Merge branch 'fix/hda' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound...
[sfrench/cifs-2.6.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31                               struct ar5416_eeprom_def *pEepData,
32                               u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
56 {
57         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59         if (!ah->curchan) /* should really check for CCK instead */
60                 return clks / ATH9K_CLOCK_RATE_CCK;
61         if (conf->channel->band == IEEE80211_BAND_2GHZ)
62                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
63
64         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
65 }
66
67 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
68 {
69         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
70
71         if (conf_is_ht40(conf))
72                 return ath9k_hw_mac_usec(ah, clks) / 2;
73         else
74                 return ath9k_hw_mac_usec(ah, clks);
75 }
76
77 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
80
81         if (!ah->curchan) /* should really check for CCK instead */
82                 return usecs *ATH9K_CLOCK_RATE_CCK;
83         if (conf->channel->band == IEEE80211_BAND_2GHZ)
84                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
85         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
86 }
87
88 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
89 {
90         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
91
92         if (conf_is_ht40(conf))
93                 return ath9k_hw_mac_clks(ah, usecs) * 2;
94         else
95                 return ath9k_hw_mac_clks(ah, usecs);
96 }
97
98 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
99 {
100         int i;
101
102         BUG_ON(timeout < AH_TIME_QUANTUM);
103
104         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
105                 if ((REG_READ(ah, reg) & mask) == val)
106                         return true;
107
108                 udelay(AH_TIME_QUANTUM);
109         }
110
111         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
112                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
113                   timeout, reg, REG_READ(ah, reg), mask, val);
114
115         return false;
116 }
117 EXPORT_SYMBOL(ath9k_hw_wait);
118
119 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
120 {
121         u32 retval;
122         int i;
123
124         for (i = 0, retval = 0; i < n; i++) {
125                 retval = (retval << 1) | (val & 1);
126                 val >>= 1;
127         }
128         return retval;
129 }
130
131 bool ath9k_get_channel_edges(struct ath_hw *ah,
132                              u16 flags, u16 *low,
133                              u16 *high)
134 {
135         struct ath9k_hw_capabilities *pCap = &ah->caps;
136
137         if (flags & CHANNEL_5GHZ) {
138                 *low = pCap->low_5ghz_chan;
139                 *high = pCap->high_5ghz_chan;
140                 return true;
141         }
142         if ((flags & CHANNEL_2GHZ)) {
143                 *low = pCap->low_2ghz_chan;
144                 *high = pCap->high_2ghz_chan;
145                 return true;
146         }
147         return false;
148 }
149
150 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
151                            u8 phy, int kbps,
152                            u32 frameLen, u16 rateix,
153                            bool shortPreamble)
154 {
155         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
156
157         if (kbps == 0)
158                 return 0;
159
160         switch (phy) {
161         case WLAN_RC_PHY_CCK:
162                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
163                 if (shortPreamble)
164                         phyTime >>= 1;
165                 numBits = frameLen << 3;
166                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
167                 break;
168         case WLAN_RC_PHY_OFDM:
169                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
170                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
171                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
172                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
173                         txTime = OFDM_SIFS_TIME_QUARTER
174                                 + OFDM_PREAMBLE_TIME_QUARTER
175                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
176                 } else if (ah->curchan &&
177                            IS_CHAN_HALF_RATE(ah->curchan)) {
178                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
179                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
180                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
181                         txTime = OFDM_SIFS_TIME_HALF +
182                                 OFDM_PREAMBLE_TIME_HALF
183                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
184                 } else {
185                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
186                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
187                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
188                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
189                                 + (numSymbols * OFDM_SYMBOL_TIME);
190                 }
191                 break;
192         default:
193                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
194                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
195                 txTime = 0;
196                 break;
197         }
198
199         return txTime;
200 }
201 EXPORT_SYMBOL(ath9k_hw_computetxtime);
202
203 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
204                                   struct ath9k_channel *chan,
205                                   struct chan_centers *centers)
206 {
207         int8_t extoff;
208
209         if (!IS_CHAN_HT40(chan)) {
210                 centers->ctl_center = centers->ext_center =
211                         centers->synth_center = chan->channel;
212                 return;
213         }
214
215         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
216             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
217                 centers->synth_center =
218                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
219                 extoff = 1;
220         } else {
221                 centers->synth_center =
222                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
223                 extoff = -1;
224         }
225
226         centers->ctl_center =
227                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
228         /* 25 MHz spacing is supported by hw but not on upper layers */
229         centers->ext_center =
230                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
231 }
232
233 /******************/
234 /* Chip Revisions */
235 /******************/
236
237 static void ath9k_hw_read_revisions(struct ath_hw *ah)
238 {
239         u32 val;
240
241         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
242
243         if (val == 0xFF) {
244                 val = REG_READ(ah, AR_SREV);
245                 ah->hw_version.macVersion =
246                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
247                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
248                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
249         } else {
250                 if (!AR_SREV_9100(ah))
251                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
252
253                 ah->hw_version.macRev = val & AR_SREV_REVISION;
254
255                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
256                         ah->is_pciexpress = true;
257         }
258 }
259
260 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
261 {
262         u32 val;
263         int i;
264
265         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
266
267         for (i = 0; i < 8; i++)
268                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
269         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
270         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
271
272         return ath9k_hw_reverse_bits(val, 8);
273 }
274
275 /************************************/
276 /* HW Attach, Detach, Init Routines */
277 /************************************/
278
279 static void ath9k_hw_disablepcie(struct ath_hw *ah)
280 {
281         if (AR_SREV_9100(ah))
282                 return;
283
284         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
285         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
286         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
287         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
288         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
289         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
290         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
291         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
292         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
293
294         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
295 }
296
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299         struct ath_common *common = ath9k_hw_common(ah);
300         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
301         u32 regHold[2];
302         u32 patternData[4] = { 0x55555555,
303                                0xaaaaaaaa,
304                                0x66666666,
305                                0x99999999 };
306         int i, j;
307
308         for (i = 0; i < 2; i++) {
309                 u32 addr = regAddr[i];
310                 u32 wrData, rdData;
311
312                 regHold[i] = REG_READ(ah, addr);
313                 for (j = 0; j < 0x100; j++) {
314                         wrData = (j << 16) | j;
315                         REG_WRITE(ah, addr, wrData);
316                         rdData = REG_READ(ah, addr);
317                         if (rdData != wrData) {
318                                 ath_print(common, ATH_DBG_FATAL,
319                                           "address test failed "
320                                           "addr: 0x%08x - wr:0x%08x != "
321                                           "rd:0x%08x\n",
322                                           addr, wrData, rdData);
323                                 return false;
324                         }
325                 }
326                 for (j = 0; j < 4; j++) {
327                         wrData = patternData[j];
328                         REG_WRITE(ah, addr, wrData);
329                         rdData = REG_READ(ah, addr);
330                         if (wrData != rdData) {
331                                 ath_print(common, ATH_DBG_FATAL,
332                                           "address test failed "
333                                           "addr: 0x%08x - wr:0x%08x != "
334                                           "rd:0x%08x\n",
335                                           addr, wrData, rdData);
336                                 return false;
337                         }
338                 }
339                 REG_WRITE(ah, regAddr[i], regHold[i]);
340         }
341         udelay(100);
342
343         return true;
344 }
345
346 static const char *ath9k_hw_devname(u16 devid)
347 {
348         switch (devid) {
349         case AR5416_DEVID_PCI:
350                 return "Atheros 5416";
351         case AR5416_DEVID_PCIE:
352                 return "Atheros 5418";
353         case AR9160_DEVID_PCI:
354                 return "Atheros 9160";
355         case AR5416_AR9100_DEVID:
356                 return "Atheros 9100";
357         case AR9280_DEVID_PCI:
358         case AR9280_DEVID_PCIE:
359                 return "Atheros 9280";
360         case AR9285_DEVID_PCIE:
361                 return "Atheros 9285";
362         case AR5416_DEVID_AR9287_PCI:
363         case AR5416_DEVID_AR9287_PCIE:
364                 return "Atheros 9287";
365         }
366
367         return NULL;
368 }
369
370 static void ath9k_hw_init_config(struct ath_hw *ah)
371 {
372         int i;
373
374         ah->config.dma_beacon_response_time = 2;
375         ah->config.sw_beacon_response_time = 10;
376         ah->config.additional_swba_backoff = 0;
377         ah->config.ack_6mb = 0x0;
378         ah->config.cwm_ignore_extcca = 0;
379         ah->config.pcie_powersave_enable = 0;
380         ah->config.pcie_clock_req = 0;
381         ah->config.pcie_waen = 0;
382         ah->config.analog_shiftreg = 1;
383         ah->config.ht_enable = 1;
384         ah->config.ofdm_trig_low = 200;
385         ah->config.ofdm_trig_high = 500;
386         ah->config.cck_trig_high = 200;
387         ah->config.cck_trig_low = 100;
388         ah->config.enable_ani = 1;
389
390         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
391                 ah->config.spurchans[i][0] = AR_NO_SPUR;
392                 ah->config.spurchans[i][1] = AR_NO_SPUR;
393         }
394
395         ah->config.intr_mitigation = true;
396
397         /*
398          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
399          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
400          * This means we use it for all AR5416 devices, and the few
401          * minor PCI AR9280 devices out there.
402          *
403          * Serialization is required because these devices do not handle
404          * well the case of two concurrent reads/writes due to the latency
405          * involved. During one read/write another read/write can be issued
406          * on another CPU while the previous read/write may still be working
407          * on our hardware, if we hit this case the hardware poops in a loop.
408          * We prevent this by serializing reads and writes.
409          *
410          * This issue is not present on PCI-Express devices or pre-AR5416
411          * devices (legacy, 802.11abg).
412          */
413         if (num_possible_cpus() > 1)
414                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
415 }
416 EXPORT_SYMBOL(ath9k_hw_init);
417
418 static void ath9k_hw_init_defaults(struct ath_hw *ah)
419 {
420         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
421
422         regulatory->country_code = CTRY_DEFAULT;
423         regulatory->power_limit = MAX_RATE_POWER;
424         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
425
426         ah->hw_version.magic = AR5416_MAGIC;
427         ah->hw_version.subvendorid = 0;
428
429         ah->ah_flags = 0;
430         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
431                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
432         if (!AR_SREV_9100(ah))
433                 ah->ah_flags = AH_USE_EEPROM;
434
435         ah->atim_window = 0;
436         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
437         ah->beacon_interval = 100;
438         ah->enable_32kHz_clock = DONT_USE_32KHZ;
439         ah->slottime = (u32) -1;
440         ah->acktimeout = (u32) -1;
441         ah->ctstimeout = (u32) -1;
442         ah->globaltxtimeout = (u32) -1;
443         ah->power_mode = ATH9K_PM_UNDEFINED;
444 }
445
446 static int ath9k_hw_rf_claim(struct ath_hw *ah)
447 {
448         u32 val;
449
450         REG_WRITE(ah, AR_PHY(0), 0x00000007);
451
452         val = ath9k_hw_get_radiorev(ah);
453         switch (val & AR_RADIO_SREV_MAJOR) {
454         case 0:
455                 val = AR_RAD5133_SREV_MAJOR;
456                 break;
457         case AR_RAD5133_SREV_MAJOR:
458         case AR_RAD5122_SREV_MAJOR:
459         case AR_RAD2133_SREV_MAJOR:
460         case AR_RAD2122_SREV_MAJOR:
461                 break;
462         default:
463                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
464                           "Radio Chip Rev 0x%02X not supported\n",
465                           val & AR_RADIO_SREV_MAJOR);
466                 return -EOPNOTSUPP;
467         }
468
469         ah->hw_version.analog5GhzRev = val;
470
471         return 0;
472 }
473
474 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
475 {
476         struct ath_common *common = ath9k_hw_common(ah);
477         u32 sum;
478         int i;
479         u16 eeval;
480
481         sum = 0;
482         for (i = 0; i < 3; i++) {
483                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
484                 sum += eeval;
485                 common->macaddr[2 * i] = eeval >> 8;
486                 common->macaddr[2 * i + 1] = eeval & 0xff;
487         }
488         if (sum == 0 || sum == 0xffff * 3)
489                 return -EADDRNOTAVAIL;
490
491         return 0;
492 }
493
494 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
495 {
496         u32 rxgain_type;
497
498         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
499                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
500
501                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
502                         INIT_INI_ARRAY(&ah->iniModesRxGain,
503                         ar9280Modes_backoff_13db_rxgain_9280_2,
504                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
505                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
506                         INIT_INI_ARRAY(&ah->iniModesRxGain,
507                         ar9280Modes_backoff_23db_rxgain_9280_2,
508                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
509                 else
510                         INIT_INI_ARRAY(&ah->iniModesRxGain,
511                         ar9280Modes_original_rxgain_9280_2,
512                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
513         } else {
514                 INIT_INI_ARRAY(&ah->iniModesRxGain,
515                         ar9280Modes_original_rxgain_9280_2,
516                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
517         }
518 }
519
520 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
521 {
522         u32 txgain_type;
523
524         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
525                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
526
527                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
528                         INIT_INI_ARRAY(&ah->iniModesTxGain,
529                         ar9280Modes_high_power_tx_gain_9280_2,
530                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
531                 else
532                         INIT_INI_ARRAY(&ah->iniModesTxGain,
533                         ar9280Modes_original_tx_gain_9280_2,
534                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
535         } else {
536                 INIT_INI_ARRAY(&ah->iniModesTxGain,
537                 ar9280Modes_original_tx_gain_9280_2,
538                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
539         }
540 }
541
542 static int ath9k_hw_post_init(struct ath_hw *ah)
543 {
544         int ecode;
545
546         if (!ath9k_hw_chip_test(ah))
547                 return -ENODEV;
548
549         ecode = ath9k_hw_rf_claim(ah);
550         if (ecode != 0)
551                 return ecode;
552
553         ecode = ath9k_hw_eeprom_init(ah);
554         if (ecode != 0)
555                 return ecode;
556
557         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
558                   "Eeprom VER: %d, REV: %d\n",
559                   ah->eep_ops->get_eeprom_ver(ah),
560                   ah->eep_ops->get_eeprom_rev(ah));
561
562         if (!AR_SREV_9280_10_OR_LATER(ah)) {
563                 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
564                 if (ecode) {
565                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
566                                   "Failed allocating banks for "
567                                   "external radio\n");
568                         return ecode;
569                 }
570         }
571
572         if (!AR_SREV_9100(ah)) {
573                 ath9k_hw_ani_setup(ah);
574                 ath9k_hw_ani_init(ah);
575         }
576
577         return 0;
578 }
579
580 static bool ath9k_hw_devid_supported(u16 devid)
581 {
582         switch (devid) {
583         case AR5416_DEVID_PCI:
584         case AR5416_DEVID_PCIE:
585         case AR5416_AR9100_DEVID:
586         case AR9160_DEVID_PCI:
587         case AR9280_DEVID_PCI:
588         case AR9280_DEVID_PCIE:
589         case AR9285_DEVID_PCIE:
590         case AR5416_DEVID_AR9287_PCI:
591         case AR5416_DEVID_AR9287_PCIE:
592         case AR9271_USB:
593                 return true;
594         default:
595                 break;
596         }
597         return false;
598 }
599
600 static bool ath9k_hw_macversion_supported(u32 macversion)
601 {
602         switch (macversion) {
603         case AR_SREV_VERSION_5416_PCI:
604         case AR_SREV_VERSION_5416_PCIE:
605         case AR_SREV_VERSION_9160:
606         case AR_SREV_VERSION_9100:
607         case AR_SREV_VERSION_9280:
608         case AR_SREV_VERSION_9285:
609         case AR_SREV_VERSION_9287:
610         case AR_SREV_VERSION_9271:
611                 return true;
612         default:
613                 break;
614         }
615         return false;
616 }
617
618 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
619 {
620         if (AR_SREV_9160_10_OR_LATER(ah)) {
621                 if (AR_SREV_9280_10_OR_LATER(ah)) {
622                         ah->iq_caldata.calData = &iq_cal_single_sample;
623                         ah->adcgain_caldata.calData =
624                                 &adc_gain_cal_single_sample;
625                         ah->adcdc_caldata.calData =
626                                 &adc_dc_cal_single_sample;
627                         ah->adcdc_calinitdata.calData =
628                                 &adc_init_dc_cal;
629                 } else {
630                         ah->iq_caldata.calData = &iq_cal_multi_sample;
631                         ah->adcgain_caldata.calData =
632                                 &adc_gain_cal_multi_sample;
633                         ah->adcdc_caldata.calData =
634                                 &adc_dc_cal_multi_sample;
635                         ah->adcdc_calinitdata.calData =
636                                 &adc_init_dc_cal;
637                 }
638                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
639         }
640 }
641
642 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
643 {
644         if (AR_SREV_9271(ah)) {
645                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
646                                ARRAY_SIZE(ar9271Modes_9271), 6);
647                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
648                                ARRAY_SIZE(ar9271Common_9271), 2);
649                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
650                                ar9271Modes_9271_1_0_only,
651                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
652                 return;
653         }
654
655         if (AR_SREV_9287_11_OR_LATER(ah)) {
656                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
657                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
658                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
659                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
660                 if (ah->config.pcie_clock_req)
661                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
662                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
663                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
664                 else
665                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
666                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
667                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
668                                         2);
669         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
670                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
671                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
672                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
673                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
674
675                 if (ah->config.pcie_clock_req)
676                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
677                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
678                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
679                 else
680                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
681                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
682                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
683                                   2);
684         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
685
686
687                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
688                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
689                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
690                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
691
692                 if (ah->config.pcie_clock_req) {
693                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
694                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
695                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
696                 } else {
697                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
698                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
699                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
700                                   2);
701                 }
702         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
703                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
704                                ARRAY_SIZE(ar9285Modes_9285), 6);
705                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
706                                ARRAY_SIZE(ar9285Common_9285), 2);
707
708                 if (ah->config.pcie_clock_req) {
709                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
710                         ar9285PciePhy_clkreq_off_L1_9285,
711                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
712                 } else {
713                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
714                         ar9285PciePhy_clkreq_always_on_L1_9285,
715                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
716                 }
717         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
718                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
719                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
720                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
721                                ARRAY_SIZE(ar9280Common_9280_2), 2);
722
723                 if (ah->config.pcie_clock_req) {
724                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
725                                ar9280PciePhy_clkreq_off_L1_9280,
726                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
727                 } else {
728                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
729                                ar9280PciePhy_clkreq_always_on_L1_9280,
730                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
731                 }
732                 INIT_INI_ARRAY(&ah->iniModesAdditional,
733                                ar9280Modes_fast_clock_9280_2,
734                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
735         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
736                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
737                                ARRAY_SIZE(ar9280Modes_9280), 6);
738                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
739                                ARRAY_SIZE(ar9280Common_9280), 2);
740         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
741                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
742                                ARRAY_SIZE(ar5416Modes_9160), 6);
743                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
744                                ARRAY_SIZE(ar5416Common_9160), 2);
745                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
746                                ARRAY_SIZE(ar5416Bank0_9160), 2);
747                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
748                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
749                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
750                                ARRAY_SIZE(ar5416Bank1_9160), 2);
751                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
752                                ARRAY_SIZE(ar5416Bank2_9160), 2);
753                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
754                                ARRAY_SIZE(ar5416Bank3_9160), 3);
755                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
756                                ARRAY_SIZE(ar5416Bank6_9160), 3);
757                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
758                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
759                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
760                                ARRAY_SIZE(ar5416Bank7_9160), 2);
761                 if (AR_SREV_9160_11(ah)) {
762                         INIT_INI_ARRAY(&ah->iniAddac,
763                                        ar5416Addac_91601_1,
764                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
765                 } else {
766                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
767                                        ARRAY_SIZE(ar5416Addac_9160), 2);
768                 }
769         } else if (AR_SREV_9100_OR_LATER(ah)) {
770                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
771                                ARRAY_SIZE(ar5416Modes_9100), 6);
772                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
773                                ARRAY_SIZE(ar5416Common_9100), 2);
774                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
775                                ARRAY_SIZE(ar5416Bank0_9100), 2);
776                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
777                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
778                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
779                                ARRAY_SIZE(ar5416Bank1_9100), 2);
780                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
781                                ARRAY_SIZE(ar5416Bank2_9100), 2);
782                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
783                                ARRAY_SIZE(ar5416Bank3_9100), 3);
784                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
785                                ARRAY_SIZE(ar5416Bank6_9100), 3);
786                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
787                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
788                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
789                                ARRAY_SIZE(ar5416Bank7_9100), 2);
790                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
791                                ARRAY_SIZE(ar5416Addac_9100), 2);
792         } else {
793                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
794                                ARRAY_SIZE(ar5416Modes), 6);
795                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
796                                ARRAY_SIZE(ar5416Common), 2);
797                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
798                                ARRAY_SIZE(ar5416Bank0), 2);
799                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
800                                ARRAY_SIZE(ar5416BB_RfGain), 3);
801                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
802                                ARRAY_SIZE(ar5416Bank1), 2);
803                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
804                                ARRAY_SIZE(ar5416Bank2), 2);
805                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
806                                ARRAY_SIZE(ar5416Bank3), 3);
807                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
808                                ARRAY_SIZE(ar5416Bank6), 3);
809                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
810                                ARRAY_SIZE(ar5416Bank6TPC), 3);
811                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
812                                ARRAY_SIZE(ar5416Bank7), 2);
813                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
814                                ARRAY_SIZE(ar5416Addac), 2);
815         }
816 }
817
818 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
819 {
820         if (AR_SREV_9287_11_OR_LATER(ah))
821                 INIT_INI_ARRAY(&ah->iniModesRxGain,
822                 ar9287Modes_rx_gain_9287_1_1,
823                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
824         else if (AR_SREV_9287_10(ah))
825                 INIT_INI_ARRAY(&ah->iniModesRxGain,
826                 ar9287Modes_rx_gain_9287_1_0,
827                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
828         else if (AR_SREV_9280_20(ah))
829                 ath9k_hw_init_rxgain_ini(ah);
830
831         if (AR_SREV_9287_11_OR_LATER(ah)) {
832                 INIT_INI_ARRAY(&ah->iniModesTxGain,
833                 ar9287Modes_tx_gain_9287_1_1,
834                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
835         } else if (AR_SREV_9287_10(ah)) {
836                 INIT_INI_ARRAY(&ah->iniModesTxGain,
837                 ar9287Modes_tx_gain_9287_1_0,
838                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
839         } else if (AR_SREV_9280_20(ah)) {
840                 ath9k_hw_init_txgain_ini(ah);
841         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
842                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
843
844                 /* txgain table */
845                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
846                         INIT_INI_ARRAY(&ah->iniModesTxGain,
847                         ar9285Modes_high_power_tx_gain_9285_1_2,
848                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
849                 } else {
850                         INIT_INI_ARRAY(&ah->iniModesTxGain,
851                         ar9285Modes_original_tx_gain_9285_1_2,
852                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
853                 }
854
855         }
856 }
857
858 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
859 {
860         u32 i, j;
861
862         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
863             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
864
865                 /* EEPROM Fixup */
866                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
867                         u32 reg = INI_RA(&ah->iniModes, i, 0);
868
869                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
870                                 u32 val = INI_RA(&ah->iniModes, i, j);
871
872                                 INI_RA(&ah->iniModes, i, j) =
873                                         ath9k_hw_ini_fixup(ah,
874                                                            &ah->eeprom.def,
875                                                            reg, val);
876                         }
877                 }
878         }
879 }
880
881 int ath9k_hw_init(struct ath_hw *ah)
882 {
883         struct ath_common *common = ath9k_hw_common(ah);
884         int r = 0;
885
886         if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
887                 ath_print(common, ATH_DBG_FATAL,
888                           "Unsupported device ID: 0x%0x\n",
889                           ah->hw_version.devid);
890                 return -EOPNOTSUPP;
891         }
892
893         ath9k_hw_init_defaults(ah);
894         ath9k_hw_init_config(ah);
895
896         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
897                 ath_print(common, ATH_DBG_FATAL,
898                           "Couldn't reset chip\n");
899                 return -EIO;
900         }
901
902         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
903                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
904                 return -EIO;
905         }
906
907         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
908                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
909                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
910                         ah->config.serialize_regmode =
911                                 SER_REG_MODE_ON;
912                 } else {
913                         ah->config.serialize_regmode =
914                                 SER_REG_MODE_OFF;
915                 }
916         }
917
918         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
919                 ah->config.serialize_regmode);
920
921         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
922                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
923         else
924                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
925
926         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
927                 ath_print(common, ATH_DBG_FATAL,
928                           "Mac Chip Rev 0x%02x.%x is not supported by "
929                           "this driver\n", ah->hw_version.macVersion,
930                           ah->hw_version.macRev);
931                 return -EOPNOTSUPP;
932         }
933
934         if (AR_SREV_9100(ah)) {
935                 ah->iq_caldata.calData = &iq_cal_multi_sample;
936                 ah->supp_cals = IQ_MISMATCH_CAL;
937                 ah->is_pciexpress = false;
938         }
939
940         if (AR_SREV_9271(ah))
941                 ah->is_pciexpress = false;
942
943         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
944
945         ath9k_hw_init_cal_settings(ah);
946
947         ah->ani_function = ATH9K_ANI_ALL;
948         if (AR_SREV_9280_10_OR_LATER(ah)) {
949                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
950                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
951                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
952         } else {
953                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
954                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
955         }
956
957         ath9k_hw_init_mode_regs(ah);
958
959         if (ah->is_pciexpress)
960                 ath9k_hw_configpcipowersave(ah, 0, 0);
961         else
962                 ath9k_hw_disablepcie(ah);
963
964         /* Support for Japan ch.14 (2484) spread */
965         if (AR_SREV_9287_11_OR_LATER(ah)) {
966                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
967                        ar9287Common_normal_cck_fir_coeff_92871_1,
968                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
969                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
970                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
971                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
972         }
973
974         r = ath9k_hw_post_init(ah);
975         if (r)
976                 return r;
977
978         ath9k_hw_init_mode_gain_regs(ah);
979         r = ath9k_hw_fill_cap_info(ah);
980         if (r)
981                 return r;
982
983         ath9k_hw_init_11a_eeprom_fix(ah);
984
985         r = ath9k_hw_init_macaddr(ah);
986         if (r) {
987                 ath_print(common, ATH_DBG_FATAL,
988                           "Failed to initialize MAC address\n");
989                 return r;
990         }
991
992         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
993                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
994         else
995                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
996
997         ath9k_init_nfcal_hist_buffer(ah);
998
999         common->state = ATH_HW_INITIALIZED;
1000
1001         return 0;
1002 }
1003
1004 static void ath9k_hw_init_bb(struct ath_hw *ah,
1005                              struct ath9k_channel *chan)
1006 {
1007         u32 synthDelay;
1008
1009         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1010         if (IS_CHAN_B(chan))
1011                 synthDelay = (4 * synthDelay) / 22;
1012         else
1013                 synthDelay /= 10;
1014
1015         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1016
1017         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1018 }
1019
1020 static void ath9k_hw_init_qos(struct ath_hw *ah)
1021 {
1022         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1023         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1024
1025         REG_WRITE(ah, AR_QOS_NO_ACK,
1026                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1027                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1028                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1029
1030         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1031         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1032         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1033         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1034         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1035 }
1036
1037 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
1038 {
1039         u32 lcr;
1040         u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
1041
1042         lcr = REG_READ(ah , 0x5100c);
1043         lcr |= 0x80;
1044
1045         REG_WRITE(ah, 0x5100c, lcr);
1046         REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1047         REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1048
1049         lcr &= ~0x80;
1050         REG_WRITE(ah, 0x5100c, lcr);
1051 }
1052
1053 static void ath9k_hw_init_pll(struct ath_hw *ah,
1054                               struct ath9k_channel *chan)
1055 {
1056         u32 pll;
1057
1058         if (AR_SREV_9100(ah)) {
1059                 if (chan && IS_CHAN_5GHZ(chan))
1060                         pll = 0x1450;
1061                 else
1062                         pll = 0x1458;
1063         } else {
1064                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1065                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1066
1067                         if (chan && IS_CHAN_HALF_RATE(chan))
1068                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1069                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1070                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1071
1072                         if (chan && IS_CHAN_5GHZ(chan)) {
1073                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1074
1075
1076                                 if (AR_SREV_9280_20(ah)) {
1077                                         if (((chan->channel % 20) == 0)
1078                                             || ((chan->channel % 10) == 0))
1079                                                 pll = 0x2850;
1080                                         else
1081                                                 pll = 0x142c;
1082                                 }
1083                         } else {
1084                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1085                         }
1086
1087                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1088
1089                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1090
1091                         if (chan && IS_CHAN_HALF_RATE(chan))
1092                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1093                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1094                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1095
1096                         if (chan && IS_CHAN_5GHZ(chan))
1097                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1098                         else
1099                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1100                 } else {
1101                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1102
1103                         if (chan && IS_CHAN_HALF_RATE(chan))
1104                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1105                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1106                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1107
1108                         if (chan && IS_CHAN_5GHZ(chan))
1109                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1110                         else
1111                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1112                 }
1113         }
1114         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1115
1116         /* Switch the core clock for ar9271 to 117Mhz */
1117         if (AR_SREV_9271(ah)) {
1118                 if ((pll == 0x142c) || (pll == 0x2850) ) {
1119                         udelay(500);
1120                         /* set CLKOBS to output AHB clock */
1121                         REG_WRITE(ah, 0x7020, 0xe);
1122                         /*
1123                          * 0x304: 117Mhz, ahb_ratio: 1x1
1124                          * 0x306: 40Mhz, ahb_ratio: 1x1
1125                          */
1126                         REG_WRITE(ah, 0x50040, 0x304);
1127                         /*
1128                          * makes adjustments for the baud dividor to keep the
1129                          * targetted baud rate based on the used core clock.
1130                          */
1131                         ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1132                                                     AR9271_TARGET_BAUD_RATE);
1133                 }
1134         }
1135
1136         udelay(RTC_PLL_SETTLE_DELAY);
1137
1138         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1139 }
1140
1141 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1142 {
1143         int rx_chainmask, tx_chainmask;
1144
1145         rx_chainmask = ah->rxchainmask;
1146         tx_chainmask = ah->txchainmask;
1147
1148         switch (rx_chainmask) {
1149         case 0x5:
1150                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1151                             AR_PHY_SWAP_ALT_CHAIN);
1152         case 0x3:
1153                 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1154                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1155                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1156                         break;
1157                 }
1158         case 0x1:
1159         case 0x2:
1160         case 0x7:
1161                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1162                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1163                 break;
1164         default:
1165                 break;
1166         }
1167
1168         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1169         if (tx_chainmask == 0x5) {
1170                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1171                             AR_PHY_SWAP_ALT_CHAIN);
1172         }
1173         if (AR_SREV_9100(ah))
1174                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1175                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1176 }
1177
1178 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1179                                           enum nl80211_iftype opmode)
1180 {
1181         ah->mask_reg = AR_IMR_TXERR |
1182                 AR_IMR_TXURN |
1183                 AR_IMR_RXERR |
1184                 AR_IMR_RXORN |
1185                 AR_IMR_BCNMISC;
1186
1187         if (ah->config.intr_mitigation)
1188                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1189         else
1190                 ah->mask_reg |= AR_IMR_RXOK;
1191
1192         ah->mask_reg |= AR_IMR_TXOK;
1193
1194         if (opmode == NL80211_IFTYPE_AP)
1195                 ah->mask_reg |= AR_IMR_MIB;
1196
1197         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1198         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1199
1200         if (!AR_SREV_9100(ah)) {
1201                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1202                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1203                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1204         }
1205 }
1206
1207 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1208 {
1209         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1210                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1211                           "bad ack timeout %u\n", us);
1212                 ah->acktimeout = (u32) -1;
1213                 return false;
1214         } else {
1215                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1216                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1217                 ah->acktimeout = us;
1218                 return true;
1219         }
1220 }
1221
1222 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1223 {
1224         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1225                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1226                           "bad cts timeout %u\n", us);
1227                 ah->ctstimeout = (u32) -1;
1228                 return false;
1229         } else {
1230                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1231                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1232                 ah->ctstimeout = us;
1233                 return true;
1234         }
1235 }
1236
1237 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1238 {
1239         if (tu > 0xFFFF) {
1240                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1241                           "bad global tx timeout %u\n", tu);
1242                 ah->globaltxtimeout = (u32) -1;
1243                 return false;
1244         } else {
1245                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1246                 ah->globaltxtimeout = tu;
1247                 return true;
1248         }
1249 }
1250
1251 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1252 {
1253         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1254                   ah->misc_mode);
1255
1256         if (ah->misc_mode != 0)
1257                 REG_WRITE(ah, AR_PCU_MISC,
1258                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1259         if (ah->slottime != (u32) -1)
1260                 ath9k_hw_setslottime(ah, ah->slottime);
1261         if (ah->acktimeout != (u32) -1)
1262                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1263         if (ah->ctstimeout != (u32) -1)
1264                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1265         if (ah->globaltxtimeout != (u32) -1)
1266                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1267 }
1268
1269 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1270 {
1271         return vendorid == ATHEROS_VENDOR_ID ?
1272                 ath9k_hw_devname(devid) : NULL;
1273 }
1274
1275 void ath9k_hw_detach(struct ath_hw *ah)
1276 {
1277         struct ath_common *common = ath9k_hw_common(ah);
1278
1279         if (common->state <= ATH_HW_INITIALIZED)
1280                 goto free_hw;
1281
1282         if (!AR_SREV_9100(ah))
1283                 ath9k_hw_ani_disable(ah);
1284
1285         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1286
1287 free_hw:
1288         if (!AR_SREV_9280_10_OR_LATER(ah))
1289                 ath9k_hw_rf_free_ext_banks(ah);
1290         kfree(ah);
1291         ah = NULL;
1292 }
1293 EXPORT_SYMBOL(ath9k_hw_detach);
1294
1295 /*******/
1296 /* INI */
1297 /*******/
1298
1299 static void ath9k_hw_override_ini(struct ath_hw *ah,
1300                                   struct ath9k_channel *chan)
1301 {
1302         u32 val;
1303
1304         if (AR_SREV_9271(ah)) {
1305                 /*
1306                  * Enable spectral scan to solution for issues with stuck
1307                  * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1308                  * AR9271 1.1
1309                  */
1310                 if (AR_SREV_9271_10(ah)) {
1311                         val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1312                               AR_PHY_SPECTRAL_SCAN_ENABLE;
1313                         REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1314                 }
1315                 else if (AR_SREV_9271_11(ah))
1316                         /*
1317                          * change AR_PHY_RF_CTL3 setting to fix MAC issue
1318                          * present on AR9271 1.1
1319                          */
1320                         REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1321                 return;
1322         }
1323
1324         /*
1325          * Set the RX_ABORT and RX_DIS and clear if off only after
1326          * RXE is set for MAC. This prevents frames with corrupted
1327          * descriptor status.
1328          */
1329         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1330
1331         if (AR_SREV_9280_10_OR_LATER(ah)) {
1332                 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1333                                (~AR_PCU_MISC_MODE2_HWWAR1);
1334
1335                 if (AR_SREV_9287_10_OR_LATER(ah))
1336                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1337
1338                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1339         }
1340
1341         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1342             AR_SREV_9280_10_OR_LATER(ah))
1343                 return;
1344         /*
1345          * Disable BB clock gating
1346          * Necessary to avoid issues on AR5416 2.0
1347          */
1348         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1349 }
1350
1351 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1352                               struct ar5416_eeprom_def *pEepData,
1353                               u32 reg, u32 value)
1354 {
1355         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1356         struct ath_common *common = ath9k_hw_common(ah);
1357
1358         switch (ah->hw_version.devid) {
1359         case AR9280_DEVID_PCI:
1360                 if (reg == 0x7894) {
1361                         ath_print(common, ATH_DBG_EEPROM,
1362                                 "ini VAL: %x  EEPROM: %x\n", value,
1363                                 (pBase->version & 0xff));
1364
1365                         if ((pBase->version & 0xff) > 0x0a) {
1366                                 ath_print(common, ATH_DBG_EEPROM,
1367                                           "PWDCLKIND: %d\n",
1368                                           pBase->pwdclkind);
1369                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1370                                 value |= AR_AN_TOP2_PWDCLKIND &
1371                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1372                         } else {
1373                                 ath_print(common, ATH_DBG_EEPROM,
1374                                           "PWDCLKIND Earlier Rev\n");
1375                         }
1376
1377                         ath_print(common, ATH_DBG_EEPROM,
1378                                   "final ini VAL: %x\n", value);
1379                 }
1380                 break;
1381         }
1382
1383         return value;
1384 }
1385
1386 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1387                               struct ar5416_eeprom_def *pEepData,
1388                               u32 reg, u32 value)
1389 {
1390         if (ah->eep_map == EEP_MAP_4KBITS)
1391                 return value;
1392         else
1393                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1394 }
1395
1396 static void ath9k_olc_init(struct ath_hw *ah)
1397 {
1398         u32 i;
1399
1400         if (OLC_FOR_AR9287_10_LATER) {
1401                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1402                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1403                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1404                                 AR9287_AN_TXPC0_TXPCMODE,
1405                                 AR9287_AN_TXPC0_TXPCMODE_S,
1406                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1407                 udelay(100);
1408         } else {
1409                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1410                         ah->originalGain[i] =
1411                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1412                                                 AR_PHY_TX_GAIN);
1413                 ah->PDADCdelta = 0;
1414         }
1415 }
1416
1417 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1418                               struct ath9k_channel *chan)
1419 {
1420         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1421
1422         if (IS_CHAN_B(chan))
1423                 ctl |= CTL_11B;
1424         else if (IS_CHAN_G(chan))
1425                 ctl |= CTL_11G;
1426         else
1427                 ctl |= CTL_11A;
1428
1429         return ctl;
1430 }
1431
1432 static int ath9k_hw_process_ini(struct ath_hw *ah,
1433                                 struct ath9k_channel *chan)
1434 {
1435         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1436         int i, regWrites = 0;
1437         struct ieee80211_channel *channel = chan->chan;
1438         u32 modesIndex, freqIndex;
1439
1440         switch (chan->chanmode) {
1441         case CHANNEL_A:
1442         case CHANNEL_A_HT20:
1443                 modesIndex = 1;
1444                 freqIndex = 1;
1445                 break;
1446         case CHANNEL_A_HT40PLUS:
1447         case CHANNEL_A_HT40MINUS:
1448                 modesIndex = 2;
1449                 freqIndex = 1;
1450                 break;
1451         case CHANNEL_G:
1452         case CHANNEL_G_HT20:
1453         case CHANNEL_B:
1454                 modesIndex = 4;
1455                 freqIndex = 2;
1456                 break;
1457         case CHANNEL_G_HT40PLUS:
1458         case CHANNEL_G_HT40MINUS:
1459                 modesIndex = 3;
1460                 freqIndex = 2;
1461                 break;
1462
1463         default:
1464                 return -EINVAL;
1465         }
1466
1467         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1468         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1469         ah->eep_ops->set_addac(ah, chan);
1470
1471         if (AR_SREV_5416_22_OR_LATER(ah)) {
1472                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1473         } else {
1474                 struct ar5416IniArray temp;
1475                 u32 addacSize =
1476                         sizeof(u32) * ah->iniAddac.ia_rows *
1477                         ah->iniAddac.ia_columns;
1478
1479                 memcpy(ah->addac5416_21,
1480                        ah->iniAddac.ia_array, addacSize);
1481
1482                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1483
1484                 temp.ia_array = ah->addac5416_21;
1485                 temp.ia_columns = ah->iniAddac.ia_columns;
1486                 temp.ia_rows = ah->iniAddac.ia_rows;
1487                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1488         }
1489
1490         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1491
1492         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1493                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1494                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1495
1496                 REG_WRITE(ah, reg, val);
1497
1498                 if (reg >= 0x7800 && reg < 0x78a0
1499                     && ah->config.analog_shiftreg) {
1500                         udelay(100);
1501                 }
1502
1503                 DO_DELAY(regWrites);
1504         }
1505
1506         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1507                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1508
1509         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1510             AR_SREV_9287_10_OR_LATER(ah))
1511                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1512
1513         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1514                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1515                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1516
1517                 REG_WRITE(ah, reg, val);
1518
1519                 if (reg >= 0x7800 && reg < 0x78a0
1520                     && ah->config.analog_shiftreg) {
1521                         udelay(100);
1522                 }
1523
1524                 DO_DELAY(regWrites);
1525         }
1526
1527         ath9k_hw_write_regs(ah, freqIndex, regWrites);
1528
1529         if (AR_SREV_9271_10(ah))
1530                 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1531                                 modesIndex, regWrites);
1532
1533         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1534                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1535                                 regWrites);
1536         }
1537
1538         ath9k_hw_override_ini(ah, chan);
1539         ath9k_hw_set_regs(ah, chan);
1540         ath9k_hw_init_chain_masks(ah);
1541
1542         if (OLC_FOR_AR9280_20_LATER)
1543                 ath9k_olc_init(ah);
1544
1545         ah->eep_ops->set_txpower(ah, chan,
1546                                  ath9k_regd_get_ctl(regulatory, chan),
1547                                  channel->max_antenna_gain * 2,
1548                                  channel->max_power * 2,
1549                                  min((u32) MAX_RATE_POWER,
1550                                  (u32) regulatory->power_limit));
1551
1552         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1553                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1554                           "ar5416SetRfRegs failed\n");
1555                 return -EIO;
1556         }
1557
1558         return 0;
1559 }
1560
1561 /****************************************/
1562 /* Reset and Channel Switching Routines */
1563 /****************************************/
1564
1565 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1566 {
1567         u32 rfMode = 0;
1568
1569         if (chan == NULL)
1570                 return;
1571
1572         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1573                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1574
1575         if (!AR_SREV_9280_10_OR_LATER(ah))
1576                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1577                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1578
1579         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1580                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1581
1582         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1583 }
1584
1585 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1586 {
1587         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1588 }
1589
1590 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1591 {
1592         u32 regval;
1593
1594         /*
1595          * set AHB_MODE not to do cacheline prefetches
1596         */
1597         regval = REG_READ(ah, AR_AHB_MODE);
1598         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1599
1600         /*
1601          * let mac dma reads be in 128 byte chunks
1602          */
1603         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1604         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1605
1606         /*
1607          * Restore TX Trigger Level to its pre-reset value.
1608          * The initial value depends on whether aggregation is enabled, and is
1609          * adjusted whenever underruns are detected.
1610          */
1611         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1612
1613         /*
1614          * let mac dma writes be in 128 byte chunks
1615          */
1616         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1617         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1618
1619         /*
1620          * Setup receive FIFO threshold to hold off TX activities
1621          */
1622         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1623
1624         /*
1625          * reduce the number of usable entries in PCU TXBUF to avoid
1626          * wrap around issues.
1627          */
1628         if (AR_SREV_9285(ah)) {
1629                 /* For AR9285 the number of Fifos are reduced to half.
1630                  * So set the usable tx buf size also to half to
1631                  * avoid data/delimiter underruns
1632                  */
1633                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1634                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1635         } else if (!AR_SREV_9271(ah)) {
1636                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1637                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1638         }
1639 }
1640
1641 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1642 {
1643         u32 val;
1644
1645         val = REG_READ(ah, AR_STA_ID1);
1646         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1647         switch (opmode) {
1648         case NL80211_IFTYPE_AP:
1649                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1650                           | AR_STA_ID1_KSRCH_MODE);
1651                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1652                 break;
1653         case NL80211_IFTYPE_ADHOC:
1654         case NL80211_IFTYPE_MESH_POINT:
1655                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1656                           | AR_STA_ID1_KSRCH_MODE);
1657                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1658                 break;
1659         case NL80211_IFTYPE_STATION:
1660         case NL80211_IFTYPE_MONITOR:
1661                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1662                 break;
1663         }
1664 }
1665
1666 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1667                                                  u32 coef_scaled,
1668                                                  u32 *coef_mantissa,
1669                                                  u32 *coef_exponent)
1670 {
1671         u32 coef_exp, coef_man;
1672
1673         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1674                 if ((coef_scaled >> coef_exp) & 0x1)
1675                         break;
1676
1677         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1678
1679         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1680
1681         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1682         *coef_exponent = coef_exp - 16;
1683 }
1684
1685 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1686                                      struct ath9k_channel *chan)
1687 {
1688         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1689         u32 clockMhzScaled = 0x64000000;
1690         struct chan_centers centers;
1691
1692         if (IS_CHAN_HALF_RATE(chan))
1693                 clockMhzScaled = clockMhzScaled >> 1;
1694         else if (IS_CHAN_QUARTER_RATE(chan))
1695                 clockMhzScaled = clockMhzScaled >> 2;
1696
1697         ath9k_hw_get_channel_centers(ah, chan, &centers);
1698         coef_scaled = clockMhzScaled / centers.synth_center;
1699
1700         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1701                                       &ds_coef_exp);
1702
1703         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1704                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1705         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1706                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1707
1708         coef_scaled = (9 * coef_scaled) / 10;
1709
1710         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1711                                       &ds_coef_exp);
1712
1713         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1714                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1715         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1716                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1717 }
1718
1719 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1720 {
1721         u32 rst_flags;
1722         u32 tmpReg;
1723
1724         if (AR_SREV_9100(ah)) {
1725                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1726                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1727                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1728                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1729                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1730         }
1731
1732         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1733                   AR_RTC_FORCE_WAKE_ON_INT);
1734
1735         if (AR_SREV_9100(ah)) {
1736                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1737                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1738         } else {
1739                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1740                 if (tmpReg &
1741                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1742                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1743                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1744                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1745                 } else {
1746                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1747                 }
1748
1749                 rst_flags = AR_RTC_RC_MAC_WARM;
1750                 if (type == ATH9K_RESET_COLD)
1751                         rst_flags |= AR_RTC_RC_MAC_COLD;
1752         }
1753
1754         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1755         udelay(50);
1756
1757         REG_WRITE(ah, AR_RTC_RC, 0);
1758         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1759                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1760                           "RTC stuck in MAC reset\n");
1761                 return false;
1762         }
1763
1764         if (!AR_SREV_9100(ah))
1765                 REG_WRITE(ah, AR_RC, 0);
1766
1767         if (AR_SREV_9100(ah))
1768                 udelay(50);
1769
1770         return true;
1771 }
1772
1773 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1774 {
1775         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1776                   AR_RTC_FORCE_WAKE_ON_INT);
1777
1778         if (!AR_SREV_9100(ah))
1779                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1780
1781         REG_WRITE(ah, AR_RTC_RESET, 0);
1782         udelay(2);
1783
1784         if (!AR_SREV_9100(ah))
1785                 REG_WRITE(ah, AR_RC, 0);
1786
1787         REG_WRITE(ah, AR_RTC_RESET, 1);
1788
1789         if (!ath9k_hw_wait(ah,
1790                            AR_RTC_STATUS,
1791                            AR_RTC_STATUS_M,
1792                            AR_RTC_STATUS_ON,
1793                            AH_WAIT_TIMEOUT)) {
1794                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1795                           "RTC not waking up\n");
1796                 return false;
1797         }
1798
1799         ath9k_hw_read_revisions(ah);
1800
1801         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1802 }
1803
1804 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1805 {
1806         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1807                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1808
1809         switch (type) {
1810         case ATH9K_RESET_POWER_ON:
1811                 return ath9k_hw_set_reset_power_on(ah);
1812         case ATH9K_RESET_WARM:
1813         case ATH9K_RESET_COLD:
1814                 return ath9k_hw_set_reset(ah, type);
1815         default:
1816                 return false;
1817         }
1818 }
1819
1820 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1821 {
1822         u32 phymode;
1823         u32 enableDacFifo = 0;
1824
1825         if (AR_SREV_9285_10_OR_LATER(ah))
1826                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1827                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1828
1829         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1830                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1831
1832         if (IS_CHAN_HT40(chan)) {
1833                 phymode |= AR_PHY_FC_DYN2040_EN;
1834
1835                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1836                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1837                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1838
1839         }
1840         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1841
1842         ath9k_hw_set11nmac2040(ah);
1843
1844         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1845         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1846 }
1847
1848 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1849                                 struct ath9k_channel *chan)
1850 {
1851         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1852                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1853                         return false;
1854         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1855                 return false;
1856
1857         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1858                 return false;
1859
1860         ah->chip_fullsleep = false;
1861         ath9k_hw_init_pll(ah, chan);
1862         ath9k_hw_set_rfmode(ah, chan);
1863
1864         return true;
1865 }
1866
1867 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1868                                     struct ath9k_channel *chan)
1869 {
1870         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1871         struct ath_common *common = ath9k_hw_common(ah);
1872         struct ieee80211_channel *channel = chan->chan;
1873         u32 synthDelay, qnum;
1874         int r;
1875
1876         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1877                 if (ath9k_hw_numtxpending(ah, qnum)) {
1878                         ath_print(common, ATH_DBG_QUEUE,
1879                                   "Transmit frames pending on "
1880                                   "queue %d\n", qnum);
1881                         return false;
1882                 }
1883         }
1884
1885         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1886         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1887                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1888                 ath_print(common, ATH_DBG_FATAL,
1889                           "Could not kill baseband RX\n");
1890                 return false;
1891         }
1892
1893         ath9k_hw_set_regs(ah, chan);
1894
1895         r = ah->ath9k_hw_rf_set_freq(ah, chan);
1896         if (r) {
1897                 ath_print(common, ATH_DBG_FATAL,
1898                           "Failed to set channel\n");
1899                 return false;
1900         }
1901
1902         ah->eep_ops->set_txpower(ah, chan,
1903                              ath9k_regd_get_ctl(regulatory, chan),
1904                              channel->max_antenna_gain * 2,
1905                              channel->max_power * 2,
1906                              min((u32) MAX_RATE_POWER,
1907                              (u32) regulatory->power_limit));
1908
1909         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1910         if (IS_CHAN_B(chan))
1911                 synthDelay = (4 * synthDelay) / 22;
1912         else
1913                 synthDelay /= 10;
1914
1915         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1916
1917         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1918
1919         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1920                 ath9k_hw_set_delta_slope(ah, chan);
1921
1922         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1923
1924         if (!chan->oneTimeCalsDone)
1925                 chan->oneTimeCalsDone = true;
1926
1927         return true;
1928 }
1929
1930 static void ath9k_enable_rfkill(struct ath_hw *ah)
1931 {
1932         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1933                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1934
1935         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1936                     AR_GPIO_INPUT_MUX2_RFSILENT);
1937
1938         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1939         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1940 }
1941
1942 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1943                     bool bChannelChange)
1944 {
1945         struct ath_common *common = ath9k_hw_common(ah);
1946         u32 saveLedState;
1947         struct ath9k_channel *curchan = ah->curchan;
1948         u32 saveDefAntenna;
1949         u32 macStaId1;
1950         u64 tsf = 0;
1951         int i, rx_chainmask, r;
1952
1953         ah->txchainmask = common->tx_chainmask;
1954         ah->rxchainmask = common->rx_chainmask;
1955
1956         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1957                 return -EIO;
1958
1959         if (curchan && !ah->chip_fullsleep)
1960                 ath9k_hw_getnf(ah, curchan);
1961
1962         if (bChannelChange &&
1963             (ah->chip_fullsleep != true) &&
1964             (ah->curchan != NULL) &&
1965             (chan->channel != ah->curchan->channel) &&
1966             ((chan->channelFlags & CHANNEL_ALL) ==
1967              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1968              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1969              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1970
1971                 if (ath9k_hw_channel_change(ah, chan)) {
1972                         ath9k_hw_loadnf(ah, ah->curchan);
1973                         ath9k_hw_start_nfcal(ah);
1974                         return 0;
1975                 }
1976         }
1977
1978         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1979         if (saveDefAntenna == 0)
1980                 saveDefAntenna = 1;
1981
1982         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1983
1984         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1985         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1986                 tsf = ath9k_hw_gettsf64(ah);
1987
1988         saveLedState = REG_READ(ah, AR_CFG_LED) &
1989                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1990                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1991
1992         ath9k_hw_mark_phy_inactive(ah);
1993
1994         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1995                 REG_WRITE(ah,
1996                           AR9271_RESET_POWER_DOWN_CONTROL,
1997                           AR9271_RADIO_RF_RST);
1998                 udelay(50);
1999         }
2000
2001         if (!ath9k_hw_chip_reset(ah, chan)) {
2002                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
2003                 return -EINVAL;
2004         }
2005
2006         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2007                 ah->htc_reset_init = false;
2008                 REG_WRITE(ah,
2009                           AR9271_RESET_POWER_DOWN_CONTROL,
2010                           AR9271_GATE_MAC_CTL);
2011                 udelay(50);
2012         }
2013
2014         /* Restore TSF */
2015         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2016                 ath9k_hw_settsf64(ah, tsf);
2017
2018         if (AR_SREV_9280_10_OR_LATER(ah))
2019                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2020
2021         if (AR_SREV_9287_12_OR_LATER(ah)) {
2022                 /* Enable ASYNC FIFO */
2023                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2024                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2025                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2026                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2027                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2028                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2029                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2030         }
2031         r = ath9k_hw_process_ini(ah, chan);
2032         if (r)
2033                 return r;
2034
2035         /* Setup MFP options for CCMP */
2036         if (AR_SREV_9280_20_OR_LATER(ah)) {
2037                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2038                  * frames when constructing CCMP AAD. */
2039                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2040                               0xc7ff);
2041                 ah->sw_mgmt_crypto = false;
2042         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2043                 /* Disable hardware crypto for management frames */
2044                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2045                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2046                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2047                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2048                 ah->sw_mgmt_crypto = true;
2049         } else
2050                 ah->sw_mgmt_crypto = true;
2051
2052         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2053                 ath9k_hw_set_delta_slope(ah, chan);
2054
2055         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2056         ah->eep_ops->set_board_values(ah, chan);
2057
2058         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2059         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2060                   | macStaId1
2061                   | AR_STA_ID1_RTS_USE_DEF
2062                   | (ah->config.
2063                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2064                   | ah->sta_id1_defaults);
2065         ath9k_hw_set_operating_mode(ah, ah->opmode);
2066
2067         ath_hw_setbssidmask(common);
2068
2069         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2070
2071         ath9k_hw_write_associd(ah);
2072
2073         REG_WRITE(ah, AR_ISR, ~0);
2074
2075         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2076
2077         r = ah->ath9k_hw_rf_set_freq(ah, chan);
2078         if (r)
2079                 return r;
2080
2081         for (i = 0; i < AR_NUM_DCU; i++)
2082                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2083
2084         ah->intr_txqs = 0;
2085         for (i = 0; i < ah->caps.total_queues; i++)
2086                 ath9k_hw_resettxqueue(ah, i);
2087
2088         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2089         ath9k_hw_init_qos(ah);
2090
2091         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2092                 ath9k_enable_rfkill(ah);
2093
2094         ath9k_hw_init_user_settings(ah);
2095
2096         if (AR_SREV_9287_12_OR_LATER(ah)) {
2097                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2098                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2099                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2100                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2101                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2102                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2103
2104                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2105                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2106
2107                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2108                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2109                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2110                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2111         }
2112         if (AR_SREV_9287_12_OR_LATER(ah)) {
2113                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2114                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2115         }
2116
2117         REG_WRITE(ah, AR_STA_ID1,
2118                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2119
2120         ath9k_hw_set_dma(ah);
2121
2122         REG_WRITE(ah, AR_OBS, 8);
2123
2124         if (ah->config.intr_mitigation) {
2125                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2126                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2127         }
2128
2129         ath9k_hw_init_bb(ah, chan);
2130
2131         if (!ath9k_hw_init_cal(ah, chan))
2132                 return -EIO;
2133
2134         rx_chainmask = ah->rxchainmask;
2135         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2136                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2137                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2138         }
2139
2140         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2141
2142         /*
2143          * For big endian systems turn on swapping for descriptors
2144          */
2145         if (AR_SREV_9100(ah)) {
2146                 u32 mask;
2147                 mask = REG_READ(ah, AR_CFG);
2148                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2149                         ath_print(common, ATH_DBG_RESET,
2150                                 "CFG Byte Swap Set 0x%x\n", mask);
2151                 } else {
2152                         mask =
2153                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2154                         REG_WRITE(ah, AR_CFG, mask);
2155                         ath_print(common, ATH_DBG_RESET,
2156                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2157                 }
2158         } else {
2159                 /* Configure AR9271 target WLAN */
2160                 if (AR_SREV_9271(ah))
2161                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2162 #ifdef __BIG_ENDIAN
2163                 else
2164                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2165 #endif
2166         }
2167
2168         if (ah->btcoex_hw.enabled)
2169                 ath9k_hw_btcoex_enable(ah);
2170
2171         return 0;
2172 }
2173 EXPORT_SYMBOL(ath9k_hw_reset);
2174
2175 /************************/
2176 /* Key Cache Management */
2177 /************************/
2178
2179 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2180 {
2181         u32 keyType;
2182
2183         if (entry >= ah->caps.keycache_size) {
2184                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2185                           "keychache entry %u out of range\n", entry);
2186                 return false;
2187         }
2188
2189         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2190
2191         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2192         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2193         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2194         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2195         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2196         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2197         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2198         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2199
2200         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2201                 u16 micentry = entry + 64;
2202
2203                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2204                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2205                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2206                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2207
2208         }
2209
2210         return true;
2211 }
2212 EXPORT_SYMBOL(ath9k_hw_keyreset);
2213
2214 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2215 {
2216         u32 macHi, macLo;
2217
2218         if (entry >= ah->caps.keycache_size) {
2219                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2220                           "keychache entry %u out of range\n", entry);
2221                 return false;
2222         }
2223
2224         if (mac != NULL) {
2225                 macHi = (mac[5] << 8) | mac[4];
2226                 macLo = (mac[3] << 24) |
2227                         (mac[2] << 16) |
2228                         (mac[1] << 8) |
2229                         mac[0];
2230                 macLo >>= 1;
2231                 macLo |= (macHi & 1) << 31;
2232                 macHi >>= 1;
2233         } else {
2234                 macLo = macHi = 0;
2235         }
2236         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2237         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2238
2239         return true;
2240 }
2241 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2242
2243 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2244                                  const struct ath9k_keyval *k,
2245                                  const u8 *mac)
2246 {
2247         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2248         struct ath_common *common = ath9k_hw_common(ah);
2249         u32 key0, key1, key2, key3, key4;
2250         u32 keyType;
2251
2252         if (entry >= pCap->keycache_size) {
2253                 ath_print(common, ATH_DBG_FATAL,
2254                           "keycache entry %u out of range\n", entry);
2255                 return false;
2256         }
2257
2258         switch (k->kv_type) {
2259         case ATH9K_CIPHER_AES_OCB:
2260                 keyType = AR_KEYTABLE_TYPE_AES;
2261                 break;
2262         case ATH9K_CIPHER_AES_CCM:
2263                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2264                         ath_print(common, ATH_DBG_ANY,
2265                                   "AES-CCM not supported by mac rev 0x%x\n",
2266                                   ah->hw_version.macRev);
2267                         return false;
2268                 }
2269                 keyType = AR_KEYTABLE_TYPE_CCM;
2270                 break;
2271         case ATH9K_CIPHER_TKIP:
2272                 keyType = AR_KEYTABLE_TYPE_TKIP;
2273                 if (ATH9K_IS_MIC_ENABLED(ah)
2274                     && entry + 64 >= pCap->keycache_size) {
2275                         ath_print(common, ATH_DBG_ANY,
2276                                   "entry %u inappropriate for TKIP\n", entry);
2277                         return false;
2278                 }
2279                 break;
2280         case ATH9K_CIPHER_WEP:
2281                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2282                         ath_print(common, ATH_DBG_ANY,
2283                                   "WEP key length %u too small\n", k->kv_len);
2284                         return false;
2285                 }
2286                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2287                         keyType = AR_KEYTABLE_TYPE_40;
2288                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2289                         keyType = AR_KEYTABLE_TYPE_104;
2290                 else
2291                         keyType = AR_KEYTABLE_TYPE_128;
2292                 break;
2293         case ATH9K_CIPHER_CLR:
2294                 keyType = AR_KEYTABLE_TYPE_CLR;
2295                 break;
2296         default:
2297                 ath_print(common, ATH_DBG_FATAL,
2298                           "cipher %u not supported\n", k->kv_type);
2299                 return false;
2300         }
2301
2302         key0 = get_unaligned_le32(k->kv_val + 0);
2303         key1 = get_unaligned_le16(k->kv_val + 4);
2304         key2 = get_unaligned_le32(k->kv_val + 6);
2305         key3 = get_unaligned_le16(k->kv_val + 10);
2306         key4 = get_unaligned_le32(k->kv_val + 12);
2307         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2308                 key4 &= 0xff;
2309
2310         /*
2311          * Note: Key cache registers access special memory area that requires
2312          * two 32-bit writes to actually update the values in the internal
2313          * memory. Consequently, the exact order and pairs used here must be
2314          * maintained.
2315          */
2316
2317         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2318                 u16 micentry = entry + 64;
2319
2320                 /*
2321                  * Write inverted key[47:0] first to avoid Michael MIC errors
2322                  * on frames that could be sent or received at the same time.
2323                  * The correct key will be written in the end once everything
2324                  * else is ready.
2325                  */
2326                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2327                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2328
2329                 /* Write key[95:48] */
2330                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2331                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2332
2333                 /* Write key[127:96] and key type */
2334                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2335                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2336
2337                 /* Write MAC address for the entry */
2338                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2339
2340                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2341                         /*
2342                          * TKIP uses two key cache entries:
2343                          * Michael MIC TX/RX keys in the same key cache entry
2344                          * (idx = main index + 64):
2345                          * key0 [31:0] = RX key [31:0]
2346                          * key1 [15:0] = TX key [31:16]
2347                          * key1 [31:16] = reserved
2348                          * key2 [31:0] = RX key [63:32]
2349                          * key3 [15:0] = TX key [15:0]
2350                          * key3 [31:16] = reserved
2351                          * key4 [31:0] = TX key [63:32]
2352                          */
2353                         u32 mic0, mic1, mic2, mic3, mic4;
2354
2355                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2356                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2357                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2358                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2359                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2360
2361                         /* Write RX[31:0] and TX[31:16] */
2362                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2363                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2364
2365                         /* Write RX[63:32] and TX[15:0] */
2366                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2367                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2368
2369                         /* Write TX[63:32] and keyType(reserved) */
2370                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2371                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2372                                   AR_KEYTABLE_TYPE_CLR);
2373
2374                 } else {
2375                         /*
2376                          * TKIP uses four key cache entries (two for group
2377                          * keys):
2378                          * Michael MIC TX/RX keys are in different key cache
2379                          * entries (idx = main index + 64 for TX and
2380                          * main index + 32 + 96 for RX):
2381                          * key0 [31:0] = TX/RX MIC key [31:0]
2382                          * key1 [31:0] = reserved
2383                          * key2 [31:0] = TX/RX MIC key [63:32]
2384                          * key3 [31:0] = reserved
2385                          * key4 [31:0] = reserved
2386                          *
2387                          * Upper layer code will call this function separately
2388                          * for TX and RX keys when these registers offsets are
2389                          * used.
2390                          */
2391                         u32 mic0, mic2;
2392
2393                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2394                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2395
2396                         /* Write MIC key[31:0] */
2397                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2398                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2399
2400                         /* Write MIC key[63:32] */
2401                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2402                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2403
2404                         /* Write TX[63:32] and keyType(reserved) */
2405                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2406                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2407                                   AR_KEYTABLE_TYPE_CLR);
2408                 }
2409
2410                 /* MAC address registers are reserved for the MIC entry */
2411                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2412                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2413
2414                 /*
2415                  * Write the correct (un-inverted) key[47:0] last to enable
2416                  * TKIP now that all other registers are set with correct
2417                  * values.
2418                  */
2419                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2420                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2421         } else {
2422                 /* Write key[47:0] */
2423                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2424                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2425
2426                 /* Write key[95:48] */
2427                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2428                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2429
2430                 /* Write key[127:96] and key type */
2431                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2432                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2433
2434                 /* Write MAC address for the entry */
2435                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2436         }
2437
2438         return true;
2439 }
2440 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2441
2442 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2443 {
2444         if (entry < ah->caps.keycache_size) {
2445                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2446                 if (val & AR_KEYTABLE_VALID)
2447                         return true;
2448         }
2449         return false;
2450 }
2451 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2452
2453 /******************************/
2454 /* Power Management (Chipset) */
2455 /******************************/
2456
2457 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2458 {
2459         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2460         if (setChip) {
2461                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2462                             AR_RTC_FORCE_WAKE_EN);
2463                 if (!AR_SREV_9100(ah))
2464                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2465
2466                 if(!AR_SREV_5416(ah))
2467                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2468                                     AR_RTC_RESET_EN);
2469         }
2470 }
2471
2472 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2473 {
2474         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2475         if (setChip) {
2476                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2477
2478                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2479                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2480                                   AR_RTC_FORCE_WAKE_ON_INT);
2481                 } else {
2482                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2483                                     AR_RTC_FORCE_WAKE_EN);
2484                 }
2485         }
2486 }
2487
2488 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2489 {
2490         u32 val;
2491         int i;
2492
2493         if (setChip) {
2494                 if ((REG_READ(ah, AR_RTC_STATUS) &
2495                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2496                         if (ath9k_hw_set_reset_reg(ah,
2497                                            ATH9K_RESET_POWER_ON) != true) {
2498                                 return false;
2499                         }
2500                         ath9k_hw_init_pll(ah, NULL);
2501                 }
2502                 if (AR_SREV_9100(ah))
2503                         REG_SET_BIT(ah, AR_RTC_RESET,
2504                                     AR_RTC_RESET_EN);
2505
2506                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2507                             AR_RTC_FORCE_WAKE_EN);
2508                 udelay(50);
2509
2510                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2511                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2512                         if (val == AR_RTC_STATUS_ON)
2513                                 break;
2514                         udelay(50);
2515                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2516                                     AR_RTC_FORCE_WAKE_EN);
2517                 }
2518                 if (i == 0) {
2519                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2520                                   "Failed to wakeup in %uus\n",
2521                                   POWER_UP_TIME / 20);
2522                         return false;
2523                 }
2524         }
2525
2526         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2527
2528         return true;
2529 }
2530
2531 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2532 {
2533         struct ath_common *common = ath9k_hw_common(ah);
2534         int status = true, setChip = true;
2535         static const char *modes[] = {
2536                 "AWAKE",
2537                 "FULL-SLEEP",
2538                 "NETWORK SLEEP",
2539                 "UNDEFINED"
2540         };
2541
2542         if (ah->power_mode == mode)
2543                 return status;
2544
2545         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2546                   modes[ah->power_mode], modes[mode]);
2547
2548         switch (mode) {
2549         case ATH9K_PM_AWAKE:
2550                 status = ath9k_hw_set_power_awake(ah, setChip);
2551                 break;
2552         case ATH9K_PM_FULL_SLEEP:
2553                 ath9k_set_power_sleep(ah, setChip);
2554                 ah->chip_fullsleep = true;
2555                 break;
2556         case ATH9K_PM_NETWORK_SLEEP:
2557                 ath9k_set_power_network_sleep(ah, setChip);
2558                 break;
2559         default:
2560                 ath_print(common, ATH_DBG_FATAL,
2561                           "Unknown power mode %u\n", mode);
2562                 return false;
2563         }
2564         ah->power_mode = mode;
2565
2566         return status;
2567 }
2568 EXPORT_SYMBOL(ath9k_hw_setpower);
2569
2570 /*
2571  * Helper for ASPM support.
2572  *
2573  * Disable PLL when in L0s as well as receiver clock when in L1.
2574  * This power saving option must be enabled through the SerDes.
2575  *
2576  * Programming the SerDes must go through the same 288 bit serial shift
2577  * register as the other analog registers.  Hence the 9 writes.
2578  */
2579 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2580 {
2581         u8 i;
2582         u32 val;
2583
2584         if (ah->is_pciexpress != true)
2585                 return;
2586
2587         /* Do not touch SerDes registers */
2588         if (ah->config.pcie_powersave_enable == 2)
2589                 return;
2590
2591         /* Nothing to do on restore for 11N */
2592         if (!restore) {
2593                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2594                         /*
2595                          * AR9280 2.0 or later chips use SerDes values from the
2596                          * initvals.h initialized depending on chipset during
2597                          * ath9k_hw_init()
2598                          */
2599                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2600                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2601                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2602                         }
2603                 } else if (AR_SREV_9280(ah) &&
2604                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2605                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2606                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2607
2608                         /* RX shut off when elecidle is asserted */
2609                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2610                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2611                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2612
2613                         /* Shut off CLKREQ active in L1 */
2614                         if (ah->config.pcie_clock_req)
2615                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2616                         else
2617                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2618
2619                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2620                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2621                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2622
2623                         /* Load the new settings */
2624                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2625
2626                 } else {
2627                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2628                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2629
2630                         /* RX shut off when elecidle is asserted */
2631                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2632                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2633                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2634
2635                         /*
2636                          * Ignore ah->ah_config.pcie_clock_req setting for
2637                          * pre-AR9280 11n
2638                          */
2639                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2640
2641                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2642                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2643                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2644
2645                         /* Load the new settings */
2646                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2647                 }
2648
2649                 udelay(1000);
2650
2651                 /* set bit 19 to allow forcing of pcie core into L1 state */
2652                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2653
2654                 /* Several PCIe massages to ensure proper behaviour */
2655                 if (ah->config.pcie_waen) {
2656                         val = ah->config.pcie_waen;
2657                         if (!power_off)
2658                                 val &= (~AR_WA_D3_L1_DISABLE);
2659                 } else {
2660                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2661                             AR_SREV_9287(ah)) {
2662                                 val = AR9285_WA_DEFAULT;
2663                                 if (!power_off)
2664                                         val &= (~AR_WA_D3_L1_DISABLE);
2665                         } else if (AR_SREV_9280(ah)) {
2666                                 /*
2667                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2668                                  * set otherwise card may disappear.
2669                                  */
2670                                 val = AR9280_WA_DEFAULT;
2671                                 if (!power_off)
2672                                         val &= (~AR_WA_D3_L1_DISABLE);
2673                         } else
2674                                 val = AR_WA_DEFAULT;
2675                 }
2676
2677                 REG_WRITE(ah, AR_WA, val);
2678         }
2679
2680         if (power_off) {
2681                 /*
2682                  * Set PCIe workaround bits
2683                  * bit 14 in WA register (disable L1) should only
2684                  * be set when device enters D3 and be cleared
2685                  * when device comes back to D0.
2686                  */
2687                 if (ah->config.pcie_waen) {
2688                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2689                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2690                 } else {
2691                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2692                               AR_SREV_9287(ah)) &&
2693                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2694                             (AR_SREV_9280(ah) &&
2695                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2696                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2697                         }
2698                 }
2699         }
2700 }
2701 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2702
2703 /**********************/
2704 /* Interrupt Handling */
2705 /**********************/
2706
2707 bool ath9k_hw_intrpend(struct ath_hw *ah)
2708 {
2709         u32 host_isr;
2710
2711         if (AR_SREV_9100(ah))
2712                 return true;
2713
2714         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2715         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2716                 return true;
2717
2718         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2719         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2720             && (host_isr != AR_INTR_SPURIOUS))
2721                 return true;
2722
2723         return false;
2724 }
2725 EXPORT_SYMBOL(ath9k_hw_intrpend);
2726
2727 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2728 {
2729         u32 isr = 0;
2730         u32 mask2 = 0;
2731         struct ath9k_hw_capabilities *pCap = &ah->caps;
2732         u32 sync_cause = 0;
2733         bool fatal_int = false;
2734         struct ath_common *common = ath9k_hw_common(ah);
2735
2736         if (!AR_SREV_9100(ah)) {
2737                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2738                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2739                             == AR_RTC_STATUS_ON) {
2740                                 isr = REG_READ(ah, AR_ISR);
2741                         }
2742                 }
2743
2744                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2745                         AR_INTR_SYNC_DEFAULT;
2746
2747                 *masked = 0;
2748
2749                 if (!isr && !sync_cause)
2750                         return false;
2751         } else {
2752                 *masked = 0;
2753                 isr = REG_READ(ah, AR_ISR);
2754         }
2755
2756         if (isr) {
2757                 if (isr & AR_ISR_BCNMISC) {
2758                         u32 isr2;
2759                         isr2 = REG_READ(ah, AR_ISR_S2);
2760                         if (isr2 & AR_ISR_S2_TIM)
2761                                 mask2 |= ATH9K_INT_TIM;
2762                         if (isr2 & AR_ISR_S2_DTIM)
2763                                 mask2 |= ATH9K_INT_DTIM;
2764                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2765                                 mask2 |= ATH9K_INT_DTIMSYNC;
2766                         if (isr2 & (AR_ISR_S2_CABEND))
2767                                 mask2 |= ATH9K_INT_CABEND;
2768                         if (isr2 & AR_ISR_S2_GTT)
2769                                 mask2 |= ATH9K_INT_GTT;
2770                         if (isr2 & AR_ISR_S2_CST)
2771                                 mask2 |= ATH9K_INT_CST;
2772                         if (isr2 & AR_ISR_S2_TSFOOR)
2773                                 mask2 |= ATH9K_INT_TSFOOR;
2774                 }
2775
2776                 isr = REG_READ(ah, AR_ISR_RAC);
2777                 if (isr == 0xffffffff) {
2778                         *masked = 0;
2779                         return false;
2780                 }
2781
2782                 *masked = isr & ATH9K_INT_COMMON;
2783
2784                 if (ah->config.intr_mitigation) {
2785                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2786                                 *masked |= ATH9K_INT_RX;
2787                 }
2788
2789                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2790                         *masked |= ATH9K_INT_RX;
2791                 if (isr &
2792                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2793                      AR_ISR_TXEOL)) {
2794                         u32 s0_s, s1_s;
2795
2796                         *masked |= ATH9K_INT_TX;
2797
2798                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2799                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2800                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2801
2802                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2803                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2804                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2805                 }
2806
2807                 if (isr & AR_ISR_RXORN) {
2808                         ath_print(common, ATH_DBG_INTERRUPT,
2809                                   "receive FIFO overrun interrupt\n");
2810                 }
2811
2812                 if (!AR_SREV_9100(ah)) {
2813                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2814                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2815                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2816                                         *masked |= ATH9K_INT_TIM_TIMER;
2817                         }
2818                 }
2819
2820                 *masked |= mask2;
2821         }
2822
2823         if (AR_SREV_9100(ah))
2824                 return true;
2825
2826         if (isr & AR_ISR_GENTMR) {
2827                 u32 s5_s;
2828
2829                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2830                 if (isr & AR_ISR_GENTMR) {
2831                         ah->intr_gen_timer_trigger =
2832                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2833
2834                         ah->intr_gen_timer_thresh =
2835                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2836
2837                         if (ah->intr_gen_timer_trigger)
2838                                 *masked |= ATH9K_INT_GENTIMER;
2839
2840                 }
2841         }
2842
2843         if (sync_cause) {
2844                 fatal_int =
2845                         (sync_cause &
2846                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2847                         ? true : false;
2848
2849                 if (fatal_int) {
2850                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2851                                 ath_print(common, ATH_DBG_ANY,
2852                                           "received PCI FATAL interrupt\n");
2853                         }
2854                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2855                                 ath_print(common, ATH_DBG_ANY,
2856                                           "received PCI PERR interrupt\n");
2857                         }
2858                         *masked |= ATH9K_INT_FATAL;
2859                 }
2860                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2861                         ath_print(common, ATH_DBG_INTERRUPT,
2862                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2863                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2864                         REG_WRITE(ah, AR_RC, 0);
2865                         *masked |= ATH9K_INT_FATAL;
2866                 }
2867                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2868                         ath_print(common, ATH_DBG_INTERRUPT,
2869                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2870                 }
2871
2872                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2873                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2874         }
2875
2876         return true;
2877 }
2878 EXPORT_SYMBOL(ath9k_hw_getisr);
2879
2880 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2881 {
2882         u32 omask = ah->mask_reg;
2883         u32 mask, mask2;
2884         struct ath9k_hw_capabilities *pCap = &ah->caps;
2885         struct ath_common *common = ath9k_hw_common(ah);
2886
2887         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2888
2889         if (omask & ATH9K_INT_GLOBAL) {
2890                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2891                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2892                 (void) REG_READ(ah, AR_IER);
2893                 if (!AR_SREV_9100(ah)) {
2894                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2895                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2896
2897                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2898                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2899                 }
2900         }
2901
2902         mask = ints & ATH9K_INT_COMMON;
2903         mask2 = 0;
2904
2905         if (ints & ATH9K_INT_TX) {
2906                 if (ah->txok_interrupt_mask)
2907                         mask |= AR_IMR_TXOK;
2908                 if (ah->txdesc_interrupt_mask)
2909                         mask |= AR_IMR_TXDESC;
2910                 if (ah->txerr_interrupt_mask)
2911                         mask |= AR_IMR_TXERR;
2912                 if (ah->txeol_interrupt_mask)
2913                         mask |= AR_IMR_TXEOL;
2914         }
2915         if (ints & ATH9K_INT_RX) {
2916                 mask |= AR_IMR_RXERR;
2917                 if (ah->config.intr_mitigation)
2918                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2919                 else
2920                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2921                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2922                         mask |= AR_IMR_GENTMR;
2923         }
2924
2925         if (ints & (ATH9K_INT_BMISC)) {
2926                 mask |= AR_IMR_BCNMISC;
2927                 if (ints & ATH9K_INT_TIM)
2928                         mask2 |= AR_IMR_S2_TIM;
2929                 if (ints & ATH9K_INT_DTIM)
2930                         mask2 |= AR_IMR_S2_DTIM;
2931                 if (ints & ATH9K_INT_DTIMSYNC)
2932                         mask2 |= AR_IMR_S2_DTIMSYNC;
2933                 if (ints & ATH9K_INT_CABEND)
2934                         mask2 |= AR_IMR_S2_CABEND;
2935                 if (ints & ATH9K_INT_TSFOOR)
2936                         mask2 |= AR_IMR_S2_TSFOOR;
2937         }
2938
2939         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2940                 mask |= AR_IMR_BCNMISC;
2941                 if (ints & ATH9K_INT_GTT)
2942                         mask2 |= AR_IMR_S2_GTT;
2943                 if (ints & ATH9K_INT_CST)
2944                         mask2 |= AR_IMR_S2_CST;
2945         }
2946
2947         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2948         REG_WRITE(ah, AR_IMR, mask);
2949         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2950                                            AR_IMR_S2_DTIM |
2951                                            AR_IMR_S2_DTIMSYNC |
2952                                            AR_IMR_S2_CABEND |
2953                                            AR_IMR_S2_CABTO |
2954                                            AR_IMR_S2_TSFOOR |
2955                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
2956         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2957         ah->mask_reg = ints;
2958
2959         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2960                 if (ints & ATH9K_INT_TIM_TIMER)
2961                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2962                 else
2963                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2964         }
2965
2966         if (ints & ATH9K_INT_GLOBAL) {
2967                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2968                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2969                 if (!AR_SREV_9100(ah)) {
2970                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2971                                   AR_INTR_MAC_IRQ);
2972                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2973
2974
2975                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2976                                   AR_INTR_SYNC_DEFAULT);
2977                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2978                                   AR_INTR_SYNC_DEFAULT);
2979                 }
2980                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2981                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2982         }
2983
2984         return omask;
2985 }
2986 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2987
2988 /*******************/
2989 /* Beacon Handling */
2990 /*******************/
2991
2992 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2993 {
2994         int flags = 0;
2995
2996         ah->beacon_interval = beacon_period;
2997
2998         switch (ah->opmode) {
2999         case NL80211_IFTYPE_STATION:
3000         case NL80211_IFTYPE_MONITOR:
3001                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3002                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3003                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3004                 flags |= AR_TBTT_TIMER_EN;
3005                 break;
3006         case NL80211_IFTYPE_ADHOC:
3007         case NL80211_IFTYPE_MESH_POINT:
3008                 REG_SET_BIT(ah, AR_TXCFG,
3009                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3010                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3011                           TU_TO_USEC(next_beacon +
3012                                      (ah->atim_window ? ah->
3013                                       atim_window : 1)));
3014                 flags |= AR_NDP_TIMER_EN;
3015         case NL80211_IFTYPE_AP:
3016                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3017                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3018                           TU_TO_USEC(next_beacon -
3019                                      ah->config.
3020                                      dma_beacon_response_time));
3021                 REG_WRITE(ah, AR_NEXT_SWBA,
3022                           TU_TO_USEC(next_beacon -
3023                                      ah->config.
3024                                      sw_beacon_response_time));
3025                 flags |=
3026                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3027                 break;
3028         default:
3029                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3030                           "%s: unsupported opmode: %d\n",
3031                           __func__, ah->opmode);
3032                 return;
3033                 break;
3034         }
3035
3036         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3037         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3038         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3039         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3040
3041         beacon_period &= ~ATH9K_BEACON_ENA;
3042         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3043                 ath9k_hw_reset_tsf(ah);
3044         }
3045
3046         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3047 }
3048 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3049
3050 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3051                                     const struct ath9k_beacon_state *bs)
3052 {
3053         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3054         struct ath9k_hw_capabilities *pCap = &ah->caps;
3055         struct ath_common *common = ath9k_hw_common(ah);
3056
3057         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3058
3059         REG_WRITE(ah, AR_BEACON_PERIOD,
3060                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3061         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3062                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3063
3064         REG_RMW_FIELD(ah, AR_RSSI_THR,
3065                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3066
3067         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3068
3069         if (bs->bs_sleepduration > beaconintval)
3070                 beaconintval = bs->bs_sleepduration;
3071
3072         dtimperiod = bs->bs_dtimperiod;
3073         if (bs->bs_sleepduration > dtimperiod)
3074                 dtimperiod = bs->bs_sleepduration;
3075
3076         if (beaconintval == dtimperiod)
3077                 nextTbtt = bs->bs_nextdtim;
3078         else
3079                 nextTbtt = bs->bs_nexttbtt;
3080
3081         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3082         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3083         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3084         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3085
3086         REG_WRITE(ah, AR_NEXT_DTIM,
3087                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3088         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3089
3090         REG_WRITE(ah, AR_SLEEP1,
3091                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3092                   | AR_SLEEP1_ASSUME_DTIM);
3093
3094         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3095                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3096         else
3097                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3098
3099         REG_WRITE(ah, AR_SLEEP2,
3100                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3101
3102         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3103         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3104
3105         REG_SET_BIT(ah, AR_TIMER_MODE,
3106                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3107                     AR_DTIM_TIMER_EN);
3108
3109         /* TSF Out of Range Threshold */
3110         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3111 }
3112 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3113
3114 /*******************/
3115 /* HW Capabilities */
3116 /*******************/
3117
3118 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3119 {
3120         struct ath9k_hw_capabilities *pCap = &ah->caps;
3121         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3122         struct ath_common *common = ath9k_hw_common(ah);
3123         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3124
3125         u16 capField = 0, eeval;
3126
3127         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3128         regulatory->current_rd = eeval;
3129
3130         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3131         if (AR_SREV_9285_10_OR_LATER(ah))
3132                 eeval |= AR9285_RDEXT_DEFAULT;
3133         regulatory->current_rd_ext = eeval;
3134
3135         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3136
3137         if (ah->opmode != NL80211_IFTYPE_AP &&
3138             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3139                 if (regulatory->current_rd == 0x64 ||
3140                     regulatory->current_rd == 0x65)
3141                         regulatory->current_rd += 5;
3142                 else if (regulatory->current_rd == 0x41)
3143                         regulatory->current_rd = 0x43;
3144                 ath_print(common, ATH_DBG_REGULATORY,
3145                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
3146         }
3147
3148         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3149         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3150                 ath_print(common, ATH_DBG_FATAL,
3151                           "no band has been marked as supported in EEPROM.\n");
3152                 return -EINVAL;
3153         }
3154
3155         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3156
3157         if (eeval & AR5416_OPFLAGS_11A) {
3158                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3159                 if (ah->config.ht_enable) {
3160                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3161                                 set_bit(ATH9K_MODE_11NA_HT20,
3162                                         pCap->wireless_modes);
3163                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3164                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3165                                         pCap->wireless_modes);
3166                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3167                                         pCap->wireless_modes);
3168                         }
3169                 }
3170         }
3171
3172         if (eeval & AR5416_OPFLAGS_11G) {
3173                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3174                 if (ah->config.ht_enable) {
3175                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3176                                 set_bit(ATH9K_MODE_11NG_HT20,
3177                                         pCap->wireless_modes);
3178                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3179                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3180                                         pCap->wireless_modes);
3181                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3182                                         pCap->wireless_modes);
3183                         }
3184                 }
3185         }
3186
3187         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3188         /*
3189          * For AR9271 we will temporarilly uses the rx chainmax as read from
3190          * the EEPROM.
3191          */
3192         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3193             !(eeval & AR5416_OPFLAGS_11A) &&
3194             !(AR_SREV_9271(ah)))
3195                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3196                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3197         else
3198                 /* Use rx_chainmask from EEPROM. */
3199                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3200
3201         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3202                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3203
3204         pCap->low_2ghz_chan = 2312;
3205         pCap->high_2ghz_chan = 2732;
3206
3207         pCap->low_5ghz_chan = 4920;
3208         pCap->high_5ghz_chan = 6100;
3209
3210         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3211         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3212         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3213
3214         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3215         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3216         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3217
3218         if (ah->config.ht_enable)
3219                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3220         else
3221                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3222
3223         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3224         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3225         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3226         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3227
3228         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3229                 pCap->total_queues =
3230                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3231         else
3232                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3233
3234         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3235                 pCap->keycache_size =
3236                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3237         else
3238                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3239
3240         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3241
3242         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3243                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3244         else
3245                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3246
3247         if (AR_SREV_9285_10_OR_LATER(ah))
3248                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3249         else if (AR_SREV_9280_10_OR_LATER(ah))
3250                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3251         else
3252                 pCap->num_gpio_pins = AR_NUM_GPIO;
3253
3254         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3255                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3256                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3257         } else {
3258                 pCap->rts_aggr_limit = (8 * 1024);
3259         }
3260
3261         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3262
3263 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3264         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3265         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3266                 ah->rfkill_gpio =
3267                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3268                 ah->rfkill_polarity =
3269                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3270
3271                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3272         }
3273 #endif
3274
3275         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3276
3277         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3278                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3279         else
3280                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3281
3282         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3283                 pCap->reg_cap =
3284                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3285                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3286                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3287                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3288         } else {
3289                 pCap->reg_cap =
3290                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3291                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3292         }
3293
3294         /* Advertise midband for AR5416 with FCC midband set in eeprom */
3295         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3296             AR_SREV_5416(ah))
3297                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3298
3299         pCap->num_antcfg_5ghz =
3300                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3301         pCap->num_antcfg_2ghz =
3302                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3303
3304         if (AR_SREV_9280_10_OR_LATER(ah) &&
3305             ath9k_hw_btcoex_supported(ah)) {
3306                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3307                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3308
3309                 if (AR_SREV_9285(ah)) {
3310                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3311                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3312                 } else {
3313                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3314                 }
3315         } else {
3316                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3317         }
3318
3319         return 0;
3320 }
3321
3322 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3323                             u32 capability, u32 *result)
3324 {
3325         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3326         switch (type) {
3327         case ATH9K_CAP_CIPHER:
3328                 switch (capability) {
3329                 case ATH9K_CIPHER_AES_CCM:
3330                 case ATH9K_CIPHER_AES_OCB:
3331                 case ATH9K_CIPHER_TKIP:
3332                 case ATH9K_CIPHER_WEP:
3333                 case ATH9K_CIPHER_MIC:
3334                 case ATH9K_CIPHER_CLR:
3335                         return true;
3336                 default:
3337                         return false;
3338                 }
3339         case ATH9K_CAP_TKIP_MIC:
3340                 switch (capability) {
3341                 case 0:
3342                         return true;
3343                 case 1:
3344                         return (ah->sta_id1_defaults &
3345                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3346                         false;
3347                 }
3348         case ATH9K_CAP_TKIP_SPLIT:
3349                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3350                         false : true;
3351         case ATH9K_CAP_DIVERSITY:
3352                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3353                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3354                         true : false;
3355         case ATH9K_CAP_MCAST_KEYSRCH:
3356                 switch (capability) {
3357                 case 0:
3358                         return true;
3359                 case 1:
3360                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3361                                 return false;
3362                         } else {
3363                                 return (ah->sta_id1_defaults &
3364                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3365                                         false;
3366                         }
3367                 }
3368                 return false;
3369         case ATH9K_CAP_TXPOW:
3370                 switch (capability) {
3371                 case 0:
3372                         return 0;
3373                 case 1:
3374                         *result = regulatory->power_limit;
3375                         return 0;
3376                 case 2:
3377                         *result = regulatory->max_power_level;
3378                         return 0;
3379                 case 3:
3380                         *result = regulatory->tp_scale;
3381                         return 0;
3382                 }
3383                 return false;
3384         case ATH9K_CAP_DS:
3385                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3386                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3387                         ? false : true;
3388         default:
3389                 return false;
3390         }
3391 }
3392 EXPORT_SYMBOL(ath9k_hw_getcapability);
3393
3394 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3395                             u32 capability, u32 setting, int *status)
3396 {
3397         u32 v;
3398
3399         switch (type) {
3400         case ATH9K_CAP_TKIP_MIC:
3401                 if (setting)
3402                         ah->sta_id1_defaults |=
3403                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3404                 else
3405                         ah->sta_id1_defaults &=
3406                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3407                 return true;
3408         case ATH9K_CAP_DIVERSITY:
3409                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3410                 if (setting)
3411                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3412                 else
3413                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3414                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3415                 return true;
3416         case ATH9K_CAP_MCAST_KEYSRCH:
3417                 if (setting)
3418                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3419                 else
3420                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3421                 return true;
3422         default:
3423                 return false;
3424         }
3425 }
3426 EXPORT_SYMBOL(ath9k_hw_setcapability);
3427
3428 /****************************/
3429 /* GPIO / RFKILL / Antennae */
3430 /****************************/
3431
3432 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3433                                          u32 gpio, u32 type)
3434 {
3435         int addr;
3436         u32 gpio_shift, tmp;
3437
3438         if (gpio > 11)
3439                 addr = AR_GPIO_OUTPUT_MUX3;
3440         else if (gpio > 5)
3441                 addr = AR_GPIO_OUTPUT_MUX2;
3442         else
3443                 addr = AR_GPIO_OUTPUT_MUX1;
3444
3445         gpio_shift = (gpio % 6) * 5;
3446
3447         if (AR_SREV_9280_20_OR_LATER(ah)
3448             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3449                 REG_RMW(ah, addr, (type << gpio_shift),
3450                         (0x1f << gpio_shift));
3451         } else {
3452                 tmp = REG_READ(ah, addr);
3453                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3454                 tmp &= ~(0x1f << gpio_shift);
3455                 tmp |= (type << gpio_shift);
3456                 REG_WRITE(ah, addr, tmp);
3457         }
3458 }
3459
3460 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3461 {
3462         u32 gpio_shift;
3463
3464         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3465
3466         gpio_shift = gpio << 1;
3467
3468         REG_RMW(ah,
3469                 AR_GPIO_OE_OUT,
3470                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3471                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3472 }
3473 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3474
3475 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3476 {
3477 #define MS_REG_READ(x, y) \
3478         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3479
3480         if (gpio >= ah->caps.num_gpio_pins)
3481                 return 0xffffffff;
3482
3483         if (AR_SREV_9287_10_OR_LATER(ah))
3484                 return MS_REG_READ(AR9287, gpio) != 0;
3485         else if (AR_SREV_9285_10_OR_LATER(ah))
3486                 return MS_REG_READ(AR9285, gpio) != 0;
3487         else if (AR_SREV_9280_10_OR_LATER(ah))
3488                 return MS_REG_READ(AR928X, gpio) != 0;
3489         else
3490                 return MS_REG_READ(AR, gpio) != 0;
3491 }
3492 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3493
3494 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3495                          u32 ah_signal_type)
3496 {
3497         u32 gpio_shift;
3498
3499         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3500
3501         gpio_shift = 2 * gpio;
3502
3503         REG_RMW(ah,
3504                 AR_GPIO_OE_OUT,
3505                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3506                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3507 }
3508 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3509
3510 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3511 {
3512         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3513                 AR_GPIO_BIT(gpio));
3514 }
3515 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3516
3517 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3518 {
3519         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3520 }
3521 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3522
3523 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3524 {
3525         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3526 }
3527 EXPORT_SYMBOL(ath9k_hw_setantenna);
3528
3529 /*********************/
3530 /* General Operation */
3531 /*********************/
3532
3533 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3534 {
3535         u32 bits = REG_READ(ah, AR_RX_FILTER);
3536         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3537
3538         if (phybits & AR_PHY_ERR_RADAR)
3539                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3540         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3541                 bits |= ATH9K_RX_FILTER_PHYERR;
3542
3543         return bits;
3544 }
3545 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3546
3547 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3548 {
3549         u32 phybits;
3550
3551         REG_WRITE(ah, AR_RX_FILTER, bits);
3552
3553         phybits = 0;
3554         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3555                 phybits |= AR_PHY_ERR_RADAR;
3556         if (bits & ATH9K_RX_FILTER_PHYERR)
3557                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3558         REG_WRITE(ah, AR_PHY_ERR, phybits);
3559
3560         if (phybits)
3561                 REG_WRITE(ah, AR_RXCFG,
3562                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3563         else
3564                 REG_WRITE(ah, AR_RXCFG,
3565                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3566 }
3567 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3568
3569 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3570 {
3571         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3572                 return false;
3573
3574         ath9k_hw_init_pll(ah, NULL);
3575         return true;
3576 }
3577 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3578
3579 bool ath9k_hw_disable(struct ath_hw *ah)
3580 {
3581         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3582                 return false;
3583
3584         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3585                 return false;
3586
3587         ath9k_hw_init_pll(ah, NULL);
3588         return true;
3589 }
3590 EXPORT_SYMBOL(ath9k_hw_disable);
3591
3592 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3593 {
3594         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3595         struct ath9k_channel *chan = ah->curchan;
3596         struct ieee80211_channel *channel = chan->chan;
3597
3598         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3599
3600         ah->eep_ops->set_txpower(ah, chan,
3601                                  ath9k_regd_get_ctl(regulatory, chan),
3602                                  channel->max_antenna_gain * 2,
3603                                  channel->max_power * 2,
3604                                  min((u32) MAX_RATE_POWER,
3605                                  (u32) regulatory->power_limit));
3606 }
3607 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3608
3609 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3610 {
3611         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3612 }
3613 EXPORT_SYMBOL(ath9k_hw_setmac);
3614
3615 void ath9k_hw_setopmode(struct ath_hw *ah)
3616 {
3617         ath9k_hw_set_operating_mode(ah, ah->opmode);
3618 }
3619 EXPORT_SYMBOL(ath9k_hw_setopmode);
3620
3621 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3622 {
3623         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3624         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3625 }
3626 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3627
3628 void ath9k_hw_write_associd(struct ath_hw *ah)
3629 {
3630         struct ath_common *common = ath9k_hw_common(ah);
3631
3632         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3633         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3634                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3635 }
3636 EXPORT_SYMBOL(ath9k_hw_write_associd);
3637
3638 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3639 {
3640         u64 tsf;
3641
3642         tsf = REG_READ(ah, AR_TSF_U32);
3643         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3644
3645         return tsf;
3646 }
3647 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3648
3649 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3650 {
3651         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3652         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3653 }
3654 EXPORT_SYMBOL(ath9k_hw_settsf64);
3655
3656 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3657 {
3658         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3659                            AH_TSF_WRITE_TIMEOUT))
3660                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3661                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3662
3663         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3664 }
3665 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3666
3667 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3668 {
3669         if (setting)
3670                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3671         else
3672                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3673 }
3674 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3675
3676 /*
3677  *  Extend 15-bit time stamp from rx descriptor to
3678  *  a full 64-bit TSF using the current h/w TSF.
3679 */
3680 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3681 {
3682         u64 tsf;
3683
3684         tsf = ath9k_hw_gettsf64(ah);
3685         if ((tsf & 0x7fff) < rstamp)
3686                 tsf -= 0x8000;
3687         return (tsf & ~0x7fff) | rstamp;
3688 }
3689 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3690
3691 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3692 {
3693         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3694                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3695                           "bad slot time %u\n", us);
3696                 ah->slottime = (u32) -1;
3697                 return false;
3698         } else {
3699                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3700                 ah->slottime = us;
3701                 return true;
3702         }
3703 }
3704 EXPORT_SYMBOL(ath9k_hw_setslottime);
3705
3706 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3707 {
3708         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3709         u32 macmode;
3710
3711         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3712                 macmode = AR_2040_JOINED_RX_CLEAR;
3713         else
3714                 macmode = 0;
3715
3716         REG_WRITE(ah, AR_2040_MODE, macmode);
3717 }
3718
3719 /* HW Generic timers configuration */
3720
3721 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3722 {
3723         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3724         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3725         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3726         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3727         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3728         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3729         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3730         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3731         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3732         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3733                                 AR_NDP2_TIMER_MODE, 0x0002},
3734         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3735                                 AR_NDP2_TIMER_MODE, 0x0004},
3736         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3737                                 AR_NDP2_TIMER_MODE, 0x0008},
3738         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3739                                 AR_NDP2_TIMER_MODE, 0x0010},
3740         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3741                                 AR_NDP2_TIMER_MODE, 0x0020},
3742         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3743                                 AR_NDP2_TIMER_MODE, 0x0040},
3744         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3745                                 AR_NDP2_TIMER_MODE, 0x0080}
3746 };
3747
3748 /* HW generic timer primitives */
3749
3750 /* compute and clear index of rightmost 1 */
3751 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3752 {
3753         u32 b;
3754
3755         b = *mask;
3756         b &= (0-b);
3757         *mask &= ~b;
3758         b *= debruijn32;
3759         b >>= 27;
3760
3761         return timer_table->gen_timer_index[b];
3762 }
3763
3764 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3765 {
3766         return REG_READ(ah, AR_TSF_L32);
3767 }
3768 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3769
3770 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3771                                           void (*trigger)(void *),
3772                                           void (*overflow)(void *),
3773                                           void *arg,
3774                                           u8 timer_index)
3775 {
3776         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3777         struct ath_gen_timer *timer;
3778
3779         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3780
3781         if (timer == NULL) {
3782                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3783                           "Failed to allocate memory"
3784                           "for hw timer[%d]\n", timer_index);
3785                 return NULL;
3786         }
3787
3788         /* allocate a hardware generic timer slot */
3789         timer_table->timers[timer_index] = timer;
3790         timer->index = timer_index;
3791         timer->trigger = trigger;
3792         timer->overflow = overflow;
3793         timer->arg = arg;
3794
3795         return timer;
3796 }
3797 EXPORT_SYMBOL(ath_gen_timer_alloc);
3798
3799 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3800                               struct ath_gen_timer *timer,
3801                               u32 timer_next,
3802                               u32 timer_period)
3803 {
3804         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3805         u32 tsf;
3806
3807         BUG_ON(!timer_period);
3808
3809         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3810
3811         tsf = ath9k_hw_gettsf32(ah);
3812
3813         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3814                   "curent tsf %x period %x"
3815                   "timer_next %x\n", tsf, timer_period, timer_next);
3816
3817         /*
3818          * Pull timer_next forward if the current TSF already passed it
3819          * because of software latency
3820          */
3821         if (timer_next < tsf)
3822                 timer_next = tsf + timer_period;
3823
3824         /*
3825          * Program generic timer registers
3826          */
3827         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3828                  timer_next);
3829         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3830                   timer_period);
3831         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3832                     gen_tmr_configuration[timer->index].mode_mask);
3833
3834         /* Enable both trigger and thresh interrupt masks */
3835         REG_SET_BIT(ah, AR_IMR_S5,
3836                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3837                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3838 }
3839 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3840
3841 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3842 {
3843         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3844
3845         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3846                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3847                 return;
3848         }
3849
3850         /* Clear generic timer enable bits. */
3851         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3852                         gen_tmr_configuration[timer->index].mode_mask);
3853
3854         /* Disable both trigger and thresh interrupt masks */
3855         REG_CLR_BIT(ah, AR_IMR_S5,
3856                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3857                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3858
3859         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3860 }
3861 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3862
3863 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3864 {
3865         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3866
3867         /* free the hardware generic timer slot */
3868         timer_table->timers[timer->index] = NULL;
3869         kfree(timer);
3870 }
3871 EXPORT_SYMBOL(ath_gen_timer_free);
3872
3873 /*
3874  * Generic Timer Interrupts handling
3875  */
3876 void ath_gen_timer_isr(struct ath_hw *ah)
3877 {
3878         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3879         struct ath_gen_timer *timer;
3880         struct ath_common *common = ath9k_hw_common(ah);
3881         u32 trigger_mask, thresh_mask, index;
3882
3883         /* get hardware generic timer interrupt status */
3884         trigger_mask = ah->intr_gen_timer_trigger;
3885         thresh_mask = ah->intr_gen_timer_thresh;
3886         trigger_mask &= timer_table->timer_mask.val;
3887         thresh_mask &= timer_table->timer_mask.val;
3888
3889         trigger_mask &= ~thresh_mask;
3890
3891         while (thresh_mask) {
3892                 index = rightmost_index(timer_table, &thresh_mask);
3893                 timer = timer_table->timers[index];
3894                 BUG_ON(!timer);
3895                 ath_print(common, ATH_DBG_HWTIMER,
3896                           "TSF overflow for Gen timer %d\n", index);
3897                 timer->overflow(timer->arg);
3898         }
3899
3900         while (trigger_mask) {
3901                 index = rightmost_index(timer_table, &trigger_mask);
3902                 timer = timer_table->timers[index];
3903                 BUG_ON(!timer);
3904                 ath_print(common, ATH_DBG_HWTIMER,
3905                           "Gen timer[%d] trigger\n", index);
3906                 timer->trigger(timer->arg);
3907         }
3908 }
3909 EXPORT_SYMBOL(ath_gen_timer_isr);
3910
3911 static struct {
3912         u32 version;
3913         const char * name;
3914 } ath_mac_bb_names[] = {
3915         /* Devices with external radios */
3916         { AR_SREV_VERSION_5416_PCI,     "5416" },
3917         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3918         { AR_SREV_VERSION_9100,         "9100" },
3919         { AR_SREV_VERSION_9160,         "9160" },
3920         /* Single-chip solutions */
3921         { AR_SREV_VERSION_9280,         "9280" },
3922         { AR_SREV_VERSION_9285,         "9285" },
3923         { AR_SREV_VERSION_9287,         "9287" },
3924         { AR_SREV_VERSION_9271,         "9271" },
3925 };
3926
3927 /* For devices with external radios */
3928 static struct {
3929         u16 version;
3930         const char * name;
3931 } ath_rf_names[] = {
3932         { 0,                            "5133" },
3933         { AR_RAD5133_SREV_MAJOR,        "5133" },
3934         { AR_RAD5122_SREV_MAJOR,        "5122" },
3935         { AR_RAD2133_SREV_MAJOR,        "2133" },
3936         { AR_RAD2122_SREV_MAJOR,        "2122" }
3937 };
3938
3939 /*
3940  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3941  */
3942 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3943 {
3944         int i;
3945
3946         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3947                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3948                         return ath_mac_bb_names[i].name;
3949                 }
3950         }
3951
3952         return "????";
3953 }
3954
3955 /*
3956  * Return the RF name. "????" is returned if the RF is unknown.
3957  * Used for devices with external radios.
3958  */
3959 static const char *ath9k_hw_rf_name(u16 rf_version)
3960 {
3961         int i;
3962
3963         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3964                 if (ath_rf_names[i].version == rf_version) {
3965                         return ath_rf_names[i].name;
3966                 }
3967         }
3968
3969         return "????";
3970 }
3971
3972 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3973 {
3974         int used;
3975
3976         /* chipsets >= AR9280 are single-chip */
3977         if (AR_SREV_9280_10_OR_LATER(ah)) {
3978                 used = snprintf(hw_name, len,
3979                                "Atheros AR%s Rev:%x",
3980                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3981                                ah->hw_version.macRev);
3982         }
3983         else {
3984                 used = snprintf(hw_name, len,
3985                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3986                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3987                                ah->hw_version.macRev,
3988                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3989                                                 AR_RADIO_SREV_MAJOR)),
3990                                ah->hw_version.phyRev);
3991         }
3992
3993         hw_name[used] = '\0';
3994 }
3995 EXPORT_SYMBOL(ath9k_hw_name);