Merge remote-tracking branch 'asoc/topic/intel' into asoc-next
[sfrench/cifs-2.6.git] / drivers / net / ethernet / ti / netcp_core.c
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Sandeep Paulraj <s-paulraj@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *              Murali Karicheri <m-karicheri2@ti.com>
10  *              Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT       64
36 #define NETCP_TX_TIMEOUT        (5 * HZ)
37 #define NETCP_PACKET_SIZE       (ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR    16
40
41 #define NETCP_EFUSE_REG_INDEX   0
42
43 #define NETCP_MOD_PROBE_SKIPPED 1
44 #define NETCP_MOD_PROBE_FAILED  2
45
46 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
47                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
48                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
49                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
50                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
51                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
52                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
53                     NETIF_MSG_RX_STATUS)
54
55 #define NETCP_EFUSE_ADDR_SWAP   2
56
57 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
58                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
61                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
62                                         (unsigned long)NULL)
63
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
65                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
66                                         (unsigned long)NULL)
67
68 #define knav_queue_get_count(q) knav_queue_device_control(q, \
69                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70
71 #define for_each_netcp_module(module)                   \
72         list_for_each_entry(module, &netcp_modules, module_list)
73
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75         list_for_each_entry(inst_modpriv, \
76                 &((netcp_device)->modpriv_head), inst_list)
77
78 #define for_each_module(netcp, intf_modpriv)                    \
79         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80
81 /* Module management structures */
82 struct netcp_device {
83         struct list_head        device_list;
84         struct list_head        interface_head;
85         struct list_head        modpriv_head;
86         struct device           *device;
87 };
88
89 struct netcp_inst_modpriv {
90         struct netcp_device     *netcp_device;
91         struct netcp_module     *netcp_module;
92         struct list_head        inst_list;
93         void                    *module_priv;
94 };
95
96 struct netcp_intf_modpriv {
97         struct netcp_intf       *netcp_priv;
98         struct netcp_module     *netcp_module;
99         struct list_head        intf_list;
100         void                    *module_priv;
101 };
102
103 struct netcp_tx_cb {
104         void    *ts_context;
105         void    (*txtstamp)(void *context, struct sk_buff *skb);
106 };
107
108 static LIST_HEAD(netcp_devices);
109 static LIST_HEAD(netcp_modules);
110 static DEFINE_MUTEX(netcp_modules_lock);
111
112 static int netcp_debug_level = -1;
113 module_param(netcp_debug_level, int, 0);
114 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
115
116 /* Helper functions - Get/Set */
117 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
118                          struct knav_dma_desc *desc)
119 {
120         *buff_len = le32_to_cpu(desc->buff_len);
121         *buff = le32_to_cpu(desc->buff);
122         *ndesc = le32_to_cpu(desc->next_desc);
123 }
124
125 static void get_desc_info(u32 *desc_info, u32 *pkt_info,
126                           struct knav_dma_desc *desc)
127 {
128         *desc_info = le32_to_cpu(desc->desc_info);
129         *pkt_info = le32_to_cpu(desc->packet_info);
130 }
131
132 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
133 {
134         /* No Endian conversion needed as this data is untouched by hw */
135         return desc->sw_data[index];
136 }
137
138 /* use these macros to get sw data */
139 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
140 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
141 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
142 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
143
144 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
145                              struct knav_dma_desc *desc)
146 {
147         *buff = le32_to_cpu(desc->orig_buff);
148         *buff_len = le32_to_cpu(desc->orig_len);
149 }
150
151 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
152 {
153         int i;
154
155         for (i = 0; i < num_words; i++)
156                 words[i] = le32_to_cpu(desc[i]);
157 }
158
159 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
160                          struct knav_dma_desc *desc)
161 {
162         desc->buff_len = cpu_to_le32(buff_len);
163         desc->buff = cpu_to_le32(buff);
164         desc->next_desc = cpu_to_le32(ndesc);
165 }
166
167 static void set_desc_info(u32 desc_info, u32 pkt_info,
168                           struct knav_dma_desc *desc)
169 {
170         desc->desc_info = cpu_to_le32(desc_info);
171         desc->packet_info = cpu_to_le32(pkt_info);
172 }
173
174 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
175 {
176         /* No Endian conversion needed as this data is untouched by hw */
177         desc->sw_data[index] = data;
178 }
179
180 /* use these macros to set sw data */
181 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
182 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
183 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
184 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
185
186 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
187                              struct knav_dma_desc *desc)
188 {
189         desc->orig_buff = cpu_to_le32(buff);
190         desc->orig_len = cpu_to_le32(buff_len);
191 }
192
193 static void set_words(u32 *words, int num_words, __le32 *desc)
194 {
195         int i;
196
197         for (i = 0; i < num_words; i++)
198                 desc[i] = cpu_to_le32(words[i]);
199 }
200
201 /* Read the e-fuse value as 32 bit values to be endian independent */
202 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
203 {
204         unsigned int addr0, addr1;
205
206         addr1 = readl(efuse_mac + 4);
207         addr0 = readl(efuse_mac);
208
209         switch (swap) {
210         case NETCP_EFUSE_ADDR_SWAP:
211                 addr0 = addr1;
212                 addr1 = readl(efuse_mac);
213                 break;
214         default:
215                 break;
216         }
217
218         x[0] = (addr1 & 0x0000ff00) >> 8;
219         x[1] = addr1 & 0x000000ff;
220         x[2] = (addr0 & 0xff000000) >> 24;
221         x[3] = (addr0 & 0x00ff0000) >> 16;
222         x[4] = (addr0 & 0x0000ff00) >> 8;
223         x[5] = addr0 & 0x000000ff;
224
225         return 0;
226 }
227
228 static const char *netcp_node_name(struct device_node *node)
229 {
230         const char *name;
231
232         if (of_property_read_string(node, "label", &name) < 0)
233                 name = node->name;
234         if (!name)
235                 name = "unknown";
236         return name;
237 }
238
239 /* Module management routines */
240 static int netcp_register_interface(struct netcp_intf *netcp)
241 {
242         int ret;
243
244         ret = register_netdev(netcp->ndev);
245         if (!ret)
246                 netcp->netdev_registered = true;
247         return ret;
248 }
249
250 static int netcp_module_probe(struct netcp_device *netcp_device,
251                               struct netcp_module *module)
252 {
253         struct device *dev = netcp_device->device;
254         struct device_node *devices, *interface, *node = dev->of_node;
255         struct device_node *child;
256         struct netcp_inst_modpriv *inst_modpriv;
257         struct netcp_intf *netcp_intf;
258         struct netcp_module *tmp;
259         bool primary_module_registered = false;
260         int ret;
261
262         /* Find this module in the sub-tree for this device */
263         devices = of_get_child_by_name(node, "netcp-devices");
264         if (!devices) {
265                 dev_err(dev, "could not find netcp-devices node\n");
266                 return NETCP_MOD_PROBE_SKIPPED;
267         }
268
269         for_each_available_child_of_node(devices, child) {
270                 const char *name = netcp_node_name(child);
271
272                 if (!strcasecmp(module->name, name))
273                         break;
274         }
275
276         of_node_put(devices);
277         /* If module not used for this device, skip it */
278         if (!child) {
279                 dev_warn(dev, "module(%s) not used for device\n", module->name);
280                 return NETCP_MOD_PROBE_SKIPPED;
281         }
282
283         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
284         if (!inst_modpriv) {
285                 of_node_put(child);
286                 return -ENOMEM;
287         }
288
289         inst_modpriv->netcp_device = netcp_device;
290         inst_modpriv->netcp_module = module;
291         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
292
293         ret = module->probe(netcp_device, dev, child,
294                             &inst_modpriv->module_priv);
295         of_node_put(child);
296         if (ret) {
297                 dev_err(dev, "Probe of module(%s) failed with %d\n",
298                         module->name, ret);
299                 list_del(&inst_modpriv->inst_list);
300                 devm_kfree(dev, inst_modpriv);
301                 return NETCP_MOD_PROBE_FAILED;
302         }
303
304         /* Attach modules only if the primary module is probed */
305         for_each_netcp_module(tmp) {
306                 if (tmp->primary)
307                         primary_module_registered = true;
308         }
309
310         if (!primary_module_registered)
311                 return 0;
312
313         /* Attach module to interfaces */
314         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
315                             interface_list) {
316                 struct netcp_intf_modpriv *intf_modpriv;
317
318                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
319                                             GFP_KERNEL);
320                 if (!intf_modpriv)
321                         return -ENOMEM;
322
323                 interface = of_parse_phandle(netcp_intf->node_interface,
324                                              module->name, 0);
325
326                 if (!interface) {
327                         devm_kfree(dev, intf_modpriv);
328                         continue;
329                 }
330
331                 intf_modpriv->netcp_priv = netcp_intf;
332                 intf_modpriv->netcp_module = module;
333                 list_add_tail(&intf_modpriv->intf_list,
334                               &netcp_intf->module_head);
335
336                 ret = module->attach(inst_modpriv->module_priv,
337                                      netcp_intf->ndev, interface,
338                                      &intf_modpriv->module_priv);
339                 of_node_put(interface);
340                 if (ret) {
341                         dev_dbg(dev, "Attach of module %s declined with %d\n",
342                                 module->name, ret);
343                         list_del(&intf_modpriv->intf_list);
344                         devm_kfree(dev, intf_modpriv);
345                         continue;
346                 }
347         }
348
349         /* Now register the interface with netdev */
350         list_for_each_entry(netcp_intf,
351                             &netcp_device->interface_head,
352                             interface_list) {
353                 /* If interface not registered then register now */
354                 if (!netcp_intf->netdev_registered) {
355                         ret = netcp_register_interface(netcp_intf);
356                         if (ret)
357                                 return -ENODEV;
358                 }
359         }
360         return 0;
361 }
362
363 int netcp_register_module(struct netcp_module *module)
364 {
365         struct netcp_device *netcp_device;
366         struct netcp_module *tmp;
367         int ret;
368
369         if (!module->name) {
370                 WARN(1, "error registering netcp module: no name\n");
371                 return -EINVAL;
372         }
373
374         if (!module->probe) {
375                 WARN(1, "error registering netcp module: no probe\n");
376                 return -EINVAL;
377         }
378
379         mutex_lock(&netcp_modules_lock);
380
381         for_each_netcp_module(tmp) {
382                 if (!strcasecmp(tmp->name, module->name)) {
383                         mutex_unlock(&netcp_modules_lock);
384                         return -EEXIST;
385                 }
386         }
387         list_add_tail(&module->module_list, &netcp_modules);
388
389         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
390                 ret = netcp_module_probe(netcp_device, module);
391                 if (ret < 0)
392                         goto fail;
393         }
394         mutex_unlock(&netcp_modules_lock);
395         return 0;
396
397 fail:
398         mutex_unlock(&netcp_modules_lock);
399         netcp_unregister_module(module);
400         return ret;
401 }
402 EXPORT_SYMBOL_GPL(netcp_register_module);
403
404 static void netcp_release_module(struct netcp_device *netcp_device,
405                                  struct netcp_module *module)
406 {
407         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
408         struct netcp_intf *netcp_intf, *netcp_tmp;
409         struct device *dev = netcp_device->device;
410
411         /* Release the module from each interface */
412         list_for_each_entry_safe(netcp_intf, netcp_tmp,
413                                  &netcp_device->interface_head,
414                                  interface_list) {
415                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
416
417                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
418                                          &netcp_intf->module_head,
419                                          intf_list) {
420                         if (intf_modpriv->netcp_module == module) {
421                                 module->release(intf_modpriv->module_priv);
422                                 list_del(&intf_modpriv->intf_list);
423                                 devm_kfree(dev, intf_modpriv);
424                                 break;
425                         }
426                 }
427         }
428
429         /* Remove the module from each instance */
430         list_for_each_entry_safe(inst_modpriv, inst_tmp,
431                                  &netcp_device->modpriv_head, inst_list) {
432                 if (inst_modpriv->netcp_module == module) {
433                         module->remove(netcp_device,
434                                        inst_modpriv->module_priv);
435                         list_del(&inst_modpriv->inst_list);
436                         devm_kfree(dev, inst_modpriv);
437                         break;
438                 }
439         }
440 }
441
442 void netcp_unregister_module(struct netcp_module *module)
443 {
444         struct netcp_device *netcp_device;
445         struct netcp_module *module_tmp;
446
447         mutex_lock(&netcp_modules_lock);
448
449         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
450                 netcp_release_module(netcp_device, module);
451         }
452
453         /* Remove the module from the module list */
454         for_each_netcp_module(module_tmp) {
455                 if (module == module_tmp) {
456                         list_del(&module->module_list);
457                         break;
458                 }
459         }
460
461         mutex_unlock(&netcp_modules_lock);
462 }
463 EXPORT_SYMBOL_GPL(netcp_unregister_module);
464
465 void *netcp_module_get_intf_data(struct netcp_module *module,
466                                  struct netcp_intf *intf)
467 {
468         struct netcp_intf_modpriv *intf_modpriv;
469
470         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
471                 if (intf_modpriv->netcp_module == module)
472                         return intf_modpriv->module_priv;
473         return NULL;
474 }
475 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
476
477 /* Module TX and RX Hook management */
478 struct netcp_hook_list {
479         struct list_head         list;
480         netcp_hook_rtn          *hook_rtn;
481         void                    *hook_data;
482         int                      order;
483 };
484
485 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
486                           netcp_hook_rtn *hook_rtn, void *hook_data)
487 {
488         struct netcp_hook_list *entry;
489         struct netcp_hook_list *next;
490         unsigned long flags;
491
492         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
493         if (!entry)
494                 return -ENOMEM;
495
496         entry->hook_rtn  = hook_rtn;
497         entry->hook_data = hook_data;
498         entry->order     = order;
499
500         spin_lock_irqsave(&netcp_priv->lock, flags);
501         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
502                 if (next->order > order)
503                         break;
504         }
505         __list_add(&entry->list, next->list.prev, &next->list);
506         spin_unlock_irqrestore(&netcp_priv->lock, flags);
507
508         return 0;
509 }
510 EXPORT_SYMBOL_GPL(netcp_register_txhook);
511
512 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
513                             netcp_hook_rtn *hook_rtn, void *hook_data)
514 {
515         struct netcp_hook_list *next, *n;
516         unsigned long flags;
517
518         spin_lock_irqsave(&netcp_priv->lock, flags);
519         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
520                 if ((next->order     == order) &&
521                     (next->hook_rtn  == hook_rtn) &&
522                     (next->hook_data == hook_data)) {
523                         list_del(&next->list);
524                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
525                         devm_kfree(netcp_priv->dev, next);
526                         return 0;
527                 }
528         }
529         spin_unlock_irqrestore(&netcp_priv->lock, flags);
530         return -ENOENT;
531 }
532 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
533
534 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
535                           netcp_hook_rtn *hook_rtn, void *hook_data)
536 {
537         struct netcp_hook_list *entry;
538         struct netcp_hook_list *next;
539         unsigned long flags;
540
541         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
542         if (!entry)
543                 return -ENOMEM;
544
545         entry->hook_rtn  = hook_rtn;
546         entry->hook_data = hook_data;
547         entry->order     = order;
548
549         spin_lock_irqsave(&netcp_priv->lock, flags);
550         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
551                 if (next->order > order)
552                         break;
553         }
554         __list_add(&entry->list, next->list.prev, &next->list);
555         spin_unlock_irqrestore(&netcp_priv->lock, flags);
556
557         return 0;
558 }
559 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
560
561 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
562                             netcp_hook_rtn *hook_rtn, void *hook_data)
563 {
564         struct netcp_hook_list *next, *n;
565         unsigned long flags;
566
567         spin_lock_irqsave(&netcp_priv->lock, flags);
568         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
569                 if ((next->order     == order) &&
570                     (next->hook_rtn  == hook_rtn) &&
571                     (next->hook_data == hook_data)) {
572                         list_del(&next->list);
573                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
574                         devm_kfree(netcp_priv->dev, next);
575                         return 0;
576                 }
577         }
578         spin_unlock_irqrestore(&netcp_priv->lock, flags);
579
580         return -ENOENT;
581 }
582 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
583
584 static void netcp_frag_free(bool is_frag, void *ptr)
585 {
586         if (is_frag)
587                 skb_free_frag(ptr);
588         else
589                 kfree(ptr);
590 }
591
592 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
593                                      struct knav_dma_desc *desc)
594 {
595         struct knav_dma_desc *ndesc;
596         dma_addr_t dma_desc, dma_buf;
597         unsigned int buf_len, dma_sz = sizeof(*ndesc);
598         void *buf_ptr;
599         u32 tmp;
600
601         get_words(&dma_desc, 1, &desc->next_desc);
602
603         while (dma_desc) {
604                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
605                 if (unlikely(!ndesc)) {
606                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
607                         break;
608                 }
609                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
610                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
611                  * field as a 32bit value. Will not work on 64bit machines
612                  */
613                 buf_ptr = (void *)GET_SW_DATA0(ndesc);
614                 buf_len = (int)GET_SW_DATA1(desc);
615                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
616                 __free_page(buf_ptr);
617                 knav_pool_desc_put(netcp->rx_pool, desc);
618         }
619         /* warning!!!! We are retrieving the virtual ptr in the sw_data
620          * field as a 32bit value. Will not work on 64bit machines
621          */
622         buf_ptr = (void *)GET_SW_DATA0(desc);
623         buf_len = (int)GET_SW_DATA1(desc);
624
625         if (buf_ptr)
626                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
627         knav_pool_desc_put(netcp->rx_pool, desc);
628 }
629
630 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
631 {
632         struct netcp_stats *rx_stats = &netcp->stats;
633         struct knav_dma_desc *desc;
634         unsigned int dma_sz;
635         dma_addr_t dma;
636
637         for (; ;) {
638                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
639                 if (!dma)
640                         break;
641
642                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
643                 if (unlikely(!desc)) {
644                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
645                                 __func__);
646                         rx_stats->rx_errors++;
647                         continue;
648                 }
649                 netcp_free_rx_desc_chain(netcp, desc);
650                 rx_stats->rx_dropped++;
651         }
652 }
653
654 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
655 {
656         struct netcp_stats *rx_stats = &netcp->stats;
657         unsigned int dma_sz, buf_len, org_buf_len;
658         struct knav_dma_desc *desc, *ndesc;
659         unsigned int pkt_sz = 0, accum_sz;
660         struct netcp_hook_list *rx_hook;
661         dma_addr_t dma_desc, dma_buff;
662         struct netcp_packet p_info;
663         struct sk_buff *skb;
664         void *org_buf_ptr;
665         u32 tmp;
666
667         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
668         if (!dma_desc)
669                 return -1;
670
671         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
672         if (unlikely(!desc)) {
673                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
674                 return 0;
675         }
676
677         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
678         /* warning!!!! We are retrieving the virtual ptr in the sw_data
679          * field as a 32bit value. Will not work on 64bit machines
680          */
681         org_buf_ptr = (void *)GET_SW_DATA0(desc);
682         org_buf_len = (int)GET_SW_DATA1(desc);
683
684         if (unlikely(!org_buf_ptr)) {
685                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
686                 goto free_desc;
687         }
688
689         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
690         accum_sz = buf_len;
691         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
692
693         /* Build a new sk_buff for the primary buffer */
694         skb = build_skb(org_buf_ptr, org_buf_len);
695         if (unlikely(!skb)) {
696                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
697                 goto free_desc;
698         }
699
700         /* update data, tail and len */
701         skb_reserve(skb, NETCP_SOP_OFFSET);
702         __skb_put(skb, buf_len);
703
704         /* Fill in the page fragment list */
705         while (dma_desc) {
706                 struct page *page;
707
708                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
709                 if (unlikely(!ndesc)) {
710                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
711                         goto free_desc;
712                 }
713
714                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
715                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
716                  * field as a 32bit value. Will not work on 64bit machines
717                  */
718                 page = (struct page *)GET_SW_DATA0(desc);
719
720                 if (likely(dma_buff && buf_len && page)) {
721                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
722                                        DMA_FROM_DEVICE);
723                 } else {
724                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
725                                 &dma_buff, buf_len, page);
726                         goto free_desc;
727                 }
728
729                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
730                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
731                 accum_sz += buf_len;
732
733                 /* Free the descriptor */
734                 knav_pool_desc_put(netcp->rx_pool, ndesc);
735         }
736
737         /* check for packet len and warn */
738         if (unlikely(pkt_sz != accum_sz))
739                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
740                         pkt_sz, accum_sz);
741
742         /* Newer version of the Ethernet switch can trim the Ethernet FCS
743          * from the packet and is indicated in hw_cap. So trim it only for
744          * older h/w
745          */
746         if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
747                 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
748
749         /* Call each of the RX hooks */
750         p_info.skb = skb;
751         skb->dev = netcp->ndev;
752         p_info.rxtstamp_complete = false;
753         get_desc_info(&tmp, &p_info.eflags, desc);
754         p_info.epib = desc->epib;
755         p_info.psdata = (u32 __force *)desc->psdata;
756         p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
757                          KNAV_DMA_DESC_EFLAGS_MASK);
758         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
759                 int ret;
760
761                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
762                                         &p_info);
763                 if (unlikely(ret)) {
764                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
765                                 rx_hook->order, ret);
766                         /* Free the primary descriptor */
767                         rx_stats->rx_dropped++;
768                         knav_pool_desc_put(netcp->rx_pool, desc);
769                         dev_kfree_skb(skb);
770                         return 0;
771                 }
772         }
773         /* Free the primary descriptor */
774         knav_pool_desc_put(netcp->rx_pool, desc);
775
776         u64_stats_update_begin(&rx_stats->syncp_rx);
777         rx_stats->rx_packets++;
778         rx_stats->rx_bytes += skb->len;
779         u64_stats_update_end(&rx_stats->syncp_rx);
780
781         /* push skb up the stack */
782         skb->protocol = eth_type_trans(skb, netcp->ndev);
783         netif_receive_skb(skb);
784         return 0;
785
786 free_desc:
787         netcp_free_rx_desc_chain(netcp, desc);
788         rx_stats->rx_errors++;
789         return 0;
790 }
791
792 static int netcp_process_rx_packets(struct netcp_intf *netcp,
793                                     unsigned int budget)
794 {
795         int i;
796
797         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
798                 ;
799         return i;
800 }
801
802 /* Release descriptors and attached buffers from Rx FDQ */
803 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
804 {
805         struct knav_dma_desc *desc;
806         unsigned int buf_len, dma_sz;
807         dma_addr_t dma;
808         void *buf_ptr;
809
810         /* Allocate descriptor */
811         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
812                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
813                 if (unlikely(!desc)) {
814                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
815                         continue;
816                 }
817
818                 get_org_pkt_info(&dma, &buf_len, desc);
819                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
820                  * field as a 32bit value. Will not work on 64bit machines
821                  */
822                 buf_ptr = (void *)GET_SW_DATA0(desc);
823
824                 if (unlikely(!dma)) {
825                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
826                         knav_pool_desc_put(netcp->rx_pool, desc);
827                         continue;
828                 }
829
830                 if (unlikely(!buf_ptr)) {
831                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
832                         knav_pool_desc_put(netcp->rx_pool, desc);
833                         continue;
834                 }
835
836                 if (fdq == 0) {
837                         dma_unmap_single(netcp->dev, dma, buf_len,
838                                          DMA_FROM_DEVICE);
839                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
840                 } else {
841                         dma_unmap_page(netcp->dev, dma, buf_len,
842                                        DMA_FROM_DEVICE);
843                         __free_page(buf_ptr);
844                 }
845
846                 knav_pool_desc_put(netcp->rx_pool, desc);
847         }
848 }
849
850 static void netcp_rxpool_free(struct netcp_intf *netcp)
851 {
852         int i;
853
854         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
855              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
856                 netcp_free_rx_buf(netcp, i);
857
858         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
859                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
860                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
861
862         knav_pool_destroy(netcp->rx_pool);
863         netcp->rx_pool = NULL;
864 }
865
866 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
867 {
868         struct knav_dma_desc *hwdesc;
869         unsigned int buf_len, dma_sz;
870         u32 desc_info, pkt_info;
871         struct page *page;
872         dma_addr_t dma;
873         void *bufptr;
874         u32 sw_data[2];
875
876         /* Allocate descriptor */
877         hwdesc = knav_pool_desc_get(netcp->rx_pool);
878         if (IS_ERR_OR_NULL(hwdesc)) {
879                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
880                 return -ENOMEM;
881         }
882
883         if (likely(fdq == 0)) {
884                 unsigned int primary_buf_len;
885                 /* Allocate a primary receive queue entry */
886                 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
887                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
888                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
889
890                 bufptr = netdev_alloc_frag(primary_buf_len);
891                 sw_data[1] = primary_buf_len;
892
893                 if (unlikely(!bufptr)) {
894                         dev_warn_ratelimited(netcp->ndev_dev,
895                                              "Primary RX buffer alloc failed\n");
896                         goto fail;
897                 }
898                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
899                                      DMA_TO_DEVICE);
900                 if (unlikely(dma_mapping_error(netcp->dev, dma)))
901                         goto fail;
902
903                 /* warning!!!! We are saving the virtual ptr in the sw_data
904                  * field as a 32bit value. Will not work on 64bit machines
905                  */
906                 sw_data[0] = (u32)bufptr;
907         } else {
908                 /* Allocate a secondary receive queue entry */
909                 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
910                 if (unlikely(!page)) {
911                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
912                         goto fail;
913                 }
914                 buf_len = PAGE_SIZE;
915                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
916                 /* warning!!!! We are saving the virtual ptr in the sw_data
917                  * field as a 32bit value. Will not work on 64bit machines
918                  */
919                 sw_data[0] = (u32)page;
920                 sw_data[1] = 0;
921         }
922
923         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
924         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
925         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
926         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
927         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
928                     KNAV_DMA_DESC_RETQ_SHIFT;
929         set_org_pkt_info(dma, buf_len, hwdesc);
930         SET_SW_DATA0(sw_data[0], hwdesc);
931         SET_SW_DATA1(sw_data[1], hwdesc);
932         set_desc_info(desc_info, pkt_info, hwdesc);
933
934         /* Push to FDQs */
935         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
936                            &dma_sz);
937         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
938         return 0;
939
940 fail:
941         knav_pool_desc_put(netcp->rx_pool, hwdesc);
942         return -ENOMEM;
943 }
944
945 /* Refill Rx FDQ with descriptors & attached buffers */
946 static void netcp_rxpool_refill(struct netcp_intf *netcp)
947 {
948         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
949         int i, ret = 0;
950
951         /* Calculate the FDQ deficit and refill */
952         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
953                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
954                                  knav_queue_get_count(netcp->rx_fdq[i]);
955
956                 while (fdq_deficit[i]-- && !ret)
957                         ret = netcp_allocate_rx_buf(netcp, i);
958         } /* end for fdqs */
959 }
960
961 /* NAPI poll */
962 static int netcp_rx_poll(struct napi_struct *napi, int budget)
963 {
964         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
965                                                 rx_napi);
966         unsigned int packets;
967
968         packets = netcp_process_rx_packets(netcp, budget);
969
970         netcp_rxpool_refill(netcp);
971         if (packets < budget) {
972                 napi_complete_done(&netcp->rx_napi, packets);
973                 knav_queue_enable_notify(netcp->rx_queue);
974         }
975
976         return packets;
977 }
978
979 static void netcp_rx_notify(void *arg)
980 {
981         struct netcp_intf *netcp = arg;
982
983         knav_queue_disable_notify(netcp->rx_queue);
984         napi_schedule(&netcp->rx_napi);
985 }
986
987 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
988                                      struct knav_dma_desc *desc,
989                                      unsigned int desc_sz)
990 {
991         struct knav_dma_desc *ndesc = desc;
992         dma_addr_t dma_desc, dma_buf;
993         unsigned int buf_len;
994
995         while (ndesc) {
996                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
997
998                 if (dma_buf && buf_len)
999                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
1000                                          DMA_TO_DEVICE);
1001                 else
1002                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
1003                                  &dma_buf, buf_len);
1004
1005                 knav_pool_desc_put(netcp->tx_pool, ndesc);
1006                 ndesc = NULL;
1007                 if (dma_desc) {
1008                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
1009                                                      desc_sz);
1010                         if (!ndesc)
1011                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1012                 }
1013         }
1014 }
1015
1016 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1017                                           unsigned int budget)
1018 {
1019         struct netcp_stats *tx_stats = &netcp->stats;
1020         struct knav_dma_desc *desc;
1021         struct netcp_tx_cb *tx_cb;
1022         struct sk_buff *skb;
1023         unsigned int dma_sz;
1024         dma_addr_t dma;
1025         int pkts = 0;
1026
1027         while (budget--) {
1028                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1029                 if (!dma)
1030                         break;
1031                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1032                 if (unlikely(!desc)) {
1033                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1034                         tx_stats->tx_errors++;
1035                         continue;
1036                 }
1037
1038                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1039                  * field as a 32bit value. Will not work on 64bit machines
1040                  */
1041                 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1042                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1043                 if (!skb) {
1044                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1045                         tx_stats->tx_errors++;
1046                         continue;
1047                 }
1048
1049                 tx_cb = (struct netcp_tx_cb *)skb->cb;
1050                 if (tx_cb->txtstamp)
1051                         tx_cb->txtstamp(tx_cb->ts_context, skb);
1052
1053                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1054                     netif_running(netcp->ndev) &&
1055                     (knav_pool_count(netcp->tx_pool) >
1056                     netcp->tx_resume_threshold)) {
1057                         u16 subqueue = skb_get_queue_mapping(skb);
1058
1059                         netif_wake_subqueue(netcp->ndev, subqueue);
1060                 }
1061
1062                 u64_stats_update_begin(&tx_stats->syncp_tx);
1063                 tx_stats->tx_packets++;
1064                 tx_stats->tx_bytes += skb->len;
1065                 u64_stats_update_end(&tx_stats->syncp_tx);
1066                 dev_kfree_skb(skb);
1067                 pkts++;
1068         }
1069         return pkts;
1070 }
1071
1072 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1073 {
1074         int packets;
1075         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1076                                                 tx_napi);
1077
1078         packets = netcp_process_tx_compl_packets(netcp, budget);
1079         if (packets < budget) {
1080                 napi_complete(&netcp->tx_napi);
1081                 knav_queue_enable_notify(netcp->tx_compl_q);
1082         }
1083
1084         return packets;
1085 }
1086
1087 static void netcp_tx_notify(void *arg)
1088 {
1089         struct netcp_intf *netcp = arg;
1090
1091         knav_queue_disable_notify(netcp->tx_compl_q);
1092         napi_schedule(&netcp->tx_napi);
1093 }
1094
1095 static struct knav_dma_desc*
1096 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1097 {
1098         struct knav_dma_desc *desc, *ndesc, *pdesc;
1099         unsigned int pkt_len = skb_headlen(skb);
1100         struct device *dev = netcp->dev;
1101         dma_addr_t dma_addr;
1102         unsigned int dma_sz;
1103         int i;
1104
1105         /* Map the linear buffer */
1106         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1107         if (unlikely(dma_mapping_error(dev, dma_addr))) {
1108                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1109                 return NULL;
1110         }
1111
1112         desc = knav_pool_desc_get(netcp->tx_pool);
1113         if (IS_ERR_OR_NULL(desc)) {
1114                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1115                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1116                 return NULL;
1117         }
1118
1119         set_pkt_info(dma_addr, pkt_len, 0, desc);
1120         if (skb_is_nonlinear(skb)) {
1121                 prefetchw(skb_shinfo(skb));
1122         } else {
1123                 desc->next_desc = 0;
1124                 goto upd_pkt_len;
1125         }
1126
1127         pdesc = desc;
1128
1129         /* Handle the case where skb is fragmented in pages */
1130         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1131                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1132                 struct page *page = skb_frag_page(frag);
1133                 u32 page_offset = frag->page_offset;
1134                 u32 buf_len = skb_frag_size(frag);
1135                 dma_addr_t desc_dma;
1136                 u32 desc_dma_32;
1137
1138                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1139                                         DMA_TO_DEVICE);
1140                 if (unlikely(!dma_addr)) {
1141                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1142                         goto free_descs;
1143                 }
1144
1145                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1146                 if (IS_ERR_OR_NULL(ndesc)) {
1147                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1148                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1149                         goto free_descs;
1150                 }
1151
1152                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1153                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1154                 desc_dma_32 = (u32)desc_dma;
1155                 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1156                 pkt_len += buf_len;
1157                 if (pdesc != desc)
1158                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1159                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1160                 pdesc = ndesc;
1161         }
1162         if (pdesc != desc)
1163                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1164                                    &dma_addr, &dma_sz);
1165
1166         /* frag list based linkage is not supported for now. */
1167         if (skb_shinfo(skb)->frag_list) {
1168                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1169                 goto free_descs;
1170         }
1171
1172 upd_pkt_len:
1173         WARN_ON(pkt_len != skb->len);
1174
1175         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1176         set_words(&pkt_len, 1, &desc->desc_info);
1177         return desc;
1178
1179 free_descs:
1180         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1181         return NULL;
1182 }
1183
1184 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1185                                struct sk_buff *skb,
1186                                struct knav_dma_desc *desc)
1187 {
1188         struct netcp_tx_pipe *tx_pipe = NULL;
1189         struct netcp_hook_list *tx_hook;
1190         struct netcp_packet p_info;
1191         struct netcp_tx_cb *tx_cb;
1192         unsigned int dma_sz;
1193         dma_addr_t dma;
1194         u32 tmp = 0;
1195         int ret = 0;
1196
1197         p_info.netcp = netcp;
1198         p_info.skb = skb;
1199         p_info.tx_pipe = NULL;
1200         p_info.psdata_len = 0;
1201         p_info.ts_context = NULL;
1202         p_info.txtstamp = NULL;
1203         p_info.epib = desc->epib;
1204         p_info.psdata = (u32 __force *)desc->psdata;
1205         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1206
1207         /* Find out where to inject the packet for transmission */
1208         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1209                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1210                                         &p_info);
1211                 if (unlikely(ret != 0)) {
1212                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1213                                 tx_hook->order, ret);
1214                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1215                         goto out;
1216                 }
1217         }
1218
1219         /* Make sure some TX hook claimed the packet */
1220         tx_pipe = p_info.tx_pipe;
1221         if (!tx_pipe) {
1222                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1223                 ret = -ENXIO;
1224                 goto out;
1225         }
1226
1227         tx_cb = (struct netcp_tx_cb *)skb->cb;
1228         tx_cb->ts_context = p_info.ts_context;
1229         tx_cb->txtstamp = p_info.txtstamp;
1230
1231         /* update descriptor */
1232         if (p_info.psdata_len) {
1233                 /* psdata points to both native-endian and device-endian data */
1234                 __le32 *psdata = (void __force *)p_info.psdata;
1235
1236                 set_words((u32 *)psdata +
1237                           (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1238                           p_info.psdata_len, psdata);
1239                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1240                         KNAV_DMA_DESC_PSLEN_SHIFT;
1241         }
1242
1243         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1244                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1245                 KNAV_DMA_DESC_RETQ_SHIFT);
1246
1247         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1248                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1249                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1250         }
1251
1252         set_words(&tmp, 1, &desc->packet_info);
1253         /* warning!!!! We are saving the virtual ptr in the sw_data
1254          * field as a 32bit value. Will not work on 64bit machines
1255          */
1256         SET_SW_DATA0((u32)skb, desc);
1257
1258         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1259                 tmp = tx_pipe->switch_to_port;
1260                 set_words(&tmp, 1, &desc->tag_info);
1261         }
1262
1263         /* submit packet descriptor */
1264         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1265                                  &dma_sz);
1266         if (unlikely(ret)) {
1267                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1268                 ret = -ENOMEM;
1269                 goto out;
1270         }
1271         skb_tx_timestamp(skb);
1272         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1273
1274 out:
1275         return ret;
1276 }
1277
1278 /* Submit the packet */
1279 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1280 {
1281         struct netcp_intf *netcp = netdev_priv(ndev);
1282         struct netcp_stats *tx_stats = &netcp->stats;
1283         int subqueue = skb_get_queue_mapping(skb);
1284         struct knav_dma_desc *desc;
1285         int desc_count, ret = 0;
1286
1287         if (unlikely(skb->len <= 0)) {
1288                 dev_kfree_skb(skb);
1289                 return NETDEV_TX_OK;
1290         }
1291
1292         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1293                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1294                 if (ret < 0) {
1295                         /* If we get here, the skb has already been dropped */
1296                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1297                                  ret);
1298                         tx_stats->tx_dropped++;
1299                         return ret;
1300                 }
1301                 skb->len = NETCP_MIN_PACKET_SIZE;
1302         }
1303
1304         desc = netcp_tx_map_skb(skb, netcp);
1305         if (unlikely(!desc)) {
1306                 netif_stop_subqueue(ndev, subqueue);
1307                 ret = -ENOBUFS;
1308                 goto drop;
1309         }
1310
1311         ret = netcp_tx_submit_skb(netcp, skb, desc);
1312         if (ret)
1313                 goto drop;
1314
1315         /* Check Tx pool count & stop subqueue if needed */
1316         desc_count = knav_pool_count(netcp->tx_pool);
1317         if (desc_count < netcp->tx_pause_threshold) {
1318                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1319                 netif_stop_subqueue(ndev, subqueue);
1320         }
1321         return NETDEV_TX_OK;
1322
1323 drop:
1324         tx_stats->tx_dropped++;
1325         if (desc)
1326                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1327         dev_kfree_skb(skb);
1328         return ret;
1329 }
1330
1331 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1332 {
1333         if (tx_pipe->dma_channel) {
1334                 knav_dma_close_channel(tx_pipe->dma_channel);
1335                 tx_pipe->dma_channel = NULL;
1336         }
1337         return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1340
1341 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1342 {
1343         struct device *dev = tx_pipe->netcp_device->device;
1344         struct knav_dma_cfg config;
1345         int ret = 0;
1346         u8 name[16];
1347
1348         memset(&config, 0, sizeof(config));
1349         config.direction = DMA_MEM_TO_DEV;
1350         config.u.tx.filt_einfo = false;
1351         config.u.tx.filt_pswords = false;
1352         config.u.tx.priority = DMA_PRIO_MED_L;
1353
1354         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1355                                 tx_pipe->dma_chan_name, &config);
1356         if (IS_ERR(tx_pipe->dma_channel)) {
1357                 dev_err(dev, "failed opening tx chan(%s)\n",
1358                         tx_pipe->dma_chan_name);
1359                 ret = PTR_ERR(tx_pipe->dma_channel);
1360                 goto err;
1361         }
1362
1363         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1364         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1365                                              KNAV_QUEUE_SHARED);
1366         if (IS_ERR(tx_pipe->dma_queue)) {
1367                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1368                         name, ret);
1369                 ret = PTR_ERR(tx_pipe->dma_queue);
1370                 goto err;
1371         }
1372
1373         dev_dbg(dev, "opened tx pipe %s\n", name);
1374         return 0;
1375
1376 err:
1377         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1378                 knav_dma_close_channel(tx_pipe->dma_channel);
1379         tx_pipe->dma_channel = NULL;
1380         return ret;
1381 }
1382 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1383
1384 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1385                       struct netcp_device *netcp_device,
1386                       const char *dma_chan_name, unsigned int dma_queue_id)
1387 {
1388         memset(tx_pipe, 0, sizeof(*tx_pipe));
1389         tx_pipe->netcp_device = netcp_device;
1390         tx_pipe->dma_chan_name = dma_chan_name;
1391         tx_pipe->dma_queue_id = dma_queue_id;
1392         return 0;
1393 }
1394 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1395
1396 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1397                                           const u8 *addr,
1398                                           enum netcp_addr_type type)
1399 {
1400         struct netcp_addr *naddr;
1401
1402         list_for_each_entry(naddr, &netcp->addr_list, node) {
1403                 if (naddr->type != type)
1404                         continue;
1405                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1406                         continue;
1407                 return naddr;
1408         }
1409
1410         return NULL;
1411 }
1412
1413 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1414                                          const u8 *addr,
1415                                          enum netcp_addr_type type)
1416 {
1417         struct netcp_addr *naddr;
1418
1419         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1420         if (!naddr)
1421                 return NULL;
1422
1423         naddr->type = type;
1424         naddr->flags = 0;
1425         naddr->netcp = netcp;
1426         if (addr)
1427                 ether_addr_copy(naddr->addr, addr);
1428         else
1429                 eth_zero_addr(naddr->addr);
1430         list_add_tail(&naddr->node, &netcp->addr_list);
1431
1432         return naddr;
1433 }
1434
1435 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1436 {
1437         list_del(&naddr->node);
1438         devm_kfree(netcp->dev, naddr);
1439 }
1440
1441 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1442 {
1443         struct netcp_addr *naddr;
1444
1445         list_for_each_entry(naddr, &netcp->addr_list, node)
1446                 naddr->flags = 0;
1447 }
1448
1449 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1450                                 enum netcp_addr_type type)
1451 {
1452         struct netcp_addr *naddr;
1453
1454         naddr = netcp_addr_find(netcp, addr, type);
1455         if (naddr) {
1456                 naddr->flags |= ADDR_VALID;
1457                 return;
1458         }
1459
1460         naddr = netcp_addr_add(netcp, addr, type);
1461         if (!WARN_ON(!naddr))
1462                 naddr->flags |= ADDR_NEW;
1463 }
1464
1465 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1466 {
1467         struct netcp_addr *naddr, *tmp;
1468         struct netcp_intf_modpriv *priv;
1469         struct netcp_module *module;
1470         int error;
1471
1472         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1473                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1474                         continue;
1475                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1476                         naddr->addr, naddr->type);
1477                 for_each_module(netcp, priv) {
1478                         module = priv->netcp_module;
1479                         if (!module->del_addr)
1480                                 continue;
1481                         error = module->del_addr(priv->module_priv,
1482                                                  naddr);
1483                         WARN_ON(error);
1484                 }
1485                 netcp_addr_del(netcp, naddr);
1486         }
1487 }
1488
1489 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1490 {
1491         struct netcp_addr *naddr, *tmp;
1492         struct netcp_intf_modpriv *priv;
1493         struct netcp_module *module;
1494         int error;
1495
1496         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1497                 if (!(naddr->flags & ADDR_NEW))
1498                         continue;
1499                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1500                         naddr->addr, naddr->type);
1501
1502                 for_each_module(netcp, priv) {
1503                         module = priv->netcp_module;
1504                         if (!module->add_addr)
1505                                 continue;
1506                         error = module->add_addr(priv->module_priv, naddr);
1507                         WARN_ON(error);
1508                 }
1509         }
1510 }
1511
1512 static void netcp_set_rx_mode(struct net_device *ndev)
1513 {
1514         struct netcp_intf *netcp = netdev_priv(ndev);
1515         struct netdev_hw_addr *ndev_addr;
1516         bool promisc;
1517
1518         promisc = (ndev->flags & IFF_PROMISC ||
1519                    ndev->flags & IFF_ALLMULTI ||
1520                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1521
1522         spin_lock(&netcp->lock);
1523         /* first clear all marks */
1524         netcp_addr_clear_mark(netcp);
1525
1526         /* next add new entries, mark existing ones */
1527         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1528         for_each_dev_addr(ndev, ndev_addr)
1529                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1530         netdev_for_each_uc_addr(ndev_addr, ndev)
1531                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1532         netdev_for_each_mc_addr(ndev_addr, ndev)
1533                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1534
1535         if (promisc)
1536                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1537
1538         /* finally sweep and callout into modules */
1539         netcp_addr_sweep_del(netcp);
1540         netcp_addr_sweep_add(netcp);
1541         spin_unlock(&netcp->lock);
1542 }
1543
1544 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1545 {
1546         int i;
1547
1548         if (netcp->rx_channel) {
1549                 knav_dma_close_channel(netcp->rx_channel);
1550                 netcp->rx_channel = NULL;
1551         }
1552
1553         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1554                 netcp_rxpool_free(netcp);
1555
1556         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1557                 knav_queue_close(netcp->rx_queue);
1558                 netcp->rx_queue = NULL;
1559         }
1560
1561         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1562              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1563                 knav_queue_close(netcp->rx_fdq[i]);
1564                 netcp->rx_fdq[i] = NULL;
1565         }
1566
1567         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1568                 knav_queue_close(netcp->tx_compl_q);
1569                 netcp->tx_compl_q = NULL;
1570         }
1571
1572         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1573                 knav_pool_destroy(netcp->tx_pool);
1574                 netcp->tx_pool = NULL;
1575         }
1576 }
1577
1578 static int netcp_setup_navigator_resources(struct net_device *ndev)
1579 {
1580         struct netcp_intf *netcp = netdev_priv(ndev);
1581         struct knav_queue_notify_config notify_cfg;
1582         struct knav_dma_cfg config;
1583         u32 last_fdq = 0;
1584         u8 name[16];
1585         int ret;
1586         int i;
1587
1588         /* Create Rx/Tx descriptor pools */
1589         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1590         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1591                                                 netcp->rx_pool_region_id);
1592         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1593                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1594                 ret = PTR_ERR(netcp->rx_pool);
1595                 goto fail;
1596         }
1597
1598         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1599         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1600                                                 netcp->tx_pool_region_id);
1601         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1602                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1603                 ret = PTR_ERR(netcp->tx_pool);
1604                 goto fail;
1605         }
1606
1607         /* open Tx completion queue */
1608         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1609         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1610         if (IS_ERR(netcp->tx_compl_q)) {
1611                 ret = PTR_ERR(netcp->tx_compl_q);
1612                 goto fail;
1613         }
1614         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1615
1616         /* Set notification for Tx completion */
1617         notify_cfg.fn = netcp_tx_notify;
1618         notify_cfg.fn_arg = netcp;
1619         ret = knav_queue_device_control(netcp->tx_compl_q,
1620                                         KNAV_QUEUE_SET_NOTIFIER,
1621                                         (unsigned long)&notify_cfg);
1622         if (ret)
1623                 goto fail;
1624
1625         knav_queue_disable_notify(netcp->tx_compl_q);
1626
1627         /* open Rx completion queue */
1628         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1629         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1630         if (IS_ERR(netcp->rx_queue)) {
1631                 ret = PTR_ERR(netcp->rx_queue);
1632                 goto fail;
1633         }
1634         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1635
1636         /* Set notification for Rx completion */
1637         notify_cfg.fn = netcp_rx_notify;
1638         notify_cfg.fn_arg = netcp;
1639         ret = knav_queue_device_control(netcp->rx_queue,
1640                                         KNAV_QUEUE_SET_NOTIFIER,
1641                                         (unsigned long)&notify_cfg);
1642         if (ret)
1643                 goto fail;
1644
1645         knav_queue_disable_notify(netcp->rx_queue);
1646
1647         /* open Rx FDQs */
1648         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1649              ++i) {
1650                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1651                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1652                 if (IS_ERR(netcp->rx_fdq[i])) {
1653                         ret = PTR_ERR(netcp->rx_fdq[i]);
1654                         goto fail;
1655                 }
1656         }
1657
1658         memset(&config, 0, sizeof(config));
1659         config.direction                = DMA_DEV_TO_MEM;
1660         config.u.rx.einfo_present       = true;
1661         config.u.rx.psinfo_present      = true;
1662         config.u.rx.err_mode            = DMA_DROP;
1663         config.u.rx.desc_type           = DMA_DESC_HOST;
1664         config.u.rx.psinfo_at_sop       = false;
1665         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1666         config.u.rx.dst_q               = netcp->rx_queue_id;
1667         config.u.rx.thresh              = DMA_THRESH_NONE;
1668
1669         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1670                 if (netcp->rx_fdq[i])
1671                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1672                 config.u.rx.fdq[i] = last_fdq;
1673         }
1674
1675         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1676                                         netcp->dma_chan_name, &config);
1677         if (IS_ERR(netcp->rx_channel)) {
1678                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1679                         netcp->dma_chan_name);
1680                 ret = PTR_ERR(netcp->rx_channel);
1681                 goto fail;
1682         }
1683
1684         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1685         return 0;
1686
1687 fail:
1688         netcp_free_navigator_resources(netcp);
1689         return ret;
1690 }
1691
1692 /* Open the device */
1693 static int netcp_ndo_open(struct net_device *ndev)
1694 {
1695         struct netcp_intf *netcp = netdev_priv(ndev);
1696         struct netcp_intf_modpriv *intf_modpriv;
1697         struct netcp_module *module;
1698         int ret;
1699
1700         netif_carrier_off(ndev);
1701         ret = netcp_setup_navigator_resources(ndev);
1702         if (ret) {
1703                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1704                 goto fail;
1705         }
1706
1707         for_each_module(netcp, intf_modpriv) {
1708                 module = intf_modpriv->netcp_module;
1709                 if (module->open) {
1710                         ret = module->open(intf_modpriv->module_priv, ndev);
1711                         if (ret != 0) {
1712                                 dev_err(netcp->ndev_dev, "module open failed\n");
1713                                 goto fail_open;
1714                         }
1715                 }
1716         }
1717
1718         napi_enable(&netcp->rx_napi);
1719         napi_enable(&netcp->tx_napi);
1720         knav_queue_enable_notify(netcp->tx_compl_q);
1721         knav_queue_enable_notify(netcp->rx_queue);
1722         netcp_rxpool_refill(netcp);
1723         netif_tx_wake_all_queues(ndev);
1724         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1725         return 0;
1726
1727 fail_open:
1728         for_each_module(netcp, intf_modpriv) {
1729                 module = intf_modpriv->netcp_module;
1730                 if (module->close)
1731                         module->close(intf_modpriv->module_priv, ndev);
1732         }
1733
1734 fail:
1735         netcp_free_navigator_resources(netcp);
1736         return ret;
1737 }
1738
1739 /* Close the device */
1740 static int netcp_ndo_stop(struct net_device *ndev)
1741 {
1742         struct netcp_intf *netcp = netdev_priv(ndev);
1743         struct netcp_intf_modpriv *intf_modpriv;
1744         struct netcp_module *module;
1745         int err = 0;
1746
1747         netif_tx_stop_all_queues(ndev);
1748         netif_carrier_off(ndev);
1749         netcp_addr_clear_mark(netcp);
1750         netcp_addr_sweep_del(netcp);
1751         knav_queue_disable_notify(netcp->rx_queue);
1752         knav_queue_disable_notify(netcp->tx_compl_q);
1753         napi_disable(&netcp->rx_napi);
1754         napi_disable(&netcp->tx_napi);
1755
1756         for_each_module(netcp, intf_modpriv) {
1757                 module = intf_modpriv->netcp_module;
1758                 if (module->close) {
1759                         err = module->close(intf_modpriv->module_priv, ndev);
1760                         if (err != 0)
1761                                 dev_err(netcp->ndev_dev, "Close failed\n");
1762                 }
1763         }
1764
1765         /* Recycle Rx descriptors from completion queue */
1766         netcp_empty_rx_queue(netcp);
1767
1768         /* Recycle Tx descriptors from completion queue */
1769         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1770
1771         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1772                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1773                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1774
1775         netcp_free_navigator_resources(netcp);
1776         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1777         return 0;
1778 }
1779
1780 static int netcp_ndo_ioctl(struct net_device *ndev,
1781                            struct ifreq *req, int cmd)
1782 {
1783         struct netcp_intf *netcp = netdev_priv(ndev);
1784         struct netcp_intf_modpriv *intf_modpriv;
1785         struct netcp_module *module;
1786         int ret = -1, err = -EOPNOTSUPP;
1787
1788         if (!netif_running(ndev))
1789                 return -EINVAL;
1790
1791         for_each_module(netcp, intf_modpriv) {
1792                 module = intf_modpriv->netcp_module;
1793                 if (!module->ioctl)
1794                         continue;
1795
1796                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1797                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1798                         ret = err;
1799                         goto out;
1800                 }
1801                 if (err == 0)
1802                         ret = err;
1803         }
1804
1805 out:
1806         return (ret == 0) ? 0 : err;
1807 }
1808
1809 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1810 {
1811         struct netcp_intf *netcp = netdev_priv(ndev);
1812         unsigned int descs = knav_pool_count(netcp->tx_pool);
1813
1814         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1815         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1816         netif_trans_update(ndev);
1817         netif_tx_wake_all_queues(ndev);
1818 }
1819
1820 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1821 {
1822         struct netcp_intf *netcp = netdev_priv(ndev);
1823         struct netcp_intf_modpriv *intf_modpriv;
1824         struct netcp_module *module;
1825         unsigned long flags;
1826         int err = 0;
1827
1828         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1829
1830         spin_lock_irqsave(&netcp->lock, flags);
1831         for_each_module(netcp, intf_modpriv) {
1832                 module = intf_modpriv->netcp_module;
1833                 if ((module->add_vid) && (vid != 0)) {
1834                         err = module->add_vid(intf_modpriv->module_priv, vid);
1835                         if (err != 0) {
1836                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1837                                         vid);
1838                                 break;
1839                         }
1840                 }
1841         }
1842         spin_unlock_irqrestore(&netcp->lock, flags);
1843
1844         return err;
1845 }
1846
1847 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1848 {
1849         struct netcp_intf *netcp = netdev_priv(ndev);
1850         struct netcp_intf_modpriv *intf_modpriv;
1851         struct netcp_module *module;
1852         unsigned long flags;
1853         int err = 0;
1854
1855         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1856
1857         spin_lock_irqsave(&netcp->lock, flags);
1858         for_each_module(netcp, intf_modpriv) {
1859                 module = intf_modpriv->netcp_module;
1860                 if (module->del_vid) {
1861                         err = module->del_vid(intf_modpriv->module_priv, vid);
1862                         if (err != 0) {
1863                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1864                                         vid);
1865                                 break;
1866                         }
1867                 }
1868         }
1869         spin_unlock_irqrestore(&netcp->lock, flags);
1870         return err;
1871 }
1872
1873 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1874                               void *accel_priv,
1875                               select_queue_fallback_t fallback)
1876 {
1877         return 0;
1878 }
1879
1880 static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
1881                           struct tc_to_netdev *tc)
1882 {
1883         u8 num_tc;
1884         int i;
1885
1886         /* setup tc must be called under rtnl lock */
1887         ASSERT_RTNL();
1888
1889         if (tc->type != TC_SETUP_MQPRIO)
1890                 return -EINVAL;
1891
1892         tc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1893         num_tc = tc->mqprio->num_tc;
1894
1895         /* Sanity-check the number of traffic classes requested */
1896         if ((dev->real_num_tx_queues <= 1) ||
1897             (dev->real_num_tx_queues < num_tc))
1898                 return -EINVAL;
1899
1900         /* Configure traffic class to queue mappings */
1901         if (num_tc) {
1902                 netdev_set_num_tc(dev, num_tc);
1903                 for (i = 0; i < num_tc; i++)
1904                         netdev_set_tc_queue(dev, i, 1, i);
1905         } else {
1906                 netdev_reset_tc(dev);
1907         }
1908
1909         return 0;
1910 }
1911
1912 static void
1913 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1914 {
1915         struct netcp_intf *netcp = netdev_priv(ndev);
1916         struct netcp_stats *p = &netcp->stats;
1917         u64 rxpackets, rxbytes, txpackets, txbytes;
1918         unsigned int start;
1919
1920         do {
1921                 start = u64_stats_fetch_begin_irq(&p->syncp_rx);
1922                 rxpackets       = p->rx_packets;
1923                 rxbytes         = p->rx_bytes;
1924         } while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
1925
1926         do {
1927                 start = u64_stats_fetch_begin_irq(&p->syncp_tx);
1928                 txpackets       = p->tx_packets;
1929                 txbytes         = p->tx_bytes;
1930         } while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
1931
1932         stats->rx_packets = rxpackets;
1933         stats->rx_bytes = rxbytes;
1934         stats->tx_packets = txpackets;
1935         stats->tx_bytes = txbytes;
1936
1937         /* The following are stored as 32 bit */
1938         stats->rx_errors = p->rx_errors;
1939         stats->rx_dropped = p->rx_dropped;
1940         stats->tx_dropped = p->tx_dropped;
1941 }
1942
1943 static const struct net_device_ops netcp_netdev_ops = {
1944         .ndo_open               = netcp_ndo_open,
1945         .ndo_stop               = netcp_ndo_stop,
1946         .ndo_start_xmit         = netcp_ndo_start_xmit,
1947         .ndo_set_rx_mode        = netcp_set_rx_mode,
1948         .ndo_do_ioctl           = netcp_ndo_ioctl,
1949         .ndo_get_stats64        = netcp_get_stats,
1950         .ndo_set_mac_address    = eth_mac_addr,
1951         .ndo_validate_addr      = eth_validate_addr,
1952         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1953         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1954         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1955         .ndo_select_queue       = netcp_select_queue,
1956         .ndo_setup_tc           = netcp_setup_tc,
1957 };
1958
1959 static int netcp_create_interface(struct netcp_device *netcp_device,
1960                                   struct device_node *node_interface)
1961 {
1962         struct device *dev = netcp_device->device;
1963         struct device_node *node = dev->of_node;
1964         struct netcp_intf *netcp;
1965         struct net_device *ndev;
1966         resource_size_t size;
1967         struct resource res;
1968         void __iomem *efuse = NULL;
1969         u32 efuse_mac = 0;
1970         const void *mac_addr;
1971         u8 efuse_mac_addr[6];
1972         u32 temp[2];
1973         int ret = 0;
1974
1975         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1976         if (!ndev) {
1977                 dev_err(dev, "Error allocating netdev\n");
1978                 return -ENOMEM;
1979         }
1980
1981         ndev->features |= NETIF_F_SG;
1982         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1983         ndev->hw_features = ndev->features;
1984         ndev->vlan_features |=  NETIF_F_SG;
1985
1986         /* MTU range: 68 - 9486 */
1987         ndev->min_mtu = ETH_MIN_MTU;
1988         ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1989
1990         netcp = netdev_priv(ndev);
1991         spin_lock_init(&netcp->lock);
1992         INIT_LIST_HEAD(&netcp->module_head);
1993         INIT_LIST_HEAD(&netcp->txhook_list_head);
1994         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1995         INIT_LIST_HEAD(&netcp->addr_list);
1996         u64_stats_init(&netcp->stats.syncp_rx);
1997         u64_stats_init(&netcp->stats.syncp_tx);
1998         netcp->netcp_device = netcp_device;
1999         netcp->dev = netcp_device->device;
2000         netcp->ndev = ndev;
2001         netcp->ndev_dev  = &ndev->dev;
2002         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2003         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2004         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2005         netcp->node_interface = node_interface;
2006
2007         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2008         if (efuse_mac) {
2009                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2010                         dev_err(dev, "could not find efuse-mac reg resource\n");
2011                         ret = -ENODEV;
2012                         goto quit;
2013                 }
2014                 size = resource_size(&res);
2015
2016                 if (!devm_request_mem_region(dev, res.start, size,
2017                                              dev_name(dev))) {
2018                         dev_err(dev, "could not reserve resource\n");
2019                         ret = -ENOMEM;
2020                         goto quit;
2021                 }
2022
2023                 efuse = devm_ioremap_nocache(dev, res.start, size);
2024                 if (!efuse) {
2025                         dev_err(dev, "could not map resource\n");
2026                         devm_release_mem_region(dev, res.start, size);
2027                         ret = -ENOMEM;
2028                         goto quit;
2029                 }
2030
2031                 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2032                 if (is_valid_ether_addr(efuse_mac_addr))
2033                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
2034                 else
2035                         random_ether_addr(ndev->dev_addr);
2036
2037                 devm_iounmap(dev, efuse);
2038                 devm_release_mem_region(dev, res.start, size);
2039         } else {
2040                 mac_addr = of_get_mac_address(node_interface);
2041                 if (mac_addr)
2042                         ether_addr_copy(ndev->dev_addr, mac_addr);
2043                 else
2044                         random_ether_addr(ndev->dev_addr);
2045         }
2046
2047         ret = of_property_read_string(node_interface, "rx-channel",
2048                                       &netcp->dma_chan_name);
2049         if (ret < 0) {
2050                 dev_err(dev, "missing \"rx-channel\" parameter\n");
2051                 ret = -ENODEV;
2052                 goto quit;
2053         }
2054
2055         ret = of_property_read_u32(node_interface, "rx-queue",
2056                                    &netcp->rx_queue_id);
2057         if (ret < 0) {
2058                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
2059                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2060         }
2061
2062         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2063                                          netcp->rx_queue_depths,
2064                                          KNAV_DMA_FDQ_PER_CHAN);
2065         if (ret < 0) {
2066                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2067                 netcp->rx_queue_depths[0] = 128;
2068         }
2069
2070         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2071         if (ret < 0) {
2072                 dev_err(dev, "missing \"rx-pool\" parameter\n");
2073                 ret = -ENODEV;
2074                 goto quit;
2075         }
2076         netcp->rx_pool_size = temp[0];
2077         netcp->rx_pool_region_id = temp[1];
2078
2079         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2080         if (ret < 0) {
2081                 dev_err(dev, "missing \"tx-pool\" parameter\n");
2082                 ret = -ENODEV;
2083                 goto quit;
2084         }
2085         netcp->tx_pool_size = temp[0];
2086         netcp->tx_pool_region_id = temp[1];
2087
2088         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2089                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2090                         MAX_SKB_FRAGS);
2091                 ret = -ENODEV;
2092                 goto quit;
2093         }
2094
2095         ret = of_property_read_u32(node_interface, "tx-completion-queue",
2096                                    &netcp->tx_compl_qid);
2097         if (ret < 0) {
2098                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2099                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2100         }
2101
2102         /* NAPI register */
2103         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2104         netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2105
2106         /* Register the network device */
2107         ndev->dev_id            = 0;
2108         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
2109         ndev->netdev_ops        = &netcp_netdev_ops;
2110         SET_NETDEV_DEV(ndev, dev);
2111
2112         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2113         return 0;
2114
2115 quit:
2116         free_netdev(ndev);
2117         return ret;
2118 }
2119
2120 static void netcp_delete_interface(struct netcp_device *netcp_device,
2121                                    struct net_device *ndev)
2122 {
2123         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2124         struct netcp_intf *netcp = netdev_priv(ndev);
2125         struct netcp_module *module;
2126
2127         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2128                 ndev->name);
2129
2130         /* Notify each of the modules that the interface is going away */
2131         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2132                                  intf_list) {
2133                 module = intf_modpriv->netcp_module;
2134                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2135                         module->name);
2136                 if (module->release)
2137                         module->release(intf_modpriv->module_priv);
2138                 list_del(&intf_modpriv->intf_list);
2139         }
2140         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2141              ndev->name);
2142
2143         list_del(&netcp->interface_list);
2144
2145         of_node_put(netcp->node_interface);
2146         unregister_netdev(ndev);
2147         netif_napi_del(&netcp->rx_napi);
2148         free_netdev(ndev);
2149 }
2150
2151 static int netcp_probe(struct platform_device *pdev)
2152 {
2153         struct device_node *node = pdev->dev.of_node;
2154         struct netcp_intf *netcp_intf, *netcp_tmp;
2155         struct device_node *child, *interfaces;
2156         struct netcp_device *netcp_device;
2157         struct device *dev = &pdev->dev;
2158         int ret;
2159
2160         if (!node) {
2161                 dev_err(dev, "could not find device info\n");
2162                 return -ENODEV;
2163         }
2164
2165         /* Allocate a new NETCP device instance */
2166         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2167         if (!netcp_device)
2168                 return -ENOMEM;
2169
2170         pm_runtime_enable(&pdev->dev);
2171         ret = pm_runtime_get_sync(&pdev->dev);
2172         if (ret < 0) {
2173                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2174                 pm_runtime_disable(&pdev->dev);
2175                 return ret;
2176         }
2177
2178         /* Initialize the NETCP device instance */
2179         INIT_LIST_HEAD(&netcp_device->interface_head);
2180         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2181         netcp_device->device = dev;
2182         platform_set_drvdata(pdev, netcp_device);
2183
2184         /* create interfaces */
2185         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2186         if (!interfaces) {
2187                 dev_err(dev, "could not find netcp-interfaces node\n");
2188                 ret = -ENODEV;
2189                 goto probe_quit;
2190         }
2191
2192         for_each_available_child_of_node(interfaces, child) {
2193                 ret = netcp_create_interface(netcp_device, child);
2194                 if (ret) {
2195                         dev_err(dev, "could not create interface(%s)\n",
2196                                 child->name);
2197                         goto probe_quit_interface;
2198                 }
2199         }
2200
2201         of_node_put(interfaces);
2202
2203         /* Add the device instance to the list */
2204         list_add_tail(&netcp_device->device_list, &netcp_devices);
2205
2206         return 0;
2207
2208 probe_quit_interface:
2209         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2210                                  &netcp_device->interface_head,
2211                                  interface_list) {
2212                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2213         }
2214
2215         of_node_put(interfaces);
2216
2217 probe_quit:
2218         pm_runtime_put_sync(&pdev->dev);
2219         pm_runtime_disable(&pdev->dev);
2220         platform_set_drvdata(pdev, NULL);
2221         return ret;
2222 }
2223
2224 static int netcp_remove(struct platform_device *pdev)
2225 {
2226         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2227         struct netcp_intf *netcp_intf, *netcp_tmp;
2228         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2229         struct netcp_module *module;
2230
2231         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2232                                  inst_list) {
2233                 module = inst_modpriv->netcp_module;
2234                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2235                 module->remove(netcp_device, inst_modpriv->module_priv);
2236                 list_del(&inst_modpriv->inst_list);
2237         }
2238
2239         /* now that all modules are removed, clean up the interfaces */
2240         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2241                                  &netcp_device->interface_head,
2242                                  interface_list) {
2243                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2244         }
2245
2246         WARN(!list_empty(&netcp_device->interface_head),
2247              "%s interface list not empty!\n", pdev->name);
2248
2249         pm_runtime_put_sync(&pdev->dev);
2250         pm_runtime_disable(&pdev->dev);
2251         platform_set_drvdata(pdev, NULL);
2252         return 0;
2253 }
2254
2255 static const struct of_device_id of_match[] = {
2256         { .compatible = "ti,netcp-1.0", },
2257         {},
2258 };
2259 MODULE_DEVICE_TABLE(of, of_match);
2260
2261 static struct platform_driver netcp_driver = {
2262         .driver = {
2263                 .name           = "netcp-1.0",
2264                 .of_match_table = of_match,
2265         },
2266         .probe = netcp_probe,
2267         .remove = netcp_remove,
2268 };
2269 module_platform_driver(netcp_driver);
2270
2271 MODULE_LICENSE("GPL v2");
2272 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2273 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");