remove ioremap_nocache and devm_ioremap_nocache
[sfrench/cifs-2.6.git] / drivers / net / ethernet / ti / netcp_core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Keystone NetCP Core driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated
6  * Authors:     Sandeep Nair <sandeep_n@ti.com>
7  *              Sandeep Paulraj <s-paulraj@ti.com>
8  *              Cyril Chemparathy <cyril@ti.com>
9  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
10  *              Murali Karicheri <m-karicheri2@ti.com>
11  *              Wingman Kwok <w-kwok2@ti.com>
12  */
13
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/of_net.h>
17 #include <linux/of_address.h>
18 #include <linux/if_vlan.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/platform_device.h>
21 #include <linux/soc/ti/knav_qmss.h>
22 #include <linux/soc/ti/knav_dma.h>
23
24 #include "netcp.h"
25
26 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
27 #define NETCP_NAPI_WEIGHT       64
28 #define NETCP_TX_TIMEOUT        (5 * HZ)
29 #define NETCP_PACKET_SIZE       (ETH_FRAME_LEN + ETH_FCS_LEN)
30 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
31 #define NETCP_MAX_MCAST_ADDR    16
32
33 #define NETCP_EFUSE_REG_INDEX   0
34
35 #define NETCP_MOD_PROBE_SKIPPED 1
36 #define NETCP_MOD_PROBE_FAILED  2
37
38 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
39                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
40                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
41                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
42                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
43                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
44                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
45                     NETIF_MSG_RX_STATUS)
46
47 #define NETCP_EFUSE_ADDR_SWAP   2
48
49 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
50                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
51
52 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
53                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
54                                         (unsigned long)NULL)
55
56 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
57                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
58                                         (unsigned long)NULL)
59
60 #define knav_queue_get_count(q) knav_queue_device_control(q, \
61                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
62
63 #define for_each_netcp_module(module)                   \
64         list_for_each_entry(module, &netcp_modules, module_list)
65
66 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
67         list_for_each_entry(inst_modpriv, \
68                 &((netcp_device)->modpriv_head), inst_list)
69
70 #define for_each_module(netcp, intf_modpriv)                    \
71         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
72
73 /* Module management structures */
74 struct netcp_device {
75         struct list_head        device_list;
76         struct list_head        interface_head;
77         struct list_head        modpriv_head;
78         struct device           *device;
79 };
80
81 struct netcp_inst_modpriv {
82         struct netcp_device     *netcp_device;
83         struct netcp_module     *netcp_module;
84         struct list_head        inst_list;
85         void                    *module_priv;
86 };
87
88 struct netcp_intf_modpriv {
89         struct netcp_intf       *netcp_priv;
90         struct netcp_module     *netcp_module;
91         struct list_head        intf_list;
92         void                    *module_priv;
93 };
94
95 struct netcp_tx_cb {
96         void    *ts_context;
97         void    (*txtstamp)(void *context, struct sk_buff *skb);
98 };
99
100 static LIST_HEAD(netcp_devices);
101 static LIST_HEAD(netcp_modules);
102 static DEFINE_MUTEX(netcp_modules_lock);
103
104 static int netcp_debug_level = -1;
105 module_param(netcp_debug_level, int, 0);
106 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
107
108 /* Helper functions - Get/Set */
109 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
110                          struct knav_dma_desc *desc)
111 {
112         *buff_len = le32_to_cpu(desc->buff_len);
113         *buff = le32_to_cpu(desc->buff);
114         *ndesc = le32_to_cpu(desc->next_desc);
115 }
116
117 static void get_desc_info(u32 *desc_info, u32 *pkt_info,
118                           struct knav_dma_desc *desc)
119 {
120         *desc_info = le32_to_cpu(desc->desc_info);
121         *pkt_info = le32_to_cpu(desc->packet_info);
122 }
123
124 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
125 {
126         /* No Endian conversion needed as this data is untouched by hw */
127         return desc->sw_data[index];
128 }
129
130 /* use these macros to get sw data */
131 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
132 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
133 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
134 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
135
136 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
137                              struct knav_dma_desc *desc)
138 {
139         *buff = le32_to_cpu(desc->orig_buff);
140         *buff_len = le32_to_cpu(desc->orig_len);
141 }
142
143 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
144 {
145         int i;
146
147         for (i = 0; i < num_words; i++)
148                 words[i] = le32_to_cpu(desc[i]);
149 }
150
151 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
152                          struct knav_dma_desc *desc)
153 {
154         desc->buff_len = cpu_to_le32(buff_len);
155         desc->buff = cpu_to_le32(buff);
156         desc->next_desc = cpu_to_le32(ndesc);
157 }
158
159 static void set_desc_info(u32 desc_info, u32 pkt_info,
160                           struct knav_dma_desc *desc)
161 {
162         desc->desc_info = cpu_to_le32(desc_info);
163         desc->packet_info = cpu_to_le32(pkt_info);
164 }
165
166 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
167 {
168         /* No Endian conversion needed as this data is untouched by hw */
169         desc->sw_data[index] = data;
170 }
171
172 /* use these macros to set sw data */
173 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
174 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
175 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
176 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
177
178 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
179                              struct knav_dma_desc *desc)
180 {
181         desc->orig_buff = cpu_to_le32(buff);
182         desc->orig_len = cpu_to_le32(buff_len);
183 }
184
185 static void set_words(u32 *words, int num_words, __le32 *desc)
186 {
187         int i;
188
189         for (i = 0; i < num_words; i++)
190                 desc[i] = cpu_to_le32(words[i]);
191 }
192
193 /* Read the e-fuse value as 32 bit values to be endian independent */
194 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
195 {
196         unsigned int addr0, addr1;
197
198         addr1 = readl(efuse_mac + 4);
199         addr0 = readl(efuse_mac);
200
201         switch (swap) {
202         case NETCP_EFUSE_ADDR_SWAP:
203                 addr0 = addr1;
204                 addr1 = readl(efuse_mac);
205                 break;
206         default:
207                 break;
208         }
209
210         x[0] = (addr1 & 0x0000ff00) >> 8;
211         x[1] = addr1 & 0x000000ff;
212         x[2] = (addr0 & 0xff000000) >> 24;
213         x[3] = (addr0 & 0x00ff0000) >> 16;
214         x[4] = (addr0 & 0x0000ff00) >> 8;
215         x[5] = addr0 & 0x000000ff;
216
217         return 0;
218 }
219
220 /* Module management routines */
221 static int netcp_register_interface(struct netcp_intf *netcp)
222 {
223         int ret;
224
225         ret = register_netdev(netcp->ndev);
226         if (!ret)
227                 netcp->netdev_registered = true;
228         return ret;
229 }
230
231 static int netcp_module_probe(struct netcp_device *netcp_device,
232                               struct netcp_module *module)
233 {
234         struct device *dev = netcp_device->device;
235         struct device_node *devices, *interface, *node = dev->of_node;
236         struct device_node *child;
237         struct netcp_inst_modpriv *inst_modpriv;
238         struct netcp_intf *netcp_intf;
239         struct netcp_module *tmp;
240         bool primary_module_registered = false;
241         int ret;
242
243         /* Find this module in the sub-tree for this device */
244         devices = of_get_child_by_name(node, "netcp-devices");
245         if (!devices) {
246                 dev_err(dev, "could not find netcp-devices node\n");
247                 return NETCP_MOD_PROBE_SKIPPED;
248         }
249
250         for_each_available_child_of_node(devices, child) {
251                 const char *name;
252                 char node_name[32];
253
254                 if (of_property_read_string(child, "label", &name) < 0) {
255                         snprintf(node_name, sizeof(node_name), "%pOFn", child);
256                         name = node_name;
257                 }
258                 if (!strcasecmp(module->name, name))
259                         break;
260         }
261
262         of_node_put(devices);
263         /* If module not used for this device, skip it */
264         if (!child) {
265                 dev_warn(dev, "module(%s) not used for device\n", module->name);
266                 return NETCP_MOD_PROBE_SKIPPED;
267         }
268
269         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
270         if (!inst_modpriv) {
271                 of_node_put(child);
272                 return -ENOMEM;
273         }
274
275         inst_modpriv->netcp_device = netcp_device;
276         inst_modpriv->netcp_module = module;
277         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
278
279         ret = module->probe(netcp_device, dev, child,
280                             &inst_modpriv->module_priv);
281         of_node_put(child);
282         if (ret) {
283                 dev_err(dev, "Probe of module(%s) failed with %d\n",
284                         module->name, ret);
285                 list_del(&inst_modpriv->inst_list);
286                 devm_kfree(dev, inst_modpriv);
287                 return NETCP_MOD_PROBE_FAILED;
288         }
289
290         /* Attach modules only if the primary module is probed */
291         for_each_netcp_module(tmp) {
292                 if (tmp->primary)
293                         primary_module_registered = true;
294         }
295
296         if (!primary_module_registered)
297                 return 0;
298
299         /* Attach module to interfaces */
300         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
301                             interface_list) {
302                 struct netcp_intf_modpriv *intf_modpriv;
303
304                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
305                                             GFP_KERNEL);
306                 if (!intf_modpriv)
307                         return -ENOMEM;
308
309                 interface = of_parse_phandle(netcp_intf->node_interface,
310                                              module->name, 0);
311
312                 if (!interface) {
313                         devm_kfree(dev, intf_modpriv);
314                         continue;
315                 }
316
317                 intf_modpriv->netcp_priv = netcp_intf;
318                 intf_modpriv->netcp_module = module;
319                 list_add_tail(&intf_modpriv->intf_list,
320                               &netcp_intf->module_head);
321
322                 ret = module->attach(inst_modpriv->module_priv,
323                                      netcp_intf->ndev, interface,
324                                      &intf_modpriv->module_priv);
325                 of_node_put(interface);
326                 if (ret) {
327                         dev_dbg(dev, "Attach of module %s declined with %d\n",
328                                 module->name, ret);
329                         list_del(&intf_modpriv->intf_list);
330                         devm_kfree(dev, intf_modpriv);
331                         continue;
332                 }
333         }
334
335         /* Now register the interface with netdev */
336         list_for_each_entry(netcp_intf,
337                             &netcp_device->interface_head,
338                             interface_list) {
339                 /* If interface not registered then register now */
340                 if (!netcp_intf->netdev_registered) {
341                         ret = netcp_register_interface(netcp_intf);
342                         if (ret)
343                                 return -ENODEV;
344                 }
345         }
346         return 0;
347 }
348
349 int netcp_register_module(struct netcp_module *module)
350 {
351         struct netcp_device *netcp_device;
352         struct netcp_module *tmp;
353         int ret;
354
355         if (!module->name) {
356                 WARN(1, "error registering netcp module: no name\n");
357                 return -EINVAL;
358         }
359
360         if (!module->probe) {
361                 WARN(1, "error registering netcp module: no probe\n");
362                 return -EINVAL;
363         }
364
365         mutex_lock(&netcp_modules_lock);
366
367         for_each_netcp_module(tmp) {
368                 if (!strcasecmp(tmp->name, module->name)) {
369                         mutex_unlock(&netcp_modules_lock);
370                         return -EEXIST;
371                 }
372         }
373         list_add_tail(&module->module_list, &netcp_modules);
374
375         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
376                 ret = netcp_module_probe(netcp_device, module);
377                 if (ret < 0)
378                         goto fail;
379         }
380         mutex_unlock(&netcp_modules_lock);
381         return 0;
382
383 fail:
384         mutex_unlock(&netcp_modules_lock);
385         netcp_unregister_module(module);
386         return ret;
387 }
388 EXPORT_SYMBOL_GPL(netcp_register_module);
389
390 static void netcp_release_module(struct netcp_device *netcp_device,
391                                  struct netcp_module *module)
392 {
393         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
394         struct netcp_intf *netcp_intf, *netcp_tmp;
395         struct device *dev = netcp_device->device;
396
397         /* Release the module from each interface */
398         list_for_each_entry_safe(netcp_intf, netcp_tmp,
399                                  &netcp_device->interface_head,
400                                  interface_list) {
401                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
402
403                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
404                                          &netcp_intf->module_head,
405                                          intf_list) {
406                         if (intf_modpriv->netcp_module == module) {
407                                 module->release(intf_modpriv->module_priv);
408                                 list_del(&intf_modpriv->intf_list);
409                                 devm_kfree(dev, intf_modpriv);
410                                 break;
411                         }
412                 }
413         }
414
415         /* Remove the module from each instance */
416         list_for_each_entry_safe(inst_modpriv, inst_tmp,
417                                  &netcp_device->modpriv_head, inst_list) {
418                 if (inst_modpriv->netcp_module == module) {
419                         module->remove(netcp_device,
420                                        inst_modpriv->module_priv);
421                         list_del(&inst_modpriv->inst_list);
422                         devm_kfree(dev, inst_modpriv);
423                         break;
424                 }
425         }
426 }
427
428 void netcp_unregister_module(struct netcp_module *module)
429 {
430         struct netcp_device *netcp_device;
431         struct netcp_module *module_tmp;
432
433         mutex_lock(&netcp_modules_lock);
434
435         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
436                 netcp_release_module(netcp_device, module);
437         }
438
439         /* Remove the module from the module list */
440         for_each_netcp_module(module_tmp) {
441                 if (module == module_tmp) {
442                         list_del(&module->module_list);
443                         break;
444                 }
445         }
446
447         mutex_unlock(&netcp_modules_lock);
448 }
449 EXPORT_SYMBOL_GPL(netcp_unregister_module);
450
451 void *netcp_module_get_intf_data(struct netcp_module *module,
452                                  struct netcp_intf *intf)
453 {
454         struct netcp_intf_modpriv *intf_modpriv;
455
456         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
457                 if (intf_modpriv->netcp_module == module)
458                         return intf_modpriv->module_priv;
459         return NULL;
460 }
461 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
462
463 /* Module TX and RX Hook management */
464 struct netcp_hook_list {
465         struct list_head         list;
466         netcp_hook_rtn          *hook_rtn;
467         void                    *hook_data;
468         int                      order;
469 };
470
471 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
472                           netcp_hook_rtn *hook_rtn, void *hook_data)
473 {
474         struct netcp_hook_list *entry;
475         struct netcp_hook_list *next;
476         unsigned long flags;
477
478         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
479         if (!entry)
480                 return -ENOMEM;
481
482         entry->hook_rtn  = hook_rtn;
483         entry->hook_data = hook_data;
484         entry->order     = order;
485
486         spin_lock_irqsave(&netcp_priv->lock, flags);
487         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
488                 if (next->order > order)
489                         break;
490         }
491         __list_add(&entry->list, next->list.prev, &next->list);
492         spin_unlock_irqrestore(&netcp_priv->lock, flags);
493
494         return 0;
495 }
496 EXPORT_SYMBOL_GPL(netcp_register_txhook);
497
498 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
499                             netcp_hook_rtn *hook_rtn, void *hook_data)
500 {
501         struct netcp_hook_list *next, *n;
502         unsigned long flags;
503
504         spin_lock_irqsave(&netcp_priv->lock, flags);
505         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
506                 if ((next->order     == order) &&
507                     (next->hook_rtn  == hook_rtn) &&
508                     (next->hook_data == hook_data)) {
509                         list_del(&next->list);
510                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
511                         devm_kfree(netcp_priv->dev, next);
512                         return 0;
513                 }
514         }
515         spin_unlock_irqrestore(&netcp_priv->lock, flags);
516         return -ENOENT;
517 }
518 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
519
520 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
521                           netcp_hook_rtn *hook_rtn, void *hook_data)
522 {
523         struct netcp_hook_list *entry;
524         struct netcp_hook_list *next;
525         unsigned long flags;
526
527         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
528         if (!entry)
529                 return -ENOMEM;
530
531         entry->hook_rtn  = hook_rtn;
532         entry->hook_data = hook_data;
533         entry->order     = order;
534
535         spin_lock_irqsave(&netcp_priv->lock, flags);
536         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
537                 if (next->order > order)
538                         break;
539         }
540         __list_add(&entry->list, next->list.prev, &next->list);
541         spin_unlock_irqrestore(&netcp_priv->lock, flags);
542
543         return 0;
544 }
545 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
546
547 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
548                             netcp_hook_rtn *hook_rtn, void *hook_data)
549 {
550         struct netcp_hook_list *next, *n;
551         unsigned long flags;
552
553         spin_lock_irqsave(&netcp_priv->lock, flags);
554         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
555                 if ((next->order     == order) &&
556                     (next->hook_rtn  == hook_rtn) &&
557                     (next->hook_data == hook_data)) {
558                         list_del(&next->list);
559                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
560                         devm_kfree(netcp_priv->dev, next);
561                         return 0;
562                 }
563         }
564         spin_unlock_irqrestore(&netcp_priv->lock, flags);
565
566         return -ENOENT;
567 }
568 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
569
570 static void netcp_frag_free(bool is_frag, void *ptr)
571 {
572         if (is_frag)
573                 skb_free_frag(ptr);
574         else
575                 kfree(ptr);
576 }
577
578 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
579                                      struct knav_dma_desc *desc)
580 {
581         struct knav_dma_desc *ndesc;
582         dma_addr_t dma_desc, dma_buf;
583         unsigned int buf_len, dma_sz = sizeof(*ndesc);
584         void *buf_ptr;
585         u32 tmp;
586
587         get_words(&dma_desc, 1, &desc->next_desc);
588
589         while (dma_desc) {
590                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
591                 if (unlikely(!ndesc)) {
592                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
593                         break;
594                 }
595                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
596                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
597                  * field as a 32bit value. Will not work on 64bit machines
598                  */
599                 buf_ptr = (void *)GET_SW_DATA0(ndesc);
600                 buf_len = (int)GET_SW_DATA1(desc);
601                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
602                 __free_page(buf_ptr);
603                 knav_pool_desc_put(netcp->rx_pool, desc);
604         }
605         /* warning!!!! We are retrieving the virtual ptr in the sw_data
606          * field as a 32bit value. Will not work on 64bit machines
607          */
608         buf_ptr = (void *)GET_SW_DATA0(desc);
609         buf_len = (int)GET_SW_DATA1(desc);
610
611         if (buf_ptr)
612                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
613         knav_pool_desc_put(netcp->rx_pool, desc);
614 }
615
616 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
617 {
618         struct netcp_stats *rx_stats = &netcp->stats;
619         struct knav_dma_desc *desc;
620         unsigned int dma_sz;
621         dma_addr_t dma;
622
623         for (; ;) {
624                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
625                 if (!dma)
626                         break;
627
628                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
629                 if (unlikely(!desc)) {
630                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
631                                 __func__);
632                         rx_stats->rx_errors++;
633                         continue;
634                 }
635                 netcp_free_rx_desc_chain(netcp, desc);
636                 rx_stats->rx_dropped++;
637         }
638 }
639
640 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
641 {
642         struct netcp_stats *rx_stats = &netcp->stats;
643         unsigned int dma_sz, buf_len, org_buf_len;
644         struct knav_dma_desc *desc, *ndesc;
645         unsigned int pkt_sz = 0, accum_sz;
646         struct netcp_hook_list *rx_hook;
647         dma_addr_t dma_desc, dma_buff;
648         struct netcp_packet p_info;
649         struct sk_buff *skb;
650         void *org_buf_ptr;
651         u32 tmp;
652
653         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
654         if (!dma_desc)
655                 return -1;
656
657         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
658         if (unlikely(!desc)) {
659                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
660                 return 0;
661         }
662
663         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
664         /* warning!!!! We are retrieving the virtual ptr in the sw_data
665          * field as a 32bit value. Will not work on 64bit machines
666          */
667         org_buf_ptr = (void *)GET_SW_DATA0(desc);
668         org_buf_len = (int)GET_SW_DATA1(desc);
669
670         if (unlikely(!org_buf_ptr)) {
671                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
672                 goto free_desc;
673         }
674
675         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
676         accum_sz = buf_len;
677         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
678
679         /* Build a new sk_buff for the primary buffer */
680         skb = build_skb(org_buf_ptr, org_buf_len);
681         if (unlikely(!skb)) {
682                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
683                 goto free_desc;
684         }
685
686         /* update data, tail and len */
687         skb_reserve(skb, NETCP_SOP_OFFSET);
688         __skb_put(skb, buf_len);
689
690         /* Fill in the page fragment list */
691         while (dma_desc) {
692                 struct page *page;
693
694                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
695                 if (unlikely(!ndesc)) {
696                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
697                         goto free_desc;
698                 }
699
700                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
701                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
702                  * field as a 32bit value. Will not work on 64bit machines
703                  */
704                 page = (struct page *)GET_SW_DATA0(ndesc);
705
706                 if (likely(dma_buff && buf_len && page)) {
707                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
708                                        DMA_FROM_DEVICE);
709                 } else {
710                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
711                                 &dma_buff, buf_len, page);
712                         goto free_desc;
713                 }
714
715                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
716                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
717                 accum_sz += buf_len;
718
719                 /* Free the descriptor */
720                 knav_pool_desc_put(netcp->rx_pool, ndesc);
721         }
722
723         /* check for packet len and warn */
724         if (unlikely(pkt_sz != accum_sz))
725                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
726                         pkt_sz, accum_sz);
727
728         /* Newer version of the Ethernet switch can trim the Ethernet FCS
729          * from the packet and is indicated in hw_cap. So trim it only for
730          * older h/w
731          */
732         if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
733                 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
734
735         /* Call each of the RX hooks */
736         p_info.skb = skb;
737         skb->dev = netcp->ndev;
738         p_info.rxtstamp_complete = false;
739         get_desc_info(&tmp, &p_info.eflags, desc);
740         p_info.epib = desc->epib;
741         p_info.psdata = (u32 __force *)desc->psdata;
742         p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
743                          KNAV_DMA_DESC_EFLAGS_MASK);
744         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
745                 int ret;
746
747                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
748                                         &p_info);
749                 if (unlikely(ret)) {
750                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
751                                 rx_hook->order, ret);
752                         /* Free the primary descriptor */
753                         rx_stats->rx_dropped++;
754                         knav_pool_desc_put(netcp->rx_pool, desc);
755                         dev_kfree_skb(skb);
756                         return 0;
757                 }
758         }
759         /* Free the primary descriptor */
760         knav_pool_desc_put(netcp->rx_pool, desc);
761
762         u64_stats_update_begin(&rx_stats->syncp_rx);
763         rx_stats->rx_packets++;
764         rx_stats->rx_bytes += skb->len;
765         u64_stats_update_end(&rx_stats->syncp_rx);
766
767         /* push skb up the stack */
768         skb->protocol = eth_type_trans(skb, netcp->ndev);
769         netif_receive_skb(skb);
770         return 0;
771
772 free_desc:
773         netcp_free_rx_desc_chain(netcp, desc);
774         rx_stats->rx_errors++;
775         return 0;
776 }
777
778 static int netcp_process_rx_packets(struct netcp_intf *netcp,
779                                     unsigned int budget)
780 {
781         int i;
782
783         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
784                 ;
785         return i;
786 }
787
788 /* Release descriptors and attached buffers from Rx FDQ */
789 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
790 {
791         struct knav_dma_desc *desc;
792         unsigned int buf_len, dma_sz;
793         dma_addr_t dma;
794         void *buf_ptr;
795
796         /* Allocate descriptor */
797         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
798                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
799                 if (unlikely(!desc)) {
800                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
801                         continue;
802                 }
803
804                 get_org_pkt_info(&dma, &buf_len, desc);
805                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
806                  * field as a 32bit value. Will not work on 64bit machines
807                  */
808                 buf_ptr = (void *)GET_SW_DATA0(desc);
809
810                 if (unlikely(!dma)) {
811                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
812                         knav_pool_desc_put(netcp->rx_pool, desc);
813                         continue;
814                 }
815
816                 if (unlikely(!buf_ptr)) {
817                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
818                         knav_pool_desc_put(netcp->rx_pool, desc);
819                         continue;
820                 }
821
822                 if (fdq == 0) {
823                         dma_unmap_single(netcp->dev, dma, buf_len,
824                                          DMA_FROM_DEVICE);
825                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
826                 } else {
827                         dma_unmap_page(netcp->dev, dma, buf_len,
828                                        DMA_FROM_DEVICE);
829                         __free_page(buf_ptr);
830                 }
831
832                 knav_pool_desc_put(netcp->rx_pool, desc);
833         }
834 }
835
836 static void netcp_rxpool_free(struct netcp_intf *netcp)
837 {
838         int i;
839
840         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
841              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
842                 netcp_free_rx_buf(netcp, i);
843
844         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
845                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
846                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
847
848         knav_pool_destroy(netcp->rx_pool);
849         netcp->rx_pool = NULL;
850 }
851
852 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
853 {
854         struct knav_dma_desc *hwdesc;
855         unsigned int buf_len, dma_sz;
856         u32 desc_info, pkt_info;
857         struct page *page;
858         dma_addr_t dma;
859         void *bufptr;
860         u32 sw_data[2];
861
862         /* Allocate descriptor */
863         hwdesc = knav_pool_desc_get(netcp->rx_pool);
864         if (IS_ERR_OR_NULL(hwdesc)) {
865                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
866                 return -ENOMEM;
867         }
868
869         if (likely(fdq == 0)) {
870                 unsigned int primary_buf_len;
871                 /* Allocate a primary receive queue entry */
872                 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
873                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
874                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
875
876                 bufptr = netdev_alloc_frag(primary_buf_len);
877                 sw_data[1] = primary_buf_len;
878
879                 if (unlikely(!bufptr)) {
880                         dev_warn_ratelimited(netcp->ndev_dev,
881                                              "Primary RX buffer alloc failed\n");
882                         goto fail;
883                 }
884                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
885                                      DMA_TO_DEVICE);
886                 if (unlikely(dma_mapping_error(netcp->dev, dma)))
887                         goto fail;
888
889                 /* warning!!!! We are saving the virtual ptr in the sw_data
890                  * field as a 32bit value. Will not work on 64bit machines
891                  */
892                 sw_data[0] = (u32)bufptr;
893         } else {
894                 /* Allocate a secondary receive queue entry */
895                 page = alloc_page(GFP_ATOMIC | GFP_DMA);
896                 if (unlikely(!page)) {
897                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
898                         goto fail;
899                 }
900                 buf_len = PAGE_SIZE;
901                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
902                 /* warning!!!! We are saving the virtual ptr in the sw_data
903                  * field as a 32bit value. Will not work on 64bit machines
904                  */
905                 sw_data[0] = (u32)page;
906                 sw_data[1] = 0;
907         }
908
909         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
910         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
911         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
912         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
913         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
914                     KNAV_DMA_DESC_RETQ_SHIFT;
915         set_org_pkt_info(dma, buf_len, hwdesc);
916         SET_SW_DATA0(sw_data[0], hwdesc);
917         SET_SW_DATA1(sw_data[1], hwdesc);
918         set_desc_info(desc_info, pkt_info, hwdesc);
919
920         /* Push to FDQs */
921         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
922                            &dma_sz);
923         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
924         return 0;
925
926 fail:
927         knav_pool_desc_put(netcp->rx_pool, hwdesc);
928         return -ENOMEM;
929 }
930
931 /* Refill Rx FDQ with descriptors & attached buffers */
932 static void netcp_rxpool_refill(struct netcp_intf *netcp)
933 {
934         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
935         int i, ret = 0;
936
937         /* Calculate the FDQ deficit and refill */
938         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
939                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
940                                  knav_queue_get_count(netcp->rx_fdq[i]);
941
942                 while (fdq_deficit[i]-- && !ret)
943                         ret = netcp_allocate_rx_buf(netcp, i);
944         } /* end for fdqs */
945 }
946
947 /* NAPI poll */
948 static int netcp_rx_poll(struct napi_struct *napi, int budget)
949 {
950         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
951                                                 rx_napi);
952         unsigned int packets;
953
954         packets = netcp_process_rx_packets(netcp, budget);
955
956         netcp_rxpool_refill(netcp);
957         if (packets < budget) {
958                 napi_complete_done(&netcp->rx_napi, packets);
959                 knav_queue_enable_notify(netcp->rx_queue);
960         }
961
962         return packets;
963 }
964
965 static void netcp_rx_notify(void *arg)
966 {
967         struct netcp_intf *netcp = arg;
968
969         knav_queue_disable_notify(netcp->rx_queue);
970         napi_schedule(&netcp->rx_napi);
971 }
972
973 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
974                                      struct knav_dma_desc *desc,
975                                      unsigned int desc_sz)
976 {
977         struct knav_dma_desc *ndesc = desc;
978         dma_addr_t dma_desc, dma_buf;
979         unsigned int buf_len;
980
981         while (ndesc) {
982                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
983
984                 if (dma_buf && buf_len)
985                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
986                                          DMA_TO_DEVICE);
987                 else
988                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
989                                  &dma_buf, buf_len);
990
991                 knav_pool_desc_put(netcp->tx_pool, ndesc);
992                 ndesc = NULL;
993                 if (dma_desc) {
994                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
995                                                      desc_sz);
996                         if (!ndesc)
997                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
998                 }
999         }
1000 }
1001
1002 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1003                                           unsigned int budget)
1004 {
1005         struct netcp_stats *tx_stats = &netcp->stats;
1006         struct knav_dma_desc *desc;
1007         struct netcp_tx_cb *tx_cb;
1008         struct sk_buff *skb;
1009         unsigned int dma_sz;
1010         dma_addr_t dma;
1011         int pkts = 0;
1012
1013         while (budget--) {
1014                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1015                 if (!dma)
1016                         break;
1017                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1018                 if (unlikely(!desc)) {
1019                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1020                         tx_stats->tx_errors++;
1021                         continue;
1022                 }
1023
1024                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1025                  * field as a 32bit value. Will not work on 64bit machines
1026                  */
1027                 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1028                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1029                 if (!skb) {
1030                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1031                         tx_stats->tx_errors++;
1032                         continue;
1033                 }
1034
1035                 tx_cb = (struct netcp_tx_cb *)skb->cb;
1036                 if (tx_cb->txtstamp)
1037                         tx_cb->txtstamp(tx_cb->ts_context, skb);
1038
1039                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1040                     netif_running(netcp->ndev) &&
1041                     (knav_pool_count(netcp->tx_pool) >
1042                     netcp->tx_resume_threshold)) {
1043                         u16 subqueue = skb_get_queue_mapping(skb);
1044
1045                         netif_wake_subqueue(netcp->ndev, subqueue);
1046                 }
1047
1048                 u64_stats_update_begin(&tx_stats->syncp_tx);
1049                 tx_stats->tx_packets++;
1050                 tx_stats->tx_bytes += skb->len;
1051                 u64_stats_update_end(&tx_stats->syncp_tx);
1052                 dev_kfree_skb(skb);
1053                 pkts++;
1054         }
1055         return pkts;
1056 }
1057
1058 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1059 {
1060         int packets;
1061         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1062                                                 tx_napi);
1063
1064         packets = netcp_process_tx_compl_packets(netcp, budget);
1065         if (packets < budget) {
1066                 napi_complete(&netcp->tx_napi);
1067                 knav_queue_enable_notify(netcp->tx_compl_q);
1068         }
1069
1070         return packets;
1071 }
1072
1073 static void netcp_tx_notify(void *arg)
1074 {
1075         struct netcp_intf *netcp = arg;
1076
1077         knav_queue_disable_notify(netcp->tx_compl_q);
1078         napi_schedule(&netcp->tx_napi);
1079 }
1080
1081 static struct knav_dma_desc*
1082 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1083 {
1084         struct knav_dma_desc *desc, *ndesc, *pdesc;
1085         unsigned int pkt_len = skb_headlen(skb);
1086         struct device *dev = netcp->dev;
1087         dma_addr_t dma_addr;
1088         unsigned int dma_sz;
1089         int i;
1090
1091         /* Map the linear buffer */
1092         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1093         if (unlikely(dma_mapping_error(dev, dma_addr))) {
1094                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1095                 return NULL;
1096         }
1097
1098         desc = knav_pool_desc_get(netcp->tx_pool);
1099         if (IS_ERR_OR_NULL(desc)) {
1100                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1101                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1102                 return NULL;
1103         }
1104
1105         set_pkt_info(dma_addr, pkt_len, 0, desc);
1106         if (skb_is_nonlinear(skb)) {
1107                 prefetchw(skb_shinfo(skb));
1108         } else {
1109                 desc->next_desc = 0;
1110                 goto upd_pkt_len;
1111         }
1112
1113         pdesc = desc;
1114
1115         /* Handle the case where skb is fragmented in pages */
1116         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1117                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1118                 struct page *page = skb_frag_page(frag);
1119                 u32 page_offset = skb_frag_off(frag);
1120                 u32 buf_len = skb_frag_size(frag);
1121                 dma_addr_t desc_dma;
1122                 u32 desc_dma_32;
1123
1124                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1125                                         DMA_TO_DEVICE);
1126                 if (unlikely(!dma_addr)) {
1127                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1128                         goto free_descs;
1129                 }
1130
1131                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1132                 if (IS_ERR_OR_NULL(ndesc)) {
1133                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1134                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1135                         goto free_descs;
1136                 }
1137
1138                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1139                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1140                 desc_dma_32 = (u32)desc_dma;
1141                 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1142                 pkt_len += buf_len;
1143                 if (pdesc != desc)
1144                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1145                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1146                 pdesc = ndesc;
1147         }
1148         if (pdesc != desc)
1149                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1150                                    &dma_addr, &dma_sz);
1151
1152         /* frag list based linkage is not supported for now. */
1153         if (skb_shinfo(skb)->frag_list) {
1154                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1155                 goto free_descs;
1156         }
1157
1158 upd_pkt_len:
1159         WARN_ON(pkt_len != skb->len);
1160
1161         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1162         set_words(&pkt_len, 1, &desc->desc_info);
1163         return desc;
1164
1165 free_descs:
1166         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1167         return NULL;
1168 }
1169
1170 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1171                                struct sk_buff *skb,
1172                                struct knav_dma_desc *desc)
1173 {
1174         struct netcp_tx_pipe *tx_pipe = NULL;
1175         struct netcp_hook_list *tx_hook;
1176         struct netcp_packet p_info;
1177         struct netcp_tx_cb *tx_cb;
1178         unsigned int dma_sz;
1179         dma_addr_t dma;
1180         u32 tmp = 0;
1181         int ret = 0;
1182
1183         p_info.netcp = netcp;
1184         p_info.skb = skb;
1185         p_info.tx_pipe = NULL;
1186         p_info.psdata_len = 0;
1187         p_info.ts_context = NULL;
1188         p_info.txtstamp = NULL;
1189         p_info.epib = desc->epib;
1190         p_info.psdata = (u32 __force *)desc->psdata;
1191         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1192
1193         /* Find out where to inject the packet for transmission */
1194         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1195                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1196                                         &p_info);
1197                 if (unlikely(ret != 0)) {
1198                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1199                                 tx_hook->order, ret);
1200                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1201                         goto out;
1202                 }
1203         }
1204
1205         /* Make sure some TX hook claimed the packet */
1206         tx_pipe = p_info.tx_pipe;
1207         if (!tx_pipe) {
1208                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1209                 ret = -ENXIO;
1210                 goto out;
1211         }
1212
1213         tx_cb = (struct netcp_tx_cb *)skb->cb;
1214         tx_cb->ts_context = p_info.ts_context;
1215         tx_cb->txtstamp = p_info.txtstamp;
1216
1217         /* update descriptor */
1218         if (p_info.psdata_len) {
1219                 /* psdata points to both native-endian and device-endian data */
1220                 __le32 *psdata = (void __force *)p_info.psdata;
1221
1222                 set_words((u32 *)psdata +
1223                           (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1224                           p_info.psdata_len, psdata);
1225                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1226                         KNAV_DMA_DESC_PSLEN_SHIFT;
1227         }
1228
1229         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1230                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1231                 KNAV_DMA_DESC_RETQ_SHIFT);
1232
1233         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1234                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1235                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1236         }
1237
1238         set_words(&tmp, 1, &desc->packet_info);
1239         /* warning!!!! We are saving the virtual ptr in the sw_data
1240          * field as a 32bit value. Will not work on 64bit machines
1241          */
1242         SET_SW_DATA0((u32)skb, desc);
1243
1244         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1245                 tmp = tx_pipe->switch_to_port;
1246                 set_words(&tmp, 1, &desc->tag_info);
1247         }
1248
1249         /* submit packet descriptor */
1250         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1251                                  &dma_sz);
1252         if (unlikely(ret)) {
1253                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1254                 ret = -ENOMEM;
1255                 goto out;
1256         }
1257         skb_tx_timestamp(skb);
1258         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1259
1260 out:
1261         return ret;
1262 }
1263
1264 /* Submit the packet */
1265 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1266 {
1267         struct netcp_intf *netcp = netdev_priv(ndev);
1268         struct netcp_stats *tx_stats = &netcp->stats;
1269         int subqueue = skb_get_queue_mapping(skb);
1270         struct knav_dma_desc *desc;
1271         int desc_count, ret = 0;
1272
1273         if (unlikely(skb->len <= 0)) {
1274                 dev_kfree_skb(skb);
1275                 return NETDEV_TX_OK;
1276         }
1277
1278         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1279                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1280                 if (ret < 0) {
1281                         /* If we get here, the skb has already been dropped */
1282                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1283                                  ret);
1284                         tx_stats->tx_dropped++;
1285                         return ret;
1286                 }
1287                 skb->len = NETCP_MIN_PACKET_SIZE;
1288         }
1289
1290         desc = netcp_tx_map_skb(skb, netcp);
1291         if (unlikely(!desc)) {
1292                 netif_stop_subqueue(ndev, subqueue);
1293                 ret = -ENOBUFS;
1294                 goto drop;
1295         }
1296
1297         ret = netcp_tx_submit_skb(netcp, skb, desc);
1298         if (ret)
1299                 goto drop;
1300
1301         /* Check Tx pool count & stop subqueue if needed */
1302         desc_count = knav_pool_count(netcp->tx_pool);
1303         if (desc_count < netcp->tx_pause_threshold) {
1304                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1305                 netif_stop_subqueue(ndev, subqueue);
1306         }
1307         return NETDEV_TX_OK;
1308
1309 drop:
1310         tx_stats->tx_dropped++;
1311         if (desc)
1312                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1313         dev_kfree_skb(skb);
1314         return ret;
1315 }
1316
1317 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1318 {
1319         if (tx_pipe->dma_channel) {
1320                 knav_dma_close_channel(tx_pipe->dma_channel);
1321                 tx_pipe->dma_channel = NULL;
1322         }
1323         return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1326
1327 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1328 {
1329         struct device *dev = tx_pipe->netcp_device->device;
1330         struct knav_dma_cfg config;
1331         int ret = 0;
1332         u8 name[16];
1333
1334         memset(&config, 0, sizeof(config));
1335         config.direction = DMA_MEM_TO_DEV;
1336         config.u.tx.filt_einfo = false;
1337         config.u.tx.filt_pswords = false;
1338         config.u.tx.priority = DMA_PRIO_MED_L;
1339
1340         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1341                                 tx_pipe->dma_chan_name, &config);
1342         if (IS_ERR(tx_pipe->dma_channel)) {
1343                 dev_err(dev, "failed opening tx chan(%s)\n",
1344                         tx_pipe->dma_chan_name);
1345                 ret = PTR_ERR(tx_pipe->dma_channel);
1346                 goto err;
1347         }
1348
1349         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1350         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1351                                              KNAV_QUEUE_SHARED);
1352         if (IS_ERR(tx_pipe->dma_queue)) {
1353                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1354                         name, ret);
1355                 ret = PTR_ERR(tx_pipe->dma_queue);
1356                 goto err;
1357         }
1358
1359         dev_dbg(dev, "opened tx pipe %s\n", name);
1360         return 0;
1361
1362 err:
1363         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1364                 knav_dma_close_channel(tx_pipe->dma_channel);
1365         tx_pipe->dma_channel = NULL;
1366         return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1369
1370 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1371                       struct netcp_device *netcp_device,
1372                       const char *dma_chan_name, unsigned int dma_queue_id)
1373 {
1374         memset(tx_pipe, 0, sizeof(*tx_pipe));
1375         tx_pipe->netcp_device = netcp_device;
1376         tx_pipe->dma_chan_name = dma_chan_name;
1377         tx_pipe->dma_queue_id = dma_queue_id;
1378         return 0;
1379 }
1380 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1381
1382 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1383                                           const u8 *addr,
1384                                           enum netcp_addr_type type)
1385 {
1386         struct netcp_addr *naddr;
1387
1388         list_for_each_entry(naddr, &netcp->addr_list, node) {
1389                 if (naddr->type != type)
1390                         continue;
1391                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1392                         continue;
1393                 return naddr;
1394         }
1395
1396         return NULL;
1397 }
1398
1399 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1400                                          const u8 *addr,
1401                                          enum netcp_addr_type type)
1402 {
1403         struct netcp_addr *naddr;
1404
1405         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1406         if (!naddr)
1407                 return NULL;
1408
1409         naddr->type = type;
1410         naddr->flags = 0;
1411         naddr->netcp = netcp;
1412         if (addr)
1413                 ether_addr_copy(naddr->addr, addr);
1414         else
1415                 eth_zero_addr(naddr->addr);
1416         list_add_tail(&naddr->node, &netcp->addr_list);
1417
1418         return naddr;
1419 }
1420
1421 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1422 {
1423         list_del(&naddr->node);
1424         devm_kfree(netcp->dev, naddr);
1425 }
1426
1427 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1428 {
1429         struct netcp_addr *naddr;
1430
1431         list_for_each_entry(naddr, &netcp->addr_list, node)
1432                 naddr->flags = 0;
1433 }
1434
1435 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1436                                 enum netcp_addr_type type)
1437 {
1438         struct netcp_addr *naddr;
1439
1440         naddr = netcp_addr_find(netcp, addr, type);
1441         if (naddr) {
1442                 naddr->flags |= ADDR_VALID;
1443                 return;
1444         }
1445
1446         naddr = netcp_addr_add(netcp, addr, type);
1447         if (!WARN_ON(!naddr))
1448                 naddr->flags |= ADDR_NEW;
1449 }
1450
1451 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1452 {
1453         struct netcp_addr *naddr, *tmp;
1454         struct netcp_intf_modpriv *priv;
1455         struct netcp_module *module;
1456         int error;
1457
1458         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1459                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1460                         continue;
1461                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1462                         naddr->addr, naddr->type);
1463                 for_each_module(netcp, priv) {
1464                         module = priv->netcp_module;
1465                         if (!module->del_addr)
1466                                 continue;
1467                         error = module->del_addr(priv->module_priv,
1468                                                  naddr);
1469                         WARN_ON(error);
1470                 }
1471                 netcp_addr_del(netcp, naddr);
1472         }
1473 }
1474
1475 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1476 {
1477         struct netcp_addr *naddr, *tmp;
1478         struct netcp_intf_modpriv *priv;
1479         struct netcp_module *module;
1480         int error;
1481
1482         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1483                 if (!(naddr->flags & ADDR_NEW))
1484                         continue;
1485                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1486                         naddr->addr, naddr->type);
1487
1488                 for_each_module(netcp, priv) {
1489                         module = priv->netcp_module;
1490                         if (!module->add_addr)
1491                                 continue;
1492                         error = module->add_addr(priv->module_priv, naddr);
1493                         WARN_ON(error);
1494                 }
1495         }
1496 }
1497
1498 static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1499 {
1500         struct netcp_intf_modpriv *priv;
1501         struct netcp_module *module;
1502         int error;
1503
1504         for_each_module(netcp, priv) {
1505                 module = priv->netcp_module;
1506                 if (!module->set_rx_mode)
1507                         continue;
1508
1509                 error = module->set_rx_mode(priv->module_priv, promisc);
1510                 if (error)
1511                         return error;
1512         }
1513         return 0;
1514 }
1515
1516 static void netcp_set_rx_mode(struct net_device *ndev)
1517 {
1518         struct netcp_intf *netcp = netdev_priv(ndev);
1519         struct netdev_hw_addr *ndev_addr;
1520         bool promisc;
1521
1522         promisc = (ndev->flags & IFF_PROMISC ||
1523                    ndev->flags & IFF_ALLMULTI ||
1524                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1525
1526         spin_lock(&netcp->lock);
1527         /* first clear all marks */
1528         netcp_addr_clear_mark(netcp);
1529
1530         /* next add new entries, mark existing ones */
1531         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1532         for_each_dev_addr(ndev, ndev_addr)
1533                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1534         netdev_for_each_uc_addr(ndev_addr, ndev)
1535                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1536         netdev_for_each_mc_addr(ndev_addr, ndev)
1537                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1538
1539         if (promisc)
1540                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1541
1542         /* finally sweep and callout into modules */
1543         netcp_addr_sweep_del(netcp);
1544         netcp_addr_sweep_add(netcp);
1545         netcp_set_promiscuous(netcp, promisc);
1546         spin_unlock(&netcp->lock);
1547 }
1548
1549 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1550 {
1551         int i;
1552
1553         if (netcp->rx_channel) {
1554                 knav_dma_close_channel(netcp->rx_channel);
1555                 netcp->rx_channel = NULL;
1556         }
1557
1558         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1559                 netcp_rxpool_free(netcp);
1560
1561         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1562                 knav_queue_close(netcp->rx_queue);
1563                 netcp->rx_queue = NULL;
1564         }
1565
1566         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1567              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1568                 knav_queue_close(netcp->rx_fdq[i]);
1569                 netcp->rx_fdq[i] = NULL;
1570         }
1571
1572         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1573                 knav_queue_close(netcp->tx_compl_q);
1574                 netcp->tx_compl_q = NULL;
1575         }
1576
1577         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1578                 knav_pool_destroy(netcp->tx_pool);
1579                 netcp->tx_pool = NULL;
1580         }
1581 }
1582
1583 static int netcp_setup_navigator_resources(struct net_device *ndev)
1584 {
1585         struct netcp_intf *netcp = netdev_priv(ndev);
1586         struct knav_queue_notify_config notify_cfg;
1587         struct knav_dma_cfg config;
1588         u32 last_fdq = 0;
1589         u8 name[16];
1590         int ret;
1591         int i;
1592
1593         /* Create Rx/Tx descriptor pools */
1594         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1595         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1596                                                 netcp->rx_pool_region_id);
1597         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1598                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1599                 ret = PTR_ERR(netcp->rx_pool);
1600                 goto fail;
1601         }
1602
1603         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1604         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1605                                                 netcp->tx_pool_region_id);
1606         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1607                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1608                 ret = PTR_ERR(netcp->tx_pool);
1609                 goto fail;
1610         }
1611
1612         /* open Tx completion queue */
1613         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1614         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1615         if (IS_ERR(netcp->tx_compl_q)) {
1616                 ret = PTR_ERR(netcp->tx_compl_q);
1617                 goto fail;
1618         }
1619         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1620
1621         /* Set notification for Tx completion */
1622         notify_cfg.fn = netcp_tx_notify;
1623         notify_cfg.fn_arg = netcp;
1624         ret = knav_queue_device_control(netcp->tx_compl_q,
1625                                         KNAV_QUEUE_SET_NOTIFIER,
1626                                         (unsigned long)&notify_cfg);
1627         if (ret)
1628                 goto fail;
1629
1630         knav_queue_disable_notify(netcp->tx_compl_q);
1631
1632         /* open Rx completion queue */
1633         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1634         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1635         if (IS_ERR(netcp->rx_queue)) {
1636                 ret = PTR_ERR(netcp->rx_queue);
1637                 goto fail;
1638         }
1639         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1640
1641         /* Set notification for Rx completion */
1642         notify_cfg.fn = netcp_rx_notify;
1643         notify_cfg.fn_arg = netcp;
1644         ret = knav_queue_device_control(netcp->rx_queue,
1645                                         KNAV_QUEUE_SET_NOTIFIER,
1646                                         (unsigned long)&notify_cfg);
1647         if (ret)
1648                 goto fail;
1649
1650         knav_queue_disable_notify(netcp->rx_queue);
1651
1652         /* open Rx FDQs */
1653         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1654              ++i) {
1655                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1656                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1657                 if (IS_ERR(netcp->rx_fdq[i])) {
1658                         ret = PTR_ERR(netcp->rx_fdq[i]);
1659                         goto fail;
1660                 }
1661         }
1662
1663         memset(&config, 0, sizeof(config));
1664         config.direction                = DMA_DEV_TO_MEM;
1665         config.u.rx.einfo_present       = true;
1666         config.u.rx.psinfo_present      = true;
1667         config.u.rx.err_mode            = DMA_DROP;
1668         config.u.rx.desc_type           = DMA_DESC_HOST;
1669         config.u.rx.psinfo_at_sop       = false;
1670         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1671         config.u.rx.dst_q               = netcp->rx_queue_id;
1672         config.u.rx.thresh              = DMA_THRESH_NONE;
1673
1674         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1675                 if (netcp->rx_fdq[i])
1676                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1677                 config.u.rx.fdq[i] = last_fdq;
1678         }
1679
1680         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1681                                         netcp->dma_chan_name, &config);
1682         if (IS_ERR(netcp->rx_channel)) {
1683                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1684                         netcp->dma_chan_name);
1685                 ret = PTR_ERR(netcp->rx_channel);
1686                 goto fail;
1687         }
1688
1689         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1690         return 0;
1691
1692 fail:
1693         netcp_free_navigator_resources(netcp);
1694         return ret;
1695 }
1696
1697 /* Open the device */
1698 static int netcp_ndo_open(struct net_device *ndev)
1699 {
1700         struct netcp_intf *netcp = netdev_priv(ndev);
1701         struct netcp_intf_modpriv *intf_modpriv;
1702         struct netcp_module *module;
1703         int ret;
1704
1705         netif_carrier_off(ndev);
1706         ret = netcp_setup_navigator_resources(ndev);
1707         if (ret) {
1708                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1709                 goto fail;
1710         }
1711
1712         for_each_module(netcp, intf_modpriv) {
1713                 module = intf_modpriv->netcp_module;
1714                 if (module->open) {
1715                         ret = module->open(intf_modpriv->module_priv, ndev);
1716                         if (ret != 0) {
1717                                 dev_err(netcp->ndev_dev, "module open failed\n");
1718                                 goto fail_open;
1719                         }
1720                 }
1721         }
1722
1723         napi_enable(&netcp->rx_napi);
1724         napi_enable(&netcp->tx_napi);
1725         knav_queue_enable_notify(netcp->tx_compl_q);
1726         knav_queue_enable_notify(netcp->rx_queue);
1727         netcp_rxpool_refill(netcp);
1728         netif_tx_wake_all_queues(ndev);
1729         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1730         return 0;
1731
1732 fail_open:
1733         for_each_module(netcp, intf_modpriv) {
1734                 module = intf_modpriv->netcp_module;
1735                 if (module->close)
1736                         module->close(intf_modpriv->module_priv, ndev);
1737         }
1738
1739 fail:
1740         netcp_free_navigator_resources(netcp);
1741         return ret;
1742 }
1743
1744 /* Close the device */
1745 static int netcp_ndo_stop(struct net_device *ndev)
1746 {
1747         struct netcp_intf *netcp = netdev_priv(ndev);
1748         struct netcp_intf_modpriv *intf_modpriv;
1749         struct netcp_module *module;
1750         int err = 0;
1751
1752         netif_tx_stop_all_queues(ndev);
1753         netif_carrier_off(ndev);
1754         netcp_addr_clear_mark(netcp);
1755         netcp_addr_sweep_del(netcp);
1756         knav_queue_disable_notify(netcp->rx_queue);
1757         knav_queue_disable_notify(netcp->tx_compl_q);
1758         napi_disable(&netcp->rx_napi);
1759         napi_disable(&netcp->tx_napi);
1760
1761         for_each_module(netcp, intf_modpriv) {
1762                 module = intf_modpriv->netcp_module;
1763                 if (module->close) {
1764                         err = module->close(intf_modpriv->module_priv, ndev);
1765                         if (err != 0)
1766                                 dev_err(netcp->ndev_dev, "Close failed\n");
1767                 }
1768         }
1769
1770         /* Recycle Rx descriptors from completion queue */
1771         netcp_empty_rx_queue(netcp);
1772
1773         /* Recycle Tx descriptors from completion queue */
1774         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1775
1776         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1777                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1778                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1779
1780         netcp_free_navigator_resources(netcp);
1781         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1782         return 0;
1783 }
1784
1785 static int netcp_ndo_ioctl(struct net_device *ndev,
1786                            struct ifreq *req, int cmd)
1787 {
1788         struct netcp_intf *netcp = netdev_priv(ndev);
1789         struct netcp_intf_modpriv *intf_modpriv;
1790         struct netcp_module *module;
1791         int ret = -1, err = -EOPNOTSUPP;
1792
1793         if (!netif_running(ndev))
1794                 return -EINVAL;
1795
1796         for_each_module(netcp, intf_modpriv) {
1797                 module = intf_modpriv->netcp_module;
1798                 if (!module->ioctl)
1799                         continue;
1800
1801                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1802                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1803                         ret = err;
1804                         goto out;
1805                 }
1806                 if (err == 0)
1807                         ret = err;
1808         }
1809
1810 out:
1811         return (ret == 0) ? 0 : err;
1812 }
1813
1814 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1815 {
1816         struct netcp_intf *netcp = netdev_priv(ndev);
1817         unsigned int descs = knav_pool_count(netcp->tx_pool);
1818
1819         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1820         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1821         netif_trans_update(ndev);
1822         netif_tx_wake_all_queues(ndev);
1823 }
1824
1825 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1826 {
1827         struct netcp_intf *netcp = netdev_priv(ndev);
1828         struct netcp_intf_modpriv *intf_modpriv;
1829         struct netcp_module *module;
1830         unsigned long flags;
1831         int err = 0;
1832
1833         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1834
1835         spin_lock_irqsave(&netcp->lock, flags);
1836         for_each_module(netcp, intf_modpriv) {
1837                 module = intf_modpriv->netcp_module;
1838                 if ((module->add_vid) && (vid != 0)) {
1839                         err = module->add_vid(intf_modpriv->module_priv, vid);
1840                         if (err != 0) {
1841                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1842                                         vid);
1843                                 break;
1844                         }
1845                 }
1846         }
1847         spin_unlock_irqrestore(&netcp->lock, flags);
1848
1849         return err;
1850 }
1851
1852 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1853 {
1854         struct netcp_intf *netcp = netdev_priv(ndev);
1855         struct netcp_intf_modpriv *intf_modpriv;
1856         struct netcp_module *module;
1857         unsigned long flags;
1858         int err = 0;
1859
1860         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1861
1862         spin_lock_irqsave(&netcp->lock, flags);
1863         for_each_module(netcp, intf_modpriv) {
1864                 module = intf_modpriv->netcp_module;
1865                 if (module->del_vid) {
1866                         err = module->del_vid(intf_modpriv->module_priv, vid);
1867                         if (err != 0) {
1868                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1869                                         vid);
1870                                 break;
1871                         }
1872                 }
1873         }
1874         spin_unlock_irqrestore(&netcp->lock, flags);
1875         return err;
1876 }
1877
1878 static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1879                           void *type_data)
1880 {
1881         struct tc_mqprio_qopt *mqprio = type_data;
1882         u8 num_tc;
1883         int i;
1884
1885         /* setup tc must be called under rtnl lock */
1886         ASSERT_RTNL();
1887
1888         if (type != TC_SETUP_QDISC_MQPRIO)
1889                 return -EOPNOTSUPP;
1890
1891         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1892         num_tc = mqprio->num_tc;
1893
1894         /* Sanity-check the number of traffic classes requested */
1895         if ((dev->real_num_tx_queues <= 1) ||
1896             (dev->real_num_tx_queues < num_tc))
1897                 return -EINVAL;
1898
1899         /* Configure traffic class to queue mappings */
1900         if (num_tc) {
1901                 netdev_set_num_tc(dev, num_tc);
1902                 for (i = 0; i < num_tc; i++)
1903                         netdev_set_tc_queue(dev, i, 1, i);
1904         } else {
1905                 netdev_reset_tc(dev);
1906         }
1907
1908         return 0;
1909 }
1910
1911 static void
1912 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1913 {
1914         struct netcp_intf *netcp = netdev_priv(ndev);
1915         struct netcp_stats *p = &netcp->stats;
1916         u64 rxpackets, rxbytes, txpackets, txbytes;
1917         unsigned int start;
1918
1919         do {
1920                 start = u64_stats_fetch_begin_irq(&p->syncp_rx);
1921                 rxpackets       = p->rx_packets;
1922                 rxbytes         = p->rx_bytes;
1923         } while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
1924
1925         do {
1926                 start = u64_stats_fetch_begin_irq(&p->syncp_tx);
1927                 txpackets       = p->tx_packets;
1928                 txbytes         = p->tx_bytes;
1929         } while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
1930
1931         stats->rx_packets = rxpackets;
1932         stats->rx_bytes = rxbytes;
1933         stats->tx_packets = txpackets;
1934         stats->tx_bytes = txbytes;
1935
1936         /* The following are stored as 32 bit */
1937         stats->rx_errors = p->rx_errors;
1938         stats->rx_dropped = p->rx_dropped;
1939         stats->tx_dropped = p->tx_dropped;
1940 }
1941
1942 static const struct net_device_ops netcp_netdev_ops = {
1943         .ndo_open               = netcp_ndo_open,
1944         .ndo_stop               = netcp_ndo_stop,
1945         .ndo_start_xmit         = netcp_ndo_start_xmit,
1946         .ndo_set_rx_mode        = netcp_set_rx_mode,
1947         .ndo_do_ioctl           = netcp_ndo_ioctl,
1948         .ndo_get_stats64        = netcp_get_stats,
1949         .ndo_set_mac_address    = eth_mac_addr,
1950         .ndo_validate_addr      = eth_validate_addr,
1951         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1952         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1953         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1954         .ndo_select_queue       = dev_pick_tx_zero,
1955         .ndo_setup_tc           = netcp_setup_tc,
1956 };
1957
1958 static int netcp_create_interface(struct netcp_device *netcp_device,
1959                                   struct device_node *node_interface)
1960 {
1961         struct device *dev = netcp_device->device;
1962         struct device_node *node = dev->of_node;
1963         struct netcp_intf *netcp;
1964         struct net_device *ndev;
1965         resource_size_t size;
1966         struct resource res;
1967         void __iomem *efuse = NULL;
1968         u32 efuse_mac = 0;
1969         const void *mac_addr;
1970         u8 efuse_mac_addr[6];
1971         u32 temp[2];
1972         int ret = 0;
1973
1974         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1975         if (!ndev) {
1976                 dev_err(dev, "Error allocating netdev\n");
1977                 return -ENOMEM;
1978         }
1979
1980         ndev->features |= NETIF_F_SG;
1981         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1982         ndev->hw_features = ndev->features;
1983         ndev->vlan_features |=  NETIF_F_SG;
1984
1985         /* MTU range: 68 - 9486 */
1986         ndev->min_mtu = ETH_MIN_MTU;
1987         ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1988
1989         netcp = netdev_priv(ndev);
1990         spin_lock_init(&netcp->lock);
1991         INIT_LIST_HEAD(&netcp->module_head);
1992         INIT_LIST_HEAD(&netcp->txhook_list_head);
1993         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1994         INIT_LIST_HEAD(&netcp->addr_list);
1995         u64_stats_init(&netcp->stats.syncp_rx);
1996         u64_stats_init(&netcp->stats.syncp_tx);
1997         netcp->netcp_device = netcp_device;
1998         netcp->dev = netcp_device->device;
1999         netcp->ndev = ndev;
2000         netcp->ndev_dev  = &ndev->dev;
2001         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2002         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2003         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2004         netcp->node_interface = node_interface;
2005
2006         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2007         if (efuse_mac) {
2008                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2009                         dev_err(dev, "could not find efuse-mac reg resource\n");
2010                         ret = -ENODEV;
2011                         goto quit;
2012                 }
2013                 size = resource_size(&res);
2014
2015                 if (!devm_request_mem_region(dev, res.start, size,
2016                                              dev_name(dev))) {
2017                         dev_err(dev, "could not reserve resource\n");
2018                         ret = -ENOMEM;
2019                         goto quit;
2020                 }
2021
2022                 efuse = devm_ioremap(dev, res.start, size);
2023                 if (!efuse) {
2024                         dev_err(dev, "could not map resource\n");
2025                         devm_release_mem_region(dev, res.start, size);
2026                         ret = -ENOMEM;
2027                         goto quit;
2028                 }
2029
2030                 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2031                 if (is_valid_ether_addr(efuse_mac_addr))
2032                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
2033                 else
2034                         eth_random_addr(ndev->dev_addr);
2035
2036                 devm_iounmap(dev, efuse);
2037                 devm_release_mem_region(dev, res.start, size);
2038         } else {
2039                 mac_addr = of_get_mac_address(node_interface);
2040                 if (!IS_ERR(mac_addr))
2041                         ether_addr_copy(ndev->dev_addr, mac_addr);
2042                 else
2043                         eth_random_addr(ndev->dev_addr);
2044         }
2045
2046         ret = of_property_read_string(node_interface, "rx-channel",
2047                                       &netcp->dma_chan_name);
2048         if (ret < 0) {
2049                 dev_err(dev, "missing \"rx-channel\" parameter\n");
2050                 ret = -ENODEV;
2051                 goto quit;
2052         }
2053
2054         ret = of_property_read_u32(node_interface, "rx-queue",
2055                                    &netcp->rx_queue_id);
2056         if (ret < 0) {
2057                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
2058                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2059         }
2060
2061         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2062                                          netcp->rx_queue_depths,
2063                                          KNAV_DMA_FDQ_PER_CHAN);
2064         if (ret < 0) {
2065                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2066                 netcp->rx_queue_depths[0] = 128;
2067         }
2068
2069         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2070         if (ret < 0) {
2071                 dev_err(dev, "missing \"rx-pool\" parameter\n");
2072                 ret = -ENODEV;
2073                 goto quit;
2074         }
2075         netcp->rx_pool_size = temp[0];
2076         netcp->rx_pool_region_id = temp[1];
2077
2078         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2079         if (ret < 0) {
2080                 dev_err(dev, "missing \"tx-pool\" parameter\n");
2081                 ret = -ENODEV;
2082                 goto quit;
2083         }
2084         netcp->tx_pool_size = temp[0];
2085         netcp->tx_pool_region_id = temp[1];
2086
2087         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2088                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2089                         MAX_SKB_FRAGS);
2090                 ret = -ENODEV;
2091                 goto quit;
2092         }
2093
2094         ret = of_property_read_u32(node_interface, "tx-completion-queue",
2095                                    &netcp->tx_compl_qid);
2096         if (ret < 0) {
2097                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2098                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2099         }
2100
2101         /* NAPI register */
2102         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2103         netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2104
2105         /* Register the network device */
2106         ndev->dev_id            = 0;
2107         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
2108         ndev->netdev_ops        = &netcp_netdev_ops;
2109         SET_NETDEV_DEV(ndev, dev);
2110
2111         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2112         return 0;
2113
2114 quit:
2115         free_netdev(ndev);
2116         return ret;
2117 }
2118
2119 static void netcp_delete_interface(struct netcp_device *netcp_device,
2120                                    struct net_device *ndev)
2121 {
2122         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2123         struct netcp_intf *netcp = netdev_priv(ndev);
2124         struct netcp_module *module;
2125
2126         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2127                 ndev->name);
2128
2129         /* Notify each of the modules that the interface is going away */
2130         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2131                                  intf_list) {
2132                 module = intf_modpriv->netcp_module;
2133                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2134                         module->name);
2135                 if (module->release)
2136                         module->release(intf_modpriv->module_priv);
2137                 list_del(&intf_modpriv->intf_list);
2138         }
2139         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2140              ndev->name);
2141
2142         list_del(&netcp->interface_list);
2143
2144         of_node_put(netcp->node_interface);
2145         unregister_netdev(ndev);
2146         free_netdev(ndev);
2147 }
2148
2149 static int netcp_probe(struct platform_device *pdev)
2150 {
2151         struct device_node *node = pdev->dev.of_node;
2152         struct netcp_intf *netcp_intf, *netcp_tmp;
2153         struct device_node *child, *interfaces;
2154         struct netcp_device *netcp_device;
2155         struct device *dev = &pdev->dev;
2156         struct netcp_module *module;
2157         int ret;
2158
2159         if (!knav_dma_device_ready() ||
2160             !knav_qmss_device_ready())
2161                 return -EPROBE_DEFER;
2162
2163         if (!node) {
2164                 dev_err(dev, "could not find device info\n");
2165                 return -ENODEV;
2166         }
2167
2168         /* Allocate a new NETCP device instance */
2169         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2170         if (!netcp_device)
2171                 return -ENOMEM;
2172
2173         pm_runtime_enable(&pdev->dev);
2174         ret = pm_runtime_get_sync(&pdev->dev);
2175         if (ret < 0) {
2176                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2177                 pm_runtime_disable(&pdev->dev);
2178                 return ret;
2179         }
2180
2181         /* Initialize the NETCP device instance */
2182         INIT_LIST_HEAD(&netcp_device->interface_head);
2183         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2184         netcp_device->device = dev;
2185         platform_set_drvdata(pdev, netcp_device);
2186
2187         /* create interfaces */
2188         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2189         if (!interfaces) {
2190                 dev_err(dev, "could not find netcp-interfaces node\n");
2191                 ret = -ENODEV;
2192                 goto probe_quit;
2193         }
2194
2195         for_each_available_child_of_node(interfaces, child) {
2196                 ret = netcp_create_interface(netcp_device, child);
2197                 if (ret) {
2198                         dev_err(dev, "could not create interface(%pOFn)\n",
2199                                 child);
2200                         goto probe_quit_interface;
2201                 }
2202         }
2203
2204         of_node_put(interfaces);
2205
2206         /* Add the device instance to the list */
2207         list_add_tail(&netcp_device->device_list, &netcp_devices);
2208
2209         /* Probe & attach any modules already registered */
2210         mutex_lock(&netcp_modules_lock);
2211         for_each_netcp_module(module) {
2212                 ret = netcp_module_probe(netcp_device, module);
2213                 if (ret < 0)
2214                         dev_err(dev, "module(%s) probe failed\n", module->name);
2215         }
2216         mutex_unlock(&netcp_modules_lock);
2217         return 0;
2218
2219 probe_quit_interface:
2220         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2221                                  &netcp_device->interface_head,
2222                                  interface_list) {
2223                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2224         }
2225
2226         of_node_put(interfaces);
2227
2228 probe_quit:
2229         pm_runtime_put_sync(&pdev->dev);
2230         pm_runtime_disable(&pdev->dev);
2231         platform_set_drvdata(pdev, NULL);
2232         return ret;
2233 }
2234
2235 static int netcp_remove(struct platform_device *pdev)
2236 {
2237         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2238         struct netcp_intf *netcp_intf, *netcp_tmp;
2239         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2240         struct netcp_module *module;
2241
2242         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2243                                  inst_list) {
2244                 module = inst_modpriv->netcp_module;
2245                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2246                 module->remove(netcp_device, inst_modpriv->module_priv);
2247                 list_del(&inst_modpriv->inst_list);
2248         }
2249
2250         /* now that all modules are removed, clean up the interfaces */
2251         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2252                                  &netcp_device->interface_head,
2253                                  interface_list) {
2254                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2255         }
2256
2257         WARN(!list_empty(&netcp_device->interface_head),
2258              "%s interface list not empty!\n", pdev->name);
2259
2260         pm_runtime_put_sync(&pdev->dev);
2261         pm_runtime_disable(&pdev->dev);
2262         platform_set_drvdata(pdev, NULL);
2263         return 0;
2264 }
2265
2266 static const struct of_device_id of_match[] = {
2267         { .compatible = "ti,netcp-1.0", },
2268         {},
2269 };
2270 MODULE_DEVICE_TABLE(of, of_match);
2271
2272 static struct platform_driver netcp_driver = {
2273         .driver = {
2274                 .name           = "netcp-1.0",
2275                 .of_match_table = of_match,
2276         },
2277         .probe = netcp_probe,
2278         .remove = netcp_remove,
2279 };
2280 module_platform_driver(netcp_driver);
2281
2282 MODULE_LICENSE("GPL v2");
2283 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2284 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");