Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[sfrench/cifs-2.6.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2400pci
23         Abstract: rt2400pci device specific routines.
24         Supported chipsets: RT2460.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58                                 const unsigned int word, const u8 value)
59 {
60         u32 reg;
61
62         mutex_lock(&rt2x00dev->csr_mutex);
63
64         /*
65          * Wait until the BBP becomes available, afterwards we
66          * can safely write the new data into the register.
67          */
68         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69                 reg = 0;
70                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76         }
77
78         mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82                                const unsigned int word, u8 *value)
83 {
84         u32 reg;
85
86         mutex_lock(&rt2x00dev->csr_mutex);
87
88         /*
89          * Wait until the BBP becomes available, afterwards we
90          * can safely write the read request into the register.
91          * After the data has been written, we wait until hardware
92          * returns the correct value, if at any time the register
93          * doesn't become available in time, reg will be 0xffffffff
94          * which means we return 0xff to the caller.
95          */
96         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97                 reg = 0;
98                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104                 WAIT_FOR_BBP(rt2x00dev, &reg);
105         }
106
107         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109         mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113                                const unsigned int word, const u32 value)
114 {
115         u32 reg;
116
117         mutex_lock(&rt2x00dev->csr_mutex);
118
119         /*
120          * Wait until the RF becomes available, afterwards we
121          * can safely write the new data into the register.
122          */
123         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124                 reg = 0;
125                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
129
130                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131                 rt2x00_rf_write(rt2x00dev, word, value);
132         }
133
134         mutex_unlock(&rt2x00dev->csr_mutex);
135 }
136
137 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
138 {
139         struct rt2x00_dev *rt2x00dev = eeprom->data;
140         u32 reg;
141
142         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
143
144         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146         eeprom->reg_data_clock =
147             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148         eeprom->reg_chip_select =
149             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
150 }
151
152 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
153 {
154         struct rt2x00_dev *rt2x00dev = eeprom->data;
155         u32 reg = 0;
156
157         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160                            !!eeprom->reg_data_clock);
161         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162                            !!eeprom->reg_chip_select);
163
164         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
165 }
166
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2400pci_rt2x00debug = {
169         .owner  = THIS_MODULE,
170         .csr    = {
171                 .read           = rt2x00pci_register_read,
172                 .write          = rt2x00pci_register_write,
173                 .flags          = RT2X00DEBUGFS_OFFSET,
174                 .word_base      = CSR_REG_BASE,
175                 .word_size      = sizeof(u32),
176                 .word_count     = CSR_REG_SIZE / sizeof(u32),
177         },
178         .eeprom = {
179                 .read           = rt2x00_eeprom_read,
180                 .write          = rt2x00_eeprom_write,
181                 .word_base      = EEPROM_BASE,
182                 .word_size      = sizeof(u16),
183                 .word_count     = EEPROM_SIZE / sizeof(u16),
184         },
185         .bbp    = {
186                 .read           = rt2400pci_bbp_read,
187                 .write          = rt2400pci_bbp_write,
188                 .word_base      = BBP_BASE,
189                 .word_size      = sizeof(u8),
190                 .word_count     = BBP_SIZE / sizeof(u8),
191         },
192         .rf     = {
193                 .read           = rt2x00_rf_read,
194                 .write          = rt2400pci_rf_write,
195                 .word_base      = RF_BASE,
196                 .word_size      = sizeof(u32),
197                 .word_count     = RF_SIZE / sizeof(u32),
198         },
199 };
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
201
202 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
203 {
204         u32 reg;
205
206         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
207         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
208 }
209
210 #ifdef CONFIG_RT2X00_LIB_LEDS
211 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
212                                      enum led_brightness brightness)
213 {
214         struct rt2x00_led *led =
215             container_of(led_cdev, struct rt2x00_led, led_dev);
216         unsigned int enabled = brightness != LED_OFF;
217         u32 reg;
218
219         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
220
221         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223         else if (led->type == LED_TYPE_ACTIVITY)
224                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
225
226         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
227 }
228
229 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
230                                unsigned long *delay_on,
231                                unsigned long *delay_off)
232 {
233         struct rt2x00_led *led =
234             container_of(led_cdev, struct rt2x00_led, led_dev);
235         u32 reg;
236
237         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
238         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
239         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
240         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
241
242         return 0;
243 }
244
245 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
246                                struct rt2x00_led *led,
247                                enum led_type type)
248 {
249         led->rt2x00dev = rt2x00dev;
250         led->type = type;
251         led->led_dev.brightness_set = rt2400pci_brightness_set;
252         led->led_dev.blink_set = rt2400pci_blink_set;
253         led->flags = LED_INITIALIZED;
254 }
255 #endif /* CONFIG_RT2X00_LIB_LEDS */
256
257 /*
258  * Configuration handlers.
259  */
260 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
261                                     const unsigned int filter_flags)
262 {
263         u32 reg;
264
265         /*
266          * Start configuration steps.
267          * Note that the version error will always be dropped
268          * since there is no filter for it at this time.
269          */
270         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
271         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
272                            !(filter_flags & FIF_FCSFAIL));
273         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
274                            !(filter_flags & FIF_PLCPFAIL));
275         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
276                            !(filter_flags & FIF_CONTROL));
277         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
278                            !(filter_flags & FIF_PROMISC_IN_BSS));
279         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
280                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
281                            !rt2x00dev->intf_ap_count);
282         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
283         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
284 }
285
286 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
287                                   struct rt2x00_intf *intf,
288                                   struct rt2x00intf_conf *conf,
289                                   const unsigned int flags)
290 {
291         unsigned int bcn_preload;
292         u32 reg;
293
294         if (flags & CONFIG_UPDATE_TYPE) {
295                 /*
296                  * Enable beacon config
297                  */
298                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
299                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
300                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
301                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
302
303                 /*
304                  * Enable synchronisation.
305                  */
306                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
307                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
308                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
309                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
310                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
311         }
312
313         if (flags & CONFIG_UPDATE_MAC)
314                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
315                                               conf->mac, sizeof(conf->mac));
316
317         if (flags & CONFIG_UPDATE_BSSID)
318                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
319                                               conf->bssid, sizeof(conf->bssid));
320 }
321
322 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
323                                  struct rt2x00lib_erp *erp)
324 {
325         int preamble_mask;
326         u32 reg;
327
328         /*
329          * When short preamble is enabled, we should set bit 0x08
330          */
331         preamble_mask = erp->short_preamble << 3;
332
333         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
334         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
335         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
336         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
337         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
338         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
339
340         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
341         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
342         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
343         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
344         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
345
346         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
347         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
348         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
349         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
350         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
351
352         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
353         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
354         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
355         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
356         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
357
358         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
359         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
360         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
361         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
362         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
363
364         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
365
366         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
367         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
368         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
369
370         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
371         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
372         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
373         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
374
375         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
376         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
377         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
378         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
379
380         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
381         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
382         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
383         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
384 }
385
386 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
387                                  struct antenna_setup *ant)
388 {
389         u8 r1;
390         u8 r4;
391
392         /*
393          * We should never come here because rt2x00lib is supposed
394          * to catch this and send us the correct antenna explicitely.
395          */
396         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
397                ant->tx == ANTENNA_SW_DIVERSITY);
398
399         rt2400pci_bbp_read(rt2x00dev, 4, &r4);
400         rt2400pci_bbp_read(rt2x00dev, 1, &r1);
401
402         /*
403          * Configure the TX antenna.
404          */
405         switch (ant->tx) {
406         case ANTENNA_HW_DIVERSITY:
407                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
408                 break;
409         case ANTENNA_A:
410                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
411                 break;
412         case ANTENNA_B:
413         default:
414                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
415                 break;
416         }
417
418         /*
419          * Configure the RX antenna.
420          */
421         switch (ant->rx) {
422         case ANTENNA_HW_DIVERSITY:
423                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
424                 break;
425         case ANTENNA_A:
426                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
427                 break;
428         case ANTENNA_B:
429         default:
430                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
431                 break;
432         }
433
434         rt2400pci_bbp_write(rt2x00dev, 4, r4);
435         rt2400pci_bbp_write(rt2x00dev, 1, r1);
436 }
437
438 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
439                                      struct rf_channel *rf)
440 {
441         /*
442          * Switch on tuning bits.
443          */
444         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
445         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
446
447         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
448         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
449         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
450
451         /*
452          * RF2420 chipset don't need any additional actions.
453          */
454         if (rt2x00_rf(rt2x00dev, RF2420))
455                 return;
456
457         /*
458          * For the RT2421 chipsets we need to write an invalid
459          * reference clock rate to activate auto_tune.
460          * After that we set the value back to the correct channel.
461          */
462         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
464         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465
466         msleep(1);
467
468         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
469         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
470         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
471
472         msleep(1);
473
474         /*
475          * Switch off tuning bits.
476          */
477         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
478         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
479
480         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
481         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
482
483         /*
484          * Clear false CRC during channel switch.
485          */
486         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
487 }
488
489 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
490 {
491         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
492 }
493
494 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
495                                          struct rt2x00lib_conf *libconf)
496 {
497         u32 reg;
498
499         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
500         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
501                            libconf->conf->long_frame_max_tx_count);
502         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
503                            libconf->conf->short_frame_max_tx_count);
504         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
505 }
506
507 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
508                                 struct rt2x00lib_conf *libconf)
509 {
510         enum dev_state state =
511             (libconf->conf->flags & IEEE80211_CONF_PS) ?
512                 STATE_SLEEP : STATE_AWAKE;
513         u32 reg;
514
515         if (state == STATE_SLEEP) {
516                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
517                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
518                                    (rt2x00dev->beacon_int - 20) * 16);
519                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
520                                    libconf->conf->listen_interval - 1);
521
522                 /* We must first disable autowake before it can be enabled */
523                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
524                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
525
526                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
527                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
528         }
529
530         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
531 }
532
533 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
534                              struct rt2x00lib_conf *libconf,
535                              const unsigned int flags)
536 {
537         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
538                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
539         if (flags & IEEE80211_CONF_CHANGE_POWER)
540                 rt2400pci_config_txpower(rt2x00dev,
541                                          libconf->conf->power_level);
542         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
543                 rt2400pci_config_retry_limit(rt2x00dev, libconf);
544         if (flags & IEEE80211_CONF_CHANGE_PS)
545                 rt2400pci_config_ps(rt2x00dev, libconf);
546 }
547
548 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
549                                 const int cw_min, const int cw_max)
550 {
551         u32 reg;
552
553         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
554         rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
555         rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
556         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
557 }
558
559 /*
560  * Link tuning
561  */
562 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
563                                  struct link_qual *qual)
564 {
565         u32 reg;
566         u8 bbp;
567
568         /*
569          * Update FCS error count from register.
570          */
571         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
572         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
573
574         /*
575          * Update False CCA count from register.
576          */
577         rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
578         qual->false_cca = bbp;
579 }
580
581 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
582                                      struct link_qual *qual, u8 vgc_level)
583 {
584         rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
585         qual->vgc_level = vgc_level;
586         qual->vgc_level_reg = vgc_level;
587 }
588
589 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
590                                   struct link_qual *qual)
591 {
592         rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
593 }
594
595 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
596                                  struct link_qual *qual, const u32 count)
597 {
598         /*
599          * The link tuner should not run longer then 60 seconds,
600          * and should run once every 2 seconds.
601          */
602         if (count > 60 || !(count & 1))
603                 return;
604
605         /*
606          * Base r13 link tuning on the false cca count.
607          */
608         if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
609                 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
610         else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
611                 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
612 }
613
614 /*
615  * Initialization functions.
616  */
617 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
618 {
619         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
620         u32 word;
621
622         if (entry->queue->qid == QID_RX) {
623                 rt2x00_desc_read(entry_priv->desc, 0, &word);
624
625                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
626         } else {
627                 rt2x00_desc_read(entry_priv->desc, 0, &word);
628
629                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
630                         rt2x00_get_field32(word, TXD_W0_VALID));
631         }
632 }
633
634 static void rt2400pci_clear_entry(struct queue_entry *entry)
635 {
636         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
637         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
638         u32 word;
639
640         if (entry->queue->qid == QID_RX) {
641                 rt2x00_desc_read(entry_priv->desc, 2, &word);
642                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
643                 rt2x00_desc_write(entry_priv->desc, 2, word);
644
645                 rt2x00_desc_read(entry_priv->desc, 1, &word);
646                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
647                 rt2x00_desc_write(entry_priv->desc, 1, word);
648
649                 rt2x00_desc_read(entry_priv->desc, 0, &word);
650                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
651                 rt2x00_desc_write(entry_priv->desc, 0, word);
652         } else {
653                 rt2x00_desc_read(entry_priv->desc, 0, &word);
654                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
655                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
656                 rt2x00_desc_write(entry_priv->desc, 0, word);
657         }
658 }
659
660 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
661 {
662         struct queue_entry_priv_pci *entry_priv;
663         u32 reg;
664
665         /*
666          * Initialize registers.
667          */
668         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
669         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
670         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
671         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
672         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
673         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
674
675         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
676         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
677         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
678                            entry_priv->desc_dma);
679         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
680
681         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
682         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
683         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
684                            entry_priv->desc_dma);
685         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
686
687         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
688         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
689         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
690                            entry_priv->desc_dma);
691         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
692
693         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
694         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
695         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
696                            entry_priv->desc_dma);
697         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
698
699         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
700         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
701         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
702         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
703
704         entry_priv = rt2x00dev->rx->entries[0].priv_data;
705         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
706         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
707                            entry_priv->desc_dma);
708         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
709
710         return 0;
711 }
712
713 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
714 {
715         u32 reg;
716
717         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
718         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
719         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
720         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
721
722         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
723         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
724         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
725         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
726         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
727
728         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
729         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
730                            (rt2x00dev->rx->data_size / 128));
731         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
732
733         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
734         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
735         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
736         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
737         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
738         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
739         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
740         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
741         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
742         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
743
744         rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
745
746         rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
747         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
748         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
749         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
750         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
751         rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
752
753         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
754         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
755         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
756         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
757         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
758         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
759         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
760         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
761
762         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
763
764         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
765                 return -EBUSY;
766
767         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
768         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
769
770         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
771         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
772         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
773
774         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
775         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
776         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
777         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
778         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
779         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
780
781         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
782         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
783         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
784         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
785         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
786
787         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
788         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
789         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
790         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
791
792         /*
793          * We must clear the FCS and FIFO error count.
794          * These registers are cleared on read,
795          * so we may pass a useless variable to store the value.
796          */
797         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
798         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
799
800         return 0;
801 }
802
803 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
804 {
805         unsigned int i;
806         u8 value;
807
808         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
809                 rt2400pci_bbp_read(rt2x00dev, 0, &value);
810                 if ((value != 0xff) && (value != 0x00))
811                         return 0;
812                 udelay(REGISTER_BUSY_DELAY);
813         }
814
815         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
816         return -EACCES;
817 }
818
819 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
820 {
821         unsigned int i;
822         u16 eeprom;
823         u8 reg_id;
824         u8 value;
825
826         if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
827                 return -EACCES;
828
829         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
830         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
831         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
832         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
833         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
834         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
835         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
836         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
837         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
838         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
839         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
840         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
841         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
842         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
843
844         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
845                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
846
847                 if (eeprom != 0xffff && eeprom != 0x0000) {
848                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
849                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
850                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
851                 }
852         }
853
854         return 0;
855 }
856
857 /*
858  * Device state switch handlers.
859  */
860 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
861                                 enum dev_state state)
862 {
863         u32 reg;
864
865         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
866         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
867                            (state == STATE_RADIO_RX_OFF) ||
868                            (state == STATE_RADIO_RX_OFF_LINK));
869         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
870 }
871
872 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
873                                  enum dev_state state)
874 {
875         int mask = (state == STATE_RADIO_IRQ_OFF);
876         u32 reg;
877
878         /*
879          * When interrupts are being enabled, the interrupt registers
880          * should clear the register to assure a clean state.
881          */
882         if (state == STATE_RADIO_IRQ_ON) {
883                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
884                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
885         }
886
887         /*
888          * Only toggle the interrupts bits we are going to use.
889          * Non-checked interrupt bits are disabled by default.
890          */
891         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
892         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
893         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
894         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
895         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
896         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
897         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
898 }
899
900 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
901 {
902         /*
903          * Initialize all registers.
904          */
905         if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
906                      rt2400pci_init_registers(rt2x00dev) ||
907                      rt2400pci_init_bbp(rt2x00dev)))
908                 return -EIO;
909
910         return 0;
911 }
912
913 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
914 {
915         /*
916          * Disable power
917          */
918         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
919 }
920
921 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
922                                enum dev_state state)
923 {
924         u32 reg;
925         unsigned int i;
926         char put_to_sleep;
927         char bbp_state;
928         char rf_state;
929
930         put_to_sleep = (state != STATE_AWAKE);
931
932         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
933         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
934         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
935         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
936         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
937         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
938
939         /*
940          * Device is not guaranteed to be in the requested state yet.
941          * We must wait until the register indicates that the
942          * device has entered the correct state.
943          */
944         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
945                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
946                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
947                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
948                 if (bbp_state == state && rf_state == state)
949                         return 0;
950                 msleep(10);
951         }
952
953         return -EBUSY;
954 }
955
956 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
957                                       enum dev_state state)
958 {
959         int retval = 0;
960
961         switch (state) {
962         case STATE_RADIO_ON:
963                 retval = rt2400pci_enable_radio(rt2x00dev);
964                 break;
965         case STATE_RADIO_OFF:
966                 rt2400pci_disable_radio(rt2x00dev);
967                 break;
968         case STATE_RADIO_RX_ON:
969         case STATE_RADIO_RX_ON_LINK:
970         case STATE_RADIO_RX_OFF:
971         case STATE_RADIO_RX_OFF_LINK:
972                 rt2400pci_toggle_rx(rt2x00dev, state);
973                 break;
974         case STATE_RADIO_IRQ_ON:
975         case STATE_RADIO_IRQ_OFF:
976                 rt2400pci_toggle_irq(rt2x00dev, state);
977                 break;
978         case STATE_DEEP_SLEEP:
979         case STATE_SLEEP:
980         case STATE_STANDBY:
981         case STATE_AWAKE:
982                 retval = rt2400pci_set_state(rt2x00dev, state);
983                 break;
984         default:
985                 retval = -ENOTSUPP;
986                 break;
987         }
988
989         if (unlikely(retval))
990                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
991                       state, retval);
992
993         return retval;
994 }
995
996 /*
997  * TX descriptor initialization
998  */
999 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1000                                     struct sk_buff *skb,
1001                                     struct txentry_desc *txdesc)
1002 {
1003         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1004         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1005         __le32 *txd = skbdesc->desc;
1006         u32 word;
1007
1008         /*
1009          * Start writing the descriptor words.
1010          */
1011         rt2x00_desc_read(entry_priv->desc, 1, &word);
1012         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1013         rt2x00_desc_write(entry_priv->desc, 1, word);
1014
1015         rt2x00_desc_read(txd, 2, &word);
1016         rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1017         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1018         rt2x00_desc_write(txd, 2, word);
1019
1020         rt2x00_desc_read(txd, 3, &word);
1021         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1022         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1023         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1024         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1025         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1026         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1027         rt2x00_desc_write(txd, 3, word);
1028
1029         rt2x00_desc_read(txd, 4, &word);
1030         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1031         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1032         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1033         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1034         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1035         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1036         rt2x00_desc_write(txd, 4, word);
1037
1038         rt2x00_desc_read(txd, 0, &word);
1039         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1040         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1041         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1042                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1043         rt2x00_set_field32(&word, TXD_W0_ACK,
1044                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1045         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1046                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1047         rt2x00_set_field32(&word, TXD_W0_RTS,
1048                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1049         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1050         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1051                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1052         rt2x00_desc_write(txd, 0, word);
1053 }
1054
1055 /*
1056  * TX data initialization
1057  */
1058 static void rt2400pci_write_beacon(struct queue_entry *entry)
1059 {
1060         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1061         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1062         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1063         u32 word;
1064         u32 reg;
1065
1066         /*
1067          * Disable beaconing while we are reloading the beacon data,
1068          * otherwise we might be sending out invalid data.
1069          */
1070         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1071         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1072         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1073
1074         /*
1075          * Replace rt2x00lib allocated descriptor with the
1076          * pointer to the _real_ hardware descriptor.
1077          * After that, map the beacon to DMA and update the
1078          * descriptor.
1079          */
1080         memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1081         skbdesc->desc = entry_priv->desc;
1082
1083         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1084
1085         rt2x00_desc_read(entry_priv->desc, 1, &word);
1086         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1087         rt2x00_desc_write(entry_priv->desc, 1, word);
1088 }
1089
1090 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1091                                     const enum data_queue_qid queue)
1092 {
1093         u32 reg;
1094
1095         if (queue == QID_BEACON) {
1096                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1097                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1098                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1099                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1100                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1101                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1102                 }
1103                 return;
1104         }
1105
1106         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1107         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1108         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1109         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1110         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1111 }
1112
1113 static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1114                                     const enum data_queue_qid qid)
1115 {
1116         u32 reg;
1117
1118         if (qid == QID_BEACON) {
1119                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1120         } else {
1121                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1122                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1123                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1124         }
1125 }
1126
1127 /*
1128  * RX control handlers
1129  */
1130 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1131                                   struct rxdone_entry_desc *rxdesc)
1132 {
1133         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1134         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1135         u32 word0;
1136         u32 word2;
1137         u32 word3;
1138         u32 word4;
1139         u64 tsf;
1140         u32 rx_low;
1141         u32 rx_high;
1142
1143         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1144         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1145         rt2x00_desc_read(entry_priv->desc, 3, &word3);
1146         rt2x00_desc_read(entry_priv->desc, 4, &word4);
1147
1148         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1149                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1150         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1151                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1152
1153         /*
1154          * We only get the lower 32bits from the timestamp,
1155          * to get the full 64bits we must complement it with
1156          * the timestamp from get_tsf().
1157          * Note that when a wraparound of the lower 32bits
1158          * has occurred between the frame arrival and the get_tsf()
1159          * call, we must decrease the higher 32bits with 1 to get
1160          * to correct value.
1161          */
1162         tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1163         rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1164         rx_high = upper_32_bits(tsf);
1165
1166         if ((u32)tsf <= rx_low)
1167                 rx_high--;
1168
1169         /*
1170          * Obtain the status about this packet.
1171          * The signal is the PLCP value, and needs to be stripped
1172          * of the preamble bit (0x08).
1173          */
1174         rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1175         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1176         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1177             entry->queue->rt2x00dev->rssi_offset;
1178         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1179
1180         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1181         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1182                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1183 }
1184
1185 /*
1186  * Interrupt functions.
1187  */
1188 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1189                              const enum data_queue_qid queue_idx)
1190 {
1191         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1192         struct queue_entry_priv_pci *entry_priv;
1193         struct queue_entry *entry;
1194         struct txdone_entry_desc txdesc;
1195         u32 word;
1196
1197         while (!rt2x00queue_empty(queue)) {
1198                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1199                 entry_priv = entry->priv_data;
1200                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1201
1202                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1203                     !rt2x00_get_field32(word, TXD_W0_VALID))
1204                         break;
1205
1206                 /*
1207                  * Obtain the status about this packet.
1208                  */
1209                 txdesc.flags = 0;
1210                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1211                 case 0: /* Success */
1212                 case 1: /* Success with retry */
1213                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1214                         break;
1215                 case 2: /* Failure, excessive retries */
1216                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1217                         /* Don't break, this is a failed frame! */
1218                 default: /* Failure */
1219                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1220                 }
1221                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1222
1223                 rt2x00lib_txdone(entry, &txdesc);
1224         }
1225 }
1226
1227 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1228 {
1229         struct rt2x00_dev *rt2x00dev = dev_instance;
1230         u32 reg;
1231
1232         /*
1233          * Get the interrupt sources & saved to local variable.
1234          * Write register value back to clear pending interrupts.
1235          */
1236         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1237         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1238
1239         if (!reg)
1240                 return IRQ_NONE;
1241
1242         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1243                 return IRQ_HANDLED;
1244
1245         /*
1246          * Handle interrupts, walk through all bits
1247          * and run the tasks, the bits are checked in order of
1248          * priority.
1249          */
1250
1251         /*
1252          * 1 - Beacon timer expired interrupt.
1253          */
1254         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1255                 rt2x00lib_beacondone(rt2x00dev);
1256
1257         /*
1258          * 2 - Rx ring done interrupt.
1259          */
1260         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1261                 rt2x00pci_rxdone(rt2x00dev);
1262
1263         /*
1264          * 3 - Atim ring transmit done interrupt.
1265          */
1266         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1267                 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1268
1269         /*
1270          * 4 - Priority ring transmit done interrupt.
1271          */
1272         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1273                 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1274
1275         /*
1276          * 5 - Tx ring transmit done interrupt.
1277          */
1278         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1279                 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1280
1281         return IRQ_HANDLED;
1282 }
1283
1284 /*
1285  * Device probe functions.
1286  */
1287 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1288 {
1289         struct eeprom_93cx6 eeprom;
1290         u32 reg;
1291         u16 word;
1292         u8 *mac;
1293
1294         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1295
1296         eeprom.data = rt2x00dev;
1297         eeprom.register_read = rt2400pci_eepromregister_read;
1298         eeprom.register_write = rt2400pci_eepromregister_write;
1299         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1300             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1301         eeprom.reg_data_in = 0;
1302         eeprom.reg_data_out = 0;
1303         eeprom.reg_data_clock = 0;
1304         eeprom.reg_chip_select = 0;
1305
1306         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1307                                EEPROM_SIZE / sizeof(u16));
1308
1309         /*
1310          * Start validation of the data that has been read.
1311          */
1312         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1313         if (!is_valid_ether_addr(mac)) {
1314                 random_ether_addr(mac);
1315                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1316         }
1317
1318         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1319         if (word == 0xffff) {
1320                 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1321                 return -EINVAL;
1322         }
1323
1324         return 0;
1325 }
1326
1327 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1328 {
1329         u32 reg;
1330         u16 value;
1331         u16 eeprom;
1332
1333         /*
1334          * Read EEPROM word for configuration.
1335          */
1336         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1337
1338         /*
1339          * Identify RF chipset.
1340          */
1341         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1342         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1343         rt2x00_set_chip(rt2x00dev, RT2460, value,
1344                         rt2x00_get_field32(reg, CSR0_REVISION));
1345
1346         if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1347                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1348                 return -ENODEV;
1349         }
1350
1351         /*
1352          * Identify default antenna configuration.
1353          */
1354         rt2x00dev->default_ant.tx =
1355             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1356         rt2x00dev->default_ant.rx =
1357             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1358
1359         /*
1360          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1361          * I am not 100% sure about this, but the legacy drivers do not
1362          * indicate antenna swapping in software is required when
1363          * diversity is enabled.
1364          */
1365         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1366                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1367         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1368                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1369
1370         /*
1371          * Store led mode, for correct led behaviour.
1372          */
1373 #ifdef CONFIG_RT2X00_LIB_LEDS
1374         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1375
1376         rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1377         if (value == LED_MODE_TXRX_ACTIVITY ||
1378             value == LED_MODE_DEFAULT ||
1379             value == LED_MODE_ASUS)
1380                 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1381                                    LED_TYPE_ACTIVITY);
1382 #endif /* CONFIG_RT2X00_LIB_LEDS */
1383
1384         /*
1385          * Detect if this device has an hardware controlled radio.
1386          */
1387         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1388                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1389
1390         /*
1391          * Check if the BBP tuning should be enabled.
1392          */
1393         if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1394                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1395
1396         return 0;
1397 }
1398
1399 /*
1400  * RF value list for RF2420 & RF2421
1401  * Supports: 2.4 GHz
1402  */
1403 static const struct rf_channel rf_vals_b[] = {
1404         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1405         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1406         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1407         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1408         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1409         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1410         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1411         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1412         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1413         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1414         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1415         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1416         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1417         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1418 };
1419
1420 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1421 {
1422         struct hw_mode_spec *spec = &rt2x00dev->spec;
1423         struct channel_info *info;
1424         char *tx_power;
1425         unsigned int i;
1426
1427         /*
1428          * Initialize all hw fields.
1429          */
1430         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1431                                IEEE80211_HW_SIGNAL_DBM |
1432                                IEEE80211_HW_SUPPORTS_PS |
1433                                IEEE80211_HW_PS_NULLFUNC_STACK;
1434
1435         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1436         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1437                                 rt2x00_eeprom_addr(rt2x00dev,
1438                                                    EEPROM_MAC_ADDR_0));
1439
1440         /*
1441          * Initialize hw_mode information.
1442          */
1443         spec->supported_bands = SUPPORT_BAND_2GHZ;
1444         spec->supported_rates = SUPPORT_RATE_CCK;
1445
1446         spec->num_channels = ARRAY_SIZE(rf_vals_b);
1447         spec->channels = rf_vals_b;
1448
1449         /*
1450          * Create channel information array
1451          */
1452         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1453         if (!info)
1454                 return -ENOMEM;
1455
1456         spec->channels_info = info;
1457
1458         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1459         for (i = 0; i < 14; i++)
1460                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1461
1462         return 0;
1463 }
1464
1465 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1466 {
1467         int retval;
1468
1469         /*
1470          * Allocate eeprom data.
1471          */
1472         retval = rt2400pci_validate_eeprom(rt2x00dev);
1473         if (retval)
1474                 return retval;
1475
1476         retval = rt2400pci_init_eeprom(rt2x00dev);
1477         if (retval)
1478                 return retval;
1479
1480         /*
1481          * Initialize hw specifications.
1482          */
1483         retval = rt2400pci_probe_hw_mode(rt2x00dev);
1484         if (retval)
1485                 return retval;
1486
1487         /*
1488          * This device requires the atim queue and DMA-mapped skbs.
1489          */
1490         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1491         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1492
1493         /*
1494          * Set the rssi offset.
1495          */
1496         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1497
1498         return 0;
1499 }
1500
1501 /*
1502  * IEEE80211 stack callback functions.
1503  */
1504 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1505                              const struct ieee80211_tx_queue_params *params)
1506 {
1507         struct rt2x00_dev *rt2x00dev = hw->priv;
1508
1509         /*
1510          * We don't support variating cw_min and cw_max variables
1511          * per queue. So by default we only configure the TX queue,
1512          * and ignore all other configurations.
1513          */
1514         if (queue != 0)
1515                 return -EINVAL;
1516
1517         if (rt2x00mac_conf_tx(hw, queue, params))
1518                 return -EINVAL;
1519
1520         /*
1521          * Write configuration to register.
1522          */
1523         rt2400pci_config_cw(rt2x00dev,
1524                             rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1525
1526         return 0;
1527 }
1528
1529 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1530 {
1531         struct rt2x00_dev *rt2x00dev = hw->priv;
1532         u64 tsf;
1533         u32 reg;
1534
1535         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1536         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1537         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1538         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1539
1540         return tsf;
1541 }
1542
1543 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1544 {
1545         struct rt2x00_dev *rt2x00dev = hw->priv;
1546         u32 reg;
1547
1548         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1549         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1550 }
1551
1552 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1553         .tx                     = rt2x00mac_tx,
1554         .start                  = rt2x00mac_start,
1555         .stop                   = rt2x00mac_stop,
1556         .add_interface          = rt2x00mac_add_interface,
1557         .remove_interface       = rt2x00mac_remove_interface,
1558         .config                 = rt2x00mac_config,
1559         .configure_filter       = rt2x00mac_configure_filter,
1560         .set_tim                = rt2x00mac_set_tim,
1561         .get_stats              = rt2x00mac_get_stats,
1562         .bss_info_changed       = rt2x00mac_bss_info_changed,
1563         .conf_tx                = rt2400pci_conf_tx,
1564         .get_tsf                = rt2400pci_get_tsf,
1565         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1566         .rfkill_poll            = rt2x00mac_rfkill_poll,
1567 };
1568
1569 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1570         .irq_handler            = rt2400pci_interrupt,
1571         .probe_hw               = rt2400pci_probe_hw,
1572         .initialize             = rt2x00pci_initialize,
1573         .uninitialize           = rt2x00pci_uninitialize,
1574         .get_entry_state        = rt2400pci_get_entry_state,
1575         .clear_entry            = rt2400pci_clear_entry,
1576         .set_device_state       = rt2400pci_set_device_state,
1577         .rfkill_poll            = rt2400pci_rfkill_poll,
1578         .link_stats             = rt2400pci_link_stats,
1579         .reset_tuner            = rt2400pci_reset_tuner,
1580         .link_tuner             = rt2400pci_link_tuner,
1581         .write_tx_desc          = rt2400pci_write_tx_desc,
1582         .write_tx_data          = rt2x00pci_write_tx_data,
1583         .write_beacon           = rt2400pci_write_beacon,
1584         .kick_tx_queue          = rt2400pci_kick_tx_queue,
1585         .kill_tx_queue          = rt2400pci_kill_tx_queue,
1586         .fill_rxdone            = rt2400pci_fill_rxdone,
1587         .config_filter          = rt2400pci_config_filter,
1588         .config_intf            = rt2400pci_config_intf,
1589         .config_erp             = rt2400pci_config_erp,
1590         .config_ant             = rt2400pci_config_ant,
1591         .config                 = rt2400pci_config,
1592 };
1593
1594 static const struct data_queue_desc rt2400pci_queue_rx = {
1595         .entry_num              = RX_ENTRIES,
1596         .data_size              = DATA_FRAME_SIZE,
1597         .desc_size              = RXD_DESC_SIZE,
1598         .priv_size              = sizeof(struct queue_entry_priv_pci),
1599 };
1600
1601 static const struct data_queue_desc rt2400pci_queue_tx = {
1602         .entry_num              = TX_ENTRIES,
1603         .data_size              = DATA_FRAME_SIZE,
1604         .desc_size              = TXD_DESC_SIZE,
1605         .priv_size              = sizeof(struct queue_entry_priv_pci),
1606 };
1607
1608 static const struct data_queue_desc rt2400pci_queue_bcn = {
1609         .entry_num              = BEACON_ENTRIES,
1610         .data_size              = MGMT_FRAME_SIZE,
1611         .desc_size              = TXD_DESC_SIZE,
1612         .priv_size              = sizeof(struct queue_entry_priv_pci),
1613 };
1614
1615 static const struct data_queue_desc rt2400pci_queue_atim = {
1616         .entry_num              = ATIM_ENTRIES,
1617         .data_size              = DATA_FRAME_SIZE,
1618         .desc_size              = TXD_DESC_SIZE,
1619         .priv_size              = sizeof(struct queue_entry_priv_pci),
1620 };
1621
1622 static const struct rt2x00_ops rt2400pci_ops = {
1623         .name                   = KBUILD_MODNAME,
1624         .max_sta_intf           = 1,
1625         .max_ap_intf            = 1,
1626         .eeprom_size            = EEPROM_SIZE,
1627         .rf_size                = RF_SIZE,
1628         .tx_queues              = NUM_TX_QUEUES,
1629         .extra_tx_headroom      = 0,
1630         .rx                     = &rt2400pci_queue_rx,
1631         .tx                     = &rt2400pci_queue_tx,
1632         .bcn                    = &rt2400pci_queue_bcn,
1633         .atim                   = &rt2400pci_queue_atim,
1634         .lib                    = &rt2400pci_rt2x00_ops,
1635         .hw                     = &rt2400pci_mac80211_ops,
1636 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1637         .debugfs                = &rt2400pci_rt2x00debug,
1638 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1639 };
1640
1641 /*
1642  * RT2400pci module information.
1643  */
1644 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1645         { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1646         { 0, }
1647 };
1648
1649 MODULE_AUTHOR(DRV_PROJECT);
1650 MODULE_VERSION(DRV_VERSION);
1651 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1652 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1653 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1654 MODULE_LICENSE("GPL");
1655
1656 static struct pci_driver rt2400pci_driver = {
1657         .name           = KBUILD_MODNAME,
1658         .id_table       = rt2400pci_device_table,
1659         .probe          = rt2x00pci_probe,
1660         .remove         = __devexit_p(rt2x00pci_remove),
1661         .suspend        = rt2x00pci_suspend,
1662         .resume         = rt2x00pci_resume,
1663 };
1664
1665 static int __init rt2400pci_init(void)
1666 {
1667         return pci_register_driver(&rt2400pci_driver);
1668 }
1669
1670 static void __exit rt2400pci_exit(void)
1671 {
1672         pci_unregister_driver(&rt2400pci_driver);
1673 }
1674
1675 module_init(rt2400pci_init);
1676 module_exit(rt2400pci_exit);