_subsys_show_str_function(field)                            \
2024 static ssize_t subsys_##field##_show(struct device *dev,                \
2025                             struct device_attribute *attr, char *buf)   \
2026 {                                                                       \
2027         struct nvme_subsystem *subsys =                                 \
2028                 container_of(dev, struct nvme_subsystem, dev);          \
2029         return sprintf(buf, "%.*s\n",                                   \
2030                        (int)sizeof(subsys->field), subsys->field);      \
2031 }                                                                       \
2032 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2033
2034 nvme_subsys_show_str_function(model);
2035 nvme_subsys_show_str_function(serial);
2036 nvme_subsys_show_str_function(firmware_rev);
2037
2038 static struct attribute *nvme_subsys_attrs[] = {
2039         &subsys_attr_model.attr,
2040         &subsys_attr_serial.attr,
2041         &subsys_attr_firmware_rev.attr,
2042         &subsys_attr_subsysnqn.attr,
2043         NULL,
2044 };
2045
2046 static struct attribute_group nvme_subsys_attrs_group = {
2047         .attrs = nvme_subsys_attrs,
2048 };
2049
2050 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2051         &nvme_subsys_attrs_group,
2052         NULL,
2053 };
2054
2055 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2056 {
2057         struct nvme_subsystem *subsys, *found;
2058         int ret;
2059
2060         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2061         if (!subsys)
2062                 return -ENOMEM;
2063         ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2064         if (ret < 0) {
2065                 kfree(subsys);
2066                 return ret;
2067         }
2068         subsys->instance = ret;
2069         mutex_init(&subsys->lock);
2070         kref_init(&subsys->ref);
2071         INIT_LIST_HEAD(&subsys->ctrls);
2072         INIT_LIST_HEAD(&subsys->nsheads);
2073         nvme_init_subnqn(subsys, ctrl, id);
2074         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2075         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2076         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2077         subsys->vendor_id = le16_to_cpu(id->vid);
2078         subsys->cmic = id->cmic;
2079
2080         subsys->dev.class = nvme_subsys_class;
2081         subsys->dev.release = nvme_release_subsystem;
2082         subsys->dev.groups = nvme_subsys_attrs_groups;
2083         dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2084         device_initialize(&subsys->dev);
2085
2086         mutex_lock(&nvme_subsystems_lock);
2087         found = __nvme_find_get_subsystem(subsys->subnqn);
2088         if (found) {
2089                 /*
2090                  * Verify that the subsystem actually supports multiple
2091                  * controllers, else bail out.
2092                  */
2093                 if (!(id->cmic & (1 << 1))) {
2094                         dev_err(ctrl->device,
2095                                 "ignoring ctrl due to duplicate subnqn (%s).\n",
2096                                 found->subnqn);
2097                         nvme_put_subsystem(found);
2098                         ret = -EINVAL;
2099                         goto out_unlock;
2100                 }
2101
2102                 __nvme_release_subsystem(subsys);
2103                 subsys = found;
2104         } else {
2105                 ret = device_add(&subsys->dev);
2106                 if (ret) {
2107                         dev_err(ctrl->device,
2108                                 "failed to register subsystem device.\n");
2109                         goto out_unlock;
2110                 }
2111                 ida_init(&subsys->ns_ida);
2112                 list_add_tail(&subsys->entry, &nvme_subsystems);
2113         }
2114
2115         ctrl->subsys = subsys;
2116         mutex_unlock(&nvme_subsystems_lock);
2117
2118         if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2119                         dev_name(ctrl->device))) {
2120                 dev_err(ctrl->device,
2121                         "failed to create sysfs link from subsystem.\n");
2122                 /* the transport driver will eventually put the subsystem */
2123                 return -EINVAL;
2124         }
2125
2126         mutex_lock(&subsys->lock);
2127         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2128         mutex_unlock(&subsys->lock);
2129
2130         return 0;
2131
2132 out_unlock:
2133         mutex_unlock(&nvme_subsystems_lock);
2134         put_device(&subsys->dev);
2135         return ret;
2136 }
2137
2138 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2139                         size_t size)
2140 {
2141         struct nvme_command c = { };
2142
2143         c.common.opcode = nvme_admin_get_log_page;
2144         c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2145         c.common.cdw10[0] = nvme_get_log_dw10(log_page, size);
2146
2147         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2148 }
2149
2150 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2151 {
2152         int ret;
2153
2154         if (!ctrl->effects)
2155                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2156
2157         if (!ctrl->effects)
2158                 return 0;
2159
2160         ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2161                                         sizeof(*ctrl->effects));
2162         if (ret) {
2163                 kfree(ctrl->effects);
2164                 ctrl->effects = NULL;
2165         }
2166         return ret;
2167 }
2168
2169 /*
2170  * Initialize the cached copies of the Identify data and various controller
2171  * register in our nvme_ctrl structure.  This should be called as soon as
2172  * the admin queue is fully up and running.
2173  */
2174 int nvme_init_identify(struct nvme_ctrl *ctrl)
2175 {
2176         struct nvme_id_ctrl *id;
2177         u64 cap;
2178         int ret, page_shift;
2179         u32 max_hw_sectors;
2180         bool prev_apst_enabled;
2181
2182         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2183         if (ret) {
2184                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2185                 return ret;
2186         }
2187
2188         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2189         if (ret) {
2190                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2191                 return ret;
2192         }
2193         page_shift = NVME_CAP_MPSMIN(cap) + 12;
2194
2195         if (ctrl->vs >= NVME_VS(1, 1, 0))
2196                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2197
2198         ret = nvme_identify_ctrl(ctrl, &id);
2199         if (ret) {
2200                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2201                 return -EIO;
2202         }
2203
2204         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2205                 ret = nvme_get_effects_log(ctrl);
2206                 if (ret < 0)
2207                         return ret;
2208         }
2209
2210         if (!ctrl->identified) {
2211                 int i;
2212
2213                 ret = nvme_init_subsystem(ctrl, id);
2214                 if (ret)
2215                         goto out_free;
2216
2217                 /*
2218                  * Check for quirks.  Quirk can depend on firmware version,
2219                  * so, in principle, the set of quirks present can change
2220                  * across a reset.  As a possible future enhancement, we
2221                  * could re-scan for quirks every time we reinitialize
2222                  * the device, but we'd have to make sure that the driver
2223                  * behaves intelligently if the quirks change.
2224                  */
2225                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2226                         if (quirk_matches(id, &core_quirks[i]))
2227                                 ctrl->quirks |= core_quirks[i].quirks;
2228                 }
2229         }
2230
2231         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2232                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2233                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2234         }
2235
2236         ctrl->oacs = le16_to_cpu(id->oacs);
2237         ctrl->oncs = le16_to_cpup(&id->oncs);
2238         atomic_set(&ctrl->abort_limit, id->acl + 1);
2239         ctrl->vwc = id->vwc;
2240         ctrl->cntlid = le16_to_cpup(&id->cntlid);
2241         if (id->mdts)
2242                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2243         else
2244                 max_hw_sectors = UINT_MAX;
2245         ctrl->max_hw_sectors =
2246                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2247
2248         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2249         ctrl->sgls = le32_to_cpu(id->sgls);
2250         ctrl->kas = le16_to_cpu(id->kas);
2251
2252         if (id->rtd3e) {
2253                 /* us -> s */
2254                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2255
2256                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2257                                                  shutdown_timeout, 60);
2258
2259                 if (ctrl->shutdown_timeout != shutdown_timeout)
2260                         dev_warn(ctrl->device,
2261                                  "Shutdown timeout set to %u seconds\n",
2262                                  ctrl->shutdown_timeout);
2263         } else
2264                 ctrl->shutdown_timeout = shutdown_timeout;
2265
2266         ctrl->npss = id->npss;
2267         ctrl->apsta = id->apsta;
2268         prev_apst_enabled = ctrl->apst_enabled;
2269         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2270                 if (force_apst && id->apsta) {
2271                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2272                         ctrl->apst_enabled = true;
2273                 } else {
2274                         ctrl->apst_enabled = false;
2275                 }
2276         } else {
2277                 ctrl->apst_enabled = id->apsta;
2278         }
2279         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2280
2281         if (ctrl->ops->flags & NVME_F_FABRICS) {
2282                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2283                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2284                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2285                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2286
2287                 /*
2288                  * In fabrics we need to verify the cntlid matches the
2289                  * admin connect
2290                  */
2291                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2292                         ret = -EINVAL;
2293                         goto out_free;
2294                 }
2295
2296                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2297                         dev_err(ctrl->device,
2298                                 "keep-alive support is mandatory for fabrics\n");
2299                         ret = -EINVAL;
2300                         goto out_free;
2301                 }
2302         } else {
2303                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2304                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2305                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2306                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2307                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2308         }
2309
2310         kfree(id);
2311
2312         if (ctrl->apst_enabled && !prev_apst_enabled)
2313                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2314         else if (!ctrl->apst_enabled && prev_apst_enabled)
2315                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2316
2317         ret = nvme_configure_apst(ctrl);
2318         if (ret < 0)
2319                 return ret;
2320         
2321         ret = nvme_configure_timestamp(ctrl);
2322         if (ret < 0)
2323                 return ret;
2324
2325         ret = nvme_configure_directives(ctrl);
2326         if (ret < 0)
2327                 return ret;
2328
2329         ctrl->identified = true;
2330
2331         return 0;
2332
2333 out_free:
2334         kfree(id);
2335         return ret;
2336 }
2337 EXPORT_SYMBOL_GPL(nvme_init_identify);
2338
2339 static int nvme_dev_open(struct inode *inode, struct file *file)
2340 {
2341         struct nvme_ctrl *ctrl =
2342                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2343
2344         if (ctrl->state != NVME_CTRL_LIVE)
2345                 return -EWOULDBLOCK;
2346         file->private_data = ctrl;
2347         return 0;
2348 }
2349
2350 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2351 {
2352         struct nvme_ns *ns;
2353         int ret;
2354
2355         mutex_lock(&ctrl->namespaces_mutex);
2356         if (list_empty(&ctrl->namespaces)) {
2357                 ret = -ENOTTY;
2358                 goto out_unlock;
2359         }
2360
2361         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2362         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2363                 dev_warn(ctrl->device,
2364                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2365                 ret = -EINVAL;
2366                 goto out_unlock;
2367         }
2368
2369         dev_warn(ctrl->device,
2370                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2371         kref_get(&ns->kref);
2372         mutex_unlock(&ctrl->namespaces_mutex);
2373
2374         ret = nvme_user_cmd(ctrl, ns, argp);
2375         nvme_put_ns(ns);
2376         return ret;
2377
2378 out_unlock:
2379         mutex_unlock(&ctrl->namespaces_mutex);
2380         return ret;
2381 }
2382
2383 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2384                 unsigned long arg)
2385 {
2386         struct nvme_ctrl *ctrl = file->private_data;
2387         void __user *argp = (void __user *)arg;
2388
2389         switch (cmd) {
2390         case NVME_IOCTL_ADMIN_CMD:
2391                 return nvme_user_cmd(ctrl, NULL, argp);
2392         case NVME_IOCTL_IO_CMD:
2393                 return nvme_dev_user_cmd(ctrl, argp);
2394         case NVME_IOCTL_RESET:
2395                 dev_warn(ctrl->device, "resetting controller\n");
2396                 return nvme_reset_ctrl_sync(ctrl);
2397         case NVME_IOCTL_SUBSYS_RESET:
2398                 return nvme_reset_subsystem(ctrl);
2399         case NVME_IOCTL_RESCAN:
2400                 nvme_queue_scan(ctrl);
2401                 return 0;
2402         default:
2403                 return -ENOTTY;
2404         }
2405 }
2406
2407 static const struct file_operations nvme_dev_fops = {
2408         .owner          = THIS_MODULE,
2409         .open           = nvme_dev_open,
2410         .unlocked_ioctl = nvme_dev_ioctl,
2411         .compat_ioctl   = nvme_dev_ioctl,
2412 };
2413
2414 static ssize_t nvme_sysfs_reset(struct device *dev,
2415                                 struct device_attribute *attr, const char *buf,
2416                                 size_t count)
2417 {
2418         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2419         int ret;
2420
2421         ret = nvme_reset_ctrl_sync(ctrl);
2422         if (ret < 0)
2423                 return ret;
2424         return count;
2425 }
2426 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2427
2428 static ssize_t nvme_sysfs_rescan(struct device *dev,
2429                                 struct device_attribute *attr, const char *buf,
2430                                 size_t count)
2431 {
2432         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2433
2434         nvme_queue_scan(ctrl);
2435         return count;
2436 }
2437 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2438
2439 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2440 {
2441         struct gendisk *disk = dev_to_disk(dev);
2442
2443         if (disk->fops == &nvme_fops)
2444                 return nvme_get_ns_from_dev(dev)->head;
2445         else
2446                 return disk->private_data;
2447 }
2448
2449 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2450                 char *buf)
2451 {
2452         struct nvme_ns_head *head = dev_to_ns_head(dev);
2453         struct nvme_ns_ids *ids = &head->ids;
2454         struct nvme_subsystem *subsys = head->subsys;
2455         int serial_len = sizeof(subsys->serial);
2456         int model_len = sizeof(subsys->model);
2457
2458         if (!uuid_is_null(&ids->uuid))
2459                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2460
2461         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2462                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2463
2464         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2465                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2466
2467         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2468                                   subsys->serial[serial_len - 1] == '\0'))
2469                 serial_len--;
2470         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2471                                  subsys->model[model_len - 1] == '\0'))
2472                 model_len--;
2473
2474         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2475                 serial_len, subsys->serial, model_len, subsys->model,
2476                 head->ns_id);
2477 }
2478 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2479
2480 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2481                 char *buf)
2482 {
2483         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2484 }
2485 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2486
2487 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2488                 char *buf)
2489 {
2490         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2491
2492         /* For backward compatibility expose the NGUID to userspace if
2493          * we have no UUID set
2494          */
2495         if (uuid_is_null(&ids->uuid)) {
2496                 printk_ratelimited(KERN_WARNING
2497                                    "No UUID available providing old NGUID\n");
2498                 return sprintf(buf, "%pU\n", ids->nguid);
2499         }
2500         return sprintf(buf, "%pU\n", &ids->uuid);
2501 }
2502 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2503
2504 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2505                 char *buf)
2506 {
2507         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2508 }
2509 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2510
2511 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2512                 char *buf)
2513 {
2514         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2515 }
2516 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2517
2518 static struct attribute *nvme_ns_id_attrs[] = {
2519         &dev_attr_wwid.attr,
2520         &dev_attr_uuid.attr,
2521         &dev_attr_nguid.attr,
2522         &dev_attr_eui.attr,
2523         &dev_attr_nsid.attr,
2524         NULL,
2525 };
2526
2527 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2528                 struct attribute *a, int n)
2529 {
2530         struct device *dev = container_of(kobj, struct device, kobj);
2531         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2532
2533         if (a == &dev_attr_uuid.attr) {
2534                 if (uuid_is_null(&ids->uuid) &&
2535                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2536                         return 0;
2537         }
2538         if (a == &dev_attr_nguid.attr) {
2539                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2540                         return 0;
2541         }
2542         if (a == &dev_attr_eui.attr) {
2543                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2544                         return 0;
2545         }
2546         return a->mode;
2547 }
2548
2549 const struct attribute_group nvme_ns_id_attr_group = {
2550         .attrs          = nvme_ns_id_attrs,
2551         .is_visible     = nvme_ns_id_attrs_are_visible,
2552 };
2553
2554 #define nvme_show_str_function(field)                                           \
2555 static ssize_t  field##_show(struct device *dev,                                \
2556                             struct device_attribute *attr, char *buf)           \
2557 {                                                                               \
2558         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2559         return sprintf(buf, "%.*s\n",                                           \
2560                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
2561 }                                                                               \
2562 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2563
2564 nvme_show_str_function(model);
2565 nvme_show_str_function(serial);
2566 nvme_show_str_function(firmware_rev);
2567
2568 #define nvme_show_int_function(field)                                           \
2569 static ssize_t  field##_show(struct device *dev,                                \
2570                             struct device_attribute *attr, char *buf)           \
2571 {                                                                               \
2572         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2573         return sprintf(buf, "%d\n", ctrl->field);       \
2574 }                                                                               \
2575 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2576
2577 nvme_show_int_function(cntlid);
2578
2579 static ssize_t nvme_sysfs_delete(struct device *dev,
2580                                 struct device_attribute *attr, const char *buf,
2581                                 size_t count)
2582 {
2583         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2584
2585         if (device_remove_file_self(dev, attr))
2586                 nvme_delete_ctrl_sync(ctrl);
2587         return count;
2588 }
2589 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2590
2591 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2592                                          struct device_attribute *attr,
2593                                          char *buf)
2594 {
2595         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2596
2597         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2598 }
2599 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2600
2601 static ssize_t nvme_sysfs_show_state(struct device *dev,
2602                                      struct device_attribute *attr,
2603                                      char *buf)
2604 {
2605         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2606         static const char *const state_name[] = {
2607                 [NVME_CTRL_NEW]         = "new",
2608                 [NVME_CTRL_LIVE]        = "live",
2609                 [NVME_CTRL_RESETTING]   = "resetting",
2610                 [NVME_CTRL_RECONNECTING]= "reconnecting",
2611                 [NVME_CTRL_DELETING]    = "deleting",
2612                 [NVME_CTRL_DEAD]        = "dead",
2613         };
2614
2615         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2616             state_name[ctrl->state])
2617                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2618
2619         return sprintf(buf, "unknown state\n");
2620 }
2621
2622 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2623
2624 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2625                                          struct device_attribute *attr,
2626                                          char *buf)
2627 {
2628         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2629
2630         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2631 }
2632 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2633
2634 static ssize_t nvme_sysfs_show_address(struct device *dev,
2635                                          struct device_attribute *attr,
2636                                          char *buf)
2637 {
2638         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2639
2640         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2641 }
2642 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2643
2644 static struct attribute *nvme_dev_attrs[] = {
2645         &dev_attr_reset_controller.attr,
2646         &dev_attr_rescan_controller.attr,
2647         &dev_attr_model.attr,
2648         &dev_attr_serial.attr,
2649         &dev_attr_firmware_rev.attr,
2650         &dev_attr_cntlid.attr,
2651         &dev_attr_delete_controller.attr,
2652         &dev_attr_transport.attr,
2653         &dev_attr_subsysnqn.attr,
2654         &dev_attr_address.attr,
2655         &dev_attr_state.attr,
2656         NULL
2657 };
2658
2659 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2660                 struct attribute *a, int n)
2661 {
2662         struct device *dev = container_of(kobj, struct device, kobj);
2663         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2664
2665         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2666                 return 0;
2667         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2668                 return 0;
2669
2670         return a->mode;
2671 }
2672
2673 static struct attribute_group nvme_dev_attrs_group = {
2674         .attrs          = nvme_dev_attrs,
2675         .is_visible     = nvme_dev_attrs_are_visible,
2676 };
2677
2678 static const struct attribute_group *nvme_dev_attr_groups[] = {
2679         &nvme_dev_attrs_group,
2680         NULL,
2681 };
2682
2683 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2684                 unsigned nsid)
2685 {
2686         struct nvme_ns_head *h;
2687
2688         lockdep_assert_held(&subsys->lock);
2689
2690         list_for_each_entry(h, &subsys->nsheads, entry) {
2691                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2692                         return h;
2693         }
2694
2695         return NULL;
2696 }
2697
2698 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2699                 struct nvme_ns_head *new)
2700 {
2701         struct nvme_ns_head *h;
2702
2703         lockdep_assert_held(&subsys->lock);
2704
2705         list_for_each_entry(h, &subsys->nsheads, entry) {
2706                 if (nvme_ns_ids_valid(&new->ids) &&
2707                     nvme_ns_ids_equal(&new->ids, &h->ids))
2708                         return -EINVAL;
2709         }
2710
2711         return 0;
2712 }
2713
2714 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2715                 unsigned nsid, struct nvme_id_ns *id)
2716 {
2717         struct nvme_ns_head *head;
2718         int ret = -ENOMEM;
2719
2720         head = kzalloc(sizeof(*head), GFP_KERNEL);
2721         if (!head)
2722                 goto out;
2723         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2724         if (ret < 0)
2725                 goto out_free_head;
2726         head->instance = ret;
2727         INIT_LIST_HEAD(&head->list);
2728         init_srcu_struct(&head->srcu);
2729         head->subsys = ctrl->subsys;
2730         head->ns_id = nsid;
2731         kref_init(&head->ref);
2732
2733         nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2734
2735         ret = __nvme_check_ids(ctrl->subsys, head);
2736         if (ret) {
2737                 dev_err(ctrl->device,
2738                         "duplicate IDs for nsid %d\n", nsid);
2739                 goto out_cleanup_srcu;
2740         }
2741
2742         ret = nvme_mpath_alloc_disk(ctrl, head);
2743         if (ret)
2744                 goto out_cleanup_srcu;
2745
2746         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2747         return head;
2748 out_cleanup_srcu:
2749         cleanup_srcu_struct(&head->srcu);
2750         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2751 out_free_head:
2752         kfree(head);
2753 out:
2754         return ERR_PTR(ret);
2755 }
2756
2757 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2758                 struct nvme_id_ns *id, bool *new)
2759 {
2760         struct nvme_ctrl *ctrl = ns->ctrl;
2761         bool is_shared = id->nmic & (1 << 0);
2762         struct nvme_ns_head *head = NULL;
2763         int ret = 0;
2764
2765         mutex_lock(&ctrl->subsys->lock);
2766         if (is_shared)
2767                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2768         if (!head) {
2769                 head = nvme_alloc_ns_head(ctrl, nsid, id);
2770                 if (IS_ERR(head)) {
2771                         ret = PTR_ERR(head);
2772                         goto out_unlock;
2773                 }
2774
2775                 *new = true;
2776         } else {
2777                 struct nvme_ns_ids ids;
2778
2779                 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2780                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2781                         dev_err(ctrl->device,
2782                                 "IDs don't match for shared namespace %d\n",
2783                                         nsid);
2784                         ret = -EINVAL;
2785                         goto out_unlock;
2786                 }
2787
2788                 *new = false;
2789         }
2790
2791         list_add_tail(&ns->siblings, &head->list);
2792         ns->head = head;
2793
2794 out_unlock:
2795         mutex_unlock(&ctrl->subsys->lock);
2796         return ret;
2797 }
2798
2799 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2800 {
2801         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2802         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2803
2804         return nsa->head->ns_id - nsb->head->ns_id;
2805 }
2806
2807 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2808 {
2809         struct nvme_ns *ns, *ret = NULL;
2810
2811         mutex_lock(&ctrl->namespaces_mutex);
2812         list_for_each_entry(ns, &ctrl->namespaces, list) {
2813                 if (ns->head->ns_id == nsid) {
2814                         if (!kref_get_unless_zero(&ns->kref))
2815                                 continue;
2816                         ret = ns;
2817                         break;
2818                 }
2819                 if (ns->head->ns_id > nsid)
2820                         break;
2821         }
2822         mutex_unlock(&ctrl->namespaces_mutex);
2823         return ret;
2824 }
2825
2826 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2827 {
2828         struct streams_directive_params s;
2829         int ret;
2830
2831         if (!ctrl->nr_streams)
2832                 return 0;
2833
2834         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2835         if (ret)
2836                 return ret;
2837
2838         ns->sws = le32_to_cpu(s.sws);
2839         ns->sgs = le16_to_cpu(s.sgs);
2840
2841         if (ns->sws) {
2842                 unsigned int bs = 1 << ns->lba_shift;
2843
2844                 blk_queue_io_min(ns->queue, bs * ns->sws);
2845                 if (ns->sgs)
2846                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2847         }
2848
2849         return 0;
2850 }
2851
2852 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2853 {
2854         struct nvme_ns *ns;
2855         struct gendisk *disk;
2856         struct nvme_id_ns *id;
2857         char disk_name[DISK_NAME_LEN];
2858         int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2859         bool new = true;
2860
2861         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2862         if (!ns)
2863                 return;
2864
2865         ns->queue = blk_mq_init_queue(ctrl->tagset);
2866         if (IS_ERR(ns->queue))
2867                 goto out_free_ns;
2868         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2869         ns->queue->queuedata = ns;
2870         ns->ctrl = ctrl;
2871
2872         kref_init(&ns->kref);
2873         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2874
2875         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2876         nvme_set_queue_limits(ctrl, ns->queue);
2877
2878         id = nvme_identify_ns(ctrl, nsid);
2879         if (!id)
2880                 goto out_free_queue;
2881
2882         if (id->ncap == 0)
2883                 goto out_free_id;
2884
2885         if (nvme_init_ns_head(ns, nsid, id, &new))
2886                 goto out_free_id;
2887         nvme_setup_streams_ns(ctrl, ns);
2888         
2889 #ifdef CONFIG_NVME_MULTIPATH
2890         /*
2891          * If multipathing is enabled we need to always use the subsystem
2892          * instance number for numbering our devices to avoid conflicts
2893          * between subsystems that have multiple controllers and thus use
2894          * the multipath-aware subsystem node and those that have a single
2895          * controller and use the controller node directly.
2896          */
2897         if (ns->head->disk) {
2898                 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
2899                                 ctrl->cntlid, ns->head->instance);
2900                 flags = GENHD_FL_HIDDEN;
2901         } else {
2902                 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
2903                                 ns->head->instance);
2904         }
2905 #else
2906         /*
2907          * But without the multipath code enabled, multiple controller per
2908          * subsystems are visible as devices and thus we cannot use the
2909          * subsystem instance.
2910          */
2911         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
2912 #endif
2913
2914         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
2915                 if (nvme_nvm_register(ns, disk_name, node)) {
2916                         dev_warn(ctrl->device, "LightNVM init failure\n");
2917                         goto out_unlink_ns;
2918                 }
2919         }
2920
2921         disk = alloc_disk_node(0, node);
2922         if (!disk)
2923                 goto out_unlink_ns;
2924
2925         disk->fops = &nvme_fops;
2926         disk->private_data = ns;
2927         disk->queue = ns->queue;
2928         disk->flags = flags;
2929         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2930         ns->disk = disk;
2931
2932         __nvme_revalidate_disk(disk, id);
2933
2934         mutex_lock(&ctrl->namespaces_mutex);
2935         list_add_tail(&ns->list, &ctrl->namespaces);
2936         mutex_unlock(&ctrl->namespaces_mutex);
2937
2938         nvme_get_ctrl(ctrl);
2939
2940         kfree(id);
2941
2942         device_add_disk(ctrl->device, ns->disk);
2943         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2944                                         &nvme_ns_id_attr_group))
2945                 pr_warn("%s: failed to create sysfs group for identification\n",
2946                         ns->disk->disk_name);
2947         if (ns->ndev && nvme_nvm_register_sysfs(ns))
2948                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2949                         ns->disk->disk_name);
2950
2951         if (new)
2952                 nvme_mpath_add_disk(ns->head);
2953         nvme_mpath_add_disk_links(ns);
2954         return;
2955  out_unlink_ns:
2956         mutex_lock(&ctrl->subsys->lock);
2957         list_del_rcu(&ns->siblings);
2958         mutex_unlock(&ctrl->subsys->lock);
2959  out_free_id:
2960         kfree(id);
2961  out_free_queue:
2962         blk_cleanup_queue(ns->queue);
2963  out_free_ns:
2964         kfree(ns);
2965 }
2966
2967 static void nvme_ns_remove(struct nvme_ns *ns)
2968 {
2969         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2970                 return;
2971
2972         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2973                 nvme_mpath_remove_disk_links(ns);
2974                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2975                                         &nvme_ns_id_attr_group);
2976                 if (ns->ndev)
2977                         nvme_nvm_unregister_sysfs(ns);
2978                 del_gendisk(ns->disk);
2979                 blk_cleanup_queue(ns->queue);
2980                 if (blk_get_integrity(ns->disk))
2981                         blk_integrity_unregister(ns->disk);
2982         }
2983
2984         mutex_lock(&ns->ctrl->subsys->lock);
2985         nvme_mpath_clear_current_path(ns);
2986         list_del_rcu(&ns->siblings);
2987         mutex_unlock(&ns->ctrl->subsys->lock);
2988
2989         mutex_lock(&ns->ctrl->namespaces_mutex);
2990         list_del_init(&ns->list);
2991         mutex_unlock(&ns->ctrl->namespaces_mutex);
2992
2993         synchronize_srcu(&ns->head->srcu);
2994         nvme_mpath_check_last_path(ns);
2995         nvme_put_ns(ns);
2996 }
2997
2998 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2999 {
3000         struct nvme_ns *ns;
3001
3002         ns = nvme_find_get_ns(ctrl, nsid);
3003         if (ns) {
3004                 if (ns->disk && revalidate_disk(ns->disk))
3005                         nvme_ns_remove(ns);
3006                 nvme_put_ns(ns);
3007         } else
3008                 nvme_alloc_ns(ctrl, nsid);
3009 }
3010
3011 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3012                                         unsigned nsid)
3013 {
3014         struct nvme_ns *ns, *next;
3015
3016         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3017                 if (ns->head->ns_id > nsid)
3018                         nvme_ns_remove(ns);
3019         }
3020 }
3021
3022 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3023 {
3024         struct nvme_ns *ns;
3025         __le32 *ns_list;
3026         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3027         int ret = 0;
3028
3029         ns_list = kzalloc(0x1000, GFP_KERNEL);
3030         if (!ns_list)
3031                 return -ENOMEM;
3032
3033         for (i = 0; i < num_lists; i++) {
3034                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3035                 if (ret)
3036                         goto free;
3037
3038                 for (j = 0; j < min(nn, 1024U); j++) {
3039                         nsid = le32_to_cpu(ns_list[j]);
3040                         if (!nsid)
3041                                 goto out;
3042
3043                         nvme_validate_ns(ctrl, nsid);
3044
3045                         while (++prev < nsid) {
3046                                 ns = nvme_find_get_ns(ctrl, prev);
3047                                 if (ns) {
3048                                         nvme_ns_remove(ns);
3049                                         nvme_put_ns(ns);
3050                                 }
3051                         }
3052                 }
3053                 nn -= j;
3054         }
3055  out:
3056         nvme_remove_invalid_namespaces(ctrl, prev);
3057  free:
3058         kfree(ns_list);
3059         return ret;
3060 }
3061
3062 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3063 {
3064         unsigned i;
3065
3066         for (i = 1; i <= nn; i++)
3067                 nvme_validate_ns(ctrl, i);
3068
3069         nvme_remove_invalid_namespaces(ctrl, nn);
3070 }
3071
3072 static void nvme_scan_work(struct work_struct *work)
3073 {
3074         struct nvme_ctrl *ctrl =
3075                 container_of(work, struct nvme_ctrl, scan_work);
3076         struct nvme_id_ctrl *id;
3077         unsigned nn;
3078
3079         if (ctrl->state != NVME_CTRL_LIVE)
3080                 return;
3081
3082         if (nvme_identify_ctrl(ctrl, &id))
3083                 return;
3084
3085         nn = le32_to_cpu(id->nn);
3086         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3087             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3088                 if (!nvme_scan_ns_list(ctrl, nn))
3089                         goto done;
3090         }
3091         nvme_scan_ns_sequential(ctrl, nn);
3092  done:
3093         mutex_lock(&ctrl->namespaces_mutex);
3094         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3095         mutex_unlock(&ctrl->namespaces_mutex);
3096         kfree(id);
3097 }
3098
3099 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3100 {
3101         /*
3102          * Do not queue new scan work when a controller is reset during
3103          * removal.
3104          */
3105         if (ctrl->state == NVME_CTRL_LIVE)
3106                 queue_work(nvme_wq, &ctrl->scan_work);
3107 }
3108 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3109
3110 /*
3111  * This function iterates the namespace list unlocked to allow recovery from
3112  * controller failure. It is up to the caller to ensure the namespace list is
3113  * not modified by scan work while this function is executing.
3114  */
3115 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3116 {
3117         struct nvme_ns *ns, *next;
3118
3119         /*
3120          * The dead states indicates the controller was not gracefully
3121          * disconnected. In that case, we won't be able to flush any data while
3122          * removing the namespaces' disks; fail all the queues now to avoid
3123          * potentially having to clean up the failed sync later.
3124          */
3125         if (ctrl->state == NVME_CTRL_DEAD)
3126                 nvme_kill_queues(ctrl);
3127
3128         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
3129                 nvme_ns_remove(ns);
3130 }
3131 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3132
3133 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3134 {
3135         char *envp[2] = { NULL, NULL };
3136         u32 aen_result = ctrl->aen_result;
3137
3138         ctrl->aen_result = 0;
3139         if (!aen_result)
3140                 return;
3141
3142         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3143         if (!envp[0])
3144                 return;
3145         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3146         kfree(envp[0]);
3147 }
3148
3149 static void nvme_async_event_work(struct work_struct *work)
3150 {
3151         struct nvme_ctrl *ctrl =
3152                 container_of(work, struct nvme_ctrl, async_event_work);
3153
3154         nvme_aen_uevent(ctrl);
3155         ctrl->ops->submit_async_event(ctrl);
3156 }
3157
3158 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3159 {
3160
3161         u32 csts;
3162
3163         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3164                 return false;
3165
3166         if (csts == ~0)
3167                 return false;
3168
3169         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3170 }
3171
3172 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3173 {
3174         struct nvme_fw_slot_info_log *log;
3175
3176         log = kmalloc(sizeof(*log), GFP_KERNEL);
3177         if (!log)
3178                 return;
3179
3180         if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3181                 dev_warn(ctrl->device,
3182                                 "Get FW SLOT INFO log error\n");
3183         kfree(log);
3184 }
3185
3186 static void nvme_fw_act_work(struct work_struct *work)
3187 {
3188         struct nvme_ctrl *ctrl = container_of(work,
3189                                 struct nvme_ctrl, fw_act_work);
3190         unsigned long fw_act_timeout;
3191
3192         if (ctrl->mtfa)
3193                 fw_act_timeout = jiffies +
3194                                 msecs_to_jiffies(ctrl->mtfa * 100);
3195         else
3196                 fw_act_timeout = jiffies +
3197                                 msecs_to_jiffies(admin_timeout * 1000);
3198
3199         nvme_stop_queues(ctrl);
3200         while (nvme_ctrl_pp_status(ctrl)) {
3201                 if (time_after(jiffies, fw_act_timeout)) {
3202                         dev_warn(ctrl->device,
3203                                 "Fw activation timeout, reset controller\n");
3204                         nvme_reset_ctrl(ctrl);
3205                         break;
3206                 }
3207                 msleep(100);
3208         }
3209
3210         if (ctrl->state != NVME_CTRL_LIVE)
3211                 return;
3212
3213         nvme_start_queues(ctrl);
3214         /* read FW slot information to clear the AER */
3215         nvme_get_fw_slot_info(ctrl);
3216 }
3217
3218 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3219                 union nvme_result *res)
3220 {
3221         u32 result = le32_to_cpu(res->u32);
3222
3223         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3224                 return;
3225
3226         switch (result & 0x7) {
3227         case NVME_AER_ERROR:
3228         case NVME_AER_SMART:
3229         case NVME_AER_CSS:
3230         case NVME_AER_VS:
3231                 ctrl->aen_result = result;
3232                 break;
3233         default:
3234                 break;
3235         }
3236
3237         switch (result & 0xff07) {
3238         case NVME_AER_NOTICE_NS_CHANGED:
3239                 dev_info(ctrl->device, "rescanning\n");
3240                 nvme_queue_scan(ctrl);
3241                 break;
3242         case NVME_AER_NOTICE_FW_ACT_STARTING:
3243                 queue_work(nvme_wq, &ctrl->fw_act_work);
3244                 break;
3245         default:
3246                 dev_warn(ctrl->device, "async event result %08x\n", result);
3247         }
3248         queue_work(nvme_wq, &ctrl->async_event_work);
3249 }
3250 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3251
3252 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3253 {
3254         nvme_stop_keep_alive(ctrl);
3255         flush_work(&ctrl->async_event_work);
3256         flush_work(&ctrl->scan_work);
3257         cancel_work_sync(&ctrl->fw_act_work);
3258 }
3259 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3260
3261 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3262 {
3263         if (ctrl->kato)
3264                 nvme_start_keep_alive(ctrl);
3265
3266         if (ctrl->queue_count > 1) {
3267                 nvme_queue_scan(ctrl);
3268                 queue_work(nvme_wq, &ctrl->async_event_work);
3269                 nvme_start_queues(ctrl);
3270         }
3271 }
3272 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3273
3274 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3275 {
3276         cdev_device_del(&ctrl->cdev, ctrl->device);
3277 }
3278 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3279
3280 static void nvme_free_ctrl(struct device *dev)
3281 {
3282         struct nvme_ctrl *ctrl =
3283                 container_of(dev, struct nvme_ctrl, ctrl_device);
3284         struct nvme_subsystem *subsys = ctrl->subsys;
3285
3286         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3287         kfree(ctrl->effects);
3288
3289         if (subsys) {
3290                 mutex_lock(&subsys->lock);
3291                 list_del(&ctrl->subsys_entry);
3292                 mutex_unlock(&subsys->lock);
3293                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3294         }
3295
3296         ctrl->ops->free_ctrl(ctrl);
3297
3298         if (subsys)
3299                 nvme_put_subsystem(subsys);
3300 }
3301
3302 /*
3303  * Initialize a NVMe controller structures.  This needs to be called during
3304  * earliest initialization so that we have the initialized structured around
3305  * during probing.
3306  */
3307 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3308                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3309 {
3310         int ret;
3311
3312         ctrl->state = NVME_CTRL_NEW;
3313         spin_lock_init(&ctrl->lock);
3314         INIT_LIST_HEAD(&ctrl->namespaces);
3315         mutex_init(&ctrl->namespaces_mutex);
3316         ctrl->dev = dev;
3317         ctrl->ops = ops;
3318         ctrl->quirks = quirks;
3319         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3320         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3321         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3322         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3323
3324         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3325         if (ret < 0)
3326                 goto out;
3327         ctrl->instance = ret;
3328
3329         device_initialize(&ctrl->ctrl_device);
3330         ctrl->device = &ctrl->ctrl_device;
3331         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3332         ctrl->device->class = nvme_class;
3333         ctrl->device->parent = ctrl->dev;
3334         ctrl->device->groups = nvme_dev_attr_groups;
3335         ctrl->device->release = nvme_free_ctrl;
3336         dev_set_drvdata(ctrl->device, ctrl);
3337         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3338         if (ret)
3339                 goto out_release_instance;
3340
3341         cdev_init(&ctrl->cdev, &nvme_dev_fops);
3342         ctrl->cdev.owner = ops->module;
3343         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3344         if (ret)
3345                 goto out_free_name;
3346
3347         /*
3348          * Initialize latency tolerance controls.  The sysfs files won't
3349          * be visible to userspace unless the device actually supports APST.
3350          */
3351         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3352         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3353                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3354
3355         return 0;
3356 out_free_name:
3357         kfree_const(dev->kobj.name);
3358 out_release_instance:
3359         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3360 out:
3361         return ret;
3362 }
3363 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3364
3365 /**
3366  * nvme_kill_queues(): Ends all namespace queues
3367  * @ctrl: the dead controller that needs to end
3368  *
3369  * Call this function when the driver determines it is unable to get the
3370  * controller in a state capable of servicing IO.
3371  */
3372 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3373 {
3374         struct nvme_ns *ns;
3375
3376         mutex_lock(&ctrl->namespaces_mutex);
3377
3378         /* Forcibly unquiesce queues to avoid blocking dispatch */
3379         if (ctrl->admin_q)
3380                 blk_mq_unquiesce_queue(ctrl->admin_q);
3381
3382         list_for_each_entry(ns, &ctrl->namespaces, list) {
3383                 /*
3384                  * Revalidating a dead namespace sets capacity to 0. This will
3385                  * end buffered writers dirtying pages that can't be synced.
3386                  */
3387                 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3388                         continue;
3389                 revalidate_disk(ns->disk);
3390                 blk_set_queue_dying(ns->queue);
3391
3392                 /* Forcibly unquiesce queues to avoid blocking dispatch */
3393                 blk_mq_unquiesce_queue(ns->queue);
3394         }
3395         mutex_unlock(&ctrl->namespaces_mutex);
3396 }
3397 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3398
3399 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3400 {
3401         struct nvme_ns *ns;
3402
3403         mutex_lock(&ctrl->namespaces_mutex);
3404         list_for_each_entry(ns, &ctrl->namespaces, list)
3405                 blk_mq_unfreeze_queue(ns->queue);
3406         mutex_unlock(&ctrl->namespaces_mutex);
3407 }
3408 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3409
3410 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3411 {
3412         struct nvme_ns *ns;
3413
3414         mutex_lock(&ctrl->namespaces_mutex);
3415         list_for_each_entry(ns, &ctrl->namespaces, list) {
3416                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3417                 if (timeout <= 0)
3418                         break;
3419         }
3420         mutex_unlock(&ctrl->namespaces_mutex);
3421 }
3422 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3423
3424 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3425 {
3426         struct nvme_ns *ns;
3427
3428         mutex_lock(&ctrl->namespaces_mutex);
3429         list_for_each_entry(ns, &ctrl->namespaces, list)
3430                 blk_mq_freeze_queue_wait(ns->queue);
3431         mutex_unlock(&ctrl->namespaces_mutex);
3432 }
3433 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3434
3435 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3436 {
3437         struct nvme_ns *ns;
3438
3439         mutex_lock(&ctrl->namespaces_mutex);
3440         list_for_each_entry(ns, &ctrl->namespaces, list)
3441                 blk_freeze_queue_start(ns->queue);
3442         mutex_unlock(&ctrl->namespaces_mutex);
3443 }
3444 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3445
3446 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3447 {
3448         struct nvme_ns *ns;
3449
3450         mutex_lock(&ctrl->namespaces_mutex);
3451         list_for_each_entry(ns, &ctrl->namespaces, list)
3452                 blk_mq_quiesce_queue(ns->queue);
3453         mutex_unlock(&ctrl->namespaces_mutex);
3454 }
3455 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3456
3457 void nvme_start_queues(struct nvme_ctrl *ctrl)
3458 {
3459         struct nvme_ns *ns;
3460
3461         mutex_lock(&ctrl->namespaces_mutex);
3462         list_for_each_entry(ns, &ctrl->namespaces, list)
3463                 blk_mq_unquiesce_queue(ns->queue);
3464         mutex_unlock(&ctrl->namespaces_mutex);
3465 }
3466 EXPORT_SYMBOL_GPL(nvme_start_queues);
3467
3468 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3469 {
3470         if (!ctrl->ops->reinit_request)
3471                 return 0;
3472
3473         return blk_mq_tagset_iter(set, set->driver_data,
3474                         ctrl->ops->reinit_request);
3475 }
3476 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3477
3478 int __init nvme_core_init(void)
3479 {
3480         int result;
3481
3482         nvme_wq = alloc_workqueue("nvme-wq",
3483                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3484         if (!nvme_wq)
3485                 return -ENOMEM;
3486
3487         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3488         if (result < 0)
3489                 goto destroy_wq;
3490
3491         nvme_class = class_create(THIS_MODULE, "nvme");
3492         if (IS_ERR(nvme_class)) {
3493                 result = PTR_ERR(nvme_class);
3494                 goto unregister_chrdev;
3495         }
3496
3497         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3498         if (IS_ERR(nvme_subsys_class)) {
3499                 result = PTR_ERR(nvme_subsys_class);
3500                 goto destroy_class;
3501         }
3502         return 0;
3503
3504 destroy_class:
3505         class_destroy(nvme_class);
3506 unregister_chrdev:
3507         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3508 destroy_wq:
3509         destroy_workqueue(nvme_wq);
3510         return result;
3511 }
3512
3513 void nvme_core_exit(void)
3514 {
3515         ida_destroy(&nvme_subsystems_ida);
3516         class_destroy(nvme_subsys_class);
3517         class_destroy(nvme_class);
3518         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3519         destroy_workqueue(nvme_wq);
3520 }
3521
3522 MODULE_LICENSE("GPL");
3523 MODULE_VERSION("1.0");
3524 module_init(nvme_core_init);
3525 module_exit(nvme_core_exit);