Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / sfc / farch.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27
28 /* Falcon-architecture (SFC9000-family) support */
29
30 /**************************************************************************
31  *
32  * Configurable values
33  *
34  **************************************************************************
35  */
36
37 /* This is set to 16 for a good reason.  In summary, if larger than
38  * 16, the descriptor cache holds more than a default socket
39  * buffer's worth of packets (for UDP we can only have at most one
40  * socket buffer's worth outstanding).  This combined with the fact
41  * that we only get 1 TX event per descriptor cache means the NIC
42  * goes idle.
43  */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52  * disable it.
53  */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
65
66 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
68
69 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
72         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
73                            efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
75         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
76                            efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
78         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
79                            (_tx_queue)->queue)
80
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82
83 /**************************************************************************
84  *
85  * Hardware access
86  *
87  **************************************************************************/
88
89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90                                      unsigned int index)
91 {
92         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93                         value, index);
94 }
95
96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97                                      const efx_oword_t *mask)
98 {
99         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102
103 int efx_farch_test_registers(struct efx_nic *efx,
104                              const struct efx_farch_register_test *regs,
105                              size_t n_regs)
106 {
107         unsigned address = 0;
108         int i, j;
109         efx_oword_t mask, imask, original, reg, buf;
110
111         for (i = 0; i < n_regs; ++i) {
112                 address = regs[i].address;
113                 mask = imask = regs[i].mask;
114                 EFX_INVERT_OWORD(imask);
115
116                 efx_reado(efx, &original, address);
117
118                 /* bit sweep on and off */
119                 for (j = 0; j < 128; j++) {
120                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
121                                 continue;
122
123                         /* Test this testable bit can be set in isolation */
124                         EFX_AND_OWORD(reg, original, mask);
125                         EFX_SET_OWORD32(reg, j, j, 1);
126
127                         efx_writeo(efx, &reg, address);
128                         efx_reado(efx, &buf, address);
129
130                         if (efx_masked_compare_oword(&reg, &buf, &mask))
131                                 goto fail;
132
133                         /* Test this testable bit can be cleared in isolation */
134                         EFX_OR_OWORD(reg, original, mask);
135                         EFX_SET_OWORD32(reg, j, j, 0);
136
137                         efx_writeo(efx, &reg, address);
138                         efx_reado(efx, &buf, address);
139
140                         if (efx_masked_compare_oword(&reg, &buf, &mask))
141                                 goto fail;
142                 }
143
144                 efx_writeo(efx, &original, address);
145         }
146
147         return 0;
148
149 fail:
150         netif_err(efx, hw, efx->net_dev,
151                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
152                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
153                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
154         return -EIO;
155 }
156
157 /**************************************************************************
158  *
159  * Special buffer handling
160  * Special buffers are used for event queues and the TX and RX
161  * descriptor rings.
162  *
163  *************************************************************************/
164
165 /*
166  * Initialise a special buffer
167  *
168  * This will define a buffer (previously allocated via
169  * efx_alloc_special_buffer()) in the buffer table, allowing
170  * it to be used for event queues, descriptor rings etc.
171  */
172 static void
173 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
174 {
175         efx_qword_t buf_desc;
176         unsigned int index;
177         dma_addr_t dma_addr;
178         int i;
179
180         EFX_WARN_ON_PARANOID(!buffer->buf.addr);
181
182         /* Write buffer descriptors to NIC */
183         for (i = 0; i < buffer->entries; i++) {
184                 index = buffer->index + i;
185                 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
186                 netif_dbg(efx, probe, efx->net_dev,
187                           "mapping special buffer %d at %llx\n",
188                           index, (unsigned long long)dma_addr);
189                 EFX_POPULATE_QWORD_3(buf_desc,
190                                      FRF_AZ_BUF_ADR_REGION, 0,
191                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
192                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
193                 efx_write_buf_tbl(efx, &buf_desc, index);
194         }
195 }
196
197 /* Unmaps a buffer and clears the buffer table entries */
198 static void
199 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
200 {
201         efx_oword_t buf_tbl_upd;
202         unsigned int start = buffer->index;
203         unsigned int end = (buffer->index + buffer->entries - 1);
204
205         if (!buffer->entries)
206                 return;
207
208         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
209                   buffer->index, buffer->index + buffer->entries - 1);
210
211         EFX_POPULATE_OWORD_4(buf_tbl_upd,
212                              FRF_AZ_BUF_UPD_CMD, 0,
213                              FRF_AZ_BUF_CLR_CMD, 1,
214                              FRF_AZ_BUF_CLR_END_ID, end,
215                              FRF_AZ_BUF_CLR_START_ID, start);
216         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
217 }
218
219 /*
220  * Allocate a new special buffer
221  *
222  * This allocates memory for a new buffer, clears it and allocates a
223  * new buffer ID range.  It does not write into the buffer table.
224  *
225  * This call will allocate 4KB buffers, since 8KB buffers can't be
226  * used for event queues and descriptor rings.
227  */
228 static int efx_alloc_special_buffer(struct efx_nic *efx,
229                                     struct efx_special_buffer *buffer,
230                                     unsigned int len)
231 {
232 #ifdef CONFIG_SFC_SRIOV
233         struct siena_nic_data *nic_data = efx->nic_data;
234 #endif
235         len = ALIGN(len, EFX_BUF_SIZE);
236
237         if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
238                 return -ENOMEM;
239         buffer->entries = len / EFX_BUF_SIZE;
240         BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
241
242         /* Select new buffer ID */
243         buffer->index = efx->next_buffer_table;
244         efx->next_buffer_table += buffer->entries;
245 #ifdef CONFIG_SFC_SRIOV
246         BUG_ON(efx_siena_sriov_enabled(efx) &&
247                nic_data->vf_buftbl_base < efx->next_buffer_table);
248 #endif
249
250         netif_dbg(efx, probe, efx->net_dev,
251                   "allocating special buffers %d-%d at %llx+%x "
252                   "(virt %p phys %llx)\n", buffer->index,
253                   buffer->index + buffer->entries - 1,
254                   (u64)buffer->buf.dma_addr, len,
255                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
256
257         return 0;
258 }
259
260 static void
261 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
262 {
263         if (!buffer->buf.addr)
264                 return;
265
266         netif_dbg(efx, hw, efx->net_dev,
267                   "deallocating special buffers %d-%d at %llx+%x "
268                   "(virt %p phys %llx)\n", buffer->index,
269                   buffer->index + buffer->entries - 1,
270                   (u64)buffer->buf.dma_addr, buffer->buf.len,
271                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
272
273         efx_nic_free_buffer(efx, &buffer->buf);
274         buffer->entries = 0;
275 }
276
277 /**************************************************************************
278  *
279  * TX path
280  *
281  **************************************************************************/
282
283 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
284 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
285 {
286         unsigned write_ptr;
287         efx_dword_t reg;
288
289         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
290         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
291         efx_writed_page(tx_queue->efx, &reg,
292                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
293 }
294
295 /* Write pointer and first descriptor for TX descriptor ring */
296 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
297                                           const efx_qword_t *txd)
298 {
299         unsigned write_ptr;
300         efx_oword_t reg;
301
302         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
303         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
304
305         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
306         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
307                              FRF_AZ_TX_DESC_WPTR, write_ptr);
308         reg.qword[0] = *txd;
309         efx_writeo_page(tx_queue->efx, &reg,
310                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
311 }
312
313
314 /* For each entry inserted into the software descriptor ring, create a
315  * descriptor in the hardware TX descriptor ring (in host memory), and
316  * write a doorbell.
317  */
318 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
319 {
320         struct efx_tx_buffer *buffer;
321         efx_qword_t *txd;
322         unsigned write_ptr;
323         unsigned old_write_count = tx_queue->write_count;
324
325         tx_queue->xmit_more_available = false;
326         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
327                 return;
328
329         do {
330                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
331                 buffer = &tx_queue->buffer[write_ptr];
332                 txd = efx_tx_desc(tx_queue, write_ptr);
333                 ++tx_queue->write_count;
334
335                 EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
336
337                 /* Create TX descriptor ring entry */
338                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
339                 EFX_POPULATE_QWORD_4(*txd,
340                                      FSF_AZ_TX_KER_CONT,
341                                      buffer->flags & EFX_TX_BUF_CONT,
342                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
343                                      FSF_AZ_TX_KER_BUF_REGION, 0,
344                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
345         } while (tx_queue->write_count != tx_queue->insert_count);
346
347         wmb(); /* Ensure descriptors are written before they are fetched */
348
349         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
350                 txd = efx_tx_desc(tx_queue,
351                                   old_write_count & tx_queue->ptr_mask);
352                 efx_farch_push_tx_desc(tx_queue, txd);
353                 ++tx_queue->pushes;
354         } else {
355                 efx_farch_notify_tx_desc(tx_queue);
356         }
357 }
358
359 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
360                                     dma_addr_t dma_addr, unsigned int len)
361 {
362         /* Don't cross 4K boundaries with descriptors. */
363         unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
364
365         len = min(limit, len);
366
367         return len;
368 }
369
370
371 /* Allocate hardware resources for a TX queue */
372 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
373 {
374         struct efx_nic *efx = tx_queue->efx;
375         unsigned entries;
376
377         entries = tx_queue->ptr_mask + 1;
378         return efx_alloc_special_buffer(efx, &tx_queue->txd,
379                                         entries * sizeof(efx_qword_t));
380 }
381
382 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
383 {
384         int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
385         struct efx_nic *efx = tx_queue->efx;
386         efx_oword_t reg;
387
388         /* Pin TX descriptor ring */
389         efx_init_special_buffer(efx, &tx_queue->txd);
390
391         /* Push TX descriptor ring to card */
392         EFX_POPULATE_OWORD_10(reg,
393                               FRF_AZ_TX_DESCQ_EN, 1,
394                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
395                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
396                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
397                               FRF_AZ_TX_DESCQ_EVQ_ID,
398                               tx_queue->channel->channel,
399                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
400                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
401                               FRF_AZ_TX_DESCQ_SIZE,
402                               __ffs(tx_queue->txd.entries),
403                               FRF_AZ_TX_DESCQ_TYPE, 0,
404                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
405
406         EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
407         EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
408
409         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
410                          tx_queue->queue);
411
412         EFX_POPULATE_OWORD_1(reg,
413                              FRF_BZ_TX_PACE,
414                              (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
415                              FFE_BZ_TX_PACE_OFF :
416                              FFE_BZ_TX_PACE_RESERVED);
417         efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
418 }
419
420 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
421 {
422         struct efx_nic *efx = tx_queue->efx;
423         efx_oword_t tx_flush_descq;
424
425         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
426         atomic_set(&tx_queue->flush_outstanding, 1);
427
428         EFX_POPULATE_OWORD_2(tx_flush_descq,
429                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
430                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
431         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
432 }
433
434 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
435 {
436         struct efx_nic *efx = tx_queue->efx;
437         efx_oword_t tx_desc_ptr;
438
439         /* Remove TX descriptor ring from card */
440         EFX_ZERO_OWORD(tx_desc_ptr);
441         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
442                          tx_queue->queue);
443
444         /* Unpin TX descriptor ring */
445         efx_fini_special_buffer(efx, &tx_queue->txd);
446 }
447
448 /* Free buffers backing TX queue */
449 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
450 {
451         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
452 }
453
454 /**************************************************************************
455  *
456  * RX path
457  *
458  **************************************************************************/
459
460 /* This creates an entry in the RX descriptor queue */
461 static inline void
462 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
463 {
464         struct efx_rx_buffer *rx_buf;
465         efx_qword_t *rxd;
466
467         rxd = efx_rx_desc(rx_queue, index);
468         rx_buf = efx_rx_buffer(rx_queue, index);
469         EFX_POPULATE_QWORD_3(*rxd,
470                              FSF_AZ_RX_KER_BUF_SIZE,
471                              rx_buf->len -
472                              rx_queue->efx->type->rx_buffer_padding,
473                              FSF_AZ_RX_KER_BUF_REGION, 0,
474                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
475 }
476
477 /* This writes to the RX_DESC_WPTR register for the specified receive
478  * descriptor ring.
479  */
480 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
481 {
482         struct efx_nic *efx = rx_queue->efx;
483         efx_dword_t reg;
484         unsigned write_ptr;
485
486         while (rx_queue->notified_count != rx_queue->added_count) {
487                 efx_farch_build_rx_desc(
488                         rx_queue,
489                         rx_queue->notified_count & rx_queue->ptr_mask);
490                 ++rx_queue->notified_count;
491         }
492
493         wmb();
494         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
495         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
496         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
497                         efx_rx_queue_index(rx_queue));
498 }
499
500 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
501 {
502         struct efx_nic *efx = rx_queue->efx;
503         unsigned entries;
504
505         entries = rx_queue->ptr_mask + 1;
506         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
507                                         entries * sizeof(efx_qword_t));
508 }
509
510 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
511 {
512         efx_oword_t rx_desc_ptr;
513         struct efx_nic *efx = rx_queue->efx;
514         bool jumbo_en;
515
516         /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
517         jumbo_en = efx->rx_scatter;
518
519         netif_dbg(efx, hw, efx->net_dev,
520                   "RX queue %d ring in special buffers %d-%d\n",
521                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
522                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
523
524         rx_queue->scatter_n = 0;
525
526         /* Pin RX descriptor ring */
527         efx_init_special_buffer(efx, &rx_queue->rxd);
528
529         /* Push RX descriptor ring to card */
530         EFX_POPULATE_OWORD_10(rx_desc_ptr,
531                               FRF_AZ_RX_ISCSI_DDIG_EN, true,
532                               FRF_AZ_RX_ISCSI_HDIG_EN, true,
533                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
534                               FRF_AZ_RX_DESCQ_EVQ_ID,
535                               efx_rx_queue_channel(rx_queue)->channel,
536                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
537                               FRF_AZ_RX_DESCQ_LABEL,
538                               efx_rx_queue_index(rx_queue),
539                               FRF_AZ_RX_DESCQ_SIZE,
540                               __ffs(rx_queue->rxd.entries),
541                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
542                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
543                               FRF_AZ_RX_DESCQ_EN, 1);
544         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
545                          efx_rx_queue_index(rx_queue));
546 }
547
548 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
549 {
550         struct efx_nic *efx = rx_queue->efx;
551         efx_oword_t rx_flush_descq;
552
553         EFX_POPULATE_OWORD_2(rx_flush_descq,
554                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
555                              FRF_AZ_RX_FLUSH_DESCQ,
556                              efx_rx_queue_index(rx_queue));
557         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
558 }
559
560 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
561 {
562         efx_oword_t rx_desc_ptr;
563         struct efx_nic *efx = rx_queue->efx;
564
565         /* Remove RX descriptor ring from card */
566         EFX_ZERO_OWORD(rx_desc_ptr);
567         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
568                          efx_rx_queue_index(rx_queue));
569
570         /* Unpin RX descriptor ring */
571         efx_fini_special_buffer(efx, &rx_queue->rxd);
572 }
573
574 /* Free buffers backing RX queue */
575 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
576 {
577         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
578 }
579
580 /**************************************************************************
581  *
582  * Flush handling
583  *
584  **************************************************************************/
585
586 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
587  * or more RX flushes can be kicked off.
588  */
589 static bool efx_farch_flush_wake(struct efx_nic *efx)
590 {
591         /* Ensure that all updates are visible to efx_farch_flush_queues() */
592         smp_mb();
593
594         return (atomic_read(&efx->active_queues) == 0 ||
595                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
596                  && atomic_read(&efx->rxq_flush_pending) > 0));
597 }
598
599 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
600 {
601         bool i = true;
602         efx_oword_t txd_ptr_tbl;
603         struct efx_channel *channel;
604         struct efx_tx_queue *tx_queue;
605
606         efx_for_each_channel(channel, efx) {
607                 efx_for_each_channel_tx_queue(tx_queue, channel) {
608                         efx_reado_table(efx, &txd_ptr_tbl,
609                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
610                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
611                                             FRF_AZ_TX_DESCQ_FLUSH) ||
612                             EFX_OWORD_FIELD(txd_ptr_tbl,
613                                             FRF_AZ_TX_DESCQ_EN)) {
614                                 netif_dbg(efx, hw, efx->net_dev,
615                                           "flush did not complete on TXQ %d\n",
616                                           tx_queue->queue);
617                                 i = false;
618                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
619                                                   1, 0)) {
620                                 /* The flush is complete, but we didn't
621                                  * receive a flush completion event
622                                  */
623                                 netif_dbg(efx, hw, efx->net_dev,
624                                           "flush complete on TXQ %d, so drain "
625                                           "the queue\n", tx_queue->queue);
626                                 /* Don't need to increment active_queues as it
627                                  * has already been incremented for the queues
628                                  * which did not drain
629                                  */
630                                 efx_farch_magic_event(channel,
631                                                       EFX_CHANNEL_MAGIC_TX_DRAIN(
632                                                               tx_queue));
633                         }
634                 }
635         }
636
637         return i;
638 }
639
640 /* Flush all the transmit queues, and continue flushing receive queues until
641  * they're all flushed. Wait for the DRAIN events to be received so that there
642  * are no more RX and TX events left on any channel. */
643 static int efx_farch_do_flush(struct efx_nic *efx)
644 {
645         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
646         struct efx_channel *channel;
647         struct efx_rx_queue *rx_queue;
648         struct efx_tx_queue *tx_queue;
649         int rc = 0;
650
651         efx_for_each_channel(channel, efx) {
652                 efx_for_each_channel_tx_queue(tx_queue, channel) {
653                         efx_farch_flush_tx_queue(tx_queue);
654                 }
655                 efx_for_each_channel_rx_queue(rx_queue, channel) {
656                         rx_queue->flush_pending = true;
657                         atomic_inc(&efx->rxq_flush_pending);
658                 }
659         }
660
661         while (timeout && atomic_read(&efx->active_queues) > 0) {
662                 /* If SRIOV is enabled, then offload receive queue flushing to
663                  * the firmware (though we will still have to poll for
664                  * completion). If that fails, fall back to the old scheme.
665                  */
666                 if (efx_siena_sriov_enabled(efx)) {
667                         rc = efx_mcdi_flush_rxqs(efx);
668                         if (!rc)
669                                 goto wait;
670                 }
671
672                 /* The hardware supports four concurrent rx flushes, each of
673                  * which may need to be retried if there is an outstanding
674                  * descriptor fetch
675                  */
676                 efx_for_each_channel(channel, efx) {
677                         efx_for_each_channel_rx_queue(rx_queue, channel) {
678                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
679                                     EFX_RX_FLUSH_COUNT)
680                                         break;
681
682                                 if (rx_queue->flush_pending) {
683                                         rx_queue->flush_pending = false;
684                                         atomic_dec(&efx->rxq_flush_pending);
685                                         atomic_inc(&efx->rxq_flush_outstanding);
686                                         efx_farch_flush_rx_queue(rx_queue);
687                                 }
688                         }
689                 }
690
691         wait:
692                 timeout = wait_event_timeout(efx->flush_wq,
693                                              efx_farch_flush_wake(efx),
694                                              timeout);
695         }
696
697         if (atomic_read(&efx->active_queues) &&
698             !efx_check_tx_flush_complete(efx)) {
699                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
700                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
701                           atomic_read(&efx->rxq_flush_outstanding),
702                           atomic_read(&efx->rxq_flush_pending));
703                 rc = -ETIMEDOUT;
704
705                 atomic_set(&efx->active_queues, 0);
706                 atomic_set(&efx->rxq_flush_pending, 0);
707                 atomic_set(&efx->rxq_flush_outstanding, 0);
708         }
709
710         return rc;
711 }
712
713 int efx_farch_fini_dmaq(struct efx_nic *efx)
714 {
715         struct efx_channel *channel;
716         struct efx_tx_queue *tx_queue;
717         struct efx_rx_queue *rx_queue;
718         int rc = 0;
719
720         /* Do not attempt to write to the NIC during EEH recovery */
721         if (efx->state != STATE_RECOVERY) {
722                 /* Only perform flush if DMA is enabled */
723                 if (efx->pci_dev->is_busmaster) {
724                         efx->type->prepare_flush(efx);
725                         rc = efx_farch_do_flush(efx);
726                         efx->type->finish_flush(efx);
727                 }
728
729                 efx_for_each_channel(channel, efx) {
730                         efx_for_each_channel_rx_queue(rx_queue, channel)
731                                 efx_farch_rx_fini(rx_queue);
732                         efx_for_each_channel_tx_queue(tx_queue, channel)
733                                 efx_farch_tx_fini(tx_queue);
734                 }
735         }
736
737         return rc;
738 }
739
740 /* Reset queue and flush accounting after FLR
741  *
742  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
743  * mastering was disabled), in which case we don't receive (RXQ) flush
744  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
745  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
746  * events were received, and we didn't go through efx_check_tx_flush_complete())
747  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
748  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
749  * for batched flush requests; and the efx->active_queues gets messed up because
750  * we keep incrementing for the newly initialised queues, but it never went to
751  * zero previously.  Then we get a timeout every time we try to restart the
752  * queues, as it doesn't go back to zero when we should be flushing the queues.
753  */
754 void efx_farch_finish_flr(struct efx_nic *efx)
755 {
756         atomic_set(&efx->rxq_flush_pending, 0);
757         atomic_set(&efx->rxq_flush_outstanding, 0);
758         atomic_set(&efx->active_queues, 0);
759 }
760
761
762 /**************************************************************************
763  *
764  * Event queue processing
765  * Event queues are processed by per-channel tasklets.
766  *
767  **************************************************************************/
768
769 /* Update a channel's event queue's read pointer (RPTR) register
770  *
771  * This writes the EVQ_RPTR_REG register for the specified channel's
772  * event queue.
773  */
774 void efx_farch_ev_read_ack(struct efx_channel *channel)
775 {
776         efx_dword_t reg;
777         struct efx_nic *efx = channel->efx;
778
779         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
780                              channel->eventq_read_ptr & channel->eventq_mask);
781
782         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
783          * of 4 bytes, but it is really 16 bytes just like later revisions.
784          */
785         efx_writed(efx, &reg,
786                    efx->type->evq_rptr_tbl_base +
787                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
788 }
789
790 /* Use HW to insert a SW defined event */
791 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
792                               efx_qword_t *event)
793 {
794         efx_oword_t drv_ev_reg;
795
796         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
797                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
798         drv_ev_reg.u32[0] = event->u32[0];
799         drv_ev_reg.u32[1] = event->u32[1];
800         drv_ev_reg.u32[2] = 0;
801         drv_ev_reg.u32[3] = 0;
802         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
803         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
804 }
805
806 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
807 {
808         efx_qword_t event;
809
810         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
811                              FSE_AZ_EV_CODE_DRV_GEN_EV,
812                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
813         efx_farch_generate_event(channel->efx, channel->channel, &event);
814 }
815
816 /* Handle a transmit completion event
817  *
818  * The NIC batches TX completion events; the message we receive is of
819  * the form "complete all TX events up to this index".
820  */
821 static void
822 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
823 {
824         unsigned int tx_ev_desc_ptr;
825         unsigned int tx_ev_q_label;
826         struct efx_tx_queue *tx_queue;
827         struct efx_nic *efx = channel->efx;
828
829         if (unlikely(READ_ONCE(efx->reset_pending)))
830                 return;
831
832         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
833                 /* Transmit completion */
834                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
835                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
836                 tx_queue = efx_channel_get_tx_queue(
837                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
838                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
839         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
840                 /* Rewrite the FIFO write pointer */
841                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
842                 tx_queue = efx_channel_get_tx_queue(
843                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
844
845                 netif_tx_lock(efx->net_dev);
846                 efx_farch_notify_tx_desc(tx_queue);
847                 netif_tx_unlock(efx->net_dev);
848         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
849                 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
850         } else {
851                 netif_err(efx, tx_err, efx->net_dev,
852                           "channel %d unexpected TX event "
853                           EFX_QWORD_FMT"\n", channel->channel,
854                           EFX_QWORD_VAL(*event));
855         }
856 }
857
858 /* Detect errors included in the rx_evt_pkt_ok bit. */
859 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
860                                       const efx_qword_t *event)
861 {
862         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
863         struct efx_nic *efx = rx_queue->efx;
864         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
865         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
866         bool rx_ev_frm_trunc, rx_ev_tobe_disc;
867         bool rx_ev_other_err, rx_ev_pause_frm;
868         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
869         unsigned rx_ev_pkt_type;
870
871         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
872         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
873         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
874         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
875         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
876                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
877         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
878                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
879         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
880                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
881         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
882         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
883         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
884
885         /* Every error apart from tobe_disc and pause_frm */
886         rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
887                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
888                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
889
890         /* Count errors that are not in MAC stats.  Ignore expected
891          * checksum errors during self-test. */
892         if (rx_ev_frm_trunc)
893                 ++channel->n_rx_frm_trunc;
894         else if (rx_ev_tobe_disc)
895                 ++channel->n_rx_tobe_disc;
896         else if (!efx->loopback_selftest) {
897                 if (rx_ev_ip_hdr_chksum_err)
898                         ++channel->n_rx_ip_hdr_chksum_err;
899                 else if (rx_ev_tcp_udp_chksum_err)
900                         ++channel->n_rx_tcp_udp_chksum_err;
901         }
902
903         /* TOBE_DISC is expected on unicast mismatches; don't print out an
904          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
905          * to a FIFO overflow.
906          */
907 #ifdef DEBUG
908         if (rx_ev_other_err && net_ratelimit()) {
909                 netif_dbg(efx, rx_err, efx->net_dev,
910                           " RX queue %d unexpected RX event "
911                           EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
912                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
913                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
914                           rx_ev_ip_hdr_chksum_err ?
915                           " [IP_HDR_CHKSUM_ERR]" : "",
916                           rx_ev_tcp_udp_chksum_err ?
917                           " [TCP_UDP_CHKSUM_ERR]" : "",
918                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
919                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
920                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
921                           rx_ev_pause_frm ? " [PAUSE]" : "");
922         }
923 #endif
924
925         if (efx->net_dev->features & NETIF_F_RXALL)
926                 /* don't discard frame for CRC error */
927                 rx_ev_eth_crc_err = false;
928
929         /* The frame must be discarded if any of these are true. */
930         return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
931                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
932                 EFX_RX_PKT_DISCARD : 0;
933 }
934
935 /* Handle receive events that are not in-order. Return true if this
936  * can be handled as a partial packet discard, false if it's more
937  * serious.
938  */
939 static bool
940 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
941 {
942         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
943         struct efx_nic *efx = rx_queue->efx;
944         unsigned expected, dropped;
945
946         if (rx_queue->scatter_n &&
947             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
948                       rx_queue->ptr_mask)) {
949                 ++channel->n_rx_nodesc_trunc;
950                 return true;
951         }
952
953         expected = rx_queue->removed_count & rx_queue->ptr_mask;
954         dropped = (index - expected) & rx_queue->ptr_mask;
955         netif_info(efx, rx_err, efx->net_dev,
956                    "dropped %d events (index=%d expected=%d)\n",
957                    dropped, index, expected);
958
959         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
960         return false;
961 }
962
963 /* Handle a packet received event
964  *
965  * The NIC gives a "discard" flag if it's a unicast packet with the
966  * wrong destination address
967  * Also "is multicast" and "matches multicast filter" flags can be used to
968  * discard non-matching multicast packets.
969  */
970 static void
971 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
972 {
973         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
974         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
975         unsigned expected_ptr;
976         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
977         u16 flags;
978         struct efx_rx_queue *rx_queue;
979         struct efx_nic *efx = channel->efx;
980
981         if (unlikely(READ_ONCE(efx->reset_pending)))
982                 return;
983
984         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
985         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
986         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
987                 channel->channel);
988
989         rx_queue = efx_channel_get_rx_queue(channel);
990
991         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
992         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
993                         rx_queue->ptr_mask);
994
995         /* Check for partial drops and other errors */
996         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
997             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
998                 if (rx_ev_desc_ptr != expected_ptr &&
999                     !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1000                         return;
1001
1002                 /* Discard all pending fragments */
1003                 if (rx_queue->scatter_n) {
1004                         efx_rx_packet(
1005                                 rx_queue,
1006                                 rx_queue->removed_count & rx_queue->ptr_mask,
1007                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1008                         rx_queue->removed_count += rx_queue->scatter_n;
1009                         rx_queue->scatter_n = 0;
1010                 }
1011
1012                 /* Return if there is no new fragment */
1013                 if (rx_ev_desc_ptr != expected_ptr)
1014                         return;
1015
1016                 /* Discard new fragment if not SOP */
1017                 if (!rx_ev_sop) {
1018                         efx_rx_packet(
1019                                 rx_queue,
1020                                 rx_queue->removed_count & rx_queue->ptr_mask,
1021                                 1, 0, EFX_RX_PKT_DISCARD);
1022                         ++rx_queue->removed_count;
1023                         return;
1024                 }
1025         }
1026
1027         ++rx_queue->scatter_n;
1028         if (rx_ev_cont)
1029                 return;
1030
1031         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1032         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1033         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1034
1035         if (likely(rx_ev_pkt_ok)) {
1036                 /* If packet is marked as OK then we can rely on the
1037                  * hardware checksum and classification.
1038                  */
1039                 flags = 0;
1040                 switch (rx_ev_hdr_type) {
1041                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1042                         flags |= EFX_RX_PKT_TCP;
1043                         /* fall through */
1044                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1045                         flags |= EFX_RX_PKT_CSUMMED;
1046                         /* fall through */
1047                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1048                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1049                         break;
1050                 }
1051         } else {
1052                 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1053         }
1054
1055         /* Detect multicast packets that didn't match the filter */
1056         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1057         if (rx_ev_mcast_pkt) {
1058                 unsigned int rx_ev_mcast_hash_match =
1059                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1060
1061                 if (unlikely(!rx_ev_mcast_hash_match)) {
1062                         ++channel->n_rx_mcast_mismatch;
1063                         flags |= EFX_RX_PKT_DISCARD;
1064                 }
1065         }
1066
1067         channel->irq_mod_score += 2;
1068
1069         /* Handle received packet */
1070         efx_rx_packet(rx_queue,
1071                       rx_queue->removed_count & rx_queue->ptr_mask,
1072                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1073         rx_queue->removed_count += rx_queue->scatter_n;
1074         rx_queue->scatter_n = 0;
1075 }
1076
1077 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1078  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1079  * of all transmit completions.
1080  */
1081 static void
1082 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1083 {
1084         struct efx_tx_queue *tx_queue;
1085         int qid;
1086
1087         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1088         if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1089                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1090                                             qid % EFX_TXQ_TYPES);
1091                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1092                         efx_farch_magic_event(tx_queue->channel,
1093                                               EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1094                 }
1095         }
1096 }
1097
1098 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1099  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1100  * the RX queue back to the mask of RX queues in need of flushing.
1101  */
1102 static void
1103 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1104 {
1105         struct efx_channel *channel;
1106         struct efx_rx_queue *rx_queue;
1107         int qid;
1108         bool failed;
1109
1110         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1111         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1112         if (qid >= efx->n_channels)
1113                 return;
1114         channel = efx_get_channel(efx, qid);
1115         if (!efx_channel_has_rx_queue(channel))
1116                 return;
1117         rx_queue = efx_channel_get_rx_queue(channel);
1118
1119         if (failed) {
1120                 netif_info(efx, hw, efx->net_dev,
1121                            "RXQ %d flush retry\n", qid);
1122                 rx_queue->flush_pending = true;
1123                 atomic_inc(&efx->rxq_flush_pending);
1124         } else {
1125                 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1126                                       EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1127         }
1128         atomic_dec(&efx->rxq_flush_outstanding);
1129         if (efx_farch_flush_wake(efx))
1130                 wake_up(&efx->flush_wq);
1131 }
1132
1133 static void
1134 efx_farch_handle_drain_event(struct efx_channel *channel)
1135 {
1136         struct efx_nic *efx = channel->efx;
1137
1138         WARN_ON(atomic_read(&efx->active_queues) == 0);
1139         atomic_dec(&efx->active_queues);
1140         if (efx_farch_flush_wake(efx))
1141                 wake_up(&efx->flush_wq);
1142 }
1143
1144 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1145                                              efx_qword_t *event)
1146 {
1147         struct efx_nic *efx = channel->efx;
1148         struct efx_rx_queue *rx_queue =
1149                 efx_channel_has_rx_queue(channel) ?
1150                 efx_channel_get_rx_queue(channel) : NULL;
1151         unsigned magic, code;
1152
1153         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1154         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1155
1156         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1157                 channel->event_test_cpu = raw_smp_processor_id();
1158         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1159                 /* The queue must be empty, so we won't receive any rx
1160                  * events, so efx_process_channel() won't refill the
1161                  * queue. Refill it here */
1162                 efx_fast_push_rx_descriptors(rx_queue, true);
1163         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1164                 efx_farch_handle_drain_event(channel);
1165         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1166                 efx_farch_handle_drain_event(channel);
1167         } else {
1168                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1169                           "generated event "EFX_QWORD_FMT"\n",
1170                           channel->channel, EFX_QWORD_VAL(*event));
1171         }
1172 }
1173
1174 static void
1175 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1176 {
1177         struct efx_nic *efx = channel->efx;
1178         unsigned int ev_sub_code;
1179         unsigned int ev_sub_data;
1180
1181         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1182         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1183
1184         switch (ev_sub_code) {
1185         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1186                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1187                            channel->channel, ev_sub_data);
1188                 efx_farch_handle_tx_flush_done(efx, event);
1189 #ifdef CONFIG_SFC_SRIOV
1190                 efx_siena_sriov_tx_flush_done(efx, event);
1191 #endif
1192                 break;
1193         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1194                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1195                            channel->channel, ev_sub_data);
1196                 efx_farch_handle_rx_flush_done(efx, event);
1197 #ifdef CONFIG_SFC_SRIOV
1198                 efx_siena_sriov_rx_flush_done(efx, event);
1199 #endif
1200                 break;
1201         case FSE_AZ_EVQ_INIT_DONE_EV:
1202                 netif_dbg(efx, hw, efx->net_dev,
1203                           "channel %d EVQ %d initialised\n",
1204                           channel->channel, ev_sub_data);
1205                 break;
1206         case FSE_AZ_SRM_UPD_DONE_EV:
1207                 netif_vdbg(efx, hw, efx->net_dev,
1208                            "channel %d SRAM update done\n", channel->channel);
1209                 break;
1210         case FSE_AZ_WAKE_UP_EV:
1211                 netif_vdbg(efx, hw, efx->net_dev,
1212                            "channel %d RXQ %d wakeup event\n",
1213                            channel->channel, ev_sub_data);
1214                 break;
1215         case FSE_AZ_TIMER_EV:
1216                 netif_vdbg(efx, hw, efx->net_dev,
1217                            "channel %d RX queue %d timer expired\n",
1218                            channel->channel, ev_sub_data);
1219                 break;
1220         case FSE_AA_RX_RECOVER_EV:
1221                 netif_err(efx, rx_err, efx->net_dev,
1222                           "channel %d seen DRIVER RX_RESET event. "
1223                         "Resetting.\n", channel->channel);
1224                 atomic_inc(&efx->rx_reset);
1225                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1226                 break;
1227         case FSE_BZ_RX_DSC_ERROR_EV:
1228                 if (ev_sub_data < EFX_VI_BASE) {
1229                         netif_err(efx, rx_err, efx->net_dev,
1230                                   "RX DMA Q %d reports descriptor fetch error."
1231                                   " RX Q %d is disabled.\n", ev_sub_data,
1232                                   ev_sub_data);
1233                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1234                 }
1235 #ifdef CONFIG_SFC_SRIOV
1236                 else
1237                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1238 #endif
1239                 break;
1240         case FSE_BZ_TX_DSC_ERROR_EV:
1241                 if (ev_sub_data < EFX_VI_BASE) {
1242                         netif_err(efx, tx_err, efx->net_dev,
1243                                   "TX DMA Q %d reports descriptor fetch error."
1244                                   " TX Q %d is disabled.\n", ev_sub_data,
1245                                   ev_sub_data);
1246                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1247                 }
1248 #ifdef CONFIG_SFC_SRIOV
1249                 else
1250                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1251 #endif
1252                 break;
1253         default:
1254                 netif_vdbg(efx, hw, efx->net_dev,
1255                            "channel %d unknown driver event code %d "
1256                            "data %04x\n", channel->channel, ev_sub_code,
1257                            ev_sub_data);
1258                 break;
1259         }
1260 }
1261
1262 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1263 {
1264         struct efx_nic *efx = channel->efx;
1265         unsigned int read_ptr;
1266         efx_qword_t event, *p_event;
1267         int ev_code;
1268         int spent = 0;
1269
1270         if (budget <= 0)
1271                 return spent;
1272
1273         read_ptr = channel->eventq_read_ptr;
1274
1275         for (;;) {
1276                 p_event = efx_event(channel, read_ptr);
1277                 event = *p_event;
1278
1279                 if (!efx_event_present(&event))
1280                         /* End of events */
1281                         break;
1282
1283                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1284                            "channel %d event is "EFX_QWORD_FMT"\n",
1285                            channel->channel, EFX_QWORD_VAL(event));
1286
1287                 /* Clear this event by marking it all ones */
1288                 EFX_SET_QWORD(*p_event);
1289
1290                 ++read_ptr;
1291
1292                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1293
1294                 switch (ev_code) {
1295                 case FSE_AZ_EV_CODE_RX_EV:
1296                         efx_farch_handle_rx_event(channel, &event);
1297                         if (++spent == budget)
1298                                 goto out;
1299                         break;
1300                 case FSE_AZ_EV_CODE_TX_EV:
1301                         efx_farch_handle_tx_event(channel, &event);
1302                         break;
1303                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1304                         efx_farch_handle_generated_event(channel, &event);
1305                         break;
1306                 case FSE_AZ_EV_CODE_DRIVER_EV:
1307                         efx_farch_handle_driver_event(channel, &event);
1308                         break;
1309 #ifdef CONFIG_SFC_SRIOV
1310                 case FSE_CZ_EV_CODE_USER_EV:
1311                         efx_siena_sriov_event(channel, &event);
1312                         break;
1313 #endif
1314                 case FSE_CZ_EV_CODE_MCDI_EV:
1315                         efx_mcdi_process_event(channel, &event);
1316                         break;
1317                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1318                         if (efx->type->handle_global_event &&
1319                             efx->type->handle_global_event(channel, &event))
1320                                 break;
1321                         /* else fall through */
1322                 default:
1323                         netif_err(channel->efx, hw, channel->efx->net_dev,
1324                                   "channel %d unknown event type %d (data "
1325                                   EFX_QWORD_FMT ")\n", channel->channel,
1326                                   ev_code, EFX_QWORD_VAL(event));
1327                 }
1328         }
1329
1330 out:
1331         channel->eventq_read_ptr = read_ptr;
1332         return spent;
1333 }
1334
1335 /* Allocate buffer table entries for event queue */
1336 int efx_farch_ev_probe(struct efx_channel *channel)
1337 {
1338         struct efx_nic *efx = channel->efx;
1339         unsigned entries;
1340
1341         entries = channel->eventq_mask + 1;
1342         return efx_alloc_special_buffer(efx, &channel->eventq,
1343                                         entries * sizeof(efx_qword_t));
1344 }
1345
1346 int efx_farch_ev_init(struct efx_channel *channel)
1347 {
1348         efx_oword_t reg;
1349         struct efx_nic *efx = channel->efx;
1350
1351         netif_dbg(efx, hw, efx->net_dev,
1352                   "channel %d event queue in special buffers %d-%d\n",
1353                   channel->channel, channel->eventq.index,
1354                   channel->eventq.index + channel->eventq.entries - 1);
1355
1356         EFX_POPULATE_OWORD_3(reg,
1357                              FRF_CZ_TIMER_Q_EN, 1,
1358                              FRF_CZ_HOST_NOTIFY_MODE, 0,
1359                              FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1360         efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1361
1362         /* Pin event queue buffer */
1363         efx_init_special_buffer(efx, &channel->eventq);
1364
1365         /* Fill event queue with all ones (i.e. empty events) */
1366         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1367
1368         /* Push event queue to card */
1369         EFX_POPULATE_OWORD_3(reg,
1370                              FRF_AZ_EVQ_EN, 1,
1371                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1372                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1373         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1374                          channel->channel);
1375
1376         return 0;
1377 }
1378
1379 void efx_farch_ev_fini(struct efx_channel *channel)
1380 {
1381         efx_oword_t reg;
1382         struct efx_nic *efx = channel->efx;
1383
1384         /* Remove event queue from card */
1385         EFX_ZERO_OWORD(reg);
1386         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1387                          channel->channel);
1388         efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1389
1390         /* Unpin event queue */
1391         efx_fini_special_buffer(efx, &channel->eventq);
1392 }
1393
1394 /* Free buffers backing event queue */
1395 void efx_farch_ev_remove(struct efx_channel *channel)
1396 {
1397         efx_free_special_buffer(channel->efx, &channel->eventq);
1398 }
1399
1400
1401 void efx_farch_ev_test_generate(struct efx_channel *channel)
1402 {
1403         efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1404 }
1405
1406 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1407 {
1408         efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1409                               EFX_CHANNEL_MAGIC_FILL(rx_queue));
1410 }
1411
1412 /**************************************************************************
1413  *
1414  * Hardware interrupts
1415  * The hardware interrupt handler does very little work; all the event
1416  * queue processing is carried out by per-channel tasklets.
1417  *
1418  **************************************************************************/
1419
1420 /* Enable/disable/generate interrupts */
1421 static inline void efx_farch_interrupts(struct efx_nic *efx,
1422                                       bool enabled, bool force)
1423 {
1424         efx_oword_t int_en_reg_ker;
1425
1426         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1427                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1428                              FRF_AZ_KER_INT_KER, force,
1429                              FRF_AZ_DRV_INT_EN_KER, enabled);
1430         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1431 }
1432
1433 void efx_farch_irq_enable_master(struct efx_nic *efx)
1434 {
1435         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1436         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1437
1438         efx_farch_interrupts(efx, true, false);
1439 }
1440
1441 void efx_farch_irq_disable_master(struct efx_nic *efx)
1442 {
1443         /* Disable interrupts */
1444         efx_farch_interrupts(efx, false, false);
1445 }
1446
1447 /* Generate a test interrupt
1448  * Interrupt must already have been enabled, otherwise nasty things
1449  * may happen.
1450  */
1451 int efx_farch_irq_test_generate(struct efx_nic *efx)
1452 {
1453         efx_farch_interrupts(efx, true, true);
1454         return 0;
1455 }
1456
1457 /* Process a fatal interrupt
1458  * Disable bus mastering ASAP and schedule a reset
1459  */
1460 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1461 {
1462         efx_oword_t *int_ker = efx->irq_status.addr;
1463         efx_oword_t fatal_intr;
1464         int error, mem_perr;
1465
1466         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1467         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1468
1469         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1470                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1471                   EFX_OWORD_VAL(fatal_intr),
1472                   error ? "disabling bus mastering" : "no recognised error");
1473
1474         /* If this is a memory parity error dump which blocks are offending */
1475         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1476                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1477         if (mem_perr) {
1478                 efx_oword_t reg;
1479                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1480                 netif_err(efx, hw, efx->net_dev,
1481                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1482                           EFX_OWORD_VAL(reg));
1483         }
1484
1485         /* Disable both devices */
1486         pci_clear_master(efx->pci_dev);
1487         efx_farch_irq_disable_master(efx);
1488
1489         /* Count errors and reset or disable the NIC accordingly */
1490         if (efx->int_error_count == 0 ||
1491             time_after(jiffies, efx->int_error_expire)) {
1492                 efx->int_error_count = 0;
1493                 efx->int_error_expire =
1494                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1495         }
1496         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1497                 netif_err(efx, hw, efx->net_dev,
1498                           "SYSTEM ERROR - reset scheduled\n");
1499                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1500         } else {
1501                 netif_err(efx, hw, efx->net_dev,
1502                           "SYSTEM ERROR - max number of errors seen."
1503                           "NIC will be disabled\n");
1504                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1505         }
1506
1507         return IRQ_HANDLED;
1508 }
1509
1510 /* Handle a legacy interrupt
1511  * Acknowledges the interrupt and schedule event queue processing.
1512  */
1513 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1514 {
1515         struct efx_nic *efx = dev_id;
1516         bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1517         efx_oword_t *int_ker = efx->irq_status.addr;
1518         irqreturn_t result = IRQ_NONE;
1519         struct efx_channel *channel;
1520         efx_dword_t reg;
1521         u32 queues;
1522         int syserr;
1523
1524         /* Read the ISR which also ACKs the interrupts */
1525         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1526         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1527
1528         /* Legacy interrupts are disabled too late by the EEH kernel
1529          * code. Disable them earlier.
1530          * If an EEH error occurred, the read will have returned all ones.
1531          */
1532         if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1533             !efx->eeh_disabled_legacy_irq) {
1534                 disable_irq_nosync(efx->legacy_irq);
1535                 efx->eeh_disabled_legacy_irq = true;
1536         }
1537
1538         /* Handle non-event-queue sources */
1539         if (queues & (1U << efx->irq_level) && soft_enabled) {
1540                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1541                 if (unlikely(syserr))
1542                         return efx_farch_fatal_interrupt(efx);
1543                 efx->last_irq_cpu = raw_smp_processor_id();
1544         }
1545
1546         if (queues != 0) {
1547                 efx->irq_zero_count = 0;
1548
1549                 /* Schedule processing of any interrupting queues */
1550                 if (likely(soft_enabled)) {
1551                         efx_for_each_channel(channel, efx) {
1552                                 if (queues & 1)
1553                                         efx_schedule_channel_irq(channel);
1554                                 queues >>= 1;
1555                         }
1556                 }
1557                 result = IRQ_HANDLED;
1558
1559         } else {
1560                 efx_qword_t *event;
1561
1562                 /* Legacy ISR read can return zero once (SF bug 15783) */
1563
1564                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1565                  * because this might be a shared interrupt. */
1566                 if (efx->irq_zero_count++ == 0)
1567                         result = IRQ_HANDLED;
1568
1569                 /* Ensure we schedule or rearm all event queues */
1570                 if (likely(soft_enabled)) {
1571                         efx_for_each_channel(channel, efx) {
1572                                 event = efx_event(channel,
1573                                                   channel->eventq_read_ptr);
1574                                 if (efx_event_present(event))
1575                                         efx_schedule_channel_irq(channel);
1576                                 else
1577                                         efx_farch_ev_read_ack(channel);
1578                         }
1579                 }
1580         }
1581
1582         if (result == IRQ_HANDLED)
1583                 netif_vdbg(efx, intr, efx->net_dev,
1584                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1585                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1586
1587         return result;
1588 }
1589
1590 /* Handle an MSI interrupt
1591  *
1592  * Handle an MSI hardware interrupt.  This routine schedules event
1593  * queue processing.  No interrupt acknowledgement cycle is necessary.
1594  * Also, we never need to check that the interrupt is for us, since
1595  * MSI interrupts cannot be shared.
1596  */
1597 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1598 {
1599         struct efx_msi_context *context = dev_id;
1600         struct efx_nic *efx = context->efx;
1601         efx_oword_t *int_ker = efx->irq_status.addr;
1602         int syserr;
1603
1604         netif_vdbg(efx, intr, efx->net_dev,
1605                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1606                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1607
1608         if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1609                 return IRQ_HANDLED;
1610
1611         /* Handle non-event-queue sources */
1612         if (context->index == efx->irq_level) {
1613                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1614                 if (unlikely(syserr))
1615                         return efx_farch_fatal_interrupt(efx);
1616                 efx->last_irq_cpu = raw_smp_processor_id();
1617         }
1618
1619         /* Schedule processing of the channel */
1620         efx_schedule_channel_irq(efx->channel[context->index]);
1621
1622         return IRQ_HANDLED;
1623 }
1624
1625 /* Setup RSS indirection table.
1626  * This maps from the hash value of the packet to RXQ
1627  */
1628 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1629 {
1630         size_t i = 0;
1631         efx_dword_t dword;
1632
1633         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1634                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1635
1636         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1637                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1638                                      efx->rss_context.rx_indir_table[i]);
1639                 efx_writed(efx, &dword,
1640                            FR_BZ_RX_INDIRECTION_TBL +
1641                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1642         }
1643 }
1644
1645 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1646 {
1647         size_t i = 0;
1648         efx_dword_t dword;
1649
1650         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1651                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1652
1653         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1654                 efx_readd(efx, &dword,
1655                            FR_BZ_RX_INDIRECTION_TBL +
1656                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1657                 efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1658         }
1659 }
1660
1661 /* Looks at available SRAM resources and works out how many queues we
1662  * can support, and where things like descriptor caches should live.
1663  *
1664  * SRAM is split up as follows:
1665  * 0                          buftbl entries for channels
1666  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1667  * efx->rx_dc_base            RX descriptor caches
1668  * efx->tx_dc_base            TX descriptor caches
1669  */
1670 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1671 {
1672         unsigned vi_count, buftbl_min, total_tx_channels;
1673
1674 #ifdef CONFIG_SFC_SRIOV
1675         struct siena_nic_data *nic_data = efx->nic_data;
1676 #endif
1677
1678         total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1679         /* Account for the buffer table entries backing the datapath channels
1680          * and the descriptor caches for those channels.
1681          */
1682         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1683                        total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1684                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1685                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1686         vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1687
1688 #ifdef CONFIG_SFC_SRIOV
1689         if (efx->type->sriov_wanted) {
1690                 if (efx->type->sriov_wanted(efx)) {
1691                         unsigned vi_dc_entries, buftbl_free;
1692                         unsigned entries_per_vf, vf_limit;
1693
1694                         nic_data->vf_buftbl_base = buftbl_min;
1695
1696                         vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1697                         vi_count = max(vi_count, EFX_VI_BASE);
1698                         buftbl_free = (sram_lim_qw - buftbl_min -
1699                                        vi_count * vi_dc_entries);
1700
1701                         entries_per_vf = ((vi_dc_entries +
1702                                            EFX_VF_BUFTBL_PER_VI) *
1703                                           efx_vf_size(efx));
1704                         vf_limit = min(buftbl_free / entries_per_vf,
1705                                        (1024U - EFX_VI_BASE) >> efx->vi_scale);
1706
1707                         if (efx->vf_count > vf_limit) {
1708                                 netif_err(efx, probe, efx->net_dev,
1709                                           "Reducing VF count from from %d to %d\n",
1710                                           efx->vf_count, vf_limit);
1711                                 efx->vf_count = vf_limit;
1712                         }
1713                         vi_count += efx->vf_count * efx_vf_size(efx);
1714                 }
1715         }
1716 #endif
1717
1718         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1719         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1720 }
1721
1722 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1723 {
1724         efx_oword_t altera_build;
1725         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1726         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1727 }
1728
1729 void efx_farch_init_common(struct efx_nic *efx)
1730 {
1731         efx_oword_t temp;
1732
1733         /* Set positions of descriptor caches in SRAM. */
1734         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1735         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1736         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1737         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1738
1739         /* Set TX descriptor cache size. */
1740         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1741         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1742         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1743
1744         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1745          * this allows most efficient prefetching.
1746          */
1747         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1748         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1749         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1750         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1751         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1752
1753         /* Program INT_KER address */
1754         EFX_POPULATE_OWORD_2(temp,
1755                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1756                              EFX_INT_MODE_USE_MSI(efx),
1757                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1758         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1759
1760         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1761                 /* Use an interrupt level unused by event queues */
1762                 efx->irq_level = 0x1f;
1763         else
1764                 /* Use a valid MSI-X vector */
1765                 efx->irq_level = 0;
1766
1767         /* Enable all the genuinely fatal interrupts.  (They are still
1768          * masked by the overall interrupt mask, controlled by
1769          * falcon_interrupts()).
1770          *
1771          * Note: All other fatal interrupts are enabled
1772          */
1773         EFX_POPULATE_OWORD_3(temp,
1774                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1775                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1776                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1777         EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1778         EFX_INVERT_OWORD(temp);
1779         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1780
1781         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1782          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1783          */
1784         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1785         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1786         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1787         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1788         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1789         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1790         /* Enable SW_EV to inherit in char driver - assume harmless here */
1791         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1792         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1793         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1794         /* Disable hardware watchdog which can misfire */
1795         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1796         /* Squash TX of packets of 16 bytes or less */
1797         EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1798         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1799
1800         EFX_POPULATE_OWORD_4(temp,
1801                              /* Default values */
1802                              FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1803                              FRF_BZ_TX_PACE_SB_AF, 0xb,
1804                              FRF_BZ_TX_PACE_FB_BASE, 0,
1805                              /* Allow large pace values in the fast bin. */
1806                              FRF_BZ_TX_PACE_BIN_TH,
1807                              FFE_BZ_TX_PACE_RESERVED);
1808         efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1809 }
1810
1811 /**************************************************************************
1812  *
1813  * Filter tables
1814  *
1815  **************************************************************************
1816  */
1817
1818 /* "Fudge factors" - difference between programmed value and actual depth.
1819  * Due to pipelined implementation we need to program H/W with a value that
1820  * is larger than the hop limit we want.
1821  */
1822 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1823 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1824
1825 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1826  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1827  * table is full.
1828  */
1829 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1830
1831 /* Don't try very hard to find space for performance hints, as this is
1832  * counter-productive. */
1833 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1834
1835 enum efx_farch_filter_type {
1836         EFX_FARCH_FILTER_TCP_FULL = 0,
1837         EFX_FARCH_FILTER_TCP_WILD,
1838         EFX_FARCH_FILTER_UDP_FULL,
1839         EFX_FARCH_FILTER_UDP_WILD,
1840         EFX_FARCH_FILTER_MAC_FULL = 4,
1841         EFX_FARCH_FILTER_MAC_WILD,
1842         EFX_FARCH_FILTER_UC_DEF = 8,
1843         EFX_FARCH_FILTER_MC_DEF,
1844         EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1845 };
1846
1847 enum efx_farch_filter_table_id {
1848         EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1849         EFX_FARCH_FILTER_TABLE_RX_MAC,
1850         EFX_FARCH_FILTER_TABLE_RX_DEF,
1851         EFX_FARCH_FILTER_TABLE_TX_MAC,
1852         EFX_FARCH_FILTER_TABLE_COUNT,
1853 };
1854
1855 enum efx_farch_filter_index {
1856         EFX_FARCH_FILTER_INDEX_UC_DEF,
1857         EFX_FARCH_FILTER_INDEX_MC_DEF,
1858         EFX_FARCH_FILTER_SIZE_RX_DEF,
1859 };
1860
1861 struct efx_farch_filter_spec {
1862         u8      type:4;
1863         u8      priority:4;
1864         u8      flags;
1865         u16     dmaq_id;
1866         u32     data[3];
1867 };
1868
1869 struct efx_farch_filter_table {
1870         enum efx_farch_filter_table_id id;
1871         u32             offset;         /* address of table relative to BAR */
1872         unsigned        size;           /* number of entries */
1873         unsigned        step;           /* step between entries */
1874         unsigned        used;           /* number currently used */
1875         unsigned long   *used_bitmap;
1876         struct efx_farch_filter_spec *spec;
1877         unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1878 };
1879
1880 struct efx_farch_filter_state {
1881         struct rw_semaphore lock; /* Protects table contents */
1882         struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1883 };
1884
1885 static void
1886 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1887                                    struct efx_farch_filter_table *table,
1888                                    unsigned int filter_idx);
1889
1890 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1891  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1892 static u16 efx_farch_filter_hash(u32 key)
1893 {
1894         u16 tmp;
1895
1896         /* First 16 rounds */
1897         tmp = 0x1fff ^ key >> 16;
1898         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1899         tmp = tmp ^ tmp >> 9;
1900         /* Last 16 rounds */
1901         tmp = tmp ^ tmp << 13 ^ key;
1902         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1903         return tmp ^ tmp >> 9;
1904 }
1905
1906 /* To allow for hash collisions, filter search continues at these
1907  * increments from the first possible entry selected by the hash. */
1908 static u16 efx_farch_filter_increment(u32 key)
1909 {
1910         return key * 2 - 1;
1911 }
1912
1913 static enum efx_farch_filter_table_id
1914 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1915 {
1916         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1917                      (EFX_FARCH_FILTER_TCP_FULL >> 2));
1918         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919                      (EFX_FARCH_FILTER_TCP_WILD >> 2));
1920         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921                      (EFX_FARCH_FILTER_UDP_FULL >> 2));
1922         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1923                      (EFX_FARCH_FILTER_UDP_WILD >> 2));
1924         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1925                      (EFX_FARCH_FILTER_MAC_FULL >> 2));
1926         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1927                      (EFX_FARCH_FILTER_MAC_WILD >> 2));
1928         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1929                      EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1930         return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1931 }
1932
1933 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1934 {
1935         struct efx_farch_filter_state *state = efx->filter_state;
1936         struct efx_farch_filter_table *table;
1937         efx_oword_t filter_ctl;
1938
1939         efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1940
1941         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1942         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1943                             table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1944                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1945         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1946                             table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1947                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1948         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1949                             table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1950                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1951         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1952                             table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1953                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1954
1955         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1956         if (table->size) {
1957                 EFX_SET_OWORD_FIELD(
1958                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1959                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1960                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1961                 EFX_SET_OWORD_FIELD(
1962                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1963                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1964                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965         }
1966
1967         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1968         if (table->size) {
1969                 EFX_SET_OWORD_FIELD(
1970                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1971                         table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1972                 EFX_SET_OWORD_FIELD(
1973                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1974                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1975                            EFX_FILTER_FLAG_RX_RSS));
1976                 EFX_SET_OWORD_FIELD(
1977                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1978                         table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1979                 EFX_SET_OWORD_FIELD(
1980                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1981                         !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1982                            EFX_FILTER_FLAG_RX_RSS));
1983
1984                 /* There is a single bit to enable RX scatter for all
1985                  * unmatched packets.  Only set it if scatter is
1986                  * enabled in both filter specs.
1987                  */
1988                 EFX_SET_OWORD_FIELD(
1989                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1990                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1991                            table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1992                            EFX_FILTER_FLAG_RX_SCATTER));
1993         } else {
1994                 /* We don't expose 'default' filters because unmatched
1995                  * packets always go to the queue number found in the
1996                  * RSS table.  But we still need to set the RX scatter
1997                  * bit here.
1998                  */
1999                 EFX_SET_OWORD_FIELD(
2000                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2001                         efx->rx_scatter);
2002         }
2003
2004         efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2005 }
2006
2007 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2008 {
2009         struct efx_farch_filter_state *state = efx->filter_state;
2010         struct efx_farch_filter_table *table;
2011         efx_oword_t tx_cfg;
2012
2013         efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2014
2015         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2016         if (table->size) {
2017                 EFX_SET_OWORD_FIELD(
2018                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2019                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2020                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2021                 EFX_SET_OWORD_FIELD(
2022                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2023                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2024                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2025         }
2026
2027         efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2028 }
2029
2030 static int
2031 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2032                                const struct efx_filter_spec *gen_spec)
2033 {
2034         bool is_full = false;
2035
2036         if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2037                 return -EINVAL;
2038
2039         spec->priority = gen_spec->priority;
2040         spec->flags = gen_spec->flags;
2041         spec->dmaq_id = gen_spec->dmaq_id;
2042
2043         switch (gen_spec->match_flags) {
2044         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2045               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2046               EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2047                 is_full = true;
2048                 /* fall through */
2049         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2050               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2051                 __be32 rhost, host1, host2;
2052                 __be16 rport, port1, port2;
2053
2054                 EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2055
2056                 if (gen_spec->ether_type != htons(ETH_P_IP))
2057                         return -EPROTONOSUPPORT;
2058                 if (gen_spec->loc_port == 0 ||
2059                     (is_full && gen_spec->rem_port == 0))
2060                         return -EADDRNOTAVAIL;
2061                 switch (gen_spec->ip_proto) {
2062                 case IPPROTO_TCP:
2063                         spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2064                                       EFX_FARCH_FILTER_TCP_WILD);
2065                         break;
2066                 case IPPROTO_UDP:
2067                         spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2068                                       EFX_FARCH_FILTER_UDP_WILD);
2069                         break;
2070                 default:
2071                         return -EPROTONOSUPPORT;
2072                 }
2073
2074                 /* Filter is constructed in terms of source and destination,
2075                  * with the odd wrinkle that the ports are swapped in a UDP
2076                  * wildcard filter.  We need to convert from local and remote
2077                  * (= zero for wildcard) addresses.
2078                  */
2079                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2080                 rport = is_full ? gen_spec->rem_port : 0;
2081                 host1 = rhost;
2082                 host2 = gen_spec->loc_host[0];
2083                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2084                         port1 = gen_spec->loc_port;
2085                         port2 = rport;
2086                 } else {
2087                         port1 = rport;
2088                         port2 = gen_spec->loc_port;
2089                 }
2090                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2091                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2092                 spec->data[2] = ntohl(host2);
2093
2094                 break;
2095         }
2096
2097         case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2098                 is_full = true;
2099                 /* fall through */
2100         case EFX_FILTER_MATCH_LOC_MAC:
2101                 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2102                               EFX_FARCH_FILTER_MAC_WILD);
2103                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2104                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2105                                  gen_spec->loc_mac[3] << 16 |
2106                                  gen_spec->loc_mac[4] << 8 |
2107                                  gen_spec->loc_mac[5]);
2108                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2109                                  gen_spec->loc_mac[1]);
2110                 break;
2111
2112         case EFX_FILTER_MATCH_LOC_MAC_IG:
2113                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2114                               EFX_FARCH_FILTER_MC_DEF :
2115                               EFX_FARCH_FILTER_UC_DEF);
2116                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2117                 break;
2118
2119         default:
2120                 return -EPROTONOSUPPORT;
2121         }
2122
2123         return 0;
2124 }
2125
2126 static void
2127 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2128                              const struct efx_farch_filter_spec *spec)
2129 {
2130         bool is_full = false;
2131
2132         /* *gen_spec should be completely initialised, to be consistent
2133          * with efx_filter_init_{rx,tx}() and in case we want to copy
2134          * it back to userland.
2135          */
2136         memset(gen_spec, 0, sizeof(*gen_spec));
2137
2138         gen_spec->priority = spec->priority;
2139         gen_spec->flags = spec->flags;
2140         gen_spec->dmaq_id = spec->dmaq_id;
2141
2142         switch (spec->type) {
2143         case EFX_FARCH_FILTER_TCP_FULL:
2144         case EFX_FARCH_FILTER_UDP_FULL:
2145                 is_full = true;
2146                 /* fall through */
2147         case EFX_FARCH_FILTER_TCP_WILD:
2148         case EFX_FARCH_FILTER_UDP_WILD: {
2149                 __be32 host1, host2;
2150                 __be16 port1, port2;
2151
2152                 gen_spec->match_flags =
2153                         EFX_FILTER_MATCH_ETHER_TYPE |
2154                         EFX_FILTER_MATCH_IP_PROTO |
2155                         EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2156                 if (is_full)
2157                         gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2158                                                   EFX_FILTER_MATCH_REM_PORT);
2159                 gen_spec->ether_type = htons(ETH_P_IP);
2160                 gen_spec->ip_proto =
2161                         (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2162                          spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2163                         IPPROTO_TCP : IPPROTO_UDP;
2164
2165                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2166                 port1 = htons(spec->data[0]);
2167                 host2 = htonl(spec->data[2]);
2168                 port2 = htons(spec->data[1] >> 16);
2169                 if (spec->flags & EFX_FILTER_FLAG_TX) {
2170                         gen_spec->loc_host[0] = host1;
2171                         gen_spec->rem_host[0] = host2;
2172                 } else {
2173                         gen_spec->loc_host[0] = host2;
2174                         gen_spec->rem_host[0] = host1;
2175                 }
2176                 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2177                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2178                         gen_spec->loc_port = port1;
2179                         gen_spec->rem_port = port2;
2180                 } else {
2181                         gen_spec->loc_port = port2;
2182                         gen_spec->rem_port = port1;
2183                 }
2184
2185                 break;
2186         }
2187
2188         case EFX_FARCH_FILTER_MAC_FULL:
2189                 is_full = true;
2190                 /* fall through */
2191         case EFX_FARCH_FILTER_MAC_WILD:
2192                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2193                 if (is_full)
2194                         gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2195                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2196                 gen_spec->loc_mac[1] = spec->data[2];
2197                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2198                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2199                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2200                 gen_spec->loc_mac[5] = spec->data[1];
2201                 gen_spec->outer_vid = htons(spec->data[0]);
2202                 break;
2203
2204         case EFX_FARCH_FILTER_UC_DEF:
2205         case EFX_FARCH_FILTER_MC_DEF:
2206                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2207                 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2208                 break;
2209
2210         default:
2211                 WARN_ON(1);
2212                 break;
2213         }
2214 }
2215
2216 static void
2217 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2218                               struct efx_farch_filter_spec *spec)
2219 {
2220         /* If there's only one channel then disable RSS for non VF
2221          * traffic, thereby allowing VFs to use RSS when the PF can't.
2222          */
2223         spec->priority = EFX_FILTER_PRI_AUTO;
2224         spec->flags = (EFX_FILTER_FLAG_RX |
2225                        (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2226                        (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2227         spec->dmaq_id = 0;
2228 }
2229
2230 /* Build a filter entry and return its n-tuple key. */
2231 static u32 efx_farch_filter_build(efx_oword_t *filter,
2232                                   struct efx_farch_filter_spec *spec)
2233 {
2234         u32 data3;
2235
2236         switch (efx_farch_filter_spec_table_id(spec)) {
2237         case EFX_FARCH_FILTER_TABLE_RX_IP: {
2238                 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2239                                spec->type == EFX_FARCH_FILTER_UDP_WILD);
2240                 EFX_POPULATE_OWORD_7(
2241                         *filter,
2242                         FRF_BZ_RSS_EN,
2243                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2244                         FRF_BZ_SCATTER_EN,
2245                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2246                         FRF_BZ_TCP_UDP, is_udp,
2247                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2248                         EFX_DWORD_2, spec->data[2],
2249                         EFX_DWORD_1, spec->data[1],
2250                         EFX_DWORD_0, spec->data[0]);
2251                 data3 = is_udp;
2252                 break;
2253         }
2254
2255         case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2256                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2257                 EFX_POPULATE_OWORD_7(
2258                         *filter,
2259                         FRF_CZ_RMFT_RSS_EN,
2260                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2261                         FRF_CZ_RMFT_SCATTER_EN,
2262                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2263                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2264                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2265                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2266                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2267                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2268                 data3 = is_wild;
2269                 break;
2270         }
2271
2272         case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2273                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2274                 EFX_POPULATE_OWORD_5(*filter,
2275                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2276                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2277                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2278                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2279                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2280                 data3 = is_wild | spec->dmaq_id << 1;
2281                 break;
2282         }
2283
2284         default:
2285                 BUG();
2286         }
2287
2288         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2289 }
2290
2291 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2292                                    const struct efx_farch_filter_spec *right)
2293 {
2294         if (left->type != right->type ||
2295             memcmp(left->data, right->data, sizeof(left->data)))
2296                 return false;
2297
2298         if (left->flags & EFX_FILTER_FLAG_TX &&
2299             left->dmaq_id != right->dmaq_id)
2300                 return false;
2301
2302         return true;
2303 }
2304
2305 /*
2306  * Construct/deconstruct external filter IDs.  At least the RX filter
2307  * IDs must be ordered by matching priority, for RX NFC semantics.
2308  *
2309  * Deconstruction needs to be robust against invalid IDs so that
2310  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2311  * accept user-provided IDs.
2312  */
2313
2314 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2315
2316 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2317         [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2318         [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2319         [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2320         [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2321         [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2322         [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2323         [EFX_FARCH_FILTER_UC_DEF]       = 4,
2324         [EFX_FARCH_FILTER_MC_DEF]       = 4,
2325 };
2326
2327 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2328         EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2329         EFX_FARCH_FILTER_TABLE_RX_IP,
2330         EFX_FARCH_FILTER_TABLE_RX_MAC,
2331         EFX_FARCH_FILTER_TABLE_RX_MAC,
2332         EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2333         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2334         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2335 };
2336
2337 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2338 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2339
2340 static inline u32
2341 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2342                          unsigned int index)
2343 {
2344         unsigned int range;
2345
2346         range = efx_farch_filter_type_match_pri[spec->type];
2347         if (!(spec->flags & EFX_FILTER_FLAG_RX))
2348                 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2349
2350         return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2351 }
2352
2353 static inline enum efx_farch_filter_table_id
2354 efx_farch_filter_id_table_id(u32 id)
2355 {
2356         unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2357
2358         if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2359                 return efx_farch_filter_range_table[range];
2360         else
2361                 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2362 }
2363
2364 static inline unsigned int efx_farch_filter_id_index(u32 id)
2365 {
2366         return id & EFX_FARCH_FILTER_INDEX_MASK;
2367 }
2368
2369 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2370 {
2371         struct efx_farch_filter_state *state = efx->filter_state;
2372         unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2373         enum efx_farch_filter_table_id table_id;
2374
2375         do {
2376                 table_id = efx_farch_filter_range_table[range];
2377                 if (state->table[table_id].size != 0)
2378                         return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2379                                 state->table[table_id].size;
2380         } while (range--);
2381
2382         return 0;
2383 }
2384
2385 s32 efx_farch_filter_insert(struct efx_nic *efx,
2386                             struct efx_filter_spec *gen_spec,
2387                             bool replace_equal)
2388 {
2389         struct efx_farch_filter_state *state = efx->filter_state;
2390         struct efx_farch_filter_table *table;
2391         struct efx_farch_filter_spec spec;
2392         efx_oword_t filter;
2393         int rep_index, ins_index;
2394         unsigned int depth = 0;
2395         int rc;
2396
2397         rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2398         if (rc)
2399                 return rc;
2400
2401         down_write(&state->lock);
2402
2403         table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2404         if (table->size == 0) {
2405                 rc = -EINVAL;
2406                 goto out_unlock;
2407         }
2408
2409         netif_vdbg(efx, hw, efx->net_dev,
2410                    "%s: type %d search_limit=%d", __func__, spec.type,
2411                    table->search_limit[spec.type]);
2412
2413         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2414                 /* One filter spec per type */
2415                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2416                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2417                              EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2418                 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2419                 ins_index = rep_index;
2420         } else {
2421                 /* Search concurrently for
2422                  * (1) a filter to be replaced (rep_index): any filter
2423                  *     with the same match values, up to the current
2424                  *     search depth for this type, and
2425                  * (2) the insertion point (ins_index): (1) or any
2426                  *     free slot before it or up to the maximum search
2427                  *     depth for this priority
2428                  * We fail if we cannot find (2).
2429                  *
2430                  * We can stop once either
2431                  * (a) we find (1), in which case we have definitely
2432                  *     found (2) as well; or
2433                  * (b) we have searched exhaustively for (1), and have
2434                  *     either found (2) or searched exhaustively for it
2435                  */
2436                 u32 key = efx_farch_filter_build(&filter, &spec);
2437                 unsigned int hash = efx_farch_filter_hash(key);
2438                 unsigned int incr = efx_farch_filter_increment(key);
2439                 unsigned int max_rep_depth = table->search_limit[spec.type];
2440                 unsigned int max_ins_depth =
2441                         spec.priority <= EFX_FILTER_PRI_HINT ?
2442                         EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2443                         EFX_FARCH_FILTER_CTL_SRCH_MAX;
2444                 unsigned int i = hash & (table->size - 1);
2445
2446                 ins_index = -1;
2447                 depth = 1;
2448
2449                 for (;;) {
2450                         if (!test_bit(i, table->used_bitmap)) {
2451                                 if (ins_index < 0)
2452                                         ins_index = i;
2453                         } else if (efx_farch_filter_equal(&spec,
2454                                                           &table->spec[i])) {
2455                                 /* Case (a) */
2456                                 if (ins_index < 0)
2457                                         ins_index = i;
2458                                 rep_index = i;
2459                                 break;
2460                         }
2461
2462                         if (depth >= max_rep_depth &&
2463                             (ins_index >= 0 || depth >= max_ins_depth)) {
2464                                 /* Case (b) */
2465                                 if (ins_index < 0) {
2466                                         rc = -EBUSY;
2467                                         goto out_unlock;
2468                                 }
2469                                 rep_index = -1;
2470                                 break;
2471                         }
2472
2473                         i = (i + incr) & (table->size - 1);
2474                         ++depth;
2475                 }
2476         }
2477
2478         /* If we found a filter to be replaced, check whether we
2479          * should do so
2480          */
2481         if (rep_index >= 0) {
2482                 struct efx_farch_filter_spec *saved_spec =
2483                         &table->spec[rep_index];
2484
2485                 if (spec.priority == saved_spec->priority && !replace_equal) {
2486                         rc = -EEXIST;
2487                         goto out_unlock;
2488                 }
2489                 if (spec.priority < saved_spec->priority) {
2490                         rc = -EPERM;
2491                         goto out_unlock;
2492                 }
2493                 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2494                     saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2495                         spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2496         }
2497
2498         /* Insert the filter */
2499         if (ins_index != rep_index) {
2500                 __set_bit(ins_index, table->used_bitmap);
2501                 ++table->used;
2502         }
2503         table->spec[ins_index] = spec;
2504
2505         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2506                 efx_farch_filter_push_rx_config(efx);
2507         } else {
2508                 if (table->search_limit[spec.type] < depth) {
2509                         table->search_limit[spec.type] = depth;
2510                         if (spec.flags & EFX_FILTER_FLAG_TX)
2511                                 efx_farch_filter_push_tx_limits(efx);
2512                         else
2513                                 efx_farch_filter_push_rx_config(efx);
2514                 }
2515
2516                 efx_writeo(efx, &filter,
2517                            table->offset + table->step * ins_index);
2518
2519                 /* If we were able to replace a filter by inserting
2520                  * at a lower depth, clear the replaced filter
2521                  */
2522                 if (ins_index != rep_index && rep_index >= 0)
2523                         efx_farch_filter_table_clear_entry(efx, table,
2524                                                            rep_index);
2525         }
2526
2527         netif_vdbg(efx, hw, efx->net_dev,
2528                    "%s: filter type %d index %d rxq %u set",
2529                    __func__, spec.type, ins_index, spec.dmaq_id);
2530         rc = efx_farch_filter_make_id(&spec, ins_index);
2531
2532 out_unlock:
2533         up_write(&state->lock);
2534         return rc;
2535 }
2536
2537 static void
2538 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2539                                    struct efx_farch_filter_table *table,
2540                                    unsigned int filter_idx)
2541 {
2542         static efx_oword_t filter;
2543
2544         EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2545         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2546
2547         __clear_bit(filter_idx, table->used_bitmap);
2548         --table->used;
2549         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2550
2551         efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2552
2553         /* If this filter required a greater search depth than
2554          * any other, the search limit for its type can now be
2555          * decreased.  However, it is hard to determine that
2556          * unless the table has become completely empty - in
2557          * which case, all its search limits can be set to 0.
2558          */
2559         if (unlikely(table->used == 0)) {
2560                 memset(table->search_limit, 0, sizeof(table->search_limit));
2561                 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2562                         efx_farch_filter_push_tx_limits(efx);
2563                 else
2564                         efx_farch_filter_push_rx_config(efx);
2565         }
2566 }
2567
2568 static int efx_farch_filter_remove(struct efx_nic *efx,
2569                                    struct efx_farch_filter_table *table,
2570                                    unsigned int filter_idx,
2571                                    enum efx_filter_priority priority)
2572 {
2573         struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2574
2575         if (!test_bit(filter_idx, table->used_bitmap) ||
2576             spec->priority != priority)
2577                 return -ENOENT;
2578
2579         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2580                 efx_farch_filter_init_rx_auto(efx, spec);
2581                 efx_farch_filter_push_rx_config(efx);
2582         } else {
2583                 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2584         }
2585
2586         return 0;
2587 }
2588
2589 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2590                                  enum efx_filter_priority priority,
2591                                  u32 filter_id)
2592 {
2593         struct efx_farch_filter_state *state = efx->filter_state;
2594         enum efx_farch_filter_table_id table_id;
2595         struct efx_farch_filter_table *table;
2596         unsigned int filter_idx;
2597         struct efx_farch_filter_spec *spec;
2598         int rc;
2599
2600         table_id = efx_farch_filter_id_table_id(filter_id);
2601         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2602                 return -ENOENT;
2603         table = &state->table[table_id];
2604
2605         filter_idx = efx_farch_filter_id_index(filter_id);
2606         if (filter_idx >= table->size)
2607                 return -ENOENT;
2608         down_write(&state->lock);
2609         spec = &table->spec[filter_idx];
2610
2611         rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2612         up_write(&state->lock);
2613
2614         return rc;
2615 }
2616
2617 int efx_farch_filter_get_safe(struct efx_nic *efx,
2618                               enum efx_filter_priority priority,
2619                               u32 filter_id, struct efx_filter_spec *spec_buf)
2620 {
2621         struct efx_farch_filter_state *state = efx->filter_state;
2622         enum efx_farch_filter_table_id table_id;
2623         struct efx_farch_filter_table *table;
2624         struct efx_farch_filter_spec *spec;
2625         unsigned int filter_idx;
2626         int rc = -ENOENT;
2627
2628         down_read(&state->lock);
2629
2630         table_id = efx_farch_filter_id_table_id(filter_id);
2631         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632                 goto out_unlock;
2633         table = &state->table[table_id];
2634
2635         filter_idx = efx_farch_filter_id_index(filter_id);
2636         if (filter_idx >= table->size)
2637                 goto out_unlock;
2638         spec = &table->spec[filter_idx];
2639
2640         if (test_bit(filter_idx, table->used_bitmap) &&
2641             spec->priority == priority) {
2642                 efx_farch_filter_to_gen_spec(spec_buf, spec);
2643                 rc = 0;
2644         }
2645
2646 out_unlock:
2647         up_read(&state->lock);
2648         return rc;
2649 }
2650
2651 static void
2652 efx_farch_filter_table_clear(struct efx_nic *efx,
2653                              enum efx_farch_filter_table_id table_id,
2654                              enum efx_filter_priority priority)
2655 {
2656         struct efx_farch_filter_state *state = efx->filter_state;
2657         struct efx_farch_filter_table *table = &state->table[table_id];
2658         unsigned int filter_idx;
2659
2660         down_write(&state->lock);
2661         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2662                 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2663                         efx_farch_filter_remove(efx, table,
2664                                                 filter_idx, priority);
2665         }
2666         up_write(&state->lock);
2667 }
2668
2669 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2670                                enum efx_filter_priority priority)
2671 {
2672         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2673                                      priority);
2674         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2675                                      priority);
2676         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2677                                      priority);
2678         return 0;
2679 }
2680
2681 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2682                                    enum efx_filter_priority priority)
2683 {
2684         struct efx_farch_filter_state *state = efx->filter_state;
2685         enum efx_farch_filter_table_id table_id;
2686         struct efx_farch_filter_table *table;
2687         unsigned int filter_idx;
2688         u32 count = 0;
2689
2690         down_read(&state->lock);
2691
2692         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2693              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2694              table_id++) {
2695                 table = &state->table[table_id];
2696                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2697                         if (test_bit(filter_idx, table->used_bitmap) &&
2698                             table->spec[filter_idx].priority == priority)
2699                                 ++count;
2700                 }
2701         }
2702
2703         up_read(&state->lock);
2704
2705         return count;
2706 }
2707
2708 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2709                                 enum efx_filter_priority priority,
2710                                 u32 *buf, u32 size)
2711 {
2712         struct efx_farch_filter_state *state = efx->filter_state;
2713         enum efx_farch_filter_table_id table_id;
2714         struct efx_farch_filter_table *table;
2715         unsigned int filter_idx;
2716         s32 count = 0;
2717
2718         down_read(&state->lock);
2719
2720         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2721              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2722              table_id++) {
2723                 table = &state->table[table_id];
2724                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2725                         if (test_bit(filter_idx, table->used_bitmap) &&
2726                             table->spec[filter_idx].priority == priority) {
2727                                 if (count == size) {
2728                                         count = -EMSGSIZE;
2729                                         goto out;
2730                                 }
2731                                 buf[count++] = efx_farch_filter_make_id(
2732                                         &table->spec[filter_idx], filter_idx);
2733                         }
2734                 }
2735         }
2736 out:
2737         up_read(&state->lock);
2738
2739         return count;
2740 }
2741
2742 /* Restore filter stater after reset */
2743 void efx_farch_filter_table_restore(struct efx_nic *efx)
2744 {
2745         struct efx_farch_filter_state *state = efx->filter_state;
2746         enum efx_farch_filter_table_id table_id;
2747         struct efx_farch_filter_table *table;
2748         efx_oword_t filter;
2749         unsigned int filter_idx;
2750
2751         down_write(&state->lock);
2752
2753         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2754                 table = &state->table[table_id];
2755
2756                 /* Check whether this is a regular register table */
2757                 if (table->step == 0)
2758                         continue;
2759
2760                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2761                         if (!test_bit(filter_idx, table->used_bitmap))
2762                                 continue;
2763                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2764                         efx_writeo(efx, &filter,
2765                                    table->offset + table->step * filter_idx);
2766                 }
2767         }
2768
2769         efx_farch_filter_push_rx_config(efx);
2770         efx_farch_filter_push_tx_limits(efx);
2771
2772         up_write(&state->lock);
2773 }
2774
2775 void efx_farch_filter_table_remove(struct efx_nic *efx)
2776 {
2777         struct efx_farch_filter_state *state = efx->filter_state;
2778         enum efx_farch_filter_table_id table_id;
2779
2780         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2781                 kfree(state->table[table_id].used_bitmap);
2782                 vfree(state->table[table_id].spec);
2783         }
2784         kfree(state);
2785 }
2786
2787 int efx_farch_filter_table_probe(struct efx_nic *efx)
2788 {
2789         struct efx_farch_filter_state *state;
2790         struct efx_farch_filter_table *table;
2791         unsigned table_id;
2792
2793         state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2794         if (!state)
2795                 return -ENOMEM;
2796         efx->filter_state = state;
2797         init_rwsem(&state->lock);
2798
2799         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2800         table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2801         table->offset = FR_BZ_RX_FILTER_TBL0;
2802         table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2803         table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2804
2805         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2806         table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2807         table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2808         table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2809         table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2810
2811         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2812         table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2813         table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2814
2815         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2816         table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2817         table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2818         table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2819         table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2820
2821         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2822                 table = &state->table[table_id];
2823                 if (table->size == 0)
2824                         continue;
2825                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2826                                              sizeof(unsigned long),
2827                                              GFP_KERNEL);
2828                 if (!table->used_bitmap)
2829                         goto fail;
2830                 table->spec = vzalloc(array_size(sizeof(*table->spec),
2831                                                  table->size));
2832                 if (!table->spec)
2833                         goto fail;
2834         }
2835
2836         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2837         if (table->size) {
2838                 /* RX default filters must always exist */
2839                 struct efx_farch_filter_spec *spec;
2840                 unsigned i;
2841
2842                 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2843                         spec = &table->spec[i];
2844                         spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2845                         efx_farch_filter_init_rx_auto(efx, spec);
2846                         __set_bit(i, table->used_bitmap);
2847                 }
2848         }
2849
2850         efx_farch_filter_push_rx_config(efx);
2851
2852         return 0;
2853
2854 fail:
2855         efx_farch_filter_table_remove(efx);
2856         return -ENOMEM;
2857 }
2858
2859 /* Update scatter enable flags for filters pointing to our own RX queues */
2860 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2861 {
2862         struct efx_farch_filter_state *state = efx->filter_state;
2863         enum efx_farch_filter_table_id table_id;
2864         struct efx_farch_filter_table *table;
2865         efx_oword_t filter;
2866         unsigned int filter_idx;
2867
2868         down_write(&state->lock);
2869
2870         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2871              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2872              table_id++) {
2873                 table = &state->table[table_id];
2874
2875                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2876                         if (!test_bit(filter_idx, table->used_bitmap) ||
2877                             table->spec[filter_idx].dmaq_id >=
2878                             efx->n_rx_channels)
2879                                 continue;
2880
2881                         if (efx->rx_scatter)
2882                                 table->spec[filter_idx].flags |=
2883                                         EFX_FILTER_FLAG_RX_SCATTER;
2884                         else
2885                                 table->spec[filter_idx].flags &=
2886                                         ~EFX_FILTER_FLAG_RX_SCATTER;
2887
2888                         if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2889                                 /* Pushed by efx_farch_filter_push_rx_config() */
2890                                 continue;
2891
2892                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2893                         efx_writeo(efx, &filter,
2894                                    table->offset + table->step * filter_idx);
2895                 }
2896         }
2897
2898         efx_farch_filter_push_rx_config(efx);
2899
2900         up_write(&state->lock);
2901 }
2902
2903 #ifdef CONFIG_RFS_ACCEL
2904
2905 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2906                                      unsigned int index)
2907 {
2908         struct efx_farch_filter_state *state = efx->filter_state;
2909         struct efx_farch_filter_table *table;
2910         bool ret = false, force = false;
2911         u16 arfs_id;
2912
2913         down_write(&state->lock);
2914         spin_lock_bh(&efx->rps_hash_lock);
2915         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2916         if (test_bit(index, table->used_bitmap) &&
2917             table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2918                 struct efx_arfs_rule *rule = NULL;
2919                 struct efx_filter_spec spec;
2920
2921                 efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2922                 if (!efx->rps_hash_table) {
2923                         /* In the absence of the table, we always returned 0 to
2924                          * ARFS, so use the same to query it.
2925                          */
2926                         arfs_id = 0;
2927                 } else {
2928                         rule = efx_rps_hash_find(efx, &spec);
2929                         if (!rule) {
2930                                 /* ARFS table doesn't know of this filter, remove it */
2931                                 force = true;
2932                         } else {
2933                                 arfs_id = rule->arfs_id;
2934                                 if (!efx_rps_check_rule(rule, index, &force))
2935                                         goto out_unlock;
2936                         }
2937                 }
2938                 if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2939                                                  flow_id, arfs_id)) {
2940                         if (rule)
2941                                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2942                         efx_rps_hash_del(efx, &spec);
2943                         efx_farch_filter_table_clear_entry(efx, table, index);
2944                         ret = true;
2945                 }
2946         }
2947 out_unlock:
2948         spin_unlock_bh(&efx->rps_hash_lock);
2949         up_write(&state->lock);
2950         return ret;
2951 }
2952
2953 #endif /* CONFIG_RFS_ACCEL */
2954
2955 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2956 {
2957         struct net_device *net_dev = efx->net_dev;
2958         struct netdev_hw_addr *ha;
2959         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2960         u32 crc;
2961         int bit;
2962
2963         if (!efx_dev_registered(efx))
2964                 return;
2965
2966         netif_addr_lock_bh(net_dev);
2967
2968         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2969
2970         /* Build multicast hash table */
2971         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2972                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2973         } else {
2974                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2975                 netdev_for_each_mc_addr(ha, net_dev) {
2976                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2977                         bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2978                         __set_bit_le(bit, mc_hash);
2979                 }
2980
2981                 /* Broadcast packets go through the multicast hash filter.
2982                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2983                  * so we always add bit 0xff to the mask.
2984                  */
2985                 __set_bit_le(0xff, mc_hash);
2986         }
2987
2988         netif_addr_unlock_bh(net_dev);
2989 }