Merge tag 'random_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39
40 #include <linux/pinctrl/consumer.h>
41
42 #include "cpsw.h"
43 #include "cpsw_ale.h"
44 #include "cpts.h"
45 #include "davinci_cpdma.h"
46
47 #define CPSW_DEBUG      (NETIF_MSG_HW           | NETIF_MSG_WOL         | \
48                          NETIF_MSG_DRV          | NETIF_MSG_LINK        | \
49                          NETIF_MSG_IFUP         | NETIF_MSG_INTR        | \
50                          NETIF_MSG_PROBE        | NETIF_MSG_TIMER       | \
51                          NETIF_MSG_IFDOWN       | NETIF_MSG_RX_ERR      | \
52                          NETIF_MSG_TX_ERR       | NETIF_MSG_TX_DONE     | \
53                          NETIF_MSG_PKTDATA      | NETIF_MSG_TX_QUEUED   | \
54                          NETIF_MSG_RX_STATUS)
55
56 #define cpsw_info(priv, type, format, ...)              \
57 do {                                                            \
58         if (netif_msg_##type(priv) && net_ratelimit())          \
59                 dev_info(priv->dev, format, ## __VA_ARGS__);    \
60 } while (0)
61
62 #define cpsw_err(priv, type, format, ...)               \
63 do {                                                            \
64         if (netif_msg_##type(priv) && net_ratelimit())          \
65                 dev_err(priv->dev, format, ## __VA_ARGS__);     \
66 } while (0)
67
68 #define cpsw_dbg(priv, type, format, ...)               \
69 do {                                                            \
70         if (netif_msg_##type(priv) && net_ratelimit())          \
71                 dev_dbg(priv->dev, format, ## __VA_ARGS__);     \
72 } while (0)
73
74 #define cpsw_notice(priv, type, format, ...)            \
75 do {                                                            \
76         if (netif_msg_##type(priv) && net_ratelimit())          \
77                 dev_notice(priv->dev, format, ## __VA_ARGS__);  \
78 } while (0)
79
80 #define ALE_ALL_PORTS           0x7
81
82 #define CPSW_MAJOR_VERSION(reg)         (reg >> 8 & 0x7)
83 #define CPSW_MINOR_VERSION(reg)         (reg & 0xff)
84 #define CPSW_RTL_VERSION(reg)           ((reg >> 11) & 0x1f)
85
86 #define CPSW_VERSION_1          0x19010a
87 #define CPSW_VERSION_2          0x19010c
88 #define CPSW_VERSION_3          0x19010f
89 #define CPSW_VERSION_4          0x190112
90
91 #define HOST_PORT_NUM           0
92 #define CPSW_ALE_PORTS_NUM      3
93 #define SLIVER_SIZE             0x40
94
95 #define CPSW1_HOST_PORT_OFFSET  0x028
96 #define CPSW1_SLAVE_OFFSET      0x050
97 #define CPSW1_SLAVE_SIZE        0x040
98 #define CPSW1_CPDMA_OFFSET      0x100
99 #define CPSW1_STATERAM_OFFSET   0x200
100 #define CPSW1_HW_STATS          0x400
101 #define CPSW1_CPTS_OFFSET       0x500
102 #define CPSW1_ALE_OFFSET        0x600
103 #define CPSW1_SLIVER_OFFSET     0x700
104
105 #define CPSW2_HOST_PORT_OFFSET  0x108
106 #define CPSW2_SLAVE_OFFSET      0x200
107 #define CPSW2_SLAVE_SIZE        0x100
108 #define CPSW2_CPDMA_OFFSET      0x800
109 #define CPSW2_HW_STATS          0x900
110 #define CPSW2_STATERAM_OFFSET   0xa00
111 #define CPSW2_CPTS_OFFSET       0xc00
112 #define CPSW2_ALE_OFFSET        0xd00
113 #define CPSW2_SLIVER_OFFSET     0xd80
114 #define CPSW2_BD_OFFSET         0x2000
115
116 #define CPDMA_RXTHRESH          0x0c0
117 #define CPDMA_RXFREE            0x0e0
118 #define CPDMA_TXHDP             0x00
119 #define CPDMA_RXHDP             0x20
120 #define CPDMA_TXCP              0x40
121 #define CPDMA_RXCP              0x60
122
123 #define CPSW_POLL_WEIGHT        64
124 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE             4
125 #define CPSW_MIN_PACKET_SIZE    (VLAN_ETH_ZLEN)
126 #define CPSW_MAX_PACKET_SIZE    (VLAN_ETH_FRAME_LEN +\
127                                  ETH_FCS_LEN +\
128                                  CPSW_RX_VLAN_ENCAP_HDR_SIZE)
129
130 #define RX_PRIORITY_MAPPING     0x76543210
131 #define TX_PRIORITY_MAPPING     0x33221100
132 #define CPDMA_TX_PRIORITY_MAP   0x01234567
133
134 #define CPSW_VLAN_AWARE         BIT(1)
135 #define CPSW_RX_VLAN_ENCAP      BIT(2)
136 #define CPSW_ALE_VLAN_AWARE     1
137
138 #define CPSW_FIFO_NORMAL_MODE           (0 << 16)
139 #define CPSW_FIFO_DUAL_MAC_MODE         (1 << 16)
140 #define CPSW_FIFO_RATE_LIMIT_MODE       (2 << 16)
141
142 #define CPSW_INTPACEEN          (0x3f << 16)
143 #define CPSW_INTPRESCALE_MASK   (0x7FF << 0)
144 #define CPSW_CMINTMAX_CNT       63
145 #define CPSW_CMINTMIN_CNT       2
146 #define CPSW_CMINTMAX_INTVL     (1000 / CPSW_CMINTMIN_CNT)
147 #define CPSW_CMINTMIN_INTVL     ((1000 / CPSW_CMINTMAX_CNT) + 1)
148
149 #define cpsw_slave_index(cpsw, priv)                            \
150                 ((cpsw->data.dual_emac) ? priv->emac_port :     \
151                 cpsw->data.active_slave)
152 #define IRQ_NUM                 2
153 #define CPSW_MAX_QUEUES         8
154 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
155
156 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT       29
157 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK         GENMASK(2, 0)
158 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT        16
159 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT   8
160 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK     GENMASK(1, 0)
161 enum {
162         CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
163         CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
164         CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
165         CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
166 };
167
168 static int debug_level;
169 module_param(debug_level, int, 0);
170 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
171
172 static int ale_ageout = 10;
173 module_param(ale_ageout, int, 0);
174 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
175
176 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
177 module_param(rx_packet_max, int, 0);
178 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
179
180 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
181 module_param(descs_pool_size, int, 0444);
182 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
183
184 struct cpsw_wr_regs {
185         u32     id_ver;
186         u32     soft_reset;
187         u32     control;
188         u32     int_control;
189         u32     rx_thresh_en;
190         u32     rx_en;
191         u32     tx_en;
192         u32     misc_en;
193         u32     mem_allign1[8];
194         u32     rx_thresh_stat;
195         u32     rx_stat;
196         u32     tx_stat;
197         u32     misc_stat;
198         u32     mem_allign2[8];
199         u32     rx_imax;
200         u32     tx_imax;
201
202 };
203
204 struct cpsw_ss_regs {
205         u32     id_ver;
206         u32     control;
207         u32     soft_reset;
208         u32     stat_port_en;
209         u32     ptype;
210         u32     soft_idle;
211         u32     thru_rate;
212         u32     gap_thresh;
213         u32     tx_start_wds;
214         u32     flow_control;
215         u32     vlan_ltype;
216         u32     ts_ltype;
217         u32     dlr_ltype;
218 };
219
220 /* CPSW_PORT_V1 */
221 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
222 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
223 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
224 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
225 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
226 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
227 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
228 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
229
230 /* CPSW_PORT_V2 */
231 #define CPSW2_CONTROL       0x00 /* Control Register */
232 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
233 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
234 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
235 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
236 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
237 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
238
239 /* CPSW_PORT_V1 and V2 */
240 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
241 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
242 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
243
244 /* CPSW_PORT_V2 only */
245 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
246 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
247 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
248 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
249 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
250 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
251 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
252 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
253
254 /* Bit definitions for the CPSW2_CONTROL register */
255 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
256 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
257 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
258 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
259 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
260 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
261 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
262 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
263 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
264 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
265 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
266 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
267 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
268 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
269 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
270 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
271 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
272
273 #define CTRL_V2_TS_BITS \
274         (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
275          TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
276
277 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
278 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
279 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
280
281
282 #define CTRL_V3_TS_BITS \
283         (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
284          TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
285          TS_LTYPE1_EN)
286
287 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
288 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
289 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
290
291 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
292 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
293 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
294 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
295 #define TS_MSG_TYPE_EN_MASK      (0xffff)
296
297 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
298 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
299
300 /* Bit definitions for the CPSW1_TS_CTL register */
301 #define CPSW_V1_TS_RX_EN                BIT(0)
302 #define CPSW_V1_TS_TX_EN                BIT(4)
303 #define CPSW_V1_MSG_TYPE_OFS            16
304
305 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
306 #define CPSW_V1_SEQ_ID_OFS_SHIFT        16
307
308 #define CPSW_MAX_BLKS_TX                15
309 #define CPSW_MAX_BLKS_TX_SHIFT          4
310 #define CPSW_MAX_BLKS_RX                5
311
312 struct cpsw_host_regs {
313         u32     max_blks;
314         u32     blk_cnt;
315         u32     tx_in_ctl;
316         u32     port_vlan;
317         u32     tx_pri_map;
318         u32     cpdma_tx_pri_map;
319         u32     cpdma_rx_chan_map;
320 };
321
322 struct cpsw_sliver_regs {
323         u32     id_ver;
324         u32     mac_control;
325         u32     mac_status;
326         u32     soft_reset;
327         u32     rx_maxlen;
328         u32     __reserved_0;
329         u32     rx_pause;
330         u32     tx_pause;
331         u32     __reserved_1;
332         u32     rx_pri_map;
333 };
334
335 struct cpsw_hw_stats {
336         u32     rxgoodframes;
337         u32     rxbroadcastframes;
338         u32     rxmulticastframes;
339         u32     rxpauseframes;
340         u32     rxcrcerrors;
341         u32     rxaligncodeerrors;
342         u32     rxoversizedframes;
343         u32     rxjabberframes;
344         u32     rxundersizedframes;
345         u32     rxfragments;
346         u32     __pad_0[2];
347         u32     rxoctets;
348         u32     txgoodframes;
349         u32     txbroadcastframes;
350         u32     txmulticastframes;
351         u32     txpauseframes;
352         u32     txdeferredframes;
353         u32     txcollisionframes;
354         u32     txsinglecollframes;
355         u32     txmultcollframes;
356         u32     txexcessivecollisions;
357         u32     txlatecollisions;
358         u32     txunderrun;
359         u32     txcarriersenseerrors;
360         u32     txoctets;
361         u32     octetframes64;
362         u32     octetframes65t127;
363         u32     octetframes128t255;
364         u32     octetframes256t511;
365         u32     octetframes512t1023;
366         u32     octetframes1024tup;
367         u32     netoctets;
368         u32     rxsofoverruns;
369         u32     rxmofoverruns;
370         u32     rxdmaoverruns;
371 };
372
373 struct cpsw_slave_data {
374         struct device_node *phy_node;
375         char            phy_id[MII_BUS_ID_SIZE];
376         int             phy_if;
377         u8              mac_addr[ETH_ALEN];
378         u16             dual_emac_res_vlan;     /* Reserved VLAN for DualEMAC */
379 };
380
381 struct cpsw_platform_data {
382         struct cpsw_slave_data  *slave_data;
383         u32     ss_reg_ofs;     /* Subsystem control register offset */
384         u32     channels;       /* number of cpdma channels (symmetric) */
385         u32     slaves;         /* number of slave cpgmac ports */
386         u32     active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
387         u32     ale_entries;    /* ale table size */
388         u32     bd_ram_size;  /*buffer descriptor ram size */
389         u32     mac_control;    /* Mac control register */
390         u16     default_vlan;   /* Def VLAN for ALE lookup in VLAN aware mode*/
391         bool    dual_emac;      /* Enable Dual EMAC mode */
392 };
393
394 struct cpsw_slave {
395         void __iomem                    *regs;
396         struct cpsw_sliver_regs __iomem *sliver;
397         int                             slave_num;
398         u32                             mac_control;
399         struct cpsw_slave_data          *data;
400         struct phy_device               *phy;
401         struct net_device               *ndev;
402         u32                             port_vlan;
403 };
404
405 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
406 {
407         return readl_relaxed(slave->regs + offset);
408 }
409
410 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
411 {
412         writel_relaxed(val, slave->regs + offset);
413 }
414
415 struct cpsw_vector {
416         struct cpdma_chan *ch;
417         int budget;
418 };
419
420 struct cpsw_common {
421         struct device                   *dev;
422         struct cpsw_platform_data       data;
423         struct napi_struct              napi_rx;
424         struct napi_struct              napi_tx;
425         struct cpsw_ss_regs __iomem     *regs;
426         struct cpsw_wr_regs __iomem     *wr_regs;
427         u8 __iomem                      *hw_stats;
428         struct cpsw_host_regs __iomem   *host_port_regs;
429         u32                             version;
430         u32                             coal_intvl;
431         u32                             bus_freq_mhz;
432         int                             rx_packet_max;
433         struct cpsw_slave               *slaves;
434         struct cpdma_ctlr               *dma;
435         struct cpsw_vector              txv[CPSW_MAX_QUEUES];
436         struct cpsw_vector              rxv[CPSW_MAX_QUEUES];
437         struct cpsw_ale                 *ale;
438         bool                            quirk_irq;
439         bool                            rx_irq_disabled;
440         bool                            tx_irq_disabled;
441         u32 irqs_table[IRQ_NUM];
442         struct cpts                     *cpts;
443         int                             rx_ch_num, tx_ch_num;
444         int                             speed;
445         int                             usage_count;
446 };
447
448 struct cpsw_priv {
449         struct net_device               *ndev;
450         struct device                   *dev;
451         u32                             msg_enable;
452         u8                              mac_addr[ETH_ALEN];
453         bool                            rx_pause;
454         bool                            tx_pause;
455         u32 emac_port;
456         struct cpsw_common *cpsw;
457 };
458
459 struct cpsw_stats {
460         char stat_string[ETH_GSTRING_LEN];
461         int type;
462         int sizeof_stat;
463         int stat_offset;
464 };
465
466 enum {
467         CPSW_STATS,
468         CPDMA_RX_STATS,
469         CPDMA_TX_STATS,
470 };
471
472 #define CPSW_STAT(m)            CPSW_STATS,                             \
473                                 sizeof(((struct cpsw_hw_stats *)0)->m), \
474                                 offsetof(struct cpsw_hw_stats, m)
475 #define CPDMA_RX_STAT(m)        CPDMA_RX_STATS,                            \
476                                 sizeof(((struct cpdma_chan_stats *)0)->m), \
477                                 offsetof(struct cpdma_chan_stats, m)
478 #define CPDMA_TX_STAT(m)        CPDMA_TX_STATS,                            \
479                                 sizeof(((struct cpdma_chan_stats *)0)->m), \
480                                 offsetof(struct cpdma_chan_stats, m)
481
482 static const struct cpsw_stats cpsw_gstrings_stats[] = {
483         { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
484         { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
485         { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
486         { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
487         { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
488         { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
489         { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
490         { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
491         { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
492         { "Rx Fragments", CPSW_STAT(rxfragments) },
493         { "Rx Octets", CPSW_STAT(rxoctets) },
494         { "Good Tx Frames", CPSW_STAT(txgoodframes) },
495         { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
496         { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
497         { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
498         { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
499         { "Collisions", CPSW_STAT(txcollisionframes) },
500         { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
501         { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
502         { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
503         { "Late Collisions", CPSW_STAT(txlatecollisions) },
504         { "Tx Underrun", CPSW_STAT(txunderrun) },
505         { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
506         { "Tx Octets", CPSW_STAT(txoctets) },
507         { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
508         { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
509         { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
510         { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
511         { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
512         { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
513         { "Net Octets", CPSW_STAT(netoctets) },
514         { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
515         { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
516         { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
517 };
518
519 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
520         { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
521         { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
522         { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
523         { "misqueued", CPDMA_RX_STAT(misqueued) },
524         { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
525         { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
526         { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
527         { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
528         { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
529         { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
530         { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
531         { "requeue", CPDMA_RX_STAT(requeue) },
532         { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
533 };
534
535 #define CPSW_STATS_COMMON_LEN   ARRAY_SIZE(cpsw_gstrings_stats)
536 #define CPSW_STATS_CH_LEN       ARRAY_SIZE(cpsw_gstrings_ch_stats)
537
538 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
539 #define napi_to_cpsw(napi)      container_of(napi, struct cpsw_common, napi)
540 #define for_each_slave(priv, func, arg...)                              \
541         do {                                                            \
542                 struct cpsw_slave *slave;                               \
543                 struct cpsw_common *cpsw = (priv)->cpsw;                \
544                 int n;                                                  \
545                 if (cpsw->data.dual_emac)                               \
546                         (func)((cpsw)->slaves + priv->emac_port, ##arg);\
547                 else                                                    \
548                         for (n = cpsw->data.slaves,                     \
549                                         slave = cpsw->slaves;           \
550                                         n; n--)                         \
551                                 (func)(slave++, ##arg);                 \
552         } while (0)
553
554 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)         \
555         do {                                                            \
556                 if (!cpsw->data.dual_emac)                              \
557                         break;                                          \
558                 if (CPDMA_RX_SOURCE_PORT(status) == 1) {                \
559                         ndev = cpsw->slaves[0].ndev;                    \
560                         skb->dev = ndev;                                \
561                 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) {         \
562                         ndev = cpsw->slaves[1].ndev;                    \
563                         skb->dev = ndev;                                \
564                 }                                                       \
565         } while (0)
566 #define cpsw_add_mcast(cpsw, priv, addr)                                \
567         do {                                                            \
568                 if (cpsw->data.dual_emac) {                             \
569                         struct cpsw_slave *slave = cpsw->slaves +       \
570                                                 priv->emac_port;        \
571                         int slave_port = cpsw_get_slave_port(           \
572                                                 slave->slave_num);      \
573                         cpsw_ale_add_mcast(cpsw->ale, addr,             \
574                                 1 << slave_port | ALE_PORT_HOST,        \
575                                 ALE_VLAN, slave->port_vlan, 0);         \
576                 } else {                                                \
577                         cpsw_ale_add_mcast(cpsw->ale, addr,             \
578                                 ALE_ALL_PORTS,                          \
579                                 0, 0, 0);                               \
580                 }                                                       \
581         } while (0)
582
583 static inline int cpsw_get_slave_port(u32 slave_num)
584 {
585         return slave_num + 1;
586 }
587
588 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
589 {
590         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
591         struct cpsw_ale *ale = cpsw->ale;
592         int i;
593
594         if (cpsw->data.dual_emac) {
595                 bool flag = false;
596
597                 /* Enabling promiscuous mode for one interface will be
598                  * common for both the interface as the interface shares
599                  * the same hardware resource.
600                  */
601                 for (i = 0; i < cpsw->data.slaves; i++)
602                         if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
603                                 flag = true;
604
605                 if (!enable && flag) {
606                         enable = true;
607                         dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
608                 }
609
610                 if (enable) {
611                         /* Enable Bypass */
612                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
613
614                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
615                 } else {
616                         /* Disable Bypass */
617                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
618                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
619                 }
620         } else {
621                 if (enable) {
622                         unsigned long timeout = jiffies + HZ;
623
624                         /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
625                         for (i = 0; i <= cpsw->data.slaves; i++) {
626                                 cpsw_ale_control_set(ale, i,
627                                                      ALE_PORT_NOLEARN, 1);
628                                 cpsw_ale_control_set(ale, i,
629                                                      ALE_PORT_NO_SA_UPDATE, 1);
630                         }
631
632                         /* Clear All Untouched entries */
633                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
634                         do {
635                                 cpu_relax();
636                                 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
637                                         break;
638                         } while (time_after(timeout, jiffies));
639                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
640
641                         /* Clear all mcast from ALE */
642                         cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
643
644                         /* Flood All Unicast Packets to Host port */
645                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
646                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
647                 } else {
648                         /* Don't Flood All Unicast Packets to Host port */
649                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
650
651                         /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
652                         for (i = 0; i <= cpsw->data.slaves; i++) {
653                                 cpsw_ale_control_set(ale, i,
654                                                      ALE_PORT_NOLEARN, 0);
655                                 cpsw_ale_control_set(ale, i,
656                                                      ALE_PORT_NO_SA_UPDATE, 0);
657                         }
658                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
659                 }
660         }
661 }
662
663 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
664 {
665         struct cpsw_priv *priv = netdev_priv(ndev);
666         struct cpsw_common *cpsw = priv->cpsw;
667         int vid;
668
669         if (cpsw->data.dual_emac)
670                 vid = cpsw->slaves[priv->emac_port].port_vlan;
671         else
672                 vid = cpsw->data.default_vlan;
673
674         if (ndev->flags & IFF_PROMISC) {
675                 /* Enable promiscuous mode */
676                 cpsw_set_promiscious(ndev, true);
677                 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
678                 return;
679         } else {
680                 /* Disable promiscuous mode */
681                 cpsw_set_promiscious(ndev, false);
682         }
683
684         /* Restore allmulti on vlans if necessary */
685         cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
686
687         /* Clear all mcast from ALE */
688         cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
689
690         if (!netdev_mc_empty(ndev)) {
691                 struct netdev_hw_addr *ha;
692
693                 /* program multicast address list into ALE register */
694                 netdev_for_each_mc_addr(ha, ndev) {
695                         cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
696                 }
697         }
698 }
699
700 static void cpsw_intr_enable(struct cpsw_common *cpsw)
701 {
702         writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
703         writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
704
705         cpdma_ctlr_int_ctrl(cpsw->dma, true);
706         return;
707 }
708
709 static void cpsw_intr_disable(struct cpsw_common *cpsw)
710 {
711         writel_relaxed(0, &cpsw->wr_regs->tx_en);
712         writel_relaxed(0, &cpsw->wr_regs->rx_en);
713
714         cpdma_ctlr_int_ctrl(cpsw->dma, false);
715         return;
716 }
717
718 static void cpsw_tx_handler(void *token, int len, int status)
719 {
720         struct netdev_queue     *txq;
721         struct sk_buff          *skb = token;
722         struct net_device       *ndev = skb->dev;
723         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
724
725         /* Check whether the queue is stopped due to stalled tx dma, if the
726          * queue is stopped then start the queue as we have free desc for tx
727          */
728         txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
729         if (unlikely(netif_tx_queue_stopped(txq)))
730                 netif_tx_wake_queue(txq);
731
732         cpts_tx_timestamp(cpsw->cpts, skb);
733         ndev->stats.tx_packets++;
734         ndev->stats.tx_bytes += len;
735         dev_kfree_skb_any(skb);
736 }
737
738 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
739 {
740         struct cpsw_priv *priv = netdev_priv(skb->dev);
741         struct cpsw_common *cpsw = priv->cpsw;
742         u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
743         u16 vtag, vid, prio, pkt_type;
744
745         /* Remove VLAN header encapsulation word */
746         skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
747
748         pkt_type = (rx_vlan_encap_hdr >>
749                     CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
750                     CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
751         /* Ignore unknown & Priority-tagged packets*/
752         if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
753             pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
754                 return;
755
756         vid = (rx_vlan_encap_hdr >>
757                CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
758                VLAN_VID_MASK;
759         /* Ignore vid 0 and pass packet as is */
760         if (!vid)
761                 return;
762         /* Ignore default vlans in dual mac mode */
763         if (cpsw->data.dual_emac &&
764             vid == cpsw->slaves[priv->emac_port].port_vlan)
765                 return;
766
767         prio = (rx_vlan_encap_hdr >>
768                 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
769                 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
770
771         vtag = (prio << VLAN_PRIO_SHIFT) | vid;
772         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
773
774         /* strip vlan tag for VLAN-tagged packet */
775         if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
776                 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
777                 skb_pull(skb, VLAN_HLEN);
778         }
779 }
780
781 static void cpsw_rx_handler(void *token, int len, int status)
782 {
783         struct cpdma_chan       *ch;
784         struct sk_buff          *skb = token;
785         struct sk_buff          *new_skb;
786         struct net_device       *ndev = skb->dev;
787         int                     ret = 0;
788         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
789
790         cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
791
792         if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
793                 /* In dual emac mode check for all interfaces */
794                 if (cpsw->data.dual_emac && cpsw->usage_count &&
795                     (status >= 0)) {
796                         /* The packet received is for the interface which
797                          * is already down and the other interface is up
798                          * and running, instead of freeing which results
799                          * in reducing of the number of rx descriptor in
800                          * DMA engine, requeue skb back to cpdma.
801                          */
802                         new_skb = skb;
803                         goto requeue;
804                 }
805
806                 /* the interface is going down, skbs are purged */
807                 dev_kfree_skb_any(skb);
808                 return;
809         }
810
811         new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
812         if (new_skb) {
813                 skb_copy_queue_mapping(new_skb, skb);
814                 skb_put(skb, len);
815                 if (status & CPDMA_RX_VLAN_ENCAP)
816                         cpsw_rx_vlan_encap(skb);
817                 cpts_rx_timestamp(cpsw->cpts, skb);
818                 skb->protocol = eth_type_trans(skb, ndev);
819                 netif_receive_skb(skb);
820                 ndev->stats.rx_bytes += len;
821                 ndev->stats.rx_packets++;
822                 kmemleak_not_leak(new_skb);
823         } else {
824                 ndev->stats.rx_dropped++;
825                 new_skb = skb;
826         }
827
828 requeue:
829         if (netif_dormant(ndev)) {
830                 dev_kfree_skb_any(new_skb);
831                 return;
832         }
833
834         ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
835         ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
836                                 skb_tailroom(new_skb), 0);
837         if (WARN_ON(ret < 0))
838                 dev_kfree_skb_any(new_skb);
839 }
840
841 static void cpsw_split_res(struct net_device *ndev)
842 {
843         struct cpsw_priv *priv = netdev_priv(ndev);
844         u32 consumed_rate = 0, bigest_rate = 0;
845         struct cpsw_common *cpsw = priv->cpsw;
846         struct cpsw_vector *txv = cpsw->txv;
847         int i, ch_weight, rlim_ch_num = 0;
848         int budget, bigest_rate_ch = 0;
849         u32 ch_rate, max_rate;
850         int ch_budget = 0;
851
852         for (i = 0; i < cpsw->tx_ch_num; i++) {
853                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
854                 if (!ch_rate)
855                         continue;
856
857                 rlim_ch_num++;
858                 consumed_rate += ch_rate;
859         }
860
861         if (cpsw->tx_ch_num == rlim_ch_num) {
862                 max_rate = consumed_rate;
863         } else if (!rlim_ch_num) {
864                 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
865                 bigest_rate = 0;
866                 max_rate = consumed_rate;
867         } else {
868                 max_rate = cpsw->speed * 1000;
869
870                 /* if max_rate is less then expected due to reduced link speed,
871                  * split proportionally according next potential max speed
872                  */
873                 if (max_rate < consumed_rate)
874                         max_rate *= 10;
875
876                 if (max_rate < consumed_rate)
877                         max_rate *= 10;
878
879                 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
880                 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
881                             (cpsw->tx_ch_num - rlim_ch_num);
882                 bigest_rate = (max_rate - consumed_rate) /
883                               (cpsw->tx_ch_num - rlim_ch_num);
884         }
885
886         /* split tx weight/budget */
887         budget = CPSW_POLL_WEIGHT;
888         for (i = 0; i < cpsw->tx_ch_num; i++) {
889                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
890                 if (ch_rate) {
891                         txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
892                         if (!txv[i].budget)
893                                 txv[i].budget++;
894                         if (ch_rate > bigest_rate) {
895                                 bigest_rate_ch = i;
896                                 bigest_rate = ch_rate;
897                         }
898
899                         ch_weight = (ch_rate * 100) / max_rate;
900                         if (!ch_weight)
901                                 ch_weight++;
902                         cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
903                 } else {
904                         txv[i].budget = ch_budget;
905                         if (!bigest_rate_ch)
906                                 bigest_rate_ch = i;
907                         cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
908                 }
909
910                 budget -= txv[i].budget;
911         }
912
913         if (budget)
914                 txv[bigest_rate_ch].budget += budget;
915
916         /* split rx budget */
917         budget = CPSW_POLL_WEIGHT;
918         ch_budget = budget / cpsw->rx_ch_num;
919         for (i = 0; i < cpsw->rx_ch_num; i++) {
920                 cpsw->rxv[i].budget = ch_budget;
921                 budget -= ch_budget;
922         }
923
924         if (budget)
925                 cpsw->rxv[0].budget += budget;
926 }
927
928 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
929 {
930         struct cpsw_common *cpsw = dev_id;
931
932         writel(0, &cpsw->wr_regs->tx_en);
933         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
934
935         if (cpsw->quirk_irq) {
936                 disable_irq_nosync(cpsw->irqs_table[1]);
937                 cpsw->tx_irq_disabled = true;
938         }
939
940         napi_schedule(&cpsw->napi_tx);
941         return IRQ_HANDLED;
942 }
943
944 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
945 {
946         struct cpsw_common *cpsw = dev_id;
947
948         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
949         writel(0, &cpsw->wr_regs->rx_en);
950
951         if (cpsw->quirk_irq) {
952                 disable_irq_nosync(cpsw->irqs_table[0]);
953                 cpsw->rx_irq_disabled = true;
954         }
955
956         napi_schedule(&cpsw->napi_rx);
957         return IRQ_HANDLED;
958 }
959
960 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
961 {
962         u32                     ch_map;
963         int                     num_tx, cur_budget, ch;
964         struct cpsw_common      *cpsw = napi_to_cpsw(napi_tx);
965         struct cpsw_vector      *txv;
966
967         /* process every unprocessed channel */
968         ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
969         for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
970                 if (!(ch_map & 0x01))
971                         continue;
972
973                 txv = &cpsw->txv[ch];
974                 if (unlikely(txv->budget > budget - num_tx))
975                         cur_budget = budget - num_tx;
976                 else
977                         cur_budget = txv->budget;
978
979                 num_tx += cpdma_chan_process(txv->ch, cur_budget);
980                 if (num_tx >= budget)
981                         break;
982         }
983
984         if (num_tx < budget) {
985                 napi_complete(napi_tx);
986                 writel(0xff, &cpsw->wr_regs->tx_en);
987                 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
988                         cpsw->tx_irq_disabled = false;
989                         enable_irq(cpsw->irqs_table[1]);
990                 }
991         }
992
993         return num_tx;
994 }
995
996 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
997 {
998         u32                     ch_map;
999         int                     num_rx, cur_budget, ch;
1000         struct cpsw_common      *cpsw = napi_to_cpsw(napi_rx);
1001         struct cpsw_vector      *rxv;
1002
1003         /* process every unprocessed channel */
1004         ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1005         for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1006                 if (!(ch_map & 0x01))
1007                         continue;
1008
1009                 rxv = &cpsw->rxv[ch];
1010                 if (unlikely(rxv->budget > budget - num_rx))
1011                         cur_budget = budget - num_rx;
1012                 else
1013                         cur_budget = rxv->budget;
1014
1015                 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1016                 if (num_rx >= budget)
1017                         break;
1018         }
1019
1020         if (num_rx < budget) {
1021                 napi_complete_done(napi_rx, num_rx);
1022                 writel(0xff, &cpsw->wr_regs->rx_en);
1023                 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
1024                         cpsw->rx_irq_disabled = false;
1025                         enable_irq(cpsw->irqs_table[0]);
1026                 }
1027         }
1028
1029         return num_rx;
1030 }
1031
1032 static inline void soft_reset(const char *module, void __iomem *reg)
1033 {
1034         unsigned long timeout = jiffies + HZ;
1035
1036         writel_relaxed(1, reg);
1037         do {
1038                 cpu_relax();
1039         } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1040
1041         WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1042 }
1043
1044 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1045                                struct cpsw_priv *priv)
1046 {
1047         slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1048         slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1049 }
1050
1051 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1052                               struct cpsw_priv *priv, bool *link)
1053 {
1054         struct phy_device       *phy = slave->phy;
1055         u32                     mac_control = 0;
1056         u32                     slave_port;
1057         struct cpsw_common *cpsw = priv->cpsw;
1058
1059         if (!phy)
1060                 return;
1061
1062         slave_port = cpsw_get_slave_port(slave->slave_num);
1063
1064         if (phy->link) {
1065                 mac_control = cpsw->data.mac_control;
1066
1067                 /* enable forwarding */
1068                 cpsw_ale_control_set(cpsw->ale, slave_port,
1069                                      ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1070
1071                 if (phy->speed == 1000)
1072                         mac_control |= BIT(7);  /* GIGABITEN    */
1073                 if (phy->duplex)
1074                         mac_control |= BIT(0);  /* FULLDUPLEXEN */
1075
1076                 /* set speed_in input in case RMII mode is used in 100Mbps */
1077                 if (phy->speed == 100)
1078                         mac_control |= BIT(15);
1079                 /* in band mode only works in 10Mbps RGMII mode */
1080                 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1081                         mac_control |= BIT(18); /* In Band mode */
1082
1083                 if (priv->rx_pause)
1084                         mac_control |= BIT(3);
1085
1086                 if (priv->tx_pause)
1087                         mac_control |= BIT(4);
1088
1089                 *link = true;
1090         } else {
1091                 mac_control = 0;
1092                 /* disable forwarding */
1093                 cpsw_ale_control_set(cpsw->ale, slave_port,
1094                                      ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1095         }
1096
1097         if (mac_control != slave->mac_control) {
1098                 phy_print_status(phy);
1099                 writel_relaxed(mac_control, &slave->sliver->mac_control);
1100         }
1101
1102         slave->mac_control = mac_control;
1103 }
1104
1105 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1106 {
1107         int i, speed;
1108
1109         for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1110                 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1111                         speed += cpsw->slaves[i].phy->speed;
1112
1113         return speed;
1114 }
1115
1116 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1117 {
1118         int i, rlim_ch_num;
1119         int speed, ch_rate;
1120
1121         /* re-split resources only in case speed was changed */
1122         speed = cpsw_get_common_speed(cpsw);
1123         if (speed == cpsw->speed || !speed)
1124                 return 0;
1125
1126         cpsw->speed = speed;
1127
1128         for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1129                 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1130                 if (!ch_rate)
1131                         break;
1132
1133                 rlim_ch_num++;
1134         }
1135
1136         /* cases not dependent on speed */
1137         if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1138                 return 0;
1139
1140         return 1;
1141 }
1142
1143 static void cpsw_adjust_link(struct net_device *ndev)
1144 {
1145         struct cpsw_priv        *priv = netdev_priv(ndev);
1146         struct cpsw_common      *cpsw = priv->cpsw;
1147         bool                    link = false;
1148
1149         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1150
1151         if (link) {
1152                 if (cpsw_need_resplit(cpsw))
1153                         cpsw_split_res(ndev);
1154
1155                 netif_carrier_on(ndev);
1156                 if (netif_running(ndev))
1157                         netif_tx_wake_all_queues(ndev);
1158         } else {
1159                 netif_carrier_off(ndev);
1160                 netif_tx_stop_all_queues(ndev);
1161         }
1162 }
1163
1164 static int cpsw_get_coalesce(struct net_device *ndev,
1165                                 struct ethtool_coalesce *coal)
1166 {
1167         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1168
1169         coal->rx_coalesce_usecs = cpsw->coal_intvl;
1170         return 0;
1171 }
1172
1173 static int cpsw_set_coalesce(struct net_device *ndev,
1174                                 struct ethtool_coalesce *coal)
1175 {
1176         struct cpsw_priv *priv = netdev_priv(ndev);
1177         u32 int_ctrl;
1178         u32 num_interrupts = 0;
1179         u32 prescale = 0;
1180         u32 addnl_dvdr = 1;
1181         u32 coal_intvl = 0;
1182         struct cpsw_common *cpsw = priv->cpsw;
1183
1184         coal_intvl = coal->rx_coalesce_usecs;
1185
1186         int_ctrl =  readl(&cpsw->wr_regs->int_control);
1187         prescale = cpsw->bus_freq_mhz * 4;
1188
1189         if (!coal->rx_coalesce_usecs) {
1190                 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1191                 goto update_return;
1192         }
1193
1194         if (coal_intvl < CPSW_CMINTMIN_INTVL)
1195                 coal_intvl = CPSW_CMINTMIN_INTVL;
1196
1197         if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1198                 /* Interrupt pacer works with 4us Pulse, we can
1199                  * throttle further by dilating the 4us pulse.
1200                  */
1201                 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1202
1203                 if (addnl_dvdr > 1) {
1204                         prescale *= addnl_dvdr;
1205                         if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1206                                 coal_intvl = (CPSW_CMINTMAX_INTVL
1207                                                 * addnl_dvdr);
1208                 } else {
1209                         addnl_dvdr = 1;
1210                         coal_intvl = CPSW_CMINTMAX_INTVL;
1211                 }
1212         }
1213
1214         num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1215         writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1216         writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1217
1218         int_ctrl |= CPSW_INTPACEEN;
1219         int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1220         int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1221
1222 update_return:
1223         writel(int_ctrl, &cpsw->wr_regs->int_control);
1224
1225         cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1226         cpsw->coal_intvl = coal_intvl;
1227
1228         return 0;
1229 }
1230
1231 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1232 {
1233         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1234
1235         switch (sset) {
1236         case ETH_SS_STATS:
1237                 return (CPSW_STATS_COMMON_LEN +
1238                        (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1239                        CPSW_STATS_CH_LEN);
1240         default:
1241                 return -EOPNOTSUPP;
1242         }
1243 }
1244
1245 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1246 {
1247         int ch_stats_len;
1248         int line;
1249         int i;
1250
1251         ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1252         for (i = 0; i < ch_stats_len; i++) {
1253                 line = i % CPSW_STATS_CH_LEN;
1254                 snprintf(*p, ETH_GSTRING_LEN,
1255                          "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1256                          i / CPSW_STATS_CH_LEN,
1257                          cpsw_gstrings_ch_stats[line].stat_string);
1258                 *p += ETH_GSTRING_LEN;
1259         }
1260 }
1261
1262 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1263 {
1264         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1265         u8 *p = data;
1266         int i;
1267
1268         switch (stringset) {
1269         case ETH_SS_STATS:
1270                 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1271                         memcpy(p, cpsw_gstrings_stats[i].stat_string,
1272                                ETH_GSTRING_LEN);
1273                         p += ETH_GSTRING_LEN;
1274                 }
1275
1276                 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1277                 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1278                 break;
1279         }
1280 }
1281
1282 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1283                                     struct ethtool_stats *stats, u64 *data)
1284 {
1285         u8 *p;
1286         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1287         struct cpdma_chan_stats ch_stats;
1288         int i, l, ch;
1289
1290         /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1291         for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1292                 data[l] = readl(cpsw->hw_stats +
1293                                 cpsw_gstrings_stats[l].stat_offset);
1294
1295         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1296                 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1297                 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1298                         p = (u8 *)&ch_stats +
1299                                 cpsw_gstrings_ch_stats[i].stat_offset;
1300                         data[l] = *(u32 *)p;
1301                 }
1302         }
1303
1304         for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1305                 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1306                 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1307                         p = (u8 *)&ch_stats +
1308                                 cpsw_gstrings_ch_stats[i].stat_offset;
1309                         data[l] = *(u32 *)p;
1310                 }
1311         }
1312 }
1313
1314 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1315                                         struct sk_buff *skb,
1316                                         struct cpdma_chan *txch)
1317 {
1318         struct cpsw_common *cpsw = priv->cpsw;
1319
1320         skb_tx_timestamp(skb);
1321         return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1322                                  priv->emac_port + cpsw->data.dual_emac);
1323 }
1324
1325 static inline void cpsw_add_dual_emac_def_ale_entries(
1326                 struct cpsw_priv *priv, struct cpsw_slave *slave,
1327                 u32 slave_port)
1328 {
1329         struct cpsw_common *cpsw = priv->cpsw;
1330         u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1331
1332         if (cpsw->version == CPSW_VERSION_1)
1333                 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1334         else
1335                 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1336         cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1337                           port_mask, port_mask, 0);
1338         cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1339                            port_mask, ALE_VLAN, slave->port_vlan, 0);
1340         cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1341                            HOST_PORT_NUM, ALE_VLAN |
1342                            ALE_SECURE, slave->port_vlan);
1343 }
1344
1345 static void soft_reset_slave(struct cpsw_slave *slave)
1346 {
1347         char name[32];
1348
1349         snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1350         soft_reset(name, &slave->sliver->soft_reset);
1351 }
1352
1353 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1354 {
1355         u32 slave_port;
1356         struct phy_device *phy;
1357         struct cpsw_common *cpsw = priv->cpsw;
1358
1359         soft_reset_slave(slave);
1360
1361         /* setup priority mapping */
1362         writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1363
1364         switch (cpsw->version) {
1365         case CPSW_VERSION_1:
1366                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1367                 /* Increase RX FIFO size to 5 for supporting fullduplex
1368                  * flow control mode
1369                  */
1370                 slave_write(slave,
1371                             (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1372                             CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1373                 break;
1374         case CPSW_VERSION_2:
1375         case CPSW_VERSION_3:
1376         case CPSW_VERSION_4:
1377                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1378                 /* Increase RX FIFO size to 5 for supporting fullduplex
1379                  * flow control mode
1380                  */
1381                 slave_write(slave,
1382                             (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1383                             CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1384                 break;
1385         }
1386
1387         /* setup max packet size, and mac address */
1388         writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1389         cpsw_set_slave_mac(slave, priv);
1390
1391         slave->mac_control = 0; /* no link yet */
1392
1393         slave_port = cpsw_get_slave_port(slave->slave_num);
1394
1395         if (cpsw->data.dual_emac)
1396                 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1397         else
1398                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1399                                    1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1400
1401         if (slave->data->phy_node) {
1402                 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1403                                  &cpsw_adjust_link, 0, slave->data->phy_if);
1404                 if (!phy) {
1405                         dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1406                                 slave->data->phy_node,
1407                                 slave->slave_num);
1408                         return;
1409                 }
1410         } else {
1411                 phy = phy_connect(priv->ndev, slave->data->phy_id,
1412                                  &cpsw_adjust_link, slave->data->phy_if);
1413                 if (IS_ERR(phy)) {
1414                         dev_err(priv->dev,
1415                                 "phy \"%s\" not found on slave %d, err %ld\n",
1416                                 slave->data->phy_id, slave->slave_num,
1417                                 PTR_ERR(phy));
1418                         return;
1419                 }
1420         }
1421
1422         slave->phy = phy;
1423
1424         phy_attached_info(slave->phy);
1425
1426         phy_start(slave->phy);
1427
1428         /* Configure GMII_SEL register */
1429         cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1430 }
1431
1432 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1433 {
1434         struct cpsw_common *cpsw = priv->cpsw;
1435         const int vlan = cpsw->data.default_vlan;
1436         u32 reg;
1437         int i;
1438         int unreg_mcast_mask;
1439
1440         reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1441                CPSW2_PORT_VLAN;
1442
1443         writel(vlan, &cpsw->host_port_regs->port_vlan);
1444
1445         for (i = 0; i < cpsw->data.slaves; i++)
1446                 slave_write(cpsw->slaves + i, vlan, reg);
1447
1448         if (priv->ndev->flags & IFF_ALLMULTI)
1449                 unreg_mcast_mask = ALE_ALL_PORTS;
1450         else
1451                 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1452
1453         cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1454                           ALE_ALL_PORTS, ALE_ALL_PORTS,
1455                           unreg_mcast_mask);
1456 }
1457
1458 static void cpsw_init_host_port(struct cpsw_priv *priv)
1459 {
1460         u32 fifo_mode;
1461         u32 control_reg;
1462         struct cpsw_common *cpsw = priv->cpsw;
1463
1464         /* soft reset the controller and initialize ale */
1465         soft_reset("cpsw", &cpsw->regs->soft_reset);
1466         cpsw_ale_start(cpsw->ale);
1467
1468         /* switch to vlan unaware mode */
1469         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1470                              CPSW_ALE_VLAN_AWARE);
1471         control_reg = readl(&cpsw->regs->control);
1472         control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1473         writel(control_reg, &cpsw->regs->control);
1474         fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1475                      CPSW_FIFO_NORMAL_MODE;
1476         writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1477
1478         /* setup host port priority mapping */
1479         writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1480                        &cpsw->host_port_regs->cpdma_tx_pri_map);
1481         writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1482
1483         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1484                              ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1485
1486         if (!cpsw->data.dual_emac) {
1487                 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1488                                    0, 0);
1489                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1490                                    ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1491         }
1492 }
1493
1494 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1495 {
1496         struct cpsw_common *cpsw = priv->cpsw;
1497         struct sk_buff *skb;
1498         int ch_buf_num;
1499         int ch, i, ret;
1500
1501         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1502                 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1503                 for (i = 0; i < ch_buf_num; i++) {
1504                         skb = __netdev_alloc_skb_ip_align(priv->ndev,
1505                                                           cpsw->rx_packet_max,
1506                                                           GFP_KERNEL);
1507                         if (!skb) {
1508                                 cpsw_err(priv, ifup, "cannot allocate skb\n");
1509                                 return -ENOMEM;
1510                         }
1511
1512                         skb_set_queue_mapping(skb, ch);
1513                         ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1514                                                 skb->data, skb_tailroom(skb),
1515                                                 0);
1516                         if (ret < 0) {
1517                                 cpsw_err(priv, ifup,
1518                                          "cannot submit skb to channel %d rx, error %d\n",
1519                                          ch, ret);
1520                                 kfree_skb(skb);
1521                                 return ret;
1522                         }
1523                         kmemleak_not_leak(skb);
1524                 }
1525
1526                 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1527                           ch, ch_buf_num);
1528         }
1529
1530         return 0;
1531 }
1532
1533 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1534 {
1535         u32 slave_port;
1536
1537         slave_port = cpsw_get_slave_port(slave->slave_num);
1538
1539         if (!slave->phy)
1540                 return;
1541         phy_stop(slave->phy);
1542         phy_disconnect(slave->phy);
1543         slave->phy = NULL;
1544         cpsw_ale_control_set(cpsw->ale, slave_port,
1545                              ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1546         soft_reset_slave(slave);
1547 }
1548
1549 static int cpsw_ndo_open(struct net_device *ndev)
1550 {
1551         struct cpsw_priv *priv = netdev_priv(ndev);
1552         struct cpsw_common *cpsw = priv->cpsw;
1553         int ret;
1554         u32 reg;
1555
1556         ret = pm_runtime_get_sync(cpsw->dev);
1557         if (ret < 0) {
1558                 pm_runtime_put_noidle(cpsw->dev);
1559                 return ret;
1560         }
1561
1562         netif_carrier_off(ndev);
1563
1564         /* Notify the stack of the actual queue counts. */
1565         ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1566         if (ret) {
1567                 dev_err(priv->dev, "cannot set real number of tx queues\n");
1568                 goto err_cleanup;
1569         }
1570
1571         ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1572         if (ret) {
1573                 dev_err(priv->dev, "cannot set real number of rx queues\n");
1574                 goto err_cleanup;
1575         }
1576
1577         reg = cpsw->version;
1578
1579         dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1580                  CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1581                  CPSW_RTL_VERSION(reg));
1582
1583         /* Initialize host and slave ports */
1584         if (!cpsw->usage_count)
1585                 cpsw_init_host_port(priv);
1586         for_each_slave(priv, cpsw_slave_open, priv);
1587
1588         /* Add default VLAN */
1589         if (!cpsw->data.dual_emac)
1590                 cpsw_add_default_vlan(priv);
1591         else
1592                 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1593                                   ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1594
1595         /* initialize shared resources for every ndev */
1596         if (!cpsw->usage_count) {
1597                 /* disable priority elevation */
1598                 writel_relaxed(0, &cpsw->regs->ptype);
1599
1600                 /* enable statistics collection only on all ports */
1601                 writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1602
1603                 /* Enable internal fifo flow control */
1604                 writel(0x7, &cpsw->regs->flow_control);
1605
1606                 napi_enable(&cpsw->napi_rx);
1607                 napi_enable(&cpsw->napi_tx);
1608
1609                 if (cpsw->tx_irq_disabled) {
1610                         cpsw->tx_irq_disabled = false;
1611                         enable_irq(cpsw->irqs_table[1]);
1612                 }
1613
1614                 if (cpsw->rx_irq_disabled) {
1615                         cpsw->rx_irq_disabled = false;
1616                         enable_irq(cpsw->irqs_table[0]);
1617                 }
1618
1619                 ret = cpsw_fill_rx_channels(priv);
1620                 if (ret < 0)
1621                         goto err_cleanup;
1622
1623                 if (cpts_register(cpsw->cpts))
1624                         dev_err(priv->dev, "error registering cpts device\n");
1625
1626         }
1627
1628         /* Enable Interrupt pacing if configured */
1629         if (cpsw->coal_intvl != 0) {
1630                 struct ethtool_coalesce coal;
1631
1632                 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1633                 cpsw_set_coalesce(ndev, &coal);
1634         }
1635
1636         cpdma_ctlr_start(cpsw->dma);
1637         cpsw_intr_enable(cpsw);
1638         cpsw->usage_count++;
1639
1640         return 0;
1641
1642 err_cleanup:
1643         cpdma_ctlr_stop(cpsw->dma);
1644         for_each_slave(priv, cpsw_slave_stop, cpsw);
1645         pm_runtime_put_sync(cpsw->dev);
1646         netif_carrier_off(priv->ndev);
1647         return ret;
1648 }
1649
1650 static int cpsw_ndo_stop(struct net_device *ndev)
1651 {
1652         struct cpsw_priv *priv = netdev_priv(ndev);
1653         struct cpsw_common *cpsw = priv->cpsw;
1654
1655         cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1656         netif_tx_stop_all_queues(priv->ndev);
1657         netif_carrier_off(priv->ndev);
1658
1659         if (cpsw->usage_count <= 1) {
1660                 napi_disable(&cpsw->napi_rx);
1661                 napi_disable(&cpsw->napi_tx);
1662                 cpts_unregister(cpsw->cpts);
1663                 cpsw_intr_disable(cpsw);
1664                 cpdma_ctlr_stop(cpsw->dma);
1665                 cpsw_ale_stop(cpsw->ale);
1666         }
1667         for_each_slave(priv, cpsw_slave_stop, cpsw);
1668
1669         if (cpsw_need_resplit(cpsw))
1670                 cpsw_split_res(ndev);
1671
1672         cpsw->usage_count--;
1673         pm_runtime_put_sync(cpsw->dev);
1674         return 0;
1675 }
1676
1677 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1678                                        struct net_device *ndev)
1679 {
1680         struct cpsw_priv *priv = netdev_priv(ndev);
1681         struct cpsw_common *cpsw = priv->cpsw;
1682         struct cpts *cpts = cpsw->cpts;
1683         struct netdev_queue *txq;
1684         struct cpdma_chan *txch;
1685         int ret, q_idx;
1686
1687         if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1688                 cpsw_err(priv, tx_err, "packet pad failed\n");
1689                 ndev->stats.tx_dropped++;
1690                 return NET_XMIT_DROP;
1691         }
1692
1693         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1694             cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1695                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1696
1697         q_idx = skb_get_queue_mapping(skb);
1698         if (q_idx >= cpsw->tx_ch_num)
1699                 q_idx = q_idx % cpsw->tx_ch_num;
1700
1701         txch = cpsw->txv[q_idx].ch;
1702         txq = netdev_get_tx_queue(ndev, q_idx);
1703         ret = cpsw_tx_packet_submit(priv, skb, txch);
1704         if (unlikely(ret != 0)) {
1705                 cpsw_err(priv, tx_err, "desc submit failed\n");
1706                 goto fail;
1707         }
1708
1709         /* If there is no more tx desc left free then we need to
1710          * tell the kernel to stop sending us tx frames.
1711          */
1712         if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1713                 netif_tx_stop_queue(txq);
1714
1715                 /* Barrier, so that stop_queue visible to other cpus */
1716                 smp_mb__after_atomic();
1717
1718                 if (cpdma_check_free_tx_desc(txch))
1719                         netif_tx_wake_queue(txq);
1720         }
1721
1722         return NETDEV_TX_OK;
1723 fail:
1724         ndev->stats.tx_dropped++;
1725         netif_tx_stop_queue(txq);
1726
1727         /* Barrier, so that stop_queue visible to other cpus */
1728         smp_mb__after_atomic();
1729
1730         if (cpdma_check_free_tx_desc(txch))
1731                 netif_tx_wake_queue(txq);
1732
1733         return NETDEV_TX_BUSY;
1734 }
1735
1736 #if IS_ENABLED(CONFIG_TI_CPTS)
1737
1738 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1739 {
1740         struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1741         u32 ts_en, seq_id;
1742
1743         if (!cpts_is_tx_enabled(cpsw->cpts) &&
1744             !cpts_is_rx_enabled(cpsw->cpts)) {
1745                 slave_write(slave, 0, CPSW1_TS_CTL);
1746                 return;
1747         }
1748
1749         seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1750         ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1751
1752         if (cpts_is_tx_enabled(cpsw->cpts))
1753                 ts_en |= CPSW_V1_TS_TX_EN;
1754
1755         if (cpts_is_rx_enabled(cpsw->cpts))
1756                 ts_en |= CPSW_V1_TS_RX_EN;
1757
1758         slave_write(slave, ts_en, CPSW1_TS_CTL);
1759         slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1760 }
1761
1762 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1763 {
1764         struct cpsw_slave *slave;
1765         struct cpsw_common *cpsw = priv->cpsw;
1766         u32 ctrl, mtype;
1767
1768         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1769
1770         ctrl = slave_read(slave, CPSW2_CONTROL);
1771         switch (cpsw->version) {
1772         case CPSW_VERSION_2:
1773                 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1774
1775                 if (cpts_is_tx_enabled(cpsw->cpts))
1776                         ctrl |= CTRL_V2_TX_TS_BITS;
1777
1778                 if (cpts_is_rx_enabled(cpsw->cpts))
1779                         ctrl |= CTRL_V2_RX_TS_BITS;
1780                 break;
1781         case CPSW_VERSION_3:
1782         default:
1783                 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1784
1785                 if (cpts_is_tx_enabled(cpsw->cpts))
1786                         ctrl |= CTRL_V3_TX_TS_BITS;
1787
1788                 if (cpts_is_rx_enabled(cpsw->cpts))
1789                         ctrl |= CTRL_V3_RX_TS_BITS;
1790                 break;
1791         }
1792
1793         mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1794
1795         slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1796         slave_write(slave, ctrl, CPSW2_CONTROL);
1797         writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1798 }
1799
1800 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1801 {
1802         struct cpsw_priv *priv = netdev_priv(dev);
1803         struct hwtstamp_config cfg;
1804         struct cpsw_common *cpsw = priv->cpsw;
1805         struct cpts *cpts = cpsw->cpts;
1806
1807         if (cpsw->version != CPSW_VERSION_1 &&
1808             cpsw->version != CPSW_VERSION_2 &&
1809             cpsw->version != CPSW_VERSION_3)
1810                 return -EOPNOTSUPP;
1811
1812         if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1813                 return -EFAULT;
1814
1815         /* reserved for future extensions */
1816         if (cfg.flags)
1817                 return -EINVAL;
1818
1819         if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1820                 return -ERANGE;
1821
1822         switch (cfg.rx_filter) {
1823         case HWTSTAMP_FILTER_NONE:
1824                 cpts_rx_enable(cpts, 0);
1825                 break;
1826         case HWTSTAMP_FILTER_ALL:
1827         case HWTSTAMP_FILTER_NTP_ALL:
1828                 return -ERANGE;
1829         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1830         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1831         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1832                 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1833                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1834                 break;
1835         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1836         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1837         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1838         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1839         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1840         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1841         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1842         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1843         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1844                 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1845                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1846                 break;
1847         default:
1848                 return -ERANGE;
1849         }
1850
1851         cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1852
1853         switch (cpsw->version) {
1854         case CPSW_VERSION_1:
1855                 cpsw_hwtstamp_v1(cpsw);
1856                 break;
1857         case CPSW_VERSION_2:
1858         case CPSW_VERSION_3:
1859                 cpsw_hwtstamp_v2(priv);
1860                 break;
1861         default:
1862                 WARN_ON(1);
1863         }
1864
1865         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1866 }
1867
1868 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1869 {
1870         struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1871         struct cpts *cpts = cpsw->cpts;
1872         struct hwtstamp_config cfg;
1873
1874         if (cpsw->version != CPSW_VERSION_1 &&
1875             cpsw->version != CPSW_VERSION_2 &&
1876             cpsw->version != CPSW_VERSION_3)
1877                 return -EOPNOTSUPP;
1878
1879         cfg.flags = 0;
1880         cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1881                       HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1882         cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1883                          cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1884
1885         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1886 }
1887 #else
1888 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1889 {
1890         return -EOPNOTSUPP;
1891 }
1892
1893 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1894 {
1895         return -EOPNOTSUPP;
1896 }
1897 #endif /*CONFIG_TI_CPTS*/
1898
1899 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1900 {
1901         struct cpsw_priv *priv = netdev_priv(dev);
1902         struct cpsw_common *cpsw = priv->cpsw;
1903         int slave_no = cpsw_slave_index(cpsw, priv);
1904
1905         if (!netif_running(dev))
1906                 return -EINVAL;
1907
1908         switch (cmd) {
1909         case SIOCSHWTSTAMP:
1910                 return cpsw_hwtstamp_set(dev, req);
1911         case SIOCGHWTSTAMP:
1912                 return cpsw_hwtstamp_get(dev, req);
1913         }
1914
1915         if (!cpsw->slaves[slave_no].phy)
1916                 return -EOPNOTSUPP;
1917         return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1918 }
1919
1920 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1921 {
1922         struct cpsw_priv *priv = netdev_priv(ndev);
1923         struct cpsw_common *cpsw = priv->cpsw;
1924         int ch;
1925
1926         cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1927         ndev->stats.tx_errors++;
1928         cpsw_intr_disable(cpsw);
1929         for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1930                 cpdma_chan_stop(cpsw->txv[ch].ch);
1931                 cpdma_chan_start(cpsw->txv[ch].ch);
1932         }
1933
1934         cpsw_intr_enable(cpsw);
1935         netif_trans_update(ndev);
1936         netif_tx_wake_all_queues(ndev);
1937 }
1938
1939 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1940 {
1941         struct cpsw_priv *priv = netdev_priv(ndev);
1942         struct sockaddr *addr = (struct sockaddr *)p;
1943         struct cpsw_common *cpsw = priv->cpsw;
1944         int flags = 0;
1945         u16 vid = 0;
1946         int ret;
1947
1948         if (!is_valid_ether_addr(addr->sa_data))
1949                 return -EADDRNOTAVAIL;
1950
1951         ret = pm_runtime_get_sync(cpsw->dev);
1952         if (ret < 0) {
1953                 pm_runtime_put_noidle(cpsw->dev);
1954                 return ret;
1955         }
1956
1957         if (cpsw->data.dual_emac) {
1958                 vid = cpsw->slaves[priv->emac_port].port_vlan;
1959                 flags = ALE_VLAN;
1960         }
1961
1962         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1963                            flags, vid);
1964         cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1965                            flags, vid);
1966
1967         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1968         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1969         for_each_slave(priv, cpsw_set_slave_mac, priv);
1970
1971         pm_runtime_put(cpsw->dev);
1972
1973         return 0;
1974 }
1975
1976 #ifdef CONFIG_NET_POLL_CONTROLLER
1977 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1978 {
1979         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1980
1981         cpsw_intr_disable(cpsw);
1982         cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1983         cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1984         cpsw_intr_enable(cpsw);
1985 }
1986 #endif
1987
1988 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1989                                 unsigned short vid)
1990 {
1991         int ret;
1992         int unreg_mcast_mask = 0;
1993         u32 port_mask;
1994         struct cpsw_common *cpsw = priv->cpsw;
1995
1996         if (cpsw->data.dual_emac) {
1997                 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1998
1999                 if (priv->ndev->flags & IFF_ALLMULTI)
2000                         unreg_mcast_mask = port_mask;
2001         } else {
2002                 port_mask = ALE_ALL_PORTS;
2003
2004                 if (priv->ndev->flags & IFF_ALLMULTI)
2005                         unreg_mcast_mask = ALE_ALL_PORTS;
2006                 else
2007                         unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2008         }
2009
2010         ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2011                                 unreg_mcast_mask);
2012         if (ret != 0)
2013                 return ret;
2014
2015         ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2016                                  HOST_PORT_NUM, ALE_VLAN, vid);
2017         if (ret != 0)
2018                 goto clean_vid;
2019
2020         ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2021                                  port_mask, ALE_VLAN, vid, 0);
2022         if (ret != 0)
2023                 goto clean_vlan_ucast;
2024         return 0;
2025
2026 clean_vlan_ucast:
2027         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2028                            HOST_PORT_NUM, ALE_VLAN, vid);
2029 clean_vid:
2030         cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2031         return ret;
2032 }
2033
2034 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2035                                     __be16 proto, u16 vid)
2036 {
2037         struct cpsw_priv *priv = netdev_priv(ndev);
2038         struct cpsw_common *cpsw = priv->cpsw;
2039         int ret;
2040
2041         if (vid == cpsw->data.default_vlan)
2042                 return 0;
2043
2044         ret = pm_runtime_get_sync(cpsw->dev);
2045         if (ret < 0) {
2046                 pm_runtime_put_noidle(cpsw->dev);
2047                 return ret;
2048         }
2049
2050         if (cpsw->data.dual_emac) {
2051                 /* In dual EMAC, reserved VLAN id should not be used for
2052                  * creating VLAN interfaces as this can break the dual
2053                  * EMAC port separation
2054                  */
2055                 int i;
2056
2057                 for (i = 0; i < cpsw->data.slaves; i++) {
2058                         if (vid == cpsw->slaves[i].port_vlan)
2059                                 return -EINVAL;
2060                 }
2061         }
2062
2063         dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2064         ret = cpsw_add_vlan_ale_entry(priv, vid);
2065
2066         pm_runtime_put(cpsw->dev);
2067         return ret;
2068 }
2069
2070 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2071                                      __be16 proto, u16 vid)
2072 {
2073         struct cpsw_priv *priv = netdev_priv(ndev);
2074         struct cpsw_common *cpsw = priv->cpsw;
2075         int ret;
2076
2077         if (vid == cpsw->data.default_vlan)
2078                 return 0;
2079
2080         ret = pm_runtime_get_sync(cpsw->dev);
2081         if (ret < 0) {
2082                 pm_runtime_put_noidle(cpsw->dev);
2083                 return ret;
2084         }
2085
2086         if (cpsw->data.dual_emac) {
2087                 int i;
2088
2089                 for (i = 0; i < cpsw->data.slaves; i++) {
2090                         if (vid == cpsw->slaves[i].port_vlan)
2091                                 return -EINVAL;
2092                 }
2093         }
2094
2095         dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2096         ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2097         if (ret != 0)
2098                 return ret;
2099
2100         ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2101                                  HOST_PORT_NUM, ALE_VLAN, vid);
2102         if (ret != 0)
2103                 return ret;
2104
2105         ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2106                                  0, ALE_VLAN, vid);
2107         pm_runtime_put(cpsw->dev);
2108         return ret;
2109 }
2110
2111 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2112 {
2113         struct cpsw_priv *priv = netdev_priv(ndev);
2114         struct cpsw_common *cpsw = priv->cpsw;
2115         struct cpsw_slave *slave;
2116         u32 min_rate;
2117         u32 ch_rate;
2118         int i, ret;
2119
2120         ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2121         if (ch_rate == rate)
2122                 return 0;
2123
2124         ch_rate = rate * 1000;
2125         min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2126         if ((ch_rate < min_rate && ch_rate)) {
2127                 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2128                         min_rate);
2129                 return -EINVAL;
2130         }
2131
2132         if (rate > cpsw->speed) {
2133                 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2134                 return -EINVAL;
2135         }
2136
2137         ret = pm_runtime_get_sync(cpsw->dev);
2138         if (ret < 0) {
2139                 pm_runtime_put_noidle(cpsw->dev);
2140                 return ret;
2141         }
2142
2143         ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2144         pm_runtime_put(cpsw->dev);
2145
2146         if (ret)
2147                 return ret;
2148
2149         /* update rates for slaves tx queues */
2150         for (i = 0; i < cpsw->data.slaves; i++) {
2151                 slave = &cpsw->slaves[i];
2152                 if (!slave->ndev)
2153                         continue;
2154
2155                 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2156         }
2157
2158         cpsw_split_res(ndev);
2159         return ret;
2160 }
2161
2162 static const struct net_device_ops cpsw_netdev_ops = {
2163         .ndo_open               = cpsw_ndo_open,
2164         .ndo_stop               = cpsw_ndo_stop,
2165         .ndo_start_xmit         = cpsw_ndo_start_xmit,
2166         .ndo_set_mac_address    = cpsw_ndo_set_mac_address,
2167         .ndo_do_ioctl           = cpsw_ndo_ioctl,
2168         .ndo_validate_addr      = eth_validate_addr,
2169         .ndo_tx_timeout         = cpsw_ndo_tx_timeout,
2170         .ndo_set_rx_mode        = cpsw_ndo_set_rx_mode,
2171         .ndo_set_tx_maxrate     = cpsw_ndo_set_tx_maxrate,
2172 #ifdef CONFIG_NET_POLL_CONTROLLER
2173         .ndo_poll_controller    = cpsw_ndo_poll_controller,
2174 #endif
2175         .ndo_vlan_rx_add_vid    = cpsw_ndo_vlan_rx_add_vid,
2176         .ndo_vlan_rx_kill_vid   = cpsw_ndo_vlan_rx_kill_vid,
2177 };
2178
2179 static int cpsw_get_regs_len(struct net_device *ndev)
2180 {
2181         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2182
2183         return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2184 }
2185
2186 static void cpsw_get_regs(struct net_device *ndev,
2187                           struct ethtool_regs *regs, void *p)
2188 {
2189         u32 *reg = p;
2190         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2191
2192         /* update CPSW IP version */
2193         regs->version = cpsw->version;
2194
2195         cpsw_ale_dump(cpsw->ale, reg);
2196 }
2197
2198 static void cpsw_get_drvinfo(struct net_device *ndev,
2199                              struct ethtool_drvinfo *info)
2200 {
2201         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2202         struct platform_device  *pdev = to_platform_device(cpsw->dev);
2203
2204         strlcpy(info->driver, "cpsw", sizeof(info->driver));
2205         strlcpy(info->version, "1.0", sizeof(info->version));
2206         strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2207 }
2208
2209 static u32 cpsw_get_msglevel(struct net_device *ndev)
2210 {
2211         struct cpsw_priv *priv = netdev_priv(ndev);
2212         return priv->msg_enable;
2213 }
2214
2215 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2216 {
2217         struct cpsw_priv *priv = netdev_priv(ndev);
2218         priv->msg_enable = value;
2219 }
2220
2221 #if IS_ENABLED(CONFIG_TI_CPTS)
2222 static int cpsw_get_ts_info(struct net_device *ndev,
2223                             struct ethtool_ts_info *info)
2224 {
2225         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2226
2227         info->so_timestamping =
2228                 SOF_TIMESTAMPING_TX_HARDWARE |
2229                 SOF_TIMESTAMPING_TX_SOFTWARE |
2230                 SOF_TIMESTAMPING_RX_HARDWARE |
2231                 SOF_TIMESTAMPING_RX_SOFTWARE |
2232                 SOF_TIMESTAMPING_SOFTWARE |
2233                 SOF_TIMESTAMPING_RAW_HARDWARE;
2234         info->phc_index = cpsw->cpts->phc_index;
2235         info->tx_types =
2236                 (1 << HWTSTAMP_TX_OFF) |
2237                 (1 << HWTSTAMP_TX_ON);
2238         info->rx_filters =
2239                 (1 << HWTSTAMP_FILTER_NONE) |
2240                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2241                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2242         return 0;
2243 }
2244 #else
2245 static int cpsw_get_ts_info(struct net_device *ndev,
2246                             struct ethtool_ts_info *info)
2247 {
2248         info->so_timestamping =
2249                 SOF_TIMESTAMPING_TX_SOFTWARE |
2250                 SOF_TIMESTAMPING_RX_SOFTWARE |
2251                 SOF_TIMESTAMPING_SOFTWARE;
2252         info->phc_index = -1;
2253         info->tx_types = 0;
2254         info->rx_filters = 0;
2255         return 0;
2256 }
2257 #endif
2258
2259 static int cpsw_get_link_ksettings(struct net_device *ndev,
2260                                    struct ethtool_link_ksettings *ecmd)
2261 {
2262         struct cpsw_priv *priv = netdev_priv(ndev);
2263         struct cpsw_common *cpsw = priv->cpsw;
2264         int slave_no = cpsw_slave_index(cpsw, priv);
2265
2266         if (!cpsw->slaves[slave_no].phy)
2267                 return -EOPNOTSUPP;
2268
2269         phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2270         return 0;
2271 }
2272
2273 static int cpsw_set_link_ksettings(struct net_device *ndev,
2274                                    const struct ethtool_link_ksettings *ecmd)
2275 {
2276         struct cpsw_priv *priv = netdev_priv(ndev);
2277         struct cpsw_common *cpsw = priv->cpsw;
2278         int slave_no = cpsw_slave_index(cpsw, priv);
2279
2280         if (cpsw->slaves[slave_no].phy)
2281                 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2282                                                  ecmd);
2283         else
2284                 return -EOPNOTSUPP;
2285 }
2286
2287 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2288 {
2289         struct cpsw_priv *priv = netdev_priv(ndev);
2290         struct cpsw_common *cpsw = priv->cpsw;
2291         int slave_no = cpsw_slave_index(cpsw, priv);
2292
2293         wol->supported = 0;
2294         wol->wolopts = 0;
2295
2296         if (cpsw->slaves[slave_no].phy)
2297                 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2298 }
2299
2300 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2301 {
2302         struct cpsw_priv *priv = netdev_priv(ndev);
2303         struct cpsw_common *cpsw = priv->cpsw;
2304         int slave_no = cpsw_slave_index(cpsw, priv);
2305
2306         if (cpsw->slaves[slave_no].phy)
2307                 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2308         else
2309                 return -EOPNOTSUPP;
2310 }
2311
2312 static void cpsw_get_pauseparam(struct net_device *ndev,
2313                                 struct ethtool_pauseparam *pause)
2314 {
2315         struct cpsw_priv *priv = netdev_priv(ndev);
2316
2317         pause->autoneg = AUTONEG_DISABLE;
2318         pause->rx_pause = priv->rx_pause ? true : false;
2319         pause->tx_pause = priv->tx_pause ? true : false;
2320 }
2321
2322 static int cpsw_set_pauseparam(struct net_device *ndev,
2323                                struct ethtool_pauseparam *pause)
2324 {
2325         struct cpsw_priv *priv = netdev_priv(ndev);
2326         bool link;
2327
2328         priv->rx_pause = pause->rx_pause ? true : false;
2329         priv->tx_pause = pause->tx_pause ? true : false;
2330
2331         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2332         return 0;
2333 }
2334
2335 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2336 {
2337         struct cpsw_priv *priv = netdev_priv(ndev);
2338         struct cpsw_common *cpsw = priv->cpsw;
2339         int ret;
2340
2341         ret = pm_runtime_get_sync(cpsw->dev);
2342         if (ret < 0) {
2343                 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2344                 pm_runtime_put_noidle(cpsw->dev);
2345         }
2346
2347         return ret;
2348 }
2349
2350 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2351 {
2352         struct cpsw_priv *priv = netdev_priv(ndev);
2353         int ret;
2354
2355         ret = pm_runtime_put(priv->cpsw->dev);
2356         if (ret < 0)
2357                 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2358 }
2359
2360 static void cpsw_get_channels(struct net_device *ndev,
2361                               struct ethtool_channels *ch)
2362 {
2363         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2364
2365         ch->max_combined = 0;
2366         ch->max_rx = CPSW_MAX_QUEUES;
2367         ch->max_tx = CPSW_MAX_QUEUES;
2368         ch->max_other = 0;
2369         ch->other_count = 0;
2370         ch->rx_count = cpsw->rx_ch_num;
2371         ch->tx_count = cpsw->tx_ch_num;
2372         ch->combined_count = 0;
2373 }
2374
2375 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2376                                   struct ethtool_channels *ch)
2377 {
2378         if (ch->combined_count)
2379                 return -EINVAL;
2380
2381         /* verify we have at least one channel in each direction */
2382         if (!ch->rx_count || !ch->tx_count)
2383                 return -EINVAL;
2384
2385         if (ch->rx_count > cpsw->data.channels ||
2386             ch->tx_count > cpsw->data.channels)
2387                 return -EINVAL;
2388
2389         return 0;
2390 }
2391
2392 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2393 {
2394         struct cpsw_common *cpsw = priv->cpsw;
2395         void (*handler)(void *, int, int);
2396         struct netdev_queue *queue;
2397         struct cpsw_vector *vec;
2398         int ret, *ch;
2399
2400         if (rx) {
2401                 ch = &cpsw->rx_ch_num;
2402                 vec = cpsw->rxv;
2403                 handler = cpsw_rx_handler;
2404         } else {
2405                 ch = &cpsw->tx_ch_num;
2406                 vec = cpsw->txv;
2407                 handler = cpsw_tx_handler;
2408         }
2409
2410         while (*ch < ch_num) {
2411                 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2412                 queue = netdev_get_tx_queue(priv->ndev, *ch);
2413                 queue->tx_maxrate = 0;
2414
2415                 if (IS_ERR(vec[*ch].ch))
2416                         return PTR_ERR(vec[*ch].ch);
2417
2418                 if (!vec[*ch].ch)
2419                         return -EINVAL;
2420
2421                 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2422                           (rx ? "rx" : "tx"));
2423                 (*ch)++;
2424         }
2425
2426         while (*ch > ch_num) {
2427                 (*ch)--;
2428
2429                 ret = cpdma_chan_destroy(vec[*ch].ch);
2430                 if (ret)
2431                         return ret;
2432
2433                 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2434                           (rx ? "rx" : "tx"));
2435         }
2436
2437         return 0;
2438 }
2439
2440 static int cpsw_update_channels(struct cpsw_priv *priv,
2441                                 struct ethtool_channels *ch)
2442 {
2443         int ret;
2444
2445         ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2446         if (ret)
2447                 return ret;
2448
2449         ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2450         if (ret)
2451                 return ret;
2452
2453         return 0;
2454 }
2455
2456 static void cpsw_suspend_data_pass(struct net_device *ndev)
2457 {
2458         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2459         struct cpsw_slave *slave;
2460         int i;
2461
2462         /* Disable NAPI scheduling */
2463         cpsw_intr_disable(cpsw);
2464
2465         /* Stop all transmit queues for every network device.
2466          * Disable re-using rx descriptors with dormant_on.
2467          */
2468         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2469                 if (!(slave->ndev && netif_running(slave->ndev)))
2470                         continue;
2471
2472                 netif_tx_stop_all_queues(slave->ndev);
2473                 netif_dormant_on(slave->ndev);
2474         }
2475
2476         /* Handle rest of tx packets and stop cpdma channels */
2477         cpdma_ctlr_stop(cpsw->dma);
2478 }
2479
2480 static int cpsw_resume_data_pass(struct net_device *ndev)
2481 {
2482         struct cpsw_priv *priv = netdev_priv(ndev);
2483         struct cpsw_common *cpsw = priv->cpsw;
2484         struct cpsw_slave *slave;
2485         int i, ret;
2486
2487         /* Allow rx packets handling */
2488         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2489                 if (slave->ndev && netif_running(slave->ndev))
2490                         netif_dormant_off(slave->ndev);
2491
2492         /* After this receive is started */
2493         if (cpsw->usage_count) {
2494                 ret = cpsw_fill_rx_channels(priv);
2495                 if (ret)
2496                         return ret;
2497
2498                 cpdma_ctlr_start(cpsw->dma);
2499                 cpsw_intr_enable(cpsw);
2500         }
2501
2502         /* Resume transmit for every affected interface */
2503         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2504                 if (slave->ndev && netif_running(slave->ndev))
2505                         netif_tx_start_all_queues(slave->ndev);
2506
2507         return 0;
2508 }
2509
2510 static int cpsw_set_channels(struct net_device *ndev,
2511                              struct ethtool_channels *chs)
2512 {
2513         struct cpsw_priv *priv = netdev_priv(ndev);
2514         struct cpsw_common *cpsw = priv->cpsw;
2515         struct cpsw_slave *slave;
2516         int i, ret;
2517
2518         ret = cpsw_check_ch_settings(cpsw, chs);
2519         if (ret < 0)
2520                 return ret;
2521
2522         cpsw_suspend_data_pass(ndev);
2523         ret = cpsw_update_channels(priv, chs);
2524         if (ret)
2525                 goto err;
2526
2527         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2528                 if (!(slave->ndev && netif_running(slave->ndev)))
2529                         continue;
2530
2531                 /* Inform stack about new count of queues */
2532                 ret = netif_set_real_num_tx_queues(slave->ndev,
2533                                                    cpsw->tx_ch_num);
2534                 if (ret) {
2535                         dev_err(priv->dev, "cannot set real number of tx queues\n");
2536                         goto err;
2537                 }
2538
2539                 ret = netif_set_real_num_rx_queues(slave->ndev,
2540                                                    cpsw->rx_ch_num);
2541                 if (ret) {
2542                         dev_err(priv->dev, "cannot set real number of rx queues\n");
2543                         goto err;
2544                 }
2545         }
2546
2547         if (cpsw->usage_count)
2548                 cpsw_split_res(ndev);
2549
2550         ret = cpsw_resume_data_pass(ndev);
2551         if (!ret)
2552                 return 0;
2553 err:
2554         dev_err(priv->dev, "cannot update channels number, closing device\n");
2555         dev_close(ndev);
2556         return ret;
2557 }
2558
2559 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2560 {
2561         struct cpsw_priv *priv = netdev_priv(ndev);
2562         struct cpsw_common *cpsw = priv->cpsw;
2563         int slave_no = cpsw_slave_index(cpsw, priv);
2564
2565         if (cpsw->slaves[slave_no].phy)
2566                 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2567         else
2568                 return -EOPNOTSUPP;
2569 }
2570
2571 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2572 {
2573         struct cpsw_priv *priv = netdev_priv(ndev);
2574         struct cpsw_common *cpsw = priv->cpsw;
2575         int slave_no = cpsw_slave_index(cpsw, priv);
2576
2577         if (cpsw->slaves[slave_no].phy)
2578                 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2579         else
2580                 return -EOPNOTSUPP;
2581 }
2582
2583 static int cpsw_nway_reset(struct net_device *ndev)
2584 {
2585         struct cpsw_priv *priv = netdev_priv(ndev);
2586         struct cpsw_common *cpsw = priv->cpsw;
2587         int slave_no = cpsw_slave_index(cpsw, priv);
2588
2589         if (cpsw->slaves[slave_no].phy)
2590                 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2591         else
2592                 return -EOPNOTSUPP;
2593 }
2594
2595 static void cpsw_get_ringparam(struct net_device *ndev,
2596                                struct ethtool_ringparam *ering)
2597 {
2598         struct cpsw_priv *priv = netdev_priv(ndev);
2599         struct cpsw_common *cpsw = priv->cpsw;
2600
2601         /* not supported */
2602         ering->tx_max_pending = 0;
2603         ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2604         ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2605         ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2606 }
2607
2608 static int cpsw_set_ringparam(struct net_device *ndev,
2609                               struct ethtool_ringparam *ering)
2610 {
2611         struct cpsw_priv *priv = netdev_priv(ndev);
2612         struct cpsw_common *cpsw = priv->cpsw;
2613         int ret;
2614
2615         /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2616
2617         if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2618             ering->rx_pending < CPSW_MAX_QUEUES ||
2619             ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2620                 return -EINVAL;
2621
2622         if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2623                 return 0;
2624
2625         cpsw_suspend_data_pass(ndev);
2626
2627         cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2628
2629         if (cpsw->usage_count)
2630                 cpdma_chan_split_pool(cpsw->dma);
2631
2632         ret = cpsw_resume_data_pass(ndev);
2633         if (!ret)
2634                 return 0;
2635
2636         dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2637         dev_close(ndev);
2638         return ret;
2639 }
2640
2641 static const struct ethtool_ops cpsw_ethtool_ops = {
2642         .get_drvinfo    = cpsw_get_drvinfo,
2643         .get_msglevel   = cpsw_get_msglevel,
2644         .set_msglevel   = cpsw_set_msglevel,
2645         .get_link       = ethtool_op_get_link,
2646         .get_ts_info    = cpsw_get_ts_info,
2647         .get_coalesce   = cpsw_get_coalesce,
2648         .set_coalesce   = cpsw_set_coalesce,
2649         .get_sset_count         = cpsw_get_sset_count,
2650         .get_strings            = cpsw_get_strings,
2651         .get_ethtool_stats      = cpsw_get_ethtool_stats,
2652         .get_pauseparam         = cpsw_get_pauseparam,
2653         .set_pauseparam         = cpsw_set_pauseparam,
2654         .get_wol        = cpsw_get_wol,
2655         .set_wol        = cpsw_set_wol,
2656         .get_regs_len   = cpsw_get_regs_len,
2657         .get_regs       = cpsw_get_regs,
2658         .begin          = cpsw_ethtool_op_begin,
2659         .complete       = cpsw_ethtool_op_complete,
2660         .get_channels   = cpsw_get_channels,
2661         .set_channels   = cpsw_set_channels,
2662         .get_link_ksettings     = cpsw_get_link_ksettings,
2663         .set_link_ksettings     = cpsw_set_link_ksettings,
2664         .get_eee        = cpsw_get_eee,
2665         .set_eee        = cpsw_set_eee,
2666         .nway_reset     = cpsw_nway_reset,
2667         .get_ringparam = cpsw_get_ringparam,
2668         .set_ringparam = cpsw_set_ringparam,
2669 };
2670
2671 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2672                             u32 slave_reg_ofs, u32 sliver_reg_ofs)
2673 {
2674         void __iomem            *regs = cpsw->regs;
2675         int                     slave_num = slave->slave_num;
2676         struct cpsw_slave_data  *data = cpsw->data.slave_data + slave_num;
2677
2678         slave->data     = data;
2679         slave->regs     = regs + slave_reg_ofs;
2680         slave->sliver   = regs + sliver_reg_ofs;
2681         slave->port_vlan = data->dual_emac_res_vlan;
2682 }
2683
2684 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2685                          struct platform_device *pdev)
2686 {
2687         struct device_node *node = pdev->dev.of_node;
2688         struct device_node *slave_node;
2689         int i = 0, ret;
2690         u32 prop;
2691
2692         if (!node)
2693                 return -EINVAL;
2694
2695         if (of_property_read_u32(node, "slaves", &prop)) {
2696                 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2697                 return -EINVAL;
2698         }
2699         data->slaves = prop;
2700
2701         if (of_property_read_u32(node, "active_slave", &prop)) {
2702                 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2703                 return -EINVAL;
2704         }
2705         data->active_slave = prop;
2706
2707         data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2708                                         * sizeof(struct cpsw_slave_data),
2709                                         GFP_KERNEL);
2710         if (!data->slave_data)
2711                 return -ENOMEM;
2712
2713         if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2714                 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2715                 return -EINVAL;
2716         }
2717         data->channels = prop;
2718
2719         if (of_property_read_u32(node, "ale_entries", &prop)) {
2720                 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2721                 return -EINVAL;
2722         }
2723         data->ale_entries = prop;
2724
2725         if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2726                 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2727                 return -EINVAL;
2728         }
2729         data->bd_ram_size = prop;
2730
2731         if (of_property_read_u32(node, "mac_control", &prop)) {
2732                 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2733                 return -EINVAL;
2734         }
2735         data->mac_control = prop;
2736
2737         if (of_property_read_bool(node, "dual_emac"))
2738                 data->dual_emac = 1;
2739
2740         /*
2741          * Populate all the child nodes here...
2742          */
2743         ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2744         /* We do not want to force this, as in some cases may not have child */
2745         if (ret)
2746                 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2747
2748         for_each_available_child_of_node(node, slave_node) {
2749                 struct cpsw_slave_data *slave_data = data->slave_data + i;
2750                 const void *mac_addr = NULL;
2751                 int lenp;
2752                 const __be32 *parp;
2753
2754                 /* This is no slave child node, continue */
2755                 if (strcmp(slave_node->name, "slave"))
2756                         continue;
2757
2758                 slave_data->phy_node = of_parse_phandle(slave_node,
2759                                                         "phy-handle", 0);
2760                 parp = of_get_property(slave_node, "phy_id", &lenp);
2761                 if (slave_data->phy_node) {
2762                         dev_dbg(&pdev->dev,
2763                                 "slave[%d] using phy-handle=\"%pOF\"\n",
2764                                 i, slave_data->phy_node);
2765                 } else if (of_phy_is_fixed_link(slave_node)) {
2766                         /* In the case of a fixed PHY, the DT node associated
2767                          * to the PHY is the Ethernet MAC DT node.
2768                          */
2769                         ret = of_phy_register_fixed_link(slave_node);
2770                         if (ret) {
2771                                 if (ret != -EPROBE_DEFER)
2772                                         dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2773                                 return ret;
2774                         }
2775                         slave_data->phy_node = of_node_get(slave_node);
2776                 } else if (parp) {
2777                         u32 phyid;
2778                         struct device_node *mdio_node;
2779                         struct platform_device *mdio;
2780
2781                         if (lenp != (sizeof(__be32) * 2)) {
2782                                 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2783                                 goto no_phy_slave;
2784                         }
2785                         mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2786                         phyid = be32_to_cpup(parp+1);
2787                         mdio = of_find_device_by_node(mdio_node);
2788                         of_node_put(mdio_node);
2789                         if (!mdio) {
2790                                 dev_err(&pdev->dev, "Missing mdio platform device\n");
2791                                 return -EINVAL;
2792                         }
2793                         snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2794                                  PHY_ID_FMT, mdio->name, phyid);
2795                         put_device(&mdio->dev);
2796                 } else {
2797                         dev_err(&pdev->dev,
2798                                 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2799                                 i);
2800                         goto no_phy_slave;
2801                 }
2802                 slave_data->phy_if = of_get_phy_mode(slave_node);
2803                 if (slave_data->phy_if < 0) {
2804                         dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2805                                 i);
2806                         return slave_data->phy_if;
2807                 }
2808
2809 no_phy_slave:
2810                 mac_addr = of_get_mac_address(slave_node);
2811                 if (mac_addr) {
2812                         memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2813                 } else {
2814                         ret = ti_cm_get_macid(&pdev->dev, i,
2815                                               slave_data->mac_addr);
2816                         if (ret)
2817                                 return ret;
2818                 }
2819                 if (data->dual_emac) {
2820                         if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2821                                                  &prop)) {
2822                                 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2823                                 slave_data->dual_emac_res_vlan = i+1;
2824                                 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2825                                         slave_data->dual_emac_res_vlan, i);
2826                         } else {
2827                                 slave_data->dual_emac_res_vlan = prop;
2828                         }
2829                 }
2830
2831                 i++;
2832                 if (i == data->slaves)
2833                         break;
2834         }
2835
2836         return 0;
2837 }
2838
2839 static void cpsw_remove_dt(struct platform_device *pdev)
2840 {
2841         struct net_device *ndev = platform_get_drvdata(pdev);
2842         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2843         struct cpsw_platform_data *data = &cpsw->data;
2844         struct device_node *node = pdev->dev.of_node;
2845         struct device_node *slave_node;
2846         int i = 0;
2847
2848         for_each_available_child_of_node(node, slave_node) {
2849                 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2850
2851                 if (strcmp(slave_node->name, "slave"))
2852                         continue;
2853
2854                 if (of_phy_is_fixed_link(slave_node))
2855                         of_phy_deregister_fixed_link(slave_node);
2856
2857                 of_node_put(slave_data->phy_node);
2858
2859                 i++;
2860                 if (i == data->slaves)
2861                         break;
2862         }
2863
2864         of_platform_depopulate(&pdev->dev);
2865 }
2866
2867 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2868 {
2869         struct cpsw_common              *cpsw = priv->cpsw;
2870         struct cpsw_platform_data       *data = &cpsw->data;
2871         struct net_device               *ndev;
2872         struct cpsw_priv                *priv_sl2;
2873         int ret = 0;
2874
2875         ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2876         if (!ndev) {
2877                 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2878                 return -ENOMEM;
2879         }
2880
2881         priv_sl2 = netdev_priv(ndev);
2882         priv_sl2->cpsw = cpsw;
2883         priv_sl2->ndev = ndev;
2884         priv_sl2->dev  = &ndev->dev;
2885         priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2886
2887         if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2888                 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2889                         ETH_ALEN);
2890                 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2891                          priv_sl2->mac_addr);
2892         } else {
2893                 random_ether_addr(priv_sl2->mac_addr);
2894                 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2895                          priv_sl2->mac_addr);
2896         }
2897         memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2898
2899         priv_sl2->emac_port = 1;
2900         cpsw->slaves[1].ndev = ndev;
2901         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2902
2903         ndev->netdev_ops = &cpsw_netdev_ops;
2904         ndev->ethtool_ops = &cpsw_ethtool_ops;
2905
2906         /* register the network device */
2907         SET_NETDEV_DEV(ndev, cpsw->dev);
2908         ret = register_netdev(ndev);
2909         if (ret) {
2910                 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2911                 free_netdev(ndev);
2912                 ret = -ENODEV;
2913         }
2914
2915         return ret;
2916 }
2917
2918 #define CPSW_QUIRK_IRQ          BIT(0)
2919
2920 static const struct platform_device_id cpsw_devtype[] = {
2921         {
2922                 /* keep it for existing comaptibles */
2923                 .name = "cpsw",
2924                 .driver_data = CPSW_QUIRK_IRQ,
2925         }, {
2926                 .name = "am335x-cpsw",
2927                 .driver_data = CPSW_QUIRK_IRQ,
2928         }, {
2929                 .name = "am4372-cpsw",
2930                 .driver_data = 0,
2931         }, {
2932                 .name = "dra7-cpsw",
2933                 .driver_data = 0,
2934         }, {
2935                 /* sentinel */
2936         }
2937 };
2938 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2939
2940 enum ti_cpsw_type {
2941         CPSW = 0,
2942         AM335X_CPSW,
2943         AM4372_CPSW,
2944         DRA7_CPSW,
2945 };
2946
2947 static const struct of_device_id cpsw_of_mtable[] = {
2948         { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2949         { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2950         { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2951         { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2952         { /* sentinel */ },
2953 };
2954 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2955
2956 static int cpsw_probe(struct platform_device *pdev)
2957 {
2958         struct clk                      *clk;
2959         struct cpsw_platform_data       *data;
2960         struct net_device               *ndev;
2961         struct cpsw_priv                *priv;
2962         struct cpdma_params             dma_params;
2963         struct cpsw_ale_params          ale_params;
2964         void __iomem                    *ss_regs;
2965         void __iomem                    *cpts_regs;
2966         struct resource                 *res, *ss_res;
2967         const struct of_device_id       *of_id;
2968         struct gpio_descs               *mode;
2969         u32 slave_offset, sliver_offset, slave_size;
2970         struct cpsw_common              *cpsw;
2971         int ret = 0, i;
2972         int irq;
2973
2974         cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2975         if (!cpsw)
2976                 return -ENOMEM;
2977
2978         cpsw->dev = &pdev->dev;
2979
2980         ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2981         if (!ndev) {
2982                 dev_err(&pdev->dev, "error allocating net_device\n");
2983                 return -ENOMEM;
2984         }
2985
2986         platform_set_drvdata(pdev, ndev);
2987         priv = netdev_priv(ndev);
2988         priv->cpsw = cpsw;
2989         priv->ndev = ndev;
2990         priv->dev  = &ndev->dev;
2991         priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2992         cpsw->rx_packet_max = max(rx_packet_max, 128);
2993
2994         mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2995         if (IS_ERR(mode)) {
2996                 ret = PTR_ERR(mode);
2997                 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2998                 goto clean_ndev_ret;
2999         }
3000
3001         /*
3002          * This may be required here for child devices.
3003          */
3004         pm_runtime_enable(&pdev->dev);
3005
3006         /* Select default pin state */
3007         pinctrl_pm_select_default_state(&pdev->dev);
3008
3009         /* Need to enable clocks with runtime PM api to access module
3010          * registers
3011          */
3012         ret = pm_runtime_get_sync(&pdev->dev);
3013         if (ret < 0) {
3014                 pm_runtime_put_noidle(&pdev->dev);
3015                 goto clean_runtime_disable_ret;
3016         }
3017
3018         ret = cpsw_probe_dt(&cpsw->data, pdev);
3019         if (ret)
3020                 goto clean_dt_ret;
3021
3022         data = &cpsw->data;
3023         cpsw->rx_ch_num = 1;
3024         cpsw->tx_ch_num = 1;
3025
3026         if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3027                 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3028                 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3029         } else {
3030                 eth_random_addr(priv->mac_addr);
3031                 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3032         }
3033
3034         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3035
3036         cpsw->slaves = devm_kzalloc(&pdev->dev,
3037                                     sizeof(struct cpsw_slave) * data->slaves,
3038                                     GFP_KERNEL);
3039         if (!cpsw->slaves) {
3040                 ret = -ENOMEM;
3041                 goto clean_dt_ret;
3042         }
3043         for (i = 0; i < data->slaves; i++)
3044                 cpsw->slaves[i].slave_num = i;
3045
3046         cpsw->slaves[0].ndev = ndev;
3047         priv->emac_port = 0;
3048
3049         clk = devm_clk_get(&pdev->dev, "fck");
3050         if (IS_ERR(clk)) {
3051                 dev_err(priv->dev, "fck is not found\n");
3052                 ret = -ENODEV;
3053                 goto clean_dt_ret;
3054         }
3055         cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3056
3057         ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3058         ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3059         if (IS_ERR(ss_regs)) {
3060                 ret = PTR_ERR(ss_regs);
3061                 goto clean_dt_ret;
3062         }
3063         cpsw->regs = ss_regs;
3064
3065         cpsw->version = readl(&cpsw->regs->id_ver);
3066
3067         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3068         cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3069         if (IS_ERR(cpsw->wr_regs)) {
3070                 ret = PTR_ERR(cpsw->wr_regs);
3071                 goto clean_dt_ret;
3072         }
3073
3074         memset(&dma_params, 0, sizeof(dma_params));
3075         memset(&ale_params, 0, sizeof(ale_params));
3076
3077         switch (cpsw->version) {
3078         case CPSW_VERSION_1:
3079                 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3080                 cpts_regs               = ss_regs + CPSW1_CPTS_OFFSET;
3081                 cpsw->hw_stats       = ss_regs + CPSW1_HW_STATS;
3082                 dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3083                 dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3084                 ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3085                 slave_offset         = CPSW1_SLAVE_OFFSET;
3086                 slave_size           = CPSW1_SLAVE_SIZE;
3087                 sliver_offset        = CPSW1_SLIVER_OFFSET;
3088                 dma_params.desc_mem_phys = 0;
3089                 break;
3090         case CPSW_VERSION_2:
3091         case CPSW_VERSION_3:
3092         case CPSW_VERSION_4:
3093                 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3094                 cpts_regs               = ss_regs + CPSW2_CPTS_OFFSET;
3095                 cpsw->hw_stats       = ss_regs + CPSW2_HW_STATS;
3096                 dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3097                 dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3098                 ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3099                 slave_offset         = CPSW2_SLAVE_OFFSET;
3100                 slave_size           = CPSW2_SLAVE_SIZE;
3101                 sliver_offset        = CPSW2_SLIVER_OFFSET;
3102                 dma_params.desc_mem_phys =
3103                         (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3104                 break;
3105         default:
3106                 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3107                 ret = -ENODEV;
3108                 goto clean_dt_ret;
3109         }
3110         for (i = 0; i < cpsw->data.slaves; i++) {
3111                 struct cpsw_slave *slave = &cpsw->slaves[i];
3112
3113                 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3114                 slave_offset  += slave_size;
3115                 sliver_offset += SLIVER_SIZE;
3116         }
3117
3118         dma_params.dev          = &pdev->dev;
3119         dma_params.rxthresh     = dma_params.dmaregs + CPDMA_RXTHRESH;
3120         dma_params.rxfree       = dma_params.dmaregs + CPDMA_RXFREE;
3121         dma_params.rxhdp        = dma_params.txhdp + CPDMA_RXHDP;
3122         dma_params.txcp         = dma_params.txhdp + CPDMA_TXCP;
3123         dma_params.rxcp         = dma_params.txhdp + CPDMA_RXCP;
3124
3125         dma_params.num_chan             = data->channels;
3126         dma_params.has_soft_reset       = true;
3127         dma_params.min_packet_size      = CPSW_MIN_PACKET_SIZE;
3128         dma_params.desc_mem_size        = data->bd_ram_size;
3129         dma_params.desc_align           = 16;
3130         dma_params.has_ext_regs         = true;
3131         dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3132         dma_params.bus_freq_mhz         = cpsw->bus_freq_mhz;
3133         dma_params.descs_pool_size      = descs_pool_size;
3134
3135         cpsw->dma = cpdma_ctlr_create(&dma_params);
3136         if (!cpsw->dma) {
3137                 dev_err(priv->dev, "error initializing dma\n");
3138                 ret = -ENOMEM;
3139                 goto clean_dt_ret;
3140         }
3141
3142         cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3143         if (IS_ERR(cpsw->txv[0].ch)) {
3144                 dev_err(priv->dev, "error initializing tx dma channel\n");
3145                 ret = PTR_ERR(cpsw->txv[0].ch);
3146                 goto clean_dma_ret;
3147         }
3148
3149         cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3150         if (IS_ERR(cpsw->rxv[0].ch)) {
3151                 dev_err(priv->dev, "error initializing rx dma channel\n");
3152                 ret = PTR_ERR(cpsw->rxv[0].ch);
3153                 goto clean_dma_ret;
3154         }
3155
3156         ale_params.dev                  = &pdev->dev;
3157         ale_params.ale_ageout           = ale_ageout;
3158         ale_params.ale_entries          = data->ale_entries;
3159         ale_params.ale_ports            = CPSW_ALE_PORTS_NUM;
3160
3161         cpsw->ale = cpsw_ale_create(&ale_params);
3162         if (!cpsw->ale) {
3163                 dev_err(priv->dev, "error initializing ale engine\n");
3164                 ret = -ENODEV;
3165                 goto clean_dma_ret;
3166         }
3167
3168         cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3169         if (IS_ERR(cpsw->cpts)) {
3170                 ret = PTR_ERR(cpsw->cpts);
3171                 goto clean_dma_ret;
3172         }
3173
3174         ndev->irq = platform_get_irq(pdev, 1);
3175         if (ndev->irq < 0) {
3176                 dev_err(priv->dev, "error getting irq resource\n");
3177                 ret = ndev->irq;
3178                 goto clean_dma_ret;
3179         }
3180
3181         of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3182         if (of_id) {
3183                 pdev->id_entry = of_id->data;
3184                 if (pdev->id_entry->driver_data)
3185                         cpsw->quirk_irq = true;
3186         }
3187
3188         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3189
3190         ndev->netdev_ops = &cpsw_netdev_ops;
3191         ndev->ethtool_ops = &cpsw_ethtool_ops;
3192         netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3193         netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3194         cpsw_split_res(ndev);
3195
3196         /* register the network device */
3197         SET_NETDEV_DEV(ndev, &pdev->dev);
3198         ret = register_netdev(ndev);
3199         if (ret) {
3200                 dev_err(priv->dev, "error registering net device\n");
3201                 ret = -ENODEV;
3202                 goto clean_dma_ret;
3203         }
3204
3205         if (cpsw->data.dual_emac) {
3206                 ret = cpsw_probe_dual_emac(priv);
3207                 if (ret) {
3208                         cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3209                         goto clean_unregister_netdev_ret;
3210                 }
3211         }
3212
3213         /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3214          * MISC IRQs which are always kept disabled with this driver so
3215          * we will not request them.
3216          *
3217          * If anyone wants to implement support for those, make sure to
3218          * first request and append them to irqs_table array.
3219          */
3220
3221         /* RX IRQ */
3222         irq = platform_get_irq(pdev, 1);
3223         if (irq < 0) {
3224                 ret = irq;
3225                 goto clean_dma_ret;
3226         }
3227
3228         cpsw->irqs_table[0] = irq;
3229         ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3230                                0, dev_name(&pdev->dev), cpsw);
3231         if (ret < 0) {
3232                 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3233                 goto clean_dma_ret;
3234         }
3235
3236         /* TX IRQ */
3237         irq = platform_get_irq(pdev, 2);
3238         if (irq < 0) {
3239                 ret = irq;
3240                 goto clean_dma_ret;
3241         }
3242
3243         cpsw->irqs_table[1] = irq;
3244         ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3245                                0, dev_name(&pdev->dev), cpsw);
3246         if (ret < 0) {
3247                 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3248                 goto clean_dma_ret;
3249         }
3250
3251         cpsw_notice(priv, probe,
3252                     "initialized device (regs %pa, irq %d, pool size %d)\n",
3253                     &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3254
3255         pm_runtime_put(&pdev->dev);
3256
3257         return 0;
3258
3259 clean_unregister_netdev_ret:
3260         unregister_netdev(ndev);
3261 clean_dma_ret:
3262         cpdma_ctlr_destroy(cpsw->dma);
3263 clean_dt_ret:
3264         cpsw_remove_dt(pdev);
3265         pm_runtime_put_sync(&pdev->dev);
3266 clean_runtime_disable_ret:
3267         pm_runtime_disable(&pdev->dev);
3268 clean_ndev_ret:
3269         free_netdev(priv->ndev);
3270         return ret;
3271 }
3272
3273 static int cpsw_remove(struct platform_device *pdev)
3274 {
3275         struct net_device *ndev = platform_get_drvdata(pdev);
3276         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3277         int ret;
3278
3279         ret = pm_runtime_get_sync(&pdev->dev);
3280         if (ret < 0) {
3281                 pm_runtime_put_noidle(&pdev->dev);
3282                 return ret;
3283         }
3284
3285         if (cpsw->data.dual_emac)
3286                 unregister_netdev(cpsw->slaves[1].ndev);
3287         unregister_netdev(ndev);
3288
3289         cpts_release(cpsw->cpts);
3290         cpdma_ctlr_destroy(cpsw->dma);
3291         cpsw_remove_dt(pdev);
3292         pm_runtime_put_sync(&pdev->dev);
3293         pm_runtime_disable(&pdev->dev);
3294         if (cpsw->data.dual_emac)
3295                 free_netdev(cpsw->slaves[1].ndev);
3296         free_netdev(ndev);
3297         return 0;
3298 }
3299
3300 #ifdef CONFIG_PM_SLEEP
3301 static int cpsw_suspend(struct device *dev)
3302 {
3303         struct platform_device  *pdev = to_platform_device(dev);
3304         struct net_device       *ndev = platform_get_drvdata(pdev);
3305         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
3306
3307         if (cpsw->data.dual_emac) {
3308                 int i;
3309
3310                 for (i = 0; i < cpsw->data.slaves; i++) {
3311                         if (netif_running(cpsw->slaves[i].ndev))
3312                                 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3313                 }
3314         } else {
3315                 if (netif_running(ndev))
3316                         cpsw_ndo_stop(ndev);
3317         }
3318
3319         /* Select sleep pin state */
3320         pinctrl_pm_select_sleep_state(dev);
3321
3322         return 0;
3323 }
3324
3325 static int cpsw_resume(struct device *dev)
3326 {
3327         struct platform_device  *pdev = to_platform_device(dev);
3328         struct net_device       *ndev = platform_get_drvdata(pdev);
3329         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
3330
3331         /* Select default pin state */
3332         pinctrl_pm_select_default_state(dev);
3333
3334         /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3335         rtnl_lock();
3336         if (cpsw->data.dual_emac) {
3337                 int i;
3338
3339                 for (i = 0; i < cpsw->data.slaves; i++) {
3340                         if (netif_running(cpsw->slaves[i].ndev))
3341                                 cpsw_ndo_open(cpsw->slaves[i].ndev);
3342                 }
3343         } else {
3344                 if (netif_running(ndev))
3345                         cpsw_ndo_open(ndev);
3346         }
3347         rtnl_unlock();
3348
3349         return 0;
3350 }
3351 #endif
3352
3353 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3354
3355 static struct platform_driver cpsw_driver = {
3356         .driver = {
3357                 .name    = "cpsw",
3358                 .pm      = &cpsw_pm_ops,
3359                 .of_match_table = cpsw_of_mtable,
3360         },
3361         .probe = cpsw_probe,
3362         .remove = cpsw_remove,
3363 };
3364
3365 module_platform_driver(cpsw_driver);
3366
3367 MODULE_LICENSE("GPL");
3368 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3369 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3370 MODULE_DESCRIPTION("TI CPSW Ethernet driver");