Merge tag 'mvebu-arm64-4.12-1' of git://git.infradead.org/linux-mvebu into fixes
[sfrench/cifs-2.6.git] / drivers / net / ethernet / ti / netcp_core.c
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Sandeep Paulraj <s-paulraj@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *              Murali Karicheri <m-karicheri2@ti.com>
10  *              Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT       64
36 #define NETCP_TX_TIMEOUT        (5 * HZ)
37 #define NETCP_PACKET_SIZE       (ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR    16
40
41 #define NETCP_EFUSE_REG_INDEX   0
42
43 #define NETCP_MOD_PROBE_SKIPPED 1
44 #define NETCP_MOD_PROBE_FAILED  2
45
46 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
47                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
48                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
49                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
50                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
51                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
52                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
53                     NETIF_MSG_RX_STATUS)
54
55 #define NETCP_EFUSE_ADDR_SWAP   2
56
57 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
58                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
61                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
62                                         (unsigned long)NULL)
63
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
65                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
66                                         (unsigned long)NULL)
67
68 #define knav_queue_get_count(q) knav_queue_device_control(q, \
69                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70
71 #define for_each_netcp_module(module)                   \
72         list_for_each_entry(module, &netcp_modules, module_list)
73
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75         list_for_each_entry(inst_modpriv, \
76                 &((netcp_device)->modpriv_head), inst_list)
77
78 #define for_each_module(netcp, intf_modpriv)                    \
79         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80
81 /* Module management structures */
82 struct netcp_device {
83         struct list_head        device_list;
84         struct list_head        interface_head;
85         struct list_head        modpriv_head;
86         struct device           *device;
87 };
88
89 struct netcp_inst_modpriv {
90         struct netcp_device     *netcp_device;
91         struct netcp_module     *netcp_module;
92         struct list_head        inst_list;
93         void                    *module_priv;
94 };
95
96 struct netcp_intf_modpriv {
97         struct netcp_intf       *netcp_priv;
98         struct netcp_module     *netcp_module;
99         struct list_head        intf_list;
100         void                    *module_priv;
101 };
102
103 struct netcp_tx_cb {
104         void    *ts_context;
105         void    (*txtstamp)(void *context, struct sk_buff *skb);
106 };
107
108 static LIST_HEAD(netcp_devices);
109 static LIST_HEAD(netcp_modules);
110 static DEFINE_MUTEX(netcp_modules_lock);
111
112 static int netcp_debug_level = -1;
113 module_param(netcp_debug_level, int, 0);
114 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
115
116 /* Helper functions - Get/Set */
117 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
118                          struct knav_dma_desc *desc)
119 {
120         *buff_len = le32_to_cpu(desc->buff_len);
121         *buff = le32_to_cpu(desc->buff);
122         *ndesc = le32_to_cpu(desc->next_desc);
123 }
124
125 static void get_desc_info(u32 *desc_info, u32 *pkt_info,
126                           struct knav_dma_desc *desc)
127 {
128         *desc_info = le32_to_cpu(desc->desc_info);
129         *pkt_info = le32_to_cpu(desc->packet_info);
130 }
131
132 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
133 {
134         /* No Endian conversion needed as this data is untouched by hw */
135         return desc->sw_data[index];
136 }
137
138 /* use these macros to get sw data */
139 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
140 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
141 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
142 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
143
144 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
145                              struct knav_dma_desc *desc)
146 {
147         *buff = le32_to_cpu(desc->orig_buff);
148         *buff_len = le32_to_cpu(desc->orig_len);
149 }
150
151 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
152 {
153         int i;
154
155         for (i = 0; i < num_words; i++)
156                 words[i] = le32_to_cpu(desc[i]);
157 }
158
159 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
160                          struct knav_dma_desc *desc)
161 {
162         desc->buff_len = cpu_to_le32(buff_len);
163         desc->buff = cpu_to_le32(buff);
164         desc->next_desc = cpu_to_le32(ndesc);
165 }
166
167 static void set_desc_info(u32 desc_info, u32 pkt_info,
168                           struct knav_dma_desc *desc)
169 {
170         desc->desc_info = cpu_to_le32(desc_info);
171         desc->packet_info = cpu_to_le32(pkt_info);
172 }
173
174 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
175 {
176         /* No Endian conversion needed as this data is untouched by hw */
177         desc->sw_data[index] = data;
178 }
179
180 /* use these macros to set sw data */
181 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
182 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
183 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
184 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
185
186 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
187                              struct knav_dma_desc *desc)
188 {
189         desc->orig_buff = cpu_to_le32(buff);
190         desc->orig_len = cpu_to_le32(buff_len);
191 }
192
193 static void set_words(u32 *words, int num_words, __le32 *desc)
194 {
195         int i;
196
197         for (i = 0; i < num_words; i++)
198                 desc[i] = cpu_to_le32(words[i]);
199 }
200
201 /* Read the e-fuse value as 32 bit values to be endian independent */
202 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
203 {
204         unsigned int addr0, addr1;
205
206         addr1 = readl(efuse_mac + 4);
207         addr0 = readl(efuse_mac);
208
209         switch (swap) {
210         case NETCP_EFUSE_ADDR_SWAP:
211                 addr0 = addr1;
212                 addr1 = readl(efuse_mac);
213                 break;
214         default:
215                 break;
216         }
217
218         x[0] = (addr1 & 0x0000ff00) >> 8;
219         x[1] = addr1 & 0x000000ff;
220         x[2] = (addr0 & 0xff000000) >> 24;
221         x[3] = (addr0 & 0x00ff0000) >> 16;
222         x[4] = (addr0 & 0x0000ff00) >> 8;
223         x[5] = addr0 & 0x000000ff;
224
225         return 0;
226 }
227
228 static const char *netcp_node_name(struct device_node *node)
229 {
230         const char *name;
231
232         if (of_property_read_string(node, "label", &name) < 0)
233                 name = node->name;
234         if (!name)
235                 name = "unknown";
236         return name;
237 }
238
239 /* Module management routines */
240 static int netcp_register_interface(struct netcp_intf *netcp)
241 {
242         int ret;
243
244         ret = register_netdev(netcp->ndev);
245         if (!ret)
246                 netcp->netdev_registered = true;
247         return ret;
248 }
249
250 static int netcp_module_probe(struct netcp_device *netcp_device,
251                               struct netcp_module *module)
252 {
253         struct device *dev = netcp_device->device;
254         struct device_node *devices, *interface, *node = dev->of_node;
255         struct device_node *child;
256         struct netcp_inst_modpriv *inst_modpriv;
257         struct netcp_intf *netcp_intf;
258         struct netcp_module *tmp;
259         bool primary_module_registered = false;
260         int ret;
261
262         /* Find this module in the sub-tree for this device */
263         devices = of_get_child_by_name(node, "netcp-devices");
264         if (!devices) {
265                 dev_err(dev, "could not find netcp-devices node\n");
266                 return NETCP_MOD_PROBE_SKIPPED;
267         }
268
269         for_each_available_child_of_node(devices, child) {
270                 const char *name = netcp_node_name(child);
271
272                 if (!strcasecmp(module->name, name))
273                         break;
274         }
275
276         of_node_put(devices);
277         /* If module not used for this device, skip it */
278         if (!child) {
279                 dev_warn(dev, "module(%s) not used for device\n", module->name);
280                 return NETCP_MOD_PROBE_SKIPPED;
281         }
282
283         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
284         if (!inst_modpriv) {
285                 of_node_put(child);
286                 return -ENOMEM;
287         }
288
289         inst_modpriv->netcp_device = netcp_device;
290         inst_modpriv->netcp_module = module;
291         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
292
293         ret = module->probe(netcp_device, dev, child,
294                             &inst_modpriv->module_priv);
295         of_node_put(child);
296         if (ret) {
297                 dev_err(dev, "Probe of module(%s) failed with %d\n",
298                         module->name, ret);
299                 list_del(&inst_modpriv->inst_list);
300                 devm_kfree(dev, inst_modpriv);
301                 return NETCP_MOD_PROBE_FAILED;
302         }
303
304         /* Attach modules only if the primary module is probed */
305         for_each_netcp_module(tmp) {
306                 if (tmp->primary)
307                         primary_module_registered = true;
308         }
309
310         if (!primary_module_registered)
311                 return 0;
312
313         /* Attach module to interfaces */
314         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
315                             interface_list) {
316                 struct netcp_intf_modpriv *intf_modpriv;
317
318                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
319                                             GFP_KERNEL);
320                 if (!intf_modpriv)
321                         return -ENOMEM;
322
323                 interface = of_parse_phandle(netcp_intf->node_interface,
324                                              module->name, 0);
325
326                 if (!interface) {
327                         devm_kfree(dev, intf_modpriv);
328                         continue;
329                 }
330
331                 intf_modpriv->netcp_priv = netcp_intf;
332                 intf_modpriv->netcp_module = module;
333                 list_add_tail(&intf_modpriv->intf_list,
334                               &netcp_intf->module_head);
335
336                 ret = module->attach(inst_modpriv->module_priv,
337                                      netcp_intf->ndev, interface,
338                                      &intf_modpriv->module_priv);
339                 of_node_put(interface);
340                 if (ret) {
341                         dev_dbg(dev, "Attach of module %s declined with %d\n",
342                                 module->name, ret);
343                         list_del(&intf_modpriv->intf_list);
344                         devm_kfree(dev, intf_modpriv);
345                         continue;
346                 }
347         }
348
349         /* Now register the interface with netdev */
350         list_for_each_entry(netcp_intf,
351                             &netcp_device->interface_head,
352                             interface_list) {
353                 /* If interface not registered then register now */
354                 if (!netcp_intf->netdev_registered) {
355                         ret = netcp_register_interface(netcp_intf);
356                         if (ret)
357                                 return -ENODEV;
358                 }
359         }
360         return 0;
361 }
362
363 int netcp_register_module(struct netcp_module *module)
364 {
365         struct netcp_device *netcp_device;
366         struct netcp_module *tmp;
367         int ret;
368
369         if (!module->name) {
370                 WARN(1, "error registering netcp module: no name\n");
371                 return -EINVAL;
372         }
373
374         if (!module->probe) {
375                 WARN(1, "error registering netcp module: no probe\n");
376                 return -EINVAL;
377         }
378
379         mutex_lock(&netcp_modules_lock);
380
381         for_each_netcp_module(tmp) {
382                 if (!strcasecmp(tmp->name, module->name)) {
383                         mutex_unlock(&netcp_modules_lock);
384                         return -EEXIST;
385                 }
386         }
387         list_add_tail(&module->module_list, &netcp_modules);
388
389         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
390                 ret = netcp_module_probe(netcp_device, module);
391                 if (ret < 0)
392                         goto fail;
393         }
394         mutex_unlock(&netcp_modules_lock);
395         return 0;
396
397 fail:
398         mutex_unlock(&netcp_modules_lock);
399         netcp_unregister_module(module);
400         return ret;
401 }
402 EXPORT_SYMBOL_GPL(netcp_register_module);
403
404 static void netcp_release_module(struct netcp_device *netcp_device,
405                                  struct netcp_module *module)
406 {
407         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
408         struct netcp_intf *netcp_intf, *netcp_tmp;
409         struct device *dev = netcp_device->device;
410
411         /* Release the module from each interface */
412         list_for_each_entry_safe(netcp_intf, netcp_tmp,
413                                  &netcp_device->interface_head,
414                                  interface_list) {
415                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
416
417                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
418                                          &netcp_intf->module_head,
419                                          intf_list) {
420                         if (intf_modpriv->netcp_module == module) {
421                                 module->release(intf_modpriv->module_priv);
422                                 list_del(&intf_modpriv->intf_list);
423                                 devm_kfree(dev, intf_modpriv);
424                                 break;
425                         }
426                 }
427         }
428
429         /* Remove the module from each instance */
430         list_for_each_entry_safe(inst_modpriv, inst_tmp,
431                                  &netcp_device->modpriv_head, inst_list) {
432                 if (inst_modpriv->netcp_module == module) {
433                         module->remove(netcp_device,
434                                        inst_modpriv->module_priv);
435                         list_del(&inst_modpriv->inst_list);
436                         devm_kfree(dev, inst_modpriv);
437                         break;
438                 }
439         }
440 }
441
442 void netcp_unregister_module(struct netcp_module *module)
443 {
444         struct netcp_device *netcp_device;
445         struct netcp_module *module_tmp;
446
447         mutex_lock(&netcp_modules_lock);
448
449         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
450                 netcp_release_module(netcp_device, module);
451         }
452
453         /* Remove the module from the module list */
454         for_each_netcp_module(module_tmp) {
455                 if (module == module_tmp) {
456                         list_del(&module->module_list);
457                         break;
458                 }
459         }
460
461         mutex_unlock(&netcp_modules_lock);
462 }
463 EXPORT_SYMBOL_GPL(netcp_unregister_module);
464
465 void *netcp_module_get_intf_data(struct netcp_module *module,
466                                  struct netcp_intf *intf)
467 {
468         struct netcp_intf_modpriv *intf_modpriv;
469
470         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
471                 if (intf_modpriv->netcp_module == module)
472                         return intf_modpriv->module_priv;
473         return NULL;
474 }
475 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
476
477 /* Module TX and RX Hook management */
478 struct netcp_hook_list {
479         struct list_head         list;
480         netcp_hook_rtn          *hook_rtn;
481         void                    *hook_data;
482         int                      order;
483 };
484
485 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
486                           netcp_hook_rtn *hook_rtn, void *hook_data)
487 {
488         struct netcp_hook_list *entry;
489         struct netcp_hook_list *next;
490         unsigned long flags;
491
492         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
493         if (!entry)
494                 return -ENOMEM;
495
496         entry->hook_rtn  = hook_rtn;
497         entry->hook_data = hook_data;
498         entry->order     = order;
499
500         spin_lock_irqsave(&netcp_priv->lock, flags);
501         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
502                 if (next->order > order)
503                         break;
504         }
505         __list_add(&entry->list, next->list.prev, &next->list);
506         spin_unlock_irqrestore(&netcp_priv->lock, flags);
507
508         return 0;
509 }
510 EXPORT_SYMBOL_GPL(netcp_register_txhook);
511
512 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
513                             netcp_hook_rtn *hook_rtn, void *hook_data)
514 {
515         struct netcp_hook_list *next, *n;
516         unsigned long flags;
517
518         spin_lock_irqsave(&netcp_priv->lock, flags);
519         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
520                 if ((next->order     == order) &&
521                     (next->hook_rtn  == hook_rtn) &&
522                     (next->hook_data == hook_data)) {
523                         list_del(&next->list);
524                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
525                         devm_kfree(netcp_priv->dev, next);
526                         return 0;
527                 }
528         }
529         spin_unlock_irqrestore(&netcp_priv->lock, flags);
530         return -ENOENT;
531 }
532 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
533
534 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
535                           netcp_hook_rtn *hook_rtn, void *hook_data)
536 {
537         struct netcp_hook_list *entry;
538         struct netcp_hook_list *next;
539         unsigned long flags;
540
541         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
542         if (!entry)
543                 return -ENOMEM;
544
545         entry->hook_rtn  = hook_rtn;
546         entry->hook_data = hook_data;
547         entry->order     = order;
548
549         spin_lock_irqsave(&netcp_priv->lock, flags);
550         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
551                 if (next->order > order)
552                         break;
553         }
554         __list_add(&entry->list, next->list.prev, &next->list);
555         spin_unlock_irqrestore(&netcp_priv->lock, flags);
556
557         return 0;
558 }
559 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
560
561 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
562                             netcp_hook_rtn *hook_rtn, void *hook_data)
563 {
564         struct netcp_hook_list *next, *n;
565         unsigned long flags;
566
567         spin_lock_irqsave(&netcp_priv->lock, flags);
568         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
569                 if ((next->order     == order) &&
570                     (next->hook_rtn  == hook_rtn) &&
571                     (next->hook_data == hook_data)) {
572                         list_del(&next->list);
573                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
574                         devm_kfree(netcp_priv->dev, next);
575                         return 0;
576                 }
577         }
578         spin_unlock_irqrestore(&netcp_priv->lock, flags);
579
580         return -ENOENT;
581 }
582 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
583
584 static void netcp_frag_free(bool is_frag, void *ptr)
585 {
586         if (is_frag)
587                 skb_free_frag(ptr);
588         else
589                 kfree(ptr);
590 }
591
592 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
593                                      struct knav_dma_desc *desc)
594 {
595         struct knav_dma_desc *ndesc;
596         dma_addr_t dma_desc, dma_buf;
597         unsigned int buf_len, dma_sz = sizeof(*ndesc);
598         void *buf_ptr;
599         u32 tmp;
600
601         get_words(&dma_desc, 1, &desc->next_desc);
602
603         while (dma_desc) {
604                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
605                 if (unlikely(!ndesc)) {
606                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
607                         break;
608                 }
609                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
610                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
611                  * field as a 32bit value. Will not work on 64bit machines
612                  */
613                 buf_ptr = (void *)GET_SW_DATA0(ndesc);
614                 buf_len = (int)GET_SW_DATA1(desc);
615                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
616                 __free_page(buf_ptr);
617                 knav_pool_desc_put(netcp->rx_pool, desc);
618         }
619         /* warning!!!! We are retrieving the virtual ptr in the sw_data
620          * field as a 32bit value. Will not work on 64bit machines
621          */
622         buf_ptr = (void *)GET_SW_DATA0(desc);
623         buf_len = (int)GET_SW_DATA1(desc);
624
625         if (buf_ptr)
626                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
627         knav_pool_desc_put(netcp->rx_pool, desc);
628 }
629
630 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
631 {
632         struct netcp_stats *rx_stats = &netcp->stats;
633         struct knav_dma_desc *desc;
634         unsigned int dma_sz;
635         dma_addr_t dma;
636
637         for (; ;) {
638                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
639                 if (!dma)
640                         break;
641
642                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
643                 if (unlikely(!desc)) {
644                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
645                                 __func__);
646                         rx_stats->rx_errors++;
647                         continue;
648                 }
649                 netcp_free_rx_desc_chain(netcp, desc);
650                 rx_stats->rx_dropped++;
651         }
652 }
653
654 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
655 {
656         struct netcp_stats *rx_stats = &netcp->stats;
657         unsigned int dma_sz, buf_len, org_buf_len;
658         struct knav_dma_desc *desc, *ndesc;
659         unsigned int pkt_sz = 0, accum_sz;
660         struct netcp_hook_list *rx_hook;
661         dma_addr_t dma_desc, dma_buff;
662         struct netcp_packet p_info;
663         struct sk_buff *skb;
664         void *org_buf_ptr;
665         u32 tmp;
666
667         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
668         if (!dma_desc)
669                 return -1;
670
671         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
672         if (unlikely(!desc)) {
673                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
674                 return 0;
675         }
676
677         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
678         /* warning!!!! We are retrieving the virtual ptr in the sw_data
679          * field as a 32bit value. Will not work on 64bit machines
680          */
681         org_buf_ptr = (void *)GET_SW_DATA0(desc);
682         org_buf_len = (int)GET_SW_DATA1(desc);
683
684         if (unlikely(!org_buf_ptr)) {
685                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
686                 goto free_desc;
687         }
688
689         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
690         accum_sz = buf_len;
691         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
692
693         /* Build a new sk_buff for the primary buffer */
694         skb = build_skb(org_buf_ptr, org_buf_len);
695         if (unlikely(!skb)) {
696                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
697                 goto free_desc;
698         }
699
700         /* update data, tail and len */
701         skb_reserve(skb, NETCP_SOP_OFFSET);
702         __skb_put(skb, buf_len);
703
704         /* Fill in the page fragment list */
705         while (dma_desc) {
706                 struct page *page;
707
708                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
709                 if (unlikely(!ndesc)) {
710                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
711                         goto free_desc;
712                 }
713
714                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
715                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
716                  * field as a 32bit value. Will not work on 64bit machines
717                  */
718                 page = (struct page *)GET_SW_DATA0(desc);
719
720                 if (likely(dma_buff && buf_len && page)) {
721                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
722                                        DMA_FROM_DEVICE);
723                 } else {
724                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
725                                 &dma_buff, buf_len, page);
726                         goto free_desc;
727                 }
728
729                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
730                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
731                 accum_sz += buf_len;
732
733                 /* Free the descriptor */
734                 knav_pool_desc_put(netcp->rx_pool, ndesc);
735         }
736
737         /* check for packet len and warn */
738         if (unlikely(pkt_sz != accum_sz))
739                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
740                         pkt_sz, accum_sz);
741
742         /* Newer version of the Ethernet switch can trim the Ethernet FCS
743          * from the packet and is indicated in hw_cap. So trim it only for
744          * older h/w
745          */
746         if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
747                 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
748
749         /* Call each of the RX hooks */
750         p_info.skb = skb;
751         skb->dev = netcp->ndev;
752         p_info.rxtstamp_complete = false;
753         get_desc_info(&tmp, &p_info.eflags, desc);
754         p_info.epib = desc->epib;
755         p_info.psdata = (u32 __force *)desc->psdata;
756         p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
757                          KNAV_DMA_DESC_EFLAGS_MASK);
758         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
759                 int ret;
760
761                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
762                                         &p_info);
763                 if (unlikely(ret)) {
764                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
765                                 rx_hook->order, ret);
766                         /* Free the primary descriptor */
767                         rx_stats->rx_dropped++;
768                         knav_pool_desc_put(netcp->rx_pool, desc);
769                         dev_kfree_skb(skb);
770                         return 0;
771                 }
772         }
773         /* Free the primary descriptor */
774         knav_pool_desc_put(netcp->rx_pool, desc);
775
776         u64_stats_update_begin(&rx_stats->syncp_rx);
777         rx_stats->rx_packets++;
778         rx_stats->rx_bytes += skb->len;
779         u64_stats_update_end(&rx_stats->syncp_rx);
780
781         /* push skb up the stack */
782         skb->protocol = eth_type_trans(skb, netcp->ndev);
783         netif_receive_skb(skb);
784         return 0;
785
786 free_desc:
787         netcp_free_rx_desc_chain(netcp, desc);
788         rx_stats->rx_errors++;
789         return 0;
790 }
791
792 static int netcp_process_rx_packets(struct netcp_intf *netcp,
793                                     unsigned int budget)
794 {
795         int i;
796
797         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
798                 ;
799         return i;
800 }
801
802 /* Release descriptors and attached buffers from Rx FDQ */
803 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
804 {
805         struct knav_dma_desc *desc;
806         unsigned int buf_len, dma_sz;
807         dma_addr_t dma;
808         void *buf_ptr;
809
810         /* Allocate descriptor */
811         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
812                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
813                 if (unlikely(!desc)) {
814                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
815                         continue;
816                 }
817
818                 get_org_pkt_info(&dma, &buf_len, desc);
819                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
820                  * field as a 32bit value. Will not work on 64bit machines
821                  */
822                 buf_ptr = (void *)GET_SW_DATA0(desc);
823
824                 if (unlikely(!dma)) {
825                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
826                         knav_pool_desc_put(netcp->rx_pool, desc);
827                         continue;
828                 }
829
830                 if (unlikely(!buf_ptr)) {
831                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
832                         knav_pool_desc_put(netcp->rx_pool, desc);
833                         continue;
834                 }
835
836                 if (fdq == 0) {
837                         dma_unmap_single(netcp->dev, dma, buf_len,
838                                          DMA_FROM_DEVICE);
839                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
840                 } else {
841                         dma_unmap_page(netcp->dev, dma, buf_len,
842                                        DMA_FROM_DEVICE);
843                         __free_page(buf_ptr);
844                 }
845
846                 knav_pool_desc_put(netcp->rx_pool, desc);
847         }
848 }
849
850 static void netcp_rxpool_free(struct netcp_intf *netcp)
851 {
852         int i;
853
854         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
855              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
856                 netcp_free_rx_buf(netcp, i);
857
858         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
859                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
860                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
861
862         knav_pool_destroy(netcp->rx_pool);
863         netcp->rx_pool = NULL;
864 }
865
866 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
867 {
868         struct knav_dma_desc *hwdesc;
869         unsigned int buf_len, dma_sz;
870         u32 desc_info, pkt_info;
871         struct page *page;
872         dma_addr_t dma;
873         void *bufptr;
874         u32 sw_data[2];
875
876         /* Allocate descriptor */
877         hwdesc = knav_pool_desc_get(netcp->rx_pool);
878         if (IS_ERR_OR_NULL(hwdesc)) {
879                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
880                 return -ENOMEM;
881         }
882
883         if (likely(fdq == 0)) {
884                 unsigned int primary_buf_len;
885                 /* Allocate a primary receive queue entry */
886                 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
887                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
888                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
889
890                 bufptr = netdev_alloc_frag(primary_buf_len);
891                 sw_data[1] = primary_buf_len;
892
893                 if (unlikely(!bufptr)) {
894                         dev_warn_ratelimited(netcp->ndev_dev,
895                                              "Primary RX buffer alloc failed\n");
896                         goto fail;
897                 }
898                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
899                                      DMA_TO_DEVICE);
900                 if (unlikely(dma_mapping_error(netcp->dev, dma)))
901                         goto fail;
902
903                 /* warning!!!! We are saving the virtual ptr in the sw_data
904                  * field as a 32bit value. Will not work on 64bit machines
905                  */
906                 sw_data[0] = (u32)bufptr;
907         } else {
908                 /* Allocate a secondary receive queue entry */
909                 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
910                 if (unlikely(!page)) {
911                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
912                         goto fail;
913                 }
914                 buf_len = PAGE_SIZE;
915                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
916                 /* warning!!!! We are saving the virtual ptr in the sw_data
917                  * field as a 32bit value. Will not work on 64bit machines
918                  */
919                 sw_data[0] = (u32)page;
920                 sw_data[1] = 0;
921         }
922
923         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
924         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
925         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
926         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
927         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
928                     KNAV_DMA_DESC_RETQ_SHIFT;
929         set_org_pkt_info(dma, buf_len, hwdesc);
930         SET_SW_DATA0(sw_data[0], hwdesc);
931         SET_SW_DATA1(sw_data[1], hwdesc);
932         set_desc_info(desc_info, pkt_info, hwdesc);
933
934         /* Push to FDQs */
935         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
936                            &dma_sz);
937         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
938         return 0;
939
940 fail:
941         knav_pool_desc_put(netcp->rx_pool, hwdesc);
942         return -ENOMEM;
943 }
944
945 /* Refill Rx FDQ with descriptors & attached buffers */
946 static void netcp_rxpool_refill(struct netcp_intf *netcp)
947 {
948         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
949         int i, ret = 0;
950
951         /* Calculate the FDQ deficit and refill */
952         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
953                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
954                                  knav_queue_get_count(netcp->rx_fdq[i]);
955
956                 while (fdq_deficit[i]-- && !ret)
957                         ret = netcp_allocate_rx_buf(netcp, i);
958         } /* end for fdqs */
959 }
960
961 /* NAPI poll */
962 static int netcp_rx_poll(struct napi_struct *napi, int budget)
963 {
964         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
965                                                 rx_napi);
966         unsigned int packets;
967
968         packets = netcp_process_rx_packets(netcp, budget);
969
970         netcp_rxpool_refill(netcp);
971         if (packets < budget) {
972                 napi_complete_done(&netcp->rx_napi, packets);
973                 knav_queue_enable_notify(netcp->rx_queue);
974         }
975
976         return packets;
977 }
978
979 static void netcp_rx_notify(void *arg)
980 {
981         struct netcp_intf *netcp = arg;
982
983         knav_queue_disable_notify(netcp->rx_queue);
984         napi_schedule(&netcp->rx_napi);
985 }
986
987 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
988                                      struct knav_dma_desc *desc,
989                                      unsigned int desc_sz)
990 {
991         struct knav_dma_desc *ndesc = desc;
992         dma_addr_t dma_desc, dma_buf;
993         unsigned int buf_len;
994
995         while (ndesc) {
996                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
997
998                 if (dma_buf && buf_len)
999                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
1000                                          DMA_TO_DEVICE);
1001                 else
1002                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
1003                                  &dma_buf, buf_len);
1004
1005                 knav_pool_desc_put(netcp->tx_pool, ndesc);
1006                 ndesc = NULL;
1007                 if (dma_desc) {
1008                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
1009                                                      desc_sz);
1010                         if (!ndesc)
1011                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1012                 }
1013         }
1014 }
1015
1016 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1017                                           unsigned int budget)
1018 {
1019         struct netcp_stats *tx_stats = &netcp->stats;
1020         struct knav_dma_desc *desc;
1021         struct netcp_tx_cb *tx_cb;
1022         struct sk_buff *skb;
1023         unsigned int dma_sz;
1024         dma_addr_t dma;
1025         int pkts = 0;
1026
1027         while (budget--) {
1028                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1029                 if (!dma)
1030                         break;
1031                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1032                 if (unlikely(!desc)) {
1033                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1034                         tx_stats->tx_errors++;
1035                         continue;
1036                 }
1037
1038                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1039                  * field as a 32bit value. Will not work on 64bit machines
1040                  */
1041                 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1042                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1043                 if (!skb) {
1044                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1045                         tx_stats->tx_errors++;
1046                         continue;
1047                 }
1048
1049                 tx_cb = (struct netcp_tx_cb *)skb->cb;
1050                 if (tx_cb->txtstamp)
1051                         tx_cb->txtstamp(tx_cb->ts_context, skb);
1052
1053                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1054                     netif_running(netcp->ndev) &&
1055                     (knav_pool_count(netcp->tx_pool) >
1056                     netcp->tx_resume_threshold)) {
1057                         u16 subqueue = skb_get_queue_mapping(skb);
1058
1059                         netif_wake_subqueue(netcp->ndev, subqueue);
1060                 }
1061
1062                 u64_stats_update_begin(&tx_stats->syncp_tx);
1063                 tx_stats->tx_packets++;
1064                 tx_stats->tx_bytes += skb->len;
1065                 u64_stats_update_end(&tx_stats->syncp_tx);
1066                 dev_kfree_skb(skb);
1067                 pkts++;
1068         }
1069         return pkts;
1070 }
1071
1072 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1073 {
1074         int packets;
1075         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1076                                                 tx_napi);
1077
1078         packets = netcp_process_tx_compl_packets(netcp, budget);
1079         if (packets < budget) {
1080                 napi_complete(&netcp->tx_napi);
1081                 knav_queue_enable_notify(netcp->tx_compl_q);
1082         }
1083
1084         return packets;
1085 }
1086
1087 static void netcp_tx_notify(void *arg)
1088 {
1089         struct netcp_intf *netcp = arg;
1090
1091         knav_queue_disable_notify(netcp->tx_compl_q);
1092         napi_schedule(&netcp->tx_napi);
1093 }
1094
1095 static struct knav_dma_desc*
1096 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1097 {
1098         struct knav_dma_desc *desc, *ndesc, *pdesc;
1099         unsigned int pkt_len = skb_headlen(skb);
1100         struct device *dev = netcp->dev;
1101         dma_addr_t dma_addr;
1102         unsigned int dma_sz;
1103         int i;
1104
1105         /* Map the linear buffer */
1106         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1107         if (unlikely(dma_mapping_error(dev, dma_addr))) {
1108                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1109                 return NULL;
1110         }
1111
1112         desc = knav_pool_desc_get(netcp->tx_pool);
1113         if (IS_ERR_OR_NULL(desc)) {
1114                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1115                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1116                 return NULL;
1117         }
1118
1119         set_pkt_info(dma_addr, pkt_len, 0, desc);
1120         if (skb_is_nonlinear(skb)) {
1121                 prefetchw(skb_shinfo(skb));
1122         } else {
1123                 desc->next_desc = 0;
1124                 goto upd_pkt_len;
1125         }
1126
1127         pdesc = desc;
1128
1129         /* Handle the case where skb is fragmented in pages */
1130         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1131                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1132                 struct page *page = skb_frag_page(frag);
1133                 u32 page_offset = frag->page_offset;
1134                 u32 buf_len = skb_frag_size(frag);
1135                 dma_addr_t desc_dma;
1136                 u32 desc_dma_32;
1137
1138                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1139                                         DMA_TO_DEVICE);
1140                 if (unlikely(!dma_addr)) {
1141                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1142                         goto free_descs;
1143                 }
1144
1145                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1146                 if (IS_ERR_OR_NULL(ndesc)) {
1147                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1148                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1149                         goto free_descs;
1150                 }
1151
1152                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1153                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1154                 desc_dma_32 = (u32)desc_dma;
1155                 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1156                 pkt_len += buf_len;
1157                 if (pdesc != desc)
1158                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1159                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1160                 pdesc = ndesc;
1161         }
1162         if (pdesc != desc)
1163                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1164                                    &dma_addr, &dma_sz);
1165
1166         /* frag list based linkage is not supported for now. */
1167         if (skb_shinfo(skb)->frag_list) {
1168                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1169                 goto free_descs;
1170         }
1171
1172 upd_pkt_len:
1173         WARN_ON(pkt_len != skb->len);
1174
1175         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1176         set_words(&pkt_len, 1, &desc->desc_info);
1177         return desc;
1178
1179 free_descs:
1180         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1181         return NULL;
1182 }
1183
1184 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1185                                struct sk_buff *skb,
1186                                struct knav_dma_desc *desc)
1187 {
1188         struct netcp_tx_pipe *tx_pipe = NULL;
1189         struct netcp_hook_list *tx_hook;
1190         struct netcp_packet p_info;
1191         struct netcp_tx_cb *tx_cb;
1192         unsigned int dma_sz;
1193         dma_addr_t dma;
1194         u32 tmp = 0;
1195         int ret = 0;
1196
1197         p_info.netcp = netcp;
1198         p_info.skb = skb;
1199         p_info.tx_pipe = NULL;
1200         p_info.psdata_len = 0;
1201         p_info.ts_context = NULL;
1202         p_info.txtstamp = NULL;
1203         p_info.epib = desc->epib;
1204         p_info.psdata = (u32 __force *)desc->psdata;
1205         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1206
1207         /* Find out where to inject the packet for transmission */
1208         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1209                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1210                                         &p_info);
1211                 if (unlikely(ret != 0)) {
1212                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1213                                 tx_hook->order, ret);
1214                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1215                         goto out;
1216                 }
1217         }
1218
1219         /* Make sure some TX hook claimed the packet */
1220         tx_pipe = p_info.tx_pipe;
1221         if (!tx_pipe) {
1222                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1223                 ret = -ENXIO;
1224                 goto out;
1225         }
1226
1227         tx_cb = (struct netcp_tx_cb *)skb->cb;
1228         tx_cb->ts_context = p_info.ts_context;
1229         tx_cb->txtstamp = p_info.txtstamp;
1230
1231         /* update descriptor */
1232         if (p_info.psdata_len) {
1233                 /* psdata points to both native-endian and device-endian data */
1234                 __le32 *psdata = (void __force *)p_info.psdata;
1235
1236                 set_words((u32 *)psdata +
1237                           (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1238                           p_info.psdata_len, psdata);
1239                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1240                         KNAV_DMA_DESC_PSLEN_SHIFT;
1241         }
1242
1243         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1244                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1245                 KNAV_DMA_DESC_RETQ_SHIFT);
1246
1247         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1248                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1249                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1250         }
1251
1252         set_words(&tmp, 1, &desc->packet_info);
1253         /* warning!!!! We are saving the virtual ptr in the sw_data
1254          * field as a 32bit value. Will not work on 64bit machines
1255          */
1256         SET_SW_DATA0((u32)skb, desc);
1257
1258         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1259                 tmp = tx_pipe->switch_to_port;
1260                 set_words(&tmp, 1, &desc->tag_info);
1261         }
1262
1263         /* submit packet descriptor */
1264         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1265                                  &dma_sz);
1266         if (unlikely(ret)) {
1267                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1268                 ret = -ENOMEM;
1269                 goto out;
1270         }
1271         skb_tx_timestamp(skb);
1272         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1273
1274 out:
1275         return ret;
1276 }
1277
1278 /* Submit the packet */
1279 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1280 {
1281         struct netcp_intf *netcp = netdev_priv(ndev);
1282         struct netcp_stats *tx_stats = &netcp->stats;
1283         int subqueue = skb_get_queue_mapping(skb);
1284         struct knav_dma_desc *desc;
1285         int desc_count, ret = 0;
1286
1287         if (unlikely(skb->len <= 0)) {
1288                 dev_kfree_skb(skb);
1289                 return NETDEV_TX_OK;
1290         }
1291
1292         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1293                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1294                 if (ret < 0) {
1295                         /* If we get here, the skb has already been dropped */
1296                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1297                                  ret);
1298                         tx_stats->tx_dropped++;
1299                         return ret;
1300                 }
1301                 skb->len = NETCP_MIN_PACKET_SIZE;
1302         }
1303
1304         desc = netcp_tx_map_skb(skb, netcp);
1305         if (unlikely(!desc)) {
1306                 netif_stop_subqueue(ndev, subqueue);
1307                 ret = -ENOBUFS;
1308                 goto drop;
1309         }
1310
1311         ret = netcp_tx_submit_skb(netcp, skb, desc);
1312         if (ret)
1313                 goto drop;
1314
1315         /* Check Tx pool count & stop subqueue if needed */
1316         desc_count = knav_pool_count(netcp->tx_pool);
1317         if (desc_count < netcp->tx_pause_threshold) {
1318                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1319                 netif_stop_subqueue(ndev, subqueue);
1320         }
1321         return NETDEV_TX_OK;
1322
1323 drop:
1324         tx_stats->tx_dropped++;
1325         if (desc)
1326                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1327         dev_kfree_skb(skb);
1328         return ret;
1329 }
1330
1331 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1332 {
1333         if (tx_pipe->dma_channel) {
1334                 knav_dma_close_channel(tx_pipe->dma_channel);
1335                 tx_pipe->dma_channel = NULL;
1336         }
1337         return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1340
1341 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1342 {
1343         struct device *dev = tx_pipe->netcp_device->device;
1344         struct knav_dma_cfg config;
1345         int ret = 0;
1346         u8 name[16];
1347
1348         memset(&config, 0, sizeof(config));
1349         config.direction = DMA_MEM_TO_DEV;
1350         config.u.tx.filt_einfo = false;
1351         config.u.tx.filt_pswords = false;
1352         config.u.tx.priority = DMA_PRIO_MED_L;
1353
1354         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1355                                 tx_pipe->dma_chan_name, &config);
1356         if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1357                 dev_err(dev, "failed opening tx chan(%s)\n",
1358                         tx_pipe->dma_chan_name);
1359                 goto err;
1360         }
1361
1362         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1363         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1364                                              KNAV_QUEUE_SHARED);
1365         if (IS_ERR(tx_pipe->dma_queue)) {
1366                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1367                         name, ret);
1368                 ret = PTR_ERR(tx_pipe->dma_queue);
1369                 goto err;
1370         }
1371
1372         dev_dbg(dev, "opened tx pipe %s\n", name);
1373         return 0;
1374
1375 err:
1376         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1377                 knav_dma_close_channel(tx_pipe->dma_channel);
1378         tx_pipe->dma_channel = NULL;
1379         return ret;
1380 }
1381 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1382
1383 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1384                       struct netcp_device *netcp_device,
1385                       const char *dma_chan_name, unsigned int dma_queue_id)
1386 {
1387         memset(tx_pipe, 0, sizeof(*tx_pipe));
1388         tx_pipe->netcp_device = netcp_device;
1389         tx_pipe->dma_chan_name = dma_chan_name;
1390         tx_pipe->dma_queue_id = dma_queue_id;
1391         return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1394
1395 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1396                                           const u8 *addr,
1397                                           enum netcp_addr_type type)
1398 {
1399         struct netcp_addr *naddr;
1400
1401         list_for_each_entry(naddr, &netcp->addr_list, node) {
1402                 if (naddr->type != type)
1403                         continue;
1404                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1405                         continue;
1406                 return naddr;
1407         }
1408
1409         return NULL;
1410 }
1411
1412 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1413                                          const u8 *addr,
1414                                          enum netcp_addr_type type)
1415 {
1416         struct netcp_addr *naddr;
1417
1418         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1419         if (!naddr)
1420                 return NULL;
1421
1422         naddr->type = type;
1423         naddr->flags = 0;
1424         naddr->netcp = netcp;
1425         if (addr)
1426                 ether_addr_copy(naddr->addr, addr);
1427         else
1428                 eth_zero_addr(naddr->addr);
1429         list_add_tail(&naddr->node, &netcp->addr_list);
1430
1431         return naddr;
1432 }
1433
1434 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1435 {
1436         list_del(&naddr->node);
1437         devm_kfree(netcp->dev, naddr);
1438 }
1439
1440 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1441 {
1442         struct netcp_addr *naddr;
1443
1444         list_for_each_entry(naddr, &netcp->addr_list, node)
1445                 naddr->flags = 0;
1446 }
1447
1448 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1449                                 enum netcp_addr_type type)
1450 {
1451         struct netcp_addr *naddr;
1452
1453         naddr = netcp_addr_find(netcp, addr, type);
1454         if (naddr) {
1455                 naddr->flags |= ADDR_VALID;
1456                 return;
1457         }
1458
1459         naddr = netcp_addr_add(netcp, addr, type);
1460         if (!WARN_ON(!naddr))
1461                 naddr->flags |= ADDR_NEW;
1462 }
1463
1464 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1465 {
1466         struct netcp_addr *naddr, *tmp;
1467         struct netcp_intf_modpriv *priv;
1468         struct netcp_module *module;
1469         int error;
1470
1471         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1472                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1473                         continue;
1474                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1475                         naddr->addr, naddr->type);
1476                 for_each_module(netcp, priv) {
1477                         module = priv->netcp_module;
1478                         if (!module->del_addr)
1479                                 continue;
1480                         error = module->del_addr(priv->module_priv,
1481                                                  naddr);
1482                         WARN_ON(error);
1483                 }
1484                 netcp_addr_del(netcp, naddr);
1485         }
1486 }
1487
1488 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1489 {
1490         struct netcp_addr *naddr, *tmp;
1491         struct netcp_intf_modpriv *priv;
1492         struct netcp_module *module;
1493         int error;
1494
1495         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1496                 if (!(naddr->flags & ADDR_NEW))
1497                         continue;
1498                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1499                         naddr->addr, naddr->type);
1500
1501                 for_each_module(netcp, priv) {
1502                         module = priv->netcp_module;
1503                         if (!module->add_addr)
1504                                 continue;
1505                         error = module->add_addr(priv->module_priv, naddr);
1506                         WARN_ON(error);
1507                 }
1508         }
1509 }
1510
1511 static void netcp_set_rx_mode(struct net_device *ndev)
1512 {
1513         struct netcp_intf *netcp = netdev_priv(ndev);
1514         struct netdev_hw_addr *ndev_addr;
1515         bool promisc;
1516
1517         promisc = (ndev->flags & IFF_PROMISC ||
1518                    ndev->flags & IFF_ALLMULTI ||
1519                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1520
1521         spin_lock(&netcp->lock);
1522         /* first clear all marks */
1523         netcp_addr_clear_mark(netcp);
1524
1525         /* next add new entries, mark existing ones */
1526         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1527         for_each_dev_addr(ndev, ndev_addr)
1528                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1529         netdev_for_each_uc_addr(ndev_addr, ndev)
1530                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1531         netdev_for_each_mc_addr(ndev_addr, ndev)
1532                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1533
1534         if (promisc)
1535                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1536
1537         /* finally sweep and callout into modules */
1538         netcp_addr_sweep_del(netcp);
1539         netcp_addr_sweep_add(netcp);
1540         spin_unlock(&netcp->lock);
1541 }
1542
1543 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1544 {
1545         int i;
1546
1547         if (netcp->rx_channel) {
1548                 knav_dma_close_channel(netcp->rx_channel);
1549                 netcp->rx_channel = NULL;
1550         }
1551
1552         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1553                 netcp_rxpool_free(netcp);
1554
1555         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1556                 knav_queue_close(netcp->rx_queue);
1557                 netcp->rx_queue = NULL;
1558         }
1559
1560         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1561              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1562                 knav_queue_close(netcp->rx_fdq[i]);
1563                 netcp->rx_fdq[i] = NULL;
1564         }
1565
1566         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1567                 knav_queue_close(netcp->tx_compl_q);
1568                 netcp->tx_compl_q = NULL;
1569         }
1570
1571         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1572                 knav_pool_destroy(netcp->tx_pool);
1573                 netcp->tx_pool = NULL;
1574         }
1575 }
1576
1577 static int netcp_setup_navigator_resources(struct net_device *ndev)
1578 {
1579         struct netcp_intf *netcp = netdev_priv(ndev);
1580         struct knav_queue_notify_config notify_cfg;
1581         struct knav_dma_cfg config;
1582         u32 last_fdq = 0;
1583         u8 name[16];
1584         int ret;
1585         int i;
1586
1587         /* Create Rx/Tx descriptor pools */
1588         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1589         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1590                                                 netcp->rx_pool_region_id);
1591         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1592                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1593                 ret = PTR_ERR(netcp->rx_pool);
1594                 goto fail;
1595         }
1596
1597         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1598         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1599                                                 netcp->tx_pool_region_id);
1600         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1601                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1602                 ret = PTR_ERR(netcp->tx_pool);
1603                 goto fail;
1604         }
1605
1606         /* open Tx completion queue */
1607         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1608         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1609         if (IS_ERR(netcp->tx_compl_q)) {
1610                 ret = PTR_ERR(netcp->tx_compl_q);
1611                 goto fail;
1612         }
1613         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1614
1615         /* Set notification for Tx completion */
1616         notify_cfg.fn = netcp_tx_notify;
1617         notify_cfg.fn_arg = netcp;
1618         ret = knav_queue_device_control(netcp->tx_compl_q,
1619                                         KNAV_QUEUE_SET_NOTIFIER,
1620                                         (unsigned long)&notify_cfg);
1621         if (ret)
1622                 goto fail;
1623
1624         knav_queue_disable_notify(netcp->tx_compl_q);
1625
1626         /* open Rx completion queue */
1627         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1628         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1629         if (IS_ERR(netcp->rx_queue)) {
1630                 ret = PTR_ERR(netcp->rx_queue);
1631                 goto fail;
1632         }
1633         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1634
1635         /* Set notification for Rx completion */
1636         notify_cfg.fn = netcp_rx_notify;
1637         notify_cfg.fn_arg = netcp;
1638         ret = knav_queue_device_control(netcp->rx_queue,
1639                                         KNAV_QUEUE_SET_NOTIFIER,
1640                                         (unsigned long)&notify_cfg);
1641         if (ret)
1642                 goto fail;
1643
1644         knav_queue_disable_notify(netcp->rx_queue);
1645
1646         /* open Rx FDQs */
1647         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1648              ++i) {
1649                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1650                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1651                 if (IS_ERR(netcp->rx_fdq[i])) {
1652                         ret = PTR_ERR(netcp->rx_fdq[i]);
1653                         goto fail;
1654                 }
1655         }
1656
1657         memset(&config, 0, sizeof(config));
1658         config.direction                = DMA_DEV_TO_MEM;
1659         config.u.rx.einfo_present       = true;
1660         config.u.rx.psinfo_present      = true;
1661         config.u.rx.err_mode            = DMA_DROP;
1662         config.u.rx.desc_type           = DMA_DESC_HOST;
1663         config.u.rx.psinfo_at_sop       = false;
1664         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1665         config.u.rx.dst_q               = netcp->rx_queue_id;
1666         config.u.rx.thresh              = DMA_THRESH_NONE;
1667
1668         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1669                 if (netcp->rx_fdq[i])
1670                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1671                 config.u.rx.fdq[i] = last_fdq;
1672         }
1673
1674         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1675                                         netcp->dma_chan_name, &config);
1676         if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1677                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1678                         netcp->dma_chan_name);
1679                 goto fail;
1680         }
1681
1682         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1683         return 0;
1684
1685 fail:
1686         netcp_free_navigator_resources(netcp);
1687         return ret;
1688 }
1689
1690 /* Open the device */
1691 static int netcp_ndo_open(struct net_device *ndev)
1692 {
1693         struct netcp_intf *netcp = netdev_priv(ndev);
1694         struct netcp_intf_modpriv *intf_modpriv;
1695         struct netcp_module *module;
1696         int ret;
1697
1698         netif_carrier_off(ndev);
1699         ret = netcp_setup_navigator_resources(ndev);
1700         if (ret) {
1701                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1702                 goto fail;
1703         }
1704
1705         for_each_module(netcp, intf_modpriv) {
1706                 module = intf_modpriv->netcp_module;
1707                 if (module->open) {
1708                         ret = module->open(intf_modpriv->module_priv, ndev);
1709                         if (ret != 0) {
1710                                 dev_err(netcp->ndev_dev, "module open failed\n");
1711                                 goto fail_open;
1712                         }
1713                 }
1714         }
1715
1716         napi_enable(&netcp->rx_napi);
1717         napi_enable(&netcp->tx_napi);
1718         knav_queue_enable_notify(netcp->tx_compl_q);
1719         knav_queue_enable_notify(netcp->rx_queue);
1720         netcp_rxpool_refill(netcp);
1721         netif_tx_wake_all_queues(ndev);
1722         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1723         return 0;
1724
1725 fail_open:
1726         for_each_module(netcp, intf_modpriv) {
1727                 module = intf_modpriv->netcp_module;
1728                 if (module->close)
1729                         module->close(intf_modpriv->module_priv, ndev);
1730         }
1731
1732 fail:
1733         netcp_free_navigator_resources(netcp);
1734         return ret;
1735 }
1736
1737 /* Close the device */
1738 static int netcp_ndo_stop(struct net_device *ndev)
1739 {
1740         struct netcp_intf *netcp = netdev_priv(ndev);
1741         struct netcp_intf_modpriv *intf_modpriv;
1742         struct netcp_module *module;
1743         int err = 0;
1744
1745         netif_tx_stop_all_queues(ndev);
1746         netif_carrier_off(ndev);
1747         netcp_addr_clear_mark(netcp);
1748         netcp_addr_sweep_del(netcp);
1749         knav_queue_disable_notify(netcp->rx_queue);
1750         knav_queue_disable_notify(netcp->tx_compl_q);
1751         napi_disable(&netcp->rx_napi);
1752         napi_disable(&netcp->tx_napi);
1753
1754         for_each_module(netcp, intf_modpriv) {
1755                 module = intf_modpriv->netcp_module;
1756                 if (module->close) {
1757                         err = module->close(intf_modpriv->module_priv, ndev);
1758                         if (err != 0)
1759                                 dev_err(netcp->ndev_dev, "Close failed\n");
1760                 }
1761         }
1762
1763         /* Recycle Rx descriptors from completion queue */
1764         netcp_empty_rx_queue(netcp);
1765
1766         /* Recycle Tx descriptors from completion queue */
1767         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1768
1769         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1770                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1771                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1772
1773         netcp_free_navigator_resources(netcp);
1774         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1775         return 0;
1776 }
1777
1778 static int netcp_ndo_ioctl(struct net_device *ndev,
1779                            struct ifreq *req, int cmd)
1780 {
1781         struct netcp_intf *netcp = netdev_priv(ndev);
1782         struct netcp_intf_modpriv *intf_modpriv;
1783         struct netcp_module *module;
1784         int ret = -1, err = -EOPNOTSUPP;
1785
1786         if (!netif_running(ndev))
1787                 return -EINVAL;
1788
1789         for_each_module(netcp, intf_modpriv) {
1790                 module = intf_modpriv->netcp_module;
1791                 if (!module->ioctl)
1792                         continue;
1793
1794                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1795                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1796                         ret = err;
1797                         goto out;
1798                 }
1799                 if (err == 0)
1800                         ret = err;
1801         }
1802
1803 out:
1804         return (ret == 0) ? 0 : err;
1805 }
1806
1807 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1808 {
1809         struct netcp_intf *netcp = netdev_priv(ndev);
1810         unsigned int descs = knav_pool_count(netcp->tx_pool);
1811
1812         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1813         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1814         netif_trans_update(ndev);
1815         netif_tx_wake_all_queues(ndev);
1816 }
1817
1818 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1819 {
1820         struct netcp_intf *netcp = netdev_priv(ndev);
1821         struct netcp_intf_modpriv *intf_modpriv;
1822         struct netcp_module *module;
1823         unsigned long flags;
1824         int err = 0;
1825
1826         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1827
1828         spin_lock_irqsave(&netcp->lock, flags);
1829         for_each_module(netcp, intf_modpriv) {
1830                 module = intf_modpriv->netcp_module;
1831                 if ((module->add_vid) && (vid != 0)) {
1832                         err = module->add_vid(intf_modpriv->module_priv, vid);
1833                         if (err != 0) {
1834                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1835                                         vid);
1836                                 break;
1837                         }
1838                 }
1839         }
1840         spin_unlock_irqrestore(&netcp->lock, flags);
1841
1842         return err;
1843 }
1844
1845 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1846 {
1847         struct netcp_intf *netcp = netdev_priv(ndev);
1848         struct netcp_intf_modpriv *intf_modpriv;
1849         struct netcp_module *module;
1850         unsigned long flags;
1851         int err = 0;
1852
1853         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1854
1855         spin_lock_irqsave(&netcp->lock, flags);
1856         for_each_module(netcp, intf_modpriv) {
1857                 module = intf_modpriv->netcp_module;
1858                 if (module->del_vid) {
1859                         err = module->del_vid(intf_modpriv->module_priv, vid);
1860                         if (err != 0) {
1861                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1862                                         vid);
1863                                 break;
1864                         }
1865                 }
1866         }
1867         spin_unlock_irqrestore(&netcp->lock, flags);
1868         return err;
1869 }
1870
1871 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1872                               void *accel_priv,
1873                               select_queue_fallback_t fallback)
1874 {
1875         return 0;
1876 }
1877
1878 static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
1879                           struct tc_to_netdev *tc)
1880 {
1881         u8 num_tc;
1882         int i;
1883
1884         /* setup tc must be called under rtnl lock */
1885         ASSERT_RTNL();
1886
1887         if (tc->type != TC_SETUP_MQPRIO)
1888                 return -EINVAL;
1889
1890         tc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1891         num_tc = tc->mqprio->num_tc;
1892
1893         /* Sanity-check the number of traffic classes requested */
1894         if ((dev->real_num_tx_queues <= 1) ||
1895             (dev->real_num_tx_queues < num_tc))
1896                 return -EINVAL;
1897
1898         /* Configure traffic class to queue mappings */
1899         if (num_tc) {
1900                 netdev_set_num_tc(dev, num_tc);
1901                 for (i = 0; i < num_tc; i++)
1902                         netdev_set_tc_queue(dev, i, 1, i);
1903         } else {
1904                 netdev_reset_tc(dev);
1905         }
1906
1907         return 0;
1908 }
1909
1910 static void
1911 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1912 {
1913         struct netcp_intf *netcp = netdev_priv(ndev);
1914         struct netcp_stats *p = &netcp->stats;
1915         u64 rxpackets, rxbytes, txpackets, txbytes;
1916         unsigned int start;
1917
1918         do {
1919                 start = u64_stats_fetch_begin_irq(&p->syncp_rx);
1920                 rxpackets       = p->rx_packets;
1921                 rxbytes         = p->rx_bytes;
1922         } while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
1923
1924         do {
1925                 start = u64_stats_fetch_begin_irq(&p->syncp_tx);
1926                 txpackets       = p->tx_packets;
1927                 txbytes         = p->tx_bytes;
1928         } while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
1929
1930         stats->rx_packets = rxpackets;
1931         stats->rx_bytes = rxbytes;
1932         stats->tx_packets = txpackets;
1933         stats->tx_bytes = txbytes;
1934
1935         /* The following are stored as 32 bit */
1936         stats->rx_errors = p->rx_errors;
1937         stats->rx_dropped = p->rx_dropped;
1938         stats->tx_dropped = p->tx_dropped;
1939 }
1940
1941 static const struct net_device_ops netcp_netdev_ops = {
1942         .ndo_open               = netcp_ndo_open,
1943         .ndo_stop               = netcp_ndo_stop,
1944         .ndo_start_xmit         = netcp_ndo_start_xmit,
1945         .ndo_set_rx_mode        = netcp_set_rx_mode,
1946         .ndo_do_ioctl           = netcp_ndo_ioctl,
1947         .ndo_get_stats64        = netcp_get_stats,
1948         .ndo_set_mac_address    = eth_mac_addr,
1949         .ndo_validate_addr      = eth_validate_addr,
1950         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1951         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1952         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1953         .ndo_select_queue       = netcp_select_queue,
1954         .ndo_setup_tc           = netcp_setup_tc,
1955 };
1956
1957 static int netcp_create_interface(struct netcp_device *netcp_device,
1958                                   struct device_node *node_interface)
1959 {
1960         struct device *dev = netcp_device->device;
1961         struct device_node *node = dev->of_node;
1962         struct netcp_intf *netcp;
1963         struct net_device *ndev;
1964         resource_size_t size;
1965         struct resource res;
1966         void __iomem *efuse = NULL;
1967         u32 efuse_mac = 0;
1968         const void *mac_addr;
1969         u8 efuse_mac_addr[6];
1970         u32 temp[2];
1971         int ret = 0;
1972
1973         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1974         if (!ndev) {
1975                 dev_err(dev, "Error allocating netdev\n");
1976                 return -ENOMEM;
1977         }
1978
1979         ndev->features |= NETIF_F_SG;
1980         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1981         ndev->hw_features = ndev->features;
1982         ndev->vlan_features |=  NETIF_F_SG;
1983
1984         /* MTU range: 68 - 9486 */
1985         ndev->min_mtu = ETH_MIN_MTU;
1986         ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1987
1988         netcp = netdev_priv(ndev);
1989         spin_lock_init(&netcp->lock);
1990         INIT_LIST_HEAD(&netcp->module_head);
1991         INIT_LIST_HEAD(&netcp->txhook_list_head);
1992         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1993         INIT_LIST_HEAD(&netcp->addr_list);
1994         u64_stats_init(&netcp->stats.syncp_rx);
1995         u64_stats_init(&netcp->stats.syncp_tx);
1996         netcp->netcp_device = netcp_device;
1997         netcp->dev = netcp_device->device;
1998         netcp->ndev = ndev;
1999         netcp->ndev_dev  = &ndev->dev;
2000         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2001         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2002         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2003         netcp->node_interface = node_interface;
2004
2005         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2006         if (efuse_mac) {
2007                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2008                         dev_err(dev, "could not find efuse-mac reg resource\n");
2009                         ret = -ENODEV;
2010                         goto quit;
2011                 }
2012                 size = resource_size(&res);
2013
2014                 if (!devm_request_mem_region(dev, res.start, size,
2015                                              dev_name(dev))) {
2016                         dev_err(dev, "could not reserve resource\n");
2017                         ret = -ENOMEM;
2018                         goto quit;
2019                 }
2020
2021                 efuse = devm_ioremap_nocache(dev, res.start, size);
2022                 if (!efuse) {
2023                         dev_err(dev, "could not map resource\n");
2024                         devm_release_mem_region(dev, res.start, size);
2025                         ret = -ENOMEM;
2026                         goto quit;
2027                 }
2028
2029                 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2030                 if (is_valid_ether_addr(efuse_mac_addr))
2031                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
2032                 else
2033                         random_ether_addr(ndev->dev_addr);
2034
2035                 devm_iounmap(dev, efuse);
2036                 devm_release_mem_region(dev, res.start, size);
2037         } else {
2038                 mac_addr = of_get_mac_address(node_interface);
2039                 if (mac_addr)
2040                         ether_addr_copy(ndev->dev_addr, mac_addr);
2041                 else
2042                         random_ether_addr(ndev->dev_addr);
2043         }
2044
2045         ret = of_property_read_string(node_interface, "rx-channel",
2046                                       &netcp->dma_chan_name);
2047         if (ret < 0) {
2048                 dev_err(dev, "missing \"rx-channel\" parameter\n");
2049                 ret = -ENODEV;
2050                 goto quit;
2051         }
2052
2053         ret = of_property_read_u32(node_interface, "rx-queue",
2054                                    &netcp->rx_queue_id);
2055         if (ret < 0) {
2056                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
2057                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2058         }
2059
2060         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2061                                          netcp->rx_queue_depths,
2062                                          KNAV_DMA_FDQ_PER_CHAN);
2063         if (ret < 0) {
2064                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2065                 netcp->rx_queue_depths[0] = 128;
2066         }
2067
2068         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2069         if (ret < 0) {
2070                 dev_err(dev, "missing \"rx-pool\" parameter\n");
2071                 ret = -ENODEV;
2072                 goto quit;
2073         }
2074         netcp->rx_pool_size = temp[0];
2075         netcp->rx_pool_region_id = temp[1];
2076
2077         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2078         if (ret < 0) {
2079                 dev_err(dev, "missing \"tx-pool\" parameter\n");
2080                 ret = -ENODEV;
2081                 goto quit;
2082         }
2083         netcp->tx_pool_size = temp[0];
2084         netcp->tx_pool_region_id = temp[1];
2085
2086         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2087                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2088                         MAX_SKB_FRAGS);
2089                 ret = -ENODEV;
2090                 goto quit;
2091         }
2092
2093         ret = of_property_read_u32(node_interface, "tx-completion-queue",
2094                                    &netcp->tx_compl_qid);
2095         if (ret < 0) {
2096                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2097                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2098         }
2099
2100         /* NAPI register */
2101         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2102         netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2103
2104         /* Register the network device */
2105         ndev->dev_id            = 0;
2106         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
2107         ndev->netdev_ops        = &netcp_netdev_ops;
2108         SET_NETDEV_DEV(ndev, dev);
2109
2110         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2111         return 0;
2112
2113 quit:
2114         free_netdev(ndev);
2115         return ret;
2116 }
2117
2118 static void netcp_delete_interface(struct netcp_device *netcp_device,
2119                                    struct net_device *ndev)
2120 {
2121         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2122         struct netcp_intf *netcp = netdev_priv(ndev);
2123         struct netcp_module *module;
2124
2125         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2126                 ndev->name);
2127
2128         /* Notify each of the modules that the interface is going away */
2129         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2130                                  intf_list) {
2131                 module = intf_modpriv->netcp_module;
2132                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2133                         module->name);
2134                 if (module->release)
2135                         module->release(intf_modpriv->module_priv);
2136                 list_del(&intf_modpriv->intf_list);
2137         }
2138         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2139              ndev->name);
2140
2141         list_del(&netcp->interface_list);
2142
2143         of_node_put(netcp->node_interface);
2144         unregister_netdev(ndev);
2145         netif_napi_del(&netcp->rx_napi);
2146         free_netdev(ndev);
2147 }
2148
2149 static int netcp_probe(struct platform_device *pdev)
2150 {
2151         struct device_node *node = pdev->dev.of_node;
2152         struct netcp_intf *netcp_intf, *netcp_tmp;
2153         struct device_node *child, *interfaces;
2154         struct netcp_device *netcp_device;
2155         struct device *dev = &pdev->dev;
2156         int ret;
2157
2158         if (!node) {
2159                 dev_err(dev, "could not find device info\n");
2160                 return -ENODEV;
2161         }
2162
2163         /* Allocate a new NETCP device instance */
2164         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2165         if (!netcp_device)
2166                 return -ENOMEM;
2167
2168         pm_runtime_enable(&pdev->dev);
2169         ret = pm_runtime_get_sync(&pdev->dev);
2170         if (ret < 0) {
2171                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2172                 pm_runtime_disable(&pdev->dev);
2173                 return ret;
2174         }
2175
2176         /* Initialize the NETCP device instance */
2177         INIT_LIST_HEAD(&netcp_device->interface_head);
2178         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2179         netcp_device->device = dev;
2180         platform_set_drvdata(pdev, netcp_device);
2181
2182         /* create interfaces */
2183         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2184         if (!interfaces) {
2185                 dev_err(dev, "could not find netcp-interfaces node\n");
2186                 ret = -ENODEV;
2187                 goto probe_quit;
2188         }
2189
2190         for_each_available_child_of_node(interfaces, child) {
2191                 ret = netcp_create_interface(netcp_device, child);
2192                 if (ret) {
2193                         dev_err(dev, "could not create interface(%s)\n",
2194                                 child->name);
2195                         goto probe_quit_interface;
2196                 }
2197         }
2198
2199         of_node_put(interfaces);
2200
2201         /* Add the device instance to the list */
2202         list_add_tail(&netcp_device->device_list, &netcp_devices);
2203
2204         return 0;
2205
2206 probe_quit_interface:
2207         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2208                                  &netcp_device->interface_head,
2209                                  interface_list) {
2210                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2211         }
2212
2213         of_node_put(interfaces);
2214
2215 probe_quit:
2216         pm_runtime_put_sync(&pdev->dev);
2217         pm_runtime_disable(&pdev->dev);
2218         platform_set_drvdata(pdev, NULL);
2219         return ret;
2220 }
2221
2222 static int netcp_remove(struct platform_device *pdev)
2223 {
2224         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2225         struct netcp_intf *netcp_intf, *netcp_tmp;
2226         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2227         struct netcp_module *module;
2228
2229         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2230                                  inst_list) {
2231                 module = inst_modpriv->netcp_module;
2232                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2233                 module->remove(netcp_device, inst_modpriv->module_priv);
2234                 list_del(&inst_modpriv->inst_list);
2235         }
2236
2237         /* now that all modules are removed, clean up the interfaces */
2238         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2239                                  &netcp_device->interface_head,
2240                                  interface_list) {
2241                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2242         }
2243
2244         WARN(!list_empty(&netcp_device->interface_head),
2245              "%s interface list not empty!\n", pdev->name);
2246
2247         pm_runtime_put_sync(&pdev->dev);
2248         pm_runtime_disable(&pdev->dev);
2249         platform_set_drvdata(pdev, NULL);
2250         return 0;
2251 }
2252
2253 static const struct of_device_id of_match[] = {
2254         { .compatible = "ti,netcp-1.0", },
2255         {},
2256 };
2257 MODULE_DEVICE_TABLE(of, of_match);
2258
2259 static struct platform_driver netcp_driver = {
2260         .driver = {
2261                 .name           = "netcp-1.0",
2262                 .of_match_table = of_match,
2263         },
2264         .probe = netcp_probe,
2265         .remove = netcp_remove,
2266 };
2267 module_platform_driver(netcp_driver);
2268
2269 MODULE_LICENSE("GPL v2");
2270 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2271 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");