Merge remote-tracking branches 'asoc/topic/omap', 'asoc/topic/pxa', 'asoc/topic/rockc...
[sfrench/cifs-2.6.git] / drivers / ntb / ntb_transport.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION   4
66 #define NTB_TRANSPORT_VER       "4"
67 #define NTB_TRANSPORT_NAME      "ntb_transport"
68 #define NTB_TRANSPORT_DESC      "Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95
96 static struct dentry *nt_debugfs_dir;
97
98 struct ntb_queue_entry {
99         /* ntb_queue list reference */
100         struct list_head entry;
101         /* pointers to data to be transferred */
102         void *cb_data;
103         void *buf;
104         unsigned int len;
105         unsigned int flags;
106         int retries;
107         int errors;
108         unsigned int tx_index;
109         unsigned int rx_index;
110
111         struct ntb_transport_qp *qp;
112         union {
113                 struct ntb_payload_header __iomem *tx_hdr;
114                 struct ntb_payload_header *rx_hdr;
115         };
116 };
117
118 struct ntb_rx_info {
119         unsigned int entry;
120 };
121
122 struct ntb_transport_qp {
123         struct ntb_transport_ctx *transport;
124         struct ntb_dev *ndev;
125         void *cb_data;
126         struct dma_chan *tx_dma_chan;
127         struct dma_chan *rx_dma_chan;
128
129         bool client_ready;
130         bool link_is_up;
131         bool active;
132
133         u8 qp_num;      /* Only 64 QP's are allowed.  0-63 */
134         u64 qp_bit;
135
136         struct ntb_rx_info __iomem *rx_info;
137         struct ntb_rx_info *remote_rx_info;
138
139         void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
140                            void *data, int len);
141         struct list_head tx_free_q;
142         spinlock_t ntb_tx_free_q_lock;
143         void __iomem *tx_mw;
144         dma_addr_t tx_mw_phys;
145         unsigned int tx_index;
146         unsigned int tx_max_entry;
147         unsigned int tx_max_frame;
148
149         void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
150                            void *data, int len);
151         struct list_head rx_post_q;
152         struct list_head rx_pend_q;
153         struct list_head rx_free_q;
154         /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
155         spinlock_t ntb_rx_q_lock;
156         void *rx_buff;
157         unsigned int rx_index;
158         unsigned int rx_max_entry;
159         unsigned int rx_max_frame;
160         unsigned int rx_alloc_entry;
161         dma_cookie_t last_cookie;
162         struct tasklet_struct rxc_db_work;
163
164         void (*event_handler)(void *data, int status);
165         struct delayed_work link_work;
166         struct work_struct link_cleanup;
167
168         struct dentry *debugfs_dir;
169         struct dentry *debugfs_stats;
170
171         /* Stats */
172         u64 rx_bytes;
173         u64 rx_pkts;
174         u64 rx_ring_empty;
175         u64 rx_err_no_buf;
176         u64 rx_err_oflow;
177         u64 rx_err_ver;
178         u64 rx_memcpy;
179         u64 rx_async;
180         u64 tx_bytes;
181         u64 tx_pkts;
182         u64 tx_ring_full;
183         u64 tx_err_no_buf;
184         u64 tx_memcpy;
185         u64 tx_async;
186 };
187
188 struct ntb_transport_mw {
189         phys_addr_t phys_addr;
190         resource_size_t phys_size;
191         resource_size_t xlat_align;
192         resource_size_t xlat_align_size;
193         void __iomem *vbase;
194         size_t xlat_size;
195         size_t buff_size;
196         void *virt_addr;
197         dma_addr_t dma_addr;
198 };
199
200 struct ntb_transport_client_dev {
201         struct list_head entry;
202         struct ntb_transport_ctx *nt;
203         struct device dev;
204 };
205
206 struct ntb_transport_ctx {
207         struct list_head entry;
208         struct list_head client_devs;
209
210         struct ntb_dev *ndev;
211
212         struct ntb_transport_mw *mw_vec;
213         struct ntb_transport_qp *qp_vec;
214         unsigned int mw_count;
215         unsigned int qp_count;
216         u64 qp_bitmap;
217         u64 qp_bitmap_free;
218
219         bool link_is_up;
220         struct delayed_work link_work;
221         struct work_struct link_cleanup;
222
223         struct dentry *debugfs_node_dir;
224 };
225
226 enum {
227         DESC_DONE_FLAG = BIT(0),
228         LINK_DOWN_FLAG = BIT(1),
229 };
230
231 struct ntb_payload_header {
232         unsigned int ver;
233         unsigned int len;
234         unsigned int flags;
235 };
236
237 enum {
238         VERSION = 0,
239         QP_LINKS,
240         NUM_QPS,
241         NUM_MWS,
242         MW0_SZ_HIGH,
243         MW0_SZ_LOW,
244 };
245
246 #define dev_client_dev(__dev) \
247         container_of((__dev), struct ntb_transport_client_dev, dev)
248
249 #define drv_client(__drv) \
250         container_of((__drv), struct ntb_transport_client, driver)
251
252 #define QP_TO_MW(nt, qp)        ((qp) % nt->mw_count)
253 #define NTB_QP_DEF_NUM_ENTRIES  100
254 #define NTB_LINK_DOWN_TIMEOUT   10
255
256 static void ntb_transport_rxc_db(unsigned long data);
257 static const struct ntb_ctx_ops ntb_transport_ops;
258 static struct ntb_client ntb_transport_client;
259 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
260                                struct ntb_queue_entry *entry);
261 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
262 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
263 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
264
265
266 static int ntb_transport_bus_match(struct device *dev,
267                                    struct device_driver *drv)
268 {
269         return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
270 }
271
272 static int ntb_transport_bus_probe(struct device *dev)
273 {
274         const struct ntb_transport_client *client;
275         int rc = -EINVAL;
276
277         get_device(dev);
278
279         client = drv_client(dev->driver);
280         rc = client->probe(dev);
281         if (rc)
282                 put_device(dev);
283
284         return rc;
285 }
286
287 static int ntb_transport_bus_remove(struct device *dev)
288 {
289         const struct ntb_transport_client *client;
290
291         client = drv_client(dev->driver);
292         client->remove(dev);
293
294         put_device(dev);
295
296         return 0;
297 }
298
299 static struct bus_type ntb_transport_bus = {
300         .name = "ntb_transport",
301         .match = ntb_transport_bus_match,
302         .probe = ntb_transport_bus_probe,
303         .remove = ntb_transport_bus_remove,
304 };
305
306 static LIST_HEAD(ntb_transport_list);
307
308 static int ntb_bus_init(struct ntb_transport_ctx *nt)
309 {
310         list_add_tail(&nt->entry, &ntb_transport_list);
311         return 0;
312 }
313
314 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
315 {
316         struct ntb_transport_client_dev *client_dev, *cd;
317
318         list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
319                 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
320                         dev_name(&client_dev->dev));
321                 list_del(&client_dev->entry);
322                 device_unregister(&client_dev->dev);
323         }
324
325         list_del(&nt->entry);
326 }
327
328 static void ntb_transport_client_release(struct device *dev)
329 {
330         struct ntb_transport_client_dev *client_dev;
331
332         client_dev = dev_client_dev(dev);
333         kfree(client_dev);
334 }
335
336 /**
337  * ntb_transport_unregister_client_dev - Unregister NTB client device
338  * @device_name: Name of NTB client device
339  *
340  * Unregister an NTB client device with the NTB transport layer
341  */
342 void ntb_transport_unregister_client_dev(char *device_name)
343 {
344         struct ntb_transport_client_dev *client, *cd;
345         struct ntb_transport_ctx *nt;
346
347         list_for_each_entry(nt, &ntb_transport_list, entry)
348                 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
349                         if (!strncmp(dev_name(&client->dev), device_name,
350                                      strlen(device_name))) {
351                                 list_del(&client->entry);
352                                 device_unregister(&client->dev);
353                         }
354 }
355 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
356
357 /**
358  * ntb_transport_register_client_dev - Register NTB client device
359  * @device_name: Name of NTB client device
360  *
361  * Register an NTB client device with the NTB transport layer
362  */
363 int ntb_transport_register_client_dev(char *device_name)
364 {
365         struct ntb_transport_client_dev *client_dev;
366         struct ntb_transport_ctx *nt;
367         int node;
368         int rc, i = 0;
369
370         if (list_empty(&ntb_transport_list))
371                 return -ENODEV;
372
373         list_for_each_entry(nt, &ntb_transport_list, entry) {
374                 struct device *dev;
375
376                 node = dev_to_node(&nt->ndev->dev);
377
378                 client_dev = kzalloc_node(sizeof(*client_dev),
379                                           GFP_KERNEL, node);
380                 if (!client_dev) {
381                         rc = -ENOMEM;
382                         goto err;
383                 }
384
385                 dev = &client_dev->dev;
386
387                 /* setup and register client devices */
388                 dev_set_name(dev, "%s%d", device_name, i);
389                 dev->bus = &ntb_transport_bus;
390                 dev->release = ntb_transport_client_release;
391                 dev->parent = &nt->ndev->dev;
392
393                 rc = device_register(dev);
394                 if (rc) {
395                         kfree(client_dev);
396                         goto err;
397                 }
398
399                 list_add_tail(&client_dev->entry, &nt->client_devs);
400                 i++;
401         }
402
403         return 0;
404
405 err:
406         ntb_transport_unregister_client_dev(device_name);
407
408         return rc;
409 }
410 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
411
412 /**
413  * ntb_transport_register_client - Register NTB client driver
414  * @drv: NTB client driver to be registered
415  *
416  * Register an NTB client driver with the NTB transport layer
417  *
418  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
419  */
420 int ntb_transport_register_client(struct ntb_transport_client *drv)
421 {
422         drv->driver.bus = &ntb_transport_bus;
423
424         if (list_empty(&ntb_transport_list))
425                 return -ENODEV;
426
427         return driver_register(&drv->driver);
428 }
429 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
430
431 /**
432  * ntb_transport_unregister_client - Unregister NTB client driver
433  * @drv: NTB client driver to be unregistered
434  *
435  * Unregister an NTB client driver with the NTB transport layer
436  *
437  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
438  */
439 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
440 {
441         driver_unregister(&drv->driver);
442 }
443 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
444
445 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
446                             loff_t *offp)
447 {
448         struct ntb_transport_qp *qp;
449         char *buf;
450         ssize_t ret, out_offset, out_count;
451
452         qp = filp->private_data;
453
454         if (!qp || !qp->link_is_up)
455                 return 0;
456
457         out_count = 1000;
458
459         buf = kmalloc(out_count, GFP_KERNEL);
460         if (!buf)
461                 return -ENOMEM;
462
463         out_offset = 0;
464         out_offset += snprintf(buf + out_offset, out_count - out_offset,
465                                "\nNTB QP stats:\n\n");
466         out_offset += snprintf(buf + out_offset, out_count - out_offset,
467                                "rx_bytes - \t%llu\n", qp->rx_bytes);
468         out_offset += snprintf(buf + out_offset, out_count - out_offset,
469                                "rx_pkts - \t%llu\n", qp->rx_pkts);
470         out_offset += snprintf(buf + out_offset, out_count - out_offset,
471                                "rx_memcpy - \t%llu\n", qp->rx_memcpy);
472         out_offset += snprintf(buf + out_offset, out_count - out_offset,
473                                "rx_async - \t%llu\n", qp->rx_async);
474         out_offset += snprintf(buf + out_offset, out_count - out_offset,
475                                "rx_ring_empty - %llu\n", qp->rx_ring_empty);
476         out_offset += snprintf(buf + out_offset, out_count - out_offset,
477                                "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
478         out_offset += snprintf(buf + out_offset, out_count - out_offset,
479                                "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
480         out_offset += snprintf(buf + out_offset, out_count - out_offset,
481                                "rx_err_ver - \t%llu\n", qp->rx_err_ver);
482         out_offset += snprintf(buf + out_offset, out_count - out_offset,
483                                "rx_buff - \t0x%p\n", qp->rx_buff);
484         out_offset += snprintf(buf + out_offset, out_count - out_offset,
485                                "rx_index - \t%u\n", qp->rx_index);
486         out_offset += snprintf(buf + out_offset, out_count - out_offset,
487                                "rx_max_entry - \t%u\n", qp->rx_max_entry);
488         out_offset += snprintf(buf + out_offset, out_count - out_offset,
489                                "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
490
491         out_offset += snprintf(buf + out_offset, out_count - out_offset,
492                                "tx_bytes - \t%llu\n", qp->tx_bytes);
493         out_offset += snprintf(buf + out_offset, out_count - out_offset,
494                                "tx_pkts - \t%llu\n", qp->tx_pkts);
495         out_offset += snprintf(buf + out_offset, out_count - out_offset,
496                                "tx_memcpy - \t%llu\n", qp->tx_memcpy);
497         out_offset += snprintf(buf + out_offset, out_count - out_offset,
498                                "tx_async - \t%llu\n", qp->tx_async);
499         out_offset += snprintf(buf + out_offset, out_count - out_offset,
500                                "tx_ring_full - \t%llu\n", qp->tx_ring_full);
501         out_offset += snprintf(buf + out_offset, out_count - out_offset,
502                                "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
503         out_offset += snprintf(buf + out_offset, out_count - out_offset,
504                                "tx_mw - \t0x%p\n", qp->tx_mw);
505         out_offset += snprintf(buf + out_offset, out_count - out_offset,
506                                "tx_index (H) - \t%u\n", qp->tx_index);
507         out_offset += snprintf(buf + out_offset, out_count - out_offset,
508                                "RRI (T) - \t%u\n",
509                                qp->remote_rx_info->entry);
510         out_offset += snprintf(buf + out_offset, out_count - out_offset,
511                                "tx_max_entry - \t%u\n", qp->tx_max_entry);
512         out_offset += snprintf(buf + out_offset, out_count - out_offset,
513                                "free tx - \t%u\n",
514                                ntb_transport_tx_free_entry(qp));
515
516         out_offset += snprintf(buf + out_offset, out_count - out_offset,
517                                "\n");
518         out_offset += snprintf(buf + out_offset, out_count - out_offset,
519                                "Using TX DMA - \t%s\n",
520                                qp->tx_dma_chan ? "Yes" : "No");
521         out_offset += snprintf(buf + out_offset, out_count - out_offset,
522                                "Using RX DMA - \t%s\n",
523                                qp->rx_dma_chan ? "Yes" : "No");
524         out_offset += snprintf(buf + out_offset, out_count - out_offset,
525                                "QP Link - \t%s\n",
526                                qp->link_is_up ? "Up" : "Down");
527         out_offset += snprintf(buf + out_offset, out_count - out_offset,
528                                "\n");
529
530         if (out_offset > out_count)
531                 out_offset = out_count;
532
533         ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
534         kfree(buf);
535         return ret;
536 }
537
538 static const struct file_operations ntb_qp_debugfs_stats = {
539         .owner = THIS_MODULE,
540         .open = simple_open,
541         .read = debugfs_read,
542 };
543
544 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
545                          struct list_head *list)
546 {
547         unsigned long flags;
548
549         spin_lock_irqsave(lock, flags);
550         list_add_tail(entry, list);
551         spin_unlock_irqrestore(lock, flags);
552 }
553
554 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
555                                            struct list_head *list)
556 {
557         struct ntb_queue_entry *entry;
558         unsigned long flags;
559
560         spin_lock_irqsave(lock, flags);
561         if (list_empty(list)) {
562                 entry = NULL;
563                 goto out;
564         }
565         entry = list_first_entry(list, struct ntb_queue_entry, entry);
566         list_del(&entry->entry);
567
568 out:
569         spin_unlock_irqrestore(lock, flags);
570
571         return entry;
572 }
573
574 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
575                                            struct list_head *list,
576                                            struct list_head *to_list)
577 {
578         struct ntb_queue_entry *entry;
579         unsigned long flags;
580
581         spin_lock_irqsave(lock, flags);
582
583         if (list_empty(list)) {
584                 entry = NULL;
585         } else {
586                 entry = list_first_entry(list, struct ntb_queue_entry, entry);
587                 list_move_tail(&entry->entry, to_list);
588         }
589
590         spin_unlock_irqrestore(lock, flags);
591
592         return entry;
593 }
594
595 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
596                                      unsigned int qp_num)
597 {
598         struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
599         struct ntb_transport_mw *mw;
600         struct ntb_dev *ndev = nt->ndev;
601         struct ntb_queue_entry *entry;
602         unsigned int rx_size, num_qps_mw;
603         unsigned int mw_num, mw_count, qp_count;
604         unsigned int i;
605         int node;
606
607         mw_count = nt->mw_count;
608         qp_count = nt->qp_count;
609
610         mw_num = QP_TO_MW(nt, qp_num);
611         mw = &nt->mw_vec[mw_num];
612
613         if (!mw->virt_addr)
614                 return -ENOMEM;
615
616         if (mw_num < qp_count % mw_count)
617                 num_qps_mw = qp_count / mw_count + 1;
618         else
619                 num_qps_mw = qp_count / mw_count;
620
621         rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
622         qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
623         rx_size -= sizeof(struct ntb_rx_info);
624
625         qp->remote_rx_info = qp->rx_buff + rx_size;
626
627         /* Due to housekeeping, there must be atleast 2 buffs */
628         qp->rx_max_frame = min(transport_mtu, rx_size / 2);
629         qp->rx_max_entry = rx_size / qp->rx_max_frame;
630         qp->rx_index = 0;
631
632         /*
633          * Checking to see if we have more entries than the default.
634          * We should add additional entries if that is the case so we
635          * can be in sync with the transport frames.
636          */
637         node = dev_to_node(&ndev->dev);
638         for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
639                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
640                 if (!entry)
641                         return -ENOMEM;
642
643                 entry->qp = qp;
644                 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
645                              &qp->rx_free_q);
646                 qp->rx_alloc_entry++;
647         }
648
649         qp->remote_rx_info->entry = qp->rx_max_entry - 1;
650
651         /* setup the hdr offsets with 0's */
652         for (i = 0; i < qp->rx_max_entry; i++) {
653                 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
654                                 sizeof(struct ntb_payload_header));
655                 memset(offset, 0, sizeof(struct ntb_payload_header));
656         }
657
658         qp->rx_pkts = 0;
659         qp->tx_pkts = 0;
660         qp->tx_index = 0;
661
662         return 0;
663 }
664
665 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
666 {
667         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
668         struct pci_dev *pdev = nt->ndev->pdev;
669
670         if (!mw->virt_addr)
671                 return;
672
673         ntb_mw_clear_trans(nt->ndev, num_mw);
674         dma_free_coherent(&pdev->dev, mw->buff_size,
675                           mw->virt_addr, mw->dma_addr);
676         mw->xlat_size = 0;
677         mw->buff_size = 0;
678         mw->virt_addr = NULL;
679 }
680
681 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
682                       resource_size_t size)
683 {
684         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
685         struct pci_dev *pdev = nt->ndev->pdev;
686         size_t xlat_size, buff_size;
687         int rc;
688
689         if (!size)
690                 return -EINVAL;
691
692         xlat_size = round_up(size, mw->xlat_align_size);
693         buff_size = round_up(size, mw->xlat_align);
694
695         /* No need to re-setup */
696         if (mw->xlat_size == xlat_size)
697                 return 0;
698
699         if (mw->buff_size)
700                 ntb_free_mw(nt, num_mw);
701
702         /* Alloc memory for receiving data.  Must be aligned */
703         mw->xlat_size = xlat_size;
704         mw->buff_size = buff_size;
705
706         mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
707                                            &mw->dma_addr, GFP_KERNEL);
708         if (!mw->virt_addr) {
709                 mw->xlat_size = 0;
710                 mw->buff_size = 0;
711                 dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
712                         buff_size);
713                 return -ENOMEM;
714         }
715
716         /*
717          * we must ensure that the memory address allocated is BAR size
718          * aligned in order for the XLAT register to take the value. This
719          * is a requirement of the hardware. It is recommended to setup CMA
720          * for BAR sizes equal or greater than 4MB.
721          */
722         if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
723                 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
724                         &mw->dma_addr);
725                 ntb_free_mw(nt, num_mw);
726                 return -ENOMEM;
727         }
728
729         /* Notify HW the memory location of the receive buffer */
730         rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
731         if (rc) {
732                 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
733                 ntb_free_mw(nt, num_mw);
734                 return -EIO;
735         }
736
737         return 0;
738 }
739
740 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
741 {
742         qp->link_is_up = false;
743         qp->active = false;
744
745         qp->tx_index = 0;
746         qp->rx_index = 0;
747         qp->rx_bytes = 0;
748         qp->rx_pkts = 0;
749         qp->rx_ring_empty = 0;
750         qp->rx_err_no_buf = 0;
751         qp->rx_err_oflow = 0;
752         qp->rx_err_ver = 0;
753         qp->rx_memcpy = 0;
754         qp->rx_async = 0;
755         qp->tx_bytes = 0;
756         qp->tx_pkts = 0;
757         qp->tx_ring_full = 0;
758         qp->tx_err_no_buf = 0;
759         qp->tx_memcpy = 0;
760         qp->tx_async = 0;
761 }
762
763 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
764 {
765         struct ntb_transport_ctx *nt = qp->transport;
766         struct pci_dev *pdev = nt->ndev->pdev;
767
768         dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
769
770         cancel_delayed_work_sync(&qp->link_work);
771         ntb_qp_link_down_reset(qp);
772
773         if (qp->event_handler)
774                 qp->event_handler(qp->cb_data, qp->link_is_up);
775 }
776
777 static void ntb_qp_link_cleanup_work(struct work_struct *work)
778 {
779         struct ntb_transport_qp *qp = container_of(work,
780                                                    struct ntb_transport_qp,
781                                                    link_cleanup);
782         struct ntb_transport_ctx *nt = qp->transport;
783
784         ntb_qp_link_cleanup(qp);
785
786         if (nt->link_is_up)
787                 schedule_delayed_work(&qp->link_work,
788                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
789 }
790
791 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
792 {
793         schedule_work(&qp->link_cleanup);
794 }
795
796 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
797 {
798         struct ntb_transport_qp *qp;
799         u64 qp_bitmap_alloc;
800         unsigned int i, count;
801
802         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
803
804         /* Pass along the info to any clients */
805         for (i = 0; i < nt->qp_count; i++)
806                 if (qp_bitmap_alloc & BIT_ULL(i)) {
807                         qp = &nt->qp_vec[i];
808                         ntb_qp_link_cleanup(qp);
809                         cancel_work_sync(&qp->link_cleanup);
810                         cancel_delayed_work_sync(&qp->link_work);
811                 }
812
813         if (!nt->link_is_up)
814                 cancel_delayed_work_sync(&nt->link_work);
815
816         /* The scratchpad registers keep the values if the remote side
817          * goes down, blast them now to give them a sane value the next
818          * time they are accessed
819          */
820         count = ntb_spad_count(nt->ndev);
821         for (i = 0; i < count; i++)
822                 ntb_spad_write(nt->ndev, i, 0);
823 }
824
825 static void ntb_transport_link_cleanup_work(struct work_struct *work)
826 {
827         struct ntb_transport_ctx *nt =
828                 container_of(work, struct ntb_transport_ctx, link_cleanup);
829
830         ntb_transport_link_cleanup(nt);
831 }
832
833 static void ntb_transport_event_callback(void *data)
834 {
835         struct ntb_transport_ctx *nt = data;
836
837         if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
838                 schedule_delayed_work(&nt->link_work, 0);
839         else
840                 schedule_work(&nt->link_cleanup);
841 }
842
843 static void ntb_transport_link_work(struct work_struct *work)
844 {
845         struct ntb_transport_ctx *nt =
846                 container_of(work, struct ntb_transport_ctx, link_work.work);
847         struct ntb_dev *ndev = nt->ndev;
848         struct pci_dev *pdev = ndev->pdev;
849         resource_size_t size;
850         u32 val;
851         int rc = 0, i, spad;
852
853         /* send the local info, in the opposite order of the way we read it */
854         for (i = 0; i < nt->mw_count; i++) {
855                 size = nt->mw_vec[i].phys_size;
856
857                 if (max_mw_size && size > max_mw_size)
858                         size = max_mw_size;
859
860                 spad = MW0_SZ_HIGH + (i * 2);
861                 ntb_peer_spad_write(ndev, spad, upper_32_bits(size));
862
863                 spad = MW0_SZ_LOW + (i * 2);
864                 ntb_peer_spad_write(ndev, spad, lower_32_bits(size));
865         }
866
867         ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
868
869         ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
870
871         ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
872
873         /* Query the remote side for its info */
874         val = ntb_spad_read(ndev, VERSION);
875         dev_dbg(&pdev->dev, "Remote version = %d\n", val);
876         if (val != NTB_TRANSPORT_VERSION)
877                 goto out;
878
879         val = ntb_spad_read(ndev, NUM_QPS);
880         dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
881         if (val != nt->qp_count)
882                 goto out;
883
884         val = ntb_spad_read(ndev, NUM_MWS);
885         dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
886         if (val != nt->mw_count)
887                 goto out;
888
889         for (i = 0; i < nt->mw_count; i++) {
890                 u64 val64;
891
892                 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
893                 val64 = (u64)val << 32;
894
895                 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
896                 val64 |= val;
897
898                 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
899
900                 rc = ntb_set_mw(nt, i, val64);
901                 if (rc)
902                         goto out1;
903         }
904
905         nt->link_is_up = true;
906
907         for (i = 0; i < nt->qp_count; i++) {
908                 struct ntb_transport_qp *qp = &nt->qp_vec[i];
909
910                 ntb_transport_setup_qp_mw(nt, i);
911
912                 if (qp->client_ready)
913                         schedule_delayed_work(&qp->link_work, 0);
914         }
915
916         return;
917
918 out1:
919         for (i = 0; i < nt->mw_count; i++)
920                 ntb_free_mw(nt, i);
921
922         /* if there's an actual failure, we should just bail */
923         if (rc < 0) {
924                 ntb_link_disable(ndev);
925                 return;
926         }
927
928 out:
929         if (ntb_link_is_up(ndev, NULL, NULL) == 1)
930                 schedule_delayed_work(&nt->link_work,
931                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
932 }
933
934 static void ntb_qp_link_work(struct work_struct *work)
935 {
936         struct ntb_transport_qp *qp = container_of(work,
937                                                    struct ntb_transport_qp,
938                                                    link_work.work);
939         struct pci_dev *pdev = qp->ndev->pdev;
940         struct ntb_transport_ctx *nt = qp->transport;
941         int val;
942
943         WARN_ON(!nt->link_is_up);
944
945         val = ntb_spad_read(nt->ndev, QP_LINKS);
946
947         ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
948
949         /* query remote spad for qp ready bits */
950         dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
951
952         /* See if the remote side is up */
953         if (val & BIT(qp->qp_num)) {
954                 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
955                 qp->link_is_up = true;
956                 qp->active = true;
957
958                 if (qp->event_handler)
959                         qp->event_handler(qp->cb_data, qp->link_is_up);
960
961                 if (qp->active)
962                         tasklet_schedule(&qp->rxc_db_work);
963         } else if (nt->link_is_up)
964                 schedule_delayed_work(&qp->link_work,
965                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
966 }
967
968 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
969                                     unsigned int qp_num)
970 {
971         struct ntb_transport_qp *qp;
972         phys_addr_t mw_base;
973         resource_size_t mw_size;
974         unsigned int num_qps_mw, tx_size;
975         unsigned int mw_num, mw_count, qp_count;
976         u64 qp_offset;
977
978         mw_count = nt->mw_count;
979         qp_count = nt->qp_count;
980
981         mw_num = QP_TO_MW(nt, qp_num);
982
983         qp = &nt->qp_vec[qp_num];
984         qp->qp_num = qp_num;
985         qp->transport = nt;
986         qp->ndev = nt->ndev;
987         qp->client_ready = false;
988         qp->event_handler = NULL;
989         ntb_qp_link_down_reset(qp);
990
991         if (mw_num < qp_count % mw_count)
992                 num_qps_mw = qp_count / mw_count + 1;
993         else
994                 num_qps_mw = qp_count / mw_count;
995
996         mw_base = nt->mw_vec[mw_num].phys_addr;
997         mw_size = nt->mw_vec[mw_num].phys_size;
998
999         tx_size = (unsigned int)mw_size / num_qps_mw;
1000         qp_offset = tx_size * (qp_num / mw_count);
1001
1002         qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1003         if (!qp->tx_mw)
1004                 return -EINVAL;
1005
1006         qp->tx_mw_phys = mw_base + qp_offset;
1007         if (!qp->tx_mw_phys)
1008                 return -EINVAL;
1009
1010         tx_size -= sizeof(struct ntb_rx_info);
1011         qp->rx_info = qp->tx_mw + tx_size;
1012
1013         /* Due to housekeeping, there must be atleast 2 buffs */
1014         qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1015         qp->tx_max_entry = tx_size / qp->tx_max_frame;
1016
1017         if (nt->debugfs_node_dir) {
1018                 char debugfs_name[4];
1019
1020                 snprintf(debugfs_name, 4, "qp%d", qp_num);
1021                 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1022                                                      nt->debugfs_node_dir);
1023
1024                 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1025                                                         qp->debugfs_dir, qp,
1026                                                         &ntb_qp_debugfs_stats);
1027         } else {
1028                 qp->debugfs_dir = NULL;
1029                 qp->debugfs_stats = NULL;
1030         }
1031
1032         INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1033         INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1034
1035         spin_lock_init(&qp->ntb_rx_q_lock);
1036         spin_lock_init(&qp->ntb_tx_free_q_lock);
1037
1038         INIT_LIST_HEAD(&qp->rx_post_q);
1039         INIT_LIST_HEAD(&qp->rx_pend_q);
1040         INIT_LIST_HEAD(&qp->rx_free_q);
1041         INIT_LIST_HEAD(&qp->tx_free_q);
1042
1043         tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1044                      (unsigned long)qp);
1045
1046         return 0;
1047 }
1048
1049 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1050 {
1051         struct ntb_transport_ctx *nt;
1052         struct ntb_transport_mw *mw;
1053         unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1054         u64 qp_bitmap;
1055         int node;
1056         int rc, i;
1057
1058         mw_count = ntb_mw_count(ndev);
1059
1060         if (ntb_db_is_unsafe(ndev))
1061                 dev_dbg(&ndev->dev,
1062                         "doorbell is unsafe, proceed anyway...\n");
1063         if (ntb_spad_is_unsafe(ndev))
1064                 dev_dbg(&ndev->dev,
1065                         "scratchpad is unsafe, proceed anyway...\n");
1066
1067         node = dev_to_node(&ndev->dev);
1068
1069         nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1070         if (!nt)
1071                 return -ENOMEM;
1072
1073         nt->ndev = ndev;
1074         spad_count = ntb_spad_count(ndev);
1075
1076         /* Limit the MW's based on the availability of scratchpads */
1077
1078         if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1079                 nt->mw_count = 0;
1080                 rc = -EINVAL;
1081                 goto err;
1082         }
1083
1084         max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1085         nt->mw_count = min(mw_count, max_mw_count_for_spads);
1086
1087         nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1088                                   GFP_KERNEL, node);
1089         if (!nt->mw_vec) {
1090                 rc = -ENOMEM;
1091                 goto err;
1092         }
1093
1094         for (i = 0; i < mw_count; i++) {
1095                 mw = &nt->mw_vec[i];
1096
1097                 rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1098                                       &mw->xlat_align, &mw->xlat_align_size);
1099                 if (rc)
1100                         goto err1;
1101
1102                 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1103                 if (!mw->vbase) {
1104                         rc = -ENOMEM;
1105                         goto err1;
1106                 }
1107
1108                 mw->buff_size = 0;
1109                 mw->xlat_size = 0;
1110                 mw->virt_addr = NULL;
1111                 mw->dma_addr = 0;
1112         }
1113
1114         qp_bitmap = ntb_db_valid_mask(ndev);
1115
1116         qp_count = ilog2(qp_bitmap);
1117         if (max_num_clients && max_num_clients < qp_count)
1118                 qp_count = max_num_clients;
1119         else if (nt->mw_count < qp_count)
1120                 qp_count = nt->mw_count;
1121
1122         qp_bitmap &= BIT_ULL(qp_count) - 1;
1123
1124         nt->qp_count = qp_count;
1125         nt->qp_bitmap = qp_bitmap;
1126         nt->qp_bitmap_free = qp_bitmap;
1127
1128         nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1129                                   GFP_KERNEL, node);
1130         if (!nt->qp_vec) {
1131                 rc = -ENOMEM;
1132                 goto err1;
1133         }
1134
1135         if (nt_debugfs_dir) {
1136                 nt->debugfs_node_dir =
1137                         debugfs_create_dir(pci_name(ndev->pdev),
1138                                            nt_debugfs_dir);
1139         }
1140
1141         for (i = 0; i < qp_count; i++) {
1142                 rc = ntb_transport_init_queue(nt, i);
1143                 if (rc)
1144                         goto err2;
1145         }
1146
1147         INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1148         INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1149
1150         rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1151         if (rc)
1152                 goto err2;
1153
1154         INIT_LIST_HEAD(&nt->client_devs);
1155         rc = ntb_bus_init(nt);
1156         if (rc)
1157                 goto err3;
1158
1159         nt->link_is_up = false;
1160         ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1161         ntb_link_event(ndev);
1162
1163         return 0;
1164
1165 err3:
1166         ntb_clear_ctx(ndev);
1167 err2:
1168         kfree(nt->qp_vec);
1169 err1:
1170         while (i--) {
1171                 mw = &nt->mw_vec[i];
1172                 iounmap(mw->vbase);
1173         }
1174         kfree(nt->mw_vec);
1175 err:
1176         kfree(nt);
1177         return rc;
1178 }
1179
1180 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1181 {
1182         struct ntb_transport_ctx *nt = ndev->ctx;
1183         struct ntb_transport_qp *qp;
1184         u64 qp_bitmap_alloc;
1185         int i;
1186
1187         ntb_transport_link_cleanup(nt);
1188         cancel_work_sync(&nt->link_cleanup);
1189         cancel_delayed_work_sync(&nt->link_work);
1190
1191         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1192
1193         /* verify that all the qp's are freed */
1194         for (i = 0; i < nt->qp_count; i++) {
1195                 qp = &nt->qp_vec[i];
1196                 if (qp_bitmap_alloc & BIT_ULL(i))
1197                         ntb_transport_free_queue(qp);
1198                 debugfs_remove_recursive(qp->debugfs_dir);
1199         }
1200
1201         ntb_link_disable(ndev);
1202         ntb_clear_ctx(ndev);
1203
1204         ntb_bus_remove(nt);
1205
1206         for (i = nt->mw_count; i--; ) {
1207                 ntb_free_mw(nt, i);
1208                 iounmap(nt->mw_vec[i].vbase);
1209         }
1210
1211         kfree(nt->qp_vec);
1212         kfree(nt->mw_vec);
1213         kfree(nt);
1214 }
1215
1216 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1217 {
1218         struct ntb_queue_entry *entry;
1219         void *cb_data;
1220         unsigned int len;
1221         unsigned long irqflags;
1222
1223         spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1224
1225         while (!list_empty(&qp->rx_post_q)) {
1226                 entry = list_first_entry(&qp->rx_post_q,
1227                                          struct ntb_queue_entry, entry);
1228                 if (!(entry->flags & DESC_DONE_FLAG))
1229                         break;
1230
1231                 entry->rx_hdr->flags = 0;
1232                 iowrite32(entry->rx_index, &qp->rx_info->entry);
1233
1234                 cb_data = entry->cb_data;
1235                 len = entry->len;
1236
1237                 list_move_tail(&entry->entry, &qp->rx_free_q);
1238
1239                 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1240
1241                 if (qp->rx_handler && qp->client_ready)
1242                         qp->rx_handler(qp, qp->cb_data, cb_data, len);
1243
1244                 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1245         }
1246
1247         spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1248 }
1249
1250 static void ntb_rx_copy_callback(void *data,
1251                                  const struct dmaengine_result *res)
1252 {
1253         struct ntb_queue_entry *entry = data;
1254
1255         /* we need to check DMA results if we are using DMA */
1256         if (res) {
1257                 enum dmaengine_tx_result dma_err = res->result;
1258
1259                 switch (dma_err) {
1260                 case DMA_TRANS_READ_FAILED:
1261                 case DMA_TRANS_WRITE_FAILED:
1262                         entry->errors++;
1263                 case DMA_TRANS_ABORTED:
1264                 {
1265                         struct ntb_transport_qp *qp = entry->qp;
1266                         void *offset = qp->rx_buff + qp->rx_max_frame *
1267                                         qp->rx_index;
1268
1269                         ntb_memcpy_rx(entry, offset);
1270                         qp->rx_memcpy++;
1271                         return;
1272                 }
1273
1274                 case DMA_TRANS_NOERROR:
1275                 default:
1276                         break;
1277                 }
1278         }
1279
1280         entry->flags |= DESC_DONE_FLAG;
1281
1282         ntb_complete_rxc(entry->qp);
1283 }
1284
1285 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1286 {
1287         void *buf = entry->buf;
1288         size_t len = entry->len;
1289
1290         memcpy(buf, offset, len);
1291
1292         /* Ensure that the data is fully copied out before clearing the flag */
1293         wmb();
1294
1295         ntb_rx_copy_callback(entry, NULL);
1296 }
1297
1298 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1299 {
1300         struct dma_async_tx_descriptor *txd;
1301         struct ntb_transport_qp *qp = entry->qp;
1302         struct dma_chan *chan = qp->rx_dma_chan;
1303         struct dma_device *device;
1304         size_t pay_off, buff_off, len;
1305         struct dmaengine_unmap_data *unmap;
1306         dma_cookie_t cookie;
1307         void *buf = entry->buf;
1308
1309         len = entry->len;
1310         device = chan->device;
1311         pay_off = (size_t)offset & ~PAGE_MASK;
1312         buff_off = (size_t)buf & ~PAGE_MASK;
1313
1314         if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1315                 goto err;
1316
1317         unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1318         if (!unmap)
1319                 goto err;
1320
1321         unmap->len = len;
1322         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1323                                       pay_off, len, DMA_TO_DEVICE);
1324         if (dma_mapping_error(device->dev, unmap->addr[0]))
1325                 goto err_get_unmap;
1326
1327         unmap->to_cnt = 1;
1328
1329         unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1330                                       buff_off, len, DMA_FROM_DEVICE);
1331         if (dma_mapping_error(device->dev, unmap->addr[1]))
1332                 goto err_get_unmap;
1333
1334         unmap->from_cnt = 1;
1335
1336         txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1337                                              unmap->addr[0], len,
1338                                              DMA_PREP_INTERRUPT);
1339         if (!txd)
1340                 goto err_get_unmap;
1341
1342         txd->callback_result = ntb_rx_copy_callback;
1343         txd->callback_param = entry;
1344         dma_set_unmap(txd, unmap);
1345
1346         cookie = dmaengine_submit(txd);
1347         if (dma_submit_error(cookie))
1348                 goto err_set_unmap;
1349
1350         dmaengine_unmap_put(unmap);
1351
1352         qp->last_cookie = cookie;
1353
1354         qp->rx_async++;
1355
1356         return 0;
1357
1358 err_set_unmap:
1359         dmaengine_unmap_put(unmap);
1360 err_get_unmap:
1361         dmaengine_unmap_put(unmap);
1362 err:
1363         return -ENXIO;
1364 }
1365
1366 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1367 {
1368         struct ntb_transport_qp *qp = entry->qp;
1369         struct dma_chan *chan = qp->rx_dma_chan;
1370         int res;
1371
1372         if (!chan)
1373                 goto err;
1374
1375         if (entry->len < copy_bytes)
1376                 goto err;
1377
1378         res = ntb_async_rx_submit(entry, offset);
1379         if (res < 0)
1380                 goto err;
1381
1382         if (!entry->retries)
1383                 qp->rx_async++;
1384
1385         return;
1386
1387 err:
1388         ntb_memcpy_rx(entry, offset);
1389         qp->rx_memcpy++;
1390 }
1391
1392 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1393 {
1394         struct ntb_payload_header *hdr;
1395         struct ntb_queue_entry *entry;
1396         void *offset;
1397
1398         offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1399         hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1400
1401         dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1402                 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1403
1404         if (!(hdr->flags & DESC_DONE_FLAG)) {
1405                 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1406                 qp->rx_ring_empty++;
1407                 return -EAGAIN;
1408         }
1409
1410         if (hdr->flags & LINK_DOWN_FLAG) {
1411                 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1412                 ntb_qp_link_down(qp);
1413                 hdr->flags = 0;
1414                 return -EAGAIN;
1415         }
1416
1417         if (hdr->ver != (u32)qp->rx_pkts) {
1418                 dev_dbg(&qp->ndev->pdev->dev,
1419                         "version mismatch, expected %llu - got %u\n",
1420                         qp->rx_pkts, hdr->ver);
1421                 qp->rx_err_ver++;
1422                 return -EIO;
1423         }
1424
1425         entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1426         if (!entry) {
1427                 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1428                 qp->rx_err_no_buf++;
1429                 return -EAGAIN;
1430         }
1431
1432         entry->rx_hdr = hdr;
1433         entry->rx_index = qp->rx_index;
1434
1435         if (hdr->len > entry->len) {
1436                 dev_dbg(&qp->ndev->pdev->dev,
1437                         "receive buffer overflow! Wanted %d got %d\n",
1438                         hdr->len, entry->len);
1439                 qp->rx_err_oflow++;
1440
1441                 entry->len = -EIO;
1442                 entry->flags |= DESC_DONE_FLAG;
1443
1444                 ntb_complete_rxc(qp);
1445         } else {
1446                 dev_dbg(&qp->ndev->pdev->dev,
1447                         "RX OK index %u ver %u size %d into buf size %d\n",
1448                         qp->rx_index, hdr->ver, hdr->len, entry->len);
1449
1450                 qp->rx_bytes += hdr->len;
1451                 qp->rx_pkts++;
1452
1453                 entry->len = hdr->len;
1454
1455                 ntb_async_rx(entry, offset);
1456         }
1457
1458         qp->rx_index++;
1459         qp->rx_index %= qp->rx_max_entry;
1460
1461         return 0;
1462 }
1463
1464 static void ntb_transport_rxc_db(unsigned long data)
1465 {
1466         struct ntb_transport_qp *qp = (void *)data;
1467         int rc, i;
1468
1469         dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1470                 __func__, qp->qp_num);
1471
1472         /* Limit the number of packets processed in a single interrupt to
1473          * provide fairness to others
1474          */
1475         for (i = 0; i < qp->rx_max_entry; i++) {
1476                 rc = ntb_process_rxc(qp);
1477                 if (rc)
1478                         break;
1479         }
1480
1481         if (i && qp->rx_dma_chan)
1482                 dma_async_issue_pending(qp->rx_dma_chan);
1483
1484         if (i == qp->rx_max_entry) {
1485                 /* there is more work to do */
1486                 if (qp->active)
1487                         tasklet_schedule(&qp->rxc_db_work);
1488         } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1489                 /* the doorbell bit is set: clear it */
1490                 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1491                 /* ntb_db_read ensures ntb_db_clear write is committed */
1492                 ntb_db_read(qp->ndev);
1493
1494                 /* an interrupt may have arrived between finishing
1495                  * ntb_process_rxc and clearing the doorbell bit:
1496                  * there might be some more work to do.
1497                  */
1498                 if (qp->active)
1499                         tasklet_schedule(&qp->rxc_db_work);
1500         }
1501 }
1502
1503 static void ntb_tx_copy_callback(void *data,
1504                                  const struct dmaengine_result *res)
1505 {
1506         struct ntb_queue_entry *entry = data;
1507         struct ntb_transport_qp *qp = entry->qp;
1508         struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1509
1510         /* we need to check DMA results if we are using DMA */
1511         if (res) {
1512                 enum dmaengine_tx_result dma_err = res->result;
1513
1514                 switch (dma_err) {
1515                 case DMA_TRANS_READ_FAILED:
1516                 case DMA_TRANS_WRITE_FAILED:
1517                         entry->errors++;
1518                 case DMA_TRANS_ABORTED:
1519                 {
1520                         void __iomem *offset =
1521                                 qp->tx_mw + qp->tx_max_frame *
1522                                 entry->tx_index;
1523
1524                         /* resubmit via CPU */
1525                         ntb_memcpy_tx(entry, offset);
1526                         qp->tx_memcpy++;
1527                         return;
1528                 }
1529
1530                 case DMA_TRANS_NOERROR:
1531                 default:
1532                         break;
1533                 }
1534         }
1535
1536         iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1537
1538         ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1539
1540         /* The entry length can only be zero if the packet is intended to be a
1541          * "link down" or similar.  Since no payload is being sent in these
1542          * cases, there is nothing to add to the completion queue.
1543          */
1544         if (entry->len > 0) {
1545                 qp->tx_bytes += entry->len;
1546
1547                 if (qp->tx_handler)
1548                         qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1549                                        entry->len);
1550         }
1551
1552         ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1553 }
1554
1555 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1556 {
1557 #ifdef ARCH_HAS_NOCACHE_UACCESS
1558         /*
1559          * Using non-temporal mov to improve performance on non-cached
1560          * writes, even though we aren't actually copying from user space.
1561          */
1562         __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1563 #else
1564         memcpy_toio(offset, entry->buf, entry->len);
1565 #endif
1566
1567         /* Ensure that the data is fully copied out before setting the flags */
1568         wmb();
1569
1570         ntb_tx_copy_callback(entry, NULL);
1571 }
1572
1573 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1574                                struct ntb_queue_entry *entry)
1575 {
1576         struct dma_async_tx_descriptor *txd;
1577         struct dma_chan *chan = qp->tx_dma_chan;
1578         struct dma_device *device;
1579         size_t len = entry->len;
1580         void *buf = entry->buf;
1581         size_t dest_off, buff_off;
1582         struct dmaengine_unmap_data *unmap;
1583         dma_addr_t dest;
1584         dma_cookie_t cookie;
1585
1586         device = chan->device;
1587         dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1588         buff_off = (size_t)buf & ~PAGE_MASK;
1589         dest_off = (size_t)dest & ~PAGE_MASK;
1590
1591         if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1592                 goto err;
1593
1594         unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1595         if (!unmap)
1596                 goto err;
1597
1598         unmap->len = len;
1599         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1600                                       buff_off, len, DMA_TO_DEVICE);
1601         if (dma_mapping_error(device->dev, unmap->addr[0]))
1602                 goto err_get_unmap;
1603
1604         unmap->to_cnt = 1;
1605
1606         txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1607                                              DMA_PREP_INTERRUPT);
1608         if (!txd)
1609                 goto err_get_unmap;
1610
1611         txd->callback_result = ntb_tx_copy_callback;
1612         txd->callback_param = entry;
1613         dma_set_unmap(txd, unmap);
1614
1615         cookie = dmaengine_submit(txd);
1616         if (dma_submit_error(cookie))
1617                 goto err_set_unmap;
1618
1619         dmaengine_unmap_put(unmap);
1620
1621         dma_async_issue_pending(chan);
1622
1623         return 0;
1624 err_set_unmap:
1625         dmaengine_unmap_put(unmap);
1626 err_get_unmap:
1627         dmaengine_unmap_put(unmap);
1628 err:
1629         return -ENXIO;
1630 }
1631
1632 static void ntb_async_tx(struct ntb_transport_qp *qp,
1633                          struct ntb_queue_entry *entry)
1634 {
1635         struct ntb_payload_header __iomem *hdr;
1636         struct dma_chan *chan = qp->tx_dma_chan;
1637         void __iomem *offset;
1638         int res;
1639
1640         entry->tx_index = qp->tx_index;
1641         offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1642         hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1643         entry->tx_hdr = hdr;
1644
1645         iowrite32(entry->len, &hdr->len);
1646         iowrite32((u32)qp->tx_pkts, &hdr->ver);
1647
1648         if (!chan)
1649                 goto err;
1650
1651         if (entry->len < copy_bytes)
1652                 goto err;
1653
1654         res = ntb_async_tx_submit(qp, entry);
1655         if (res < 0)
1656                 goto err;
1657
1658         if (!entry->retries)
1659                 qp->tx_async++;
1660
1661         return;
1662
1663 err:
1664         ntb_memcpy_tx(entry, offset);
1665         qp->tx_memcpy++;
1666 }
1667
1668 static int ntb_process_tx(struct ntb_transport_qp *qp,
1669                           struct ntb_queue_entry *entry)
1670 {
1671         if (qp->tx_index == qp->remote_rx_info->entry) {
1672                 qp->tx_ring_full++;
1673                 return -EAGAIN;
1674         }
1675
1676         if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1677                 if (qp->tx_handler)
1678                         qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1679
1680                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1681                              &qp->tx_free_q);
1682                 return 0;
1683         }
1684
1685         ntb_async_tx(qp, entry);
1686
1687         qp->tx_index++;
1688         qp->tx_index %= qp->tx_max_entry;
1689
1690         qp->tx_pkts++;
1691
1692         return 0;
1693 }
1694
1695 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1696 {
1697         struct pci_dev *pdev = qp->ndev->pdev;
1698         struct ntb_queue_entry *entry;
1699         int i, rc;
1700
1701         if (!qp->link_is_up)
1702                 return;
1703
1704         dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1705
1706         for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1707                 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1708                 if (entry)
1709                         break;
1710                 msleep(100);
1711         }
1712
1713         if (!entry)
1714                 return;
1715
1716         entry->cb_data = NULL;
1717         entry->buf = NULL;
1718         entry->len = 0;
1719         entry->flags = LINK_DOWN_FLAG;
1720
1721         rc = ntb_process_tx(qp, entry);
1722         if (rc)
1723                 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1724                         qp->qp_num);
1725
1726         ntb_qp_link_down_reset(qp);
1727 }
1728
1729 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1730 {
1731         return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1732 }
1733
1734 /**
1735  * ntb_transport_create_queue - Create a new NTB transport layer queue
1736  * @rx_handler: receive callback function
1737  * @tx_handler: transmit callback function
1738  * @event_handler: event callback function
1739  *
1740  * Create a new NTB transport layer queue and provide the queue with a callback
1741  * routine for both transmit and receive.  The receive callback routine will be
1742  * used to pass up data when the transport has received it on the queue.   The
1743  * transmit callback routine will be called when the transport has completed the
1744  * transmission of the data on the queue and the data is ready to be freed.
1745  *
1746  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1747  */
1748 struct ntb_transport_qp *
1749 ntb_transport_create_queue(void *data, struct device *client_dev,
1750                            const struct ntb_queue_handlers *handlers)
1751 {
1752         struct ntb_dev *ndev;
1753         struct pci_dev *pdev;
1754         struct ntb_transport_ctx *nt;
1755         struct ntb_queue_entry *entry;
1756         struct ntb_transport_qp *qp;
1757         u64 qp_bit;
1758         unsigned int free_queue;
1759         dma_cap_mask_t dma_mask;
1760         int node;
1761         int i;
1762
1763         ndev = dev_ntb(client_dev->parent);
1764         pdev = ndev->pdev;
1765         nt = ndev->ctx;
1766
1767         node = dev_to_node(&ndev->dev);
1768
1769         free_queue = ffs(nt->qp_bitmap_free);
1770         if (!free_queue)
1771                 goto err;
1772
1773         /* decrement free_queue to make it zero based */
1774         free_queue--;
1775
1776         qp = &nt->qp_vec[free_queue];
1777         qp_bit = BIT_ULL(qp->qp_num);
1778
1779         nt->qp_bitmap_free &= ~qp_bit;
1780
1781         qp->cb_data = data;
1782         qp->rx_handler = handlers->rx_handler;
1783         qp->tx_handler = handlers->tx_handler;
1784         qp->event_handler = handlers->event_handler;
1785
1786         dma_cap_zero(dma_mask);
1787         dma_cap_set(DMA_MEMCPY, dma_mask);
1788
1789         if (use_dma) {
1790                 qp->tx_dma_chan =
1791                         dma_request_channel(dma_mask, ntb_dma_filter_fn,
1792                                             (void *)(unsigned long)node);
1793                 if (!qp->tx_dma_chan)
1794                         dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1795
1796                 qp->rx_dma_chan =
1797                         dma_request_channel(dma_mask, ntb_dma_filter_fn,
1798                                             (void *)(unsigned long)node);
1799                 if (!qp->rx_dma_chan)
1800                         dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1801         } else {
1802                 qp->tx_dma_chan = NULL;
1803                 qp->rx_dma_chan = NULL;
1804         }
1805
1806         dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1807                 qp->tx_dma_chan ? "DMA" : "CPU");
1808
1809         dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1810                 qp->rx_dma_chan ? "DMA" : "CPU");
1811
1812         for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1813                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1814                 if (!entry)
1815                         goto err1;
1816
1817                 entry->qp = qp;
1818                 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1819                              &qp->rx_free_q);
1820         }
1821         qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1822
1823         for (i = 0; i < qp->tx_max_entry; i++) {
1824                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1825                 if (!entry)
1826                         goto err2;
1827
1828                 entry->qp = qp;
1829                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1830                              &qp->tx_free_q);
1831         }
1832
1833         ntb_db_clear(qp->ndev, qp_bit);
1834         ntb_db_clear_mask(qp->ndev, qp_bit);
1835
1836         dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1837
1838         return qp;
1839
1840 err2:
1841         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1842                 kfree(entry);
1843 err1:
1844         qp->rx_alloc_entry = 0;
1845         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1846                 kfree(entry);
1847         if (qp->tx_dma_chan)
1848                 dma_release_channel(qp->tx_dma_chan);
1849         if (qp->rx_dma_chan)
1850                 dma_release_channel(qp->rx_dma_chan);
1851         nt->qp_bitmap_free |= qp_bit;
1852 err:
1853         return NULL;
1854 }
1855 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1856
1857 /**
1858  * ntb_transport_free_queue - Frees NTB transport queue
1859  * @qp: NTB queue to be freed
1860  *
1861  * Frees NTB transport queue
1862  */
1863 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1864 {
1865         struct pci_dev *pdev;
1866         struct ntb_queue_entry *entry;
1867         u64 qp_bit;
1868
1869         if (!qp)
1870                 return;
1871
1872         pdev = qp->ndev->pdev;
1873
1874         qp->active = false;
1875
1876         if (qp->tx_dma_chan) {
1877                 struct dma_chan *chan = qp->tx_dma_chan;
1878                 /* Putting the dma_chan to NULL will force any new traffic to be
1879                  * processed by the CPU instead of the DAM engine
1880                  */
1881                 qp->tx_dma_chan = NULL;
1882
1883                 /* Try to be nice and wait for any queued DMA engine
1884                  * transactions to process before smashing it with a rock
1885                  */
1886                 dma_sync_wait(chan, qp->last_cookie);
1887                 dmaengine_terminate_all(chan);
1888                 dma_release_channel(chan);
1889         }
1890
1891         if (qp->rx_dma_chan) {
1892                 struct dma_chan *chan = qp->rx_dma_chan;
1893                 /* Putting the dma_chan to NULL will force any new traffic to be
1894                  * processed by the CPU instead of the DAM engine
1895                  */
1896                 qp->rx_dma_chan = NULL;
1897
1898                 /* Try to be nice and wait for any queued DMA engine
1899                  * transactions to process before smashing it with a rock
1900                  */
1901                 dma_sync_wait(chan, qp->last_cookie);
1902                 dmaengine_terminate_all(chan);
1903                 dma_release_channel(chan);
1904         }
1905
1906         qp_bit = BIT_ULL(qp->qp_num);
1907
1908         ntb_db_set_mask(qp->ndev, qp_bit);
1909         tasklet_kill(&qp->rxc_db_work);
1910
1911         cancel_delayed_work_sync(&qp->link_work);
1912
1913         qp->cb_data = NULL;
1914         qp->rx_handler = NULL;
1915         qp->tx_handler = NULL;
1916         qp->event_handler = NULL;
1917
1918         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1919                 kfree(entry);
1920
1921         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1922                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1923                 kfree(entry);
1924         }
1925
1926         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1927                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1928                 kfree(entry);
1929         }
1930
1931         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1932                 kfree(entry);
1933
1934         qp->transport->qp_bitmap_free |= qp_bit;
1935
1936         dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1937 }
1938 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1939
1940 /**
1941  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1942  * @qp: NTB queue to be freed
1943  * @len: pointer to variable to write enqueued buffers length
1944  *
1945  * Dequeues unused buffers from receive queue.  Should only be used during
1946  * shutdown of qp.
1947  *
1948  * RETURNS: NULL error value on error, or void* for success.
1949  */
1950 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1951 {
1952         struct ntb_queue_entry *entry;
1953         void *buf;
1954
1955         if (!qp || qp->client_ready)
1956                 return NULL;
1957
1958         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1959         if (!entry)
1960                 return NULL;
1961
1962         buf = entry->cb_data;
1963         *len = entry->len;
1964
1965         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1966
1967         return buf;
1968 }
1969 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1970
1971 /**
1972  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1973  * @qp: NTB transport layer queue the entry is to be enqueued on
1974  * @cb: per buffer pointer for callback function to use
1975  * @data: pointer to data buffer that incoming packets will be copied into
1976  * @len: length of the data buffer
1977  *
1978  * Enqueue a new receive buffer onto the transport queue into which a NTB
1979  * payload can be received into.
1980  *
1981  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1982  */
1983 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1984                              unsigned int len)
1985 {
1986         struct ntb_queue_entry *entry;
1987
1988         if (!qp)
1989                 return -EINVAL;
1990
1991         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
1992         if (!entry)
1993                 return -ENOMEM;
1994
1995         entry->cb_data = cb;
1996         entry->buf = data;
1997         entry->len = len;
1998         entry->flags = 0;
1999         entry->retries = 0;
2000         entry->errors = 0;
2001         entry->rx_index = 0;
2002
2003         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2004
2005         if (qp->active)
2006                 tasklet_schedule(&qp->rxc_db_work);
2007
2008         return 0;
2009 }
2010 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2011
2012 /**
2013  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2014  * @qp: NTB transport layer queue the entry is to be enqueued on
2015  * @cb: per buffer pointer for callback function to use
2016  * @data: pointer to data buffer that will be sent
2017  * @len: length of the data buffer
2018  *
2019  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2020  * payload will be transmitted.  This assumes that a lock is being held to
2021  * serialize access to the qp.
2022  *
2023  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2024  */
2025 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2026                              unsigned int len)
2027 {
2028         struct ntb_queue_entry *entry;
2029         int rc;
2030
2031         if (!qp || !qp->link_is_up || !len)
2032                 return -EINVAL;
2033
2034         entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2035         if (!entry) {
2036                 qp->tx_err_no_buf++;
2037                 return -EBUSY;
2038         }
2039
2040         entry->cb_data = cb;
2041         entry->buf = data;
2042         entry->len = len;
2043         entry->flags = 0;
2044         entry->errors = 0;
2045         entry->retries = 0;
2046         entry->tx_index = 0;
2047
2048         rc = ntb_process_tx(qp, entry);
2049         if (rc)
2050                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2051                              &qp->tx_free_q);
2052
2053         return rc;
2054 }
2055 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2056
2057 /**
2058  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2059  * @qp: NTB transport layer queue to be enabled
2060  *
2061  * Notify NTB transport layer of client readiness to use queue
2062  */
2063 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2064 {
2065         if (!qp)
2066                 return;
2067
2068         qp->client_ready = true;
2069
2070         if (qp->transport->link_is_up)
2071                 schedule_delayed_work(&qp->link_work, 0);
2072 }
2073 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2074
2075 /**
2076  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2077  * @qp: NTB transport layer queue to be disabled
2078  *
2079  * Notify NTB transport layer of client's desire to no longer receive data on
2080  * transport queue specified.  It is the client's responsibility to ensure all
2081  * entries on queue are purged or otherwise handled appropriately.
2082  */
2083 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2084 {
2085         int val;
2086
2087         if (!qp)
2088                 return;
2089
2090         qp->client_ready = false;
2091
2092         val = ntb_spad_read(qp->ndev, QP_LINKS);
2093
2094         ntb_peer_spad_write(qp->ndev, QP_LINKS,
2095                             val & ~BIT(qp->qp_num));
2096
2097         if (qp->link_is_up)
2098                 ntb_send_link_down(qp);
2099         else
2100                 cancel_delayed_work_sync(&qp->link_work);
2101 }
2102 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2103
2104 /**
2105  * ntb_transport_link_query - Query transport link state
2106  * @qp: NTB transport layer queue to be queried
2107  *
2108  * Query connectivity to the remote system of the NTB transport queue
2109  *
2110  * RETURNS: true for link up or false for link down
2111  */
2112 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2113 {
2114         if (!qp)
2115                 return false;
2116
2117         return qp->link_is_up;
2118 }
2119 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2120
2121 /**
2122  * ntb_transport_qp_num - Query the qp number
2123  * @qp: NTB transport layer queue to be queried
2124  *
2125  * Query qp number of the NTB transport queue
2126  *
2127  * RETURNS: a zero based number specifying the qp number
2128  */
2129 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2130 {
2131         if (!qp)
2132                 return 0;
2133
2134         return qp->qp_num;
2135 }
2136 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2137
2138 /**
2139  * ntb_transport_max_size - Query the max payload size of a qp
2140  * @qp: NTB transport layer queue to be queried
2141  *
2142  * Query the maximum payload size permissible on the given qp
2143  *
2144  * RETURNS: the max payload size of a qp
2145  */
2146 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2147 {
2148         unsigned int max_size;
2149         unsigned int copy_align;
2150         struct dma_chan *rx_chan, *tx_chan;
2151
2152         if (!qp)
2153                 return 0;
2154
2155         rx_chan = qp->rx_dma_chan;
2156         tx_chan = qp->tx_dma_chan;
2157
2158         copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2159                          tx_chan ? tx_chan->device->copy_align : 0);
2160
2161         /* If DMA engine usage is possible, try to find the max size for that */
2162         max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2163         max_size = round_down(max_size, 1 << copy_align);
2164
2165         return max_size;
2166 }
2167 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2168
2169 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2170 {
2171         unsigned int head = qp->tx_index;
2172         unsigned int tail = qp->remote_rx_info->entry;
2173
2174         return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2175 }
2176 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2177
2178 static void ntb_transport_doorbell_callback(void *data, int vector)
2179 {
2180         struct ntb_transport_ctx *nt = data;
2181         struct ntb_transport_qp *qp;
2182         u64 db_bits;
2183         unsigned int qp_num;
2184
2185         db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2186                    ntb_db_vector_mask(nt->ndev, vector));
2187
2188         while (db_bits) {
2189                 qp_num = __ffs(db_bits);
2190                 qp = &nt->qp_vec[qp_num];
2191
2192                 if (qp->active)
2193                         tasklet_schedule(&qp->rxc_db_work);
2194
2195                 db_bits &= ~BIT_ULL(qp_num);
2196         }
2197 }
2198
2199 static const struct ntb_ctx_ops ntb_transport_ops = {
2200         .link_event = ntb_transport_event_callback,
2201         .db_event = ntb_transport_doorbell_callback,
2202 };
2203
2204 static struct ntb_client ntb_transport_client = {
2205         .ops = {
2206                 .probe = ntb_transport_probe,
2207                 .remove = ntb_transport_free,
2208         },
2209 };
2210
2211 static int __init ntb_transport_init(void)
2212 {
2213         int rc;
2214
2215         pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2216
2217         if (debugfs_initialized())
2218                 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2219
2220         rc = bus_register(&ntb_transport_bus);
2221         if (rc)
2222                 goto err_bus;
2223
2224         rc = ntb_register_client(&ntb_transport_client);
2225         if (rc)
2226                 goto err_client;
2227
2228         return 0;
2229
2230 err_client:
2231         bus_unregister(&ntb_transport_bus);
2232 err_bus:
2233         debugfs_remove_recursive(nt_debugfs_dir);
2234         return rc;
2235 }
2236 module_init(ntb_transport_init);
2237
2238 static void __exit ntb_transport_exit(void)
2239 {
2240         ntb_unregister_client(&ntb_transport_client);
2241         bus_unregister(&ntb_transport_bus);
2242         debugfs_remove_recursive(nt_debugfs_dir);
2243 }
2244 module_exit(ntb_transport_exit);