Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[sfrench/cifs-2.6.git] / drivers / net / wireless / iwlwifi / iwl-eeprom.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/init.h>
67
68 #include <net/mac80211.h>
69
70 #include "iwl-commands.h"
71 #include "iwl-dev.h"
72 #include "iwl-core.h"
73 #include "iwl-debug.h"
74 #include "iwl-eeprom.h"
75 #include "iwl-io.h"
76
77 /************************** EEPROM BANDS ****************************
78  *
79  * The iwl_eeprom_band definitions below provide the mapping from the
80  * EEPROM contents to the specific channel number supported for each
81  * band.
82  *
83  * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
84  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
85  * The specific geography and calibration information for that channel
86  * is contained in the eeprom map itself.
87  *
88  * During init, we copy the eeprom information and channel map
89  * information into priv->channel_info_24/52 and priv->channel_map_24/52
90  *
91  * channel_map_24/52 provides the index in the channel_info array for a
92  * given channel.  We have to have two separate maps as there is channel
93  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
94  * band_2
95  *
96  * A value of 0xff stored in the channel_map indicates that the channel
97  * is not supported by the hardware at all.
98  *
99  * A value of 0xfe in the channel_map indicates that the channel is not
100  * valid for Tx with the current hardware.  This means that
101  * while the system can tune and receive on a given channel, it may not
102  * be able to associate or transmit any frames on that
103  * channel.  There is no corresponding channel information for that
104  * entry.
105  *
106  *********************************************************************/
107
108 /* 2.4 GHz */
109 const u8 iwl_eeprom_band_1[14] = {
110         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
111 };
112
113 /* 5.2 GHz bands */
114 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
115         183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
116 };
117
118 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
119         34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
120 };
121
122 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
123         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
124 };
125
126 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
127         145, 149, 153, 157, 161, 165
128 };
129
130 static const u8 iwl_eeprom_band_6[] = {       /* 2.4 ht40 channel */
131         1, 2, 3, 4, 5, 6, 7
132 };
133
134 static const u8 iwl_eeprom_band_7[] = {       /* 5.2 ht40 channel */
135         36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
136 };
137
138 /**
139  * struct iwl_txpwr_section: eeprom section information
140  * @offset: indirect address into eeprom image
141  * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
142  * @band: band type for the section
143  * @is_common - true: common section, false: channel section
144  * @is_cck - true: cck section, false: not cck section
145  * @is_ht_40 - true: all channel in the section are HT40 channel,
146  *             false: legacy or HT 20 MHz
147  *             ignore if it is common section
148  * @iwl_eeprom_section_channel: channel array in the section,
149  *             ignore if common section
150  */
151 struct iwl_txpwr_section {
152         u32 offset;
153         u8 count;
154         enum ieee80211_band band;
155         bool is_common;
156         bool is_cck;
157         bool is_ht40;
158         u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
159 };
160
161 /**
162  * section 1 - 3 are regulatory tx power apply to all channels based on
163  *    modulation: CCK, OFDM
164  *    Band: 2.4GHz, 5.2GHz
165  * section 4 - 10 are regulatory tx power apply to specified channels
166  *    For example:
167  *      1L - Channel 1 Legacy
168  *      1HT - Channel 1 HT
169  *      (1,+1) - Channel 1 HT40 "_above_"
170  *
171  * Section 1: all CCK channels
172  * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
173  * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
174  * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
175  * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
176  * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
177  * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
178  * Section 8: 2.4 GHz channel: 13L, 13HT
179  * Section 9: 2.4 GHz channel: 140L, 140HT
180  * Section 10: 2.4 GHz 40MHz channels: (132,+1)  (44,+1)
181  *
182  */
183 static const struct iwl_txpwr_section enhinfo[] = {
184         { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
185         { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
186         { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
187         { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
188                 false, false, false,
189                 {1, 1, 2, 2, 10, 10, 11, 11 } },
190         { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
191                 false, false, true,
192                 { 1, 2, 6, 7, 9 } },
193         { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
194                 false, false, false,
195                 { 36, 64, 100, 36, 64, 100 } },
196         { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
197                 false, false, true,
198                 { 36, 60, 100 } },
199         { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
200                 false, false, false,
201                 { 13, 13 } },
202         { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
203                 false, false, false,
204                 { 140, 140 } },
205         { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
206                 false, false, true,
207                 { 132, 44 } },
208 };
209
210 /******************************************************************************
211  *
212  * EEPROM related functions
213  *
214 ******************************************************************************/
215
216 int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
217 {
218         u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
219         int ret = 0;
220
221         IWL_DEBUG_INFO(priv, "EEPROM signature=0x%08x\n", gp);
222         switch (gp) {
223         case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
224                 if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
225                         IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n",
226                                 gp);
227                         ret = -ENOENT;
228                 }
229                 break;
230         case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
231         case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
232                 if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
233                         IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp);
234                         ret = -ENOENT;
235                 }
236                 break;
237         case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
238         default:
239                 IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, "
240                         "EEPROM_GP=0x%08x\n",
241                         (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
242                         ? "OTP" : "EEPROM", gp);
243                 ret = -ENOENT;
244                 break;
245         }
246         return ret;
247 }
248 EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
249
250 static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
251 {
252         u32 otpgp;
253
254         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
255         if (mode == IWL_OTP_ACCESS_ABSOLUTE)
256                 iwl_clear_bit(priv, CSR_OTP_GP_REG,
257                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
258         else
259                 iwl_set_bit(priv, CSR_OTP_GP_REG,
260                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
261 }
262
263 static int iwlcore_get_nvm_type(struct iwl_priv *priv)
264 {
265         u32 otpgp;
266         int nvm_type;
267
268         /* OTP only valid for CP/PP and after */
269         switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
270         case CSR_HW_REV_TYPE_NONE:
271                 IWL_ERR(priv, "Unknown hardware type\n");
272                 return -ENOENT;
273         case CSR_HW_REV_TYPE_3945:
274         case CSR_HW_REV_TYPE_4965:
275         case CSR_HW_REV_TYPE_5300:
276         case CSR_HW_REV_TYPE_5350:
277         case CSR_HW_REV_TYPE_5100:
278         case CSR_HW_REV_TYPE_5150:
279                 nvm_type = NVM_DEVICE_TYPE_EEPROM;
280                 break;
281         default:
282                 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
283                 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
284                         nvm_type = NVM_DEVICE_TYPE_OTP;
285                 else
286                         nvm_type = NVM_DEVICE_TYPE_EEPROM;
287                 break;
288         }
289         return  nvm_type;
290 }
291
292 /*
293  * The device's EEPROM semaphore prevents conflicts between driver and uCode
294  * when accessing the EEPROM; each access is a series of pulses to/from the
295  * EEPROM chip, not a single event, so even reads could conflict if they
296  * weren't arbitrated by the semaphore.
297  */
298 int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
299 {
300         u16 count;
301         int ret;
302
303         for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
304                 /* Request semaphore */
305                 iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
306                             CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
307
308                 /* See if we got it */
309                 ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG,
310                                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
311                                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
312                                 EEPROM_SEM_TIMEOUT);
313                 if (ret >= 0) {
314                         IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
315                                 count+1);
316                         return ret;
317                 }
318         }
319
320         return ret;
321 }
322 EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
323
324 void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
325 {
326         iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
327                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
328
329 }
330 EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
331
332 const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
333 {
334         BUG_ON(offset >= priv->cfg->eeprom_size);
335         return &priv->eeprom[offset];
336 }
337 EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
338
339 static int iwl_init_otp_access(struct iwl_priv *priv)
340 {
341         int ret;
342
343         /* Enable 40MHz radio clock */
344         _iwl_write32(priv, CSR_GP_CNTRL,
345                      _iwl_read32(priv, CSR_GP_CNTRL) |
346                      CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
347
348         /* wait for clock to be ready */
349         ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
350                                   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
351                                   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
352                                   25000);
353         if (ret < 0)
354                 IWL_ERR(priv, "Time out access OTP\n");
355         else {
356                 iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
357                                   APMG_PS_CTRL_VAL_RESET_REQ);
358                 udelay(5);
359                 iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
360                                     APMG_PS_CTRL_VAL_RESET_REQ);
361
362                 /*
363                  * CSR auto clock gate disable bit -
364                  * this is only applicable for HW with OTP shadow RAM
365                  */
366                 if (priv->cfg->shadow_ram_support)
367                         iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG,
368                                 CSR_RESET_LINK_PWR_MGMT_DISABLED);
369         }
370         return ret;
371 }
372
373 static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data)
374 {
375         int ret = 0;
376         u32 r;
377         u32 otpgp;
378
379         _iwl_write32(priv, CSR_EEPROM_REG,
380                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
381         ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
382                                   CSR_EEPROM_REG_READ_VALID_MSK,
383                                   CSR_EEPROM_REG_READ_VALID_MSK,
384                                   IWL_EEPROM_ACCESS_TIMEOUT);
385         if (ret < 0) {
386                 IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
387                 return ret;
388         }
389         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
390         /* check for ECC errors: */
391         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
392         if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
393                 /* stop in this case */
394                 /* set the uncorrectable OTP ECC bit for acknowledgement */
395                 iwl_set_bit(priv, CSR_OTP_GP_REG,
396                         CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
397                 IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
398                 return -EINVAL;
399         }
400         if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
401                 /* continue in this case */
402                 /* set the correctable OTP ECC bit for acknowledgement */
403                 iwl_set_bit(priv, CSR_OTP_GP_REG,
404                                 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
405                 IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
406         }
407         *eeprom_data = cpu_to_le16(r >> 16);
408         return 0;
409 }
410
411 /*
412  * iwl_is_otp_empty: check for empty OTP
413  */
414 static bool iwl_is_otp_empty(struct iwl_priv *priv)
415 {
416         u16 next_link_addr = 0;
417         __le16 link_value;
418         bool is_empty = false;
419
420         /* locate the beginning of OTP link list */
421         if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
422                 if (!link_value) {
423                         IWL_ERR(priv, "OTP is empty\n");
424                         is_empty = true;
425                 }
426         } else {
427                 IWL_ERR(priv, "Unable to read first block of OTP list.\n");
428                 is_empty = true;
429         }
430
431         return is_empty;
432 }
433
434
435 /*
436  * iwl_find_otp_image: find EEPROM image in OTP
437  *   finding the OTP block that contains the EEPROM image.
438  *   the last valid block on the link list (the block _before_ the last block)
439  *   is the block we should read and used to configure the device.
440  *   If all the available OTP blocks are full, the last block will be the block
441  *   we should read and used to configure the device.
442  *   only perform this operation if shadow RAM is disabled
443  */
444 static int iwl_find_otp_image(struct iwl_priv *priv,
445                                         u16 *validblockaddr)
446 {
447         u16 next_link_addr = 0, valid_addr;
448         __le16 link_value = 0;
449         int usedblocks = 0;
450
451         /* set addressing mode to absolute to traverse the link list */
452         iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
453
454         /* checking for empty OTP or error */
455         if (iwl_is_otp_empty(priv))
456                 return -EINVAL;
457
458         /*
459          * start traverse link list
460          * until reach the max number of OTP blocks
461          * different devices have different number of OTP blocks
462          */
463         do {
464                 /* save current valid block address
465                  * check for more block on the link list
466                  */
467                 valid_addr = next_link_addr;
468                 next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
469                 IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
470                                usedblocks, next_link_addr);
471                 if (iwl_read_otp_word(priv, next_link_addr, &link_value))
472                         return -EINVAL;
473                 if (!link_value) {
474                         /*
475                          * reach the end of link list, return success and
476                          * set address point to the starting address
477                          * of the image
478                          */
479                         *validblockaddr = valid_addr;
480                         /* skip first 2 bytes (link list pointer) */
481                         *validblockaddr += 2;
482                         return 0;
483                 }
484                 /* more in the link list, continue */
485                 usedblocks++;
486         } while (usedblocks <= priv->cfg->max_ll_items);
487
488         /* OTP has no valid blocks */
489         IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
490         return -EINVAL;
491 }
492
493 /**
494  * iwl_eeprom_init - read EEPROM contents
495  *
496  * Load the EEPROM contents from adapter into priv->eeprom
497  *
498  * NOTE:  This routine uses the non-debug IO access functions.
499  */
500 int iwl_eeprom_init(struct iwl_priv *priv)
501 {
502         __le16 *e;
503         u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
504         int sz;
505         int ret;
506         u16 addr;
507         u16 validblockaddr = 0;
508         u16 cache_addr = 0;
509
510         priv->nvm_device_type = iwlcore_get_nvm_type(priv);
511         if (priv->nvm_device_type == -ENOENT)
512                 return -ENOENT;
513         /* allocate eeprom */
514         IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
515         sz = priv->cfg->eeprom_size;
516         priv->eeprom = kzalloc(sz, GFP_KERNEL);
517         if (!priv->eeprom) {
518                 ret = -ENOMEM;
519                 goto alloc_err;
520         }
521         e = (__le16 *)priv->eeprom;
522
523         priv->cfg->ops->lib->apm_ops.init(priv);
524
525         ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
526         if (ret < 0) {
527                 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
528                 ret = -ENOENT;
529                 goto err;
530         }
531
532         /* Make sure driver (instead of uCode) is allowed to read EEPROM */
533         ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
534         if (ret < 0) {
535                 IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
536                 ret = -ENOENT;
537                 goto err;
538         }
539
540         if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
541
542                 ret = iwl_init_otp_access(priv);
543                 if (ret) {
544                         IWL_ERR(priv, "Failed to initialize OTP access.\n");
545                         ret = -ENOENT;
546                         goto done;
547                 }
548                 _iwl_write32(priv, CSR_EEPROM_GP,
549                              iwl_read32(priv, CSR_EEPROM_GP) &
550                              ~CSR_EEPROM_GP_IF_OWNER_MSK);
551
552                 iwl_set_bit(priv, CSR_OTP_GP_REG,
553                              CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
554                              CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
555                 /* traversing the linked list if no shadow ram supported */
556                 if (!priv->cfg->shadow_ram_support) {
557                         if (iwl_find_otp_image(priv, &validblockaddr)) {
558                                 ret = -ENOENT;
559                                 goto done;
560                         }
561                 }
562                 for (addr = validblockaddr; addr < validblockaddr + sz;
563                      addr += sizeof(u16)) {
564                         __le16 eeprom_data;
565
566                         ret = iwl_read_otp_word(priv, addr, &eeprom_data);
567                         if (ret)
568                                 goto done;
569                         e[cache_addr / 2] = eeprom_data;
570                         cache_addr += sizeof(u16);
571                 }
572         } else {
573                 /* eeprom is an array of 16bit values */
574                 for (addr = 0; addr < sz; addr += sizeof(u16)) {
575                         u32 r;
576
577                         _iwl_write32(priv, CSR_EEPROM_REG,
578                                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
579
580                         ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
581                                                   CSR_EEPROM_REG_READ_VALID_MSK,
582                                                   CSR_EEPROM_REG_READ_VALID_MSK,
583                                                   IWL_EEPROM_ACCESS_TIMEOUT);
584                         if (ret < 0) {
585                                 IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
586                                 goto done;
587                         }
588                         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
589                         e[addr / 2] = cpu_to_le16(r >> 16);
590                 }
591         }
592         ret = 0;
593 done:
594         priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
595 err:
596         if (ret)
597                 iwl_eeprom_free(priv);
598         /* Reset chip to save power until we load uCode during "up". */
599         priv->cfg->ops->lib->apm_ops.stop(priv);
600 alloc_err:
601         return ret;
602 }
603 EXPORT_SYMBOL(iwl_eeprom_init);
604
605 void iwl_eeprom_free(struct iwl_priv *priv)
606 {
607         kfree(priv->eeprom);
608         priv->eeprom = NULL;
609 }
610 EXPORT_SYMBOL(iwl_eeprom_free);
611
612 int iwl_eeprom_check_version(struct iwl_priv *priv)
613 {
614         u16 eeprom_ver;
615         u16 calib_ver;
616
617         eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
618         calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
619
620         if (eeprom_ver < priv->cfg->eeprom_ver ||
621             calib_ver < priv->cfg->eeprom_calib_ver)
622                 goto err;
623
624         return 0;
625 err:
626         IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
627                   eeprom_ver, priv->cfg->eeprom_ver,
628                   calib_ver,  priv->cfg->eeprom_calib_ver);
629         return -EINVAL;
630
631 }
632 EXPORT_SYMBOL(iwl_eeprom_check_version);
633
634 const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
635 {
636         return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
637 }
638 EXPORT_SYMBOL(iwl_eeprom_query_addr);
639
640 u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
641 {
642         if (!priv->eeprom)
643                 return 0;
644         return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
645 }
646 EXPORT_SYMBOL(iwl_eeprom_query16);
647
648 void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
649 {
650         const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
651                                         EEPROM_MAC_ADDRESS);
652         memcpy(mac, addr, ETH_ALEN);
653 }
654 EXPORT_SYMBOL(iwl_eeprom_get_mac);
655
656 static void iwl_init_band_reference(const struct iwl_priv *priv,
657                         int eep_band, int *eeprom_ch_count,
658                         const struct iwl_eeprom_channel **eeprom_ch_info,
659                         const u8 **eeprom_ch_index)
660 {
661         u32 offset = priv->cfg->ops->lib->
662                         eeprom_ops.regulatory_bands[eep_band - 1];
663         switch (eep_band) {
664         case 1:         /* 2.4GHz band */
665                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
666                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
667                                 iwl_eeprom_query_addr(priv, offset);
668                 *eeprom_ch_index = iwl_eeprom_band_1;
669                 break;
670         case 2:         /* 4.9GHz band */
671                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
672                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
673                                 iwl_eeprom_query_addr(priv, offset);
674                 *eeprom_ch_index = iwl_eeprom_band_2;
675                 break;
676         case 3:         /* 5.2GHz band */
677                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
678                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
679                                 iwl_eeprom_query_addr(priv, offset);
680                 *eeprom_ch_index = iwl_eeprom_band_3;
681                 break;
682         case 4:         /* 5.5GHz band */
683                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
684                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
685                                 iwl_eeprom_query_addr(priv, offset);
686                 *eeprom_ch_index = iwl_eeprom_band_4;
687                 break;
688         case 5:         /* 5.7GHz band */
689                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
690                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
691                                 iwl_eeprom_query_addr(priv, offset);
692                 *eeprom_ch_index = iwl_eeprom_band_5;
693                 break;
694         case 6:         /* 2.4GHz ht40 channels */
695                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
696                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
697                                 iwl_eeprom_query_addr(priv, offset);
698                 *eeprom_ch_index = iwl_eeprom_band_6;
699                 break;
700         case 7:         /* 5 GHz ht40 channels */
701                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
702                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
703                                 iwl_eeprom_query_addr(priv, offset);
704                 *eeprom_ch_index = iwl_eeprom_band_7;
705                 break;
706         default:
707                 BUG();
708                 return;
709         }
710 }
711
712 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
713                             ? # x " " : "")
714
715 /**
716  * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
717  *
718  * Does not set up a command, or touch hardware.
719  */
720 static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
721                               enum ieee80211_band band, u16 channel,
722                               const struct iwl_eeprom_channel *eeprom_ch,
723                               u8 clear_ht40_extension_channel)
724 {
725         struct iwl_channel_info *ch_info;
726
727         ch_info = (struct iwl_channel_info *)
728                         iwl_get_channel_info(priv, band, channel);
729
730         if (!is_channel_valid(ch_info))
731                 return -1;
732
733         IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
734                         " Ad-Hoc %ssupported\n",
735                         ch_info->channel,
736                         is_channel_a_band(ch_info) ?
737                         "5.2" : "2.4",
738                         CHECK_AND_PRINT(IBSS),
739                         CHECK_AND_PRINT(ACTIVE),
740                         CHECK_AND_PRINT(RADAR),
741                         CHECK_AND_PRINT(WIDE),
742                         CHECK_AND_PRINT(DFS),
743                         eeprom_ch->flags,
744                         eeprom_ch->max_power_avg,
745                         ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
746                          && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
747                         "" : "not ");
748
749         ch_info->ht40_eeprom = *eeprom_ch;
750         ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
751         ch_info->ht40_flags = eeprom_ch->flags;
752         if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
753                 ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
754
755         return 0;
756 }
757
758 /**
759  * iwl_get_max_txpower_avg - get the highest tx power from all chains.
760  *     find the highest tx power from all chains for the channel
761  */
762 static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
763                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
764                 int element, s8 *max_txpower_in_half_dbm)
765 {
766         s8 max_txpower_avg = 0; /* (dBm) */
767
768         IWL_DEBUG_INFO(priv, "%d - "
769                         "chain_a: %d dB chain_b: %d dB "
770                         "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
771                         element,
772                         enhanced_txpower[element].chain_a_max >> 1,
773                         enhanced_txpower[element].chain_b_max >> 1,
774                         enhanced_txpower[element].chain_c_max >> 1,
775                         enhanced_txpower[element].mimo2_max >> 1,
776                         enhanced_txpower[element].mimo3_max >> 1);
777         /* Take the highest tx power from any valid chains */
778         if ((priv->cfg->valid_tx_ant & ANT_A) &&
779             (enhanced_txpower[element].chain_a_max > max_txpower_avg))
780                 max_txpower_avg = enhanced_txpower[element].chain_a_max;
781         if ((priv->cfg->valid_tx_ant & ANT_B) &&
782             (enhanced_txpower[element].chain_b_max > max_txpower_avg))
783                 max_txpower_avg = enhanced_txpower[element].chain_b_max;
784         if ((priv->cfg->valid_tx_ant & ANT_C) &&
785             (enhanced_txpower[element].chain_c_max > max_txpower_avg))
786                 max_txpower_avg = enhanced_txpower[element].chain_c_max;
787         if (((priv->cfg->valid_tx_ant == ANT_AB) |
788             (priv->cfg->valid_tx_ant == ANT_BC) |
789             (priv->cfg->valid_tx_ant == ANT_AC)) &&
790             (enhanced_txpower[element].mimo2_max > max_txpower_avg))
791                 max_txpower_avg =  enhanced_txpower[element].mimo2_max;
792         if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
793             (enhanced_txpower[element].mimo3_max > max_txpower_avg))
794                 max_txpower_avg = enhanced_txpower[element].mimo3_max;
795
796         /*
797          * max. tx power in EEPROM is in 1/2 dBm format
798          * convert from 1/2 dBm to dBm (round-up convert)
799          * but we also do not want to loss 1/2 dBm resolution which
800          * will impact performance
801          */
802         *max_txpower_in_half_dbm = max_txpower_avg;
803         return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
804 }
805
806 /**
807  * iwl_update_common_txpower: update channel tx power
808  *     update tx power per band based on EEPROM enhanced tx power info.
809  */
810 static s8 iwl_update_common_txpower(struct iwl_priv *priv,
811                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
812                 int section, int element, s8 *max_txpower_in_half_dbm)
813 {
814         struct iwl_channel_info *ch_info;
815         int ch;
816         bool is_ht40 = false;
817         s8 max_txpower_avg; /* (dBm) */
818
819         /* it is common section, contain all type (Legacy, HT and HT40)
820          * based on the element in the section to determine
821          * is it HT 40 or not
822          */
823         if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
824                 is_ht40 = true;
825         max_txpower_avg =
826                 iwl_get_max_txpower_avg(priv, enhanced_txpower,
827                                         element, max_txpower_in_half_dbm);
828
829         ch_info = priv->channel_info;
830
831         for (ch = 0; ch < priv->channel_count; ch++) {
832                 /* find matching band and update tx power if needed */
833                 if ((ch_info->band == enhinfo[section].band) &&
834                     (ch_info->max_power_avg < max_txpower_avg) &&
835                     (!is_ht40)) {
836                         /* Update regulatory-based run-time data */
837                         ch_info->max_power_avg = ch_info->curr_txpow =
838                                 max_txpower_avg;
839                         ch_info->scan_power = max_txpower_avg;
840                 }
841                 if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
842                     (ch_info->ht40_max_power_avg < max_txpower_avg)) {
843                         /* Update regulatory-based run-time data */
844                         ch_info->ht40_max_power_avg = max_txpower_avg;
845                 }
846                 ch_info++;
847         }
848         return max_txpower_avg;
849 }
850
851 /**
852  * iwl_update_channel_txpower: update channel tx power
853  *      update channel tx power based on EEPROM enhanced tx power info.
854  */
855 static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
856                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
857                 int section, int element, s8 *max_txpower_in_half_dbm)
858 {
859         struct iwl_channel_info *ch_info;
860         int ch;
861         u8 channel;
862         s8 max_txpower_avg; /* (dBm) */
863
864         channel = enhinfo[section].iwl_eeprom_section_channel[element];
865         max_txpower_avg =
866                 iwl_get_max_txpower_avg(priv, enhanced_txpower,
867                                         element, max_txpower_in_half_dbm);
868
869         ch_info = priv->channel_info;
870         for (ch = 0; ch < priv->channel_count; ch++) {
871                 /* find matching channel and update tx power if needed */
872                 if (ch_info->channel == channel) {
873                         if ((ch_info->max_power_avg < max_txpower_avg) &&
874                             (!enhinfo[section].is_ht40)) {
875                                 /* Update regulatory-based run-time data */
876                                 ch_info->max_power_avg = max_txpower_avg;
877                                 ch_info->curr_txpow = max_txpower_avg;
878                                 ch_info->scan_power = max_txpower_avg;
879                         }
880                         if ((enhinfo[section].is_ht40) &&
881                             (ch_info->ht40_max_power_avg < max_txpower_avg)) {
882                                 /* Update regulatory-based run-time data */
883                                 ch_info->ht40_max_power_avg = max_txpower_avg;
884                         }
885                         break;
886                 }
887                 ch_info++;
888         }
889         return max_txpower_avg;
890 }
891
892 /**
893  * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
894  */
895 void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
896 {
897         int eeprom_section_count = 0;
898         int section, element;
899         struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
900         u32 offset;
901         s8 max_txpower_avg; /* (dBm) */
902         s8 max_txpower_in_half_dbm; /* (half-dBm) */
903
904         /* Loop through all the sections
905          * adjust bands and channel's max tx power
906          * Set the tx_power_user_lmt to the highest power
907          * supported by any channels and chains
908          */
909         for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
910                 eeprom_section_count = enhinfo[section].count;
911                 offset = enhinfo[section].offset;
912                 enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
913                                 iwl_eeprom_query_addr(priv, offset);
914
915                 /*
916                  * check for valid entry -
917                  * different version of EEPROM might contain different set
918                  * of enhanced tx power table
919                  * always check for valid entry before process
920                  * the information
921                  */
922                 if (!enhanced_txpower->common || enhanced_txpower->reserved)
923                         continue;
924
925                 for (element = 0; element < eeprom_section_count; element++) {
926                         if (enhinfo[section].is_common)
927                                 max_txpower_avg =
928                                         iwl_update_common_txpower(priv,
929                                                 enhanced_txpower, section,
930                                                 element,
931                                                 &max_txpower_in_half_dbm);
932                         else
933                                 max_txpower_avg =
934                                         iwl_update_channel_txpower(priv,
935                                                 enhanced_txpower, section,
936                                                 element,
937                                                 &max_txpower_in_half_dbm);
938
939                         /* Update the tx_power_user_lmt to the highest power
940                          * supported by any channel */
941                         if (max_txpower_avg > priv->tx_power_user_lmt)
942                                 priv->tx_power_user_lmt = max_txpower_avg;
943
944                         /*
945                          * Update the tx_power_lmt_in_half_dbm to
946                          * the highest power supported by any channel
947                          */
948                         if (max_txpower_in_half_dbm >
949                             priv->tx_power_lmt_in_half_dbm)
950                                 priv->tx_power_lmt_in_half_dbm =
951                                         max_txpower_in_half_dbm;
952                 }
953         }
954 }
955 EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
956
957 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
958                             ? # x " " : "")
959
960 /**
961  * iwl_init_channel_map - Set up driver's info for all possible channels
962  */
963 int iwl_init_channel_map(struct iwl_priv *priv)
964 {
965         int eeprom_ch_count = 0;
966         const u8 *eeprom_ch_index = NULL;
967         const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
968         int band, ch;
969         struct iwl_channel_info *ch_info;
970
971         if (priv->channel_count) {
972                 IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
973                 return 0;
974         }
975
976         IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
977
978         priv->channel_count =
979             ARRAY_SIZE(iwl_eeprom_band_1) +
980             ARRAY_SIZE(iwl_eeprom_band_2) +
981             ARRAY_SIZE(iwl_eeprom_band_3) +
982             ARRAY_SIZE(iwl_eeprom_band_4) +
983             ARRAY_SIZE(iwl_eeprom_band_5);
984
985         IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
986
987         priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
988                                      priv->channel_count, GFP_KERNEL);
989         if (!priv->channel_info) {
990                 IWL_ERR(priv, "Could not allocate channel_info\n");
991                 priv->channel_count = 0;
992                 return -ENOMEM;
993         }
994
995         ch_info = priv->channel_info;
996
997         /* Loop through the 5 EEPROM bands adding them in order to the
998          * channel map we maintain (that contains additional information than
999          * what just in the EEPROM) */
1000         for (band = 1; band <= 5; band++) {
1001
1002                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1003                                         &eeprom_ch_info, &eeprom_ch_index);
1004
1005                 /* Loop through each band adding each of the channels */
1006                 for (ch = 0; ch < eeprom_ch_count; ch++) {
1007                         ch_info->channel = eeprom_ch_index[ch];
1008                         ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
1009                             IEEE80211_BAND_5GHZ;
1010
1011                         /* permanently store EEPROM's channel regulatory flags
1012                          *   and max power in channel info database. */
1013                         ch_info->eeprom = eeprom_ch_info[ch];
1014
1015                         /* Copy the run-time flags so they are there even on
1016                          * invalid channels */
1017                         ch_info->flags = eeprom_ch_info[ch].flags;
1018                         /* First write that ht40 is not enabled, and then enable
1019                          * one by one */
1020                         ch_info->ht40_extension_channel =
1021                                         IEEE80211_CHAN_NO_HT40;
1022
1023                         if (!(is_channel_valid(ch_info))) {
1024                                 IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
1025                                                "No traffic\n",
1026                                                ch_info->channel,
1027                                                ch_info->flags,
1028                                                is_channel_a_band(ch_info) ?
1029                                                "5.2" : "2.4");
1030                                 ch_info++;
1031                                 continue;
1032                         }
1033
1034                         /* Initialize regulatory-based run-time data */
1035                         ch_info->max_power_avg = ch_info->curr_txpow =
1036                             eeprom_ch_info[ch].max_power_avg;
1037                         ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
1038                         ch_info->min_power = 0;
1039
1040                         IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
1041                                        " Ad-Hoc %ssupported\n",
1042                                        ch_info->channel,
1043                                        is_channel_a_band(ch_info) ?
1044                                        "5.2" : "2.4",
1045                                        CHECK_AND_PRINT_I(VALID),
1046                                        CHECK_AND_PRINT_I(IBSS),
1047                                        CHECK_AND_PRINT_I(ACTIVE),
1048                                        CHECK_AND_PRINT_I(RADAR),
1049                                        CHECK_AND_PRINT_I(WIDE),
1050                                        CHECK_AND_PRINT_I(DFS),
1051                                        eeprom_ch_info[ch].flags,
1052                                        eeprom_ch_info[ch].max_power_avg,
1053                                        ((eeprom_ch_info[ch].
1054                                          flags & EEPROM_CHANNEL_IBSS)
1055                                         && !(eeprom_ch_info[ch].
1056                                              flags & EEPROM_CHANNEL_RADAR))
1057                                        ? "" : "not ");
1058
1059                         /* Set the tx_power_user_lmt to the highest power
1060                          * supported by any channel */
1061                         if (eeprom_ch_info[ch].max_power_avg >
1062                                                 priv->tx_power_user_lmt)
1063                                 priv->tx_power_user_lmt =
1064                                     eeprom_ch_info[ch].max_power_avg;
1065
1066                         ch_info++;
1067                 }
1068         }
1069
1070         /* Check if we do have HT40 channels */
1071         if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
1072             EEPROM_REGULATORY_BAND_NO_HT40 &&
1073             priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
1074             EEPROM_REGULATORY_BAND_NO_HT40)
1075                 return 0;
1076
1077         /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1078         for (band = 6; band <= 7; band++) {
1079                 enum ieee80211_band ieeeband;
1080
1081                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1082                                         &eeprom_ch_info, &eeprom_ch_index);
1083
1084                 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1085                 ieeeband =
1086                         (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1087
1088                 /* Loop through each band adding each of the channels */
1089                 for (ch = 0; ch < eeprom_ch_count; ch++) {
1090                         /* Set up driver's info for lower half */
1091                         iwl_mod_ht40_chan_info(priv, ieeeband,
1092                                                 eeprom_ch_index[ch],
1093                                                 &eeprom_ch_info[ch],
1094                                                 IEEE80211_CHAN_NO_HT40PLUS);
1095
1096                         /* Set up driver's info for upper half */
1097                         iwl_mod_ht40_chan_info(priv, ieeeband,
1098                                                 eeprom_ch_index[ch] + 4,
1099                                                 &eeprom_ch_info[ch],
1100                                                 IEEE80211_CHAN_NO_HT40MINUS);
1101                 }
1102         }
1103
1104         /* for newer device (6000 series and up)
1105          * EEPROM contain enhanced tx power information
1106          * driver need to process addition information
1107          * to determine the max channel tx power limits
1108          */
1109         if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
1110                 priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
1111
1112         return 0;
1113 }
1114 EXPORT_SYMBOL(iwl_init_channel_map);
1115
1116 /*
1117  * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1118  */
1119 void iwl_free_channel_map(struct iwl_priv *priv)
1120 {
1121         kfree(priv->channel_info);
1122         priv->channel_count = 0;
1123 }
1124 EXPORT_SYMBOL(iwl_free_channel_map);
1125
1126 /**
1127  * iwl_get_channel_info - Find driver's private channel info
1128  *
1129  * Based on band and channel number.
1130  */
1131 const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
1132                                         enum ieee80211_band band, u16 channel)
1133 {
1134         int i;
1135
1136         switch (band) {
1137         case IEEE80211_BAND_5GHZ:
1138                 for (i = 14; i < priv->channel_count; i++) {
1139                         if (priv->channel_info[i].channel == channel)
1140                                 return &priv->channel_info[i];
1141                 }
1142                 break;
1143         case IEEE80211_BAND_2GHZ:
1144                 if (channel >= 1 && channel <= 14)
1145                         return &priv->channel_info[channel - 1];
1146                 break;
1147         default:
1148                 BUG();
1149         }
1150
1151         return NULL;
1152 }
1153 EXPORT_SYMBOL(iwl_get_channel_info);
1154