Merge branch 'upstream-jgarzik' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99         'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117          QOS_TX3_CW_MIN_OFDM},
118         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119          QOS_TX3_CW_MAX_OFDM},
120         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128          QOS_TX3_CW_MIN_CCK},
129         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130          QOS_TX3_CW_MAX_CCK},
131         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134          QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139          DEF_TX3_CW_MIN_OFDM},
140         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141          DEF_TX3_CW_MAX_OFDM},
142         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150          DEF_TX3_CW_MIN_CCK},
151         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152          DEF_TX3_CW_MAX_CCK},
153         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156          DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169                                        *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171                                      *qos_param);
172 #endif                          /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178                                 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182                              int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195                                 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200                         const u8 * data, u32 len, u32 ofs)
201 {
202         int out, i, j, l;
203         char c;
204
205         out = snprintf(buf, count, "%08X", ofs);
206
207         for (l = 0, i = 0; i < 2; i++) {
208                 out += snprintf(buf + out, count - out, " ");
209                 for (j = 0; j < 8 && l < len; j++, l++)
210                         out += snprintf(buf + out, count - out, "%02X ",
211                                         data[(i * 8 + j)]);
212                 for (; j < 8; j++)
213                         out += snprintf(buf + out, count - out, "   ");
214         }
215
216         out += snprintf(buf + out, count - out, " ");
217         for (l = 0, i = 0; i < 2; i++) {
218                 out += snprintf(buf + out, count - out, " ");
219                 for (j = 0; j < 8 && l < len; j++, l++) {
220                         c = data[(i * 8 + j)];
221                         if (!isascii(c) || !isprint(c))
222                                 c = '.';
223
224                         out += snprintf(buf + out, count - out, "%c", c);
225                 }
226
227                 for (; j < 8; j++)
228                         out += snprintf(buf + out, count - out, " ");
229         }
230
231         return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236         char line[81];
237         u32 ofs = 0;
238         if (!(ipw_debug_level & level))
239                 return;
240
241         while (len) {
242                 snprint_line(line, sizeof(line), &data[ofs],
243                              min(len, 16U), ofs);
244                 printk(KERN_DEBUG "%s\n", line);
245                 ofs += 16;
246                 len -= min(len, 16U);
247         }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252         size_t out = size;
253         u32 ofs = 0;
254         int total = 0;
255
256         while (size && len) {
257                 out = snprint_line(output, size, &data[ofs],
258                                    min_t(size_t, len, 16U), ofs);
259
260                 ofs += 16;
261                 output += out;
262                 size -= out;
263                 len -= min_t(size_t, len, 16U);
264                 total += out;
265         }
266         return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282                      __LINE__, (u32) (b), (u32) (c));
283         _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291                      __LINE__, (u32) (b), (u32) (c));
292         _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300                      __LINE__, (u32) (b), (u32) (c));
301         _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310  _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318  _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326  _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335         return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348         return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361         return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370                                        struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373                      d);
374         _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382                                 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385         _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
399         u32 dif_len = reg - aligned_addr;
400
401         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
410         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420         u32 word;
421         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424         return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430         u32 value;
431
432         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437         return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /*    for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443                                int num)
444 {
445         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
446         u32 dif_len = addr - aligned_addr;
447         u32 i;
448
449         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451         if (num <= 0) {
452                 return;
453         }
454
455         /* Read the first dword (or portion) byte by byte */
456         if (unlikely(dif_len)) {
457                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458                 /* Start reading at aligned_addr + dif_len */
459                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461                 aligned_addr += 4;
462         }
463
464         /* Read all of the middle dwords as dwords, with auto-increment */
465         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469         /* Read the last dword (or portion) byte by byte */
470         if (unlikely(num)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 for (i = 0; num > 0; i++, num--)
473                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474         }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /*    for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480                                 int num)
481 {
482         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
483         u32 dif_len = addr - aligned_addr;
484         u32 i;
485
486         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488         if (num <= 0) {
489                 return;
490         }
491
492         /* Write the first dword (or portion) byte by byte */
493         if (unlikely(dif_len)) {
494                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495                 /* Start writing at aligned_addr + dif_len */
496                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498                 aligned_addr += 4;
499         }
500
501         /* Write all of the middle dwords as dwords, with auto-increment */
502         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506         /* Write the last dword (or portion) byte by byte */
507         if (unlikely(num)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 for (i = 0; num > 0; i++, num--, buf++)
510                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511         }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /*    for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517                              int num)
518 {
519         memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536         if (priv->status & STATUS_INT_ENABLED)
537                 return;
538         priv->status |= STATUS_INT_ENABLED;
539         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544         if (!(priv->status & STATUS_INT_ENABLED))
545                 return;
546         priv->status &= ~STATUS_INT_ENABLED;
547         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552         unsigned long flags;
553
554         spin_lock_irqsave(&priv->irq_lock, flags);
555         __ipw_enable_interrupts(priv);
556         spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561         unsigned long flags;
562
563         spin_lock_irqsave(&priv->irq_lock, flags);
564         __ipw_disable_interrupts(priv);
565         spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570         switch (val) {
571         case IPW_FW_ERROR_OK:
572                 return "ERROR_OK";
573         case IPW_FW_ERROR_FAIL:
574                 return "ERROR_FAIL";
575         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576                 return "MEMORY_UNDERFLOW";
577         case IPW_FW_ERROR_MEMORY_OVERFLOW:
578                 return "MEMORY_OVERFLOW";
579         case IPW_FW_ERROR_BAD_PARAM:
580                 return "BAD_PARAM";
581         case IPW_FW_ERROR_BAD_CHECKSUM:
582                 return "BAD_CHECKSUM";
583         case IPW_FW_ERROR_NMI_INTERRUPT:
584                 return "NMI_INTERRUPT";
585         case IPW_FW_ERROR_BAD_DATABASE:
586                 return "BAD_DATABASE";
587         case IPW_FW_ERROR_ALLOC_FAIL:
588                 return "ALLOC_FAIL";
589         case IPW_FW_ERROR_DMA_UNDERRUN:
590                 return "DMA_UNDERRUN";
591         case IPW_FW_ERROR_DMA_STATUS:
592                 return "DMA_STATUS";
593         case IPW_FW_ERROR_DINO_ERROR:
594                 return "DINO_ERROR";
595         case IPW_FW_ERROR_EEPROM_ERROR:
596                 return "EEPROM_ERROR";
597         case IPW_FW_ERROR_SYSASSERT:
598                 return "SYSASSERT";
599         case IPW_FW_ERROR_FATAL_ERROR:
600                 return "FATAL_ERROR";
601         default:
602                 return "UNKNOWN_ERROR";
603         }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607                                struct ipw_fw_error *error)
608 {
609         u32 i;
610
611         if (!error) {
612                 IPW_ERROR("Error allocating and capturing error log.  "
613                           "Nothing to dump.\n");
614                 return;
615         }
616
617         IPW_ERROR("Start IPW Error Log Dump:\n");
618         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619                   error->status, error->config);
620
621         for (i = 0; i < error->elem_len; i++)
622                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
623                           ipw_error_desc(error->elem[i].desc),
624                           error->elem[i].time,
625                           error->elem[i].blink1,
626                           error->elem[i].blink2,
627                           error->elem[i].link1,
628                           error->elem[i].link2, error->elem[i].data);
629         for (i = 0; i < error->log_len; i++)
630                 IPW_ERROR("%i\t0x%08x\t%i\n",
631                           error->log[i].time,
632                           error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637         return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642         u32 addr, field_info, field_len, field_count, total_len;
643
644         IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646         if (!priv || !val || !len) {
647                 IPW_DEBUG_ORD("Invalid argument\n");
648                 return -EINVAL;
649         }
650
651         /* verify device ordinal tables have been initialized */
652         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654                 return -EINVAL;
655         }
656
657         switch (IPW_ORD_TABLE_ID_MASK & ord) {
658         case IPW_ORD_TABLE_0_MASK:
659                 /*
660                  * TABLE 0: Direct access to a table of 32 bit values
661                  *
662                  * This is a very simple table with the data directly
663                  * read from the table
664                  */
665
666                 /* remove the table id from the ordinal */
667                 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669                 /* boundary check */
670                 if (ord > priv->table0_len) {
671                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
672                                       "max (%i)\n", ord, priv->table0_len);
673                         return -EINVAL;
674                 }
675
676                 /* verify we have enough room to store the value */
677                 if (*len < sizeof(u32)) {
678                         IPW_DEBUG_ORD("ordinal buffer length too small, "
679                                       "need %zd\n", sizeof(u32));
680                         return -EINVAL;
681                 }
682
683                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684                               ord, priv->table0_addr + (ord << 2));
685
686                 *len = sizeof(u32);
687                 ord <<= 2;
688                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689                 break;
690
691         case IPW_ORD_TABLE_1_MASK:
692                 /*
693                  * TABLE 1: Indirect access to a table of 32 bit values
694                  *
695                  * This is a fairly large table of u32 values each
696                  * representing starting addr for the data (which is
697                  * also a u32)
698                  */
699
700                 /* remove the table id from the ordinal */
701                 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703                 /* boundary check */
704                 if (ord > priv->table1_len) {
705                         IPW_DEBUG_ORD("ordinal value too long\n");
706                         return -EINVAL;
707                 }
708
709                 /* verify we have enough room to store the value */
710                 if (*len < sizeof(u32)) {
711                         IPW_DEBUG_ORD("ordinal buffer length too small, "
712                                       "need %zd\n", sizeof(u32));
713                         return -EINVAL;
714                 }
715
716                 *((u32 *) val) =
717                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718                 *len = sizeof(u32);
719                 break;
720
721         case IPW_ORD_TABLE_2_MASK:
722                 /*
723                  * TABLE 2: Indirect access to a table of variable sized values
724                  *
725                  * This table consist of six values, each containing
726                  *     - dword containing the starting offset of the data
727                  *     - dword containing the lengh in the first 16bits
728                  *       and the count in the second 16bits
729                  */
730
731                 /* remove the table id from the ordinal */
732                 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734                 /* boundary check */
735                 if (ord > priv->table2_len) {
736                         IPW_DEBUG_ORD("ordinal value too long\n");
737                         return -EINVAL;
738                 }
739
740                 /* get the address of statistic */
741                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743                 /* get the second DW of statistics ;
744                  * two 16-bit words - first is length, second is count */
745                 field_info =
746                     ipw_read_reg32(priv,
747                                    priv->table2_addr + (ord << 3) +
748                                    sizeof(u32));
749
750                 /* get each entry length */
751                 field_len = *((u16 *) & field_info);
752
753                 /* get number of entries */
754                 field_count = *(((u16 *) & field_info) + 1);
755
756                 /* abort if not enought memory */
757                 total_len = field_len * field_count;
758                 if (total_len > *len) {
759                         *len = total_len;
760                         return -EINVAL;
761                 }
762
763                 *len = total_len;
764                 if (!total_len)
765                         return 0;
766
767                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768                               "field_info = 0x%08x\n",
769                               addr, total_len, field_info);
770                 ipw_read_indirect(priv, addr, val, total_len);
771                 break;
772
773         default:
774                 IPW_DEBUG_ORD("Invalid ordinal!\n");
775                 return -EINVAL;
776
777         }
778
779         return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785         priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788                       priv->table0_addr, priv->table0_len);
789
790         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794                       priv->table1_addr, priv->table1_len);
795
796         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798         priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801                       priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807         reg &= ~IPW_START_STANDBY;
808         if (reg & IPW_GATE_ODMA)
809                 reg &= ~IPW_GATE_ODMA;
810         if (reg & IPW_GATE_IDMA)
811                 reg &= ~IPW_GATE_IDMA;
812         if (reg & IPW_GATE_ADMA)
813                 reg &= ~IPW_GATE_ADMA;
814         return reg;
815 }
816
817 /*
818  * LED behavior:
819  * - On radio ON, turn on any LEDs that require to be on during start
820  * - On initialization, start unassociated blink
821  * - On association, disable unassociated blink
822  * - On disassociation, start unassociated blink
823  * - On radio OFF, turn off any LEDs started during radio on
824  *
825  */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832         unsigned long flags;
833         u32 led;
834
835         /* If configured to not use LEDs, or nic_type is 1,
836          * then we don't toggle a LINK led */
837         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838                 return;
839
840         spin_lock_irqsave(&priv->lock, flags);
841
842         if (!(priv->status & STATUS_RF_KILL_MASK) &&
843             !(priv->status & STATUS_LED_LINK_ON)) {
844                 IPW_DEBUG_LED("Link LED On\n");
845                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846                 led |= priv->led_association_on;
847
848                 led = ipw_register_toggle(led);
849
850                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853                 priv->status |= STATUS_LED_LINK_ON;
854
855                 /* If we aren't associated, schedule turning the LED off */
856                 if (!(priv->status & STATUS_ASSOCIATED))
857                         queue_delayed_work(priv->workqueue,
858                                            &priv->led_link_off,
859                                            LD_TIME_LINK_ON);
860         }
861
862         spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867         struct ipw_priv *priv =
868                 container_of(work, struct ipw_priv, led_link_on.work);
869         mutex_lock(&priv->mutex);
870         ipw_led_link_on(priv);
871         mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876         unsigned long flags;
877         u32 led;
878
879         /* If configured not to use LEDs, or nic type is 1,
880          * then we don't goggle the LINK led. */
881         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882                 return;
883
884         spin_lock_irqsave(&priv->lock, flags);
885
886         if (priv->status & STATUS_LED_LINK_ON) {
887                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888                 led &= priv->led_association_off;
889                 led = ipw_register_toggle(led);
890
891                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894                 IPW_DEBUG_LED("Link LED Off\n");
895
896                 priv->status &= ~STATUS_LED_LINK_ON;
897
898                 /* If we aren't associated and the radio is on, schedule
899                  * turning the LED on (blink while unassociated) */
900                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901                     !(priv->status & STATUS_ASSOCIATED))
902                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
903                                            LD_TIME_LINK_OFF);
904
905         }
906
907         spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912         struct ipw_priv *priv =
913                 container_of(work, struct ipw_priv, led_link_off.work);
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(priv);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992         struct ipw_priv *priv =
993                 container_of(work, struct ipw_priv, led_act_off.work);
994         mutex_lock(&priv->mutex);
995         ipw_led_activity_off(priv);
996         mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001         unsigned long flags;
1002         u32 led;
1003
1004         /* Only nic type 1 supports mode LEDs */
1005         if (priv->config & CFG_NO_LED ||
1006             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007                 return;
1008
1009         spin_lock_irqsave(&priv->lock, flags);
1010
1011         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012         if (priv->assoc_network->mode == IEEE_A) {
1013                 led |= priv->led_ofdm_on;
1014                 led &= priv->led_association_off;
1015                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016         } else if (priv->assoc_network->mode == IEEE_G) {
1017                 led |= priv->led_ofdm_on;
1018                 led |= priv->led_association_on;
1019                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020         } else {
1021                 led &= priv->led_ofdm_off;
1022                 led |= priv->led_association_on;
1023                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024         }
1025
1026         led = ipw_register_toggle(led);
1027
1028         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031         spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036         unsigned long flags;
1037         u32 led;
1038
1039         /* Only nic type 1 supports mode LEDs */
1040         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041                 return;
1042
1043         spin_lock_irqsave(&priv->lock, flags);
1044
1045         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046         led &= priv->led_ofdm_off;
1047         led &= priv->led_association_off;
1048
1049         led = ipw_register_toggle(led);
1050
1051         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054         spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059         ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064         ipw_led_activity_off(priv);
1065         ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070         /* Set the Link Led on for all nic types */
1071         ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076         ipw_led_activity_off(priv);
1077         ipw_led_link_off(priv);
1078
1079         if (priv->status & STATUS_RF_KILL_MASK)
1080                 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087         /* Set the default PINs for the link and activity leds */
1088         priv->led_activity_on = IPW_ACTIVITY_LED;
1089         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091         priv->led_association_on = IPW_ASSOCIATED_LED;
1092         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094         /* Set the default PINs for the OFDM leds */
1095         priv->led_ofdm_on = IPW_OFDM_LED;
1096         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098         switch (priv->nic_type) {
1099         case EEPROM_NIC_TYPE_1:
1100                 /* In this NIC type, the LEDs are reversed.... */
1101                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103                 priv->led_association_on = IPW_ACTIVITY_LED;
1104                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106                 if (!(priv->config & CFG_NO_LED))
1107                         ipw_led_band_on(priv);
1108
1109                 /* And we don't blink link LEDs for this nic, so
1110                  * just return here */
1111                 return;
1112
1113         case EEPROM_NIC_TYPE_3:
1114         case EEPROM_NIC_TYPE_2:
1115         case EEPROM_NIC_TYPE_4:
1116         case EEPROM_NIC_TYPE_0:
1117                 break;
1118
1119         default:
1120                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121                                priv->nic_type);
1122                 priv->nic_type = EEPROM_NIC_TYPE_0;
1123                 break;
1124         }
1125
1126         if (!(priv->config & CFG_NO_LED)) {
1127                 if (priv->status & STATUS_ASSOCIATED)
1128                         ipw_led_link_on(priv);
1129                 else
1130                         ipw_led_link_off(priv);
1131         }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136         ipw_led_activity_off(priv);
1137         ipw_led_link_off(priv);
1138         ipw_led_band_off(priv);
1139         cancel_delayed_work(&priv->led_link_on);
1140         cancel_delayed_work(&priv->led_link_off);
1141         cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145  * The following adds a new attribute to the sysfs representation
1146  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147  * used for controling the debug level.
1148  *
1149  * See the level definitions in ipw for details.
1150  */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157                                  size_t count)
1158 {
1159         char *p = (char *)buf;
1160         u32 val;
1161
1162         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163                 p++;
1164                 if (p[0] == 'x' || p[0] == 'X')
1165                         p++;
1166                 val = simple_strtoul(p, &p, 16);
1167         } else
1168                 val = simple_strtoul(p, &p, 10);
1169         if (p == buf)
1170                 printk(KERN_INFO DRV_NAME
1171                        ": %s is not in hex or decimal form.\n", buf);
1172         else
1173                 ipw_debug_level = val;
1174
1175         return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179                    show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183         /* length = 1st dword in log */
1184         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188                                   u32 log_len, struct ipw_event *log)
1189 {
1190         u32 base;
1191
1192         if (log_len) {
1193                 base = ipw_read32(priv, IPW_EVENT_LOG);
1194                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195                                   (u8 *) log, sizeof(*log) * log_len);
1196         }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201         struct ipw_fw_error *error;
1202         u32 log_len = ipw_get_event_log_len(priv);
1203         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204         u32 elem_len = ipw_read_reg32(priv, base);
1205
1206         error = kmalloc(sizeof(*error) +
1207                         sizeof(*error->elem) * elem_len +
1208                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1209         if (!error) {
1210                 IPW_ERROR("Memory allocation for firmware error log "
1211                           "failed.\n");
1212                 return NULL;
1213         }
1214         error->jiffies = jiffies;
1215         error->status = priv->status;
1216         error->config = priv->config;
1217         error->elem_len = elem_len;
1218         error->log_len = log_len;
1219         error->elem = (struct ipw_error_elem *)error->payload;
1220         error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222         ipw_capture_event_log(priv, log_len, error->log);
1223
1224         if (elem_len)
1225                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226                                   sizeof(*error->elem) * elem_len);
1227
1228         return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232                               struct device_attribute *attr, char *buf)
1233 {
1234         struct ipw_priv *priv = dev_get_drvdata(d);
1235         u32 log_len = ipw_get_event_log_len(priv);
1236         struct ipw_event log[log_len];
1237         u32 len = 0, i;
1238
1239         ipw_capture_event_log(priv, log_len, log);
1240
1241         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1242         for (i = 0; i < log_len; i++)
1243                 len += snprintf(buf + len, PAGE_SIZE - len,
1244                                 "\n%08X%08X%08X",
1245                                 log[i].time, log[i].event, log[i].data);
1246         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1247         return len;
1248 }
1249
1250 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1251
1252 static ssize_t show_error(struct device *d,
1253                           struct device_attribute *attr, char *buf)
1254 {
1255         struct ipw_priv *priv = dev_get_drvdata(d);
1256         u32 len = 0, i;
1257         if (!priv->error)
1258                 return 0;
1259         len += snprintf(buf + len, PAGE_SIZE - len,
1260                         "%08lX%08X%08X%08X",
1261                         priv->error->jiffies,
1262                         priv->error->status,
1263                         priv->error->config, priv->error->elem_len);
1264         for (i = 0; i < priv->error->elem_len; i++)
1265                 len += snprintf(buf + len, PAGE_SIZE - len,
1266                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1267                                 priv->error->elem[i].time,
1268                                 priv->error->elem[i].desc,
1269                                 priv->error->elem[i].blink1,
1270                                 priv->error->elem[i].blink2,
1271                                 priv->error->elem[i].link1,
1272                                 priv->error->elem[i].link2,
1273                                 priv->error->elem[i].data);
1274
1275         len += snprintf(buf + len, PAGE_SIZE - len,
1276                         "\n%08X", priv->error->log_len);
1277         for (i = 0; i < priv->error->log_len; i++)
1278                 len += snprintf(buf + len, PAGE_SIZE - len,
1279                                 "\n%08X%08X%08X",
1280                                 priv->error->log[i].time,
1281                                 priv->error->log[i].event,
1282                                 priv->error->log[i].data);
1283         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1284         return len;
1285 }
1286
1287 static ssize_t clear_error(struct device *d,
1288                            struct device_attribute *attr,
1289                            const char *buf, size_t count)
1290 {
1291         struct ipw_priv *priv = dev_get_drvdata(d);
1292
1293         kfree(priv->error);
1294         priv->error = NULL;
1295         return count;
1296 }
1297
1298 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1299
1300 static ssize_t show_cmd_log(struct device *d,
1301                             struct device_attribute *attr, char *buf)
1302 {
1303         struct ipw_priv *priv = dev_get_drvdata(d);
1304         u32 len = 0, i;
1305         if (!priv->cmdlog)
1306                 return 0;
1307         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1308              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1309              i = (i + 1) % priv->cmdlog_len) {
1310                 len +=
1311                     snprintf(buf + len, PAGE_SIZE - len,
1312                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1313                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1314                              priv->cmdlog[i].cmd.len);
1315                 len +=
1316                     snprintk_buf(buf + len, PAGE_SIZE - len,
1317                                  (u8 *) priv->cmdlog[i].cmd.param,
1318                                  priv->cmdlog[i].cmd.len);
1319                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1320         }
1321         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1322         return len;
1323 }
1324
1325 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1326
1327 #ifdef CONFIG_IPW2200_PROMISCUOUS
1328 static void ipw_prom_free(struct ipw_priv *priv);
1329 static int ipw_prom_alloc(struct ipw_priv *priv);
1330 static ssize_t store_rtap_iface(struct device *d,
1331                          struct device_attribute *attr,
1332                          const char *buf, size_t count)
1333 {
1334         struct ipw_priv *priv = dev_get_drvdata(d);
1335         int rc = 0;
1336
1337         if (count < 1)
1338                 return -EINVAL;
1339
1340         switch (buf[0]) {
1341         case '0':
1342                 if (!rtap_iface)
1343                         return count;
1344
1345                 if (netif_running(priv->prom_net_dev)) {
1346                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1347                         return count;
1348                 }
1349
1350                 ipw_prom_free(priv);
1351                 rtap_iface = 0;
1352                 break;
1353
1354         case '1':
1355                 if (rtap_iface)
1356                         return count;
1357
1358                 rc = ipw_prom_alloc(priv);
1359                 if (!rc)
1360                         rtap_iface = 1;
1361                 break;
1362
1363         default:
1364                 return -EINVAL;
1365         }
1366
1367         if (rc) {
1368                 IPW_ERROR("Failed to register promiscuous network "
1369                           "device (error %d).\n", rc);
1370         }
1371
1372         return count;
1373 }
1374
1375 static ssize_t show_rtap_iface(struct device *d,
1376                         struct device_attribute *attr,
1377                         char *buf)
1378 {
1379         struct ipw_priv *priv = dev_get_drvdata(d);
1380         if (rtap_iface)
1381                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1382         else {
1383                 buf[0] = '-';
1384                 buf[1] = '1';
1385                 buf[2] = '\0';
1386                 return 3;
1387         }
1388 }
1389
1390 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1391                    store_rtap_iface);
1392
1393 static ssize_t store_rtap_filter(struct device *d,
1394                          struct device_attribute *attr,
1395                          const char *buf, size_t count)
1396 {
1397         struct ipw_priv *priv = dev_get_drvdata(d);
1398
1399         if (!priv->prom_priv) {
1400                 IPW_ERROR("Attempting to set filter without "
1401                           "rtap_iface enabled.\n");
1402                 return -EPERM;
1403         }
1404
1405         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1406
1407         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1408                        BIT_ARG16(priv->prom_priv->filter));
1409
1410         return count;
1411 }
1412
1413 static ssize_t show_rtap_filter(struct device *d,
1414                         struct device_attribute *attr,
1415                         char *buf)
1416 {
1417         struct ipw_priv *priv = dev_get_drvdata(d);
1418         return sprintf(buf, "0x%04X",
1419                        priv->prom_priv ? priv->prom_priv->filter : 0);
1420 }
1421
1422 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1423                    store_rtap_filter);
1424 #endif
1425
1426 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1427                              char *buf)
1428 {
1429         struct ipw_priv *priv = dev_get_drvdata(d);
1430         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1431 }
1432
1433 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1434                               const char *buf, size_t count)
1435 {
1436         struct ipw_priv *priv = dev_get_drvdata(d);
1437         struct net_device *dev = priv->net_dev;
1438         char buffer[] = "00000000";
1439         unsigned long len =
1440             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1441         unsigned long val;
1442         char *p = buffer;
1443
1444         IPW_DEBUG_INFO("enter\n");
1445
1446         strncpy(buffer, buf, len);
1447         buffer[len] = 0;
1448
1449         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1450                 p++;
1451                 if (p[0] == 'x' || p[0] == 'X')
1452                         p++;
1453                 val = simple_strtoul(p, &p, 16);
1454         } else
1455                 val = simple_strtoul(p, &p, 10);
1456         if (p == buffer) {
1457                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1458         } else {
1459                 priv->ieee->scan_age = val;
1460                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1461         }
1462
1463         IPW_DEBUG_INFO("exit\n");
1464         return len;
1465 }
1466
1467 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1468
1469 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1470                         char *buf)
1471 {
1472         struct ipw_priv *priv = dev_get_drvdata(d);
1473         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1474 }
1475
1476 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1477                          const char *buf, size_t count)
1478 {
1479         struct ipw_priv *priv = dev_get_drvdata(d);
1480
1481         IPW_DEBUG_INFO("enter\n");
1482
1483         if (count == 0)
1484                 return 0;
1485
1486         if (*buf == 0) {
1487                 IPW_DEBUG_LED("Disabling LED control.\n");
1488                 priv->config |= CFG_NO_LED;
1489                 ipw_led_shutdown(priv);
1490         } else {
1491                 IPW_DEBUG_LED("Enabling LED control.\n");
1492                 priv->config &= ~CFG_NO_LED;
1493                 ipw_led_init(priv);
1494         }
1495
1496         IPW_DEBUG_INFO("exit\n");
1497         return count;
1498 }
1499
1500 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1501
1502 static ssize_t show_status(struct device *d,
1503                            struct device_attribute *attr, char *buf)
1504 {
1505         struct ipw_priv *p = d->driver_data;
1506         return sprintf(buf, "0x%08x\n", (int)p->status);
1507 }
1508
1509 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1510
1511 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1512                         char *buf)
1513 {
1514         struct ipw_priv *p = d->driver_data;
1515         return sprintf(buf, "0x%08x\n", (int)p->config);
1516 }
1517
1518 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1519
1520 static ssize_t show_nic_type(struct device *d,
1521                              struct device_attribute *attr, char *buf)
1522 {
1523         struct ipw_priv *priv = d->driver_data;
1524         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1525 }
1526
1527 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1528
1529 static ssize_t show_ucode_version(struct device *d,
1530                                   struct device_attribute *attr, char *buf)
1531 {
1532         u32 len = sizeof(u32), tmp = 0;
1533         struct ipw_priv *p = d->driver_data;
1534
1535         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1536                 return 0;
1537
1538         return sprintf(buf, "0x%08x\n", tmp);
1539 }
1540
1541 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1542
1543 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1544                         char *buf)
1545 {
1546         u32 len = sizeof(u32), tmp = 0;
1547         struct ipw_priv *p = d->driver_data;
1548
1549         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1550                 return 0;
1551
1552         return sprintf(buf, "0x%08x\n", tmp);
1553 }
1554
1555 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1556
1557 /*
1558  * Add a device attribute to view/control the delay between eeprom
1559  * operations.
1560  */
1561 static ssize_t show_eeprom_delay(struct device *d,
1562                                  struct device_attribute *attr, char *buf)
1563 {
1564         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1565         return sprintf(buf, "%i\n", n);
1566 }
1567 static ssize_t store_eeprom_delay(struct device *d,
1568                                   struct device_attribute *attr,
1569                                   const char *buf, size_t count)
1570 {
1571         struct ipw_priv *p = d->driver_data;
1572         sscanf(buf, "%i", &p->eeprom_delay);
1573         return strnlen(buf, count);
1574 }
1575
1576 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1577                    show_eeprom_delay, store_eeprom_delay);
1578
1579 static ssize_t show_command_event_reg(struct device *d,
1580                                       struct device_attribute *attr, char *buf)
1581 {
1582         u32 reg = 0;
1583         struct ipw_priv *p = d->driver_data;
1584
1585         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1586         return sprintf(buf, "0x%08x\n", reg);
1587 }
1588 static ssize_t store_command_event_reg(struct device *d,
1589                                        struct device_attribute *attr,
1590                                        const char *buf, size_t count)
1591 {
1592         u32 reg;
1593         struct ipw_priv *p = d->driver_data;
1594
1595         sscanf(buf, "%x", &reg);
1596         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1597         return strnlen(buf, count);
1598 }
1599
1600 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1601                    show_command_event_reg, store_command_event_reg);
1602
1603 static ssize_t show_mem_gpio_reg(struct device *d,
1604                                  struct device_attribute *attr, char *buf)
1605 {
1606         u32 reg = 0;
1607         struct ipw_priv *p = d->driver_data;
1608
1609         reg = ipw_read_reg32(p, 0x301100);
1610         return sprintf(buf, "0x%08x\n", reg);
1611 }
1612 static ssize_t store_mem_gpio_reg(struct device *d,
1613                                   struct device_attribute *attr,
1614                                   const char *buf, size_t count)
1615 {
1616         u32 reg;
1617         struct ipw_priv *p = d->driver_data;
1618
1619         sscanf(buf, "%x", &reg);
1620         ipw_write_reg32(p, 0x301100, reg);
1621         return strnlen(buf, count);
1622 }
1623
1624 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1625                    show_mem_gpio_reg, store_mem_gpio_reg);
1626
1627 static ssize_t show_indirect_dword(struct device *d,
1628                                    struct device_attribute *attr, char *buf)
1629 {
1630         u32 reg = 0;
1631         struct ipw_priv *priv = d->driver_data;
1632
1633         if (priv->status & STATUS_INDIRECT_DWORD)
1634                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1635         else
1636                 reg = 0;
1637
1638         return sprintf(buf, "0x%08x\n", reg);
1639 }
1640 static ssize_t store_indirect_dword(struct device *d,
1641                                     struct device_attribute *attr,
1642                                     const char *buf, size_t count)
1643 {
1644         struct ipw_priv *priv = d->driver_data;
1645
1646         sscanf(buf, "%x", &priv->indirect_dword);
1647         priv->status |= STATUS_INDIRECT_DWORD;
1648         return strnlen(buf, count);
1649 }
1650
1651 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1652                    show_indirect_dword, store_indirect_dword);
1653
1654 static ssize_t show_indirect_byte(struct device *d,
1655                                   struct device_attribute *attr, char *buf)
1656 {
1657         u8 reg = 0;
1658         struct ipw_priv *priv = d->driver_data;
1659
1660         if (priv->status & STATUS_INDIRECT_BYTE)
1661                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1662         else
1663                 reg = 0;
1664
1665         return sprintf(buf, "0x%02x\n", reg);
1666 }
1667 static ssize_t store_indirect_byte(struct device *d,
1668                                    struct device_attribute *attr,
1669                                    const char *buf, size_t count)
1670 {
1671         struct ipw_priv *priv = d->driver_data;
1672
1673         sscanf(buf, "%x", &priv->indirect_byte);
1674         priv->status |= STATUS_INDIRECT_BYTE;
1675         return strnlen(buf, count);
1676 }
1677
1678 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1679                    show_indirect_byte, store_indirect_byte);
1680
1681 static ssize_t show_direct_dword(struct device *d,
1682                                  struct device_attribute *attr, char *buf)
1683 {
1684         u32 reg = 0;
1685         struct ipw_priv *priv = d->driver_data;
1686
1687         if (priv->status & STATUS_DIRECT_DWORD)
1688                 reg = ipw_read32(priv, priv->direct_dword);
1689         else
1690                 reg = 0;
1691
1692         return sprintf(buf, "0x%08x\n", reg);
1693 }
1694 static ssize_t store_direct_dword(struct device *d,
1695                                   struct device_attribute *attr,
1696                                   const char *buf, size_t count)
1697 {
1698         struct ipw_priv *priv = d->driver_data;
1699
1700         sscanf(buf, "%x", &priv->direct_dword);
1701         priv->status |= STATUS_DIRECT_DWORD;
1702         return strnlen(buf, count);
1703 }
1704
1705 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1706                    show_direct_dword, store_direct_dword);
1707
1708 static int rf_kill_active(struct ipw_priv *priv)
1709 {
1710         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1711                 priv->status |= STATUS_RF_KILL_HW;
1712         else
1713                 priv->status &= ~STATUS_RF_KILL_HW;
1714
1715         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1716 }
1717
1718 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1719                             char *buf)
1720 {
1721         /* 0 - RF kill not enabled
1722            1 - SW based RF kill active (sysfs)
1723            2 - HW based RF kill active
1724            3 - Both HW and SW baed RF kill active */
1725         struct ipw_priv *priv = d->driver_data;
1726         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1727             (rf_kill_active(priv) ? 0x2 : 0x0);
1728         return sprintf(buf, "%i\n", val);
1729 }
1730
1731 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1732 {
1733         if ((disable_radio ? 1 : 0) ==
1734             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1735                 return 0;
1736
1737         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1738                           disable_radio ? "OFF" : "ON");
1739
1740         if (disable_radio) {
1741                 priv->status |= STATUS_RF_KILL_SW;
1742
1743                 if (priv->workqueue)
1744                         cancel_delayed_work(&priv->request_scan);
1745                 queue_work(priv->workqueue, &priv->down);
1746         } else {
1747                 priv->status &= ~STATUS_RF_KILL_SW;
1748                 if (rf_kill_active(priv)) {
1749                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1750                                           "disabled by HW switch\n");
1751                         /* Make sure the RF_KILL check timer is running */
1752                         cancel_delayed_work(&priv->rf_kill);
1753                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1754                                            round_jiffies(2 * HZ));
1755                 } else
1756                         queue_work(priv->workqueue, &priv->up);
1757         }
1758
1759         return 1;
1760 }
1761
1762 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1763                              const char *buf, size_t count)
1764 {
1765         struct ipw_priv *priv = d->driver_data;
1766
1767         ipw_radio_kill_sw(priv, buf[0] == '1');
1768
1769         return count;
1770 }
1771
1772 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1773
1774 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1775                                char *buf)
1776 {
1777         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1778         int pos = 0, len = 0;
1779         if (priv->config & CFG_SPEED_SCAN) {
1780                 while (priv->speed_scan[pos] != 0)
1781                         len += sprintf(&buf[len], "%d ",
1782                                        priv->speed_scan[pos++]);
1783                 return len + sprintf(&buf[len], "\n");
1784         }
1785
1786         return sprintf(buf, "0\n");
1787 }
1788
1789 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1790                                 const char *buf, size_t count)
1791 {
1792         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793         int channel, pos = 0;
1794         const char *p = buf;
1795
1796         /* list of space separated channels to scan, optionally ending with 0 */
1797         while ((channel = simple_strtol(p, NULL, 0))) {
1798                 if (pos == MAX_SPEED_SCAN - 1) {
1799                         priv->speed_scan[pos] = 0;
1800                         break;
1801                 }
1802
1803                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1804                         priv->speed_scan[pos++] = channel;
1805                 else
1806                         IPW_WARNING("Skipping invalid channel request: %d\n",
1807                                     channel);
1808                 p = strchr(p, ' ');
1809                 if (!p)
1810                         break;
1811                 while (*p == ' ' || *p == '\t')
1812                         p++;
1813         }
1814
1815         if (pos == 0)
1816                 priv->config &= ~CFG_SPEED_SCAN;
1817         else {
1818                 priv->speed_scan_pos = 0;
1819                 priv->config |= CFG_SPEED_SCAN;
1820         }
1821
1822         return count;
1823 }
1824
1825 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1826                    store_speed_scan);
1827
1828 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1829                               char *buf)
1830 {
1831         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1832         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1833 }
1834
1835 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1836                                const char *buf, size_t count)
1837 {
1838         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1839         if (buf[0] == '1')
1840                 priv->config |= CFG_NET_STATS;
1841         else
1842                 priv->config &= ~CFG_NET_STATS;
1843
1844         return count;
1845 }
1846
1847 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1848                    show_net_stats, store_net_stats);
1849
1850 static ssize_t show_channels(struct device *d,
1851                              struct device_attribute *attr,
1852                              char *buf)
1853 {
1854         struct ipw_priv *priv = dev_get_drvdata(d);
1855         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1856         int len = 0, i;
1857
1858         len = sprintf(&buf[len],
1859                       "Displaying %d channels in 2.4Ghz band "
1860                       "(802.11bg):\n", geo->bg_channels);
1861
1862         for (i = 0; i < geo->bg_channels; i++) {
1863                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1864                                geo->bg[i].channel,
1865                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1866                                " (radar spectrum)" : "",
1867                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1868                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1869                                ? "" : ", IBSS",
1870                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1871                                "passive only" : "active/passive",
1872                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1873                                "B" : "B/G");
1874         }
1875
1876         len += sprintf(&buf[len],
1877                        "Displaying %d channels in 5.2Ghz band "
1878                        "(802.11a):\n", geo->a_channels);
1879         for (i = 0; i < geo->a_channels; i++) {
1880                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1881                                geo->a[i].channel,
1882                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1883                                " (radar spectrum)" : "",
1884                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1885                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1886                                ? "" : ", IBSS",
1887                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1888                                "passive only" : "active/passive");
1889         }
1890
1891         return len;
1892 }
1893
1894 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1895
1896 static void notify_wx_assoc_event(struct ipw_priv *priv)
1897 {
1898         union iwreq_data wrqu;
1899         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1900         if (priv->status & STATUS_ASSOCIATED)
1901                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1902         else
1903                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1904         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1905 }
1906
1907 static void ipw_irq_tasklet(struct ipw_priv *priv)
1908 {
1909         u32 inta, inta_mask, handled = 0;
1910         unsigned long flags;
1911         int rc = 0;
1912
1913         spin_lock_irqsave(&priv->irq_lock, flags);
1914
1915         inta = ipw_read32(priv, IPW_INTA_RW);
1916         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1917         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1918
1919         /* Add any cached INTA values that need to be handled */
1920         inta |= priv->isr_inta;
1921
1922         spin_unlock_irqrestore(&priv->irq_lock, flags);
1923
1924         spin_lock_irqsave(&priv->lock, flags);
1925
1926         /* handle all the justifications for the interrupt */
1927         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1928                 ipw_rx(priv);
1929                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1930         }
1931
1932         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1933                 IPW_DEBUG_HC("Command completed.\n");
1934                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1935                 priv->status &= ~STATUS_HCMD_ACTIVE;
1936                 wake_up_interruptible(&priv->wait_command_queue);
1937                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1938         }
1939
1940         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1941                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1942                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1943                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1944         }
1945
1946         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1947                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1948                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1949                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1950         }
1951
1952         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1953                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1954                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1955                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1956         }
1957
1958         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1959                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1960                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1961                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1962         }
1963
1964         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1965                 IPW_WARNING("STATUS_CHANGE\n");
1966                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1967         }
1968
1969         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1970                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1971                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1972         }
1973
1974         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1975                 IPW_WARNING("HOST_CMD_DONE\n");
1976                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1977         }
1978
1979         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1980                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1981                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1982         }
1983
1984         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1985                 IPW_WARNING("PHY_OFF_DONE\n");
1986                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1987         }
1988
1989         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1990                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1991                 priv->status |= STATUS_RF_KILL_HW;
1992                 wake_up_interruptible(&priv->wait_command_queue);
1993                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1994                 cancel_delayed_work(&priv->request_scan);
1995                 schedule_work(&priv->link_down);
1996                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1997                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1998         }
1999
2000         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2001                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2002                 if (priv->error) {
2003                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2004                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2005                                 struct ipw_fw_error *error =
2006                                     ipw_alloc_error_log(priv);
2007                                 ipw_dump_error_log(priv, error);
2008                                 kfree(error);
2009                         }
2010                 } else {
2011                         priv->error = ipw_alloc_error_log(priv);
2012                         if (priv->error)
2013                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2014                         else
2015                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2016                                              "log.\n");
2017                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2018                                 ipw_dump_error_log(priv, priv->error);
2019                 }
2020
2021                 /* XXX: If hardware encryption is for WPA/WPA2,
2022                  * we have to notify the supplicant. */
2023                 if (priv->ieee->sec.encrypt) {
2024                         priv->status &= ~STATUS_ASSOCIATED;
2025                         notify_wx_assoc_event(priv);
2026                 }
2027
2028                 /* Keep the restart process from trying to send host
2029                  * commands by clearing the INIT status bit */
2030                 priv->status &= ~STATUS_INIT;
2031
2032                 /* Cancel currently queued command. */
2033                 priv->status &= ~STATUS_HCMD_ACTIVE;
2034                 wake_up_interruptible(&priv->wait_command_queue);
2035
2036                 queue_work(priv->workqueue, &priv->adapter_restart);
2037                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2038         }
2039
2040         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2041                 IPW_ERROR("Parity error\n");
2042                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2043         }
2044
2045         if (handled != inta) {
2046                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2047         }
2048
2049         spin_unlock_irqrestore(&priv->lock, flags);
2050
2051         /* enable all interrupts */
2052         ipw_enable_interrupts(priv);
2053 }
2054
2055 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2056 static char *get_cmd_string(u8 cmd)
2057 {
2058         switch (cmd) {
2059                 IPW_CMD(HOST_COMPLETE);
2060                 IPW_CMD(POWER_DOWN);
2061                 IPW_CMD(SYSTEM_CONFIG);
2062                 IPW_CMD(MULTICAST_ADDRESS);
2063                 IPW_CMD(SSID);
2064                 IPW_CMD(ADAPTER_ADDRESS);
2065                 IPW_CMD(PORT_TYPE);
2066                 IPW_CMD(RTS_THRESHOLD);
2067                 IPW_CMD(FRAG_THRESHOLD);
2068                 IPW_CMD(POWER_MODE);
2069                 IPW_CMD(WEP_KEY);
2070                 IPW_CMD(TGI_TX_KEY);
2071                 IPW_CMD(SCAN_REQUEST);
2072                 IPW_CMD(SCAN_REQUEST_EXT);
2073                 IPW_CMD(ASSOCIATE);
2074                 IPW_CMD(SUPPORTED_RATES);
2075                 IPW_CMD(SCAN_ABORT);
2076                 IPW_CMD(TX_FLUSH);
2077                 IPW_CMD(QOS_PARAMETERS);
2078                 IPW_CMD(DINO_CONFIG);
2079                 IPW_CMD(RSN_CAPABILITIES);
2080                 IPW_CMD(RX_KEY);
2081                 IPW_CMD(CARD_DISABLE);
2082                 IPW_CMD(SEED_NUMBER);
2083                 IPW_CMD(TX_POWER);
2084                 IPW_CMD(COUNTRY_INFO);
2085                 IPW_CMD(AIRONET_INFO);
2086                 IPW_CMD(AP_TX_POWER);
2087                 IPW_CMD(CCKM_INFO);
2088                 IPW_CMD(CCX_VER_INFO);
2089                 IPW_CMD(SET_CALIBRATION);
2090                 IPW_CMD(SENSITIVITY_CALIB);
2091                 IPW_CMD(RETRY_LIMIT);
2092                 IPW_CMD(IPW_PRE_POWER_DOWN);
2093                 IPW_CMD(VAP_BEACON_TEMPLATE);
2094                 IPW_CMD(VAP_DTIM_PERIOD);
2095                 IPW_CMD(EXT_SUPPORTED_RATES);
2096                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2097                 IPW_CMD(VAP_QUIET_INTERVALS);
2098                 IPW_CMD(VAP_CHANNEL_SWITCH);
2099                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2100                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2101                 IPW_CMD(VAP_CF_PARAM_SET);
2102                 IPW_CMD(VAP_SET_BEACONING_STATE);
2103                 IPW_CMD(MEASUREMENT);
2104                 IPW_CMD(POWER_CAPABILITY);
2105                 IPW_CMD(SUPPORTED_CHANNELS);
2106                 IPW_CMD(TPC_REPORT);
2107                 IPW_CMD(WME_INFO);
2108                 IPW_CMD(PRODUCTION_COMMAND);
2109         default:
2110                 return "UNKNOWN";
2111         }
2112 }
2113
2114 #define HOST_COMPLETE_TIMEOUT HZ
2115
2116 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2117 {
2118         int rc = 0;
2119         unsigned long flags;
2120
2121         spin_lock_irqsave(&priv->lock, flags);
2122         if (priv->status & STATUS_HCMD_ACTIVE) {
2123                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2124                           get_cmd_string(cmd->cmd));
2125                 spin_unlock_irqrestore(&priv->lock, flags);
2126                 return -EAGAIN;
2127         }
2128
2129         priv->status |= STATUS_HCMD_ACTIVE;
2130
2131         if (priv->cmdlog) {
2132                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2133                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2134                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2135                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2136                        cmd->len);
2137                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2138         }
2139
2140         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2141                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2142                      priv->status);
2143
2144 #ifndef DEBUG_CMD_WEP_KEY
2145         if (cmd->cmd == IPW_CMD_WEP_KEY)
2146                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2147         else
2148 #endif
2149                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2150
2151         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2152         if (rc) {
2153                 priv->status &= ~STATUS_HCMD_ACTIVE;
2154                 IPW_ERROR("Failed to send %s: Reason %d\n",
2155                           get_cmd_string(cmd->cmd), rc);
2156                 spin_unlock_irqrestore(&priv->lock, flags);
2157                 goto exit;
2158         }
2159         spin_unlock_irqrestore(&priv->lock, flags);
2160
2161         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2162                                               !(priv->
2163                                                 status & STATUS_HCMD_ACTIVE),
2164                                               HOST_COMPLETE_TIMEOUT);
2165         if (rc == 0) {
2166                 spin_lock_irqsave(&priv->lock, flags);
2167                 if (priv->status & STATUS_HCMD_ACTIVE) {
2168                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2169                                   get_cmd_string(cmd->cmd));
2170                         priv->status &= ~STATUS_HCMD_ACTIVE;
2171                         spin_unlock_irqrestore(&priv->lock, flags);
2172                         rc = -EIO;
2173                         goto exit;
2174                 }
2175                 spin_unlock_irqrestore(&priv->lock, flags);
2176         } else
2177                 rc = 0;
2178
2179         if (priv->status & STATUS_RF_KILL_HW) {
2180                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2181                           get_cmd_string(cmd->cmd));
2182                 rc = -EIO;
2183                 goto exit;
2184         }
2185
2186       exit:
2187         if (priv->cmdlog) {
2188                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2189                 priv->cmdlog_pos %= priv->cmdlog_len;
2190         }
2191         return rc;
2192 }
2193
2194 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2195 {
2196         struct host_cmd cmd = {
2197                 .cmd = command,
2198         };
2199
2200         return __ipw_send_cmd(priv, &cmd);
2201 }
2202
2203 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2204                             void *data)
2205 {
2206         struct host_cmd cmd = {
2207                 .cmd = command,
2208                 .len = len,
2209                 .param = data,
2210         };
2211
2212         return __ipw_send_cmd(priv, &cmd);
2213 }
2214
2215 static int ipw_send_host_complete(struct ipw_priv *priv)
2216 {
2217         if (!priv) {
2218                 IPW_ERROR("Invalid args\n");
2219                 return -1;
2220         }
2221
2222         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2223 }
2224
2225 static int ipw_send_system_config(struct ipw_priv *priv)
2226 {
2227         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2228                                 sizeof(priv->sys_config),
2229                                 &priv->sys_config);
2230 }
2231
2232 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2233 {
2234         if (!priv || !ssid) {
2235                 IPW_ERROR("Invalid args\n");
2236                 return -1;
2237         }
2238
2239         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2240                                 ssid);
2241 }
2242
2243 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2244 {
2245         if (!priv || !mac) {
2246                 IPW_ERROR("Invalid args\n");
2247                 return -1;
2248         }
2249
2250         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2251                        priv->net_dev->name, MAC_ARG(mac));
2252
2253         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2254 }
2255
2256 /*
2257  * NOTE: This must be executed from our workqueue as it results in udelay
2258  * being called which may corrupt the keyboard if executed on default
2259  * workqueue
2260  */
2261 static void ipw_adapter_restart(void *adapter)
2262 {
2263         struct ipw_priv *priv = adapter;
2264
2265         if (priv->status & STATUS_RF_KILL_MASK)
2266                 return;
2267
2268         ipw_down(priv);
2269
2270         if (priv->assoc_network &&
2271             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2272                 ipw_remove_current_network(priv);
2273
2274         if (ipw_up(priv)) {
2275                 IPW_ERROR("Failed to up device\n");
2276                 return;
2277         }
2278 }
2279
2280 static void ipw_bg_adapter_restart(struct work_struct *work)
2281 {
2282         struct ipw_priv *priv =
2283                 container_of(work, struct ipw_priv, adapter_restart);
2284         mutex_lock(&priv->mutex);
2285         ipw_adapter_restart(priv);
2286         mutex_unlock(&priv->mutex);
2287 }
2288
2289 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2290
2291 static void ipw_scan_check(void *data)
2292 {
2293         struct ipw_priv *priv = data;
2294         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2295                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2296                                "adapter after (%dms).\n",
2297                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2298                 queue_work(priv->workqueue, &priv->adapter_restart);
2299         }
2300 }
2301
2302 static void ipw_bg_scan_check(struct work_struct *work)
2303 {
2304         struct ipw_priv *priv =
2305                 container_of(work, struct ipw_priv, scan_check.work);
2306         mutex_lock(&priv->mutex);
2307         ipw_scan_check(priv);
2308         mutex_unlock(&priv->mutex);
2309 }
2310
2311 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2312                                      struct ipw_scan_request_ext *request)
2313 {
2314         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2315                                 sizeof(*request), request);
2316 }
2317
2318 static int ipw_send_scan_abort(struct ipw_priv *priv)
2319 {
2320         if (!priv) {
2321                 IPW_ERROR("Invalid args\n");
2322                 return -1;
2323         }
2324
2325         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2326 }
2327
2328 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2329 {
2330         struct ipw_sensitivity_calib calib = {
2331                 .beacon_rssi_raw = cpu_to_le16(sens),
2332         };
2333
2334         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2335                                 &calib);
2336 }
2337
2338 static int ipw_send_associate(struct ipw_priv *priv,
2339                               struct ipw_associate *associate)
2340 {
2341         struct ipw_associate tmp_associate;
2342
2343         if (!priv || !associate) {
2344                 IPW_ERROR("Invalid args\n");
2345                 return -1;
2346         }
2347
2348         memcpy(&tmp_associate, associate, sizeof(*associate));
2349         tmp_associate.policy_support =
2350             cpu_to_le16(tmp_associate.policy_support);
2351         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2352         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2353         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2354         tmp_associate.listen_interval =
2355             cpu_to_le16(tmp_associate.listen_interval);
2356         tmp_associate.beacon_interval =
2357             cpu_to_le16(tmp_associate.beacon_interval);
2358         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2359
2360         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2361                                 &tmp_associate);
2362 }
2363
2364 static int ipw_send_supported_rates(struct ipw_priv *priv,
2365                                     struct ipw_supported_rates *rates)
2366 {
2367         if (!priv || !rates) {
2368                 IPW_ERROR("Invalid args\n");
2369                 return -1;
2370         }
2371
2372         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2373                                 rates);
2374 }
2375
2376 static int ipw_set_random_seed(struct ipw_priv *priv)
2377 {
2378         u32 val;
2379
2380         if (!priv) {
2381                 IPW_ERROR("Invalid args\n");
2382                 return -1;
2383         }
2384
2385         get_random_bytes(&val, sizeof(val));
2386
2387         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2388 }
2389
2390 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2391 {
2392         if (!priv) {
2393                 IPW_ERROR("Invalid args\n");
2394                 return -1;
2395         }
2396
2397         phy_off = cpu_to_le32(phy_off);
2398         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2399                                 &phy_off);
2400 }
2401
2402 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2403 {
2404         if (!priv || !power) {
2405                 IPW_ERROR("Invalid args\n");
2406                 return -1;
2407         }
2408
2409         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2410 }
2411
2412 static int ipw_set_tx_power(struct ipw_priv *priv)
2413 {
2414         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2415         struct ipw_tx_power tx_power;
2416         s8 max_power;
2417         int i;
2418
2419         memset(&tx_power, 0, sizeof(tx_power));
2420
2421         /* configure device for 'G' band */
2422         tx_power.ieee_mode = IPW_G_MODE;
2423         tx_power.num_channels = geo->bg_channels;
2424         for (i = 0; i < geo->bg_channels; i++) {
2425                 max_power = geo->bg[i].max_power;
2426                 tx_power.channels_tx_power[i].channel_number =
2427                     geo->bg[i].channel;
2428                 tx_power.channels_tx_power[i].tx_power = max_power ?
2429                     min(max_power, priv->tx_power) : priv->tx_power;
2430         }
2431         if (ipw_send_tx_power(priv, &tx_power))
2432                 return -EIO;
2433
2434         /* configure device to also handle 'B' band */
2435         tx_power.ieee_mode = IPW_B_MODE;
2436         if (ipw_send_tx_power(priv, &tx_power))
2437                 return -EIO;
2438
2439         /* configure device to also handle 'A' band */
2440         if (priv->ieee->abg_true) {
2441                 tx_power.ieee_mode = IPW_A_MODE;
2442                 tx_power.num_channels = geo->a_channels;
2443                 for (i = 0; i < tx_power.num_channels; i++) {
2444                         max_power = geo->a[i].max_power;
2445                         tx_power.channels_tx_power[i].channel_number =
2446                             geo->a[i].channel;
2447                         tx_power.channels_tx_power[i].tx_power = max_power ?
2448                             min(max_power, priv->tx_power) : priv->tx_power;
2449                 }
2450                 if (ipw_send_tx_power(priv, &tx_power))
2451                         return -EIO;
2452         }
2453         return 0;
2454 }
2455
2456 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2457 {
2458         struct ipw_rts_threshold rts_threshold = {
2459                 .rts_threshold = cpu_to_le16(rts),
2460         };
2461
2462         if (!priv) {
2463                 IPW_ERROR("Invalid args\n");
2464                 return -1;
2465         }
2466
2467         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2468                                 sizeof(rts_threshold), &rts_threshold);
2469 }
2470
2471 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2472 {
2473         struct ipw_frag_threshold frag_threshold = {
2474                 .frag_threshold = cpu_to_le16(frag),
2475         };
2476
2477         if (!priv) {
2478                 IPW_ERROR("Invalid args\n");
2479                 return -1;
2480         }
2481
2482         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2483                                 sizeof(frag_threshold), &frag_threshold);
2484 }
2485
2486 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2487 {
2488         u32 param;
2489
2490         if (!priv) {
2491                 IPW_ERROR("Invalid args\n");
2492                 return -1;
2493         }
2494
2495         /* If on battery, set to 3, if AC set to CAM, else user
2496          * level */
2497         switch (mode) {
2498         case IPW_POWER_BATTERY:
2499                 param = IPW_POWER_INDEX_3;
2500                 break;
2501         case IPW_POWER_AC:
2502                 param = IPW_POWER_MODE_CAM;
2503                 break;
2504         default:
2505                 param = mode;
2506                 break;
2507         }
2508
2509         param = cpu_to_le32(param);
2510         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2511                                 &param);
2512 }
2513
2514 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2515 {
2516         struct ipw_retry_limit retry_limit = {
2517                 .short_retry_limit = slimit,
2518                 .long_retry_limit = llimit
2519         };
2520
2521         if (!priv) {
2522                 IPW_ERROR("Invalid args\n");
2523                 return -1;
2524         }
2525
2526         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2527                                 &retry_limit);
2528 }
2529
2530 /*
2531  * The IPW device contains a Microwire compatible EEPROM that stores
2532  * various data like the MAC address.  Usually the firmware has exclusive
2533  * access to the eeprom, but during device initialization (before the
2534  * device driver has sent the HostComplete command to the firmware) the
2535  * device driver has read access to the EEPROM by way of indirect addressing
2536  * through a couple of memory mapped registers.
2537  *
2538  * The following is a simplified implementation for pulling data out of the
2539  * the eeprom, along with some helper functions to find information in
2540  * the per device private data's copy of the eeprom.
2541  *
2542  * NOTE: To better understand how these functions work (i.e what is a chip
2543  *       select and why do have to keep driving the eeprom clock?), read
2544  *       just about any data sheet for a Microwire compatible EEPROM.
2545  */
2546
2547 /* write a 32 bit value into the indirect accessor register */
2548 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2549 {
2550         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2551
2552         /* the eeprom requires some time to complete the operation */
2553         udelay(p->eeprom_delay);
2554
2555         return;
2556 }
2557
2558 /* perform a chip select operation */
2559 static void eeprom_cs(struct ipw_priv *priv)
2560 {
2561         eeprom_write_reg(priv, 0);
2562         eeprom_write_reg(priv, EEPROM_BIT_CS);
2563         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2564         eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 }
2566
2567 /* perform a chip select operation */
2568 static void eeprom_disable_cs(struct ipw_priv *priv)
2569 {
2570         eeprom_write_reg(priv, EEPROM_BIT_CS);
2571         eeprom_write_reg(priv, 0);
2572         eeprom_write_reg(priv, EEPROM_BIT_SK);
2573 }
2574
2575 /* push a single bit down to the eeprom */
2576 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2577 {
2578         int d = (bit ? EEPROM_BIT_DI : 0);
2579         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2580         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2581 }
2582
2583 /* push an opcode followed by an address down to the eeprom */
2584 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2585 {
2586         int i;
2587
2588         eeprom_cs(priv);
2589         eeprom_write_bit(priv, 1);
2590         eeprom_write_bit(priv, op & 2);
2591         eeprom_write_bit(priv, op & 1);
2592         for (i = 7; i >= 0; i--) {
2593                 eeprom_write_bit(priv, addr & (1 << i));
2594         }
2595 }
2596
2597 /* pull 16 bits off the eeprom, one bit at a time */
2598 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2599 {
2600         int i;
2601         u16 r = 0;
2602
2603         /* Send READ Opcode */
2604         eeprom_op(priv, EEPROM_CMD_READ, addr);
2605
2606         /* Send dummy bit */
2607         eeprom_write_reg(priv, EEPROM_BIT_CS);
2608
2609         /* Read the byte off the eeprom one bit at a time */
2610         for (i = 0; i < 16; i++) {
2611                 u32 data = 0;
2612                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2614                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2615                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2616         }
2617
2618         /* Send another dummy bit */
2619         eeprom_write_reg(priv, 0);
2620         eeprom_disable_cs(priv);
2621
2622         return r;
2623 }
2624
2625 /* helper function for pulling the mac address out of the private */
2626 /* data's copy of the eeprom data                                 */
2627 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2628 {
2629         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2630 }
2631
2632 /*
2633  * Either the device driver (i.e. the host) or the firmware can
2634  * load eeprom data into the designated region in SRAM.  If neither
2635  * happens then the FW will shutdown with a fatal error.
2636  *
2637  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2638  * bit needs region of shared SRAM needs to be non-zero.
2639  */
2640 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2641 {
2642         int i;
2643         u16 *eeprom = (u16 *) priv->eeprom;
2644
2645         IPW_DEBUG_TRACE(">>\n");
2646
2647         /* read entire contents of eeprom into private buffer */
2648         for (i = 0; i < 128; i++)
2649                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2650
2651         /*
2652            If the data looks correct, then copy it to our private
2653            copy.  Otherwise let the firmware know to perform the operation
2654            on its own.
2655          */
2656         if (priv->eeprom[EEPROM_VERSION] != 0) {
2657                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2658
2659                 /* write the eeprom data to sram */
2660                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2661                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2662
2663                 /* Do not load eeprom data on fatal error or suspend */
2664                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2665         } else {
2666                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2667
2668                 /* Load eeprom data on fatal error or suspend */
2669                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2670         }
2671
2672         IPW_DEBUG_TRACE("<<\n");
2673 }
2674
2675 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2676 {
2677         count >>= 2;
2678         if (!count)
2679                 return;
2680         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2681         while (count--)
2682                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2683 }
2684
2685 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2686 {
2687         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2688                         CB_NUMBER_OF_ELEMENTS_SMALL *
2689                         sizeof(struct command_block));
2690 }
2691
2692 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2693 {                               /* start dma engine but no transfers yet */
2694
2695         IPW_DEBUG_FW(">> : \n");
2696
2697         /* Start the dma */
2698         ipw_fw_dma_reset_command_blocks(priv);
2699
2700         /* Write CB base address */
2701         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2702
2703         IPW_DEBUG_FW("<< : \n");
2704         return 0;
2705 }
2706
2707 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2708 {
2709         u32 control = 0;
2710
2711         IPW_DEBUG_FW(">> :\n");
2712
2713         /* set the Stop and Abort bit */
2714         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2715         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2716         priv->sram_desc.last_cb_index = 0;
2717
2718         IPW_DEBUG_FW("<< \n");
2719 }
2720
2721 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2722                                           struct command_block *cb)
2723 {
2724         u32 address =
2725             IPW_SHARED_SRAM_DMA_CONTROL +
2726             (sizeof(struct command_block) * index);
2727         IPW_DEBUG_FW(">> :\n");
2728
2729         ipw_write_indirect(priv, address, (u8 *) cb,
2730                            (int)sizeof(struct command_block));
2731
2732         IPW_DEBUG_FW("<< :\n");
2733         return 0;
2734
2735 }
2736
2737 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2738 {
2739         u32 control = 0;
2740         u32 index = 0;
2741
2742         IPW_DEBUG_FW(">> :\n");
2743
2744         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2745                 ipw_fw_dma_write_command_block(priv, index,
2746                                                &priv->sram_desc.cb_list[index]);
2747
2748         /* Enable the DMA in the CSR register */
2749         ipw_clear_bit(priv, IPW_RESET_REG,
2750                       IPW_RESET_REG_MASTER_DISABLED |
2751                       IPW_RESET_REG_STOP_MASTER);
2752
2753         /* Set the Start bit. */
2754         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2755         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2756
2757         IPW_DEBUG_FW("<< :\n");
2758         return 0;
2759 }
2760
2761 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2762 {
2763         u32 address;
2764         u32 register_value = 0;
2765         u32 cb_fields_address = 0;
2766
2767         IPW_DEBUG_FW(">> :\n");
2768         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2769         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2770
2771         /* Read the DMA Controlor register */
2772         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2773         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2774
2775         /* Print the CB values */
2776         cb_fields_address = address;
2777         register_value = ipw_read_reg32(priv, cb_fields_address);
2778         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2779
2780         cb_fields_address += sizeof(u32);
2781         register_value = ipw_read_reg32(priv, cb_fields_address);
2782         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2783
2784         cb_fields_address += sizeof(u32);
2785         register_value = ipw_read_reg32(priv, cb_fields_address);
2786         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2787                           register_value);
2788
2789         cb_fields_address += sizeof(u32);
2790         register_value = ipw_read_reg32(priv, cb_fields_address);
2791         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2792
2793         IPW_DEBUG_FW(">> :\n");
2794 }
2795
2796 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2797 {
2798         u32 current_cb_address = 0;
2799         u32 current_cb_index = 0;
2800
2801         IPW_DEBUG_FW("<< :\n");
2802         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2803
2804         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2805             sizeof(struct command_block);
2806
2807         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2808                           current_cb_index, current_cb_address);
2809
2810         IPW_DEBUG_FW(">> :\n");
2811         return current_cb_index;
2812
2813 }
2814
2815 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2816                                         u32 src_address,
2817                                         u32 dest_address,
2818                                         u32 length,
2819                                         int interrupt_enabled, int is_last)
2820 {
2821
2822         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2823             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2824             CB_DEST_SIZE_LONG;
2825         struct command_block *cb;
2826         u32 last_cb_element = 0;
2827
2828         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2829                           src_address, dest_address, length);
2830
2831         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2832                 return -1;
2833
2834         last_cb_element = priv->sram_desc.last_cb_index;
2835         cb = &priv->sram_desc.cb_list[last_cb_element];
2836         priv->sram_desc.last_cb_index++;
2837
2838         /* Calculate the new CB control word */
2839         if (interrupt_enabled)
2840                 control |= CB_INT_ENABLED;
2841
2842         if (is_last)
2843                 control |= CB_LAST_VALID;
2844
2845         control |= length;
2846
2847         /* Calculate the CB Element's checksum value */
2848         cb->status = control ^ src_address ^ dest_address;
2849
2850         /* Copy the Source and Destination addresses */
2851         cb->dest_addr = dest_address;
2852         cb->source_addr = src_address;
2853
2854         /* Copy the Control Word last */
2855         cb->control = control;
2856
2857         return 0;
2858 }
2859
2860 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2861                                  u32 src_phys, u32 dest_address, u32 length)
2862 {
2863         u32 bytes_left = length;
2864         u32 src_offset = 0;
2865         u32 dest_offset = 0;
2866         int status = 0;
2867         IPW_DEBUG_FW(">> \n");
2868         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2869                           src_phys, dest_address, length);
2870         while (bytes_left > CB_MAX_LENGTH) {
2871                 status = ipw_fw_dma_add_command_block(priv,
2872                                                       src_phys + src_offset,
2873                                                       dest_address +
2874                                                       dest_offset,
2875                                                       CB_MAX_LENGTH, 0, 0);
2876                 if (status) {
2877                         IPW_DEBUG_FW_INFO(": Failed\n");
2878                         return -1;
2879                 } else
2880                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2881
2882                 src_offset += CB_MAX_LENGTH;
2883                 dest_offset += CB_MAX_LENGTH;
2884                 bytes_left -= CB_MAX_LENGTH;
2885         }
2886
2887         /* add the buffer tail */
2888         if (bytes_left > 0) {
2889                 status =
2890                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2891                                                  dest_address + dest_offset,
2892                                                  bytes_left, 0, 0);
2893                 if (status) {
2894                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2895                         return -1;
2896                 } else
2897                         IPW_DEBUG_FW_INFO
2898                             (": Adding new cb - the buffer tail\n");
2899         }
2900
2901         IPW_DEBUG_FW("<< \n");
2902         return 0;
2903 }
2904
2905 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2906 {
2907         u32 current_index = 0, previous_index;
2908         u32 watchdog = 0;
2909
2910         IPW_DEBUG_FW(">> : \n");
2911
2912         current_index = ipw_fw_dma_command_block_index(priv);
2913         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2914                           (int)priv->sram_desc.last_cb_index);
2915
2916         while (current_index < priv->sram_desc.last_cb_index) {
2917                 udelay(50);
2918                 previous_index = current_index;
2919                 current_index = ipw_fw_dma_command_block_index(priv);
2920
2921                 if (previous_index < current_index) {
2922                         watchdog = 0;
2923                         continue;
2924                 }
2925                 if (++watchdog > 400) {
2926                         IPW_DEBUG_FW_INFO("Timeout\n");
2927                         ipw_fw_dma_dump_command_block(priv);
2928                         ipw_fw_dma_abort(priv);
2929                         return -1;
2930                 }
2931         }
2932
2933         ipw_fw_dma_abort(priv);
2934
2935         /*Disable the DMA in the CSR register */
2936         ipw_set_bit(priv, IPW_RESET_REG,
2937                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2938
2939         IPW_DEBUG_FW("<< dmaWaitSync \n");
2940         return 0;
2941 }
2942
2943 static void ipw_remove_current_network(struct ipw_priv *priv)
2944 {
2945         struct list_head *element, *safe;
2946         struct ieee80211_network *network = NULL;
2947         unsigned long flags;
2948
2949         spin_lock_irqsave(&priv->ieee->lock, flags);
2950         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2951                 network = list_entry(element, struct ieee80211_network, list);
2952                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2953                         list_del(element);
2954                         list_add_tail(&network->list,
2955                                       &priv->ieee->network_free_list);
2956                 }
2957         }
2958         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2959 }
2960
2961 /**
2962  * Check that card is still alive.
2963  * Reads debug register from domain0.
2964  * If card is present, pre-defined value should
2965  * be found there.
2966  *
2967  * @param priv
2968  * @return 1 if card is present, 0 otherwise
2969  */
2970 static inline int ipw_alive(struct ipw_priv *priv)
2971 {
2972         return ipw_read32(priv, 0x90) == 0xd55555d5;
2973 }
2974
2975 /* timeout in msec, attempted in 10-msec quanta */
2976 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2977                                int timeout)
2978 {
2979         int i = 0;
2980
2981         do {
2982                 if ((ipw_read32(priv, addr) & mask) == mask)
2983                         return i;
2984                 mdelay(10);
2985                 i += 10;
2986         } while (i < timeout);
2987
2988         return -ETIME;
2989 }
2990
2991 /* These functions load the firmware and micro code for the operation of
2992  * the ipw hardware.  It assumes the buffer has all the bits for the
2993  * image and the caller is handling the memory allocation and clean up.
2994  */
2995
2996 static int ipw_stop_master(struct ipw_priv *priv)
2997 {
2998         int rc;
2999
3000         IPW_DEBUG_TRACE(">> \n");
3001         /* stop master. typical delay - 0 */
3002         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3003
3004         /* timeout is in msec, polled in 10-msec quanta */
3005         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3006                           IPW_RESET_REG_MASTER_DISABLED, 100);
3007         if (rc < 0) {
3008                 IPW_ERROR("wait for stop master failed after 100ms\n");
3009                 return -1;
3010         }
3011
3012         IPW_DEBUG_INFO("stop master %dms\n", rc);
3013
3014         return rc;
3015 }
3016
3017 static void ipw_arc_release(struct ipw_priv *priv)
3018 {
3019         IPW_DEBUG_TRACE(">> \n");
3020         mdelay(5);
3021
3022         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3023
3024         /* no one knows timing, for safety add some delay */
3025         mdelay(5);
3026 }
3027
3028 struct fw_chunk {
3029         u32 address;
3030         u32 length;
3031 };
3032
3033 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3034 {
3035         int rc = 0, i, addr;
3036         u8 cr = 0;
3037         u16 *image;
3038
3039         image = (u16 *) data;
3040
3041         IPW_DEBUG_TRACE(">> \n");
3042
3043         rc = ipw_stop_master(priv);
3044
3045         if (rc < 0)
3046                 return rc;
3047
3048         for (addr = IPW_SHARED_LOWER_BOUND;
3049              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3050                 ipw_write32(priv, addr, 0);
3051         }
3052
3053         /* no ucode (yet) */
3054         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3055         /* destroy DMA queues */
3056         /* reset sequence */
3057
3058         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3059         ipw_arc_release(priv);
3060         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3061         mdelay(1);
3062
3063         /* reset PHY */
3064         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3065         mdelay(1);
3066
3067         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3068         mdelay(1);
3069
3070         /* enable ucode store */
3071         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3072         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3073         mdelay(1);
3074
3075         /* write ucode */
3076         /**
3077          * @bug
3078          * Do NOT set indirect address register once and then
3079          * store data to indirect data register in the loop.
3080          * It seems very reasonable, but in this case DINO do not
3081          * accept ucode. It is essential to set address each time.
3082          */
3083         /* load new ipw uCode */
3084         for (i = 0; i < len / 2; i++)
3085                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3086                                 cpu_to_le16(image[i]));
3087
3088         /* enable DINO */
3089         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3090         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3091
3092         /* this is where the igx / win driver deveates from the VAP driver. */
3093
3094         /* wait for alive response */
3095         for (i = 0; i < 100; i++) {
3096                 /* poll for incoming data */
3097                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3098                 if (cr & DINO_RXFIFO_DATA)
3099                         break;
3100                 mdelay(1);
3101         }
3102
3103         if (cr & DINO_RXFIFO_DATA) {
3104                 /* alive_command_responce size is NOT multiple of 4 */
3105                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3106
3107                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3108                         response_buffer[i] =
3109                             le32_to_cpu(ipw_read_reg32(priv,
3110                                                        IPW_BASEBAND_RX_FIFO_READ));
3111                 memcpy(&priv->dino_alive, response_buffer,
3112                        sizeof(priv->dino_alive));
3113                 if (priv->dino_alive.alive_command == 1
3114                     && priv->dino_alive.ucode_valid == 1) {
3115                         rc = 0;
3116                         IPW_DEBUG_INFO
3117                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3118                              "of %02d/%02d/%02d %02d:%02d\n",
3119                              priv->dino_alive.software_revision,
3120                              priv->dino_alive.software_revision,
3121                              priv->dino_alive.device_identifier,
3122                              priv->dino_alive.device_identifier,
3123                              priv->dino_alive.time_stamp[0],
3124                              priv->dino_alive.time_stamp[1],
3125                              priv->dino_alive.time_stamp[2],
3126                              priv->dino_alive.time_stamp[3],
3127                              priv->dino_alive.time_stamp[4]);
3128                 } else {
3129                         IPW_DEBUG_INFO("Microcode is not alive\n");
3130                         rc = -EINVAL;
3131                 }
3132         } else {
3133                 IPW_DEBUG_INFO("No alive response from DINO\n");
3134                 rc = -ETIME;
3135         }
3136
3137         /* disable DINO, otherwise for some reason
3138            firmware have problem getting alive resp. */
3139         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3140
3141         return rc;
3142 }
3143
3144 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3145 {
3146         int rc = -1;
3147         int offset = 0;
3148         struct fw_chunk *chunk;
3149         dma_addr_t shared_phys;
3150         u8 *shared_virt;
3151
3152         IPW_DEBUG_TRACE("<< : \n");
3153         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3154
3155         if (!shared_virt)
3156                 return -ENOMEM;
3157
3158         memmove(shared_virt, data, len);
3159
3160         /* Start the Dma */
3161         rc = ipw_fw_dma_enable(priv);
3162
3163         if (priv->sram_desc.last_cb_index > 0) {
3164                 /* the DMA is already ready this would be a bug. */
3165                 BUG();
3166                 goto out;
3167         }
3168
3169         do {
3170                 chunk = (struct fw_chunk *)(data + offset);
3171                 offset += sizeof(struct fw_chunk);
3172                 /* build DMA packet and queue up for sending */
3173                 /* dma to chunk->address, the chunk->length bytes from data +
3174                  * offeset*/
3175                 /* Dma loading */
3176                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3177                                            le32_to_cpu(chunk->address),
3178                                            le32_to_cpu(chunk->length));
3179                 if (rc) {
3180                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3181                         goto out;
3182                 }
3183
3184                 offset += le32_to_cpu(chunk->length);
3185         } while (offset < len);
3186
3187         /* Run the DMA and wait for the answer */
3188         rc = ipw_fw_dma_kick(priv);
3189         if (rc) {
3190                 IPW_ERROR("dmaKick Failed\n");
3191                 goto out;
3192         }
3193
3194         rc = ipw_fw_dma_wait(priv);
3195         if (rc) {
3196                 IPW_ERROR("dmaWaitSync Failed\n");
3197                 goto out;
3198         }
3199       out:
3200         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3201         return rc;
3202 }
3203
3204 /* stop nic */
3205 static int ipw_stop_nic(struct ipw_priv *priv)
3206 {
3207         int rc = 0;
3208
3209         /* stop */
3210         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3211
3212         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3213                           IPW_RESET_REG_MASTER_DISABLED, 500);
3214         if (rc < 0) {
3215                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3216                 return rc;
3217         }
3218
3219         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3220
3221         return rc;
3222 }
3223
3224 static void ipw_start_nic(struct ipw_priv *priv)
3225 {
3226         IPW_DEBUG_TRACE(">>\n");
3227
3228         /* prvHwStartNic  release ARC */
3229         ipw_clear_bit(priv, IPW_RESET_REG,
3230                       IPW_RESET_REG_MASTER_DISABLED |
3231                       IPW_RESET_REG_STOP_MASTER |
3232                       CBD_RESET_REG_PRINCETON_RESET);
3233
3234         /* enable power management */
3235         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3236                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3237
3238         IPW_DEBUG_TRACE("<<\n");
3239 }
3240
3241 static int ipw_init_nic(struct ipw_priv *priv)
3242 {
3243         int rc;
3244
3245         IPW_DEBUG_TRACE(">>\n");
3246         /* reset */
3247         /*prvHwInitNic */
3248         /* set "initialization complete" bit to move adapter to D0 state */
3249         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3250
3251         /* low-level PLL activation */
3252         ipw_write32(priv, IPW_READ_INT_REGISTER,
3253                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3254
3255         /* wait for clock stabilization */
3256         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3257                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3258         if (rc < 0)
3259                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3260
3261         /* assert SW reset */
3262         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3263
3264         udelay(10);
3265
3266         /* set "initialization complete" bit to move adapter to D0 state */
3267         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3268
3269         IPW_DEBUG_TRACE(">>\n");
3270         return 0;
3271 }
3272
3273 /* Call this function from process context, it will sleep in request_firmware.
3274  * Probe is an ok place to call this from.
3275  */
3276 static int ipw_reset_nic(struct ipw_priv *priv)
3277 {
3278         int rc = 0;
3279         unsigned long flags;
3280
3281         IPW_DEBUG_TRACE(">>\n");
3282
3283         rc = ipw_init_nic(priv);
3284
3285         spin_lock_irqsave(&priv->lock, flags);
3286         /* Clear the 'host command active' bit... */
3287         priv->status &= ~STATUS_HCMD_ACTIVE;
3288         wake_up_interruptible(&priv->wait_command_queue);
3289         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3290         wake_up_interruptible(&priv->wait_state);
3291         spin_unlock_irqrestore(&priv->lock, flags);
3292
3293         IPW_DEBUG_TRACE("<<\n");
3294         return rc;
3295 }
3296
3297
3298 struct ipw_fw {
3299         __le32 ver;
3300         __le32 boot_size;
3301         __le32 ucode_size;
3302         __le32 fw_size;
3303         u8 data[0];
3304 };
3305
3306 static int ipw_get_fw(struct ipw_priv *priv,
3307                       const struct firmware **raw, const char *name)
3308 {
3309         struct ipw_fw *fw;
3310         int rc;
3311
3312         /* ask firmware_class module to get the boot firmware off disk */
3313         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3314         if (rc < 0) {
3315                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3316                 return rc;
3317         }
3318
3319         if ((*raw)->size < sizeof(*fw)) {
3320                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3321                 return -EINVAL;
3322         }
3323
3324         fw = (void *)(*raw)->data;
3325
3326         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3327             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3328                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3329                           name, (*raw)->size);
3330                 return -EINVAL;
3331         }
3332
3333         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3334                        name,
3335                        le32_to_cpu(fw->ver) >> 16,
3336                        le32_to_cpu(fw->ver) & 0xff,
3337                        (*raw)->size - sizeof(*fw));
3338         return 0;
3339 }
3340
3341 #define IPW_RX_BUF_SIZE (3000)
3342
3343 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3344                                       struct ipw_rx_queue *rxq)
3345 {
3346         unsigned long flags;
3347         int i;
3348
3349         spin_lock_irqsave(&rxq->lock, flags);
3350
3351         INIT_LIST_HEAD(&rxq->rx_free);
3352         INIT_LIST_HEAD(&rxq->rx_used);
3353
3354         /* Fill the rx_used queue with _all_ of the Rx buffers */
3355         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3356                 /* In the reset function, these buffers may have been allocated
3357                  * to an SKB, so we need to unmap and free potential storage */
3358                 if (rxq->pool[i].skb != NULL) {
3359                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3360                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3361                         dev_kfree_skb(rxq->pool[i].skb);
3362                         rxq->pool[i].skb = NULL;
3363                 }
3364                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3365         }
3366
3367         /* Set us so that we have processed and used all buffers, but have
3368          * not restocked the Rx queue with fresh buffers */
3369         rxq->read = rxq->write = 0;
3370         rxq->processed = RX_QUEUE_SIZE - 1;
3371         rxq->free_count = 0;
3372         spin_unlock_irqrestore(&rxq->lock, flags);
3373 }
3374
3375 #ifdef CONFIG_PM
3376 static int fw_loaded = 0;
3377 static const struct firmware *raw = NULL;
3378
3379 static void free_firmware(void)
3380 {
3381         if (fw_loaded) {
3382                 release_firmware(raw);
3383                 raw = NULL;
3384                 fw_loaded = 0;
3385         }
3386 }
3387 #else
3388 #define free_firmware() do {} while (0)
3389 #endif
3390
3391 static int ipw_load(struct ipw_priv *priv)
3392 {
3393 #ifndef CONFIG_PM
3394         const struct firmware *raw = NULL;
3395 #endif
3396         struct ipw_fw *fw;
3397         u8 *boot_img, *ucode_img, *fw_img;
3398         u8 *name = NULL;
3399         int rc = 0, retries = 3;
3400
3401         switch (priv->ieee->iw_mode) {
3402         case IW_MODE_ADHOC:
3403                 name = "ipw2200-ibss.fw";
3404                 break;
3405 #ifdef CONFIG_IPW2200_MONITOR
3406         case IW_MODE_MONITOR:
3407                 name = "ipw2200-sniffer.fw";
3408                 break;
3409 #endif
3410         case IW_MODE_INFRA:
3411                 name = "ipw2200-bss.fw";
3412                 break;
3413         }
3414
3415         if (!name) {
3416                 rc = -EINVAL;
3417                 goto error;
3418         }
3419
3420 #ifdef CONFIG_PM
3421         if (!fw_loaded) {
3422 #endif
3423                 rc = ipw_get_fw(priv, &raw, name);
3424                 if (rc < 0)
3425                         goto error;
3426 #ifdef CONFIG_PM
3427         }
3428 #endif
3429
3430         fw = (void *)raw->data;
3431         boot_img = &fw->data[0];
3432         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3433         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3434                            le32_to_cpu(fw->ucode_size)];
3435
3436         if (rc < 0)
3437                 goto error;
3438
3439         if (!priv->rxq)
3440                 priv->rxq = ipw_rx_queue_alloc(priv);
3441         else
3442                 ipw_rx_queue_reset(priv, priv->rxq);
3443         if (!priv->rxq) {
3444                 IPW_ERROR("Unable to initialize Rx queue\n");
3445                 goto error;
3446         }
3447
3448       retry:
3449         /* Ensure interrupts are disabled */
3450         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3451         priv->status &= ~STATUS_INT_ENABLED;
3452
3453         /* ack pending interrupts */
3454         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3455
3456         ipw_stop_nic(priv);
3457
3458         rc = ipw_reset_nic(priv);
3459         if (rc < 0) {
3460                 IPW_ERROR("Unable to reset NIC\n");
3461                 goto error;
3462         }
3463
3464         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3465                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3466
3467         /* DMA the initial boot firmware into the device */
3468         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3469         if (rc < 0) {
3470                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3471                 goto error;
3472         }
3473
3474         /* kick start the device */
3475         ipw_start_nic(priv);
3476
3477         /* wait for the device to finish its initial startup sequence */
3478         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3479                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3480         if (rc < 0) {
3481                 IPW_ERROR("device failed to boot initial fw image\n");
3482                 goto error;
3483         }
3484         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3485
3486         /* ack fw init done interrupt */
3487         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3488
3489         /* DMA the ucode into the device */
3490         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3491         if (rc < 0) {
3492                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3493                 goto error;
3494         }
3495
3496         /* stop nic */
3497         ipw_stop_nic(priv);
3498
3499         /* DMA bss firmware into the device */
3500         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3501         if (rc < 0) {
3502                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3503                 goto error;
3504         }
3505 #ifdef CONFIG_PM
3506         fw_loaded = 1;
3507 #endif
3508
3509         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3510
3511         rc = ipw_queue_reset(priv);
3512         if (rc < 0) {
3513                 IPW_ERROR("Unable to initialize queues\n");
3514                 goto error;
3515         }
3516
3517         /* Ensure interrupts are disabled */
3518         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3519         /* ack pending interrupts */
3520         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3521
3522         /* kick start the device */
3523         ipw_start_nic(priv);
3524
3525         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3526                 if (retries > 0) {
3527                         IPW_WARNING("Parity error.  Retrying init.\n");
3528                         retries--;
3529                         goto retry;
3530                 }
3531
3532                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3533                 rc = -EIO;
3534                 goto error;
3535         }
3536
3537         /* wait for the device */
3538         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3539                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3540         if (rc < 0) {
3541                 IPW_ERROR("device failed to start within 500ms\n");
3542                 goto error;
3543         }
3544         IPW_DEBUG_INFO("device response after %dms\n", rc);
3545
3546         /* ack fw init done interrupt */
3547         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3548
3549         /* read eeprom data and initialize the eeprom region of sram */
3550         priv->eeprom_delay = 1;
3551         ipw_eeprom_init_sram(priv);
3552
3553         /* enable interrupts */
3554         ipw_enable_interrupts(priv);
3555
3556         /* Ensure our queue has valid packets */
3557         ipw_rx_queue_replenish(priv);
3558
3559         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3560
3561         /* ack pending interrupts */
3562         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3563
3564 #ifndef CONFIG_PM
3565         release_firmware(raw);
3566 #endif
3567         return 0;
3568
3569       error:
3570         if (priv->rxq) {
3571                 ipw_rx_queue_free(priv, priv->rxq);
3572                 priv->rxq = NULL;
3573         }
3574         ipw_tx_queue_free(priv);
3575         if (raw)
3576                 release_firmware(raw);
3577 #ifdef CONFIG_PM
3578         fw_loaded = 0;
3579         raw = NULL;
3580 #endif
3581
3582         return rc;
3583 }
3584
3585 /**
3586  * DMA services
3587  *
3588  * Theory of operation
3589  *
3590  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3591  * 2 empty entries always kept in the buffer to protect from overflow.
3592  *
3593  * For Tx queue, there are low mark and high mark limits. If, after queuing
3594  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3595  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3596  * Tx queue resumed.
3597  *
3598  * The IPW operates with six queues, one receive queue in the device's
3599  * sram, one transmit queue for sending commands to the device firmware,
3600  * and four transmit queues for data.
3601  *
3602  * The four transmit queues allow for performing quality of service (qos)
3603  * transmissions as per the 802.11 protocol.  Currently Linux does not
3604  * provide a mechanism to the user for utilizing prioritized queues, so
3605  * we only utilize the first data transmit queue (queue1).
3606  */
3607
3608 /**
3609  * Driver allocates buffers of this size for Rx
3610  */
3611
3612 static inline int ipw_queue_space(const struct clx2_queue *q)
3613 {
3614         int s = q->last_used - q->first_empty;
3615         if (s <= 0)
3616                 s += q->n_bd;
3617         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3618         if (s < 0)
3619                 s = 0;
3620         return s;
3621 }
3622
3623 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3624 {
3625         return (++index == n_bd) ? 0 : index;
3626 }
3627
3628 /**
3629  * Initialize common DMA queue structure
3630  *
3631  * @param q                queue to init
3632  * @param count            Number of BD's to allocate. Should be power of 2
3633  * @param read_register    Address for 'read' register
3634  *                         (not offset within BAR, full address)
3635  * @param write_register   Address for 'write' register
3636  *                         (not offset within BAR, full address)
3637  * @param base_register    Address for 'base' register
3638  *                         (not offset within BAR, full address)
3639  * @param size             Address for 'size' register
3640  *                         (not offset within BAR, full address)
3641  */
3642 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3643                            int count, u32 read, u32 write, u32 base, u32 size)
3644 {
3645         q->n_bd = count;
3646
3647         q->low_mark = q->n_bd / 4;
3648         if (q->low_mark < 4)
3649                 q->low_mark = 4;
3650
3651         q->high_mark = q->n_bd / 8;
3652         if (q->high_mark < 2)
3653                 q->high_mark = 2;
3654
3655         q->first_empty = q->last_used = 0;
3656         q->reg_r = read;
3657         q->reg_w = write;
3658
3659         ipw_write32(priv, base, q->dma_addr);
3660         ipw_write32(priv, size, count);
3661         ipw_write32(priv, read, 0);
3662         ipw_write32(priv, write, 0);
3663
3664         _ipw_read32(priv, 0x90);
3665 }
3666
3667 static int ipw_queue_tx_init(struct ipw_priv *priv,
3668                              struct clx2_tx_queue *q,
3669                              int count, u32 read, u32 write, u32 base, u32 size)
3670 {
3671         struct pci_dev *dev = priv->pci_dev;
3672
3673         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3674         if (!q->txb) {
3675                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3676                 return -ENOMEM;
3677         }
3678
3679         q->bd =
3680             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3681         if (!q->bd) {
3682                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3683                           sizeof(q->bd[0]) * count);
3684                 kfree(q->txb);
3685                 q->txb = NULL;
3686                 return -ENOMEM;
3687         }
3688
3689         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3690         return 0;
3691 }
3692
3693 /**
3694  * Free one TFD, those at index [txq->q.last_used].
3695  * Do NOT advance any indexes
3696  *
3697  * @param dev
3698  * @param txq
3699  */
3700 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3701                                   struct clx2_tx_queue *txq)
3702 {
3703         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3704         struct pci_dev *dev = priv->pci_dev;
3705         int i;
3706
3707         /* classify bd */
3708         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3709                 /* nothing to cleanup after for host commands */
3710                 return;
3711
3712         /* sanity check */
3713         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3714                 IPW_ERROR("Too many chunks: %i\n",
3715                           le32_to_cpu(bd->u.data.num_chunks));
3716                 /** @todo issue fatal error, it is quite serious situation */
3717                 return;
3718         }
3719
3720         /* unmap chunks if any */
3721         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3722                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3723                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3724                                  PCI_DMA_TODEVICE);
3725                 if (txq->txb[txq->q.last_used]) {
3726                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3727                         txq->txb[txq->q.last_used] = NULL;
3728                 }
3729         }
3730 }
3731
3732 /**
3733  * Deallocate DMA queue.
3734  *
3735  * Empty queue by removing and destroying all BD's.
3736  * Free all buffers.
3737  *
3738  * @param dev
3739  * @param q
3740  */
3741 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3742 {
3743         struct clx2_queue *q = &txq->q;
3744         struct pci_dev *dev = priv->pci_dev;
3745
3746         if (q->n_bd == 0)
3747                 return;
3748
3749         /* first, empty all BD's */
3750         for (; q->first_empty != q->last_used;
3751              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3752                 ipw_queue_tx_free_tfd(priv, txq);
3753         }
3754
3755         /* free buffers belonging to queue itself */
3756         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3757                             q->dma_addr);
3758         kfree(txq->txb);
3759
3760         /* 0 fill whole structure */
3761         memset(txq, 0, sizeof(*txq));
3762 }
3763
3764 /**
3765  * Destroy all DMA queues and structures
3766  *
3767  * @param priv
3768  */
3769 static void ipw_tx_queue_free(struct ipw_priv *priv)
3770 {
3771         /* Tx CMD queue */
3772         ipw_queue_tx_free(priv, &priv->txq_cmd);
3773
3774         /* Tx queues */
3775         ipw_queue_tx_free(priv, &priv->txq[0]);
3776         ipw_queue_tx_free(priv, &priv->txq[1]);
3777         ipw_queue_tx_free(priv, &priv->txq[2]);
3778         ipw_queue_tx_free(priv, &priv->txq[3]);
3779 }
3780
3781 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3782 {
3783         /* First 3 bytes are manufacturer */
3784         bssid[0] = priv->mac_addr[0];
3785         bssid[1] = priv->mac_addr[1];
3786         bssid[2] = priv->mac_addr[2];
3787
3788         /* Last bytes are random */
3789         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3790
3791         bssid[0] &= 0xfe;       /* clear multicast bit */
3792         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3793 }
3794
3795 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3796 {
3797         struct ipw_station_entry entry;
3798         int i;
3799
3800         for (i = 0; i < priv->num_stations; i++) {
3801                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3802                         /* Another node is active in network */
3803                         priv->missed_adhoc_beacons = 0;
3804                         if (!(priv->config & CFG_STATIC_CHANNEL))
3805                                 /* when other nodes drop out, we drop out */
3806                                 priv->config &= ~CFG_ADHOC_PERSIST;
3807
3808                         return i;
3809                 }
3810         }
3811
3812         if (i == MAX_STATIONS)
3813                 return IPW_INVALID_STATION;
3814
3815         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3816
3817         entry.reserved = 0;
3818         entry.support_mode = 0;
3819         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3820         memcpy(priv->stations[i], bssid, ETH_ALEN);
3821         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3822                          &entry, sizeof(entry));
3823         priv->num_stations++;
3824
3825         return i;
3826 }
3827
3828 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3829 {
3830         int i;
3831
3832         for (i = 0; i < priv->num_stations; i++)
3833                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3834                         return i;
3835
3836         return IPW_INVALID_STATION;
3837 }
3838
3839 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3840 {
3841         int err;
3842
3843         if (priv->status & STATUS_ASSOCIATING) {
3844                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3845                 queue_work(priv->workqueue, &priv->disassociate);
3846                 return;
3847         }
3848
3849         if (!(priv->status & STATUS_ASSOCIATED)) {
3850                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3851                 return;
3852         }
3853
3854         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3855                         "on channel %d.\n",
3856                         MAC_ARG(priv->assoc_request.bssid),
3857                         priv->assoc_request.channel);
3858
3859         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3860         priv->status |= STATUS_DISASSOCIATING;
3861
3862         if (quiet)
3863                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3864         else
3865                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3866
3867         err = ipw_send_associate(priv, &priv->assoc_request);
3868         if (err) {
3869                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3870                              "failed.\n");
3871                 return;
3872         }
3873
3874 }
3875
3876 static int ipw_disassociate(void *data)
3877 {
3878         struct ipw_priv *priv = data;
3879         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3880                 return 0;
3881         ipw_send_disassociate(data, 0);
3882         return 1;
3883 }
3884
3885 static void ipw_bg_disassociate(struct work_struct *work)
3886 {
3887         struct ipw_priv *priv =
3888                 container_of(work, struct ipw_priv, disassociate);
3889         mutex_lock(&priv->mutex);
3890         ipw_disassociate(priv);
3891         mutex_unlock(&priv->mutex);
3892 }
3893
3894 static void ipw_system_config(struct work_struct *work)
3895 {
3896         struct ipw_priv *priv =
3897                 container_of(work, struct ipw_priv, system_config);
3898
3899 #ifdef CONFIG_IPW2200_PROMISCUOUS
3900         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3901                 priv->sys_config.accept_all_data_frames = 1;
3902                 priv->sys_config.accept_non_directed_frames = 1;
3903                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3904                 priv->sys_config.accept_all_mgmt_frames = 1;
3905         }
3906 #endif
3907
3908         ipw_send_system_config(priv);
3909 }
3910
3911 struct ipw_status_code {
3912         u16 status;
3913         const char *reason;
3914 };
3915
3916 static const struct ipw_status_code ipw_status_codes[] = {
3917         {0x00, "Successful"},
3918         {0x01, "Unspecified failure"},
3919         {0x0A, "Cannot support all requested capabilities in the "
3920          "Capability information field"},
3921         {0x0B, "Reassociation denied due to inability to confirm that "
3922          "association exists"},
3923         {0x0C, "Association denied due to reason outside the scope of this "
3924          "standard"},
3925         {0x0D,
3926          "Responding station does not support the specified authentication "
3927          "algorithm"},
3928         {0x0E,
3929          "Received an Authentication frame with authentication sequence "
3930          "transaction sequence number out of expected sequence"},
3931         {0x0F, "Authentication rejected because of challenge failure"},
3932         {0x10, "Authentication rejected due to timeout waiting for next "
3933          "frame in sequence"},
3934         {0x11, "Association denied because AP is unable to handle additional "
3935          "associated stations"},
3936         {0x12,
3937          "Association denied due to requesting station not supporting all "
3938          "of the datarates in the BSSBasicServiceSet Parameter"},
3939         {0x13,
3940          "Association denied due to requesting station not supporting "
3941          "short preamble operation"},
3942         {0x14,
3943          "Association denied due to requesting station not supporting "
3944          "PBCC encoding"},
3945         {0x15,
3946          "Association denied due to requesting station not supporting "
3947          "channel agility"},
3948         {0x19,
3949          "Association denied due to requesting station not supporting "
3950          "short slot operation"},
3951         {0x1A,
3952          "Association denied due to requesting station not supporting "
3953          "DSSS-OFDM operation"},
3954         {0x28, "Invalid Information Element"},
3955         {0x29, "Group Cipher is not valid"},
3956         {0x2A, "Pairwise Cipher is not valid"},
3957         {0x2B, "AKMP is not valid"},
3958         {0x2C, "Unsupported RSN IE version"},
3959         {0x2D, "Invalid RSN IE Capabilities"},
3960         {0x2E, "Cipher suite is rejected per security policy"},
3961 };
3962
3963 static const char *ipw_get_status_code(u16 status)
3964 {
3965         int i;
3966         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3967                 if (ipw_status_codes[i].status == (status & 0xff))
3968                         return ipw_status_codes[i].reason;
3969         return "Unknown status value.";
3970 }
3971
3972 static void inline average_init(struct average *avg)
3973 {
3974         memset(avg, 0, sizeof(*avg));
3975 }
3976
3977 #define DEPTH_RSSI 8
3978 #define DEPTH_NOISE 16
3979 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3980 {
3981         return ((depth-1)*prev_avg +  val)/depth;
3982 }
3983
3984 static void average_add(struct average *avg, s16 val)
3985 {
3986         avg->sum -= avg->entries[avg->pos];
3987         avg->sum += val;
3988         avg->entries[avg->pos++] = val;
3989         if (unlikely(avg->pos == AVG_ENTRIES)) {
3990                 avg->init = 1;
3991                 avg->pos = 0;
3992         }
3993 }
3994
3995 static s16 average_value(struct average *avg)
3996 {
3997         if (!unlikely(avg->init)) {
3998                 if (avg->pos)
3999                         return avg->sum / avg->pos;
4000                 return 0;
4001         }
4002
4003         return avg->sum / AVG_ENTRIES;
4004 }
4005
4006 static void ipw_reset_stats(struct ipw_priv *priv)
4007 {
4008         u32 len = sizeof(u32);
4009
4010         priv->quality = 0;
4011
4012         average_init(&priv->average_missed_beacons);
4013         priv->exp_avg_rssi = -60;
4014         priv->exp_avg_noise = -85 + 0x100;
4015
4016         priv->last_rate = 0;
4017         priv->last_missed_beacons = 0;
4018         priv->last_rx_packets = 0;
4019         priv->last_tx_packets = 0;
4020         priv->last_tx_failures = 0;
4021
4022         /* Firmware managed, reset only when NIC is restarted, so we have to
4023          * normalize on the current value */
4024         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4025                         &priv->last_rx_err, &len);
4026         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4027                         &priv->last_tx_failures, &len);
4028
4029         /* Driver managed, reset with each association */
4030         priv->missed_adhoc_beacons = 0;
4031         priv->missed_beacons = 0;
4032         priv->tx_packets = 0;
4033         priv->rx_packets = 0;
4034
4035 }
4036
4037 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4038 {
4039         u32 i = 0x80000000;
4040         u32 mask = priv->rates_mask;
4041         /* If currently associated in B mode, restrict the maximum
4042          * rate match to B rates */
4043         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4044                 mask &= IEEE80211_CCK_RATES_MASK;
4045
4046         /* TODO: Verify that the rate is supported by the current rates
4047          * list. */
4048
4049         while (i && !(mask & i))
4050                 i >>= 1;
4051         switch (i) {
4052         case IEEE80211_CCK_RATE_1MB_MASK:
4053                 return 1000000;
4054         case IEEE80211_CCK_RATE_2MB_MASK:
4055                 return 2000000;
4056         case IEEE80211_CCK_RATE_5MB_MASK:
4057                 return 5500000;
4058         case IEEE80211_OFDM_RATE_6MB_MASK:
4059                 return 6000000;
4060         case IEEE80211_OFDM_RATE_9MB_MASK:
4061                 return 9000000;
4062         case IEEE80211_CCK_RATE_11MB_MASK:
4063                 return 11000000;
4064         case IEEE80211_OFDM_RATE_12MB_MASK:
4065                 return 12000000;
4066         case IEEE80211_OFDM_RATE_18MB_MASK:
4067                 return 18000000;
4068         case IEEE80211_OFDM_RATE_24MB_MASK:
4069                 return 24000000;
4070         case IEEE80211_OFDM_RATE_36MB_MASK:
4071                 return 36000000;
4072         case IEEE80211_OFDM_RATE_48MB_MASK:
4073                 return 48000000;
4074         case IEEE80211_OFDM_RATE_54MB_MASK:
4075                 return 54000000;
4076         }
4077
4078         if (priv->ieee->mode == IEEE_B)
4079                 return 11000000;
4080         else
4081                 return 54000000;
4082 }
4083
4084 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4085 {
4086         u32 rate, len = sizeof(rate);
4087         int err;
4088
4089         if (!(priv->status & STATUS_ASSOCIATED))
4090                 return 0;
4091
4092         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4093                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4094                                       &len);
4095                 if (err) {
4096                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4097                         return 0;
4098                 }
4099         } else
4100                 return ipw_get_max_rate(priv);
4101
4102         switch (rate) {
4103         case IPW_TX_RATE_1MB:
4104                 return 1000000;
4105         case IPW_TX_RATE_2MB:
4106                 return 2000000;
4107         case IPW_TX_RATE_5MB:
4108                 return 5500000;
4109         case IPW_TX_RATE_6MB:
4110                 return 6000000;
4111         case IPW_TX_RATE_9MB:
4112                 return 9000000;
4113         case IPW_TX_RATE_11MB:
4114                 return 11000000;
4115         case IPW_TX_RATE_12MB:
4116                 return 12000000;
4117         case IPW_TX_RATE_18MB:
4118                 return 18000000;
4119         case IPW_TX_RATE_24MB:
4120                 return 24000000;
4121         case IPW_TX_RATE_36MB:
4122                 return 36000000;
4123         case IPW_TX_RATE_48MB:
4124                 return 48000000;
4125         case IPW_TX_RATE_54MB:
4126                 return 54000000;
4127         }
4128
4129         return 0;
4130 }
4131
4132 #define IPW_STATS_INTERVAL (2 * HZ)
4133 static void ipw_gather_stats(struct ipw_priv *priv)
4134 {
4135         u32 rx_err, rx_err_delta, rx_packets_delta;
4136         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4137         u32 missed_beacons_percent, missed_beacons_delta;
4138         u32 quality = 0;
4139         u32 len = sizeof(u32);
4140         s16 rssi;
4141         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4142             rate_quality;
4143         u32 max_rate;
4144
4145         if (!(priv->status & STATUS_ASSOCIATED)) {
4146                 priv->quality = 0;
4147                 return;
4148         }
4149
4150         /* Update the statistics */
4151         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4152                         &priv->missed_beacons, &len);
4153         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4154         priv->last_missed_beacons = priv->missed_beacons;
4155         if (priv->assoc_request.beacon_interval) {
4156                 missed_beacons_percent = missed_beacons_delta *
4157                     (HZ * priv->assoc_request.beacon_interval) /
4158                     (IPW_STATS_INTERVAL * 10);
4159         } else {
4160                 missed_beacons_percent = 0;
4161         }
4162         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4163
4164         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4165         rx_err_delta = rx_err - priv->last_rx_err;
4166         priv->last_rx_err = rx_err;
4167
4168         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4169         tx_failures_delta = tx_failures - priv->last_tx_failures;
4170         priv->last_tx_failures = tx_failures;
4171
4172         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4173         priv->last_rx_packets = priv->rx_packets;
4174
4175         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4176         priv->last_tx_packets = priv->tx_packets;
4177
4178         /* Calculate quality based on the following:
4179          *
4180          * Missed beacon: 100% = 0, 0% = 70% missed
4181          * Rate: 60% = 1Mbs, 100% = Max
4182          * Rx and Tx errors represent a straight % of total Rx/Tx
4183          * RSSI: 100% = > -50,  0% = < -80
4184          * Rx errors: 100% = 0, 0% = 50% missed
4185          *
4186          * The lowest computed quality is used.
4187          *
4188          */
4189 #define BEACON_THRESHOLD 5
4190         beacon_quality = 100 - missed_beacons_percent;
4191         if (beacon_quality < BEACON_THRESHOLD)
4192                 beacon_quality = 0;
4193         else
4194                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4195                     (100 - BEACON_THRESHOLD);
4196         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4197                         beacon_quality, missed_beacons_percent);
4198
4199         priv->last_rate = ipw_get_current_rate(priv);
4200         max_rate = ipw_get_max_rate(priv);
4201         rate_quality = priv->last_rate * 40 / max_rate + 60;
4202         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4203                         rate_quality, priv->last_rate / 1000000);
4204
4205         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4206                 rx_quality = 100 - (rx_err_delta * 100) /
4207                     (rx_packets_delta + rx_err_delta);
4208         else
4209                 rx_quality = 100;
4210         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4211                         rx_quality, rx_err_delta, rx_packets_delta);
4212
4213         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4214                 tx_quality = 100 - (tx_failures_delta * 100) /
4215                     (tx_packets_delta + tx_failures_delta);
4216         else
4217                 tx_quality = 100;
4218         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4219                         tx_quality, tx_failures_delta, tx_packets_delta);
4220
4221         rssi = priv->exp_avg_rssi;
4222         signal_quality =
4223             (100 *
4224              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4225              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4226              (priv->ieee->perfect_rssi - rssi) *
4227              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4228               62 * (priv->ieee->perfect_rssi - rssi))) /
4229             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4230              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4231         if (signal_quality > 100)
4232                 signal_quality = 100;
4233         else if (signal_quality < 1)
4234                 signal_quality = 0;
4235
4236         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4237                         signal_quality, rssi);
4238
4239         quality = min(beacon_quality,
4240                       min(rate_quality,
4241                           min(tx_quality, min(rx_quality, signal_quality))));
4242         if (quality == beacon_quality)
4243                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4244                                 quality);
4245         if (quality == rate_quality)
4246                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4247                                 quality);
4248         if (quality == tx_quality)
4249                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4250                                 quality);
4251         if (quality == rx_quality)
4252                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4253                                 quality);
4254         if (quality == signal_quality)
4255                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4256                                 quality);
4257
4258         priv->quality = quality;
4259
4260         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4261                            IPW_STATS_INTERVAL);
4262 }
4263
4264 static void ipw_bg_gather_stats(struct work_struct *work)
4265 {
4266         struct ipw_priv *priv =
4267                 container_of(work, struct ipw_priv, gather_stats.work);
4268         mutex_lock(&priv->mutex);
4269         ipw_gather_stats(priv);
4270         mutex_unlock(&priv->mutex);
4271 }
4272
4273 /* Missed beacon behavior:
4274  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4275  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4276  * Above disassociate threshold, give up and stop scanning.
4277  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4278 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4279                                             int missed_count)
4280 {
4281         priv->notif_missed_beacons = missed_count;
4282
4283         if (missed_count > priv->disassociate_threshold &&
4284             priv->status & STATUS_ASSOCIATED) {
4285                 /* If associated and we've hit the missed
4286                  * beacon threshold, disassociate, turn
4287                  * off roaming, and abort any active scans */
4288                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4289                           IPW_DL_STATE | IPW_DL_ASSOC,
4290                           "Missed beacon: %d - disassociate\n", missed_count);
4291                 priv->status &= ~STATUS_ROAMING;
4292                 if (priv->status & STATUS_SCANNING) {
4293                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4294                                   IPW_DL_STATE,
4295                                   "Aborting scan with missed beacon.\n");
4296                         queue_work(priv->workqueue, &priv->abort_scan);
4297                 }
4298
4299                 queue_work(priv->workqueue, &priv->disassociate);
4300                 return;
4301         }
4302
4303         if (priv->status & STATUS_ROAMING) {
4304                 /* If we are currently roaming, then just
4305                  * print a debug statement... */
4306                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4307                           "Missed beacon: %d - roam in progress\n",
4308                           missed_count);
4309                 return;
4310         }
4311
4312         if (roaming &&
4313             (missed_count > priv->roaming_threshold &&
4314              missed_count <= priv->disassociate_threshold)) {
4315                 /* If we are not already roaming, set the ROAM
4316                  * bit in the status and kick off a scan.
4317                  * This can happen several times before we reach
4318                  * disassociate_threshold. */
4319                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4320                           "Missed beacon: %d - initiate "
4321                           "roaming\n", missed_count);
4322                 if (!(priv->status & STATUS_ROAMING)) {
4323                         priv->status |= STATUS_ROAMING;
4324                         if (!(priv->status & STATUS_SCANNING))
4325                                 queue_delayed_work(priv->workqueue,
4326                                                    &priv->request_scan, 0);
4327                 }
4328                 return;
4329         }
4330
4331         if (priv->status & STATUS_SCANNING) {
4332                 /* Stop scan to keep fw from getting
4333                  * stuck (only if we aren't roaming --
4334                  * otherwise we'll never scan more than 2 or 3
4335                  * channels..) */
4336                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4337                           "Aborting scan with missed beacon.\n");
4338                 queue_work(priv->workqueue, &priv->abort_scan);
4339         }
4340
4341         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4342 }
4343
4344 /**
4345  * Handle host notification packet.
4346  * Called from interrupt routine
4347  */
4348 static void ipw_rx_notification(struct ipw_priv *priv,
4349                                        struct ipw_rx_notification *notif)
4350 {
4351         notif->size = le16_to_cpu(notif->size);
4352
4353         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4354
4355         switch (notif->subtype) {
4356         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4357                         struct notif_association *assoc = &notif->u.assoc;
4358
4359                         switch (assoc->state) {
4360                         case CMAS_ASSOCIATED:{
4361                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4362                                                   IPW_DL_ASSOC,
4363                                                   "associated: '%s' " MAC_FMT
4364                                                   " \n",
4365                                                   escape_essid(priv->essid,
4366                                                                priv->essid_len),
4367                                                   MAC_ARG(priv->bssid));
4368
4369                                         switch (priv->ieee->iw_mode) {
4370                                         case IW_MODE_INFRA:
4371                                                 memcpy(priv->ieee->bssid,
4372                                                        priv->bssid, ETH_ALEN);
4373                                                 break;
4374
4375                                         case IW_MODE_ADHOC:
4376                                                 memcpy(priv->ieee->bssid,
4377                                                        priv->bssid, ETH_ALEN);
4378
4379                                                 /* clear out the station table */
4380                                                 priv->num_stations = 0;
4381
4382                                                 IPW_DEBUG_ASSOC
4383                                                     ("queueing adhoc check\n");
4384                                                 queue_delayed_work(priv->
4385                                                                    workqueue,
4386                                                                    &priv->
4387                                                                    adhoc_check,
4388                                                                    priv->
4389                                                                    assoc_request.
4390                                                                    beacon_interval);
4391                                                 break;
4392                                         }
4393
4394                                         priv->status &= ~STATUS_ASSOCIATING;
4395                                         priv->status |= STATUS_ASSOCIATED;
4396                                         queue_work(priv->workqueue,
4397                                                    &priv->system_config);
4398
4399 #ifdef CONFIG_IPW2200_QOS
4400 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4401                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4402                                         if ((priv->status & STATUS_AUTH) &&
4403                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4404                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4405                                                 if ((sizeof
4406                                                      (struct
4407                                                       ieee80211_assoc_response)
4408                                                      <= notif->size)
4409                                                     && (notif->size <= 2314)) {
4410                                                         struct
4411                                                         ieee80211_rx_stats
4412                                                             stats = {
4413                                                                 .len =
4414                                                                     notif->
4415                                                                     size - 1,
4416                                                         };
4417
4418                                                         IPW_DEBUG_QOS
4419                                                             ("QoS Associate "
4420                                                              "size %d\n",
4421                                                              notif->size);
4422                                                         ieee80211_rx_mgt(priv->
4423                                                                          ieee,
4424                                                                          (struct
4425                                                                           ieee80211_hdr_4addr
4426                                                                           *)
4427                                                                          &notif->u.raw, &stats);
4428                                                 }
4429                                         }
4430 #endif
4431
4432                                         schedule_work(&priv->link_up);
4433
4434                                         break;
4435                                 }
4436
4437                         case CMAS_AUTHENTICATED:{
4438                                         if (priv->
4439                                             status & (STATUS_ASSOCIATED |
4440                                                       STATUS_AUTH)) {
4441                                                 struct notif_authenticate *auth
4442                                                     = &notif->u.auth;
4443                                                 IPW_DEBUG(IPW_DL_NOTIF |
4444                                                           IPW_DL_STATE |
4445                                                           IPW_DL_ASSOC,
4446                                                           "deauthenticated: '%s' "
4447                                                           MAC_FMT
4448                                                           ": (0x%04X) - %s \n",
4449                                                           escape_essid(priv->
4450                                                                        essid,
4451                                                                        priv->
4452                                                                        essid_len),
4453                                                           MAC_ARG(priv->bssid),
4454                                                           ntohs(auth->status),
4455                                                           ipw_get_status_code
4456                                                           (ntohs
4457                                                            (auth->status)));
4458
4459                                                 priv->status &=
4460                                                     ~(STATUS_ASSOCIATING |
4461                                                       STATUS_AUTH |
4462                                                       STATUS_ASSOCIATED);
4463
4464                                                 schedule_work(&priv->link_down);
4465                                                 break;
4466                                         }
4467
4468                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4469                                                   IPW_DL_ASSOC,
4470                                                   "authenticated: '%s' " MAC_FMT
4471                                                   "\n",
4472                                                   escape_essid(priv->essid,
4473                                                                priv->essid_len),
4474                                                   MAC_ARG(priv->bssid));
4475                                         break;
4476                                 }
4477
4478                         case CMAS_INIT:{
4479                                         if (priv->status & STATUS_AUTH) {
4480                                                 struct
4481                                                     ieee80211_assoc_response
4482                                                 *resp;
4483                                                 resp =
4484                                                     (struct
4485                                                      ieee80211_assoc_response
4486                                                      *)&notif->u.raw;
4487                                                 IPW_DEBUG(IPW_DL_NOTIF |
4488                                                           IPW_DL_STATE |
4489                                                           IPW_DL_ASSOC,
4490                                                           "association failed (0x%04X): %s\n",
4491                                                           ntohs(resp->status),
4492                                                           ipw_get_status_code
4493                                                           (ntohs
4494                                                            (resp->status)));
4495                                         }
4496
4497                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4498                                                   IPW_DL_ASSOC,
4499                                                   "disassociated: '%s' " MAC_FMT
4500                                                   " \n",
4501                                                   escape_essid(priv->essid,
4502                                                                priv->essid_len),
4503                                                   MAC_ARG(priv->bssid));
4504
4505                                         priv->status &=
4506                                             ~(STATUS_DISASSOCIATING |
4507                                               STATUS_ASSOCIATING |
4508                                               STATUS_ASSOCIATED | STATUS_AUTH);
4509                                         if (priv->assoc_network
4510                                             && (priv->assoc_network->
4511                                                 capability &
4512                                                 WLAN_CAPABILITY_IBSS))
4513                                                 ipw_remove_current_network
4514                                                     (priv);
4515
4516                                         schedule_work(&priv->link_down);
4517
4518                                         break;
4519                                 }
4520
4521                         case CMAS_RX_ASSOC_RESP:
4522                                 break;
4523
4524                         default:
4525                                 IPW_ERROR("assoc: unknown (%d)\n",
4526                                           assoc->state);
4527                                 break;
4528                         }
4529
4530                         break;
4531                 }
4532
4533         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4534                         struct notif_authenticate *auth = &notif->u.auth;
4535                         switch (auth->state) {
4536                         case CMAS_AUTHENTICATED:
4537                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4538                                           "authenticated: '%s' " MAC_FMT " \n",
4539                                           escape_essid(priv->essid,
4540                                                        priv->essid_len),
4541                                           MAC_ARG(priv->bssid));
4542                                 priv->status |= STATUS_AUTH;
4543                                 break;
4544
4545                         case CMAS_INIT:
4546                                 if (priv->status & STATUS_AUTH) {
4547                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4548                                                   IPW_DL_ASSOC,
4549                                                   "authentication failed (0x%04X): %s\n",
4550                                                   ntohs(auth->status),
4551                                                   ipw_get_status_code(ntohs
4552                                                                       (auth->
4553                                                                        status)));
4554                                 }
4555                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4556                                           IPW_DL_ASSOC,
4557                                           "deauthenticated: '%s' " MAC_FMT "\n",
4558                                           escape_essid(priv->essid,
4559                                                        priv->essid_len),
4560                                           MAC_ARG(priv->bssid));
4561
4562                                 priv->status &= ~(STATUS_ASSOCIATING |
4563                                                   STATUS_AUTH |
4564                                                   STATUS_ASSOCIATED);
4565
4566                                 schedule_work(&priv->link_down);
4567                                 break;
4568
4569                         case CMAS_TX_AUTH_SEQ_1:
4570                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4571                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4572                                 break;
4573                         case CMAS_RX_AUTH_SEQ_2:
4574                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4575                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4576                                 break;
4577                         case CMAS_AUTH_SEQ_1_PASS:
4578                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4579                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4580                                 break;
4581                         case CMAS_AUTH_SEQ_1_FAIL:
4582                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4583                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4584                                 break;
4585                         case CMAS_TX_AUTH_SEQ_3:
4586                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4587                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4588                                 break;
4589                         case CMAS_RX_AUTH_SEQ_4:
4590                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4591                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4592                                 break;
4593                         case CMAS_AUTH_SEQ_2_PASS:
4594                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4595                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4596                                 break;
4597                         case CMAS_AUTH_SEQ_2_FAIL:
4598                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4599                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4600                                 break;
4601                         case CMAS_TX_ASSOC:
4602                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4603                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4604                                 break;
4605                         case CMAS_RX_ASSOC_RESP:
4606                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4607                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4608
4609                                 break;
4610                         case CMAS_ASSOCIATED:
4611                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4612                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4613                                 break;
4614                         default:
4615                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4616                                                 auth->state);
4617                                 break;
4618                         }
4619                         break;
4620                 }
4621
4622         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4623                         struct notif_channel_result *x =
4624                             &notif->u.channel_result;
4625
4626                         if (notif->size == sizeof(*x)) {
4627                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4628                                                x->channel_num);
4629                         } else {
4630                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4631                                                "(should be %zd)\n",
4632                                                notif->size, sizeof(*x));
4633                         }
4634                         break;
4635                 }
4636
4637         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4638                         struct notif_scan_complete *x = &notif->u.scan_complete;
4639                         if (notif->size == sizeof(*x)) {
4640                                 IPW_DEBUG_SCAN
4641                                     ("Scan completed: type %d, %d channels, "
4642                                      "%d status\n", x->scan_type,
4643                                      x->num_channels, x->status);
4644                         } else {
4645                                 IPW_ERROR("Scan completed of wrong size %d "
4646                                           "(should be %zd)\n",
4647                                           notif->size, sizeof(*x));
4648                         }
4649
4650                         priv->status &=
4651                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4652
4653                         wake_up_interruptible(&priv->wait_state);
4654                         cancel_delayed_work(&priv->scan_check);
4655
4656                         if (priv->status & STATUS_EXIT_PENDING)
4657                                 break;
4658
4659                         priv->ieee->scans++;
4660
4661 #ifdef CONFIG_IPW2200_MONITOR
4662                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4663                                 priv->status |= STATUS_SCAN_FORCED;
4664                                 queue_delayed_work(priv->workqueue,
4665                                                    &priv->request_scan, 0);
4666                                 break;
4667                         }
4668                         priv->status &= ~STATUS_SCAN_FORCED;
4669 #endif                          /* CONFIG_IPW2200_MONITOR */
4670
4671                         if (!(priv->status & (STATUS_ASSOCIATED |
4672                                               STATUS_ASSOCIATING |
4673                                               STATUS_ROAMING |
4674                                               STATUS_DISASSOCIATING)))
4675                                 queue_work(priv->workqueue, &priv->associate);
4676                         else if (priv->status & STATUS_ROAMING) {
4677                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4678                                         /* If a scan completed and we are in roam mode, then
4679                                          * the scan that completed was the one requested as a
4680                                          * result of entering roam... so, schedule the
4681                                          * roam work */
4682                                         queue_work(priv->workqueue,
4683                                                    &priv->roam);
4684                                 else
4685                                         /* Don't schedule if we aborted the scan */
4686                                         priv->status &= ~STATUS_ROAMING;
4687                         } else if (priv->status & STATUS_SCAN_PENDING)
4688                                 queue_delayed_work(priv->workqueue,
4689                                                    &priv->request_scan, 0);
4690                         else if (priv->config & CFG_BACKGROUND_SCAN
4691                                  && priv->status & STATUS_ASSOCIATED)
4692                                 queue_delayed_work(priv->workqueue,
4693                                                    &priv->request_scan,
4694                                                    round_jiffies(HZ));
4695
4696                         /* Send an empty event to user space.
4697                          * We don't send the received data on the event because
4698                          * it would require us to do complex transcoding, and
4699                          * we want to minimise the work done in the irq handler
4700                          * Use a request to extract the data.
4701                          * Also, we generate this even for any scan, regardless
4702                          * on how the scan was initiated. User space can just
4703                          * sync on periodic scan to get fresh data...
4704                          * Jean II */
4705                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4706                                 union iwreq_data wrqu;
4707
4708                                 wrqu.data.length = 0;
4709                                 wrqu.data.flags = 0;
4710                                 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4711                                                     &wrqu, NULL);
4712                         }
4713                         break;
4714                 }
4715
4716         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4717                         struct notif_frag_length *x = &notif->u.frag_len;
4718
4719                         if (notif->size == sizeof(*x))
4720                                 IPW_ERROR("Frag length: %d\n",
4721                                           le16_to_cpu(x->frag_length));
4722                         else
4723                                 IPW_ERROR("Frag length of wrong size %d "
4724                                           "(should be %zd)\n",
4725                                           notif->size, sizeof(*x));
4726                         break;
4727                 }
4728
4729         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4730                         struct notif_link_deterioration *x =
4731                             &notif->u.link_deterioration;
4732
4733                         if (notif->size == sizeof(*x)) {
4734                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4735                                         "link deterioration: type %d, cnt %d\n",
4736                                         x->silence_notification_type,
4737                                         x->silence_count);
4738                                 memcpy(&priv->last_link_deterioration, x,
4739                                        sizeof(*x));
4740                         } else {
4741                                 IPW_ERROR("Link Deterioration of wrong size %d "
4742                                           "(should be %zd)\n",
4743                                           notif->size, sizeof(*x));
4744                         }
4745                         break;
4746                 }
4747
4748         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4749                         IPW_ERROR("Dino config\n");
4750                         if (priv->hcmd
4751                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4752                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4753
4754                         break;
4755                 }
4756
4757         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4758                         struct notif_beacon_state *x = &notif->u.beacon_state;
4759                         if (notif->size != sizeof(*x)) {
4760                                 IPW_ERROR
4761                                     ("Beacon state of wrong size %d (should "
4762                                      "be %zd)\n", notif->size, sizeof(*x));
4763                                 break;
4764                         }
4765
4766                         if (le32_to_cpu(x->state) ==
4767                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4768                                 ipw_handle_missed_beacon(priv,
4769                                                          le32_to_cpu(x->
4770                                                                      number));
4771
4772                         break;
4773                 }
4774
4775         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4776                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4777                         if (notif->size == sizeof(*x)) {
4778                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4779                                           "0x%02x station %d\n",
4780                                           x->key_state, x->security_type,
4781                                           x->station_index);
4782                                 break;
4783                         }
4784
4785                         IPW_ERROR
4786                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4787                              notif->size, sizeof(*x));
4788                         break;
4789                 }
4790
4791         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4792                         struct notif_calibration *x = &notif->u.calibration;
4793
4794                         if (notif->size == sizeof(*x)) {
4795                                 memcpy(&priv->calib, x, sizeof(*x));
4796                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4797                                 break;
4798                         }
4799
4800                         IPW_ERROR
4801                             ("Calibration of wrong size %d (should be %zd)\n",
4802                              notif->size, sizeof(*x));
4803                         break;
4804                 }
4805
4806         case HOST_NOTIFICATION_NOISE_STATS:{
4807                         if (notif->size == sizeof(u32)) {
4808                                 priv->exp_avg_noise =
4809                                     exponential_average(priv->exp_avg_noise,
4810                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4811                                     DEPTH_NOISE);
4812                                 break;
4813                         }
4814
4815                         IPW_ERROR
4816                             ("Noise stat is wrong size %d (should be %zd)\n",
4817                              notif->size, sizeof(u32));
4818                         break;
4819                 }
4820
4821         default:
4822                 IPW_DEBUG_NOTIF("Unknown notification: "
4823                                 "subtype=%d,flags=0x%2x,size=%d\n",
4824                                 notif->subtype, notif->flags, notif->size);
4825         }
4826 }
4827
4828 /**
4829  * Destroys all DMA structures and initialise them again
4830  *
4831  * @param priv
4832  * @return error code
4833  */
4834 static int ipw_queue_reset(struct ipw_priv *priv)
4835 {
4836         int rc = 0;
4837         /** @todo customize queue sizes */
4838         int nTx = 64, nTxCmd = 8;
4839         ipw_tx_queue_free(priv);
4840         /* Tx CMD queue */
4841         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4842                                IPW_TX_CMD_QUEUE_READ_INDEX,
4843                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4844                                IPW_TX_CMD_QUEUE_BD_BASE,
4845                                IPW_TX_CMD_QUEUE_BD_SIZE);
4846         if (rc) {
4847                 IPW_ERROR("Tx Cmd queue init failed\n");
4848                 goto error;
4849         }
4850         /* Tx queue(s) */
4851         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4852                                IPW_TX_QUEUE_0_READ_INDEX,
4853                                IPW_TX_QUEUE_0_WRITE_INDEX,
4854                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4855         if (rc) {
4856                 IPW_ERROR("Tx 0 queue init failed\n");
4857                 goto error;
4858         }
4859         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4860                                IPW_TX_QUEUE_1_READ_INDEX,
4861                                IPW_TX_QUEUE_1_WRITE_INDEX,
4862                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4863         if (rc) {
4864                 IPW_ERROR("Tx 1 queue init failed\n");
4865                 goto error;
4866         }
4867         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4868                                IPW_TX_QUEUE_2_READ_INDEX,
4869                                IPW_TX_QUEUE_2_WRITE_INDEX,
4870                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4871         if (rc) {
4872                 IPW_ERROR("Tx 2 queue init failed\n");
4873                 goto error;
4874         }
4875         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4876                                IPW_TX_QUEUE_3_READ_INDEX,
4877                                IPW_TX_QUEUE_3_WRITE_INDEX,
4878                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4879         if (rc) {
4880                 IPW_ERROR("Tx 3 queue init failed\n");
4881                 goto error;
4882         }
4883         /* statistics */
4884         priv->rx_bufs_min = 0;
4885         priv->rx_pend_max = 0;
4886         return rc;
4887
4888       error:
4889         ipw_tx_queue_free(priv);
4890         return rc;
4891 }
4892
4893 /**
4894  * Reclaim Tx queue entries no more used by NIC.
4895  *
4896  * When FW adwances 'R' index, all entries between old and
4897  * new 'R' index need to be reclaimed. As result, some free space
4898  * forms. If there is enough free space (> low mark), wake Tx queue.
4899  *
4900  * @note Need to protect against garbage in 'R' index
4901  * @param priv
4902  * @param txq
4903  * @param qindex
4904  * @return Number of used entries remains in the queue
4905  */
4906 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4907                                 struct clx2_tx_queue *txq, int qindex)
4908 {
4909         u32 hw_tail;
4910         int used;
4911         struct clx2_queue *q = &txq->q;
4912
4913         hw_tail = ipw_read32(priv, q->reg_r);
4914         if (hw_tail >= q->n_bd) {
4915                 IPW_ERROR
4916                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4917                      hw_tail, q->n_bd);
4918                 goto done;
4919         }
4920         for (; q->last_used != hw_tail;
4921              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4922                 ipw_queue_tx_free_tfd(priv, txq);
4923                 priv->tx_packets++;
4924         }
4925       done:
4926         if ((ipw_queue_space(q) > q->low_mark) &&
4927             (qindex >= 0) &&
4928             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4929                 netif_wake_queue(priv->net_dev);
4930         used = q->first_empty - q->last_used;
4931         if (used < 0)
4932                 used += q->n_bd;
4933
4934         return used;
4935 }
4936
4937 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4938                              int len, int sync)
4939 {
4940         struct clx2_tx_queue *txq = &priv->txq_cmd;
4941         struct clx2_queue *q = &txq->q;
4942         struct tfd_frame *tfd;
4943
4944         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4945                 IPW_ERROR("No space for Tx\n");
4946                 return -EBUSY;
4947         }
4948
4949         tfd = &txq->bd[q->first_empty];
4950         txq->txb[q->first_empty] = NULL;
4951
4952         memset(tfd, 0, sizeof(*tfd));
4953         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4954         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4955         priv->hcmd_seq++;
4956         tfd->u.cmd.index = hcmd;
4957         tfd->u.cmd.length = len;
4958         memcpy(tfd->u.cmd.payload, buf, len);
4959         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4960         ipw_write32(priv, q->reg_w, q->first_empty);
4961         _ipw_read32(priv, 0x90);
4962
4963         return 0;
4964 }
4965
4966 /*
4967  * Rx theory of operation
4968  *
4969  * The host allocates 32 DMA target addresses and passes the host address
4970  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4971  * 0 to 31
4972  *
4973  * Rx Queue Indexes
4974  * The host/firmware share two index registers for managing the Rx buffers.
4975  *
4976  * The READ index maps to the first position that the firmware may be writing
4977  * to -- the driver can read up to (but not including) this position and get
4978  * good data.
4979  * The READ index is managed by the firmware once the card is enabled.
4980  *
4981  * The WRITE index maps to the last position the driver has read from -- the
4982  * position preceding WRITE is the last slot the firmware can place a packet.
4983  *
4984  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4985  * WRITE = READ.
4986  *
4987  * During initialization the host sets up the READ queue position to the first
4988  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4989  *
4990  * When the firmware places a packet in a buffer it will advance the READ index
4991  * and fire the RX interrupt.  The driver can then query the READ index and
4992  * process as many packets as possible, moving the WRITE index forward as it
4993  * resets the Rx queue buffers with new memory.
4994  *
4995  * The management in the driver is as follows:
4996  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4997  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4998  *   to replensish the ipw->rxq->rx_free.
4999  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5000  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5001  *   'processed' and 'read' driver indexes as well)
5002  * + A received packet is processed and handed to the kernel network stack,
5003  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5004  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5005  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5006  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5007  *   were enough free buffers and RX_STALLED is set it is cleared.
5008  *
5009  *
5010  * Driver sequence:
5011  *
5012  * ipw_rx_queue_alloc()       Allocates rx_free
5013  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5014  *                            ipw_rx_queue_restock
5015  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5016  *                            queue, updates firmware pointers, and updates
5017  *                            the WRITE index.  If insufficient rx_free buffers
5018  *                            are available, schedules ipw_rx_queue_replenish
5019  *
5020  * -- enable interrupts --
5021  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5022  *                            READ INDEX, detaching the SKB from the pool.
5023  *                            Moves the packet buffer from queue to rx_used.
5024  *                            Calls ipw_rx_queue_restock to refill any empty
5025  *                            slots.
5026  * ...
5027  *
5028  */
5029
5030 /*
5031  * If there are slots in the RX queue that  need to be restocked,
5032  * and we have free pre-allocated buffers, fill the ranks as much
5033  * as we can pulling from rx_free.
5034  *
5035  * This moves the 'write' index forward to catch up with 'processed', and
5036  * also updates the memory address in the firmware to reference the new
5037  * target buffer.
5038  */
5039 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5040 {
5041         struct ipw_rx_queue *rxq = priv->rxq;
5042         struct list_head *element;
5043         struct ipw_rx_mem_buffer *rxb;
5044         unsigned long flags;
5045         int write;
5046
5047         spin_lock_irqsave(&rxq->lock, flags);
5048         write = rxq->write;
5049         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5050                 element = rxq->rx_free.next;
5051                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5052                 list_del(element);
5053
5054                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5055                             rxb->dma_addr);
5056                 rxq->queue[rxq->write] = rxb;
5057                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5058                 rxq->free_count--;
5059         }
5060         spin_unlock_irqrestore(&rxq->lock, flags);
5061
5062         /* If the pre-allocated buffer pool is dropping low, schedule to
5063          * refill it */
5064         if (rxq->free_count <= RX_LOW_WATERMARK)
5065                 queue_work(priv->workqueue, &priv->rx_replenish);
5066
5067         /* If we've added more space for the firmware to place data, tell it */
5068         if (write != rxq->write)
5069                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5070 }
5071
5072 /*
5073  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5074  * Also restock the Rx queue via ipw_rx_queue_restock.
5075  *
5076  * This is called as a scheduled work item (except for during intialization)
5077  */
5078 static void ipw_rx_queue_replenish(void *data)
5079 {
5080         struct ipw_priv *priv = data;
5081         struct ipw_rx_queue *rxq = priv->rxq;
5082         struct list_head *element;
5083         struct ipw_rx_mem_buffer *rxb;
5084         unsigned long flags;
5085
5086         spin_lock_irqsave(&rxq->lock, flags);
5087         while (!list_empty(&rxq->rx_used)) {
5088                 element = rxq->rx_used.next;
5089                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5090                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5091                 if (!rxb->skb) {
5092                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5093                                priv->net_dev->name);
5094                         /* We don't reschedule replenish work here -- we will
5095                          * call the restock method and if it still needs
5096                          * more buffers it will schedule replenish */
5097                         break;
5098                 }
5099                 list_del(element);
5100
5101                 rxb->dma_addr =
5102                     pci_map_single(priv->pci_dev, rxb->skb->data,
5103                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5104
5105                 list_add_tail(&rxb->list, &rxq->rx_free);
5106                 rxq->free_count++;
5107         }
5108         spin_unlock_irqrestore(&rxq->lock, flags);
5109
5110         ipw_rx_queue_restock(priv);
5111 }
5112
5113 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5114 {
5115         struct ipw_priv *priv =
5116                 container_of(work, struct ipw_priv, rx_replenish);
5117         mutex_lock(&priv->mutex);
5118         ipw_rx_queue_replenish(priv);
5119         mutex_unlock(&priv->mutex);
5120 }
5121
5122 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5123  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5124  * This free routine walks the list of POOL entries and if SKB is set to
5125  * non NULL it is unmapped and freed
5126  */
5127 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5128 {
5129         int i;
5130
5131         if (!rxq)
5132                 return;
5133
5134         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5135                 if (rxq->pool[i].skb != NULL) {
5136                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5137                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5138                         dev_kfree_skb(rxq->pool[i].skb);
5139                 }
5140         }
5141
5142         kfree(rxq);
5143 }
5144
5145 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5146 {
5147         struct ipw_rx_queue *rxq;
5148         int i;
5149
5150         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5151         if (unlikely(!rxq)) {
5152                 IPW_ERROR("memory allocation failed\n");
5153                 return NULL;
5154         }
5155         spin_lock_init(&rxq->lock);
5156         INIT_LIST_HEAD(&rxq->rx_free);
5157         INIT_LIST_HEAD(&rxq->rx_used);
5158
5159         /* Fill the rx_used queue with _all_ of the Rx buffers */
5160         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5161                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5162
5163         /* Set us so that we have processed and used all buffers, but have
5164          * not restocked the Rx queue with fresh buffers */
5165         rxq->read = rxq->write = 0;
5166         rxq->processed = RX_QUEUE_SIZE - 1;
5167         rxq->free_count = 0;
5168
5169         return rxq;
5170 }
5171
5172 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5173 {
5174         rate &= ~IEEE80211_BASIC_RATE_MASK;
5175         if (ieee_mode == IEEE_A) {
5176                 switch (rate) {
5177                 case IEEE80211_OFDM_RATE_6MB:
5178                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5179                             1 : 0;
5180                 case IEEE80211_OFDM_RATE_9MB:
5181                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5182                             1 : 0;
5183                 case IEEE80211_OFDM_RATE_12MB:
5184                         return priv->
5185                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5186                 case IEEE80211_OFDM_RATE_18MB:
5187                         return priv->
5188                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5189                 case IEEE80211_OFDM_RATE_24MB:
5190                         return priv->
5191                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5192                 case IEEE80211_OFDM_RATE_36MB:
5193                         return priv->
5194                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5195                 case IEEE80211_OFDM_RATE_48MB:
5196                         return priv->
5197                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5198                 case IEEE80211_OFDM_RATE_54MB:
5199                         return priv->
5200                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5201                 default:
5202                         return 0;
5203                 }
5204         }
5205
5206         /* B and G mixed */
5207         switch (rate) {
5208         case IEEE80211_CCK_RATE_1MB:
5209                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5210         case IEEE80211_CCK_RATE_2MB:
5211                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5212         case IEEE80211_CCK_RATE_5MB:
5213                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5214         case IEEE80211_CCK_RATE_11MB:
5215                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5216         }
5217
5218         /* If we are limited to B modulations, bail at this point */
5219         if (ieee_mode == IEEE_B)
5220                 return 0;
5221
5222         /* G */
5223         switch (rate) {
5224         case IEEE80211_OFDM_RATE_6MB:
5225                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5226         case IEEE80211_OFDM_RATE_9MB:
5227                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5228         case IEEE80211_OFDM_RATE_12MB:
5229                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5230         case IEEE80211_OFDM_RATE_18MB:
5231                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5232         case IEEE80211_OFDM_RATE_24MB:
5233                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5234         case IEEE80211_OFDM_RATE_36MB:
5235                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5236         case IEEE80211_OFDM_RATE_48MB:
5237                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5238         case IEEE80211_OFDM_RATE_54MB:
5239                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5240         }
5241
5242         return 0;
5243 }
5244
5245 static int ipw_compatible_rates(struct ipw_priv *priv,
5246                                 const struct ieee80211_network *network,
5247                                 struct ipw_supported_rates *rates)
5248 {
5249         int num_rates, i;
5250
5251         memset(rates, 0, sizeof(*rates));
5252         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5253         rates->num_rates = 0;
5254         for (i = 0; i < num_rates; i++) {
5255                 if (!ipw_is_rate_in_mask(priv, network->mode,
5256                                          network->rates[i])) {
5257
5258                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5259                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5260                                                "rate %02X\n",
5261                                                network->rates[i]);
5262                                 rates->supported_rates[rates->num_rates++] =
5263                                     network->rates[i];
5264                                 continue;
5265                         }
5266
5267                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5268                                        network->rates[i], priv->rates_mask);
5269                         continue;
5270                 }
5271
5272                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5273         }
5274
5275         num_rates = min(network->rates_ex_len,
5276                         (u8) (IPW_MAX_RATES - num_rates));
5277         for (i = 0; i < num_rates; i++) {
5278                 if (!ipw_is_rate_in_mask(priv, network->mode,
5279                                          network->rates_ex[i])) {
5280                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5281                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5282                                                "rate %02X\n",
5283                                                network->rates_ex[i]);
5284                                 rates->supported_rates[rates->num_rates++] =
5285                                     network->rates[i];
5286                                 continue;
5287                         }
5288
5289                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5290                                        network->rates_ex[i], priv->rates_mask);
5291                         continue;
5292                 }
5293
5294                 rates->supported_rates[rates->num_rates++] =
5295                     network->rates_ex[i];
5296         }
5297
5298         return 1;
5299 }
5300
5301 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5302                                   const struct ipw_supported_rates *src)
5303 {
5304         u8 i;
5305         for (i = 0; i < src->num_rates; i++)
5306                 dest->supported_rates[i] = src->supported_rates[i];
5307         dest->num_rates = src->num_rates;
5308 }
5309
5310 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5311  * mask should ever be used -- right now all callers to add the scan rates are
5312  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5313 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5314                                    u8 modulation, u32 rate_mask)
5315 {
5316         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5317             IEEE80211_BASIC_RATE_MASK : 0;
5318
5319         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5320                 rates->supported_rates[rates->num_rates++] =
5321                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5322
5323         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5324                 rates->supported_rates[rates->num_rates++] =
5325                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5326
5327         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5328                 rates->supported_rates[rates->num_rates++] = basic_mask |
5329                     IEEE80211_CCK_RATE_5MB;
5330
5331         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5332                 rates->supported_rates[rates->num_rates++] = basic_mask |
5333                     IEEE80211_CCK_RATE_11MB;
5334 }
5335
5336 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5337                                     u8 modulation, u32 rate_mask)
5338 {
5339         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5340             IEEE80211_BASIC_RATE_MASK : 0;
5341
5342         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5343                 rates->supported_rates[rates->num_rates++] = basic_mask |
5344                     IEEE80211_OFDM_RATE_6MB;
5345
5346         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5347                 rates->supported_rates[rates->num_rates++] =
5348                     IEEE80211_OFDM_RATE_9MB;
5349
5350         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5351                 rates->supported_rates[rates->num_rates++] = basic_mask |
5352                     IEEE80211_OFDM_RATE_12MB;
5353
5354         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5355                 rates->supported_rates[rates->num_rates++] =
5356                     IEEE80211_OFDM_RATE_18MB;
5357
5358         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5359                 rates->supported_rates[rates->num_rates++] = basic_mask |
5360                     IEEE80211_OFDM_RATE_24MB;
5361
5362         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5363                 rates->supported_rates[rates->num_rates++] =
5364                     IEEE80211_OFDM_RATE_36MB;
5365
5366         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5367                 rates->supported_rates[rates->num_rates++] =
5368                     IEEE80211_OFDM_RATE_48MB;
5369
5370         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5371                 rates->supported_rates[rates->num_rates++] =
5372                     IEEE80211_OFDM_RATE_54MB;
5373 }
5374
5375 struct ipw_network_match {
5376         struct ieee80211_network *network;
5377         struct ipw_supported_rates rates;
5378 };
5379
5380 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5381                                   struct ipw_network_match *match,
5382                                   struct ieee80211_network *network,
5383                                   int roaming)
5384 {
5385         struct ipw_supported_rates rates;
5386
5387         /* Verify that this network's capability is compatible with the
5388          * current mode (AdHoc or Infrastructure) */
5389         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5390              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5391                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5392                                 "capability mismatch.\n",
5393                                 escape_essid(network->ssid, network->ssid_len),
5394                                 MAC_ARG(network->bssid));
5395                 return 0;
5396         }
5397
5398         /* If we do not have an ESSID for this AP, we can not associate with
5399          * it */
5400         if (network->flags & NETWORK_EMPTY_ESSID) {
5401                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5402                                 "because of hidden ESSID.\n",
5403                                 escape_essid(network->ssid, network->ssid_len),
5404                                 MAC_ARG(network->bssid));
5405                 return 0;
5406         }
5407
5408         if (unlikely(roaming)) {
5409                 /* If we are roaming, then ensure check if this is a valid
5410                  * network to try and roam to */
5411                 if ((network->ssid_len != match->network->ssid_len) ||
5412                     memcmp(network->ssid, match->network->ssid,
5413                            network->ssid_len)) {
5414                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5415                                         "because of non-network ESSID.\n",
5416                                         escape_essid(network->ssid,
5417                                                      network->ssid_len),
5418                                         MAC_ARG(network->bssid));
5419                         return 0;
5420                 }
5421         } else {
5422                 /* If an ESSID has been configured then compare the broadcast
5423                  * ESSID to ours */
5424                 if ((priv->config & CFG_STATIC_ESSID) &&
5425                     ((network->ssid_len != priv->essid_len) ||
5426                      memcmp(network->ssid, priv->essid,
5427                             min(network->ssid_len, priv->essid_len)))) {
5428                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5429
5430                         strncpy(escaped,
5431                                 escape_essid(network->ssid, network->ssid_len),
5432                                 sizeof(escaped));
5433                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5434                                         "because of ESSID mismatch: '%s'.\n",
5435                                         escaped, MAC_ARG(network->bssid),
5436                                         escape_essid(priv->essid,
5437                                                      priv->essid_len));
5438                         return 0;
5439                 }
5440         }
5441
5442         /* If the old network rate is better than this one, don't bother
5443          * testing everything else. */
5444
5445         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5446                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5447                                 "current network.\n",
5448                                 escape_essid(match->network->ssid,
5449                                              match->network->ssid_len));
5450                 return 0;
5451         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5452                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5453                                 "current network.\n",
5454                                 escape_essid(match->network->ssid,
5455                                              match->network->ssid_len));
5456                 return 0;
5457         }
5458
5459         /* Now go through and see if the requested network is valid... */
5460         if (priv->ieee->scan_age != 0 &&
5461             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5462                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5463                                 "because of age: %ums.\n",
5464                                 escape_essid(network->ssid, network->ssid_len),
5465                                 MAC_ARG(network->bssid),
5466                                 jiffies_to_msecs(jiffies -
5467                                                  network->last_scanned));
5468                 return 0;
5469         }
5470
5471         if ((priv->config & CFG_STATIC_CHANNEL) &&
5472             (network->channel != priv->channel)) {
5473                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5474                                 "because of channel mismatch: %d != %d.\n",
5475                                 escape_essid(network->ssid, network->ssid_len),
5476                                 MAC_ARG(network->bssid),
5477                                 network->channel, priv->channel);
5478                 return 0;
5479         }
5480
5481         /* Verify privacy compatability */
5482         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5483             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5484                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5485                                 "because of privacy mismatch: %s != %s.\n",
5486                                 escape_essid(network->ssid, network->ssid_len),
5487                                 MAC_ARG(network->bssid),
5488                                 priv->
5489                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5490                                 network->
5491                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5492                                 "off");
5493                 return 0;
5494         }
5495
5496         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5497                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5498                                 "because of the same BSSID match: " MAC_FMT
5499                                 ".\n", escape_essid(network->ssid,
5500                                                     network->ssid_len),
5501                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5502                 return 0;
5503         }
5504
5505         /* Filter out any incompatible freq / mode combinations */
5506         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5507                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5508                                 "because of invalid frequency/mode "
5509                                 "combination.\n",
5510                                 escape_essid(network->ssid, network->ssid_len),
5511                                 MAC_ARG(network->bssid));
5512                 return 0;
5513         }
5514
5515         /* Ensure that the rates supported by the driver are compatible with
5516          * this AP, including verification of basic rates (mandatory) */
5517         if (!ipw_compatible_rates(priv, network, &rates)) {
5518                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5519                                 "because configured rate mask excludes "
5520                                 "AP mandatory rate.\n",
5521                                 escape_essid(network->ssid, network->ssid_len),
5522                                 MAC_ARG(network->bssid));
5523                 return 0;
5524         }
5525
5526         if (rates.num_rates == 0) {
5527                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5528                                 "because of no compatible rates.\n",
5529                                 escape_essid(network->ssid, network->ssid_len),
5530                                 MAC_ARG(network->bssid));
5531                 return 0;
5532         }
5533
5534         /* TODO: Perform any further minimal comparititive tests.  We do not
5535          * want to put too much policy logic here; intelligent scan selection
5536          * should occur within a generic IEEE 802.11 user space tool.  */
5537
5538         /* Set up 'new' AP to this network */
5539         ipw_copy_rates(&match->rates, &rates);
5540         match->network = network;
5541         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5542                         escape_essid(network->ssid, network->ssid_len),
5543                         MAC_ARG(network->bssid));
5544
5545         return 1;
5546 }
5547
5548 static void ipw_merge_adhoc_network(struct work_struct *work)
5549 {
5550         struct ipw_priv *priv =
5551                 container_of(work, struct ipw_priv, merge_networks);
5552         struct ieee80211_network *network = NULL;
5553         struct ipw_network_match match = {
5554                 .network = priv->assoc_network
5555         };
5556
5557         if ((priv->status & STATUS_ASSOCIATED) &&
5558             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5559                 /* First pass through ROAM process -- look for a better
5560                  * network */
5561                 unsigned long flags;
5562
5563                 spin_lock_irqsave(&priv->ieee->lock, flags);
5564                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5565                         if (network != priv->assoc_network)
5566                                 ipw_find_adhoc_network(priv, &match, network,
5567                                                        1);
5568                 }
5569                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5570
5571                 if (match.network == priv->assoc_network) {
5572                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5573                                         "merge to.\n");
5574                         return;
5575                 }
5576
5577                 mutex_lock(&priv->mutex);
5578                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5579                         IPW_DEBUG_MERGE("remove network %s\n",
5580                                         escape_essid(priv->essid,
5581                                                      priv->essid_len));
5582                         ipw_remove_current_network(priv);
5583                 }
5584
5585                 ipw_disassociate(priv);
5586                 priv->assoc_network = match.network;
5587                 mutex_unlock(&priv->mutex);
5588                 return;
5589         }
5590 }
5591
5592 static int ipw_best_network(struct ipw_priv *priv,
5593                             struct ipw_network_match *match,
5594                             struct ieee80211_network *network, int roaming)
5595 {
5596         struct ipw_supported_rates rates;
5597
5598         /* Verify that this network's capability is compatible with the
5599          * current mode (AdHoc or Infrastructure) */
5600         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5601              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5602             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5603              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5604                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5605                                 "capability mismatch.\n",
5606                                 escape_essid(network->ssid, network->ssid_len),
5607                                 MAC_ARG(network->bssid));
5608                 return 0;
5609         }
5610
5611         /* If we do not have an ESSID for this AP, we can not associate with
5612          * it */
5613         if (network->flags & NETWORK_EMPTY_ESSID) {
5614                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5615                                 "because of hidden ESSID.\n",
5616                                 escape_essid(network->ssid, network->ssid_len),
5617                                 MAC_ARG(network->bssid));
5618                 return 0;
5619         }
5620
5621         if (unlikely(roaming)) {
5622                 /* If we are roaming, then ensure check if this is a valid
5623                  * network to try and roam to */
5624                 if ((network->ssid_len != match->network->ssid_len) ||
5625                     memcmp(network->ssid, match->network->ssid,
5626                            network->ssid_len)) {
5627                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5628                                         "because of non-network ESSID.\n",
5629                                         escape_essid(network->ssid,
5630                                                      network->ssid_len),
5631                                         MAC_ARG(network->bssid));
5632                         return 0;
5633                 }
5634         } else {
5635                 /* If an ESSID has been configured then compare the broadcast
5636                  * ESSID to ours */
5637                 if ((priv->config & CFG_STATIC_ESSID) &&
5638                     ((network->ssid_len != priv->essid_len) ||
5639                      memcmp(network->ssid, priv->essid,
5640                             min(network->ssid_len, priv->essid_len)))) {
5641                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5642                         strncpy(escaped,
5643                                 escape_essid(network->ssid, network->ssid_len),
5644                                 sizeof(escaped));
5645                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5646                                         "because of ESSID mismatch: '%s'.\n",
5647                                         escaped, MAC_ARG(network->bssid),
5648                                         escape_essid(priv->essid,
5649                                                      priv->essid_len));
5650                         return 0;
5651                 }
5652         }
5653
5654         /* If the old network rate is better than this one, don't bother
5655          * testing everything else. */
5656         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5657                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5658                 strncpy(escaped,
5659                         escape_essid(network->ssid, network->ssid_len),
5660                         sizeof(escaped));
5661                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5662                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5663                                 escaped, MAC_ARG(network->bssid),
5664                                 escape_essid(match->network->ssid,
5665                                              match->network->ssid_len),
5666                                 MAC_ARG(match->network->bssid));
5667                 return 0;
5668         }
5669
5670         /* If this network has already had an association attempt within the
5671          * last 3 seconds, do not try and associate again... */
5672         if (network->last_associate &&
5673             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5674                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5675                                 "because of storming (%ums since last "
5676                                 "assoc attempt).\n",
5677                                 escape_essid(network->ssid, network->ssid_len),
5678                                 MAC_ARG(network->bssid),
5679                                 jiffies_to_msecs(jiffies -
5680                                                  network->last_associate));
5681                 return 0;
5682         }
5683
5684         /* Now go through and see if the requested network is valid... */
5685         if (priv->ieee->scan_age != 0 &&
5686             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5687                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5688                                 "because of age: %ums.\n",
5689                                 escape_essid(network->ssid, network->ssid_len),
5690                                 MAC_ARG(network->bssid),
5691                                 jiffies_to_msecs(jiffies -
5692                                                  network->last_scanned));
5693                 return 0;
5694         }
5695
5696         if ((priv->config & CFG_STATIC_CHANNEL) &&
5697             (network->channel != priv->channel)) {
5698                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5699                                 "because of channel mismatch: %d != %d.\n",
5700                                 escape_essid(network->ssid, network->ssid_len),
5701                                 MAC_ARG(network->bssid),
5702                                 network->channel, priv->channel);
5703                 return 0;
5704         }
5705
5706         /* Verify privacy compatability */
5707         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5708             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5709                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5710                                 "because of privacy mismatch: %s != %s.\n",
5711                                 escape_essid(network->ssid, network->ssid_len),
5712                                 MAC_ARG(network->bssid),
5713                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5714                                 "off",
5715                                 network->capability &
5716                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5717                 return 0;
5718         }
5719
5720         if ((priv->config & CFG_STATIC_BSSID) &&
5721             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5722                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5723                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5724                                 escape_essid(network->ssid, network->ssid_len),
5725                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5726                 return 0;
5727         }
5728
5729         /* Filter out any incompatible freq / mode combinations */
5730         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5731                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5732                                 "because of invalid frequency/mode "
5733                                 "combination.\n",
5734                                 escape_essid(network->ssid, network->ssid_len),
5735                                 MAC_ARG(network->bssid));
5736                 return 0;
5737         }
5738
5739         /* Filter out invalid channel in current GEO */
5740         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5741                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5742                                 "because of invalid channel in current GEO\n",
5743                                 escape_essid(network->ssid, network->ssid_len),
5744                                 MAC_ARG(network->bssid));
5745                 return 0;
5746         }
5747
5748         /* Ensure that the rates supported by the driver are compatible with
5749          * this AP, including verification of basic rates (mandatory) */
5750         if (!ipw_compatible_rates(priv, network, &rates)) {
5751                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5752                                 "because configured rate mask excludes "
5753                                 "AP mandatory rate.\n",
5754                                 escape_essid(network->ssid, network->ssid_len),
5755                                 MAC_ARG(network->bssid));
5756                 return 0;
5757         }
5758
5759         if (rates.num_rates == 0) {
5760                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5761                                 "because of no compatible rates.\n",
5762                                 escape_essid(network->ssid, network->ssid_len),
5763                                 MAC_ARG(network->bssid));
5764                 return 0;
5765         }
5766
5767         /* TODO: Perform any further minimal comparititive tests.  We do not
5768          * want to put too much policy logic here; intelligent scan selection
5769          * should occur within a generic IEEE 802.11 user space tool.  */
5770
5771         /* Set up 'new' AP to this network */
5772         ipw_copy_rates(&match->rates, &rates);
5773         match->network = network;
5774
5775         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5776                         escape_essid(network->ssid, network->ssid_len),
5777                         MAC_ARG(network->bssid));
5778
5779         return 1;
5780 }
5781
5782 static void ipw_adhoc_create(struct ipw_priv *priv,
5783                              struct ieee80211_network *network)
5784 {
5785         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5786         int i;
5787
5788         /*
5789          * For the purposes of scanning, we can set our wireless mode
5790          * to trigger scans across combinations of bands, but when it
5791          * comes to creating a new ad-hoc network, we have tell the FW
5792          * exactly which band to use.
5793          *
5794          * We also have the possibility of an invalid channel for the
5795          * chossen band.  Attempting to create a new ad-hoc network
5796          * with an invalid channel for wireless mode will trigger a
5797          * FW fatal error.
5798          *
5799          */
5800         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5801         case IEEE80211_52GHZ_BAND:
5802                 network->mode = IEEE_A;
5803                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5804                 BUG_ON(i == -1);
5805                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5806                         IPW_WARNING("Overriding invalid channel\n");
5807                         priv->channel = geo->a[0].channel;
5808                 }
5809                 break;
5810
5811         case IEEE80211_24GHZ_BAND:
5812                 if (priv->ieee->mode & IEEE_G)
5813                         network->mode = IEEE_G;
5814                 else
5815                         network->mode = IEEE_B;
5816                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5817                 BUG_ON(i == -1);
5818                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5819                         IPW_WARNING("Overriding invalid channel\n");
5820                         priv->channel = geo->bg[0].channel;
5821                 }
5822                 break;
5823
5824         default:
5825                 IPW_WARNING("Overriding invalid channel\n");
5826                 if (priv->ieee->mode & IEEE_A) {
5827                         network->mode = IEEE_A;
5828                         priv->channel = geo->a[0].channel;
5829                 } else if (priv->ieee->mode & IEEE_G) {
5830                         network->mode = IEEE_G;
5831                         priv->channel = geo->bg[0].channel;
5832                 } else {
5833                         network->mode = IEEE_B;
5834                         priv->channel = geo->bg[0].channel;
5835                 }
5836                 break;
5837         }
5838
5839         network->channel = priv->channel;
5840         priv->config |= CFG_ADHOC_PERSIST;
5841         ipw_create_bssid(priv, network->bssid);
5842         network->ssid_len = priv->essid_len;
5843         memcpy(network->ssid, priv->essid, priv->essid_len);
5844         memset(&network->stats, 0, sizeof(network->stats));
5845         network->capability = WLAN_CAPABILITY_IBSS;
5846         if (!(priv->config & CFG_PREAMBLE_LONG))
5847                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5848         if (priv->capability & CAP_PRIVACY_ON)
5849                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5850         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5851         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5852         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5853         memcpy(network->rates_ex,
5854                &priv->rates.supported_rates[network->rates_len],
5855                network->rates_ex_len);
5856         network->last_scanned = 0;
5857         network->flags = 0;
5858         network->last_associate = 0;
5859         network->time_stamp[0] = 0;
5860         network->time_stamp[1] = 0;
5861         network->beacon_interval = 100; /* Default */
5862         network->listen_interval = 10;  /* Default */
5863         network->atim_window = 0;       /* Default */
5864         network->wpa_ie_len = 0;
5865         network->rsn_ie_len = 0;
5866 }
5867
5868 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5869 {
5870         struct ipw_tgi_tx_key key;
5871
5872         if (!(priv->ieee->sec.flags & (1 << index)))
5873                 return;
5874
5875         key.key_id = index;
5876         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5877         key.security_type = type;
5878         key.station_index = 0;  /* always 0 for BSS */
5879         key.flags = 0;
5880         /* 0 for new key; previous value of counter (after fatal error) */
5881         key.tx_counter[0] = cpu_to_le32(0);
5882         key.tx_counter[1] = cpu_to_le32(0);
5883
5884         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5885 }
5886
5887 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5888 {
5889         struct ipw_wep_key key;
5890         int i;
5891
5892         key.cmd_id = DINO_CMD_WEP_KEY;
5893         key.seq_num = 0;
5894
5895         /* Note: AES keys cannot be set for multiple times.
5896          * Only set it at the first time. */
5897         for (i = 0; i < 4; i++) {
5898                 key.key_index = i | type;
5899                 if (!(priv->ieee->sec.flags & (1 << i))) {
5900                         key.key_size = 0;
5901                         continue;
5902                 }
5903
5904                 key.key_size = priv->ieee->sec.key_sizes[i];
5905                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5906
5907                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5908         }
5909 }
5910
5911 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5912 {
5913         if (priv->ieee->host_encrypt)
5914                 return;
5915
5916         switch (level) {
5917         case SEC_LEVEL_3:
5918                 priv->sys_config.disable_unicast_decryption = 0;
5919                 priv->ieee->host_decrypt = 0;
5920                 break;
5921         case SEC_LEVEL_2:
5922                 priv->sys_config.disable_unicast_decryption = 1;
5923                 priv->ieee->host_decrypt = 1;
5924                 break;
5925         case SEC_LEVEL_1:
5926                 priv->sys_config.disable_unicast_decryption = 0;
5927                 priv->ieee->host_decrypt = 0;
5928                 break;
5929         case SEC_LEVEL_0:
5930                 priv->sys_config.disable_unicast_decryption = 1;
5931                 break;
5932         default:
5933                 break;
5934         }
5935 }
5936
5937 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5938 {
5939         if (priv->ieee->host_encrypt)
5940                 return;
5941
5942         switch (level) {
5943         case SEC_LEVEL_3:
5944                 priv->sys_config.disable_multicast_decryption = 0;
5945                 break;
5946         case SEC_LEVEL_2:
5947                 priv->sys_config.disable_multicast_decryption = 1;
5948                 break;
5949         case SEC_LEVEL_1:
5950                 priv->sys_config.disable_multicast_decryption = 0;
5951                 break;
5952         case SEC_LEVEL_0:
5953                 priv->sys_config.disable_multicast_decryption = 1;
5954                 break;
5955         default:
5956                 break;
5957         }
5958 }
5959
5960 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5961 {
5962         switch (priv->ieee->sec.level) {
5963         case SEC_LEVEL_3:
5964                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5965                         ipw_send_tgi_tx_key(priv,
5966                                             DCT_FLAG_EXT_SECURITY_CCM,
5967                                             priv->ieee->sec.active_key);
5968
5969                 if (!priv->ieee->host_mc_decrypt)
5970                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5971                 break;
5972         case SEC_LEVEL_2:
5973                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5974                         ipw_send_tgi_tx_key(priv,
5975                                             DCT_FLAG_EXT_SECURITY_TKIP,
5976                                             priv->ieee->sec.active_key);
5977                 break;
5978         case SEC_LEVEL_1:
5979                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5980                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5981                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5982                 break;
5983         case SEC_LEVEL_0:
5984         default:
5985                 break;
5986         }
5987 }
5988
5989 static void ipw_adhoc_check(void *data)
5990 {
5991         struct ipw_priv *priv = data;
5992
5993         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5994             !(priv->config & CFG_ADHOC_PERSIST)) {
5995                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5996                           IPW_DL_STATE | IPW_DL_ASSOC,
5997                           "Missed beacon: %d - disassociate\n",
5998                           priv->missed_adhoc_beacons);
5999                 ipw_remove_current_network(priv);
6000                 ipw_disassociate(priv);
6001                 return;
6002         }
6003
6004         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6005                            priv->assoc_request.beacon_interval);
6006 }
6007
6008 static void ipw_bg_adhoc_check(struct work_struct *work)
6009 {
6010         struct ipw_priv *priv =
6011                 container_of(work, struct ipw_priv, adhoc_check.work);
6012         mutex_lock(&priv->mutex);
6013         ipw_adhoc_check(priv);
6014         mutex_unlock(&priv->mutex);
6015 }
6016
6017 static void ipw_debug_config(struct ipw_priv *priv)
6018 {
6019         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6020                        "[CFG 0x%08X]\n", priv->config);
6021         if (priv->config & CFG_STATIC_CHANNEL)
6022                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6023         else
6024                 IPW_DEBUG_INFO("Channel unlocked.\n");
6025         if (priv->config & CFG_STATIC_ESSID)
6026                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6027                                escape_essid(priv->essid, priv->essid_len));
6028         else
6029                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6030         if (priv->config & CFG_STATIC_BSSID)
6031                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
6032                                MAC_ARG(priv->bssid));
6033         else
6034                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6035         if (priv->capability & CAP_PRIVACY_ON)
6036                 IPW_DEBUG_INFO("PRIVACY on\n");
6037         else
6038                 IPW_DEBUG_INFO("PRIVACY off\n");
6039         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6040 }
6041
6042 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6043 {
6044         /* TODO: Verify that this works... */
6045         struct ipw_fixed_rate fr = {
6046                 .tx_rates = priv->rates_mask
6047         };
6048         u32 reg;
6049         u16 mask = 0;
6050
6051         /* Identify 'current FW band' and match it with the fixed
6052          * Tx rates */
6053
6054         switch (priv->ieee->freq_band) {
6055         case IEEE80211_52GHZ_BAND:      /* A only */
6056                 /* IEEE_A */
6057                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6058                         /* Invalid fixed rate mask */
6059                         IPW_DEBUG_WX
6060                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6061                         fr.tx_rates = 0;
6062                         break;
6063                 }
6064
6065                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6066                 break;
6067
6068         default:                /* 2.4Ghz or Mixed */
6069                 /* IEEE_B */
6070                 if (mode == IEEE_B) {
6071                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6072                                 /* Invalid fixed rate mask */
6073                                 IPW_DEBUG_WX
6074                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6075                                 fr.tx_rates = 0;
6076                         }
6077                         break;
6078                 }
6079
6080                 /* IEEE_G */
6081                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6082                                     IEEE80211_OFDM_RATES_MASK)) {
6083                         /* Invalid fixed rate mask */
6084                         IPW_DEBUG_WX
6085                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6086                         fr.tx_rates = 0;
6087                         break;
6088                 }
6089
6090                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6091                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6092                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6093                 }
6094
6095                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6096                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6097                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6098                 }
6099
6100                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6101                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6102                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6103                 }
6104
6105                 fr.tx_rates |= mask;
6106                 break;
6107         }
6108
6109         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6110         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6111 }
6112
6113 static void ipw_abort_scan(struct ipw_priv *priv)
6114 {
6115         int err;
6116
6117         if (priv->status & STATUS_SCAN_ABORTING) {
6118                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6119                 return;
6120         }
6121         priv->status |= STATUS_SCAN_ABORTING;
6122
6123         err = ipw_send_scan_abort(priv);
6124         if (err)
6125                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6126 }
6127
6128 static void ipw_add_scan_channels(struct ipw_priv *priv,
6129                                   struct ipw_scan_request_ext *scan,
6130                                   int scan_type)
6131 {
6132         int channel_index = 0;
6133         const struct ieee80211_geo *geo;
6134         int i;
6135
6136         geo = ieee80211_get_geo(priv->ieee);
6137
6138         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6139                 int start = channel_index;
6140                 for (i = 0; i < geo->a_channels; i++) {
6141                         if ((priv->status & STATUS_ASSOCIATED) &&
6142                             geo->a[i].channel == priv->channel)
6143                                 continue;
6144                         channel_index++;
6145                         scan->channels_list[channel_index] = geo->a[i].channel;
6146                         ipw_set_scan_type(scan, channel_index,
6147                                           geo->a[i].
6148                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6149                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6150                                           scan_type);
6151                 }
6152
6153                 if (start != channel_index) {
6154                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6155                             (channel_index - start);
6156                         channel_index++;
6157                 }
6158         }
6159
6160         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6161                 int start = channel_index;
6162                 if (priv->config & CFG_SPEED_SCAN) {
6163                         int index;
6164                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6165                                 /* nop out the list */
6166                                 [0] = 0
6167                         };
6168
6169                         u8 channel;
6170                         while (channel_index < IPW_SCAN_CHANNELS) {
6171                                 channel =
6172                                     priv->speed_scan[priv->speed_scan_pos];
6173                                 if (channel == 0) {
6174                                         priv->speed_scan_pos = 0;
6175                                         channel = priv->speed_scan[0];
6176                                 }
6177                                 if ((priv->status & STATUS_ASSOCIATED) &&
6178                                     channel == priv->channel) {
6179                                         priv->speed_scan_pos++;
6180                                         continue;
6181                                 }
6182
6183                                 /* If this channel has already been
6184                                  * added in scan, break from loop
6185                                  * and this will be the first channel
6186                                  * in the next scan.
6187                                  */
6188                                 if (channels[channel - 1] != 0)
6189                                         break;
6190
6191                                 channels[channel - 1] = 1;
6192                                 priv->speed_scan_pos++;
6193                                 channel_index++;
6194                                 scan->channels_list[channel_index] = channel;
6195                                 index =
6196                                     ieee80211_channel_to_index(priv->ieee, channel);
6197                                 ipw_set_scan_type(scan, channel_index,
6198                                                   geo->bg[index].
6199                                                   flags &
6200                                                   IEEE80211_CH_PASSIVE_ONLY ?
6201                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6202                                                   : scan_type);
6203                         }
6204                 } else {
6205                         for (i = 0; i < geo->bg_channels; i++) {
6206                                 if ((priv->status & STATUS_ASSOCIATED) &&
6207                                     geo->bg[i].channel == priv->channel)
6208                                         continue;
6209                                 channel_index++;
6210                                 scan->channels_list[channel_index] =
6211                                     geo->bg[i].channel;
6212                                 ipw_set_scan_type(scan, channel_index,
6213                                                   geo->bg[i].
6214                                                   flags &
6215                                                   IEEE80211_CH_PASSIVE_ONLY ?
6216                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6217                                                   : scan_type);
6218                         }
6219                 }
6220
6221                 if (start != channel_index) {
6222                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6223                             (channel_index - start);
6224                 }
6225         }
6226 }
6227
6228 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6229 {
6230         struct ipw_scan_request_ext scan;
6231         int err = 0, scan_type;
6232
6233         if (!(priv->status & STATUS_INIT) ||
6234             (priv->status & STATUS_EXIT_PENDING))
6235                 return 0;
6236
6237         mutex_lock(&priv->mutex);
6238
6239         if (priv->status & STATUS_SCANNING) {
6240                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6241                 priv->status |= STATUS_SCAN_PENDING;
6242                 goto done;
6243         }
6244
6245         if (!(priv->status & STATUS_SCAN_FORCED) &&
6246             priv->status & STATUS_SCAN_ABORTING) {
6247                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6248                 priv->status |= STATUS_SCAN_PENDING;
6249                 goto done;
6250         }
6251
6252         if (priv->status & STATUS_RF_KILL_MASK) {
6253                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6254                 priv->status |= STATUS_SCAN_PENDING;
6255                 goto done;
6256         }
6257
6258         memset(&scan, 0, sizeof(scan));
6259         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6260
6261         if (type == IW_SCAN_TYPE_PASSIVE) {
6262                 IPW_DEBUG_WX("use passive scanning\n");
6263                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6264                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6265                         cpu_to_le16(120);
6266                 ipw_add_scan_channels(priv, &scan, scan_type);
6267                 goto send_request;
6268         }
6269
6270         /* Use active scan by default. */
6271         if (priv->config & CFG_SPEED_SCAN)
6272                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6273                         cpu_to_le16(30);
6274         else
6275                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6276                         cpu_to_le16(20);
6277
6278         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6279                 cpu_to_le16(20);
6280
6281         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6282
6283 #ifdef CONFIG_IPW2200_MONITOR
6284         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6285                 u8 channel;
6286                 u8 band = 0;
6287
6288                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6289                 case IEEE80211_52GHZ_BAND:
6290                         band = (u8) (IPW_A_MODE << 6) | 1;
6291                         channel = priv->channel;
6292                         break;
6293
6294                 case IEEE80211_24GHZ_BAND:
6295                         band = (u8) (IPW_B_MODE << 6) | 1;
6296                         channel = priv->channel;
6297                         break;
6298
6299                 default:
6300                         band = (u8) (IPW_B_MODE << 6) | 1;
6301                         channel = 9;
6302                         break;
6303                 }
6304
6305                 scan.channels_list[0] = band;
6306                 scan.channels_list[1] = channel;
6307                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6308
6309                 /* NOTE:  The card will sit on this channel for this time
6310                  * period.  Scan aborts are timing sensitive and frequently
6311                  * result in firmware restarts.  As such, it is best to
6312                  * set a small dwell_time here and just keep re-issuing
6313                  * scans.  Otherwise fast channel hopping will not actually
6314                  * hop channels.
6315                  *
6316                  * TODO: Move SPEED SCAN support to all modes and bands */
6317                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6318                         cpu_to_le16(2000);
6319         } else {
6320 #endif                          /* CONFIG_IPW2200_MONITOR */
6321                 /* If we are roaming, then make this a directed scan for the
6322                  * current network.  Otherwise, ensure that every other scan
6323                  * is a fast channel hop scan */
6324                 if ((priv->status & STATUS_ROAMING)
6325                     || (!(priv->status & STATUS_ASSOCIATED)
6326                         && (priv->config & CFG_STATIC_ESSID)
6327                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6328                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6329                         if (err) {
6330                                 IPW_DEBUG_HC("Attempt to send SSID command "
6331                                              "failed.\n");
6332                                 goto done;
6333                         }
6334
6335                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6336                 } else
6337                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6338
6339                 ipw_add_scan_channels(priv, &scan, scan_type);
6340 #ifdef CONFIG_IPW2200_MONITOR
6341         }
6342 #endif
6343
6344 send_request:
6345         err = ipw_send_scan_request_ext(priv, &scan);
6346         if (err) {
6347                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6348                 goto done;
6349         }
6350
6351         priv->status |= STATUS_SCANNING;
6352         priv->status &= ~STATUS_SCAN_PENDING;
6353         queue_delayed_work(priv->workqueue, &priv->scan_check,
6354                            IPW_SCAN_CHECK_WATCHDOG);
6355 done:
6356         mutex_unlock(&priv->mutex);
6357         return err;
6358 }
6359
6360 static void ipw_request_passive_scan(struct work_struct *work)
6361 {
6362         struct ipw_priv *priv =
6363                 container_of(work, struct ipw_priv, request_passive_scan);
6364         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6365 }
6366
6367 static void ipw_request_scan(struct work_struct *work)
6368 {
6369         struct ipw_priv *priv =
6370                 container_of(work, struct ipw_priv, request_scan.work);
6371         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6372 }
6373
6374 static void ipw_bg_abort_scan(struct work_struct *work)
6375 {
6376         struct ipw_priv *priv =
6377                 container_of(work, struct ipw_priv, abort_scan);
6378         mutex_lock(&priv->mutex);
6379         ipw_abort_scan(priv);
6380         mutex_unlock(&priv->mutex);
6381 }
6382
6383 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6384 {
6385         /* This is called when wpa_supplicant loads and closes the driver
6386          * interface. */
6387         priv->ieee->wpa_enabled = value;
6388         return 0;
6389 }
6390
6391 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6392 {
6393         struct ieee80211_device *ieee = priv->ieee;
6394         struct ieee80211_security sec = {
6395                 .flags = SEC_AUTH_MODE,
6396         };
6397         int ret = 0;
6398
6399         if (value & IW_AUTH_ALG_SHARED_KEY) {
6400                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6401                 ieee->open_wep = 0;
6402         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6403                 sec.auth_mode = WLAN_AUTH_OPEN;
6404                 ieee->open_wep = 1;
6405         } else if (value & IW_AUTH_ALG_LEAP) {
6406                 sec.auth_mode = WLAN_AUTH_LEAP;
6407                 ieee->open_wep = 1;
6408         } else
6409                 return -EINVAL;
6410
6411         if (ieee->set_security)
6412                 ieee->set_security(ieee->dev, &sec);
6413         else
6414                 ret = -EOPNOTSUPP;
6415
6416         return ret;
6417 }
6418
6419 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6420                                 int wpa_ie_len)
6421 {
6422         /* make sure WPA is enabled */
6423         ipw_wpa_enable(priv, 1);
6424 }
6425
6426 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6427                             char *capabilities, int length)
6428 {
6429         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6430
6431         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6432                                 capabilities);
6433 }
6434
6435 /*
6436  * WE-18 support
6437  */
6438
6439 /* SIOCSIWGENIE */
6440 static int ipw_wx_set_genie(struct net_device *dev,
6441                             struct iw_request_info *info,
6442                             union iwreq_data *wrqu, char *extra)
6443 {
6444         struct ipw_priv *priv = ieee80211_priv(dev);
6445         struct ieee80211_device *ieee = priv->ieee;
6446         u8 *buf;
6447         int err = 0;
6448
6449         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6450             (wrqu->data.length && extra == NULL))
6451                 return -EINVAL;
6452
6453         if (wrqu->data.length) {
6454                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6455                 if (buf == NULL) {
6456                         err = -ENOMEM;
6457                         goto out;
6458                 }
6459
6460                 memcpy(buf, extra, wrqu->data.length);
6461                 kfree(ieee->wpa_ie);
6462                 ieee->wpa_ie = buf;
6463                 ieee->wpa_ie_len = wrqu->data.length;
6464         } else {
6465                 kfree(ieee->wpa_ie);
6466                 ieee->wpa_ie = NULL;
6467                 ieee->wpa_ie_len = 0;
6468         }
6469
6470         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6471       out:
6472         return err;
6473 }
6474
6475 /* SIOCGIWGENIE */
6476 static int ipw_wx_get_genie(struct net_device *dev,
6477                             struct iw_request_info *info,
6478                             union iwreq_data *wrqu, char *extra)
6479 {
6480         struct ipw_priv *priv = ieee80211_priv(dev);
6481         struct ieee80211_device *ieee = priv->ieee;
6482         int err = 0;
6483
6484         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6485                 wrqu->data.length = 0;
6486                 goto out;
6487         }
6488
6489         if (wrqu->data.length < ieee->wpa_ie_len) {
6490                 err = -E2BIG;
6491                 goto out;
6492         }
6493
6494         wrqu->data.length = ieee->wpa_ie_len;
6495         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6496
6497       out:
6498         return err;
6499 }
6500
6501 static int wext_cipher2level(int cipher)
6502 {
6503         switch (cipher) {
6504         case IW_AUTH_CIPHER_NONE:
6505                 return SEC_LEVEL_0;
6506         case IW_AUTH_CIPHER_WEP40:
6507         case IW_AUTH_CIPHER_WEP104:
6508                 return SEC_LEVEL_1;
6509         case IW_AUTH_CIPHER_TKIP:
6510                 return SEC_LEVEL_2;
6511         case IW_AUTH_CIPHER_CCMP:
6512                 return SEC_LEVEL_3;
6513         default:
6514                 return -1;
6515         }
6516 }
6517
6518 /* SIOCSIWAUTH */
6519 static int ipw_wx_set_auth(struct net_device *dev,
6520                            struct iw_request_info *info,
6521                            union iwreq_data *wrqu, char *extra)
6522 {
6523         struct ipw_priv *priv = ieee80211_priv(dev);
6524         struct ieee80211_device *ieee = priv->ieee;
6525         struct iw_param *param = &wrqu->param;
6526         struct ieee80211_crypt_data *crypt;
6527         unsigned long flags;
6528         int ret = 0;
6529
6530         switch (param->flags & IW_AUTH_INDEX) {
6531         case IW_AUTH_WPA_VERSION:
6532                 break;
6533         case IW_AUTH_CIPHER_PAIRWISE:
6534                 ipw_set_hw_decrypt_unicast(priv,
6535                                            wext_cipher2level(param->value));
6536                 break;
6537         case IW_AUTH_CIPHER_GROUP:
6538                 ipw_set_hw_decrypt_multicast(priv,
6539                                              wext_cipher2level(param->value));
6540                 break;
6541         case IW_AUTH_KEY_MGMT:
6542                 /*
6543                  * ipw2200 does not use these parameters
6544                  */
6545                 break;
6546
6547         case IW_AUTH_TKIP_COUNTERMEASURES:
6548                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6549                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6550                         break;
6551
6552                 flags = crypt->ops->get_flags(crypt->priv);
6553
6554                 if (param->value)
6555                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6556                 else
6557                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6558
6559                 crypt->ops->set_flags(flags, crypt->priv);
6560
6561                 break;
6562
6563         case IW_AUTH_DROP_UNENCRYPTED:{
6564                         /* HACK:
6565                          *
6566                          * wpa_supplicant calls set_wpa_enabled when the driver
6567                          * is loaded and unloaded, regardless of if WPA is being
6568                          * used.  No other calls are made which can be used to
6569                          * determine if encryption will be used or not prior to
6570                          * association being expected.  If encryption is not being
6571                          * used, drop_unencrypted is set to false, else true -- we
6572                          * can use this to determine if the CAP_PRIVACY_ON bit should
6573                          * be set.
6574                          */
6575                         struct ieee80211_security sec = {
6576                                 .flags = SEC_ENABLED,
6577                                 .enabled = param->value,
6578                         };
6579                         priv->ieee->drop_unencrypted = param->value;
6580                         /* We only change SEC_LEVEL for open mode. Others
6581                          * are set by ipw_wpa_set_encryption.
6582                          */
6583                         if (!param->value) {
6584                                 sec.flags |= SEC_LEVEL;
6585                                 sec.level = SEC_LEVEL_0;
6586                         } else {
6587                                 sec.flags |= SEC_LEVEL;
6588                                 sec.level = SEC_LEVEL_1;
6589                         }
6590                         if (priv->ieee->set_security)
6591                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6592                         break;
6593                 }
6594
6595         case IW_AUTH_80211_AUTH_ALG:
6596                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6597                 break;
6598
6599         case IW_AUTH_WPA_ENABLED:
6600                 ret = ipw_wpa_enable(priv, param->value);
6601                 ipw_disassociate(priv);
6602                 break;
6603
6604         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6605                 ieee->ieee802_1x = param->value;
6606                 break;
6607
6608         case IW_AUTH_PRIVACY_INVOKED:
6609                 ieee->privacy_invoked = param->value;
6610                 break;
6611
6612         default:
6613                 return -EOPNOTSUPP;
6614         }
6615         return ret;
6616 }
6617
6618 /* SIOCGIWAUTH */
6619 static int ipw_wx_get_auth(struct net_device *dev,
6620                            struct iw_request_info *info,
6621                            union iwreq_data *wrqu, char *extra)
6622 {
6623         struct ipw_priv *priv = ieee80211_priv(dev);
6624         struct ieee80211_device *ieee = priv->ieee;
6625         struct ieee80211_crypt_data *crypt;
6626         struct iw_param *param = &wrqu->param;
6627         int ret = 0;
6628
6629         switch (param->flags & IW_AUTH_INDEX) {
6630         case IW_AUTH_WPA_VERSION:
6631         case IW_AUTH_CIPHER_PAIRWISE:
6632         case IW_AUTH_CIPHER_GROUP:
6633         case IW_AUTH_KEY_MGMT:
6634                 /*
6635                  * wpa_supplicant will control these internally
6636                  */
6637                 ret = -EOPNOTSUPP;
6638                 break;
6639
6640         case IW_AUTH_TKIP_COUNTERMEASURES:
6641                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6642                 if (!crypt || !crypt->ops->get_flags)
6643                         break;
6644
6645                 param->value = (crypt->ops->get_flags(crypt->priv) &
6646                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6647
6648                 break;
6649
6650         case IW_AUTH_DROP_UNENCRYPTED:
6651                 param->value = ieee->drop_unencrypted;
6652                 break;
6653
6654         case IW_AUTH_80211_AUTH_ALG:
6655                 param->value = ieee->sec.auth_mode;
6656                 break;
6657
6658         case IW_AUTH_WPA_ENABLED:
6659                 param->value = ieee->wpa_enabled;
6660                 break;
6661
6662         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6663                 param->value = ieee->ieee802_1x;
6664                 break;
6665
6666         case IW_AUTH_ROAMING_CONTROL:
6667         case IW_AUTH_PRIVACY_INVOKED:
6668                 param->value = ieee->privacy_invoked;
6669                 break;
6670
6671         default:
6672                 return -EOPNOTSUPP;
6673         }
6674         return 0;
6675 }
6676
6677 /* SIOCSIWENCODEEXT */
6678 static int ipw_wx_set_encodeext(struct net_device *dev,
6679                                 struct iw_request_info *info,
6680                                 union iwreq_data *wrqu, char *extra)
6681 {
6682         struct ipw_priv *priv = ieee80211_priv(dev);
6683         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6684
6685         if (hwcrypto) {
6686                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6687                         /* IPW HW can't build TKIP MIC,
6688                            host decryption still needed */
6689                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6690                                 priv->ieee->host_mc_decrypt = 1;
6691                         else {
6692                                 priv->ieee->host_encrypt = 0;
6693                                 priv->ieee->host_encrypt_msdu = 1;
6694                                 priv->ieee->host_decrypt = 1;
6695                         }
6696                 } else {
6697                         priv->ieee->host_encrypt = 0;
6698                         priv->ieee->host_encrypt_msdu = 0;
6699                         priv->ieee->host_decrypt = 0;
6700                         priv->ieee->host_mc_decrypt = 0;
6701                 }
6702         }
6703
6704         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6705 }
6706
6707 /* SIOCGIWENCODEEXT */
6708 static int ipw_wx_get_encodeext(struct net_device *dev,
6709                                 struct iw_request_info *info,
6710                                 union iwreq_data *wrqu, char *extra)
6711 {
6712         struct ipw_priv *priv = ieee80211_priv(dev);
6713         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6714 }
6715
6716 /* SIOCSIWMLME */
6717 static int ipw_wx_set_mlme(struct net_device *dev,
6718                            struct iw_request_info *info,
6719                            union iwreq_data *wrqu, char *extra)
6720 {
6721         struct ipw_priv *priv = ieee80211_priv(dev);
6722         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6723         u16 reason;
6724
6725         reason = cpu_to_le16(mlme->reason_code);
6726
6727         switch (mlme->cmd) {
6728         case IW_MLME_DEAUTH:
6729                 /* silently ignore */
6730                 break;
6731
6732         case IW_MLME_DISASSOC:
6733                 ipw_disassociate(priv);
6734                 break;
6735
6736         default:
6737                 return -EOPNOTSUPP;
6738         }
6739         return 0;
6740 }
6741
6742 #ifdef CONFIG_IPW2200_QOS
6743
6744 /* QoS */
6745 /*
6746 * get the modulation type of the current network or
6747 * the card current mode
6748 */
6749 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6750 {
6751         u8 mode = 0;
6752
6753         if (priv->status & STATUS_ASSOCIATED) {
6754                 unsigned long flags;
6755
6756                 spin_lock_irqsave(&priv->ieee->lock, flags);
6757                 mode = priv->assoc_network->mode;
6758                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6759         } else {
6760                 mode = priv->ieee->mode;
6761         }
6762         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6763         return mode;
6764 }
6765
6766 /*
6767 * Handle management frame beacon and probe response
6768 */
6769 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6770                                          int active_network,
6771                                          struct ieee80211_network *network)
6772 {
6773         u32 size = sizeof(struct ieee80211_qos_parameters);
6774
6775         if (network->capability & WLAN_CAPABILITY_IBSS)
6776                 network->qos_data.active = network->qos_data.supported;
6777
6778         if (network->flags & NETWORK_HAS_QOS_MASK) {
6779                 if (active_network &&
6780                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6781                         network->qos_data.active = network->qos_data.supported;
6782
6783                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6784                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6785                     (network->qos_data.old_param_count !=
6786                      network->qos_data.param_count)) {
6787                         network->qos_data.old_param_count =
6788                             network->qos_data.param_count;
6789                         schedule_work(&priv->qos_activate);
6790                         IPW_DEBUG_QOS("QoS parameters change call "
6791                                       "qos_activate\n");
6792                 }
6793         } else {
6794                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6795                         memcpy(&network->qos_data.parameters,
6796                                &def_parameters_CCK, size);
6797                 else
6798                         memcpy(&network->qos_data.parameters,
6799                                &def_parameters_OFDM, size);
6800
6801                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6802                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6803                         schedule_work(&priv->qos_activate);
6804                 }
6805
6806                 network->qos_data.active = 0;
6807                 network->qos_data.supported = 0;
6808         }
6809         if ((priv->status & STATUS_ASSOCIATED) &&
6810             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6811                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6812                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6813                             !(network->flags & NETWORK_EMPTY_ESSID))
6814                                 if ((network->ssid_len ==
6815                                      priv->assoc_network->ssid_len) &&
6816                                     !memcmp(network->ssid,
6817                                             priv->assoc_network->ssid,
6818                                             network->ssid_len)) {
6819                                         queue_work(priv->workqueue,
6820                                                    &priv->merge_networks);
6821                                 }
6822         }
6823
6824         return 0;
6825 }
6826
6827 /*
6828 * This function set up the firmware to support QoS. It sends
6829 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6830 */
6831 static int ipw_qos_activate(struct ipw_priv *priv,
6832                             struct ieee80211_qos_data *qos_network_data)
6833 {
6834         int err;
6835         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6836         struct ieee80211_qos_parameters *active_one = NULL;
6837         u32 size = sizeof(struct ieee80211_qos_parameters);
6838         u32 burst_duration;
6839         int i;
6840         u8 type;
6841
6842         type = ipw_qos_current_mode(priv);
6843
6844         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6845         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6846         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6847         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6848
6849         if (qos_network_data == NULL) {
6850                 if (type == IEEE_B) {
6851                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6852                         active_one = &def_parameters_CCK;
6853                 } else
6854                         active_one = &def_parameters_OFDM;
6855
6856                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6857                 burst_duration = ipw_qos_get_burst_duration(priv);
6858                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6859                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6860                             (u16)burst_duration;
6861         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6862                 if (type == IEEE_B) {
6863                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6864                                       type);
6865                         if (priv->qos_data.qos_enable == 0)
6866                                 active_one = &def_parameters_CCK;
6867                         else
6868                                 active_one = priv->qos_data.def_qos_parm_CCK;
6869                 } else {
6870                         if (priv->qos_data.qos_enable == 0)
6871                                 active_one = &def_parameters_OFDM;
6872                         else
6873                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6874                 }
6875                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6876         } else {
6877                 unsigned long flags;
6878                 int active;
6879
6880                 spin_lock_irqsave(&priv->ieee->lock, flags);
6881                 active_one = &(qos_network_data->parameters);
6882                 qos_network_data->old_param_count =
6883                     qos_network_data->param_count;
6884                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6885                 active = qos_network_data->supported;
6886                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6887
6888                 if (active == 0) {
6889                         burst_duration = ipw_qos_get_burst_duration(priv);
6890                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6891                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6892                                     tx_op_limit[i] = (u16)burst_duration;
6893                 }
6894         }
6895
6896         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6897         for (i = 0; i < 3; i++) {
6898                 int j;
6899                 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6900                         qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6901                         qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6902                         qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6903                 }
6904         }
6905
6906         err = ipw_send_qos_params_command(priv,
6907                                           (struct ieee80211_qos_parameters *)
6908                                           &(qos_parameters[0]));
6909         if (err)
6910                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6911
6912         return err;
6913 }
6914
6915 /*
6916 * send IPW_CMD_WME_INFO to the firmware
6917 */
6918 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6919 {
6920         int ret = 0;
6921         struct ieee80211_qos_information_element qos_info;
6922
6923         if (priv == NULL)
6924                 return -1;
6925
6926         qos_info.elementID = QOS_ELEMENT_ID;
6927         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6928
6929         qos_info.version = QOS_VERSION_1;
6930         qos_info.ac_info = 0;
6931
6932         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6933         qos_info.qui_type = QOS_OUI_TYPE;
6934         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6935
6936         ret = ipw_send_qos_info_command(priv, &qos_info);
6937         if (ret != 0) {
6938                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6939         }
6940         return ret;
6941 }
6942
6943 /*
6944 * Set the QoS parameter with the association request structure
6945 */
6946 static int ipw_qos_association(struct ipw_priv *priv,
6947                                struct ieee80211_network *network)
6948 {
6949         int err = 0;
6950         struct ieee80211_qos_data *qos_data = NULL;
6951         struct ieee80211_qos_data ibss_data = {
6952                 .supported = 1,
6953                 .active = 1,
6954         };
6955
6956         switch (priv->ieee->iw_mode) {
6957         case IW_MODE_ADHOC:
6958                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6959
6960                 qos_data = &ibss_data;
6961                 break;
6962
6963         case IW_MODE_INFRA:
6964                 qos_data = &network->qos_data;
6965                 break;
6966
6967         default:
6968                 BUG();
6969                 break;
6970         }
6971
6972         err = ipw_qos_activate(priv, qos_data);
6973         if (err) {
6974                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6975                 return err;
6976         }
6977
6978         if (priv->qos_data.qos_enable && qos_data->supported) {
6979                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6980                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6981                 return ipw_qos_set_info_element(priv);
6982         }
6983
6984         return 0;
6985 }
6986
6987 /*
6988 * handling the beaconing responses. if we get different QoS setting
6989 * off the network from the associated setting, adjust the QoS
6990 * setting
6991 */
6992 static int ipw_qos_association_resp(struct ipw_priv *priv,
6993                                     struct ieee80211_network *network)
6994 {
6995         int ret = 0;
6996         unsigned long flags;
6997         u32 size = sizeof(struct ieee80211_qos_parameters);
6998         int set_qos_param = 0;
6999
7000         if ((priv == NULL) || (network == NULL) ||
7001             (priv->assoc_network == NULL))
7002                 return ret;
7003
7004         if (!(priv->status & STATUS_ASSOCIATED))
7005                 return ret;
7006
7007         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7008                 return ret;
7009
7010         spin_lock_irqsave(&priv->ieee->lock, flags);
7011         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7012                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7013                        sizeof(struct ieee80211_qos_data));
7014                 priv->assoc_network->qos_data.active = 1;
7015                 if ((network->qos_data.old_param_count !=
7016                      network->qos_data.param_count)) {
7017                         set_qos_param = 1;
7018                         network->qos_data.old_param_count =
7019                             network->qos_data.param_count;
7020                 }
7021
7022         } else {
7023                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7024                         memcpy(&priv->assoc_network->qos_data.parameters,
7025                                &def_parameters_CCK, size);
7026                 else
7027                         memcpy(&priv->assoc_network->qos_data.parameters,
7028                                &def_parameters_OFDM, size);
7029                 priv->assoc_network->qos_data.active = 0;
7030                 priv->assoc_network->qos_data.supported = 0;
7031                 set_qos_param = 1;
7032         }
7033
7034         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7035
7036         if (set_qos_param == 1)
7037                 schedule_work(&priv->qos_activate);
7038
7039         return ret;
7040 }
7041
7042 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7043 {
7044         u32 ret = 0;
7045
7046         if ((priv == NULL))
7047                 return 0;
7048
7049         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7050                 ret = priv->qos_data.burst_duration_CCK;
7051         else
7052                 ret = priv->qos_data.burst_duration_OFDM;
7053
7054         return ret;
7055 }
7056
7057 /*
7058 * Initialize the setting of QoS global
7059 */
7060 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7061                          int burst_enable, u32 burst_duration_CCK,
7062                          u32 burst_duration_OFDM)
7063 {
7064         priv->qos_data.qos_enable = enable;
7065
7066         if (priv->qos_data.qos_enable) {
7067                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7068                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7069                 IPW_DEBUG_QOS("QoS is enabled\n");
7070         } else {
7071                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7072                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7073                 IPW_DEBUG_QOS("QoS is not enabled\n");
7074         }
7075
7076         priv->qos_data.burst_enable = burst_enable;
7077
7078         if (burst_enable) {
7079                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7080                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7081         } else {
7082                 priv->qos_data.burst_duration_CCK = 0;
7083                 priv->qos_data.burst_duration_OFDM = 0;
7084         }
7085 }
7086
7087 /*
7088 * map the packet priority to the right TX Queue
7089 */
7090 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7091 {
7092         if (priority > 7 || !priv->qos_data.qos_enable)
7093                 priority = 0;
7094
7095         return from_priority_to_tx_queue[priority] - 1;
7096 }
7097
7098 static int ipw_is_qos_active(struct net_device *dev,
7099                              struct sk_buff *skb)
7100 {
7101         struct ipw_priv *priv = ieee80211_priv(dev);
7102         struct ieee80211_qos_data *qos_data = NULL;
7103         int active, supported;
7104         u8 *daddr = skb->data + ETH_ALEN;
7105         int unicast = !is_multicast_ether_addr(daddr);
7106
7107         if (!(priv->status & STATUS_ASSOCIATED))
7108                 return 0;
7109
7110         qos_data = &priv->assoc_network->qos_data;
7111
7112         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7113                 if (unicast == 0)
7114                         qos_data->active = 0;
7115                 else
7116                         qos_data->active = qos_data->supported;
7117         }
7118         active = qos_data->active;
7119         supported = qos_data->supported;
7120         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7121                       "unicast %d\n",
7122                       priv->qos_data.qos_enable, active, supported, unicast);
7123         if (active && priv->qos_data.qos_enable)
7124                 return 1;
7125
7126         return 0;
7127
7128 }
7129 /*
7130 * add QoS parameter to the TX command
7131 */
7132 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7133                                         u16 priority,
7134                                         struct tfd_data *tfd)
7135 {
7136         int tx_queue_id = 0;
7137
7138
7139         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7140         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7141
7142         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7143                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7144                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7145         }
7146         return 0;
7147 }
7148
7149 /*
7150 * background support to run QoS activate functionality
7151 */
7152 static void ipw_bg_qos_activate(struct work_struct *work)
7153 {
7154         struct ipw_priv *priv =
7155                 container_of(work, struct ipw_priv, qos_activate);
7156
7157         if (priv == NULL)
7158                 return;
7159
7160         mutex_lock(&priv->mutex);
7161
7162         if (priv->status & STATUS_ASSOCIATED)
7163                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7164
7165         mutex_unlock(&priv->mutex);
7166 }
7167
7168 static int ipw_handle_probe_response(struct net_device *dev,
7169                                      struct ieee80211_probe_response *resp,
7170                                      struct ieee80211_network *network)
7171 {
7172         struct ipw_priv *priv = ieee80211_priv(dev);
7173         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7174                               (network == priv->assoc_network));
7175
7176         ipw_qos_handle_probe_response(priv, active_network, network);
7177
7178         return 0;
7179 }
7180
7181 static int ipw_handle_beacon(struct net_device *dev,
7182                              struct ieee80211_beacon *resp,
7183                              struct ieee80211_network *network)
7184 {
7185         struct ipw_priv *priv = ieee80211_priv(dev);
7186         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7187                               (network == priv->assoc_network));
7188
7189         ipw_qos_handle_probe_response(priv, active_network, network);
7190
7191         return 0;
7192 }
7193
7194 static int ipw_handle_assoc_response(struct net_device *dev,
7195                                      struct ieee80211_assoc_response *resp,
7196                                      struct ieee80211_network *network)
7197 {
7198         struct ipw_priv *priv = ieee80211_priv(dev);
7199         ipw_qos_association_resp(priv, network);
7200         return 0;
7201 }
7202
7203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7204                                        *qos_param)
7205 {
7206         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7207                                 sizeof(*qos_param) * 3, qos_param);
7208 }
7209
7210 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7211                                      *qos_param)
7212 {
7213         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7214                                 qos_param);
7215 }
7216
7217 #endif                          /* CONFIG_IPW2200_QOS */
7218
7219 static int ipw_associate_network(struct ipw_priv *priv,
7220                                  struct ieee80211_network *network,
7221                                  struct ipw_supported_rates *rates, int roaming)
7222 {
7223         int err;
7224
7225         if (priv->config & CFG_FIXED_RATE)
7226                 ipw_set_fixed_rate(priv, network->mode);
7227
7228         if (!(priv->config & CFG_STATIC_ESSID)) {
7229                 priv->essid_len = min(network->ssid_len,
7230                                       (u8) IW_ESSID_MAX_SIZE);
7231                 memcpy(priv->essid, network->ssid, priv->essid_len);
7232         }
7233
7234         network->last_associate = jiffies;
7235
7236         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7237         priv->assoc_request.channel = network->channel;
7238         priv->assoc_request.auth_key = 0;
7239
7240         if ((priv->capability & CAP_PRIVACY_ON) &&
7241             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7242                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7243                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7244
7245                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7246                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7247
7248         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7249                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7250                 priv->assoc_request.auth_type = AUTH_LEAP;
7251         else
7252                 priv->assoc_request.auth_type = AUTH_OPEN;
7253
7254         if (priv->ieee->wpa_ie_len) {
7255                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7256                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7257                                  priv->ieee->wpa_ie_len);
7258         }
7259
7260         /*
7261          * It is valid for our ieee device to support multiple modes, but
7262          * when it comes to associating to a given network we have to choose
7263          * just one mode.
7264          */
7265         if (network->mode & priv->ieee->mode & IEEE_A)
7266                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7267         else if (network->mode & priv->ieee->mode & IEEE_G)
7268                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7269         else if (network->mode & priv->ieee->mode & IEEE_B)
7270                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7271
7272         priv->assoc_request.capability = network->capability;
7273         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7274             && !(priv->config & CFG_PREAMBLE_LONG)) {
7275                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7276         } else {
7277                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7278
7279                 /* Clear the short preamble if we won't be supporting it */
7280                 priv->assoc_request.capability &=
7281                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7282         }
7283
7284         /* Clear capability bits that aren't used in Ad Hoc */
7285         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7286                 priv->assoc_request.capability &=
7287                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7288
7289         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7290                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7291                         roaming ? "Rea" : "A",
7292                         escape_essid(priv->essid, priv->essid_len),
7293                         network->channel,
7294                         ipw_modes[priv->assoc_request.ieee_mode],
7295                         rates->num_rates,
7296                         (priv->assoc_request.preamble_length ==
7297                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7298                         network->capability &
7299                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7300                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7301                         priv->capability & CAP_PRIVACY_ON ?
7302                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7303                          "(open)") : "",
7304                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7305                         priv->capability & CAP_PRIVACY_ON ?
7306                         '1' + priv->ieee->sec.active_key : '.',
7307                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7308
7309         priv->assoc_request.beacon_interval = network->beacon_interval;
7310         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7311             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7312                 priv->assoc_request.assoc_type = HC_IBSS_START;
7313                 priv->assoc_request.assoc_tsf_msw = 0;
7314                 priv->assoc_request.assoc_tsf_lsw = 0;
7315         } else {
7316                 if (unlikely(roaming))
7317                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7318                 else
7319                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7320                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7321                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7322         }
7323
7324         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7325
7326         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7327                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7328                 priv->assoc_request.atim_window = network->atim_window;
7329         } else {
7330                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7331                 priv->assoc_request.atim_window = 0;
7332         }
7333
7334         priv->assoc_request.listen_interval = network->listen_interval;
7335
7336         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7337         if (err) {
7338                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7339                 return err;
7340         }
7341
7342         rates->ieee_mode = priv->assoc_request.ieee_mode;
7343         rates->purpose = IPW_RATE_CONNECT;
7344         ipw_send_supported_rates(priv, rates);
7345
7346         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7347                 priv->sys_config.dot11g_auto_detection = 1;
7348         else
7349                 priv->sys_config.dot11g_auto_detection = 0;
7350
7351         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7352                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7353         else
7354                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7355
7356         err = ipw_send_system_config(priv);
7357         if (err) {
7358                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7359                 return err;
7360         }
7361
7362         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7363         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7364         if (err) {
7365                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7366                 return err;
7367         }
7368
7369         /*
7370          * If preemption is enabled, it is possible for the association
7371          * to complete before we return from ipw_send_associate.  Therefore
7372          * we have to be sure and update our priviate data first.
7373          */
7374         priv->channel = network->channel;
7375         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7376         priv->status |= STATUS_ASSOCIATING;
7377         priv->status &= ~STATUS_SECURITY_UPDATED;
7378
7379         priv->assoc_network = network;
7380
7381 #ifdef CONFIG_IPW2200_QOS
7382         ipw_qos_association(priv, network);
7383 #endif
7384
7385         err = ipw_send_associate(priv, &priv->assoc_request);
7386         if (err) {
7387                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7388                 return err;
7389         }
7390
7391         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7392                   escape_essid(priv->essid, priv->essid_len),
7393                   MAC_ARG(priv->bssid));
7394
7395         return 0;
7396 }
7397
7398 static void ipw_roam(void *data)
7399 {
7400         struct ipw_priv *priv = data;
7401         struct ieee80211_network *network = NULL;
7402         struct ipw_network_match match = {
7403                 .network = priv->assoc_network
7404         };
7405
7406         /* The roaming process is as follows:
7407          *
7408          * 1.  Missed beacon threshold triggers the roaming process by
7409          *     setting the status ROAM bit and requesting a scan.
7410          * 2.  When the scan completes, it schedules the ROAM work
7411          * 3.  The ROAM work looks at all of the known networks for one that
7412          *     is a better network than the currently associated.  If none
7413          *     found, the ROAM process is over (ROAM bit cleared)
7414          * 4.  If a better network is found, a disassociation request is
7415          *     sent.
7416          * 5.  When the disassociation completes, the roam work is again
7417          *     scheduled.  The second time through, the driver is no longer
7418          *     associated, and the newly selected network is sent an
7419          *     association request.
7420          * 6.  At this point ,the roaming process is complete and the ROAM
7421          *     status bit is cleared.
7422          */
7423
7424         /* If we are no longer associated, and the roaming bit is no longer
7425          * set, then we are not actively roaming, so just return */
7426         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7427                 return;
7428
7429         if (priv->status & STATUS_ASSOCIATED) {
7430                 /* First pass through ROAM process -- look for a better
7431                  * network */
7432                 unsigned long flags;
7433                 u8 rssi = priv->assoc_network->stats.rssi;
7434                 priv->assoc_network->stats.rssi = -128;
7435                 spin_lock_irqsave(&priv->ieee->lock, flags);
7436                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7437                         if (network != priv->assoc_network)
7438                                 ipw_best_network(priv, &match, network, 1);
7439                 }
7440                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7441                 priv->assoc_network->stats.rssi = rssi;
7442
7443                 if (match.network == priv->assoc_network) {
7444                         IPW_DEBUG_ASSOC("No better APs in this network to "
7445                                         "roam to.\n");
7446                         priv->status &= ~STATUS_ROAMING;
7447                         ipw_debug_config(priv);
7448                         return;
7449                 }
7450
7451                 ipw_send_disassociate(priv, 1);
7452                 priv->assoc_network = match.network;
7453
7454                 return;
7455         }
7456
7457         /* Second pass through ROAM process -- request association */
7458         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7459         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7460         priv->status &= ~STATUS_ROAMING;
7461 }
7462
7463 static void ipw_bg_roam(struct work_struct *work)
7464 {
7465         struct ipw_priv *priv =
7466                 container_of(work, struct ipw_priv, roam);
7467         mutex_lock(&priv->mutex);
7468         ipw_roam(priv);
7469         mutex_unlock(&priv->mutex);
7470 }
7471
7472 static int ipw_associate(void *data)
7473 {
7474         struct ipw_priv *priv = data;
7475
7476         struct ieee80211_network *network = NULL;
7477         struct ipw_network_match match = {
7478                 .network = NULL
7479         };
7480         struct ipw_supported_rates *rates;
7481         struct list_head *element;
7482         unsigned long flags;
7483
7484         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7485                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7486                 return 0;
7487         }
7488
7489         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7490                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7491                                 "progress)\n");
7492                 return 0;
7493         }
7494
7495         if (priv->status & STATUS_DISASSOCIATING) {
7496                 IPW_DEBUG_ASSOC("Not attempting association (in "
7497                                 "disassociating)\n ");
7498                 queue_work(priv->workqueue, &priv->associate);
7499                 return 0;
7500         }
7501
7502         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7503                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7504                                 "initialized)\n");
7505                 return 0;
7506         }
7507
7508         if (!(priv->config & CFG_ASSOCIATE) &&
7509             !(priv->config & (CFG_STATIC_ESSID |
7510                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7511                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7512                 return 0;
7513         }
7514
7515         /* Protect our use of the network_list */
7516         spin_lock_irqsave(&priv->ieee->lock, flags);
7517         list_for_each_entry(network, &priv->ieee->network_list, list)
7518             ipw_best_network(priv, &match, network, 0);
7519
7520         network = match.network;
7521         rates = &match.rates;
7522
7523         if (network == NULL &&
7524             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7525             priv->config & CFG_ADHOC_CREATE &&
7526             priv->config & CFG_STATIC_ESSID &&
7527             priv->config & CFG_STATIC_CHANNEL &&
7528             !list_empty(&priv->ieee->network_free_list)) {
7529                 element = priv->ieee->network_free_list.next;
7530                 network = list_entry(element, struct ieee80211_network, list);
7531                 ipw_adhoc_create(priv, network);
7532                 rates = &priv->rates;
7533                 list_del(element);
7534                 list_add_tail(&network->list, &priv->ieee->network_list);
7535         }
7536         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7537
7538         /* If we reached the end of the list, then we don't have any valid
7539          * matching APs */
7540         if (!network) {
7541                 ipw_debug_config(priv);
7542
7543                 if (!(priv->status & STATUS_SCANNING)) {
7544                         if (!(priv->config & CFG_SPEED_SCAN))
7545                                 queue_delayed_work(priv->workqueue,
7546                                                    &priv->request_scan,
7547                                                    SCAN_INTERVAL);
7548                         else
7549                                 queue_delayed_work(priv->workqueue,
7550                                                    &priv->request_scan, 0);
7551                 }
7552
7553                 return 0;
7554         }
7555
7556         ipw_associate_network(priv, network, rates, 0);
7557
7558         return 1;
7559 }
7560
7561 static void ipw_bg_associate(struct work_struct *work)
7562 {
7563         struct ipw_priv *priv =
7564                 container_of(work, struct ipw_priv, associate);
7565         mutex_lock(&priv->mutex);
7566         ipw_associate(priv);
7567         mutex_unlock(&priv->mutex);
7568 }
7569
7570 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7571                                       struct sk_buff *skb)
7572 {
7573         struct ieee80211_hdr *hdr;
7574         u16 fc;
7575
7576         hdr = (struct ieee80211_hdr *)skb->data;
7577         fc = le16_to_cpu(hdr->frame_ctl);
7578         if (!(fc & IEEE80211_FCTL_PROTECTED))
7579                 return;
7580
7581         fc &= ~IEEE80211_FCTL_PROTECTED;
7582         hdr->frame_ctl = cpu_to_le16(fc);
7583         switch (priv->ieee->sec.level) {
7584         case SEC_LEVEL_3:
7585                 /* Remove CCMP HDR */
7586                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7587                         skb->data + IEEE80211_3ADDR_LEN + 8,
7588                         skb->len - IEEE80211_3ADDR_LEN - 8);
7589                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7590                 break;
7591         case SEC_LEVEL_2:
7592                 break;
7593         case SEC_LEVEL_1:
7594                 /* Remove IV */
7595                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7596                         skb->data + IEEE80211_3ADDR_LEN + 4,
7597                         skb->len - IEEE80211_3ADDR_LEN - 4);
7598                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7599                 break;
7600         case SEC_LEVEL_0:
7601                 break;
7602         default:
7603                 printk(KERN_ERR "Unknow security level %d\n",
7604                        priv->ieee->sec.level);
7605                 break;
7606         }
7607 }
7608
7609 static void ipw_handle_data_packet(struct ipw_priv *priv,
7610                                    struct ipw_rx_mem_buffer *rxb,
7611                                    struct ieee80211_rx_stats *stats)
7612 {
7613         struct ieee80211_hdr_4addr *hdr;
7614         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7615
7616         /* We received data from the HW, so stop the watchdog */
7617         priv->net_dev->trans_start = jiffies;
7618
7619         /* We only process data packets if the
7620          * interface is open */
7621         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7622                      skb_tailroom(rxb->skb))) {
7623                 priv->ieee->stats.rx_errors++;
7624                 priv->wstats.discard.misc++;
7625                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7626                 return;
7627         } else if (unlikely(!netif_running(priv->net_dev))) {
7628                 priv->ieee->stats.rx_dropped++;
7629                 priv->wstats.discard.misc++;
7630                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7631                 return;
7632         }
7633
7634         /* Advance skb->data to the start of the actual payload */
7635         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7636
7637         /* Set the size of the skb to the size of the frame */
7638         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7639
7640         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7641
7642         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7643         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7644         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7645             (is_multicast_ether_addr(hdr->addr1) ?
7646              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7647                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7648
7649         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7650                 priv->ieee->stats.rx_errors++;
7651         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7652                 rxb->skb = NULL;
7653                 __ipw_led_activity_on(priv);
7654         }
7655 }
7656
7657 #ifdef CONFIG_IPW2200_RADIOTAP
7658 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7659                                            struct ipw_rx_mem_buffer *rxb,
7660                                            struct ieee80211_rx_stats *stats)
7661 {
7662         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7663         struct ipw_rx_frame *frame = &pkt->u.frame;
7664
7665         /* initial pull of some data */
7666         u16 received_channel = frame->received_channel;
7667         u8 antennaAndPhy = frame->antennaAndPhy;
7668         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7669         u16 pktrate = frame->rate;
7670
7671         /* Magic struct that slots into the radiotap header -- no reason
7672          * to build this manually element by element, we can write it much
7673          * more efficiently than we can parse it. ORDER MATTERS HERE */
7674         struct ipw_rt_hdr *ipw_rt;
7675
7676         short len = le16_to_cpu(pkt->u.frame.length);
7677
7678         /* We received data from the HW, so stop the watchdog */
7679         priv->net_dev->trans_start = jiffies;
7680
7681         /* We only process data packets if the
7682          * interface is open */
7683         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7684                      skb_tailroom(rxb->skb))) {
7685                 priv->ieee->stats.rx_errors++;
7686                 priv->wstats.discard.misc++;
7687                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7688                 return;
7689         } else if (unlikely(!netif_running(priv->net_dev))) {
7690                 priv->ieee->stats.rx_dropped++;
7691                 priv->wstats.discard.misc++;
7692                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7693                 return;
7694         }
7695
7696         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7697          * that now */
7698         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7699                 /* FIXME: Should alloc bigger skb instead */
7700                 priv->ieee->stats.rx_dropped++;
7701                 priv->wstats.discard.misc++;
7702                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7703                 return;
7704         }
7705
7706         /* copy the frame itself */
7707         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7708                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7709
7710         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7711          * part of our real header, saves a little time.
7712          *
7713          * No longer necessary since we fill in all our data.  Purge before merging
7714          * patch officially.
7715          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7716          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7717          */
7718
7719         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7720
7721         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7722         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7723         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7724
7725         /* Big bitfield of all the fields we provide in radiotap */
7726         ipw_rt->rt_hdr.it_present =
7727             ((1 << IEEE80211_RADIOTAP_TSFT) |
7728              (1 << IEEE80211_RADIOTAP_FLAGS) |
7729              (1 << IEEE80211_RADIOTAP_RATE) |
7730              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7731              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7732              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7733              (1 << IEEE80211_RADIOTAP_ANTENNA));
7734
7735         /* Zero the flags, we'll add to them as we go */
7736         ipw_rt->rt_flags = 0;
7737         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7738                                frame->parent_tsf[2] << 16 |
7739                                frame->parent_tsf[1] << 8  |
7740                                frame->parent_tsf[0]);
7741
7742         /* Convert signal to DBM */
7743         ipw_rt->rt_dbmsignal = antsignal;
7744         ipw_rt->rt_dbmnoise = frame->noise;
7745
7746         /* Convert the channel data and set the flags */
7747         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7748         if (received_channel > 14) {    /* 802.11a */
7749                 ipw_rt->rt_chbitmask =
7750                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7751         } else if (antennaAndPhy & 32) {        /* 802.11b */
7752                 ipw_rt->rt_chbitmask =
7753                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7754         } else {                /* 802.11g */
7755                 ipw_rt->rt_chbitmask =
7756                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7757         }
7758
7759         /* set the rate in multiples of 500k/s */
7760         switch (pktrate) {
7761         case IPW_TX_RATE_1MB:
7762                 ipw_rt->rt_rate = 2;
7763                 break;
7764         case IPW_TX_RATE_2MB:
7765                 ipw_rt->rt_rate = 4;
7766                 break;
7767         case IPW_TX_RATE_5MB:
7768                 ipw_rt->rt_rate = 10;
7769                 break;
7770         case IPW_TX_RATE_6MB:
7771                 ipw_rt->rt_rate = 12;
7772                 break;
7773         case IPW_TX_RATE_9MB:
7774                 ipw_rt->rt_rate = 18;
7775                 break;
7776         case IPW_TX_RATE_11MB:
7777                 ipw_rt->rt_rate = 22;
7778                 break;
7779         case IPW_TX_RATE_12MB:
7780                 ipw_rt->rt_rate = 24;
7781                 break;
7782         case IPW_TX_RATE_18MB:
7783                 ipw_rt->rt_rate = 36;
7784                 break;
7785         case IPW_TX_RATE_24MB:
7786                 ipw_rt->rt_rate = 48;
7787                 break;
7788         case IPW_TX_RATE_36MB:
7789                 ipw_rt->rt_rate = 72;
7790                 break;
7791         case IPW_TX_RATE_48MB:
7792                 ipw_rt->rt_rate = 96;
7793                 break;
7794         case IPW_TX_RATE_54MB:
7795                 ipw_rt->rt_rate = 108;
7796                 break;
7797         default:
7798                 ipw_rt->rt_rate = 0;
7799                 break;
7800         }
7801
7802         /* antenna number */
7803         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7804
7805         /* set the preamble flag if we have it */
7806         if ((antennaAndPhy & 64))
7807                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7808
7809         /* Set the size of the skb to the size of the frame */
7810         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7811
7812         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7813
7814         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7815                 priv->ieee->stats.rx_errors++;
7816         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7817                 rxb->skb = NULL;
7818                 /* no LED during capture */
7819         }
7820 }
7821 #endif
7822
7823 #ifdef CONFIG_IPW2200_PROMISCUOUS
7824 #define ieee80211_is_probe_response(fc) \
7825    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7826     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7827
7828 #define ieee80211_is_management(fc) \
7829    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7830
7831 #define ieee80211_is_control(fc) \
7832    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7833
7834 #define ieee80211_is_data(fc) \
7835    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7836
7837 #define ieee80211_is_assoc_request(fc) \
7838    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7839
7840 #define ieee80211_is_reassoc_request(fc) \
7841    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7842
7843 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7844                                       struct ipw_rx_mem_buffer *rxb,
7845                                       struct ieee80211_rx_stats *stats)
7846 {
7847         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7848         struct ipw_rx_frame *frame = &pkt->u.frame;
7849         struct ipw_rt_hdr *ipw_rt;
7850
7851         /* First cache any information we need before we overwrite
7852          * the information provided in the skb from the hardware */
7853         struct ieee80211_hdr *hdr;
7854         u16 channel = frame->received_channel;
7855         u8 phy_flags = frame->antennaAndPhy;
7856         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7857         s8 noise = frame->noise;
7858         u8 rate = frame->rate;
7859         short len = le16_to_cpu(pkt->u.frame.length);
7860         struct sk_buff *skb;
7861         int hdr_only = 0;
7862         u16 filter = priv->prom_priv->filter;
7863
7864         /* If the filter is set to not include Rx frames then return */
7865         if (filter & IPW_PROM_NO_RX)
7866                 return;
7867
7868         /* We received data from the HW, so stop the watchdog */
7869         priv->prom_net_dev->trans_start = jiffies;
7870
7871         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7872                 priv->prom_priv->ieee->stats.rx_errors++;
7873                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7874                 return;
7875         }
7876
7877         /* We only process data packets if the interface is open */
7878         if (unlikely(!netif_running(priv->prom_net_dev))) {
7879                 priv->prom_priv->ieee->stats.rx_dropped++;
7880                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7881                 return;
7882         }
7883
7884         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7885          * that now */
7886         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7887                 /* FIXME: Should alloc bigger skb instead */
7888                 priv->prom_priv->ieee->stats.rx_dropped++;
7889                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7890                 return;
7891         }
7892
7893         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7894         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7895                 if (filter & IPW_PROM_NO_MGMT)
7896                         return;
7897                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7898                         hdr_only = 1;
7899         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7900                 if (filter & IPW_PROM_NO_CTL)
7901                         return;
7902                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7903                         hdr_only = 1;
7904         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7905                 if (filter & IPW_PROM_NO_DATA)
7906                         return;
7907                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7908                         hdr_only = 1;
7909         }
7910
7911         /* Copy the SKB since this is for the promiscuous side */
7912         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7913         if (skb == NULL) {
7914                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7915                 return;
7916         }
7917
7918         /* copy the frame data to write after where the radiotap header goes */
7919         ipw_rt = (void *)skb->data;
7920
7921         if (hdr_only)
7922                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7923
7924         memcpy(ipw_rt->payload, hdr, len);
7925
7926         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7927          * NOT part of our real header, saves a little time.
7928          *
7929          * No longer necessary since we fill in all our data.  Purge before
7930          * merging patch officially.
7931          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7932          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7933          */
7934
7935         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7936         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7937         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7938
7939         /* Set the size of the skb to the size of the frame */
7940         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7941
7942         /* Big bitfield of all the fields we provide in radiotap */
7943         ipw_rt->rt_hdr.it_present =
7944             ((1 << IEEE80211_RADIOTAP_TSFT) |
7945              (1 << IEEE80211_RADIOTAP_FLAGS) |
7946              (1 << IEEE80211_RADIOTAP_RATE) |
7947              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7948              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7949              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7950              (1 << IEEE80211_RADIOTAP_ANTENNA));
7951
7952         /* Zero the flags, we'll add to them as we go */
7953         ipw_rt->rt_flags = 0;
7954         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7955                                frame->parent_tsf[2] << 16 |
7956                                frame->parent_tsf[1] << 8  |
7957                                frame->parent_tsf[0]);
7958
7959         /* Convert to DBM */
7960         ipw_rt->rt_dbmsignal = signal;
7961         ipw_rt->rt_dbmnoise = noise;
7962
7963         /* Convert the channel data and set the flags */
7964         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7965         if (channel > 14) {     /* 802.11a */
7966                 ipw_rt->rt_chbitmask =
7967                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7968         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
7969                 ipw_rt->rt_chbitmask =
7970                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7971         } else {                /* 802.11g */
7972                 ipw_rt->rt_chbitmask =
7973                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7974         }
7975
7976         /* set the rate in multiples of 500k/s */
7977         switch (rate) {
7978         case IPW_TX_RATE_1MB:
7979                 ipw_rt->rt_rate = 2;
7980                 break;
7981         case IPW_TX_RATE_2MB:
7982                 ipw_rt->rt_rate = 4;
7983                 break;
7984         case IPW_TX_RATE_5MB:
7985                 ipw_rt->rt_rate = 10;
7986                 break;
7987         case IPW_TX_RATE_6MB:
7988                 ipw_rt->rt_rate = 12;
7989                 break;
7990         case IPW_TX_RATE_9MB:
7991                 ipw_rt->rt_rate = 18;
7992                 break;
7993         case IPW_TX_RATE_11MB:
7994                 ipw_rt->rt_rate = 22;
7995                 break;
7996         case IPW_TX_RATE_12MB:
7997                 ipw_rt->rt_rate = 24;
7998                 break;
7999         case IPW_TX_RATE_18MB:
8000                 ipw_rt->rt_rate = 36;
8001                 break;
8002         case IPW_TX_RATE_24MB:
8003                 ipw_rt->rt_rate = 48;
8004                 break;
8005         case IPW_TX_RATE_36MB:
8006                 ipw_rt->rt_rate = 72;
8007                 break;
8008         case IPW_TX_RATE_48MB:
8009                 ipw_rt->rt_rate = 96;
8010                 break;
8011         case IPW_TX_RATE_54MB:
8012                 ipw_rt->rt_rate = 108;
8013                 break;
8014         default:
8015                 ipw_rt->rt_rate = 0;
8016                 break;
8017         }
8018
8019         /* antenna number */
8020         ipw_rt->rt_antenna = (phy_flags & 3);
8021
8022         /* set the preamble flag if we have it */
8023         if (phy_flags & (1 << 6))
8024                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8025
8026         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8027
8028         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8029                 priv->prom_priv->ieee->stats.rx_errors++;
8030                 dev_kfree_skb_any(skb);
8031         }
8032 }
8033 #endif
8034
8035 static int is_network_packet(struct ipw_priv *priv,
8036                                     struct ieee80211_hdr_4addr *header)
8037 {
8038         /* Filter incoming packets to determine if they are targetted toward
8039          * this network, discarding packets coming from ourselves */
8040         switch (priv->ieee->iw_mode) {
8041         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8042                 /* packets from our adapter are dropped (echo) */
8043                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8044                         return 0;
8045
8046                 /* {broad,multi}cast packets to our BSSID go through */
8047                 if (is_multicast_ether_addr(header->addr1))
8048                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8049
8050                 /* packets to our adapter go through */
8051                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8052                                ETH_ALEN);
8053
8054         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8055                 /* packets from our adapter are dropped (echo) */
8056                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8057                         return 0;
8058
8059                 /* {broad,multi}cast packets to our BSS go through */
8060                 if (is_multicast_ether_addr(header->addr1))
8061                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8062
8063                 /* packets to our adapter go through */
8064                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8065                                ETH_ALEN);
8066         }
8067
8068         return 1;
8069 }
8070
8071 #define IPW_PACKET_RETRY_TIME HZ
8072
8073 static  int is_duplicate_packet(struct ipw_priv *priv,
8074                                       struct ieee80211_hdr_4addr *header)
8075 {
8076         u16 sc = le16_to_cpu(header->seq_ctl);
8077         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8078         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8079         u16 *last_seq, *last_frag;
8080         unsigned long *last_time;
8081
8082         switch (priv->ieee->iw_mode) {
8083         case IW_MODE_ADHOC:
8084                 {
8085                         struct list_head *p;
8086                         struct ipw_ibss_seq *entry = NULL;
8087                         u8 *mac = header->addr2;
8088                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8089
8090                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8091                                 entry =
8092                                     list_entry(p, struct ipw_ibss_seq, list);
8093                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8094                                         break;
8095                         }
8096                         if (p == &priv->ibss_mac_hash[index]) {
8097                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8098                                 if (!entry) {
8099                                         IPW_ERROR
8100                                             ("Cannot malloc new mac entry\n");
8101                                         return 0;
8102                                 }
8103                                 memcpy(entry->mac, mac, ETH_ALEN);
8104                                 entry->seq_num = seq;
8105                                 entry->frag_num = frag;
8106                                 entry->packet_time = jiffies;
8107                                 list_add(&entry->list,
8108                                          &priv->ibss_mac_hash[index]);
8109                                 return 0;
8110                         }
8111                         last_seq = &entry->seq_num;
8112                         last_frag = &entry->frag_num;
8113                         last_time = &entry->packet_time;
8114                         break;
8115                 }
8116         case IW_MODE_INFRA:
8117                 last_seq = &priv->last_seq_num;
8118                 last_frag = &priv->last_frag_num;
8119                 last_time = &priv->last_packet_time;
8120                 break;
8121         default:
8122                 return 0;
8123         }
8124         if ((*last_seq == seq) &&
8125             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8126                 if (*last_frag == frag)
8127                         goto drop;
8128                 if (*last_frag + 1 != frag)
8129                         /* out-of-order fragment */
8130                         goto drop;
8131         } else
8132                 *last_seq = seq;
8133
8134         *last_frag = frag;
8135         *last_time = jiffies;
8136         return 0;
8137
8138       drop:
8139         /* Comment this line now since we observed the card receives
8140          * duplicate packets but the FCTL_RETRY bit is not set in the
8141          * IBSS mode with fragmentation enabled.
8142          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8143         return 1;
8144 }
8145
8146 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8147                                    struct ipw_rx_mem_buffer *rxb,
8148                                    struct ieee80211_rx_stats *stats)
8149 {
8150         struct sk_buff *skb = rxb->skb;
8151         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8152         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8153             (skb->data + IPW_RX_FRAME_SIZE);
8154
8155         ieee80211_rx_mgt(priv->ieee, header, stats);
8156
8157         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8158             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8159               IEEE80211_STYPE_PROBE_RESP) ||
8160              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8161               IEEE80211_STYPE_BEACON))) {
8162                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8163                         ipw_add_station(priv, header->addr2);
8164         }
8165
8166         if (priv->config & CFG_NET_STATS) {
8167                 IPW_DEBUG_HC("sending stat packet\n");
8168
8169                 /* Set the size of the skb to the size of the full
8170                  * ipw header and 802.11 frame */
8171                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8172                         IPW_RX_FRAME_SIZE);
8173
8174                 /* Advance past the ipw packet header to the 802.11 frame */
8175                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8176
8177                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8178                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8179
8180                 skb->dev = priv->ieee->dev;
8181
8182                 /* Point raw at the ieee80211_stats */
8183                 skb_reset_mac_header(skb);
8184
8185                 skb->pkt_type = PACKET_OTHERHOST;
8186                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8187                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8188                 netif_rx(skb);
8189                 rxb->skb = NULL;
8190         }
8191 }
8192
8193 /*
8194  * Main entry function for recieving a packet with 80211 headers.  This
8195  * should be called when ever the FW has notified us that there is a new
8196  * skb in the recieve queue.
8197  */
8198 static void ipw_rx(struct ipw_priv *priv)
8199 {
8200         struct ipw_rx_mem_buffer *rxb;
8201         struct ipw_rx_packet *pkt;
8202         struct ieee80211_hdr_4addr *header;
8203         u32 r, w, i;
8204         u8 network_packet;
8205
8206         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8207         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8208         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8209
8210         while (i != r) {
8211                 rxb = priv->rxq->queue[i];
8212                 if (unlikely(rxb == NULL)) {
8213                         printk(KERN_CRIT "Queue not allocated!\n");
8214                         break;
8215                 }
8216                 priv->rxq->queue[i] = NULL;
8217
8218                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8219                                             IPW_RX_BUF_SIZE,
8220                                             PCI_DMA_FROMDEVICE);
8221
8222                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8223                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8224                              pkt->header.message_type,
8225                              pkt->header.rx_seq_num, pkt->header.control_bits);
8226
8227                 switch (pkt->header.message_type) {
8228                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8229                                 struct ieee80211_rx_stats stats = {
8230                                         .rssi = pkt->u.frame.rssi_dbm -
8231                                             IPW_RSSI_TO_DBM,
8232                                         .signal =
8233                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8234                                             IPW_RSSI_TO_DBM + 0x100,
8235                                         .noise =
8236                                             le16_to_cpu(pkt->u.frame.noise),
8237                                         .rate = pkt->u.frame.rate,
8238                                         .mac_time = jiffies,
8239                                         .received_channel =
8240                                             pkt->u.frame.received_channel,
8241                                         .freq =
8242                                             (pkt->u.frame.
8243                                              control & (1 << 0)) ?
8244                                             IEEE80211_24GHZ_BAND :
8245                                             IEEE80211_52GHZ_BAND,
8246                                         .len = le16_to_cpu(pkt->u.frame.length),
8247                                 };
8248
8249                                 if (stats.rssi != 0)
8250                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8251                                 if (stats.signal != 0)
8252                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8253                                 if (stats.noise != 0)
8254                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8255                                 if (stats.rate != 0)
8256                                         stats.mask |= IEEE80211_STATMASK_RATE;
8257
8258                                 priv->rx_packets++;
8259
8260 #ifdef CONFIG_IPW2200_PROMISCUOUS
8261         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8262                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8263 #endif
8264
8265 #ifdef CONFIG_IPW2200_MONITOR
8266                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8267 #ifdef CONFIG_IPW2200_RADIOTAP
8268
8269                 ipw_handle_data_packet_monitor(priv,
8270                                                rxb,
8271                                                &stats);
8272 #else
8273                 ipw_handle_data_packet(priv, rxb,
8274                                        &stats);
8275 #endif
8276                                         break;
8277                                 }
8278 #endif
8279
8280                                 header =
8281                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8282                                                                    data +
8283                                                                    IPW_RX_FRAME_SIZE);
8284                                 /* TODO: Check Ad-Hoc dest/source and make sure
8285                                  * that we are actually parsing these packets
8286                                  * correctly -- we should probably use the
8287                                  * frame control of the packet and disregard
8288                                  * the current iw_mode */
8289
8290                                 network_packet =
8291                                     is_network_packet(priv, header);
8292                                 if (network_packet && priv->assoc_network) {
8293                                         priv->assoc_network->stats.rssi =
8294                                             stats.rssi;
8295                                         priv->exp_avg_rssi =
8296                                             exponential_average(priv->exp_avg_rssi,
8297                                             stats.rssi, DEPTH_RSSI);
8298                                 }
8299
8300                                 IPW_DEBUG_RX("Frame: len=%u\n",
8301                                              le16_to_cpu(pkt->u.frame.length));
8302
8303                                 if (le16_to_cpu(pkt->u.frame.length) <
8304                                     ieee80211_get_hdrlen(le16_to_cpu(
8305                                                     header->frame_ctl))) {
8306                                         IPW_DEBUG_DROP
8307                                             ("Received packet is too small. "
8308                                              "Dropping.\n");
8309                                         priv->ieee->stats.rx_errors++;
8310                                         priv->wstats.discard.misc++;
8311                                         break;
8312                                 }
8313
8314                                 switch (WLAN_FC_GET_TYPE
8315                                         (le16_to_cpu(header->frame_ctl))) {
8316
8317                                 case IEEE80211_FTYPE_MGMT:
8318                                         ipw_handle_mgmt_packet(priv, rxb,
8319                                                                &stats);
8320                                         break;
8321
8322                                 case IEEE80211_FTYPE_CTL:
8323                                         break;
8324
8325                                 case IEEE80211_FTYPE_DATA:
8326                                         if (unlikely(!network_packet ||
8327                                                      is_duplicate_packet(priv,
8328                                                                          header)))
8329                                         {
8330                                                 IPW_DEBUG_DROP("Dropping: "
8331                                                                MAC_FMT ", "
8332                                                                MAC_FMT ", "
8333                                                                MAC_FMT "\n",
8334                                                                MAC_ARG(header->
8335                                                                        addr1),
8336                                                                MAC_ARG(header->
8337                                                                        addr2),
8338                                                                MAC_ARG(header->
8339                                                                        addr3));
8340                                                 break;
8341                                         }
8342
8343                                         ipw_handle_data_packet(priv, rxb,
8344                                                                &stats);
8345
8346                                         break;
8347                                 }
8348                                 break;
8349                         }
8350
8351                 case RX_HOST_NOTIFICATION_TYPE:{
8352                                 IPW_DEBUG_RX
8353                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8354                                      pkt->u.notification.subtype,
8355                                      pkt->u.notification.flags,
8356                                      le16_to_cpu(pkt->u.notification.size));
8357                                 ipw_rx_notification(priv, &pkt->u.notification);
8358                                 break;
8359                         }
8360
8361                 default:
8362                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8363                                      pkt->header.message_type);
8364                         break;
8365                 }
8366
8367                 /* For now we just don't re-use anything.  We can tweak this
8368                  * later to try and re-use notification packets and SKBs that
8369                  * fail to Rx correctly */
8370                 if (rxb->skb != NULL) {
8371                         dev_kfree_skb_any(rxb->skb);
8372                         rxb->skb = NULL;
8373                 }
8374
8375                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8376                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8377                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8378
8379                 i = (i + 1) % RX_QUEUE_SIZE;
8380         }
8381
8382         /* Backtrack one entry */
8383         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8384
8385         ipw_rx_queue_restock(priv);
8386 }
8387
8388 #define DEFAULT_RTS_THRESHOLD     2304U
8389 #define MIN_RTS_THRESHOLD         1U
8390 #define MAX_RTS_THRESHOLD         2304U
8391 #define DEFAULT_BEACON_INTERVAL   100U
8392 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8393 #define DEFAULT_LONG_RETRY_LIMIT  4U
8394
8395 /**
8396  * ipw_sw_reset
8397  * @option: options to control different reset behaviour
8398  *          0 = reset everything except the 'disable' module_param
8399  *          1 = reset everything and print out driver info (for probe only)
8400  *          2 = reset everything
8401  */
8402 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8403 {
8404         int band, modulation;
8405         int old_mode = priv->ieee->iw_mode;
8406
8407         /* Initialize module parameter values here */
8408         priv->config = 0;
8409
8410         /* We default to disabling the LED code as right now it causes
8411          * too many systems to lock up... */
8412         if (!led)
8413                 priv->config |= CFG_NO_LED;
8414
8415         if (associate)
8416                 priv->config |= CFG_ASSOCIATE;
8417         else
8418                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8419
8420         if (auto_create)
8421                 priv->config |= CFG_ADHOC_CREATE;
8422         else
8423                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8424
8425         priv->config &= ~CFG_STATIC_ESSID;
8426         priv->essid_len = 0;
8427         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8428
8429         if (disable && option) {
8430                 priv->status |= STATUS_RF_KILL_SW;
8431                 IPW_DEBUG_INFO("Radio disabled.\n");
8432         }
8433
8434         if (channel != 0) {
8435                 priv->config |= CFG_STATIC_CHANNEL;
8436                 priv->channel = channel;
8437                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8438                 /* TODO: Validate that provided channel is in range */
8439         }
8440 #ifdef CONFIG_IPW2200_QOS
8441         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8442                      burst_duration_CCK, burst_duration_OFDM);
8443 #endif                          /* CONFIG_IPW2200_QOS */
8444
8445         switch (mode) {
8446         case 1:
8447                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8448                 priv->net_dev->type = ARPHRD_ETHER;
8449
8450                 break;
8451 #ifdef CONFIG_IPW2200_MONITOR
8452         case 2:
8453                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8454 #ifdef CONFIG_IPW2200_RADIOTAP
8455                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8456 #else
8457                 priv->net_dev->type = ARPHRD_IEEE80211;
8458 #endif
8459                 break;
8460 #endif
8461         default:
8462         case 0:
8463                 priv->net_dev->type = ARPHRD_ETHER;
8464                 priv->ieee->iw_mode = IW_MODE_INFRA;
8465                 break;
8466         }
8467
8468         if (hwcrypto) {
8469                 priv->ieee->host_encrypt = 0;
8470                 priv->ieee->host_encrypt_msdu = 0;
8471                 priv->ieee->host_decrypt = 0;
8472                 priv->ieee->host_mc_decrypt = 0;
8473         }
8474         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8475
8476         /* IPW2200/2915 is abled to do hardware fragmentation. */
8477         priv->ieee->host_open_frag = 0;
8478
8479         if ((priv->pci_dev->device == 0x4223) ||
8480             (priv->pci_dev->device == 0x4224)) {
8481                 if (option == 1)
8482                         printk(KERN_INFO DRV_NAME
8483                                ": Detected Intel PRO/Wireless 2915ABG Network "
8484                                "Connection\n");
8485                 priv->ieee->abg_true = 1;
8486                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8487                 modulation = IEEE80211_OFDM_MODULATION |
8488                     IEEE80211_CCK_MODULATION;
8489                 priv->adapter = IPW_2915ABG;
8490                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8491         } else {
8492                 if (option == 1)
8493                         printk(KERN_INFO DRV_NAME
8494                                ": Detected Intel PRO/Wireless 2200BG Network "
8495                                "Connection\n");
8496
8497                 priv->ieee->abg_true = 0;
8498                 band = IEEE80211_24GHZ_BAND;
8499                 modulation = IEEE80211_OFDM_MODULATION |
8500                     IEEE80211_CCK_MODULATION;
8501                 priv->adapter = IPW_2200BG;
8502                 priv->ieee->mode = IEEE_G | IEEE_B;
8503         }
8504
8505         priv->ieee->freq_band = band;
8506         priv->ieee->modulation = modulation;
8507
8508         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8509
8510         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8511         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8512
8513         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8514         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8515         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8516
8517         /* If power management is turned on, default to AC mode */
8518         priv->power_mode = IPW_POWER_AC;
8519         priv->tx_power = IPW_TX_POWER_DEFAULT;
8520
8521         return old_mode == priv->ieee->iw_mode;
8522 }
8523
8524 /*
8525  * This file defines the Wireless Extension handlers.  It does not
8526  * define any methods of hardware manipulation and relies on the
8527  * functions defined in ipw_main to provide the HW interaction.
8528  *
8529  * The exception to this is the use of the ipw_get_ordinal()
8530  * function used to poll the hardware vs. making unecessary calls.
8531  *
8532  */
8533
8534 static int ipw_wx_get_name(struct net_device *dev,
8535                            struct iw_request_info *info,
8536                            union iwreq_data *wrqu, char *extra)
8537 {
8538         struct ipw_priv *priv = ieee80211_priv(dev);
8539         mutex_lock(&priv->mutex);
8540         if (priv->status & STATUS_RF_KILL_MASK)
8541                 strcpy(wrqu->name, "radio off");
8542         else if (!(priv->status & STATUS_ASSOCIATED))
8543                 strcpy(wrqu->name, "unassociated");
8544         else
8545                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8546                          ipw_modes[priv->assoc_request.ieee_mode]);
8547         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8548         mutex_unlock(&priv->mutex);
8549         return 0;
8550 }
8551
8552 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8553 {
8554         if (channel == 0) {
8555                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8556                 priv->config &= ~CFG_STATIC_CHANNEL;
8557                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8558                                 "parameters.\n");
8559                 ipw_associate(priv);
8560                 return 0;
8561         }
8562
8563         priv->config |= CFG_STATIC_CHANNEL;
8564
8565         if (priv->channel == channel) {
8566                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8567                                channel);
8568                 return 0;
8569         }
8570
8571         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8572         priv->channel = channel;
8573
8574 #ifdef CONFIG_IPW2200_MONITOR
8575         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8576                 int i;
8577                 if (priv->status & STATUS_SCANNING) {
8578                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8579                                        "channel change.\n");
8580                         ipw_abort_scan(priv);
8581                 }
8582
8583                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8584                         udelay(10);
8585
8586                 if (priv->status & STATUS_SCANNING)
8587                         IPW_DEBUG_SCAN("Still scanning...\n");
8588                 else
8589                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8590                                        1000 - i);
8591
8592                 return 0;
8593         }
8594 #endif                          /* CONFIG_IPW2200_MONITOR */
8595
8596         /* Network configuration changed -- force [re]association */
8597         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8598         if (!ipw_disassociate(priv))
8599                 ipw_associate(priv);
8600
8601         return 0;
8602 }
8603
8604 static int ipw_wx_set_freq(struct net_device *dev,
8605                            struct iw_request_info *info,
8606                            union iwreq_data *wrqu, char *extra)
8607 {
8608         struct ipw_priv *priv = ieee80211_priv(dev);
8609         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8610         struct iw_freq *fwrq = &wrqu->freq;
8611         int ret = 0, i;
8612         u8 channel, flags;
8613         int band;
8614
8615         if (fwrq->m == 0) {
8616                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8617                 mutex_lock(&priv->mutex);
8618                 ret = ipw_set_channel(priv, 0);
8619                 mutex_unlock(&priv->mutex);
8620                 return ret;
8621         }
8622         /* if setting by freq convert to channel */
8623         if (fwrq->e == 1) {
8624                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8625                 if (channel == 0)
8626                         return -EINVAL;
8627         } else
8628                 channel = fwrq->m;
8629
8630         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8631                 return -EINVAL;
8632
8633         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8634                 i = ieee80211_channel_to_index(priv->ieee, channel);
8635                 if (i == -1)
8636                         return -EINVAL;
8637
8638                 flags = (band == IEEE80211_24GHZ_BAND) ?
8639                     geo->bg[i].flags : geo->a[i].flags;
8640                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8641                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8642                         return -EINVAL;
8643                 }
8644         }
8645
8646         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8647         mutex_lock(&priv->mutex);
8648         ret = ipw_set_channel(priv, channel);
8649         mutex_unlock(&priv->mutex);
8650         return ret;
8651 }
8652
8653 static int ipw_wx_get_freq(struct net_device *dev,
8654                            struct iw_request_info *info,
8655                            union iwreq_data *wrqu, char *extra)
8656 {
8657         struct ipw_priv *priv = ieee80211_priv(dev);
8658
8659         wrqu->freq.e = 0;
8660
8661         /* If we are associated, trying to associate, or have a statically
8662          * configured CHANNEL then return that; otherwise return ANY */
8663         mutex_lock(&priv->mutex);
8664         if (priv->config & CFG_STATIC_CHANNEL ||
8665             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8666                 int i;
8667
8668                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8669                 BUG_ON(i == -1);
8670                 wrqu->freq.e = 1;
8671
8672                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8673                 case IEEE80211_52GHZ_BAND:
8674                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8675                         break;
8676
8677                 case IEEE80211_24GHZ_BAND:
8678                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8679                         break;
8680
8681                 default:
8682                         BUG();
8683                 }
8684         } else
8685                 wrqu->freq.m = 0;
8686
8687         mutex_unlock(&priv->mutex);
8688         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8689         return 0;
8690 }
8691
8692 static int ipw_wx_set_mode(struct net_device *dev,
8693                            struct iw_request_info *info,
8694                            union iwreq_data *wrqu, char *extra)
8695 {
8696         struct ipw_priv *priv = ieee80211_priv(dev);
8697         int err = 0;
8698
8699         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8700
8701         switch (wrqu->mode) {
8702 #ifdef CONFIG_IPW2200_MONITOR
8703         case IW_MODE_MONITOR:
8704 #endif
8705         case IW_MODE_ADHOC:
8706         case IW_MODE_INFRA:
8707                 break;
8708         case IW_MODE_AUTO:
8709                 wrqu->mode = IW_MODE_INFRA;
8710                 break;
8711         default:
8712                 return -EINVAL;
8713         }
8714         if (wrqu->mode == priv->ieee->iw_mode)
8715                 return 0;
8716
8717         mutex_lock(&priv->mutex);
8718
8719         ipw_sw_reset(priv, 0);
8720
8721 #ifdef CONFIG_IPW2200_MONITOR
8722         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8723                 priv->net_dev->type = ARPHRD_ETHER;
8724
8725         if (wrqu->mode == IW_MODE_MONITOR)
8726 #ifdef CONFIG_IPW2200_RADIOTAP
8727                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8728 #else
8729                 priv->net_dev->type = ARPHRD_IEEE80211;
8730 #endif
8731 #endif                          /* CONFIG_IPW2200_MONITOR */
8732
8733         /* Free the existing firmware and reset the fw_loaded
8734          * flag so ipw_load() will bring in the new firmawre */
8735         free_firmware();
8736
8737         priv->ieee->iw_mode = wrqu->mode;
8738
8739         queue_work(priv->workqueue, &priv->adapter_restart);
8740         mutex_unlock(&priv->mutex);
8741         return err;
8742 }
8743
8744 static int ipw_wx_get_mode(struct net_device *dev,
8745                            struct iw_request_info *info,
8746                            union iwreq_data *wrqu, char *extra)
8747 {
8748         struct ipw_priv *priv = ieee80211_priv(dev);
8749         mutex_lock(&priv->mutex);
8750         wrqu->mode = priv->ieee->iw_mode;
8751         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8752         mutex_unlock(&priv->mutex);
8753         return 0;
8754 }
8755
8756 /* Values are in microsecond */
8757 static const s32 timeout_duration[] = {
8758         350000,
8759         250000,
8760         75000,
8761         37000,
8762         25000,
8763 };
8764
8765 static const s32 period_duration[] = {
8766         400000,
8767         700000,
8768         1000000,
8769         1000000,
8770         1000000
8771 };
8772
8773 static int ipw_wx_get_range(struct net_device *dev,
8774                             struct iw_request_info *info,
8775                             union iwreq_data *wrqu, char *extra)
8776 {
8777         struct ipw_priv *priv = ieee80211_priv(dev);
8778         struct iw_range *range = (struct iw_range *)extra;
8779         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8780         int i = 0, j;
8781
8782         wrqu->data.length = sizeof(*range);
8783         memset(range, 0, sizeof(*range));
8784
8785         /* 54Mbs == ~27 Mb/s real (802.11g) */
8786         range->throughput = 27 * 1000 * 1000;
8787
8788         range->max_qual.qual = 100;
8789         /* TODO: Find real max RSSI and stick here */
8790         range->max_qual.level = 0;
8791         range->max_qual.noise = 0;
8792         range->max_qual.updated = 7;    /* Updated all three */
8793
8794         range->avg_qual.qual = 70;
8795         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8796         range->avg_qual.level = 0;      /* FIXME to real average level */
8797         range->avg_qual.noise = 0;
8798         range->avg_qual.updated = 7;    /* Updated all three */
8799         mutex_lock(&priv->mutex);
8800         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8801
8802         for (i = 0; i < range->num_bitrates; i++)
8803                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8804                     500000;
8805
8806         range->max_rts = DEFAULT_RTS_THRESHOLD;
8807         range->min_frag = MIN_FRAG_THRESHOLD;
8808         range->max_frag = MAX_FRAG_THRESHOLD;
8809
8810         range->encoding_size[0] = 5;
8811         range->encoding_size[1] = 13;
8812         range->num_encoding_sizes = 2;
8813         range->max_encoding_tokens = WEP_KEYS;
8814
8815         /* Set the Wireless Extension versions */
8816         range->we_version_compiled = WIRELESS_EXT;
8817         range->we_version_source = 18;
8818
8819         i = 0;
8820         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8821                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8822                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8823                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8824                                 continue;
8825
8826                         range->freq[i].i = geo->bg[j].channel;
8827                         range->freq[i].m = geo->bg[j].freq * 100000;
8828                         range->freq[i].e = 1;
8829                         i++;
8830                 }
8831         }
8832
8833         if (priv->ieee->mode & IEEE_A) {
8834                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8835                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8836                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8837                                 continue;
8838
8839                         range->freq[i].i = geo->a[j].channel;
8840                         range->freq[i].m = geo->a[j].freq * 100000;
8841                         range->freq[i].e = 1;
8842                         i++;
8843                 }
8844         }
8845
8846         range->num_channels = i;
8847         range->num_frequency = i;
8848
8849         mutex_unlock(&priv->mutex);
8850
8851         /* Event capability (kernel + driver) */
8852         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8853                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8854                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8855                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8856         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8857
8858         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8859                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8860
8861         IPW_DEBUG_WX("GET Range\n");
8862         return 0;
8863 }
8864
8865 static int ipw_wx_set_wap(struct net_device *dev,
8866                           struct iw_request_info *info,
8867                           union iwreq_data *wrqu, char *extra)
8868 {
8869         struct ipw_priv *priv = ieee80211_priv(dev);
8870
8871         static const unsigned char any[] = {
8872                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8873         };
8874         static const unsigned char off[] = {
8875                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8876         };
8877
8878         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8879                 return -EINVAL;
8880         mutex_lock(&priv->mutex);
8881         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8882             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8883                 /* we disable mandatory BSSID association */
8884                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8885                 priv->config &= ~CFG_STATIC_BSSID;
8886                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8887                                 "parameters.\n");
8888                 ipw_associate(priv);
8889                 mutex_unlock(&priv->mutex);
8890                 return 0;
8891         }
8892
8893         priv->config |= CFG_STATIC_BSSID;
8894         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8895                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8896                 mutex_unlock(&priv->mutex);
8897                 return 0;
8898         }
8899
8900         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8901                      MAC_ARG(wrqu->ap_addr.sa_data));
8902
8903         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8904
8905         /* Network configuration changed -- force [re]association */
8906         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8907         if (!ipw_disassociate(priv))
8908                 ipw_associate(priv);
8909
8910         mutex_unlock(&priv->mutex);
8911         return 0;
8912 }
8913
8914 static int ipw_wx_get_wap(struct net_device *dev,
8915                           struct iw_request_info *info,
8916                           union iwreq_data *wrqu, char *extra)
8917 {
8918         struct ipw_priv *priv = ieee80211_priv(dev);
8919         /* If we are associated, trying to associate, or have a statically
8920          * configured BSSID then return that; otherwise return ANY */
8921         mutex_lock(&priv->mutex);
8922         if (priv->config & CFG_STATIC_BSSID ||
8923             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8924                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8925                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8926         } else
8927                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8928
8929         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8930                      MAC_ARG(wrqu->ap_addr.sa_data));
8931         mutex_unlock(&priv->mutex);
8932         return 0;
8933 }
8934
8935 static int ipw_wx_set_essid(struct net_device *dev,
8936                             struct iw_request_info *info,
8937                             union iwreq_data *wrqu, char *extra)
8938 {
8939         struct ipw_priv *priv = ieee80211_priv(dev);
8940         int length;
8941
8942         mutex_lock(&priv->mutex);
8943
8944         if (!wrqu->essid.flags)
8945         {
8946                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8947                 ipw_disassociate(priv);
8948                 priv->config &= ~CFG_STATIC_ESSID;
8949                 ipw_associate(priv);
8950                 mutex_unlock(&priv->mutex);
8951                 return 0;
8952         }
8953
8954         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8955
8956         priv->config |= CFG_STATIC_ESSID;
8957
8958         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8959             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8960                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8961                 mutex_unlock(&priv->mutex);
8962                 return 0;
8963         }
8964
8965         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8966                      length);
8967
8968         priv->essid_len = length;
8969         memcpy(priv->essid, extra, priv->essid_len);
8970
8971         /* Network configuration changed -- force [re]association */
8972         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8973         if (!ipw_disassociate(priv))
8974                 ipw_associate(priv);
8975
8976         mutex_unlock(&priv->mutex);
8977         return 0;
8978 }
8979
8980 static int ipw_wx_get_essid(struct net_device *dev,
8981                             struct iw_request_info *info,
8982                             union iwreq_data *wrqu, char *extra)
8983 {
8984         struct ipw_priv *priv = ieee80211_priv(dev);
8985
8986         /* If we are associated, trying to associate, or have a statically
8987          * configured ESSID then return that; otherwise return ANY */
8988         mutex_lock(&priv->mutex);
8989         if (priv->config & CFG_STATIC_ESSID ||
8990             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8991                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8992                              escape_essid(priv->essid, priv->essid_len));
8993                 memcpy(extra, priv->essid, priv->essid_len);
8994                 wrqu->essid.length = priv->essid_len;
8995                 wrqu->essid.flags = 1;  /* active */
8996         } else {
8997                 IPW_DEBUG_WX("Getting essid: ANY\n");
8998                 wrqu->essid.length = 0;
8999                 wrqu->essid.flags = 0;  /* active */
9000         }
9001         mutex_unlock(&priv->mutex);
9002         return 0;
9003 }
9004
9005 static int ipw_wx_set_nick(struct net_device *dev,
9006                            struct iw_request_info *info,
9007                            union iwreq_data *wrqu, char *extra)
9008 {
9009         struct ipw_priv *priv = ieee80211_priv(dev);
9010
9011         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9012         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9013                 return -E2BIG;
9014         mutex_lock(&priv->mutex);
9015         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9016         memset(priv->nick, 0, sizeof(priv->nick));
9017         memcpy(priv->nick, extra, wrqu->data.length);
9018         IPW_DEBUG_TRACE("<<\n");
9019         mutex_unlock(&priv->mutex);
9020         return 0;
9021
9022 }
9023
9024 static int ipw_wx_get_nick(struct net_device *dev,
9025                            struct iw_request_info *info,
9026                            union iwreq_data *wrqu, char *extra)
9027 {
9028         struct ipw_priv *priv = ieee80211_priv(dev);
9029         IPW_DEBUG_WX("Getting nick\n");
9030         mutex_lock(&priv->mutex);
9031         wrqu->data.length = strlen(priv->nick);
9032         memcpy(extra, priv->nick, wrqu->data.length);
9033         wrqu->data.flags = 1;   /* active */
9034         mutex_unlock(&priv->mutex);
9035         return 0;
9036 }
9037
9038 static int ipw_wx_set_sens(struct net_device *dev,
9039                             struct iw_request_info *info,
9040                             union iwreq_data *wrqu, char *extra)
9041 {
9042         struct ipw_priv *priv = ieee80211_priv(dev);
9043         int err = 0;
9044
9045         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9046         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9047         mutex_lock(&priv->mutex);
9048
9049         if (wrqu->sens.fixed == 0)
9050         {
9051                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9052                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9053                 goto out;
9054         }
9055         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9056             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9057                 err = -EINVAL;
9058                 goto out;
9059         }
9060
9061         priv->roaming_threshold = wrqu->sens.value;
9062         priv->disassociate_threshold = 3*wrqu->sens.value;
9063       out:
9064         mutex_unlock(&priv->mutex);
9065         return err;
9066 }
9067
9068 static int ipw_wx_get_sens(struct net_device *dev,
9069                             struct iw_request_info *info,
9070                             union iwreq_data *wrqu, char *extra)
9071 {
9072         struct ipw_priv *priv = ieee80211_priv(dev);
9073         mutex_lock(&priv->mutex);
9074         wrqu->sens.fixed = 1;
9075         wrqu->sens.value = priv->roaming_threshold;
9076         mutex_unlock(&priv->mutex);
9077
9078         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9079                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9080
9081         return 0;
9082 }
9083
9084 static int ipw_wx_set_rate(struct net_device *dev,
9085                            struct iw_request_info *info,
9086                            union iwreq_data *wrqu, char *extra)
9087 {
9088         /* TODO: We should use semaphores or locks for access to priv */
9089         struct ipw_priv *priv = ieee80211_priv(dev);
9090         u32 target_rate = wrqu->bitrate.value;
9091         u32 fixed, mask;
9092
9093         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9094         /* value = X, fixed = 1 means only rate X */
9095         /* value = X, fixed = 0 means all rates lower equal X */
9096
9097         if (target_rate == -1) {
9098                 fixed = 0;
9099                 mask = IEEE80211_DEFAULT_RATES_MASK;
9100                 /* Now we should reassociate */
9101                 goto apply;
9102         }
9103
9104         mask = 0;
9105         fixed = wrqu->bitrate.fixed;
9106
9107         if (target_rate == 1000000 || !fixed)
9108                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9109         if (target_rate == 1000000)
9110                 goto apply;
9111
9112         if (target_rate == 2000000 || !fixed)
9113                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9114         if (target_rate == 2000000)
9115                 goto apply;
9116
9117         if (target_rate == 5500000 || !fixed)
9118                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9119         if (target_rate == 5500000)
9120                 goto apply;
9121
9122         if (target_rate == 6000000 || !fixed)
9123                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9124         if (target_rate == 6000000)
9125                 goto apply;
9126
9127         if (target_rate == 9000000 || !fixed)
9128                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9129         if (target_rate == 9000000)
9130                 goto apply;
9131
9132         if (target_rate == 11000000 || !fixed)
9133                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9134         if (target_rate == 11000000)
9135                 goto apply;
9136
9137         if (target_rate == 12000000 || !fixed)
9138                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9139         if (target_rate == 12000000)
9140                 goto apply;
9141
9142         if (target_rate == 18000000 || !fixed)
9143                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9144         if (target_rate == 18000000)
9145                 goto apply;
9146
9147         if (target_rate == 24000000 || !fixed)
9148                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9149         if (target_rate == 24000000)
9150                 goto apply;
9151
9152         if (target_rate == 36000000 || !fixed)
9153                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9154         if (target_rate == 36000000)
9155                 goto apply;
9156
9157         if (target_rate == 48000000 || !fixed)
9158                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9159         if (target_rate == 48000000)
9160                 goto apply;
9161
9162         if (target_rate == 54000000 || !fixed)
9163                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9164         if (target_rate == 54000000)
9165                 goto apply;
9166
9167         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9168         return -EINVAL;
9169
9170       apply:
9171         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9172                      mask, fixed ? "fixed" : "sub-rates");
9173         mutex_lock(&priv->mutex);
9174         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9175                 priv->config &= ~CFG_FIXED_RATE;
9176                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9177         } else
9178                 priv->config |= CFG_FIXED_RATE;
9179
9180         if (priv->rates_mask == mask) {
9181                 IPW_DEBUG_WX("Mask set to current mask.\n");
9182                 mutex_unlock(&priv->mutex);
9183                 return 0;
9184         }
9185
9186         priv->rates_mask = mask;
9187
9188         /* Network configuration changed -- force [re]association */
9189         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9190         if (!ipw_disassociate(priv))
9191                 ipw_associate(priv);
9192
9193         mutex_unlock(&priv->mutex);
9194         return 0;
9195 }
9196
9197 static int ipw_wx_get_rate(struct net_device *dev,
9198                            struct iw_request_info *info,
9199                            union iwreq_data *wrqu, char *extra)
9200 {
9201         struct ipw_priv *priv = ieee80211_priv(dev);
9202         mutex_lock(&priv->mutex);
9203         wrqu->bitrate.value = priv->last_rate;
9204         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9205         mutex_unlock(&priv->mutex);
9206         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9207         return 0;
9208 }
9209
9210 static int ipw_wx_set_rts(struct net_device *dev,
9211                           struct iw_request_info *info,
9212                           union iwreq_data *wrqu, char *extra)
9213 {
9214         struct ipw_priv *priv = ieee80211_priv(dev);
9215         mutex_lock(&priv->mutex);
9216         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9217                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9218         else {
9219                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9220                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9221                         mutex_unlock(&priv->mutex);
9222                         return -EINVAL;
9223                 }
9224                 priv->rts_threshold = wrqu->rts.value;
9225         }
9226
9227         ipw_send_rts_threshold(priv, priv->rts_threshold);
9228         mutex_unlock(&priv->mutex);
9229         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9230         return 0;
9231 }
9232
9233 static int ipw_wx_get_rts(struct net_device *dev,
9234                           struct iw_request_info *info,
9235                           union iwreq_data *wrqu, char *extra)
9236 {
9237         struct ipw_priv *priv = ieee80211_priv(dev);
9238         mutex_lock(&priv->mutex);
9239         wrqu->rts.value = priv->rts_threshold;
9240         wrqu->rts.fixed = 0;    /* no auto select */
9241         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9242         mutex_unlock(&priv->mutex);
9243         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9244         return 0;
9245 }
9246
9247 static int ipw_wx_set_txpow(struct net_device *dev,
9248                             struct iw_request_info *info,
9249                             union iwreq_data *wrqu, char *extra)
9250 {
9251         struct ipw_priv *priv = ieee80211_priv(dev);
9252         int err = 0;
9253
9254         mutex_lock(&priv->mutex);
9255         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9256                 err = -EINPROGRESS;
9257                 goto out;
9258         }
9259
9260         if (!wrqu->power.fixed)
9261                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9262
9263         if (wrqu->power.flags != IW_TXPOW_DBM) {
9264                 err = -EINVAL;
9265                 goto out;
9266         }
9267
9268         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9269             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9270                 err = -EINVAL;
9271                 goto out;
9272         }
9273
9274         priv->tx_power = wrqu->power.value;
9275         err = ipw_set_tx_power(priv);
9276       out:
9277         mutex_unlock(&priv->mutex);
9278         return err;
9279 }
9280
9281 static int ipw_wx_get_txpow(struct net_device *dev,
9282                             struct iw_request_info *info,
9283                             union iwreq_data *wrqu, char *extra)
9284 {
9285         struct ipw_priv *priv = ieee80211_priv(dev);
9286         mutex_lock(&priv->mutex);
9287         wrqu->power.value = priv->tx_power;
9288         wrqu->power.fixed = 1;
9289         wrqu->power.flags = IW_TXPOW_DBM;
9290         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9291         mutex_unlock(&priv->mutex);
9292
9293         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9294                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9295
9296         return 0;
9297 }
9298
9299 static int ipw_wx_set_frag(struct net_device *dev,
9300                            struct iw_request_info *info,
9301                            union iwreq_data *wrqu, char *extra)
9302 {
9303         struct ipw_priv *priv = ieee80211_priv(dev);
9304         mutex_lock(&priv->mutex);
9305         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9306                 priv->ieee->fts = DEFAULT_FTS;
9307         else {
9308                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9309                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9310                         mutex_unlock(&priv->mutex);
9311                         return -EINVAL;
9312                 }
9313
9314                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9315         }
9316
9317         ipw_send_frag_threshold(priv, wrqu->frag.value);
9318         mutex_unlock(&priv->mutex);
9319         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9320         return 0;
9321 }
9322
9323 static int ipw_wx_get_frag(struct net_device *dev,
9324                            struct iw_request_info *info,
9325                            union iwreq_data *wrqu, char *extra)
9326 {
9327         struct ipw_priv *priv = ieee80211_priv(dev);
9328         mutex_lock(&priv->mutex);
9329         wrqu->frag.value = priv->ieee->fts;
9330         wrqu->frag.fixed = 0;   /* no auto select */
9331         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9332         mutex_unlock(&priv->mutex);
9333         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9334
9335         return 0;
9336 }
9337
9338 static int ipw_wx_set_retry(struct net_device *dev,
9339                             struct iw_request_info *info,
9340                             union iwreq_data *wrqu, char *extra)
9341 {
9342         struct ipw_priv *priv = ieee80211_priv(dev);
9343
9344         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9345                 return -EINVAL;
9346
9347         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9348                 return 0;
9349
9350         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9351                 return -EINVAL;
9352
9353         mutex_lock(&priv->mutex);
9354         if (wrqu->retry.flags & IW_RETRY_SHORT)
9355                 priv->short_retry_limit = (u8) wrqu->retry.value;
9356         else if (wrqu->retry.flags & IW_RETRY_LONG)
9357                 priv->long_retry_limit = (u8) wrqu->retry.value;
9358         else {
9359                 priv->short_retry_limit = (u8) wrqu->retry.value;
9360                 priv->long_retry_limit = (u8) wrqu->retry.value;
9361         }
9362
9363         ipw_send_retry_limit(priv, priv->short_retry_limit,
9364                              priv->long_retry_limit);
9365         mutex_unlock(&priv->mutex);
9366         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9367                      priv->short_retry_limit, priv->long_retry_limit);
9368         return 0;
9369 }
9370
9371 static int ipw_wx_get_retry(struct net_device *dev,
9372                             struct iw_request_info *info,
9373                             union iwreq_data *wrqu, char *extra)
9374 {
9375         struct ipw_priv *priv = ieee80211_priv(dev);
9376
9377         mutex_lock(&priv->mutex);
9378         wrqu->retry.disabled = 0;
9379
9380         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9381                 mutex_unlock(&priv->mutex);
9382                 return -EINVAL;
9383         }
9384
9385         if (wrqu->retry.flags & IW_RETRY_LONG) {
9386                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9387                 wrqu->retry.value = priv->long_retry_limit;
9388         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9389                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9390                 wrqu->retry.value = priv->short_retry_limit;
9391         } else {
9392                 wrqu->retry.flags = IW_RETRY_LIMIT;
9393                 wrqu->retry.value = priv->short_retry_limit;
9394         }
9395         mutex_unlock(&priv->mutex);
9396
9397         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9398
9399         return 0;
9400 }
9401
9402 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9403                                    int essid_len)
9404 {
9405         struct ipw_scan_request_ext scan;
9406         int err = 0, scan_type;
9407
9408         if (!(priv->status & STATUS_INIT) ||
9409             (priv->status & STATUS_EXIT_PENDING))
9410                 return 0;
9411
9412         mutex_lock(&priv->mutex);
9413
9414         if (priv->status & STATUS_RF_KILL_MASK) {
9415                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9416                 priv->status |= STATUS_SCAN_PENDING;
9417                 goto done;
9418         }
9419
9420         IPW_DEBUG_HC("starting request direct scan!\n");
9421
9422         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9423                 /* We should not sleep here; otherwise we will block most
9424                  * of the system (for instance, we hold rtnl_lock when we
9425                  * get here).
9426                  */
9427                 err = -EAGAIN;
9428                 goto done;
9429         }
9430         memset(&scan, 0, sizeof(scan));
9431
9432         if (priv->config & CFG_SPEED_SCAN)
9433                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9434                     cpu_to_le16(30);
9435         else
9436                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9437                     cpu_to_le16(20);
9438
9439         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9440             cpu_to_le16(20);
9441         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9442         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9443
9444         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9445
9446         err = ipw_send_ssid(priv, essid, essid_len);
9447         if (err) {
9448                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9449                 goto done;
9450         }
9451         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9452
9453         ipw_add_scan_channels(priv, &scan, scan_type);
9454
9455         err = ipw_send_scan_request_ext(priv, &scan);
9456         if (err) {
9457                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9458                 goto done;
9459         }
9460
9461         priv->status |= STATUS_SCANNING;
9462
9463       done:
9464         mutex_unlock(&priv->mutex);
9465         return err;
9466 }
9467
9468 static int ipw_wx_set_scan(struct net_device *dev,
9469                            struct iw_request_info *info,
9470                            union iwreq_data *wrqu, char *extra)
9471 {
9472         struct ipw_priv *priv = ieee80211_priv(dev);
9473         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9474
9475         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9476                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9477                         ipw_request_direct_scan(priv, req->essid,
9478                                                 req->essid_len);
9479                         return 0;
9480                 }
9481                 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9482                         queue_work(priv->workqueue,
9483                                    &priv->request_passive_scan);
9484                         return 0;
9485                 }
9486         }
9487
9488         IPW_DEBUG_WX("Start scan\n");
9489
9490         queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9491
9492         return 0;
9493 }
9494
9495 static int ipw_wx_get_scan(struct net_device *dev,
9496                            struct iw_request_info *info,
9497                            union iwreq_data *wrqu, char *extra)
9498 {
9499         struct ipw_priv *priv = ieee80211_priv(dev);
9500         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9501 }
9502
9503 static int ipw_wx_set_encode(struct net_device *dev,
9504                              struct iw_request_info *info,
9505                              union iwreq_data *wrqu, char *key)
9506 {
9507         struct ipw_priv *priv = ieee80211_priv(dev);
9508         int ret;
9509         u32 cap = priv->capability;
9510
9511         mutex_lock(&priv->mutex);
9512         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9513
9514         /* In IBSS mode, we need to notify the firmware to update
9515          * the beacon info after we changed the capability. */
9516         if (cap != priv->capability &&
9517             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9518             priv->status & STATUS_ASSOCIATED)
9519                 ipw_disassociate(priv);
9520
9521         mutex_unlock(&priv->mutex);
9522         return ret;
9523 }
9524
9525 static int ipw_wx_get_encode(struct net_device *dev,
9526                              struct iw_request_info *info,
9527                              union iwreq_data *wrqu, char *key)
9528 {
9529         struct ipw_priv *priv = ieee80211_priv(dev);
9530         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9531 }
9532
9533 static int ipw_wx_set_power(struct net_device *dev,
9534                             struct iw_request_info *info,
9535                             union iwreq_data *wrqu, char *extra)
9536 {
9537         struct ipw_priv *priv = ieee80211_priv(dev);
9538         int err;
9539         mutex_lock(&priv->mutex);
9540         if (wrqu->power.disabled) {
9541                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9542                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9543                 if (err) {
9544                         IPW_DEBUG_WX("failed setting power mode.\n");
9545                         mutex_unlock(&priv->mutex);
9546                         return err;
9547                 }
9548                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9549                 mutex_unlock(&priv->mutex);
9550                 return 0;
9551         }
9552
9553         switch (wrqu->power.flags & IW_POWER_MODE) {
9554         case IW_POWER_ON:       /* If not specified */
9555         case IW_POWER_MODE:     /* If set all mask */
9556         case IW_POWER_ALL_R:    /* If explicitely state all */
9557                 break;
9558         default:                /* Otherwise we don't support it */
9559                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9560                              wrqu->power.flags);
9561                 mutex_unlock(&priv->mutex);
9562                 return -EOPNOTSUPP;
9563         }
9564
9565         /* If the user hasn't specified a power management mode yet, default
9566          * to BATTERY */
9567         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9568                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9569         else
9570                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9571
9572         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9573         if (err) {
9574                 IPW_DEBUG_WX("failed setting power mode.\n");
9575                 mutex_unlock(&priv->mutex);
9576                 return err;
9577         }
9578
9579         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9580         mutex_unlock(&priv->mutex);
9581         return 0;
9582 }
9583
9584 static int ipw_wx_get_power(struct net_device *dev,
9585                             struct iw_request_info *info,
9586                             union iwreq_data *wrqu, char *extra)
9587 {
9588         struct ipw_priv *priv = ieee80211_priv(dev);
9589         mutex_lock(&priv->mutex);
9590         if (!(priv->power_mode & IPW_POWER_ENABLED))
9591                 wrqu->power.disabled = 1;
9592         else
9593                 wrqu->power.disabled = 0;
9594
9595         mutex_unlock(&priv->mutex);
9596         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9597
9598         return 0;
9599 }
9600
9601 static int ipw_wx_set_powermode(struct net_device *dev,
9602                                 struct iw_request_info *info,
9603                                 union iwreq_data *wrqu, char *extra)
9604 {
9605         struct ipw_priv *priv = ieee80211_priv(dev);
9606         int mode = *(int *)extra;
9607         int err;
9608
9609         mutex_lock(&priv->mutex);
9610         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9611                 mode = IPW_POWER_AC;
9612
9613         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9614                 err = ipw_send_power_mode(priv, mode);
9615                 if (err) {
9616                         IPW_DEBUG_WX("failed setting power mode.\n");
9617                         mutex_unlock(&priv->mutex);
9618                         return err;
9619                 }
9620                 priv->power_mode = IPW_POWER_ENABLED | mode;
9621         }
9622         mutex_unlock(&priv->mutex);
9623         return 0;
9624 }
9625
9626 #define MAX_WX_STRING 80
9627 static int ipw_wx_get_powermode(struct net_device *dev,
9628                                 struct iw_request_info *info,
9629                                 union iwreq_data *wrqu, char *extra)
9630 {
9631         struct ipw_priv *priv = ieee80211_priv(dev);
9632         int level = IPW_POWER_LEVEL(priv->power_mode);
9633         char *p = extra;
9634
9635         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9636
9637         switch (level) {
9638         case IPW_POWER_AC:
9639                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9640                 break;
9641         case IPW_POWER_BATTERY:
9642                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9643                 break;
9644         default:
9645                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9646                               "(Timeout %dms, Period %dms)",
9647                               timeout_duration[level - 1] / 1000,
9648                               period_duration[level - 1] / 1000);
9649         }
9650
9651         if (!(priv->power_mode & IPW_POWER_ENABLED))
9652                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9653
9654         wrqu->data.length = p - extra + 1;
9655
9656         return 0;
9657 }
9658
9659 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9660                                     struct iw_request_info *info,
9661                                     union iwreq_data *wrqu, char *extra)
9662 {
9663         struct ipw_priv *priv = ieee80211_priv(dev);
9664         int mode = *(int *)extra;
9665         u8 band = 0, modulation = 0;
9666
9667         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9668                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9669                 return -EINVAL;
9670         }
9671         mutex_lock(&priv->mutex);
9672         if (priv->adapter == IPW_2915ABG) {
9673                 priv->ieee->abg_true = 1;
9674                 if (mode & IEEE_A) {
9675                         band |= IEEE80211_52GHZ_BAND;
9676                         modulation |= IEEE80211_OFDM_MODULATION;
9677                 } else
9678                         priv->ieee->abg_true = 0;
9679         } else {
9680                 if (mode & IEEE_A) {
9681                         IPW_WARNING("Attempt to set 2200BG into "
9682                                     "802.11a mode\n");
9683                         mutex_unlock(&priv->mutex);
9684                         return -EINVAL;
9685                 }
9686
9687                 priv->ieee->abg_true = 0;
9688         }
9689
9690         if (mode & IEEE_B) {
9691                 band |= IEEE80211_24GHZ_BAND;
9692                 modulation |= IEEE80211_CCK_MODULATION;
9693         } else
9694                 priv->ieee->abg_true = 0;
9695
9696         if (mode & IEEE_G) {
9697                 band |= IEEE80211_24GHZ_BAND;
9698                 modulation |= IEEE80211_OFDM_MODULATION;
9699         } else
9700                 priv->ieee->abg_true = 0;
9701
9702         priv->ieee->mode = mode;
9703         priv->ieee->freq_band = band;
9704         priv->ieee->modulation = modulation;
9705         init_supported_rates(priv, &priv->rates);
9706
9707         /* Network configuration changed -- force [re]association */
9708         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9709         if (!ipw_disassociate(priv)) {
9710                 ipw_send_supported_rates(priv, &priv->rates);
9711                 ipw_associate(priv);
9712         }
9713
9714         /* Update the band LEDs */
9715         ipw_led_band_on(priv);
9716
9717         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9718                      mode & IEEE_A ? 'a' : '.',
9719                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9720         mutex_unlock(&priv->mutex);
9721         return 0;
9722 }
9723
9724 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9725                                     struct iw_request_info *info,
9726                                     union iwreq_data *wrqu, char *extra)
9727 {
9728         struct ipw_priv *priv = ieee80211_priv(dev);
9729         mutex_lock(&priv->mutex);
9730         switch (priv->ieee->mode) {
9731         case IEEE_A:
9732                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9733                 break;
9734         case IEEE_B:
9735                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9736                 break;
9737         case IEEE_A | IEEE_B:
9738                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9739                 break;
9740         case IEEE_G:
9741                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9742                 break;
9743         case IEEE_A | IEEE_G:
9744                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9745                 break;
9746         case IEEE_B | IEEE_G:
9747                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9748                 break;
9749         case IEEE_A | IEEE_B | IEEE_G:
9750                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9751                 break;
9752         default:
9753                 strncpy(extra, "unknown", MAX_WX_STRING);
9754                 break;
9755         }
9756
9757         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9758
9759         wrqu->data.length = strlen(extra) + 1;
9760         mutex_unlock(&priv->mutex);
9761
9762         return 0;
9763 }
9764
9765 static int ipw_wx_set_preamble(struct net_device *dev,
9766                                struct iw_request_info *info,
9767                                union iwreq_data *wrqu, char *extra)
9768 {
9769         struct ipw_priv *priv = ieee80211_priv(dev);
9770         int mode = *(int *)extra;
9771         mutex_lock(&priv->mutex);
9772         /* Switching from SHORT -> LONG requires a disassociation */
9773         if (mode == 1) {
9774                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9775                         priv->config |= CFG_PREAMBLE_LONG;
9776
9777                         /* Network configuration changed -- force [re]association */
9778                         IPW_DEBUG_ASSOC
9779                             ("[re]association triggered due to preamble change.\n");
9780                         if (!ipw_disassociate(priv))
9781                                 ipw_associate(priv);
9782                 }
9783                 goto done;
9784         }
9785
9786         if (mode == 0) {
9787                 priv->config &= ~CFG_PREAMBLE_LONG;
9788                 goto done;
9789         }
9790         mutex_unlock(&priv->mutex);
9791         return -EINVAL;
9792
9793       done:
9794         mutex_unlock(&priv->mutex);
9795         return 0;
9796 }
9797
9798 static int ipw_wx_get_preamble(struct net_device *dev,
9799                                struct iw_request_info *info,
9800                                union iwreq_data *wrqu, char *extra)
9801 {
9802         struct ipw_priv *priv = ieee80211_priv(dev);
9803         mutex_lock(&priv->mutex);
9804         if (priv->config & CFG_PREAMBLE_LONG)
9805                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9806         else
9807                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9808         mutex_unlock(&priv->mutex);
9809         return 0;
9810 }
9811
9812 #ifdef CONFIG_IPW2200_MONITOR
9813 static int ipw_wx_set_monitor(struct net_device *dev,
9814                               struct iw_request_info *info,
9815                               union iwreq_data *wrqu, char *extra)
9816 {
9817         struct ipw_priv *priv = ieee80211_priv(dev);
9818         int *parms = (int *)extra;
9819         int enable = (parms[0] > 0);
9820         mutex_lock(&priv->mutex);
9821         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9822         if (enable) {
9823                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9824 #ifdef CONFIG_IPW2200_RADIOTAP
9825                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9826 #else
9827                         priv->net_dev->type = ARPHRD_IEEE80211;
9828 #endif
9829                         queue_work(priv->workqueue, &priv->adapter_restart);
9830                 }
9831
9832                 ipw_set_channel(priv, parms[1]);
9833         } else {
9834                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9835                         mutex_unlock(&priv->mutex);
9836                         return 0;
9837                 }
9838                 priv->net_dev->type = ARPHRD_ETHER;
9839                 queue_work(priv->workqueue, &priv->adapter_restart);
9840         }
9841         mutex_unlock(&priv->mutex);
9842         return 0;
9843 }
9844
9845 #endif                          /* CONFIG_IPW2200_MONITOR */
9846
9847 static int ipw_wx_reset(struct net_device *dev,
9848                         struct iw_request_info *info,
9849                         union iwreq_data *wrqu, char *extra)
9850 {
9851         struct ipw_priv *priv = ieee80211_priv(dev);
9852         IPW_DEBUG_WX("RESET\n");
9853         queue_work(priv->workqueue, &priv->adapter_restart);
9854         return 0;
9855 }
9856
9857 static int ipw_wx_sw_reset(struct net_device *dev,
9858                            struct iw_request_info *info,
9859                            union iwreq_data *wrqu, char *extra)
9860 {
9861         struct ipw_priv *priv = ieee80211_priv(dev);
9862         union iwreq_data wrqu_sec = {
9863                 .encoding = {
9864                              .flags = IW_ENCODE_DISABLED,
9865                              },
9866         };
9867         int ret;
9868
9869         IPW_DEBUG_WX("SW_RESET\n");
9870
9871         mutex_lock(&priv->mutex);
9872
9873         ret = ipw_sw_reset(priv, 2);
9874         if (!ret) {
9875                 free_firmware();
9876                 ipw_adapter_restart(priv);
9877         }
9878
9879         /* The SW reset bit might have been toggled on by the 'disable'
9880          * module parameter, so take appropriate action */
9881         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9882
9883         mutex_unlock(&priv->mutex);
9884         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9885         mutex_lock(&priv->mutex);
9886
9887         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9888                 /* Configuration likely changed -- force [re]association */
9889                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9890                                 "reset.\n");
9891                 if (!ipw_disassociate(priv))
9892                         ipw_associate(priv);
9893         }
9894
9895         mutex_unlock(&priv->mutex);
9896
9897         return 0;
9898 }
9899
9900 /* Rebase the WE IOCTLs to zero for the handler array */
9901 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9902 static iw_handler ipw_wx_handlers[] = {
9903         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9904         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9905         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9906         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9907         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9908         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9909         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9910         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9911         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9912         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9913         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9914         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9915         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9916         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9917         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9918         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9919         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9920         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9921         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9922         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9923         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9924         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9925         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9926         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9927         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9928         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9929         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9930         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9931         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9932         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9933         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9934         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9935         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9936         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9937         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9938         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9939         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9940         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9941         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9942         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9943         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9944 };
9945
9946 enum {
9947         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9948         IPW_PRIV_GET_POWER,
9949         IPW_PRIV_SET_MODE,
9950         IPW_PRIV_GET_MODE,
9951         IPW_PRIV_SET_PREAMBLE,
9952         IPW_PRIV_GET_PREAMBLE,
9953         IPW_PRIV_RESET,
9954         IPW_PRIV_SW_RESET,
9955 #ifdef CONFIG_IPW2200_MONITOR
9956         IPW_PRIV_SET_MONITOR,
9957 #endif
9958 };
9959
9960 static struct iw_priv_args ipw_priv_args[] = {
9961         {
9962          .cmd = IPW_PRIV_SET_POWER,
9963          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9964          .name = "set_power"},
9965         {
9966          .cmd = IPW_PRIV_GET_POWER,
9967          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9968          .name = "get_power"},
9969         {
9970          .cmd = IPW_PRIV_SET_MODE,
9971          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9972          .name = "set_mode"},
9973         {
9974          .cmd = IPW_PRIV_GET_MODE,
9975          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9976          .name = "get_mode"},
9977         {
9978          .cmd = IPW_PRIV_SET_PREAMBLE,
9979          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9980          .name = "set_preamble"},
9981         {
9982          .cmd = IPW_PRIV_GET_PREAMBLE,
9983          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9984          .name = "get_preamble"},
9985         {
9986          IPW_PRIV_RESET,
9987          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9988         {
9989          IPW_PRIV_SW_RESET,
9990          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9991 #ifdef CONFIG_IPW2200_MONITOR
9992         {
9993          IPW_PRIV_SET_MONITOR,
9994          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9995 #endif                          /* CONFIG_IPW2200_MONITOR */
9996 };
9997
9998 static iw_handler ipw_priv_handler[] = {
9999         ipw_wx_set_powermode,
10000         ipw_wx_get_powermode,
10001         ipw_wx_set_wireless_mode,
10002         ipw_wx_get_wireless_mode,
10003         ipw_wx_set_preamble,
10004         ipw_wx_get_preamble,
10005         ipw_wx_reset,
10006         ipw_wx_sw_reset,
10007 #ifdef CONFIG_IPW2200_MONITOR
10008         ipw_wx_set_monitor,
10009 #endif
10010 };
10011
10012 static struct iw_handler_def ipw_wx_handler_def = {
10013         .standard = ipw_wx_handlers,
10014         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10015         .num_private = ARRAY_SIZE(ipw_priv_handler),
10016         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10017         .private = ipw_priv_handler,
10018         .private_args = ipw_priv_args,
10019         .get_wireless_stats = ipw_get_wireless_stats,
10020 };
10021
10022 /*
10023  * Get wireless statistics.
10024  * Called by /proc/net/wireless
10025  * Also called by SIOCGIWSTATS
10026  */
10027 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10028 {
10029         struct ipw_priv *priv = ieee80211_priv(dev);
10030         struct iw_statistics *wstats;
10031
10032         wstats = &priv->wstats;
10033
10034         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10035          * netdev->get_wireless_stats seems to be called before fw is
10036          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10037          * and associated; if not associcated, the values are all meaningless
10038          * anyway, so set them all to NULL and INVALID */
10039         if (!(priv->status & STATUS_ASSOCIATED)) {
10040                 wstats->miss.beacon = 0;
10041                 wstats->discard.retries = 0;
10042                 wstats->qual.qual = 0;
10043                 wstats->qual.level = 0;
10044                 wstats->qual.noise = 0;
10045                 wstats->qual.updated = 7;
10046                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10047                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10048                 return wstats;
10049         }
10050
10051         wstats->qual.qual = priv->quality;
10052         wstats->qual.level = priv->exp_avg_rssi;
10053         wstats->qual.noise = priv->exp_avg_noise;
10054         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10055             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10056
10057         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10058         wstats->discard.retries = priv->last_tx_failures;
10059         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10060
10061 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10062         goto fail_get_ordinal;
10063         wstats->discard.retries += tx_retry; */
10064
10065         return wstats;
10066 }
10067
10068 /* net device stuff */
10069
10070 static  void init_sys_config(struct ipw_sys_config *sys_config)
10071 {
10072         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10073         sys_config->bt_coexistence = 0;
10074         sys_config->answer_broadcast_ssid_probe = 0;
10075         sys_config->accept_all_data_frames = 0;
10076         sys_config->accept_non_directed_frames = 1;
10077         sys_config->exclude_unicast_unencrypted = 0;
10078         sys_config->disable_unicast_decryption = 1;
10079         sys_config->exclude_multicast_unencrypted = 0;
10080         sys_config->disable_multicast_decryption = 1;
10081         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10082                 antenna = CFG_SYS_ANTENNA_BOTH;
10083         sys_config->antenna_diversity = antenna;
10084         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10085         sys_config->dot11g_auto_detection = 0;
10086         sys_config->enable_cts_to_self = 0;
10087         sys_config->bt_coexist_collision_thr = 0;
10088         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10089         sys_config->silence_threshold = 0x1e;
10090 }
10091
10092 static int ipw_net_open(struct net_device *dev)
10093 {
10094         struct ipw_priv *priv = ieee80211_priv(dev);
10095         IPW_DEBUG_INFO("dev->open\n");
10096         /* we should be verifying the device is ready to be opened */
10097         mutex_lock(&priv->mutex);
10098         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10099             (priv->status & STATUS_ASSOCIATED))
10100                 netif_start_queue(dev);
10101         mutex_unlock(&priv->mutex);
10102         return 0;
10103 }
10104
10105 static int ipw_net_stop(struct net_device *dev)
10106 {
10107         IPW_DEBUG_INFO("dev->close\n");
10108         netif_stop_queue(dev);
10109         return 0;
10110 }
10111
10112 /*
10113 todo:
10114
10115 modify to send one tfd per fragment instead of using chunking.  otherwise
10116 we need to heavily modify the ieee80211_skb_to_txb.
10117 */
10118
10119 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10120                              int pri)
10121 {
10122         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10123             txb->fragments[0]->data;
10124         int i = 0;
10125         struct tfd_frame *tfd;
10126 #ifdef CONFIG_IPW2200_QOS
10127         int tx_id = ipw_get_tx_queue_number(priv, pri);
10128         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10129 #else
10130         struct clx2_tx_queue *txq = &priv->txq[0];
10131 #endif
10132         struct clx2_queue *q = &txq->q;
10133         u8 id, hdr_len, unicast;
10134         u16 remaining_bytes;
10135         int fc;
10136
10137         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10138         switch (priv->ieee->iw_mode) {
10139         case IW_MODE_ADHOC:
10140                 unicast = !is_multicast_ether_addr(hdr->addr1);
10141                 id = ipw_find_station(priv, hdr->addr1);
10142                 if (id == IPW_INVALID_STATION) {
10143                         id = ipw_add_station(priv, hdr->addr1);
10144                         if (id == IPW_INVALID_STATION) {
10145                                 IPW_WARNING("Attempt to send data to "
10146                                             "invalid cell: " MAC_FMT "\n",
10147                                             MAC_ARG(hdr->addr1));
10148                                 goto drop;
10149                         }
10150                 }
10151                 break;
10152
10153         case IW_MODE_INFRA:
10154         default:
10155                 unicast = !is_multicast_ether_addr(hdr->addr3);
10156                 id = 0;
10157                 break;
10158         }
10159
10160         tfd = &txq->bd[q->first_empty];
10161         txq->txb[q->first_empty] = txb;
10162         memset(tfd, 0, sizeof(*tfd));
10163         tfd->u.data.station_number = id;
10164
10165         tfd->control_flags.message_type = TX_FRAME_TYPE;
10166         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10167
10168         tfd->u.data.cmd_id = DINO_CMD_TX;
10169         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10170         remaining_bytes = txb->payload_size;
10171
10172         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10173                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10174         else
10175                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10176
10177         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10178                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10179
10180         fc = le16_to_cpu(hdr->frame_ctl);
10181         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10182
10183         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10184
10185         if (likely(unicast))
10186                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10187
10188         if (txb->encrypted && !priv->ieee->host_encrypt) {
10189                 switch (priv->ieee->sec.level) {
10190                 case SEC_LEVEL_3:
10191                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10192                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10193                         /* XXX: ACK flag must be set for CCMP even if it
10194                          * is a multicast/broadcast packet, because CCMP
10195                          * group communication encrypted by GTK is
10196                          * actually done by the AP. */
10197                         if (!unicast)
10198                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10199
10200                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10201                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10202                         tfd->u.data.key_index = 0;
10203                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10204                         break;
10205                 case SEC_LEVEL_2:
10206                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10207                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10208                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10209                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10210                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10211                         break;
10212                 case SEC_LEVEL_1:
10213                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10214                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10215                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10216                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10217                             40)
10218                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10219                         else
10220                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10221                         break;
10222                 case SEC_LEVEL_0:
10223                         break;
10224                 default:
10225                         printk(KERN_ERR "Unknow security level %d\n",
10226                                priv->ieee->sec.level);
10227                         break;
10228                 }
10229         } else
10230                 /* No hardware encryption */
10231                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10232
10233 #ifdef CONFIG_IPW2200_QOS
10234         if (fc & IEEE80211_STYPE_QOS_DATA)
10235                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10236 #endif                          /* CONFIG_IPW2200_QOS */
10237
10238         /* payload */
10239         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10240                                                  txb->nr_frags));
10241         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10242                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10243         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10244                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10245                                i, le32_to_cpu(tfd->u.data.num_chunks),
10246                                txb->fragments[i]->len - hdr_len);
10247                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10248                              i, tfd->u.data.num_chunks,
10249                              txb->fragments[i]->len - hdr_len);
10250                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10251                            txb->fragments[i]->len - hdr_len);
10252
10253                 tfd->u.data.chunk_ptr[i] =
10254                     cpu_to_le32(pci_map_single
10255                                 (priv->pci_dev,
10256                                  txb->fragments[i]->data + hdr_len,
10257                                  txb->fragments[i]->len - hdr_len,
10258                                  PCI_DMA_TODEVICE));
10259                 tfd->u.data.chunk_len[i] =
10260                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10261         }
10262
10263         if (i != txb->nr_frags) {
10264                 struct sk_buff *skb;
10265                 u16 remaining_bytes = 0;
10266                 int j;
10267
10268                 for (j = i; j < txb->nr_frags; j++)
10269                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10270
10271                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10272                        remaining_bytes);
10273                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10274                 if (skb != NULL) {
10275                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10276                         for (j = i; j < txb->nr_frags; j++) {
10277                                 int size = txb->fragments[j]->len - hdr_len;
10278
10279                                 printk(KERN_INFO "Adding frag %d %d...\n",
10280                                        j, size);
10281                                 memcpy(skb_put(skb, size),
10282                                        txb->fragments[j]->data + hdr_len, size);
10283                         }
10284                         dev_kfree_skb_any(txb->fragments[i]);
10285                         txb->fragments[i] = skb;
10286                         tfd->u.data.chunk_ptr[i] =
10287                             cpu_to_le32(pci_map_single
10288                                         (priv->pci_dev, skb->data,
10289                                          tfd->u.data.chunk_len[i],
10290                                          PCI_DMA_TODEVICE));
10291
10292                         tfd->u.data.num_chunks =
10293                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10294                                         1);
10295                 }
10296         }
10297
10298         /* kick DMA */
10299         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10300         ipw_write32(priv, q->reg_w, q->first_empty);
10301
10302         if (ipw_queue_space(q) < q->high_mark)
10303                 netif_stop_queue(priv->net_dev);
10304
10305         return NETDEV_TX_OK;
10306
10307       drop:
10308         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10309         ieee80211_txb_free(txb);
10310         return NETDEV_TX_OK;
10311 }
10312
10313 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10314 {
10315         struct ipw_priv *priv = ieee80211_priv(dev);
10316 #ifdef CONFIG_IPW2200_QOS
10317         int tx_id = ipw_get_tx_queue_number(priv, pri);
10318         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10319 #else
10320         struct clx2_tx_queue *txq = &priv->txq[0];
10321 #endif                          /* CONFIG_IPW2200_QOS */
10322
10323         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10324                 return 1;
10325
10326         return 0;
10327 }
10328
10329 #ifdef CONFIG_IPW2200_PROMISCUOUS
10330 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10331                                       struct ieee80211_txb *txb)
10332 {
10333         struct ieee80211_rx_stats dummystats;
10334         struct ieee80211_hdr *hdr;
10335         u8 n;
10336         u16 filter = priv->prom_priv->filter;
10337         int hdr_only = 0;
10338
10339         if (filter & IPW_PROM_NO_TX)
10340                 return;
10341
10342         memset(&dummystats, 0, sizeof(dummystats));
10343
10344         /* Filtering of fragment chains is done agains the first fragment */
10345         hdr = (void *)txb->fragments[0]->data;
10346         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10347                 if (filter & IPW_PROM_NO_MGMT)
10348                         return;
10349                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10350                         hdr_only = 1;
10351         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10352                 if (filter & IPW_PROM_NO_CTL)
10353                         return;
10354                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10355                         hdr_only = 1;
10356         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10357                 if (filter & IPW_PROM_NO_DATA)
10358                         return;
10359                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10360                         hdr_only = 1;
10361         }
10362
10363         for(n=0; n<txb->nr_frags; ++n) {
10364                 struct sk_buff *src = txb->fragments[n];
10365                 struct sk_buff *dst;
10366                 struct ieee80211_radiotap_header *rt_hdr;
10367                 int len;
10368
10369                 if (hdr_only) {
10370                         hdr = (void *)src->data;
10371                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10372                 } else
10373                         len = src->len;
10374
10375                 dst = alloc_skb(
10376                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10377                 if (!dst) continue;
10378
10379                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10380
10381                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10382                 rt_hdr->it_pad = 0;
10383                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10384                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10385
10386                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10387                         ieee80211chan2mhz(priv->channel));
10388                 if (priv->channel > 14)         /* 802.11a */
10389                         *(u16*)skb_put(dst, sizeof(u16)) =
10390                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10391                                              IEEE80211_CHAN_5GHZ);
10392                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10393                         *(u16*)skb_put(dst, sizeof(u16)) =
10394                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10395                                              IEEE80211_CHAN_2GHZ);
10396                 else            /* 802.11g */
10397                         *(u16*)skb_put(dst, sizeof(u16)) =
10398                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10399                                  IEEE80211_CHAN_2GHZ);
10400
10401                 rt_hdr->it_len = dst->len;
10402
10403                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10404
10405                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10406                         dev_kfree_skb_any(dst);
10407         }
10408 }
10409 #endif
10410
10411 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10412                                    struct net_device *dev, int pri)
10413 {
10414         struct ipw_priv *priv = ieee80211_priv(dev);
10415         unsigned long flags;
10416         int ret;
10417
10418         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10419         spin_lock_irqsave(&priv->lock, flags);
10420
10421         if (!(priv->status & STATUS_ASSOCIATED)) {
10422                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10423                 priv->ieee->stats.tx_carrier_errors++;
10424                 netif_stop_queue(dev);
10425                 goto fail_unlock;
10426         }
10427
10428 #ifdef CONFIG_IPW2200_PROMISCUOUS
10429         if (rtap_iface && netif_running(priv->prom_net_dev))
10430                 ipw_handle_promiscuous_tx(priv, txb);
10431 #endif
10432
10433         ret = ipw_tx_skb(priv, txb, pri);
10434         if (ret == NETDEV_TX_OK)
10435                 __ipw_led_activity_on(priv);
10436         spin_unlock_irqrestore(&priv->lock, flags);
10437
10438         return ret;
10439
10440       fail_unlock:
10441         spin_unlock_irqrestore(&priv->lock, flags);
10442         return 1;
10443 }
10444
10445 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10446 {
10447         struct ipw_priv *priv = ieee80211_priv(dev);
10448
10449         priv->ieee->stats.tx_packets = priv->tx_packets;
10450         priv->ieee->stats.rx_packets = priv->rx_packets;
10451         return &priv->ieee->stats;
10452 }
10453
10454 static void ipw_net_set_multicast_list(struct net_device *dev)
10455 {
10456
10457 }
10458
10459 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10460 {
10461         struct ipw_priv *priv = ieee80211_priv(dev);
10462         struct sockaddr *addr = p;
10463         if (!is_valid_ether_addr(addr->sa_data))
10464                 return -EADDRNOTAVAIL;
10465         mutex_lock(&priv->mutex);
10466         priv->config |= CFG_CUSTOM_MAC;
10467         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10468         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10469                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10470         queue_work(priv->workqueue, &priv->adapter_restart);
10471         mutex_unlock(&priv->mutex);
10472         return 0;
10473 }
10474
10475 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10476                                     struct ethtool_drvinfo *info)
10477 {
10478         struct ipw_priv *p = ieee80211_priv(dev);
10479         char vers[64];
10480         char date[32];
10481         u32 len;
10482
10483         strcpy(info->driver, DRV_NAME);
10484         strcpy(info->version, DRV_VERSION);
10485
10486         len = sizeof(vers);
10487         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10488         len = sizeof(date);
10489         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10490
10491         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10492                  vers, date);
10493         strcpy(info->bus_info, pci_name(p->pci_dev));
10494         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10495 }
10496
10497 static u32 ipw_ethtool_get_link(struct net_device *dev)
10498 {
10499         struct ipw_priv *priv = ieee80211_priv(dev);
10500         return (priv->status & STATUS_ASSOCIATED) != 0;
10501 }
10502
10503 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10504 {
10505         return IPW_EEPROM_IMAGE_SIZE;
10506 }
10507
10508 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10509                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10510 {
10511         struct ipw_priv *p = ieee80211_priv(dev);
10512
10513         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10514                 return -EINVAL;
10515         mutex_lock(&p->mutex);
10516         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10517         mutex_unlock(&p->mutex);
10518         return 0;
10519 }
10520
10521 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10522                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10523 {
10524         struct ipw_priv *p = ieee80211_priv(dev);
10525         int i;
10526
10527         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10528                 return -EINVAL;
10529         mutex_lock(&p->mutex);
10530         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10531         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10532                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10533         mutex_unlock(&p->mutex);
10534         return 0;
10535 }
10536
10537 static const struct ethtool_ops ipw_ethtool_ops = {
10538         .get_link = ipw_ethtool_get_link,
10539         .get_drvinfo = ipw_ethtool_get_drvinfo,
10540         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10541         .get_eeprom = ipw_ethtool_get_eeprom,
10542         .set_eeprom = ipw_ethtool_set_eeprom,
10543 };
10544
10545 static irqreturn_t ipw_isr(int irq, void *data)
10546 {
10547         struct ipw_priv *priv = data;
10548         u32 inta, inta_mask;
10549
10550         if (!priv)
10551                 return IRQ_NONE;
10552
10553         spin_lock(&priv->irq_lock);
10554
10555         if (!(priv->status & STATUS_INT_ENABLED)) {
10556                 /* IRQ is disabled */
10557                 goto none;
10558         }
10559
10560         inta = ipw_read32(priv, IPW_INTA_RW);
10561         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10562
10563         if (inta == 0xFFFFFFFF) {
10564                 /* Hardware disappeared */
10565                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10566                 goto none;
10567         }
10568
10569         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10570                 /* Shared interrupt */
10571                 goto none;
10572         }
10573
10574         /* tell the device to stop sending interrupts */
10575         __ipw_disable_interrupts(priv);
10576
10577         /* ack current interrupts */
10578         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10579         ipw_write32(priv, IPW_INTA_RW, inta);
10580
10581         /* Cache INTA value for our tasklet */
10582         priv->isr_inta = inta;
10583
10584         tasklet_schedule(&priv->irq_tasklet);
10585
10586         spin_unlock(&priv->irq_lock);
10587
10588         return IRQ_HANDLED;
10589       none:
10590         spin_unlock(&priv->irq_lock);
10591         return IRQ_NONE;
10592 }
10593
10594 static void ipw_rf_kill(void *adapter)
10595 {
10596         struct ipw_priv *priv = adapter;
10597         unsigned long flags;
10598
10599         spin_lock_irqsave(&priv->lock, flags);
10600
10601         if (rf_kill_active(priv)) {
10602                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10603                 if (priv->workqueue)
10604                         queue_delayed_work(priv->workqueue,
10605                                            &priv->rf_kill, 2 * HZ);
10606                 goto exit_unlock;
10607         }
10608
10609         /* RF Kill is now disabled, so bring the device back up */
10610
10611         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10612                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10613                                   "device\n");
10614
10615                 /* we can not do an adapter restart while inside an irq lock */
10616                 queue_work(priv->workqueue, &priv->adapter_restart);
10617         } else
10618                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10619                                   "enabled\n");
10620
10621       exit_unlock:
10622         spin_unlock_irqrestore(&priv->lock, flags);
10623 }
10624
10625 static void ipw_bg_rf_kill(struct work_struct *work)
10626 {
10627         struct ipw_priv *priv =
10628                 container_of(work, struct ipw_priv, rf_kill.work);
10629         mutex_lock(&priv->mutex);
10630         ipw_rf_kill(priv);
10631         mutex_unlock(&priv->mutex);
10632 }
10633
10634 static void ipw_link_up(struct ipw_priv *priv)
10635 {
10636         priv->last_seq_num = -1;
10637         priv->last_frag_num = -1;
10638         priv->last_packet_time = 0;
10639
10640         netif_carrier_on(priv->net_dev);
10641         if (netif_queue_stopped(priv->net_dev)) {
10642                 IPW_DEBUG_NOTIF("waking queue\n");
10643                 netif_wake_queue(priv->net_dev);
10644         } else {
10645                 IPW_DEBUG_NOTIF("starting queue\n");
10646                 netif_start_queue(priv->net_dev);
10647         }
10648
10649         cancel_delayed_work(&priv->request_scan);
10650         ipw_reset_stats(priv);
10651         /* Ensure the rate is updated immediately */
10652         priv->last_rate = ipw_get_current_rate(priv);
10653         ipw_gather_stats(priv);
10654         ipw_led_link_up(priv);
10655         notify_wx_assoc_event(priv);
10656
10657         if (priv->config & CFG_BACKGROUND_SCAN)
10658                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10659 }
10660
10661 static void ipw_bg_link_up(struct work_struct *work)
10662 {
10663         struct ipw_priv *priv =
10664                 container_of(work, struct ipw_priv, link_up);
10665         mutex_lock(&priv->mutex);
10666         ipw_link_up(priv);
10667         mutex_unlock(&priv->mutex);
10668 }
10669
10670 static void ipw_link_down(struct ipw_priv *priv)
10671 {
10672         ipw_led_link_down(priv);
10673         netif_carrier_off(priv->net_dev);
10674         netif_stop_queue(priv->net_dev);
10675         notify_wx_assoc_event(priv);
10676
10677         /* Cancel any queued work ... */
10678         cancel_delayed_work(&priv->request_scan);
10679         cancel_delayed_work(&priv->adhoc_check);
10680         cancel_delayed_work(&priv->gather_stats);
10681
10682         ipw_reset_stats(priv);
10683
10684         if (!(priv->status & STATUS_EXIT_PENDING)) {
10685                 /* Queue up another scan... */
10686                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10687         }
10688 }
10689
10690 static void ipw_bg_link_down(struct work_struct *work)
10691 {
10692         struct ipw_priv *priv =
10693                 container_of(work, struct ipw_priv, link_down);
10694         mutex_lock(&priv->mutex);
10695         ipw_link_down(priv);
10696         mutex_unlock(&priv->mutex);
10697 }
10698
10699 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10700 {
10701         int ret = 0;
10702
10703         priv->workqueue = create_workqueue(DRV_NAME);
10704         init_waitqueue_head(&priv->wait_command_queue);
10705         init_waitqueue_head(&priv->wait_state);
10706
10707         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10708         INIT_WORK(&priv->associate, ipw_bg_associate);
10709         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10710         INIT_WORK(&priv->system_config, ipw_system_config);
10711         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10712         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10713         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10714         INIT_WORK(&priv->up, ipw_bg_up);
10715         INIT_WORK(&priv->down, ipw_bg_down);
10716         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10717         INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10718         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10719         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10720         INIT_WORK(&priv->roam, ipw_bg_roam);
10721         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10722         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10723         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10724         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10725         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10726         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10727         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10728
10729 #ifdef CONFIG_IPW2200_QOS
10730         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10731 #endif                          /* CONFIG_IPW2200_QOS */
10732
10733         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10734                      ipw_irq_tasklet, (unsigned long)priv);
10735
10736         return ret;
10737 }
10738
10739 static void shim__set_security(struct net_device *dev,
10740                                struct ieee80211_security *sec)
10741 {
10742         struct ipw_priv *priv = ieee80211_priv(dev);
10743         int i;
10744         for (i = 0; i < 4; i++) {
10745                 if (sec->flags & (1 << i)) {
10746                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10747                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10748                         if (sec->key_sizes[i] == 0)
10749                                 priv->ieee->sec.flags &= ~(1 << i);
10750                         else {
10751                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10752                                        sec->key_sizes[i]);
10753                                 priv->ieee->sec.flags |= (1 << i);
10754                         }
10755                         priv->status |= STATUS_SECURITY_UPDATED;
10756                 } else if (sec->level != SEC_LEVEL_1)
10757                         priv->ieee->sec.flags &= ~(1 << i);
10758         }
10759
10760         if (sec->flags & SEC_ACTIVE_KEY) {
10761                 if (sec->active_key <= 3) {
10762                         priv->ieee->sec.active_key = sec->active_key;
10763                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10764                 } else
10765                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10766                 priv->status |= STATUS_SECURITY_UPDATED;
10767         } else
10768                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10769
10770         if ((sec->flags & SEC_AUTH_MODE) &&
10771             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10772                 priv->ieee->sec.auth_mode = sec->auth_mode;
10773                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10774                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10775                         priv->capability |= CAP_SHARED_KEY;
10776                 else
10777                         priv->capability &= ~CAP_SHARED_KEY;
10778                 priv->status |= STATUS_SECURITY_UPDATED;
10779         }
10780
10781         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10782                 priv->ieee->sec.flags |= SEC_ENABLED;
10783                 priv->ieee->sec.enabled = sec->enabled;
10784                 priv->status |= STATUS_SECURITY_UPDATED;
10785                 if (sec->enabled)
10786                         priv->capability |= CAP_PRIVACY_ON;
10787                 else
10788                         priv->capability &= ~CAP_PRIVACY_ON;
10789         }
10790
10791         if (sec->flags & SEC_ENCRYPT)
10792                 priv->ieee->sec.encrypt = sec->encrypt;
10793
10794         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10795                 priv->ieee->sec.level = sec->level;
10796                 priv->ieee->sec.flags |= SEC_LEVEL;
10797                 priv->status |= STATUS_SECURITY_UPDATED;
10798         }
10799
10800         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10801                 ipw_set_hwcrypto_keys(priv);
10802
10803         /* To match current functionality of ipw2100 (which works well w/
10804          * various supplicants, we don't force a disassociate if the
10805          * privacy capability changes ... */
10806 #if 0
10807         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10808             (((priv->assoc_request.capability &
10809                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10810              (!(priv->assoc_request.capability &
10811                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10812                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10813                                 "change.\n");
10814                 ipw_disassociate(priv);
10815         }
10816 #endif
10817 }
10818
10819 static int init_supported_rates(struct ipw_priv *priv,
10820                                 struct ipw_supported_rates *rates)
10821 {
10822         /* TODO: Mask out rates based on priv->rates_mask */
10823
10824         memset(rates, 0, sizeof(*rates));
10825         /* configure supported rates */
10826         switch (priv->ieee->freq_band) {
10827         case IEEE80211_52GHZ_BAND:
10828                 rates->ieee_mode = IPW_A_MODE;
10829                 rates->purpose = IPW_RATE_CAPABILITIES;
10830                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10831                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10832                 break;
10833
10834         default:                /* Mixed or 2.4Ghz */
10835                 rates->ieee_mode = IPW_G_MODE;
10836                 rates->purpose = IPW_RATE_CAPABILITIES;
10837                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10838                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10839                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10840                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10841                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10842                 }
10843                 break;
10844         }
10845
10846         return 0;
10847 }
10848
10849 static int ipw_config(struct ipw_priv *priv)
10850 {
10851         /* This is only called from ipw_up, which resets/reloads the firmware
10852            so, we don't need to first disable the card before we configure
10853            it */
10854         if (ipw_set_tx_power(priv))
10855                 goto error;
10856
10857         /* initialize adapter address */
10858         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10859                 goto error;
10860
10861         /* set basic system config settings */
10862         init_sys_config(&priv->sys_config);
10863
10864         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10865          * Does not support BT priority yet (don't abort or defer our Tx) */
10866         if (bt_coexist) {
10867                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10868
10869                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10870                         priv->sys_config.bt_coexistence
10871                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10872                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10873                         priv->sys_config.bt_coexistence
10874                             |= CFG_BT_COEXISTENCE_OOB;
10875         }
10876
10877 #ifdef CONFIG_IPW2200_PROMISCUOUS
10878         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10879                 priv->sys_config.accept_all_data_frames = 1;
10880                 priv->sys_config.accept_non_directed_frames = 1;
10881                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10882                 priv->sys_config.accept_all_mgmt_frames = 1;
10883         }
10884 #endif
10885
10886         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10887                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10888         else
10889                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10890
10891         if (ipw_send_system_config(priv))
10892                 goto error;
10893
10894         init_supported_rates(priv, &priv->rates);
10895         if (ipw_send_supported_rates(priv, &priv->rates))
10896                 goto error;
10897
10898         /* Set request-to-send threshold */
10899         if (priv->rts_threshold) {
10900                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10901                         goto error;
10902         }
10903 #ifdef CONFIG_IPW2200_QOS
10904         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10905         ipw_qos_activate(priv, NULL);
10906 #endif                          /* CONFIG_IPW2200_QOS */
10907
10908         if (ipw_set_random_seed(priv))
10909                 goto error;
10910
10911         /* final state transition to the RUN state */
10912         if (ipw_send_host_complete(priv))
10913                 goto error;
10914
10915         priv->status |= STATUS_INIT;
10916
10917         ipw_led_init(priv);
10918         ipw_led_radio_on(priv);
10919         priv->notif_missed_beacons = 0;
10920
10921         /* Set hardware WEP key if it is configured. */
10922         if ((priv->capability & CAP_PRIVACY_ON) &&
10923             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10924             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10925                 ipw_set_hwcrypto_keys(priv);
10926
10927         return 0;
10928
10929       error:
10930         return -EIO;
10931 }
10932
10933 /*
10934  * NOTE:
10935  *
10936  * These tables have been tested in conjunction with the
10937  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10938  *
10939  * Altering this values, using it on other hardware, or in geographies
10940  * not intended for resale of the above mentioned Intel adapters has
10941  * not been tested.
10942  *
10943  * Remember to update the table in README.ipw2200 when changing this
10944  * table.
10945  *
10946  */
10947 static const struct ieee80211_geo ipw_geos[] = {
10948         {                       /* Restricted */
10949          "---",
10950          .bg_channels = 11,
10951          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10952                 {2427, 4}, {2432, 5}, {2437, 6},
10953                 {2442, 7}, {2447, 8}, {2452, 9},
10954                 {2457, 10}, {2462, 11}},
10955          },
10956
10957         {                       /* Custom US/Canada */
10958          "ZZF",
10959          .bg_channels = 11,
10960          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10961                 {2427, 4}, {2432, 5}, {2437, 6},
10962                 {2442, 7}, {2447, 8}, {2452, 9},
10963                 {2457, 10}, {2462, 11}},
10964          .a_channels = 8,
10965          .a = {{5180, 36},
10966                {5200, 40},
10967                {5220, 44},
10968                {5240, 48},
10969                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10970                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10971                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10972                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10973          },
10974
10975         {                       /* Rest of World */
10976          "ZZD",
10977          .bg_channels = 13,
10978          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10979                 {2427, 4}, {2432, 5}, {2437, 6},
10980                 {2442, 7}, {2447, 8}, {2452, 9},
10981                 {2457, 10}, {2462, 11}, {2467, 12},
10982                 {2472, 13}},
10983          },
10984
10985         {                       /* Custom USA & Europe & High */
10986          "ZZA",
10987          .bg_channels = 11,
10988          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10989                 {2427, 4}, {2432, 5}, {2437, 6},
10990                 {2442, 7}, {2447, 8}, {2452, 9},
10991                 {2457, 10}, {2462, 11}},
10992          .a_channels = 13,
10993          .a = {{5180, 36},
10994                {5200, 40},
10995                {5220, 44},
10996                {5240, 48},
10997                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10998                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10999                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11000                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11001                {5745, 149},
11002                {5765, 153},
11003                {5785, 157},
11004                {5805, 161},
11005                {5825, 165}},
11006          },
11007
11008         {                       /* Custom NA & Europe */
11009          "ZZB",
11010          .bg_channels = 11,
11011          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11012                 {2427, 4}, {2432, 5}, {2437, 6},
11013                 {2442, 7}, {2447, 8}, {2452, 9},
11014                 {2457, 10}, {2462, 11}},
11015          .a_channels = 13,
11016          .a = {{5180, 36},
11017                {5200, 40},
11018                {5220, 44},
11019                {5240, 48},
11020                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11021                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11022                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11023                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11024                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11025                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11026                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11027                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11028                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11029          },
11030
11031         {                       /* Custom Japan */
11032          "ZZC",
11033          .bg_channels = 11,
11034          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11035                 {2427, 4}, {2432, 5}, {2437, 6},
11036                 {2442, 7}, {2447, 8}, {2452, 9},
11037                 {2457, 10}, {2462, 11}},
11038          .a_channels = 4,
11039          .a = {{5170, 34}, {5190, 38},
11040                {5210, 42}, {5230, 46}},
11041          },
11042
11043         {                       /* Custom */
11044          "ZZM",
11045          .bg_channels = 11,
11046          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11047                 {2427, 4}, {2432, 5}, {2437, 6},
11048                 {2442, 7}, {2447, 8}, {2452, 9},
11049                 {2457, 10}, {2462, 11}},
11050          },
11051
11052         {                       /* Europe */
11053          "ZZE",
11054          .bg_channels = 13,
11055          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11056                 {2427, 4}, {2432, 5}, {2437, 6},
11057                 {2442, 7}, {2447, 8}, {2452, 9},
11058                 {2457, 10}, {2462, 11}, {2467, 12},
11059                 {2472, 13}},
11060          .a_channels = 19,
11061          .a = {{5180, 36},
11062                {5200, 40},
11063                {5220, 44},
11064                {5240, 48},
11065                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11066                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11067                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11068                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11069                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11070                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11071                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11072                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11073                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11074                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11075                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11076                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11077                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11078                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11079                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11080          },
11081
11082         {                       /* Custom Japan */
11083          "ZZJ",
11084          .bg_channels = 14,
11085          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11086                 {2427, 4}, {2432, 5}, {2437, 6},
11087                 {2442, 7}, {2447, 8}, {2452, 9},
11088                 {2457, 10}, {2462, 11}, {2467, 12},
11089                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11090          .a_channels = 4,
11091          .a = {{5170, 34}, {5190, 38},
11092                {5210, 42}, {5230, 46}},
11093          },
11094
11095         {                       /* Rest of World */
11096          "ZZR",
11097          .bg_channels = 14,
11098          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11099                 {2427, 4}, {2432, 5}, {2437, 6},
11100                 {2442, 7}, {2447, 8}, {2452, 9},
11101                 {2457, 10}, {2462, 11}, {2467, 12},
11102                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11103                              IEEE80211_CH_PASSIVE_ONLY}},
11104          },
11105
11106         {                       /* High Band */
11107          "ZZH",
11108          .bg_channels = 13,
11109          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11110                 {2427, 4}, {2432, 5}, {2437, 6},
11111                 {2442, 7}, {2447, 8}, {2452, 9},
11112                 {2457, 10}, {2462, 11},
11113                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11114                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11115          .a_channels = 4,
11116          .a = {{5745, 149}, {5765, 153},
11117                {5785, 157}, {5805, 161}},
11118          },
11119
11120         {                       /* Custom Europe */
11121          "ZZG",
11122          .bg_channels = 13,
11123          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11124                 {2427, 4}, {2432, 5}, {2437, 6},
11125                 {2442, 7}, {2447, 8}, {2452, 9},
11126                 {2457, 10}, {2462, 11},
11127                 {2467, 12}, {2472, 13}},
11128          .a_channels = 4,
11129          .a = {{5180, 36}, {5200, 40},
11130                {5220, 44}, {5240, 48}},
11131          },
11132
11133         {                       /* Europe */
11134          "ZZK",
11135          .bg_channels = 13,
11136          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11137                 {2427, 4}, {2432, 5}, {2437, 6},
11138                 {2442, 7}, {2447, 8}, {2452, 9},
11139                 {2457, 10}, {2462, 11},
11140                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11141                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11142          .a_channels = 24,
11143          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11144                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11145                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11146                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11147                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11148                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11149                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11150                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11151                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11152                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11153                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11154                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11155                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11156                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11157                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11158                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11159                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11160                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11161                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11162                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11163                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11164                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11165                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11166                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11167          },
11168
11169         {                       /* Europe */
11170          "ZZL",
11171          .bg_channels = 11,
11172          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11173                 {2427, 4}, {2432, 5}, {2437, 6},
11174                 {2442, 7}, {2447, 8}, {2452, 9},
11175                 {2457, 10}, {2462, 11}},
11176          .a_channels = 13,
11177          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11178                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11179                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11180                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11181                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11182                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11183                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11184                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11185                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11186                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11187                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11188                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11189                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11190          }
11191 };
11192
11193 #define MAX_HW_RESTARTS 5
11194 static int ipw_up(struct ipw_priv *priv)
11195 {
11196         int rc, i, j;
11197
11198         if (priv->status & STATUS_EXIT_PENDING)
11199                 return -EIO;
11200
11201         if (cmdlog && !priv->cmdlog) {
11202                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11203                                        GFP_KERNEL);
11204                 if (priv->cmdlog == NULL) {
11205                         IPW_ERROR("Error allocating %d command log entries.\n",
11206                                   cmdlog);
11207                         return -ENOMEM;
11208                 } else {
11209                         priv->cmdlog_len = cmdlog;
11210                 }
11211         }
11212
11213         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11214                 /* Load the microcode, firmware, and eeprom.
11215                  * Also start the clocks. */
11216                 rc = ipw_load(priv);
11217                 if (rc) {
11218                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11219                         return rc;
11220                 }
11221
11222                 ipw_init_ordinals(priv);
11223                 if (!(priv->config & CFG_CUSTOM_MAC))
11224                         eeprom_parse_mac(priv, priv->mac_addr);
11225                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11226
11227                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11228                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11229                                     ipw_geos[j].name, 3))
11230                                 break;
11231                 }
11232                 if (j == ARRAY_SIZE(ipw_geos)) {
11233                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11234                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11235                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11236                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11237                         j = 0;
11238                 }
11239                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11240                         IPW_WARNING("Could not set geography.");
11241                         return 0;
11242                 }
11243
11244                 if (priv->status & STATUS_RF_KILL_SW) {
11245                         IPW_WARNING("Radio disabled by module parameter.\n");
11246                         return 0;
11247                 } else if (rf_kill_active(priv)) {
11248                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11249                                     "Kill switch must be turned off for "
11250                                     "wireless networking to work.\n");
11251                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11252                                            2 * HZ);
11253                         return 0;
11254                 }
11255
11256                 rc = ipw_config(priv);
11257                 if (!rc) {
11258                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11259
11260                         /* If configure to try and auto-associate, kick
11261                          * off a scan. */
11262                         queue_delayed_work(priv->workqueue,
11263                                            &priv->request_scan, 0);
11264
11265                         return 0;
11266                 }
11267
11268                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11269                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11270                                i, MAX_HW_RESTARTS);
11271
11272                 /* We had an error bringing up the hardware, so take it
11273                  * all the way back down so we can try again */
11274                 ipw_down(priv);
11275         }
11276
11277         /* tried to restart and config the device for as long as our
11278          * patience could withstand */
11279         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11280
11281         return -EIO;
11282 }
11283
11284 static void ipw_bg_up(struct work_struct *work)
11285 {
11286         struct ipw_priv *priv =
11287                 container_of(work, struct ipw_priv, up);
11288         mutex_lock(&priv->mutex);
11289         ipw_up(priv);
11290         mutex_unlock(&priv->mutex);
11291 }
11292
11293 static void ipw_deinit(struct ipw_priv *priv)
11294 {
11295         int i;
11296
11297         if (priv->status & STATUS_SCANNING) {
11298                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11299                 ipw_abort_scan(priv);
11300         }
11301
11302         if (priv->status & STATUS_ASSOCIATED) {
11303                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11304                 ipw_disassociate(priv);
11305         }
11306
11307         ipw_led_shutdown(priv);
11308
11309         /* Wait up to 1s for status to change to not scanning and not
11310          * associated (disassociation can take a while for a ful 802.11
11311          * exchange */
11312         for (i = 1000; i && (priv->status &
11313                              (STATUS_DISASSOCIATING |
11314                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11315                 udelay(10);
11316
11317         if (priv->status & (STATUS_DISASSOCIATING |
11318                             STATUS_ASSOCIATED | STATUS_SCANNING))
11319                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11320         else
11321                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11322
11323         /* Attempt to disable the card */
11324         ipw_send_card_disable(priv, 0);
11325
11326         priv->status &= ~STATUS_INIT;
11327 }
11328
11329 static void ipw_down(struct ipw_priv *priv)
11330 {
11331         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11332
11333         priv->status |= STATUS_EXIT_PENDING;
11334
11335         if (ipw_is_init(priv))
11336                 ipw_deinit(priv);
11337
11338         /* Wipe out the EXIT_PENDING status bit if we are not actually
11339          * exiting the module */
11340         if (!exit_pending)
11341                 priv->status &= ~STATUS_EXIT_PENDING;
11342
11343         /* tell the device to stop sending interrupts */
11344         ipw_disable_interrupts(priv);
11345
11346         /* Clear all bits but the RF Kill */
11347         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11348         netif_carrier_off(priv->net_dev);
11349         netif_stop_queue(priv->net_dev);
11350
11351         ipw_stop_nic(priv);
11352
11353         ipw_led_radio_off(priv);
11354 }
11355
11356 static void ipw_bg_down(struct work_struct *work)
11357 {
11358         struct ipw_priv *priv =
11359                 container_of(work, struct ipw_priv, down);
11360         mutex_lock(&priv->mutex);
11361         ipw_down(priv);
11362         mutex_unlock(&priv->mutex);
11363 }
11364
11365 /* Called by register_netdev() */
11366 static int ipw_net_init(struct net_device *dev)
11367 {
11368         struct ipw_priv *priv = ieee80211_priv(dev);
11369         mutex_lock(&priv->mutex);
11370
11371         if (ipw_up(priv)) {
11372                 mutex_unlock(&priv->mutex);
11373                 return -EIO;
11374         }
11375
11376         mutex_unlock(&priv->mutex);
11377         return 0;
11378 }
11379
11380 /* PCI driver stuff */
11381 static struct pci_device_id card_ids[] = {
11382         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11383         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11384         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11385         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11386         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11387         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11388         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11389         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11390         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11391         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11392         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11393         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11394         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11395         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11396         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11397         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11398         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11399         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11400         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11401         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11402         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11403         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11404
11405         /* required last entry */
11406         {0,}
11407 };
11408
11409 MODULE_DEVICE_TABLE(pci, card_ids);
11410
11411 static struct attribute *ipw_sysfs_entries[] = {
11412         &dev_attr_rf_kill.attr,
11413         &dev_attr_direct_dword.attr,
11414         &dev_attr_indirect_byte.attr,
11415         &dev_attr_indirect_dword.attr,
11416         &dev_attr_mem_gpio_reg.attr,
11417         &dev_attr_command_event_reg.attr,
11418         &dev_attr_nic_type.attr,
11419         &dev_attr_status.attr,
11420         &dev_attr_cfg.attr,
11421         &dev_attr_error.attr,
11422         &dev_attr_event_log.attr,
11423         &dev_attr_cmd_log.attr,
11424         &dev_attr_eeprom_delay.attr,
11425         &dev_attr_ucode_version.attr,
11426         &dev_attr_rtc.attr,
11427         &dev_attr_scan_age.attr,
11428         &dev_attr_led.attr,
11429         &dev_attr_speed_scan.attr,
11430         &dev_attr_net_stats.attr,
11431         &dev_attr_channels.attr,
11432 #ifdef CONFIG_IPW2200_PROMISCUOUS
11433         &dev_attr_rtap_iface.attr,
11434         &dev_attr_rtap_filter.attr,
11435 #endif
11436         NULL
11437 };
11438
11439 static struct attribute_group ipw_attribute_group = {
11440         .name = NULL,           /* put in device directory */
11441         .attrs = ipw_sysfs_entries,
11442 };
11443
11444 #ifdef CONFIG_IPW2200_PROMISCUOUS
11445 static int ipw_prom_open(struct net_device *dev)
11446 {
11447         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11448         struct ipw_priv *priv = prom_priv->priv;
11449
11450         IPW_DEBUG_INFO("prom dev->open\n");
11451         netif_carrier_off(dev);
11452         netif_stop_queue(dev);
11453
11454         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11455                 priv->sys_config.accept_all_data_frames = 1;
11456                 priv->sys_config.accept_non_directed_frames = 1;
11457                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11458                 priv->sys_config.accept_all_mgmt_frames = 1;
11459
11460                 ipw_send_system_config(priv);
11461         }
11462
11463         return 0;
11464 }
11465
11466 static int ipw_prom_stop(struct net_device *dev)
11467 {
11468         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11469         struct ipw_priv *priv = prom_priv->priv;
11470
11471         IPW_DEBUG_INFO("prom dev->stop\n");
11472
11473         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11474                 priv->sys_config.accept_all_data_frames = 0;
11475                 priv->sys_config.accept_non_directed_frames = 0;
11476                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11477                 priv->sys_config.accept_all_mgmt_frames = 0;
11478
11479                 ipw_send_system_config(priv);
11480         }
11481
11482         return 0;
11483 }
11484
11485 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11486 {
11487         IPW_DEBUG_INFO("prom dev->xmit\n");
11488         netif_stop_queue(dev);
11489         return -EOPNOTSUPP;
11490 }
11491
11492 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11493 {
11494         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11495         return &prom_priv->ieee->stats;
11496 }
11497
11498 static int ipw_prom_alloc(struct ipw_priv *priv)
11499 {
11500         int rc = 0;
11501
11502         if (priv->prom_net_dev)
11503                 return -EPERM;
11504
11505         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11506         if (priv->prom_net_dev == NULL)
11507                 return -ENOMEM;
11508
11509         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11510         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11511         priv->prom_priv->priv = priv;
11512
11513         strcpy(priv->prom_net_dev->name, "rtap%d");
11514
11515         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11516         priv->prom_net_dev->open = ipw_prom_open;
11517         priv->prom_net_dev->stop = ipw_prom_stop;
11518         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11519         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11520
11521         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11522
11523         rc = register_netdev(priv->prom_net_dev);
11524         if (rc) {
11525                 free_ieee80211(priv->prom_net_dev);
11526                 priv->prom_net_dev = NULL;
11527                 return rc;
11528         }
11529
11530         return 0;
11531 }
11532
11533 static void ipw_prom_free(struct ipw_priv *priv)
11534 {
11535         if (!priv->prom_net_dev)
11536                 return;
11537
11538         unregister_netdev(priv->prom_net_dev);
11539         free_ieee80211(priv->prom_net_dev);
11540
11541         priv->prom_net_dev = NULL;
11542 }
11543
11544 #endif
11545
11546
11547 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11548 {
11549         int err = 0;
11550         struct net_device *net_dev;
11551         void __iomem *base;
11552         u32 length, val;
11553         struct ipw_priv *priv;
11554         int i;
11555
11556         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11557         if (net_dev == NULL) {
11558                 err = -ENOMEM;
11559                 goto out;
11560         }
11561
11562         priv = ieee80211_priv(net_dev);
11563         priv->ieee = netdev_priv(net_dev);
11564
11565         priv->net_dev = net_dev;
11566         priv->pci_dev = pdev;
11567         ipw_debug_level = debug;
11568         spin_lock_init(&priv->irq_lock);
11569         spin_lock_init(&priv->lock);
11570         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11571                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11572
11573         mutex_init(&priv->mutex);
11574         if (pci_enable_device(pdev)) {
11575                 err = -ENODEV;
11576                 goto out_free_ieee80211;
11577         }
11578
11579         pci_set_master(pdev);
11580
11581         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11582         if (!err)
11583                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11584         if (err) {
11585                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11586                 goto out_pci_disable_device;
11587         }
11588
11589         pci_set_drvdata(pdev, priv);
11590
11591         err = pci_request_regions(pdev, DRV_NAME);
11592         if (err)
11593                 goto out_pci_disable_device;
11594
11595         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11596          * PCI Tx retries from interfering with C3 CPU state */
11597         pci_read_config_dword(pdev, 0x40, &val);
11598         if ((val & 0x0000ff00) != 0)
11599                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11600
11601         length = pci_resource_len(pdev, 0);
11602         priv->hw_len = length;
11603
11604         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11605         if (!base) {
11606                 err = -ENODEV;
11607                 goto out_pci_release_regions;
11608         }
11609
11610         priv->hw_base = base;
11611         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11612         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11613
11614         err = ipw_setup_deferred_work(priv);
11615         if (err) {
11616                 IPW_ERROR("Unable to setup deferred work\n");
11617                 goto out_iounmap;
11618         }
11619
11620         ipw_sw_reset(priv, 1);
11621
11622         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11623         if (err) {
11624                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11625                 goto out_destroy_workqueue;
11626         }
11627
11628         SET_MODULE_OWNER(net_dev);
11629         SET_NETDEV_DEV(net_dev, &pdev->dev);
11630
11631         mutex_lock(&priv->mutex);
11632
11633         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11634         priv->ieee->set_security = shim__set_security;
11635         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11636
11637 #ifdef CONFIG_IPW2200_QOS
11638         priv->ieee->is_qos_active = ipw_is_qos_active;
11639         priv->ieee->handle_probe_response = ipw_handle_beacon;
11640         priv->ieee->handle_beacon = ipw_handle_probe_response;
11641         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11642 #endif                          /* CONFIG_IPW2200_QOS */
11643
11644         priv->ieee->perfect_rssi = -20;
11645         priv->ieee->worst_rssi = -85;
11646
11647         net_dev->open = ipw_net_open;
11648         net_dev->stop = ipw_net_stop;
11649         net_dev->init = ipw_net_init;
11650         net_dev->get_stats = ipw_net_get_stats;
11651         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11652         net_dev->set_mac_address = ipw_net_set_mac_address;
11653         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11654         net_dev->wireless_data = &priv->wireless_data;
11655         net_dev->wireless_handlers = &ipw_wx_handler_def;
11656         net_dev->ethtool_ops = &ipw_ethtool_ops;
11657         net_dev->irq = pdev->irq;
11658         net_dev->base_addr = (unsigned long)priv->hw_base;
11659         net_dev->mem_start = pci_resource_start(pdev, 0);
11660         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11661
11662         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11663         if (err) {
11664                 IPW_ERROR("failed to create sysfs device attributes\n");
11665                 mutex_unlock(&priv->mutex);
11666                 goto out_release_irq;
11667         }
11668
11669         mutex_unlock(&priv->mutex);
11670         err = register_netdev(net_dev);
11671         if (err) {
11672                 IPW_ERROR("failed to register network device\n");
11673                 goto out_remove_sysfs;
11674         }
11675
11676 #ifdef CONFIG_IPW2200_PROMISCUOUS
11677         if (rtap_iface) {
11678                 err = ipw_prom_alloc(priv);
11679                 if (err) {
11680                         IPW_ERROR("Failed to register promiscuous network "
11681                                   "device (error %d).\n", err);
11682                         unregister_netdev(priv->net_dev);
11683                         goto out_remove_sysfs;
11684                 }
11685         }
11686 #endif
11687
11688         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11689                "channels, %d 802.11a channels)\n",
11690                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11691                priv->ieee->geo.a_channels);
11692
11693         return 0;
11694
11695       out_remove_sysfs:
11696         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11697       out_release_irq:
11698         free_irq(pdev->irq, priv);
11699       out_destroy_workqueue:
11700         destroy_workqueue(priv->workqueue);
11701         priv->workqueue = NULL;
11702       out_iounmap:
11703         iounmap(priv->hw_base);
11704       out_pci_release_regions:
11705         pci_release_regions(pdev);
11706       out_pci_disable_device:
11707         pci_disable_device(pdev);
11708         pci_set_drvdata(pdev, NULL);
11709       out_free_ieee80211:
11710         free_ieee80211(priv->net_dev);
11711       out:
11712         return err;
11713 }
11714
11715 static void ipw_pci_remove(struct pci_dev *pdev)
11716 {
11717         struct ipw_priv *priv = pci_get_drvdata(pdev);
11718         struct list_head *p, *q;
11719         int i;
11720
11721         if (!priv)
11722                 return;
11723
11724         mutex_lock(&priv->mutex);
11725
11726         priv->status |= STATUS_EXIT_PENDING;
11727         ipw_down(priv);
11728         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11729
11730         mutex_unlock(&priv->mutex);
11731
11732         unregister_netdev(priv->net_dev);
11733
11734         if (priv->rxq) {
11735                 ipw_rx_queue_free(priv, priv->rxq);
11736                 priv->rxq = NULL;
11737         }
11738         ipw_tx_queue_free(priv);
11739
11740         if (priv->cmdlog) {
11741                 kfree(priv->cmdlog);
11742                 priv->cmdlog = NULL;
11743         }
11744         /* ipw_down will ensure that there is no more pending work
11745          * in the workqueue's, so we can safely remove them now. */
11746         cancel_delayed_work(&priv->adhoc_check);
11747         cancel_delayed_work(&priv->gather_stats);
11748         cancel_delayed_work(&priv->request_scan);
11749         cancel_delayed_work(&priv->rf_kill);
11750         cancel_delayed_work(&priv->scan_check);
11751         destroy_workqueue(priv->workqueue);
11752         priv->workqueue = NULL;
11753
11754         /* Free MAC hash list for ADHOC */
11755         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11756                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11757                         list_del(p);
11758                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11759                 }
11760         }
11761
11762         kfree(priv->error);
11763         priv->error = NULL;
11764
11765 #ifdef CONFIG_IPW2200_PROMISCUOUS
11766         ipw_prom_free(priv);
11767 #endif
11768
11769         free_irq(pdev->irq, priv);
11770         iounmap(priv->hw_base);
11771         pci_release_regions(pdev);
11772         pci_disable_device(pdev);
11773         pci_set_drvdata(pdev, NULL);
11774         free_ieee80211(priv->net_dev);
11775         free_firmware();
11776 }
11777
11778 #ifdef CONFIG_PM
11779 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11780 {
11781         struct ipw_priv *priv = pci_get_drvdata(pdev);
11782         struct net_device *dev = priv->net_dev;
11783
11784         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11785
11786         /* Take down the device; powers it off, etc. */
11787         ipw_down(priv);
11788
11789         /* Remove the PRESENT state of the device */
11790         netif_device_detach(dev);
11791
11792         pci_save_state(pdev);
11793         pci_disable_device(pdev);
11794         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11795
11796         return 0;
11797 }
11798
11799 static int ipw_pci_resume(struct pci_dev *pdev)
11800 {
11801         struct ipw_priv *priv = pci_get_drvdata(pdev);
11802         struct net_device *dev = priv->net_dev;
11803         int err;
11804         u32 val;
11805
11806         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11807
11808         pci_set_power_state(pdev, PCI_D0);
11809         err = pci_enable_device(pdev);
11810         if (err) {
11811                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11812                        dev->name);
11813                 return err;
11814         }
11815         pci_restore_state(pdev);
11816
11817         /*
11818          * Suspend/Resume resets the PCI configuration space, so we have to
11819          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11820          * from interfering with C3 CPU state. pci_restore_state won't help
11821          * here since it only restores the first 64 bytes pci config header.
11822          */
11823         pci_read_config_dword(pdev, 0x40, &val);
11824         if ((val & 0x0000ff00) != 0)
11825                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11826
11827         /* Set the device back into the PRESENT state; this will also wake
11828          * the queue of needed */
11829         netif_device_attach(dev);
11830
11831         /* Bring the device back up */
11832         queue_work(priv->workqueue, &priv->up);
11833
11834         return 0;
11835 }
11836 #endif
11837
11838 static void ipw_pci_shutdown(struct pci_dev *pdev)
11839 {
11840         struct ipw_priv *priv = pci_get_drvdata(pdev);
11841
11842         /* Take down the device; powers it off, etc. */
11843         ipw_down(priv);
11844
11845         pci_disable_device(pdev);
11846 }
11847
11848 /* driver initialization stuff */
11849 static struct pci_driver ipw_driver = {
11850         .name = DRV_NAME,
11851         .id_table = card_ids,
11852         .probe = ipw_pci_probe,
11853         .remove = __devexit_p(ipw_pci_remove),
11854 #ifdef CONFIG_PM
11855         .suspend = ipw_pci_suspend,
11856         .resume = ipw_pci_resume,
11857 #endif
11858         .shutdown = ipw_pci_shutdown,
11859 };
11860
11861 static int __init ipw_init(void)
11862 {
11863         int ret;
11864
11865         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11866         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11867
11868         ret = pci_register_driver(&ipw_driver);
11869         if (ret) {
11870                 IPW_ERROR("Unable to initialize PCI module\n");
11871                 return ret;
11872         }
11873
11874         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11875         if (ret) {
11876                 IPW_ERROR("Unable to create driver sysfs file\n");
11877                 pci_unregister_driver(&ipw_driver);
11878                 return ret;
11879         }
11880
11881         return ret;
11882 }
11883
11884 static void __exit ipw_exit(void)
11885 {
11886         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11887         pci_unregister_driver(&ipw_driver);
11888 }
11889
11890 module_param(disable, int, 0444);
11891 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11892
11893 module_param(associate, int, 0444);
11894 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11895
11896 module_param(auto_create, int, 0444);
11897 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11898
11899 module_param(led, int, 0444);
11900 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11901
11902 module_param(debug, int, 0444);
11903 MODULE_PARM_DESC(debug, "debug output mask");
11904
11905 module_param(channel, int, 0444);
11906 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11907
11908 #ifdef CONFIG_IPW2200_PROMISCUOUS
11909 module_param(rtap_iface, int, 0444);
11910 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11911 #endif
11912
11913 #ifdef CONFIG_IPW2200_QOS
11914 module_param(qos_enable, int, 0444);
11915 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11916
11917 module_param(qos_burst_enable, int, 0444);
11918 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11919
11920 module_param(qos_no_ack_mask, int, 0444);
11921 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11922
11923 module_param(burst_duration_CCK, int, 0444);
11924 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11925
11926 module_param(burst_duration_OFDM, int, 0444);
11927 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11928 #endif                          /* CONFIG_IPW2200_QOS */
11929
11930 #ifdef CONFIG_IPW2200_MONITOR
11931 module_param(mode, int, 0444);
11932 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11933 #else
11934 module_param(mode, int, 0444);
11935 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11936 #endif
11937
11938 module_param(bt_coexist, int, 0444);
11939 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11940
11941 module_param(hwcrypto, int, 0444);
11942 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11943
11944 module_param(cmdlog, int, 0444);
11945 MODULE_PARM_DESC(cmdlog,
11946                  "allocate a ring buffer for logging firmware commands");
11947
11948 module_param(roaming, int, 0444);
11949 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11950
11951 module_param(antenna, int, 0444);
11952 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11953
11954 module_exit(ipw_exit);
11955 module_init(ipw_init);