Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25
26 #define EFX_EF10_DRVGEN_EV              7
27 enum {
28         EFX_EF10_TEST = 1,
29         EFX_EF10_REFILL,
30 };
31
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID    0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53
54 #define EFX_EF10_FILTER_DEV_UC_MAX      32
55 #define EFX_EF10_FILTER_DEV_MC_MAX      256
56
57 /* VLAN list entry */
58 struct efx_ef10_vlan {
59         struct list_head list;
60         u16 vid;
61 };
62
63 enum efx_ef10_default_filters {
64         EFX_EF10_BCAST,
65         EFX_EF10_UCDEF,
66         EFX_EF10_MCDEF,
67         EFX_EF10_VXLAN4_UCDEF,
68         EFX_EF10_VXLAN4_MCDEF,
69         EFX_EF10_VXLAN6_UCDEF,
70         EFX_EF10_VXLAN6_MCDEF,
71         EFX_EF10_NVGRE4_UCDEF,
72         EFX_EF10_NVGRE4_MCDEF,
73         EFX_EF10_NVGRE6_UCDEF,
74         EFX_EF10_NVGRE6_MCDEF,
75         EFX_EF10_GENEVE4_UCDEF,
76         EFX_EF10_GENEVE4_MCDEF,
77         EFX_EF10_GENEVE6_UCDEF,
78         EFX_EF10_GENEVE6_MCDEF,
79
80         EFX_EF10_NUM_DEFAULT_FILTERS
81 };
82
83 /* Per-VLAN filters information */
84 struct efx_ef10_filter_vlan {
85         struct list_head list;
86         u16 vid;
87         u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
88         u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
89         u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
90 };
91
92 struct efx_ef10_dev_addr {
93         u8 addr[ETH_ALEN];
94 };
95
96 struct efx_ef10_filter_table {
97 /* The MCDI match masks supported by this fw & hw, in order of priority */
98         u32 rx_match_mcdi_flags[
99                 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
100         unsigned int rx_match_count;
101
102         struct {
103                 unsigned long spec;     /* pointer to spec plus flag bits */
104 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
105  * used to mark and sweep MAC filters for the device address lists.
106  */
107 #define EFX_EF10_FILTER_FLAG_BUSY       1UL
108 #define EFX_EF10_FILTER_FLAG_AUTO_OLD   2UL
109 #define EFX_EF10_FILTER_FLAGS           3UL
110                 u64 handle;             /* firmware handle */
111         } *entry;
112         wait_queue_head_t waitq;
113 /* Shadow of net_device address lists, guarded by mac_lock */
114         struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
115         struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
116         int dev_uc_count;
117         int dev_mc_count;
118         bool uc_promisc;
119         bool mc_promisc;
120 /* Whether in multicast promiscuous mode when last changed */
121         bool mc_promisc_last;
122         bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
123         bool vlan_filter;
124         struct list_head vlan_list;
125 };
126
127 /* An arbitrary search limit for the software hash table */
128 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
129
130 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
131 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
132 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
133 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
134                                               struct efx_ef10_filter_vlan *vlan);
135 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
136 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
137
138 static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
139 {
140         WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
141         return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
142 }
143
144 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
145 {
146         return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
147 }
148
149 static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
150 {
151         return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
152 }
153
154 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
155 {
156         efx_dword_t reg;
157
158         efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
159         return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
160                 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
161 }
162
163 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
164 {
165         int bar;
166
167         bar = efx->type->mem_bar;
168         return resource_size(&efx->pci_dev->resource[bar]);
169 }
170
171 static bool efx_ef10_is_vf(struct efx_nic *efx)
172 {
173         return efx->type->is_vf;
174 }
175
176 static int efx_ef10_get_pf_index(struct efx_nic *efx)
177 {
178         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
179         struct efx_ef10_nic_data *nic_data = efx->nic_data;
180         size_t outlen;
181         int rc;
182
183         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
184                           sizeof(outbuf), &outlen);
185         if (rc)
186                 return rc;
187         if (outlen < sizeof(outbuf))
188                 return -EIO;
189
190         nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
191         return 0;
192 }
193
194 #ifdef CONFIG_SFC_SRIOV
195 static int efx_ef10_get_vf_index(struct efx_nic *efx)
196 {
197         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
198         struct efx_ef10_nic_data *nic_data = efx->nic_data;
199         size_t outlen;
200         int rc;
201
202         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
203                           sizeof(outbuf), &outlen);
204         if (rc)
205                 return rc;
206         if (outlen < sizeof(outbuf))
207                 return -EIO;
208
209         nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
210         return 0;
211 }
212 #endif
213
214 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
215 {
216         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
217         struct efx_ef10_nic_data *nic_data = efx->nic_data;
218         size_t outlen;
219         int rc;
220
221         BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
222
223         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
224                           outbuf, sizeof(outbuf), &outlen);
225         if (rc)
226                 return rc;
227         if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
228                 netif_err(efx, drv, efx->net_dev,
229                           "unable to read datapath firmware capabilities\n");
230                 return -EIO;
231         }
232
233         nic_data->datapath_caps =
234                 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
235
236         if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
237                 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
238                                 GET_CAPABILITIES_V2_OUT_FLAGS2);
239                 nic_data->piobuf_size = MCDI_WORD(outbuf,
240                                 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
241         } else {
242                 nic_data->datapath_caps2 = 0;
243                 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
244         }
245
246         /* record the DPCPU firmware IDs to determine VEB vswitching support.
247          */
248         nic_data->rx_dpcpu_fw_id =
249                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
250         nic_data->tx_dpcpu_fw_id =
251                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
252
253         if (!(nic_data->datapath_caps &
254               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
255                 netif_err(efx, probe, efx->net_dev,
256                           "current firmware does not support an RX prefix\n");
257                 return -ENODEV;
258         }
259
260         return 0;
261 }
262
263 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
264 {
265         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
266         int rc;
267
268         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
269                           outbuf, sizeof(outbuf), NULL);
270         if (rc)
271                 return rc;
272         rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
273         return rc > 0 ? rc : -ERANGE;
274 }
275
276 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
277 {
278         struct efx_ef10_nic_data *nic_data = efx->nic_data;
279         unsigned int implemented;
280         unsigned int enabled;
281         int rc;
282
283         nic_data->workaround_35388 = false;
284         nic_data->workaround_61265 = false;
285
286         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
287
288         if (rc == -ENOSYS) {
289                 /* Firmware without GET_WORKAROUNDS - not a problem. */
290                 rc = 0;
291         } else if (rc == 0) {
292                 /* Bug61265 workaround is always enabled if implemented. */
293                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
294                         nic_data->workaround_61265 = true;
295
296                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
297                         nic_data->workaround_35388 = true;
298                 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
299                         /* Workaround is implemented but not enabled.
300                          * Try to enable it.
301                          */
302                         rc = efx_mcdi_set_workaround(efx,
303                                                      MC_CMD_WORKAROUND_BUG35388,
304                                                      true, NULL);
305                         if (rc == 0)
306                                 nic_data->workaround_35388 = true;
307                         /* If we failed to set the workaround just carry on. */
308                         rc = 0;
309                 }
310         }
311
312         netif_dbg(efx, probe, efx->net_dev,
313                   "workaround for bug 35388 is %sabled\n",
314                   nic_data->workaround_35388 ? "en" : "dis");
315         netif_dbg(efx, probe, efx->net_dev,
316                   "workaround for bug 61265 is %sabled\n",
317                   nic_data->workaround_61265 ? "en" : "dis");
318
319         return rc;
320 }
321
322 static void efx_ef10_process_timer_config(struct efx_nic *efx,
323                                           const efx_dword_t *data)
324 {
325         unsigned int max_count;
326
327         if (EFX_EF10_WORKAROUND_61265(efx)) {
328                 efx->timer_quantum_ns = MCDI_DWORD(data,
329                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
330                 efx->timer_max_ns = MCDI_DWORD(data,
331                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
332         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
333                 efx->timer_quantum_ns = MCDI_DWORD(data,
334                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
335                 max_count = MCDI_DWORD(data,
336                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
337                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
338         } else {
339                 efx->timer_quantum_ns = MCDI_DWORD(data,
340                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
341                 max_count = MCDI_DWORD(data,
342                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
343                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
344         }
345
346         netif_dbg(efx, probe, efx->net_dev,
347                   "got timer properties from MC: quantum %u ns; max %u ns\n",
348                   efx->timer_quantum_ns, efx->timer_max_ns);
349 }
350
351 static int efx_ef10_get_timer_config(struct efx_nic *efx)
352 {
353         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
354         int rc;
355
356         rc = efx_ef10_get_timer_workarounds(efx);
357         if (rc)
358                 return rc;
359
360         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
361                                 outbuf, sizeof(outbuf), NULL);
362
363         if (rc == 0) {
364                 efx_ef10_process_timer_config(efx, outbuf);
365         } else if (rc == -ENOSYS || rc == -EPERM) {
366                 /* Not available - fall back to Huntington defaults. */
367                 unsigned int quantum;
368
369                 rc = efx_ef10_get_sysclk_freq(efx);
370                 if (rc < 0)
371                         return rc;
372
373                 quantum = 1536000 / rc; /* 1536 cycles */
374                 efx->timer_quantum_ns = quantum;
375                 efx->timer_max_ns = efx->type->timer_period_max * quantum;
376                 rc = 0;
377         } else {
378                 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
379                                        MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
380                                        NULL, 0, rc);
381         }
382
383         return rc;
384 }
385
386 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
387 {
388         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
389         size_t outlen;
390         int rc;
391
392         BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
393
394         rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
395                           outbuf, sizeof(outbuf), &outlen);
396         if (rc)
397                 return rc;
398         if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
399                 return -EIO;
400
401         ether_addr_copy(mac_address,
402                         MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
403         return 0;
404 }
405
406 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
407 {
408         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
409         MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
410         size_t outlen;
411         int num_addrs, rc;
412
413         MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
414                        EVB_PORT_ID_ASSIGNED);
415         rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
416                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
417
418         if (rc)
419                 return rc;
420         if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
421                 return -EIO;
422
423         num_addrs = MCDI_DWORD(outbuf,
424                                VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
425
426         WARN_ON(num_addrs != 1);
427
428         ether_addr_copy(mac_address,
429                         MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
430
431         return 0;
432 }
433
434 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
435                                                struct device_attribute *attr,
436                                                char *buf)
437 {
438         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
439
440         return sprintf(buf, "%d\n",
441                        ((efx->mcdi->fn_flags) &
442                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
443                        ? 1 : 0);
444 }
445
446 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
447                                           struct device_attribute *attr,
448                                           char *buf)
449 {
450         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
451
452         return sprintf(buf, "%d\n",
453                        ((efx->mcdi->fn_flags) &
454                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
455                        ? 1 : 0);
456 }
457
458 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
459 {
460         struct efx_ef10_nic_data *nic_data = efx->nic_data;
461         struct efx_ef10_vlan *vlan;
462
463         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
464
465         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
466                 if (vlan->vid == vid)
467                         return vlan;
468         }
469
470         return NULL;
471 }
472
473 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
474 {
475         struct efx_ef10_nic_data *nic_data = efx->nic_data;
476         struct efx_ef10_vlan *vlan;
477         int rc;
478
479         mutex_lock(&nic_data->vlan_lock);
480
481         vlan = efx_ef10_find_vlan(efx, vid);
482         if (vlan) {
483                 /* We add VID 0 on init. 8021q adds it on module init
484                  * for all interfaces with VLAN filtring feature.
485                  */
486                 if (vid == 0)
487                         goto done_unlock;
488                 netif_warn(efx, drv, efx->net_dev,
489                            "VLAN %u already added\n", vid);
490                 rc = -EALREADY;
491                 goto fail_exist;
492         }
493
494         rc = -ENOMEM;
495         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
496         if (!vlan)
497                 goto fail_alloc;
498
499         vlan->vid = vid;
500
501         list_add_tail(&vlan->list, &nic_data->vlan_list);
502
503         if (efx->filter_state) {
504                 mutex_lock(&efx->mac_lock);
505                 down_write(&efx->filter_sem);
506                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
507                 up_write(&efx->filter_sem);
508                 mutex_unlock(&efx->mac_lock);
509                 if (rc)
510                         goto fail_filter_add_vlan;
511         }
512
513 done_unlock:
514         mutex_unlock(&nic_data->vlan_lock);
515         return 0;
516
517 fail_filter_add_vlan:
518         list_del(&vlan->list);
519         kfree(vlan);
520 fail_alloc:
521 fail_exist:
522         mutex_unlock(&nic_data->vlan_lock);
523         return rc;
524 }
525
526 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
527                                        struct efx_ef10_vlan *vlan)
528 {
529         struct efx_ef10_nic_data *nic_data = efx->nic_data;
530
531         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
532
533         if (efx->filter_state) {
534                 down_write(&efx->filter_sem);
535                 efx_ef10_filter_del_vlan(efx, vlan->vid);
536                 up_write(&efx->filter_sem);
537         }
538
539         list_del(&vlan->list);
540         kfree(vlan);
541 }
542
543 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
544 {
545         struct efx_ef10_nic_data *nic_data = efx->nic_data;
546         struct efx_ef10_vlan *vlan;
547         int rc = 0;
548
549         /* 8021q removes VID 0 on module unload for all interfaces
550          * with VLAN filtering feature. We need to keep it to receive
551          * untagged traffic.
552          */
553         if (vid == 0)
554                 return 0;
555
556         mutex_lock(&nic_data->vlan_lock);
557
558         vlan = efx_ef10_find_vlan(efx, vid);
559         if (!vlan) {
560                 netif_err(efx, drv, efx->net_dev,
561                           "VLAN %u to be deleted not found\n", vid);
562                 rc = -ENOENT;
563         } else {
564                 efx_ef10_del_vlan_internal(efx, vlan);
565         }
566
567         mutex_unlock(&nic_data->vlan_lock);
568
569         return rc;
570 }
571
572 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
573 {
574         struct efx_ef10_nic_data *nic_data = efx->nic_data;
575         struct efx_ef10_vlan *vlan, *next_vlan;
576
577         mutex_lock(&nic_data->vlan_lock);
578         list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
579                 efx_ef10_del_vlan_internal(efx, vlan);
580         mutex_unlock(&nic_data->vlan_lock);
581 }
582
583 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
584                    NULL);
585 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
586
587 static int efx_ef10_probe(struct efx_nic *efx)
588 {
589         struct efx_ef10_nic_data *nic_data;
590         int i, rc;
591
592         /* We can have one VI for each 8K region.  However, until we
593          * use TX option descriptors we need two TX queues per channel.
594          */
595         efx->max_channels = min_t(unsigned int,
596                                   EFX_MAX_CHANNELS,
597                                   efx_ef10_mem_map_size(efx) /
598                                   (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
599         efx->max_tx_channels = efx->max_channels;
600         if (WARN_ON(efx->max_channels == 0))
601                 return -EIO;
602
603         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
604         if (!nic_data)
605                 return -ENOMEM;
606         efx->nic_data = nic_data;
607
608         /* we assume later that we can copy from this buffer in dwords */
609         BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
610
611         rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
612                                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
613         if (rc)
614                 goto fail1;
615
616         /* Get the MC's warm boot count.  In case it's rebooting right
617          * now, be prepared to retry.
618          */
619         i = 0;
620         for (;;) {
621                 rc = efx_ef10_get_warm_boot_count(efx);
622                 if (rc >= 0)
623                         break;
624                 if (++i == 5)
625                         goto fail2;
626                 ssleep(1);
627         }
628         nic_data->warm_boot_count = rc;
629
630         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
631
632         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
633
634         /* In case we're recovering from a crash (kexec), we want to
635          * cancel any outstanding request by the previous user of this
636          * function.  We send a special message using the least
637          * significant bits of the 'high' (doorbell) register.
638          */
639         _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
640
641         rc = efx_mcdi_init(efx);
642         if (rc)
643                 goto fail2;
644
645         mutex_init(&nic_data->udp_tunnels_lock);
646
647         /* Reset (most) configuration for this function */
648         rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
649         if (rc)
650                 goto fail3;
651
652         /* Enable event logging */
653         rc = efx_mcdi_log_ctrl(efx, true, false, 0);
654         if (rc)
655                 goto fail3;
656
657         rc = device_create_file(&efx->pci_dev->dev,
658                                 &dev_attr_link_control_flag);
659         if (rc)
660                 goto fail3;
661
662         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
663         if (rc)
664                 goto fail4;
665
666         rc = efx_ef10_get_pf_index(efx);
667         if (rc)
668                 goto fail5;
669
670         rc = efx_ef10_init_datapath_caps(efx);
671         if (rc < 0)
672                 goto fail5;
673
674         efx->rx_packet_len_offset =
675                 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
676
677         rc = efx_mcdi_port_get_number(efx);
678         if (rc < 0)
679                 goto fail5;
680         efx->port_num = rc;
681
682         rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
683         if (rc)
684                 goto fail5;
685
686         rc = efx_ef10_get_timer_config(efx);
687         if (rc < 0)
688                 goto fail5;
689
690         rc = efx_mcdi_mon_probe(efx);
691         if (rc && rc != -EPERM)
692                 goto fail5;
693
694         efx_ptp_probe(efx, NULL);
695
696 #ifdef CONFIG_SFC_SRIOV
697         if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
698                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
699                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
700
701                 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
702         } else
703 #endif
704                 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
705
706         INIT_LIST_HEAD(&nic_data->vlan_list);
707         mutex_init(&nic_data->vlan_lock);
708
709         /* Add unspecified VID to support VLAN filtering being disabled */
710         rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
711         if (rc)
712                 goto fail_add_vid_unspec;
713
714         /* If VLAN filtering is enabled, we need VID 0 to get untagged
715          * traffic.  It is added automatically if 8021q module is loaded,
716          * but we can't rely on it since module may be not loaded.
717          */
718         rc = efx_ef10_add_vlan(efx, 0);
719         if (rc)
720                 goto fail_add_vid_0;
721
722         return 0;
723
724 fail_add_vid_0:
725         efx_ef10_cleanup_vlans(efx);
726 fail_add_vid_unspec:
727         mutex_destroy(&nic_data->vlan_lock);
728         efx_ptp_remove(efx);
729         efx_mcdi_mon_remove(efx);
730 fail5:
731         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
732 fail4:
733         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
734 fail3:
735         efx_mcdi_detach(efx);
736
737         mutex_lock(&nic_data->udp_tunnels_lock);
738         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
739         (void)efx_ef10_set_udp_tnl_ports(efx, true);
740         mutex_unlock(&nic_data->udp_tunnels_lock);
741         mutex_destroy(&nic_data->udp_tunnels_lock);
742
743         efx_mcdi_fini(efx);
744 fail2:
745         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
746 fail1:
747         kfree(nic_data);
748         efx->nic_data = NULL;
749         return rc;
750 }
751
752 static int efx_ef10_free_vis(struct efx_nic *efx)
753 {
754         MCDI_DECLARE_BUF_ERR(outbuf);
755         size_t outlen;
756         int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
757                                     outbuf, sizeof(outbuf), &outlen);
758
759         /* -EALREADY means nothing to free, so ignore */
760         if (rc == -EALREADY)
761                 rc = 0;
762         if (rc)
763                 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
764                                        rc);
765         return rc;
766 }
767
768 #ifdef EFX_USE_PIO
769
770 static void efx_ef10_free_piobufs(struct efx_nic *efx)
771 {
772         struct efx_ef10_nic_data *nic_data = efx->nic_data;
773         MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
774         unsigned int i;
775         int rc;
776
777         BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
778
779         for (i = 0; i < nic_data->n_piobufs; i++) {
780                 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
781                                nic_data->piobuf_handle[i]);
782                 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
783                                   NULL, 0, NULL);
784                 WARN_ON(rc);
785         }
786
787         nic_data->n_piobufs = 0;
788 }
789
790 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
791 {
792         struct efx_ef10_nic_data *nic_data = efx->nic_data;
793         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
794         unsigned int i;
795         size_t outlen;
796         int rc = 0;
797
798         BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
799
800         for (i = 0; i < n; i++) {
801                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
802                                         outbuf, sizeof(outbuf), &outlen);
803                 if (rc) {
804                         /* Don't display the MC error if we didn't have space
805                          * for a VF.
806                          */
807                         if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
808                                 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
809                                                        0, outbuf, outlen, rc);
810                         break;
811                 }
812                 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
813                         rc = -EIO;
814                         break;
815                 }
816                 nic_data->piobuf_handle[i] =
817                         MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
818                 netif_dbg(efx, probe, efx->net_dev,
819                           "allocated PIO buffer %u handle %x\n", i,
820                           nic_data->piobuf_handle[i]);
821         }
822
823         nic_data->n_piobufs = i;
824         if (rc)
825                 efx_ef10_free_piobufs(efx);
826         return rc;
827 }
828
829 static int efx_ef10_link_piobufs(struct efx_nic *efx)
830 {
831         struct efx_ef10_nic_data *nic_data = efx->nic_data;
832         MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
833         struct efx_channel *channel;
834         struct efx_tx_queue *tx_queue;
835         unsigned int offset, index;
836         int rc;
837
838         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
839         BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
840
841         /* Link a buffer to each VI in the write-combining mapping */
842         for (index = 0; index < nic_data->n_piobufs; ++index) {
843                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
844                                nic_data->piobuf_handle[index]);
845                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
846                                nic_data->pio_write_vi_base + index);
847                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
848                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
849                                   NULL, 0, NULL);
850                 if (rc) {
851                         netif_err(efx, drv, efx->net_dev,
852                                   "failed to link VI %u to PIO buffer %u (%d)\n",
853                                   nic_data->pio_write_vi_base + index, index,
854                                   rc);
855                         goto fail;
856                 }
857                 netif_dbg(efx, probe, efx->net_dev,
858                           "linked VI %u to PIO buffer %u\n",
859                           nic_data->pio_write_vi_base + index, index);
860         }
861
862         /* Link a buffer to each TX queue */
863         efx_for_each_channel(channel, efx) {
864                 efx_for_each_channel_tx_queue(tx_queue, channel) {
865                         /* We assign the PIO buffers to queues in
866                          * reverse order to allow for the following
867                          * special case.
868                          */
869                         offset = ((efx->tx_channel_offset + efx->n_tx_channels -
870                                    tx_queue->channel->channel - 1) *
871                                   efx_piobuf_size);
872                         index = offset / nic_data->piobuf_size;
873                         offset = offset % nic_data->piobuf_size;
874
875                         /* When the host page size is 4K, the first
876                          * host page in the WC mapping may be within
877                          * the same VI page as the last TX queue.  We
878                          * can only link one buffer to each VI.
879                          */
880                         if (tx_queue->queue == nic_data->pio_write_vi_base) {
881                                 BUG_ON(index != 0);
882                                 rc = 0;
883                         } else {
884                                 MCDI_SET_DWORD(inbuf,
885                                                LINK_PIOBUF_IN_PIOBUF_HANDLE,
886                                                nic_data->piobuf_handle[index]);
887                                 MCDI_SET_DWORD(inbuf,
888                                                LINK_PIOBUF_IN_TXQ_INSTANCE,
889                                                tx_queue->queue);
890                                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
891                                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
892                                                   NULL, 0, NULL);
893                         }
894
895                         if (rc) {
896                                 /* This is non-fatal; the TX path just
897                                  * won't use PIO for this queue
898                                  */
899                                 netif_err(efx, drv, efx->net_dev,
900                                           "failed to link VI %u to PIO buffer %u (%d)\n",
901                                           tx_queue->queue, index, rc);
902                                 tx_queue->piobuf = NULL;
903                         } else {
904                                 tx_queue->piobuf =
905                                         nic_data->pio_write_base +
906                                         index * EFX_VI_PAGE_SIZE + offset;
907                                 tx_queue->piobuf_offset = offset;
908                                 netif_dbg(efx, probe, efx->net_dev,
909                                           "linked VI %u to PIO buffer %u offset %x addr %p\n",
910                                           tx_queue->queue, index,
911                                           tx_queue->piobuf_offset,
912                                           tx_queue->piobuf);
913                         }
914                 }
915         }
916
917         return 0;
918
919 fail:
920         /* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
921          * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
922          */
923         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
924         while (index--) {
925                 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
926                                nic_data->pio_write_vi_base + index);
927                 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
928                              inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
929                              NULL, 0, NULL);
930         }
931         return rc;
932 }
933
934 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
935 {
936         struct efx_channel *channel;
937         struct efx_tx_queue *tx_queue;
938
939         /* All our existing PIO buffers went away */
940         efx_for_each_channel(channel, efx)
941                 efx_for_each_channel_tx_queue(tx_queue, channel)
942                         tx_queue->piobuf = NULL;
943 }
944
945 #else /* !EFX_USE_PIO */
946
947 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
948 {
949         return n == 0 ? 0 : -ENOBUFS;
950 }
951
952 static int efx_ef10_link_piobufs(struct efx_nic *efx)
953 {
954         return 0;
955 }
956
957 static void efx_ef10_free_piobufs(struct efx_nic *efx)
958 {
959 }
960
961 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
962 {
963 }
964
965 #endif /* EFX_USE_PIO */
966
967 static void efx_ef10_remove(struct efx_nic *efx)
968 {
969         struct efx_ef10_nic_data *nic_data = efx->nic_data;
970         int rc;
971
972 #ifdef CONFIG_SFC_SRIOV
973         struct efx_ef10_nic_data *nic_data_pf;
974         struct pci_dev *pci_dev_pf;
975         struct efx_nic *efx_pf;
976         struct ef10_vf *vf;
977
978         if (efx->pci_dev->is_virtfn) {
979                 pci_dev_pf = efx->pci_dev->physfn;
980                 if (pci_dev_pf) {
981                         efx_pf = pci_get_drvdata(pci_dev_pf);
982                         nic_data_pf = efx_pf->nic_data;
983                         vf = nic_data_pf->vf + nic_data->vf_index;
984                         vf->efx = NULL;
985                 } else
986                         netif_info(efx, drv, efx->net_dev,
987                                    "Could not get the PF id from VF\n");
988         }
989 #endif
990
991         efx_ef10_cleanup_vlans(efx);
992         mutex_destroy(&nic_data->vlan_lock);
993
994         efx_ptp_remove(efx);
995
996         efx_mcdi_mon_remove(efx);
997
998         efx_ef10_rx_free_indir_table(efx);
999
1000         if (nic_data->wc_membase)
1001                 iounmap(nic_data->wc_membase);
1002
1003         rc = efx_ef10_free_vis(efx);
1004         WARN_ON(rc != 0);
1005
1006         if (!nic_data->must_restore_piobufs)
1007                 efx_ef10_free_piobufs(efx);
1008
1009         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1010         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1011
1012         efx_mcdi_detach(efx);
1013
1014         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1015         mutex_lock(&nic_data->udp_tunnels_lock);
1016         (void)efx_ef10_set_udp_tnl_ports(efx, true);
1017         mutex_unlock(&nic_data->udp_tunnels_lock);
1018
1019         mutex_destroy(&nic_data->udp_tunnels_lock);
1020
1021         efx_mcdi_fini(efx);
1022         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1023         kfree(nic_data);
1024 }
1025
1026 static int efx_ef10_probe_pf(struct efx_nic *efx)
1027 {
1028         return efx_ef10_probe(efx);
1029 }
1030
1031 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1032                             u32 *port_flags, u32 *vadaptor_flags,
1033                             unsigned int *vlan_tags)
1034 {
1035         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1036         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1037         MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1038         size_t outlen;
1039         int rc;
1040
1041         if (nic_data->datapath_caps &
1042             (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1043                 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1044                                port_id);
1045
1046                 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1047                                   outbuf, sizeof(outbuf), &outlen);
1048                 if (rc)
1049                         return rc;
1050
1051                 if (outlen < sizeof(outbuf)) {
1052                         rc = -EIO;
1053                         return rc;
1054                 }
1055         }
1056
1057         if (port_flags)
1058                 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1059         if (vadaptor_flags)
1060                 *vadaptor_flags =
1061                         MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1062         if (vlan_tags)
1063                 *vlan_tags =
1064                         MCDI_DWORD(outbuf,
1065                                    VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1066
1067         return 0;
1068 }
1069
1070 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1071 {
1072         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1073
1074         MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1075         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1076                             NULL, 0, NULL);
1077 }
1078
1079 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1080 {
1081         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1082
1083         MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1084         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1085                             NULL, 0, NULL);
1086 }
1087
1088 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1089                            unsigned int port_id, u8 *mac)
1090 {
1091         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1092
1093         MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1094         ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1095
1096         return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1097                             sizeof(inbuf), NULL, 0, NULL);
1098 }
1099
1100 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1101                            unsigned int port_id, u8 *mac)
1102 {
1103         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1104
1105         MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1106         ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1107
1108         return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1109                             sizeof(inbuf), NULL, 0, NULL);
1110 }
1111
1112 #ifdef CONFIG_SFC_SRIOV
1113 static int efx_ef10_probe_vf(struct efx_nic *efx)
1114 {
1115         int rc;
1116         struct pci_dev *pci_dev_pf;
1117
1118         /* If the parent PF has no VF data structure, it doesn't know about this
1119          * VF so fail probe.  The VF needs to be re-created.  This can happen
1120          * if the PF driver is unloaded while the VF is assigned to a guest.
1121          */
1122         pci_dev_pf = efx->pci_dev->physfn;
1123         if (pci_dev_pf) {
1124                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1125                 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1126
1127                 if (!nic_data_pf->vf) {
1128                         netif_info(efx, drv, efx->net_dev,
1129                                    "The VF cannot link to its parent PF; "
1130                                    "please destroy and re-create the VF\n");
1131                         return -EBUSY;
1132                 }
1133         }
1134
1135         rc = efx_ef10_probe(efx);
1136         if (rc)
1137                 return rc;
1138
1139         rc = efx_ef10_get_vf_index(efx);
1140         if (rc)
1141                 goto fail;
1142
1143         if (efx->pci_dev->is_virtfn) {
1144                 if (efx->pci_dev->physfn) {
1145                         struct efx_nic *efx_pf =
1146                                 pci_get_drvdata(efx->pci_dev->physfn);
1147                         struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1148                         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1149
1150                         nic_data_p->vf[nic_data->vf_index].efx = efx;
1151                         nic_data_p->vf[nic_data->vf_index].pci_dev =
1152                                 efx->pci_dev;
1153                 } else
1154                         netif_info(efx, drv, efx->net_dev,
1155                                    "Could not get the PF id from VF\n");
1156         }
1157
1158         return 0;
1159
1160 fail:
1161         efx_ef10_remove(efx);
1162         return rc;
1163 }
1164 #else
1165 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1166 {
1167         return 0;
1168 }
1169 #endif
1170
1171 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1172                               unsigned int min_vis, unsigned int max_vis)
1173 {
1174         MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1175         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1176         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1177         size_t outlen;
1178         int rc;
1179
1180         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1181         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1182         rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1183                           outbuf, sizeof(outbuf), &outlen);
1184         if (rc != 0)
1185                 return rc;
1186
1187         if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1188                 return -EIO;
1189
1190         netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1191                   MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1192
1193         nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1194         nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1195         return 0;
1196 }
1197
1198 /* Note that the failure path of this function does not free
1199  * resources, as this will be done by efx_ef10_remove().
1200  */
1201 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1202 {
1203         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1204         unsigned int uc_mem_map_size, wc_mem_map_size;
1205         unsigned int min_vis = max(EFX_TXQ_TYPES,
1206                                    efx_separate_tx_channels ? 2 : 1);
1207         unsigned int channel_vis, pio_write_vi_base, max_vis;
1208         void __iomem *membase;
1209         int rc;
1210
1211         channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1212
1213 #ifdef EFX_USE_PIO
1214         /* Try to allocate PIO buffers if wanted and if the full
1215          * number of PIO buffers would be sufficient to allocate one
1216          * copy-buffer per TX channel.  Failure is non-fatal, as there
1217          * are only a small number of PIO buffers shared between all
1218          * functions of the controller.
1219          */
1220         if (efx_piobuf_size != 0 &&
1221             nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1222             efx->n_tx_channels) {
1223                 unsigned int n_piobufs =
1224                         DIV_ROUND_UP(efx->n_tx_channels,
1225                                      nic_data->piobuf_size / efx_piobuf_size);
1226
1227                 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1228                 if (rc == -ENOSPC)
1229                         netif_dbg(efx, probe, efx->net_dev,
1230                                   "out of PIO buffers; cannot allocate more\n");
1231                 else if (rc == -EPERM)
1232                         netif_dbg(efx, probe, efx->net_dev,
1233                                   "not permitted to allocate PIO buffers\n");
1234                 else if (rc)
1235                         netif_err(efx, probe, efx->net_dev,
1236                                   "failed to allocate PIO buffers (%d)\n", rc);
1237                 else
1238                         netif_dbg(efx, probe, efx->net_dev,
1239                                   "allocated %u PIO buffers\n", n_piobufs);
1240         }
1241 #else
1242         nic_data->n_piobufs = 0;
1243 #endif
1244
1245         /* PIO buffers should be mapped with write-combining enabled,
1246          * and we want to make single UC and WC mappings rather than
1247          * several of each (in fact that's the only option if host
1248          * page size is >4K).  So we may allocate some extra VIs just
1249          * for writing PIO buffers through.
1250          *
1251          * The UC mapping contains (channel_vis - 1) complete VIs and the
1252          * first half of the next VI.  Then the WC mapping begins with
1253          * the second half of this last VI.
1254          */
1255         uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1256                                      ER_DZ_TX_PIOBUF);
1257         if (nic_data->n_piobufs) {
1258                 /* pio_write_vi_base rounds down to give the number of complete
1259                  * VIs inside the UC mapping.
1260                  */
1261                 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
1262                 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1263                                                nic_data->n_piobufs) *
1264                                               EFX_VI_PAGE_SIZE) -
1265                                    uc_mem_map_size);
1266                 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1267         } else {
1268                 pio_write_vi_base = 0;
1269                 wc_mem_map_size = 0;
1270                 max_vis = channel_vis;
1271         }
1272
1273         /* In case the last attached driver failed to free VIs, do it now */
1274         rc = efx_ef10_free_vis(efx);
1275         if (rc != 0)
1276                 return rc;
1277
1278         rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1279         if (rc != 0)
1280                 return rc;
1281
1282         if (nic_data->n_allocated_vis < channel_vis) {
1283                 netif_info(efx, drv, efx->net_dev,
1284                            "Could not allocate enough VIs to satisfy RSS"
1285                            " requirements. Performance may not be optimal.\n");
1286                 /* We didn't get the VIs to populate our channels.
1287                  * We could keep what we got but then we'd have more
1288                  * interrupts than we need.
1289                  * Instead calculate new max_channels and restart
1290                  */
1291                 efx->max_channels = nic_data->n_allocated_vis;
1292                 efx->max_tx_channels =
1293                         nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1294
1295                 efx_ef10_free_vis(efx);
1296                 return -EAGAIN;
1297         }
1298
1299         /* If we didn't get enough VIs to map all the PIO buffers, free the
1300          * PIO buffers
1301          */
1302         if (nic_data->n_piobufs &&
1303             nic_data->n_allocated_vis <
1304             pio_write_vi_base + nic_data->n_piobufs) {
1305                 netif_dbg(efx, probe, efx->net_dev,
1306                           "%u VIs are not sufficient to map %u PIO buffers\n",
1307                           nic_data->n_allocated_vis, nic_data->n_piobufs);
1308                 efx_ef10_free_piobufs(efx);
1309         }
1310
1311         /* Shrink the original UC mapping of the memory BAR */
1312         membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1313         if (!membase) {
1314                 netif_err(efx, probe, efx->net_dev,
1315                           "could not shrink memory BAR to %x\n",
1316                           uc_mem_map_size);
1317                 return -ENOMEM;
1318         }
1319         iounmap(efx->membase);
1320         efx->membase = membase;
1321
1322         /* Set up the WC mapping if needed */
1323         if (wc_mem_map_size) {
1324                 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1325                                                   uc_mem_map_size,
1326                                                   wc_mem_map_size);
1327                 if (!nic_data->wc_membase) {
1328                         netif_err(efx, probe, efx->net_dev,
1329                                   "could not allocate WC mapping of size %x\n",
1330                                   wc_mem_map_size);
1331                         return -ENOMEM;
1332                 }
1333                 nic_data->pio_write_vi_base = pio_write_vi_base;
1334                 nic_data->pio_write_base =
1335                         nic_data->wc_membase +
1336                         (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
1337                          uc_mem_map_size);
1338
1339                 rc = efx_ef10_link_piobufs(efx);
1340                 if (rc)
1341                         efx_ef10_free_piobufs(efx);
1342         }
1343
1344         netif_dbg(efx, probe, efx->net_dev,
1345                   "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1346                   &efx->membase_phys, efx->membase, uc_mem_map_size,
1347                   nic_data->wc_membase, wc_mem_map_size);
1348
1349         return 0;
1350 }
1351
1352 static int efx_ef10_init_nic(struct efx_nic *efx)
1353 {
1354         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1355         int rc;
1356
1357         if (nic_data->must_check_datapath_caps) {
1358                 rc = efx_ef10_init_datapath_caps(efx);
1359                 if (rc)
1360                         return rc;
1361                 nic_data->must_check_datapath_caps = false;
1362         }
1363
1364         if (nic_data->must_realloc_vis) {
1365                 /* We cannot let the number of VIs change now */
1366                 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1367                                         nic_data->n_allocated_vis);
1368                 if (rc)
1369                         return rc;
1370                 nic_data->must_realloc_vis = false;
1371         }
1372
1373         if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1374                 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1375                 if (rc == 0) {
1376                         rc = efx_ef10_link_piobufs(efx);
1377                         if (rc)
1378                                 efx_ef10_free_piobufs(efx);
1379                 }
1380
1381                 /* Log an error on failure, but this is non-fatal.
1382                  * Permission errors are less important - we've presumably
1383                  * had the PIO buffer licence removed.
1384                  */
1385                 if (rc == -EPERM)
1386                         netif_dbg(efx, drv, efx->net_dev,
1387                                   "not permitted to restore PIO buffers\n");
1388                 else if (rc)
1389                         netif_err(efx, drv, efx->net_dev,
1390                                   "failed to restore PIO buffers (%d)\n", rc);
1391                 nic_data->must_restore_piobufs = false;
1392         }
1393
1394         /* don't fail init if RSS setup doesn't work */
1395         rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table, NULL);
1396         efx->rss_active = (rc == 0);
1397
1398         return 0;
1399 }
1400
1401 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1402 {
1403         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1404 #ifdef CONFIG_SFC_SRIOV
1405         unsigned int i;
1406 #endif
1407
1408         /* All our allocations have been reset */
1409         nic_data->must_realloc_vis = true;
1410         nic_data->must_restore_filters = true;
1411         nic_data->must_restore_piobufs = true;
1412         efx_ef10_forget_old_piobufs(efx);
1413         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1414
1415         /* Driver-created vswitches and vports must be re-created */
1416         nic_data->must_probe_vswitching = true;
1417         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1418 #ifdef CONFIG_SFC_SRIOV
1419         if (nic_data->vf)
1420                 for (i = 0; i < efx->vf_count; i++)
1421                         nic_data->vf[i].vport_id = 0;
1422 #endif
1423 }
1424
1425 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1426 {
1427         if (reason == RESET_TYPE_MC_FAILURE)
1428                 return RESET_TYPE_DATAPATH;
1429
1430         return efx_mcdi_map_reset_reason(reason);
1431 }
1432
1433 static int efx_ef10_map_reset_flags(u32 *flags)
1434 {
1435         enum {
1436                 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1437                                    ETH_RESET_SHARED_SHIFT),
1438                 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1439                                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1440                                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
1441                                  ETH_RESET_SHARED_SHIFT)
1442         };
1443
1444         /* We assume for now that our PCI function is permitted to
1445          * reset everything.
1446          */
1447
1448         if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1449                 *flags &= ~EF10_RESET_MC;
1450                 return RESET_TYPE_WORLD;
1451         }
1452
1453         if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1454                 *flags &= ~EF10_RESET_PORT;
1455                 return RESET_TYPE_ALL;
1456         }
1457
1458         /* no invisible reset implemented */
1459
1460         return -EINVAL;
1461 }
1462
1463 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1464 {
1465         int rc = efx_mcdi_reset(efx, reset_type);
1466
1467         /* Unprivileged functions return -EPERM, but need to return success
1468          * here so that the datapath is brought back up.
1469          */
1470         if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1471                 rc = 0;
1472
1473         /* If it was a port reset, trigger reallocation of MC resources.
1474          * Note that on an MC reset nothing needs to be done now because we'll
1475          * detect the MC reset later and handle it then.
1476          * For an FLR, we never get an MC reset event, but the MC has reset all
1477          * resources assigned to us, so we have to trigger reallocation now.
1478          */
1479         if ((reset_type == RESET_TYPE_ALL ||
1480              reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1481                 efx_ef10_reset_mc_allocations(efx);
1482         return rc;
1483 }
1484
1485 #define EF10_DMA_STAT(ext_name, mcdi_name)                      \
1486         [EF10_STAT_ ## ext_name] =                              \
1487         { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1488 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
1489         [EF10_STAT_ ## int_name] =                              \
1490         { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1491 #define EF10_OTHER_STAT(ext_name)                               \
1492         [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1493 #define GENERIC_SW_STAT(ext_name)                               \
1494         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1495
1496 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1497         EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1498         EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1499         EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1500         EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1501         EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1502         EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1503         EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1504         EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1505         EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1506         EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1507         EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1508         EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1509         EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1510         EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1511         EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1512         EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1513         EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1514         EF10_OTHER_STAT(port_rx_good_bytes),
1515         EF10_OTHER_STAT(port_rx_bad_bytes),
1516         EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1517         EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1518         EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1519         EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1520         EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1521         EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1522         EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1523         EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1524         EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1525         EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1526         EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1527         EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1528         EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1529         EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1530         EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1531         EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1532         EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1533         EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1534         EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1535         EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1536         EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1537         EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1538         GENERIC_SW_STAT(rx_nodesc_trunc),
1539         GENERIC_SW_STAT(rx_noskb_drops),
1540         EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1541         EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1542         EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1543         EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1544         EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1545         EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1546         EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1547         EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1548         EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1549         EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1550         EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1551         EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1552         EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1553         EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1554         EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1555         EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1556         EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1557         EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1558         EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1559         EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1560         EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1561         EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1562         EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1563         EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1564         EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1565         EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1566         EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1567         EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1568         EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1569         EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1570 };
1571
1572 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |      \
1573                                (1ULL << EF10_STAT_port_tx_packets) |    \
1574                                (1ULL << EF10_STAT_port_tx_pause) |      \
1575                                (1ULL << EF10_STAT_port_tx_unicast) |    \
1576                                (1ULL << EF10_STAT_port_tx_multicast) |  \
1577                                (1ULL << EF10_STAT_port_tx_broadcast) |  \
1578                                (1ULL << EF10_STAT_port_rx_bytes) |      \
1579                                (1ULL <<                                 \
1580                                 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1581                                (1ULL << EF10_STAT_port_rx_good_bytes) | \
1582                                (1ULL << EF10_STAT_port_rx_bad_bytes) |  \
1583                                (1ULL << EF10_STAT_port_rx_packets) |    \
1584                                (1ULL << EF10_STAT_port_rx_good) |       \
1585                                (1ULL << EF10_STAT_port_rx_bad) |        \
1586                                (1ULL << EF10_STAT_port_rx_pause) |      \
1587                                (1ULL << EF10_STAT_port_rx_control) |    \
1588                                (1ULL << EF10_STAT_port_rx_unicast) |    \
1589                                (1ULL << EF10_STAT_port_rx_multicast) |  \
1590                                (1ULL << EF10_STAT_port_rx_broadcast) |  \
1591                                (1ULL << EF10_STAT_port_rx_lt64) |       \
1592                                (1ULL << EF10_STAT_port_rx_64) |         \
1593                                (1ULL << EF10_STAT_port_rx_65_to_127) |  \
1594                                (1ULL << EF10_STAT_port_rx_128_to_255) | \
1595                                (1ULL << EF10_STAT_port_rx_256_to_511) | \
1596                                (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1597                                (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1598                                (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1599                                (1ULL << EF10_STAT_port_rx_gtjumbo) |    \
1600                                (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1601                                (1ULL << EF10_STAT_port_rx_overflow) |   \
1602                                (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1603                                (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1604                                (1ULL << GENERIC_STAT_rx_noskb_drops))
1605
1606 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1607  * For a 10G/40G switchable port we do not expose these because they might
1608  * not include all the packets they should.
1609  * On 8000 series NICs these statistics are always provided.
1610  */
1611 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |  \
1612                                  (1ULL << EF10_STAT_port_tx_lt64) |     \
1613                                  (1ULL << EF10_STAT_port_tx_64) |       \
1614                                  (1ULL << EF10_STAT_port_tx_65_to_127) |\
1615                                  (1ULL << EF10_STAT_port_tx_128_to_255) |\
1616                                  (1ULL << EF10_STAT_port_tx_256_to_511) |\
1617                                  (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1618                                  (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1619                                  (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1620
1621 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1622  * switchable port we do expose these because the errors will otherwise
1623  * be silent.
1624  */
1625 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1626                                   (1ULL << EF10_STAT_port_rx_length_error))
1627
1628 /* These statistics are only provided if the firmware supports the
1629  * capability PM_AND_RXDP_COUNTERS.
1630  */
1631 #define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
1632         (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |              \
1633         (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |            \
1634         (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |               \
1635         (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |             \
1636         (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |                      \
1637         (1ULL << EF10_STAT_port_rx_pm_discard_qbb) |                    \
1638         (1ULL << EF10_STAT_port_rx_pm_discard_mapping) |                \
1639         (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |             \
1640         (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |             \
1641         (1ULL << EF10_STAT_port_rx_dp_streaming_packets) |              \
1642         (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |                      \
1643         (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1644
1645 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1646 {
1647         u64 raw_mask = HUNT_COMMON_STAT_MASK;
1648         u32 port_caps = efx_mcdi_phy_get_caps(efx);
1649         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1650
1651         if (!(efx->mcdi->fn_flags &
1652               1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1653                 return 0;
1654
1655         if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1656                 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1657                 /* 8000 series have everything even at 40G */
1658                 if (nic_data->datapath_caps2 &
1659                     (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1660                         raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1661         } else {
1662                 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1663         }
1664
1665         if (nic_data->datapath_caps &
1666             (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1667                 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1668
1669         return raw_mask;
1670 }
1671
1672 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1673 {
1674         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1675         u64 raw_mask[2];
1676
1677         raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1678
1679         /* Only show vadaptor stats when EVB capability is present */
1680         if (nic_data->datapath_caps &
1681             (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1682                 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1683                 raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1684         } else {
1685                 raw_mask[1] = 0;
1686         }
1687
1688 #if BITS_PER_LONG == 64
1689         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1690         mask[0] = raw_mask[0];
1691         mask[1] = raw_mask[1];
1692 #else
1693         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1694         mask[0] = raw_mask[0] & 0xffffffff;
1695         mask[1] = raw_mask[0] >> 32;
1696         mask[2] = raw_mask[1] & 0xffffffff;
1697 #endif
1698 }
1699
1700 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1701 {
1702         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1703
1704         efx_ef10_get_stat_mask(efx, mask);
1705         return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1706                                       mask, names);
1707 }
1708
1709 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1710                                            struct rtnl_link_stats64 *core_stats)
1711 {
1712         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1713         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1714         u64 *stats = nic_data->stats;
1715         size_t stats_count = 0, index;
1716
1717         efx_ef10_get_stat_mask(efx, mask);
1718
1719         if (full_stats) {
1720                 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1721                         if (efx_ef10_stat_desc[index].name) {
1722                                 *full_stats++ = stats[index];
1723                                 ++stats_count;
1724                         }
1725                 }
1726         }
1727
1728         if (!core_stats)
1729                 return stats_count;
1730
1731         if (nic_data->datapath_caps &
1732                         1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1733                 /* Use vadaptor stats. */
1734                 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1735                                          stats[EF10_STAT_rx_multicast] +
1736                                          stats[EF10_STAT_rx_broadcast];
1737                 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1738                                          stats[EF10_STAT_tx_multicast] +
1739                                          stats[EF10_STAT_tx_broadcast];
1740                 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1741                                        stats[EF10_STAT_rx_multicast_bytes] +
1742                                        stats[EF10_STAT_rx_broadcast_bytes];
1743                 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1744                                        stats[EF10_STAT_tx_multicast_bytes] +
1745                                        stats[EF10_STAT_tx_broadcast_bytes];
1746                 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1747                                          stats[GENERIC_STAT_rx_noskb_drops];
1748                 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1749                 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1750                 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1751                 core_stats->rx_errors = core_stats->rx_crc_errors;
1752                 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1753         } else {
1754                 /* Use port stats. */
1755                 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1756                 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1757                 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1758                 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1759                 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1760                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
1761                                          stats[GENERIC_STAT_rx_noskb_drops];
1762                 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1763                 core_stats->rx_length_errors =
1764                                 stats[EF10_STAT_port_rx_gtjumbo] +
1765                                 stats[EF10_STAT_port_rx_length_error];
1766                 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1767                 core_stats->rx_frame_errors =
1768                                 stats[EF10_STAT_port_rx_align_error];
1769                 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1770                 core_stats->rx_errors = (core_stats->rx_length_errors +
1771                                          core_stats->rx_crc_errors +
1772                                          core_stats->rx_frame_errors);
1773         }
1774
1775         return stats_count;
1776 }
1777
1778 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1779 {
1780         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1781         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1782         __le64 generation_start, generation_end;
1783         u64 *stats = nic_data->stats;
1784         __le64 *dma_stats;
1785
1786         efx_ef10_get_stat_mask(efx, mask);
1787
1788         dma_stats = efx->stats_buffer.addr;
1789
1790         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1791         if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1792                 return 0;
1793         rmb();
1794         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1795                              stats, efx->stats_buffer.addr, false);
1796         rmb();
1797         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1798         if (generation_end != generation_start)
1799                 return -EAGAIN;
1800
1801         /* Update derived statistics */
1802         efx_nic_fix_nodesc_drop_stat(efx,
1803                                      &stats[EF10_STAT_port_rx_nodesc_drops]);
1804         stats[EF10_STAT_port_rx_good_bytes] =
1805                 stats[EF10_STAT_port_rx_bytes] -
1806                 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1807         efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1808                              stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1809         efx_update_sw_stats(efx, stats);
1810         return 0;
1811 }
1812
1813
1814 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1815                                        struct rtnl_link_stats64 *core_stats)
1816 {
1817         int retry;
1818
1819         /* If we're unlucky enough to read statistics during the DMA, wait
1820          * up to 10ms for it to finish (typically takes <500us)
1821          */
1822         for (retry = 0; retry < 100; ++retry) {
1823                 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1824                         break;
1825                 udelay(100);
1826         }
1827
1828         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1829 }
1830
1831 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1832 {
1833         MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1834         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1835         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1836         __le64 generation_start, generation_end;
1837         u64 *stats = nic_data->stats;
1838         u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1839         struct efx_buffer stats_buf;
1840         __le64 *dma_stats;
1841         int rc;
1842
1843         spin_unlock_bh(&efx->stats_lock);
1844
1845         if (in_interrupt()) {
1846                 /* If in atomic context, cannot update stats.  Just update the
1847                  * software stats and return so the caller can continue.
1848                  */
1849                 spin_lock_bh(&efx->stats_lock);
1850                 efx_update_sw_stats(efx, stats);
1851                 return 0;
1852         }
1853
1854         efx_ef10_get_stat_mask(efx, mask);
1855
1856         rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1857         if (rc) {
1858                 spin_lock_bh(&efx->stats_lock);
1859                 return rc;
1860         }
1861
1862         dma_stats = stats_buf.addr;
1863         dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1864
1865         MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1866         MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1867                               MAC_STATS_IN_DMA, 1);
1868         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1869         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1870
1871         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1872                                 NULL, 0, NULL);
1873         spin_lock_bh(&efx->stats_lock);
1874         if (rc) {
1875                 /* Expect ENOENT if DMA queues have not been set up */
1876                 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1877                         efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1878                                                sizeof(inbuf), NULL, 0, rc);
1879                 goto out;
1880         }
1881
1882         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1883         if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1884                 WARN_ON_ONCE(1);
1885                 goto out;
1886         }
1887         rmb();
1888         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1889                              stats, stats_buf.addr, false);
1890         rmb();
1891         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1892         if (generation_end != generation_start) {
1893                 rc = -EAGAIN;
1894                 goto out;
1895         }
1896
1897         efx_update_sw_stats(efx, stats);
1898 out:
1899         efx_nic_free_buffer(efx, &stats_buf);
1900         return rc;
1901 }
1902
1903 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1904                                        struct rtnl_link_stats64 *core_stats)
1905 {
1906         if (efx_ef10_try_update_nic_stats_vf(efx))
1907                 return 0;
1908
1909         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1910 }
1911
1912 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1913 {
1914         struct efx_nic *efx = channel->efx;
1915         unsigned int mode, usecs;
1916         efx_dword_t timer_cmd;
1917
1918         if (channel->irq_moderation_us) {
1919                 mode = 3;
1920                 usecs = channel->irq_moderation_us;
1921         } else {
1922                 mode = 0;
1923                 usecs = 0;
1924         }
1925
1926         if (EFX_EF10_WORKAROUND_61265(efx)) {
1927                 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1928                 unsigned int ns = usecs * 1000;
1929
1930                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1931                                channel->channel);
1932                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1933                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1934                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1935
1936                 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1937                                    inbuf, sizeof(inbuf), 0, NULL, 0);
1938         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
1939                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1940
1941                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1942                                      EFE_DD_EVQ_IND_TIMER_FLAGS,
1943                                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
1944                                      ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1945                 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1946                                 channel->channel);
1947         } else {
1948                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1949
1950                 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1951                                      ERF_DZ_TC_TIMER_VAL, ticks);
1952                 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1953                                 channel->channel);
1954         }
1955 }
1956
1957 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1958                                 struct ethtool_wolinfo *wol) {}
1959
1960 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1961 {
1962         return -EOPNOTSUPP;
1963 }
1964
1965 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1966 {
1967         wol->supported = 0;
1968         wol->wolopts = 0;
1969         memset(&wol->sopass, 0, sizeof(wol->sopass));
1970 }
1971
1972 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1973 {
1974         if (type != 0)
1975                 return -EINVAL;
1976         return 0;
1977 }
1978
1979 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1980                                   const efx_dword_t *hdr, size_t hdr_len,
1981                                   const efx_dword_t *sdu, size_t sdu_len)
1982 {
1983         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1984         u8 *pdu = nic_data->mcdi_buf.addr;
1985
1986         memcpy(pdu, hdr, hdr_len);
1987         memcpy(pdu + hdr_len, sdu, sdu_len);
1988         wmb();
1989
1990         /* The hardware provides 'low' and 'high' (doorbell) registers
1991          * for passing the 64-bit address of an MCDI request to
1992          * firmware.  However the dwords are swapped by firmware.  The
1993          * least significant bits of the doorbell are then 0 for all
1994          * MCDI requests due to alignment.
1995          */
1996         _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1997                     ER_DZ_MC_DB_LWRD);
1998         _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1999                     ER_DZ_MC_DB_HWRD);
2000 }
2001
2002 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2003 {
2004         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2005         const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2006
2007         rmb();
2008         return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2009 }
2010
2011 static void
2012 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2013                             size_t offset, size_t outlen)
2014 {
2015         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2016         const u8 *pdu = nic_data->mcdi_buf.addr;
2017
2018         memcpy(outbuf, pdu + offset, outlen);
2019 }
2020
2021 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2022 {
2023         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2024
2025         /* All our allocations have been reset */
2026         efx_ef10_reset_mc_allocations(efx);
2027
2028         /* The datapath firmware might have been changed */
2029         nic_data->must_check_datapath_caps = true;
2030
2031         /* MAC statistics have been cleared on the NIC; clear the local
2032          * statistic that we update with efx_update_diff_stat().
2033          */
2034         nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2035 }
2036
2037 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2038 {
2039         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2040         int rc;
2041
2042         rc = efx_ef10_get_warm_boot_count(efx);
2043         if (rc < 0) {
2044                 /* The firmware is presumably in the process of
2045                  * rebooting.  However, we are supposed to report each
2046                  * reboot just once, so we must only do that once we
2047                  * can read and store the updated warm boot count.
2048                  */
2049                 return 0;
2050         }
2051
2052         if (rc == nic_data->warm_boot_count)
2053                 return 0;
2054
2055         nic_data->warm_boot_count = rc;
2056         efx_ef10_mcdi_reboot_detected(efx);
2057
2058         return -EIO;
2059 }
2060
2061 /* Handle an MSI interrupt
2062  *
2063  * Handle an MSI hardware interrupt.  This routine schedules event
2064  * queue processing.  No interrupt acknowledgement cycle is necessary.
2065  * Also, we never need to check that the interrupt is for us, since
2066  * MSI interrupts cannot be shared.
2067  */
2068 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2069 {
2070         struct efx_msi_context *context = dev_id;
2071         struct efx_nic *efx = context->efx;
2072
2073         netif_vdbg(efx, intr, efx->net_dev,
2074                    "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2075
2076         if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
2077                 /* Note test interrupts */
2078                 if (context->index == efx->irq_level)
2079                         efx->last_irq_cpu = raw_smp_processor_id();
2080
2081                 /* Schedule processing of the channel */
2082                 efx_schedule_channel_irq(efx->channel[context->index]);
2083         }
2084
2085         return IRQ_HANDLED;
2086 }
2087
2088 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2089 {
2090         struct efx_nic *efx = dev_id;
2091         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
2092         struct efx_channel *channel;
2093         efx_dword_t reg;
2094         u32 queues;
2095
2096         /* Read the ISR which also ACKs the interrupts */
2097         efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2098         queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2099
2100         if (queues == 0)
2101                 return IRQ_NONE;
2102
2103         if (likely(soft_enabled)) {
2104                 /* Note test interrupts */
2105                 if (queues & (1U << efx->irq_level))
2106                         efx->last_irq_cpu = raw_smp_processor_id();
2107
2108                 efx_for_each_channel(channel, efx) {
2109                         if (queues & 1)
2110                                 efx_schedule_channel_irq(channel);
2111                         queues >>= 1;
2112                 }
2113         }
2114
2115         netif_vdbg(efx, intr, efx->net_dev,
2116                    "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2117                    irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2118
2119         return IRQ_HANDLED;
2120 }
2121
2122 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2123 {
2124         MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2125
2126         if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2127                                     NULL) == 0)
2128                 return -ENOTSUPP;
2129
2130         BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2131
2132         MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2133         return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2134                             inbuf, sizeof(inbuf), NULL, 0, NULL);
2135 }
2136
2137 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2138 {
2139         return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2140                                     (tx_queue->ptr_mask + 1) *
2141                                     sizeof(efx_qword_t),
2142                                     GFP_KERNEL);
2143 }
2144
2145 /* This writes to the TX_DESC_WPTR and also pushes data */
2146 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2147                                          const efx_qword_t *txd)
2148 {
2149         unsigned int write_ptr;
2150         efx_oword_t reg;
2151
2152         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2153         EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2154         reg.qword[0] = *txd;
2155         efx_writeo_page(tx_queue->efx, &reg,
2156                         ER_DZ_TX_DESC_UPD, tx_queue->queue);
2157 }
2158
2159 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2160  */
2161 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2162                                 struct sk_buff *skb,
2163                                 bool *data_mapped)
2164 {
2165         struct efx_tx_buffer *buffer;
2166         struct tcphdr *tcp;
2167         struct iphdr *ip;
2168
2169         u16 ipv4_id;
2170         u32 seqnum;
2171         u32 mss;
2172
2173         EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2174
2175         mss = skb_shinfo(skb)->gso_size;
2176
2177         if (unlikely(mss < 4)) {
2178                 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2179                 return -EINVAL;
2180         }
2181
2182         ip = ip_hdr(skb);
2183         if (ip->version == 4) {
2184                 /* Modify IPv4 header if needed. */
2185                 ip->tot_len = 0;
2186                 ip->check = 0;
2187                 ipv4_id = ntohs(ip->id);
2188         } else {
2189                 /* Modify IPv6 header if needed. */
2190                 struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2191
2192                 ipv6->payload_len = 0;
2193                 ipv4_id = 0;
2194         }
2195
2196         tcp = tcp_hdr(skb);
2197         seqnum = ntohl(tcp->seq);
2198
2199         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2200
2201         buffer->flags = EFX_TX_BUF_OPTION;
2202         buffer->len = 0;
2203         buffer->unmap_len = 0;
2204         EFX_POPULATE_QWORD_5(buffer->option,
2205                         ESF_DZ_TX_DESC_IS_OPT, 1,
2206                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2207                         ESF_DZ_TX_TSO_OPTION_TYPE,
2208                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2209                         ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2210                         ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2211                         );
2212         ++tx_queue->insert_count;
2213
2214         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2215
2216         buffer->flags = EFX_TX_BUF_OPTION;
2217         buffer->len = 0;
2218         buffer->unmap_len = 0;
2219         EFX_POPULATE_QWORD_4(buffer->option,
2220                         ESF_DZ_TX_DESC_IS_OPT, 1,
2221                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2222                         ESF_DZ_TX_TSO_OPTION_TYPE,
2223                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2224                         ESF_DZ_TX_TSO_TCP_MSS, mss
2225                         );
2226         ++tx_queue->insert_count;
2227
2228         return 0;
2229 }
2230
2231 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2232 {
2233         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2234         u32 tso_versions = 0;
2235
2236         if (nic_data->datapath_caps &
2237             (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2238                 tso_versions |= BIT(1);
2239         if (nic_data->datapath_caps2 &
2240             (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2241                 tso_versions |= BIT(2);
2242         return tso_versions;
2243 }
2244
2245 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2246 {
2247         MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2248                                                        EFX_BUF_SIZE));
2249         bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2250         size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2251         struct efx_channel *channel = tx_queue->channel;
2252         struct efx_nic *efx = tx_queue->efx;
2253         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2254         bool tso_v2 = false;
2255         size_t inlen;
2256         dma_addr_t dma_addr;
2257         efx_qword_t *txd;
2258         int rc;
2259         int i;
2260         BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2261
2262         /* TSOv2 is a limited resource that can only be configured on a limited
2263          * number of queues. TSO without checksum offload is not really a thing,
2264          * so we only enable it for those queues.
2265          */
2266         if (csum_offload && (nic_data->datapath_caps2 &
2267                         (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) {
2268                 tso_v2 = true;
2269                 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2270                                 channel->channel);
2271         }
2272
2273         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2274         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2275         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2276         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2277         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2278         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2279
2280         dma_addr = tx_queue->txd.buf.dma_addr;
2281
2282         netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2283                   tx_queue->queue, entries, (u64)dma_addr);
2284
2285         for (i = 0; i < entries; ++i) {
2286                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2287                 dma_addr += EFX_BUF_SIZE;
2288         }
2289
2290         inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2291
2292         do {
2293                 MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS,
2294                                 /* This flag was removed from mcdi_pcol.h for
2295                                  * the non-_EXT version of INIT_TXQ.  However,
2296                                  * firmware still honours it.
2297                                  */
2298                                 INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2299                                 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2300                                 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
2301
2302                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2303                                         NULL, 0, NULL);
2304                 if (rc == -ENOSPC && tso_v2) {
2305                         /* Retry without TSOv2 if we're short on contexts. */
2306                         tso_v2 = false;
2307                         netif_warn(efx, probe, efx->net_dev,
2308                                    "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2309                 } else if (rc) {
2310                         efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2311                                                MC_CMD_INIT_TXQ_EXT_IN_LEN,
2312                                                NULL, 0, rc);
2313                         goto fail;
2314                 }
2315         } while (rc);
2316
2317         /* A previous user of this TX queue might have set us up the
2318          * bomb by writing a descriptor to the TX push collector but
2319          * not the doorbell.  (Each collector belongs to a port, not a
2320          * queue or function, so cannot easily be reset.)  We must
2321          * attempt to push a no-op descriptor in its place.
2322          */
2323         tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2324         tx_queue->insert_count = 1;
2325         txd = efx_tx_desc(tx_queue, 0);
2326         EFX_POPULATE_QWORD_4(*txd,
2327                              ESF_DZ_TX_DESC_IS_OPT, true,
2328                              ESF_DZ_TX_OPTION_TYPE,
2329                              ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2330                              ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2331                              ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
2332         tx_queue->write_count = 1;
2333
2334         if (tso_v2) {
2335                 tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2336                 tx_queue->tso_version = 2;
2337         } else if (nic_data->datapath_caps &
2338                         (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2339                 tx_queue->tso_version = 1;
2340         }
2341
2342         wmb();
2343         efx_ef10_push_tx_desc(tx_queue, txd);
2344
2345         return;
2346
2347 fail:
2348         netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2349                     tx_queue->queue);
2350 }
2351
2352 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2353 {
2354         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2355         MCDI_DECLARE_BUF_ERR(outbuf);
2356         struct efx_nic *efx = tx_queue->efx;
2357         size_t outlen;
2358         int rc;
2359
2360         MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2361                        tx_queue->queue);
2362
2363         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2364                           outbuf, sizeof(outbuf), &outlen);
2365
2366         if (rc && rc != -EALREADY)
2367                 goto fail;
2368
2369         return;
2370
2371 fail:
2372         efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2373                                outbuf, outlen, rc);
2374 }
2375
2376 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2377 {
2378         efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2379 }
2380
2381 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2382 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2383 {
2384         unsigned int write_ptr;
2385         efx_dword_t reg;
2386
2387         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2388         EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2389         efx_writed_page(tx_queue->efx, &reg,
2390                         ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2391 }
2392
2393 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2394
2395 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2396                                           dma_addr_t dma_addr, unsigned int len)
2397 {
2398         if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2399                 /* If we need to break across multiple descriptors we should
2400                  * stop at a page boundary. This assumes the length limit is
2401                  * greater than the page size.
2402                  */
2403                 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2404
2405                 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2406                 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2407         }
2408
2409         return len;
2410 }
2411
2412 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2413 {
2414         unsigned int old_write_count = tx_queue->write_count;
2415         struct efx_tx_buffer *buffer;
2416         unsigned int write_ptr;
2417         efx_qword_t *txd;
2418
2419         tx_queue->xmit_more_available = false;
2420         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2421                 return;
2422
2423         do {
2424                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2425                 buffer = &tx_queue->buffer[write_ptr];
2426                 txd = efx_tx_desc(tx_queue, write_ptr);
2427                 ++tx_queue->write_count;
2428
2429                 /* Create TX descriptor ring entry */
2430                 if (buffer->flags & EFX_TX_BUF_OPTION) {
2431                         *txd = buffer->option;
2432                         if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2433                                 /* PIO descriptor */
2434                                 tx_queue->packet_write_count = tx_queue->write_count;
2435                 } else {
2436                         tx_queue->packet_write_count = tx_queue->write_count;
2437                         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2438                         EFX_POPULATE_QWORD_3(
2439                                 *txd,
2440                                 ESF_DZ_TX_KER_CONT,
2441                                 buffer->flags & EFX_TX_BUF_CONT,
2442                                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2443                                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2444                 }
2445         } while (tx_queue->write_count != tx_queue->insert_count);
2446
2447         wmb(); /* Ensure descriptors are written before they are fetched */
2448
2449         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2450                 txd = efx_tx_desc(tx_queue,
2451                                   old_write_count & tx_queue->ptr_mask);
2452                 efx_ef10_push_tx_desc(tx_queue, txd);
2453                 ++tx_queue->pushes;
2454         } else {
2455                 efx_ef10_notify_tx_desc(tx_queue);
2456         }
2457 }
2458
2459 #define RSS_MODE_HASH_ADDRS     (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2460                                  1 << RSS_MODE_HASH_DST_ADDR_LBN)
2461 #define RSS_MODE_HASH_PORTS     (1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2462                                  1 << RSS_MODE_HASH_DST_PORT_LBN)
2463 #define RSS_CONTEXT_FLAGS_DEFAULT       (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2464                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2465                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2466                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2467                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2468                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2469                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2470                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2471                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2472                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2473
2474 static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2475 {
2476         /* Firmware had a bug (sfc bug 61952) where it would not actually
2477          * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2478          * This meant that it would always contain whatever was previously
2479          * in the MCDI buffer.  Fortunately, all firmware versions with
2480          * this bug have the same default flags value for a newly-allocated
2481          * RSS context, and the only time we want to get the flags is just
2482          * after allocating.  Moreover, the response has a 32-bit hole
2483          * where the context ID would be in the request, so we can use an
2484          * overlength buffer in the request and pre-fill the flags field
2485          * with what we believe the default to be.  Thus if the firmware
2486          * has the bug, it will leave our pre-filled value in the flags
2487          * field of the response, and we will get the right answer.
2488          *
2489          * However, this does mean that this function should NOT be used if
2490          * the RSS context flags might not be their defaults - it is ONLY
2491          * reliably correct for a newly-allocated RSS context.
2492          */
2493         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2494         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2495         size_t outlen;
2496         int rc;
2497
2498         /* Check we have a hole for the context ID */
2499         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2500         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2501         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2502                        RSS_CONTEXT_FLAGS_DEFAULT);
2503         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2504                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2505         if (rc == 0) {
2506                 if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2507                         rc = -EIO;
2508                 else
2509                         *flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2510         }
2511         return rc;
2512 }
2513
2514 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2515  * If we fail, we just leave the RSS context at its default hash settings,
2516  * which is safe but may slightly reduce performance.
2517  * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2518  * just need to set the UDP ports flags (for both IP versions).
2519  */
2520 static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context)
2521 {
2522         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2523         u32 flags;
2524
2525         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2526
2527         if (efx_ef10_get_rss_flags(efx, context, &flags) != 0)
2528                 return;
2529         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context);
2530         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2531         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2532         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2533         if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2534                           NULL, 0, NULL))
2535                 /* Succeeded, so UDP 4-tuple is now enabled */
2536                 efx->rx_hash_udp_4tuple = true;
2537 }
2538
2539 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2540                                       bool exclusive, unsigned *context_size)
2541 {
2542         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2543         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2544         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2545         size_t outlen;
2546         int rc;
2547         u32 alloc_type = exclusive ?
2548                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2549                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2550         unsigned rss_spread = exclusive ?
2551                                 efx->rss_spread :
2552                                 min(rounddown_pow_of_two(efx->rss_spread),
2553                                     EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2554
2555         if (!exclusive && rss_spread == 1) {
2556                 *context = EFX_EF10_RSS_CONTEXT_INVALID;
2557                 if (context_size)
2558                         *context_size = 1;
2559                 return 0;
2560         }
2561
2562         if (nic_data->datapath_caps &
2563             1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2564                 return -EOPNOTSUPP;
2565
2566         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2567                        nic_data->vport_id);
2568         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2569         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2570
2571         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2572                 outbuf, sizeof(outbuf), &outlen);
2573         if (rc != 0)
2574                 return rc;
2575
2576         if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2577                 return -EIO;
2578
2579         *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2580
2581         if (context_size)
2582                 *context_size = rss_spread;
2583
2584         if (nic_data->datapath_caps &
2585             1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2586                 efx_ef10_set_rss_flags(efx, *context);
2587
2588         return 0;
2589 }
2590
2591 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2592 {
2593         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2594         int rc;
2595
2596         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2597                        context);
2598
2599         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2600                             NULL, 0, NULL);
2601         WARN_ON(rc != 0);
2602 }
2603
2604 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2605                                        const u32 *rx_indir_table, const u8 *key)
2606 {
2607         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2608         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2609         int i, rc;
2610
2611         MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2612                        context);
2613         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2614                      MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2615
2616         /* This iterates over the length of efx->rx_indir_table, but copies
2617          * bytes from rx_indir_table.  That's because the latter is a pointer
2618          * rather than an array, but should have the same length.
2619          * The efx->rx_hash_key loop below is similar.
2620          */
2621         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2622                 MCDI_PTR(tablebuf,
2623                          RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2624                                 (u8) rx_indir_table[i];
2625
2626         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2627                           sizeof(tablebuf), NULL, 0, NULL);
2628         if (rc != 0)
2629                 return rc;
2630
2631         MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2632                        context);
2633         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2634                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2635         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2636                 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2637
2638         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2639                             sizeof(keybuf), NULL, 0, NULL);
2640 }
2641
2642 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2643 {
2644         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2645
2646         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2647                 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2648         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2649 }
2650
2651 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2652                                               unsigned *context_size)
2653 {
2654         u32 new_rx_rss_context;
2655         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2656         int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2657                                             false, context_size);
2658
2659         if (rc != 0)
2660                 return rc;
2661
2662         nic_data->rx_rss_context = new_rx_rss_context;
2663         nic_data->rx_rss_context_exclusive = false;
2664         efx_set_default_rx_indir_table(efx);
2665         return 0;
2666 }
2667
2668 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2669                                                  const u32 *rx_indir_table,
2670                                                  const u8 *key)
2671 {
2672         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2673         int rc;
2674         u32 new_rx_rss_context;
2675
2676         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2677             !nic_data->rx_rss_context_exclusive) {
2678                 rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2679                                                 true, NULL);
2680                 if (rc == -EOPNOTSUPP)
2681                         return rc;
2682                 else if (rc != 0)
2683                         goto fail1;
2684         } else {
2685                 new_rx_rss_context = nic_data->rx_rss_context;
2686         }
2687
2688         rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2689                                          rx_indir_table, key);
2690         if (rc != 0)
2691                 goto fail2;
2692
2693         if (nic_data->rx_rss_context != new_rx_rss_context)
2694                 efx_ef10_rx_free_indir_table(efx);
2695         nic_data->rx_rss_context = new_rx_rss_context;
2696         nic_data->rx_rss_context_exclusive = true;
2697         if (rx_indir_table != efx->rx_indir_table)
2698                 memcpy(efx->rx_indir_table, rx_indir_table,
2699                        sizeof(efx->rx_indir_table));
2700         if (key != efx->rx_hash_key)
2701                 memcpy(efx->rx_hash_key, key, efx->type->rx_hash_key_size);
2702
2703         return 0;
2704
2705 fail2:
2706         if (new_rx_rss_context != nic_data->rx_rss_context)
2707                 efx_ef10_free_rss_context(efx, new_rx_rss_context);
2708 fail1:
2709         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2710         return rc;
2711 }
2712
2713 static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2714 {
2715         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2716         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2717         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2718         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2719         size_t outlen;
2720         int rc, i;
2721
2722         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2723                      MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2724
2725         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
2726                 return -ENOENT;
2727
2728         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2729                        nic_data->rx_rss_context);
2730         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2731                      MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2732         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2733                           tablebuf, sizeof(tablebuf), &outlen);
2734         if (rc != 0)
2735                 return rc;
2736
2737         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2738                 return -EIO;
2739
2740         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
2741                 efx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2742                                 RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2743
2744         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2745                        nic_data->rx_rss_context);
2746         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2747                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2748         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2749                           keybuf, sizeof(keybuf), &outlen);
2750         if (rc != 0)
2751                 return rc;
2752
2753         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2754                 return -EIO;
2755
2756         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2757                 efx->rx_hash_key[i] = MCDI_PTR(
2758                                 keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2759
2760         return 0;
2761 }
2762
2763 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2764                                           const u32 *rx_indir_table,
2765                                           const u8 *key)
2766 {
2767         int rc;
2768
2769         if (efx->rss_spread == 1)
2770                 return 0;
2771
2772         if (!key)
2773                 key = efx->rx_hash_key;
2774
2775         rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
2776
2777         if (rc == -ENOBUFS && !user) {
2778                 unsigned context_size;
2779                 bool mismatch = false;
2780                 size_t i;
2781
2782                 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2783                      i++)
2784                         mismatch = rx_indir_table[i] !=
2785                                 ethtool_rxfh_indir_default(i, efx->rss_spread);
2786
2787                 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2788                 if (rc == 0) {
2789                         if (context_size != efx->rss_spread)
2790                                 netif_warn(efx, probe, efx->net_dev,
2791                                            "Could not allocate an exclusive RSS"
2792                                            " context; allocated a shared one of"
2793                                            " different size."
2794                                            " Wanted %u, got %u.\n",
2795                                            efx->rss_spread, context_size);
2796                         else if (mismatch)
2797                                 netif_warn(efx, probe, efx->net_dev,
2798                                            "Could not allocate an exclusive RSS"
2799                                            " context; allocated a shared one but"
2800                                            " could not apply custom"
2801                                            " indirection.\n");
2802                         else
2803                                 netif_info(efx, probe, efx->net_dev,
2804                                            "Could not allocate an exclusive RSS"
2805                                            " context; allocated a shared one.\n");
2806                 }
2807         }
2808         return rc;
2809 }
2810
2811 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2812                                           const u32 *rx_indir_table
2813                                           __attribute__ ((unused)),
2814                                           const u8 *key
2815                                           __attribute__ ((unused)))
2816 {
2817         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2818
2819         if (user)
2820                 return -EOPNOTSUPP;
2821         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2822                 return 0;
2823         return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2824 }
2825
2826 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2827 {
2828         return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2829                                     (rx_queue->ptr_mask + 1) *
2830                                     sizeof(efx_qword_t),
2831                                     GFP_KERNEL);
2832 }
2833
2834 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2835 {
2836         MCDI_DECLARE_BUF(inbuf,
2837                          MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2838                                                 EFX_BUF_SIZE));
2839         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2840         size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2841         struct efx_nic *efx = rx_queue->efx;
2842         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2843         size_t inlen;
2844         dma_addr_t dma_addr;
2845         int rc;
2846         int i;
2847         BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2848
2849         rx_queue->scatter_n = 0;
2850         rx_queue->scatter_len = 0;
2851
2852         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2853         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2854         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2855         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2856                        efx_rx_queue_index(rx_queue));
2857         MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2858                               INIT_RXQ_IN_FLAG_PREFIX, 1,
2859                               INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2860         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2861         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2862
2863         dma_addr = rx_queue->rxd.buf.dma_addr;
2864
2865         netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2866                   efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2867
2868         for (i = 0; i < entries; ++i) {
2869                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2870                 dma_addr += EFX_BUF_SIZE;
2871         }
2872
2873         inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2874
2875         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2876                           NULL, 0, NULL);
2877         if (rc)
2878                 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2879                             efx_rx_queue_index(rx_queue));
2880 }
2881
2882 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2883 {
2884         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2885         MCDI_DECLARE_BUF_ERR(outbuf);
2886         struct efx_nic *efx = rx_queue->efx;
2887         size_t outlen;
2888         int rc;
2889
2890         MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2891                        efx_rx_queue_index(rx_queue));
2892
2893         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2894                           outbuf, sizeof(outbuf), &outlen);
2895
2896         if (rc && rc != -EALREADY)
2897                 goto fail;
2898
2899         return;
2900
2901 fail:
2902         efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2903                                outbuf, outlen, rc);
2904 }
2905
2906 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2907 {
2908         efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2909 }
2910
2911 /* This creates an entry in the RX descriptor queue */
2912 static inline void
2913 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2914 {
2915         struct efx_rx_buffer *rx_buf;
2916         efx_qword_t *rxd;
2917
2918         rxd = efx_rx_desc(rx_queue, index);
2919         rx_buf = efx_rx_buffer(rx_queue, index);
2920         EFX_POPULATE_QWORD_2(*rxd,
2921                              ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2922                              ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2923 }
2924
2925 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2926 {
2927         struct efx_nic *efx = rx_queue->efx;
2928         unsigned int write_count;
2929         efx_dword_t reg;
2930
2931         /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2932         write_count = rx_queue->added_count & ~7;
2933         if (rx_queue->notified_count == write_count)
2934                 return;
2935
2936         do
2937                 efx_ef10_build_rx_desc(
2938                         rx_queue,
2939                         rx_queue->notified_count & rx_queue->ptr_mask);
2940         while (++rx_queue->notified_count != write_count);
2941
2942         wmb();
2943         EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2944                              write_count & rx_queue->ptr_mask);
2945         efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2946                         efx_rx_queue_index(rx_queue));
2947 }
2948
2949 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2950
2951 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2952 {
2953         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2954         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2955         efx_qword_t event;
2956
2957         EFX_POPULATE_QWORD_2(event,
2958                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2959                              ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2960
2961         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2962
2963         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2964          * already swapped the data to little-endian order.
2965          */
2966         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2967                sizeof(efx_qword_t));
2968
2969         efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2970                            inbuf, sizeof(inbuf), 0,
2971                            efx_ef10_rx_defer_refill_complete, 0);
2972 }
2973
2974 static void
2975 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2976                                   int rc, efx_dword_t *outbuf,
2977                                   size_t outlen_actual)
2978 {
2979         /* nothing to do */
2980 }
2981
2982 static int efx_ef10_ev_probe(struct efx_channel *channel)
2983 {
2984         return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2985                                     (channel->eventq_mask + 1) *
2986                                     sizeof(efx_qword_t),
2987                                     GFP_KERNEL);
2988 }
2989
2990 static void efx_ef10_ev_fini(struct efx_channel *channel)
2991 {
2992         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2993         MCDI_DECLARE_BUF_ERR(outbuf);
2994         struct efx_nic *efx = channel->efx;
2995         size_t outlen;
2996         int rc;
2997
2998         MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2999
3000         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3001                           outbuf, sizeof(outbuf), &outlen);
3002
3003         if (rc && rc != -EALREADY)
3004                 goto fail;
3005
3006         return;
3007
3008 fail:
3009         efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3010                                outbuf, outlen, rc);
3011 }
3012
3013 static int efx_ef10_ev_init(struct efx_channel *channel)
3014 {
3015         MCDI_DECLARE_BUF(inbuf,
3016                          MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3017                                                    EFX_BUF_SIZE));
3018         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3019         size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3020         struct efx_nic *efx = channel->efx;
3021         struct efx_ef10_nic_data *nic_data;
3022         size_t inlen, outlen;
3023         unsigned int enabled, implemented;
3024         dma_addr_t dma_addr;
3025         int rc;
3026         int i;
3027
3028         nic_data = efx->nic_data;
3029
3030         /* Fill event queue with all ones (i.e. empty events) */
3031         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3032
3033         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3034         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3035         /* INIT_EVQ expects index in vector table, not absolute */
3036         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3037         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3038                        MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3039         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3040         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3041         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3042                        MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3043         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3044
3045         if (nic_data->datapath_caps2 &
3046             1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3047                 /* Use the new generic approach to specifying event queue
3048                  * configuration, requesting lower latency or higher throughput.
3049                  * The options that actually get used appear in the output.
3050                  */
3051                 MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3052                                       INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3053                                       INIT_EVQ_V2_IN_FLAG_TYPE,
3054                                       MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3055         } else {
3056                 bool cut_thru = !(nic_data->datapath_caps &
3057                         1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3058
3059                 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3060                                       INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3061                                       INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3062                                       INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3063                                       INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3064         }
3065
3066         dma_addr = channel->eventq.buf.dma_addr;
3067         for (i = 0; i < entries; ++i) {
3068                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3069                 dma_addr += EFX_BUF_SIZE;
3070         }
3071
3072         inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3073
3074         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3075                           outbuf, sizeof(outbuf), &outlen);
3076
3077         if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3078                 netif_dbg(efx, drv, efx->net_dev,
3079                           "Channel %d using event queue flags %08x\n",
3080                           channel->channel,
3081                           MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3082
3083         /* IRQ return is ignored */
3084         if (channel->channel || rc)
3085                 return rc;
3086
3087         /* Successfully created event queue on channel 0 */
3088         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3089         if (rc == -ENOSYS) {
3090                 /* GET_WORKAROUNDS was implemented before this workaround,
3091                  * thus it must be unavailable in this firmware.
3092                  */
3093                 nic_data->workaround_26807 = false;
3094                 rc = 0;
3095         } else if (rc) {
3096                 goto fail;
3097         } else {
3098                 nic_data->workaround_26807 =
3099                         !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3100
3101                 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3102                     !nic_data->workaround_26807) {
3103                         unsigned int flags;
3104
3105                         rc = efx_mcdi_set_workaround(efx,
3106                                                      MC_CMD_WORKAROUND_BUG26807,
3107                                                      true, &flags);
3108
3109                         if (!rc) {
3110                                 if (flags &
3111                                     1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3112                                         netif_info(efx, drv, efx->net_dev,
3113                                                    "other functions on NIC have been reset\n");
3114
3115                                         /* With MCFW v4.6.x and earlier, the
3116                                          * boot count will have incremented,
3117                                          * so re-read the warm_boot_count
3118                                          * value now to ensure this function
3119                                          * doesn't think it has changed next
3120                                          * time it checks.
3121                                          */
3122                                         rc = efx_ef10_get_warm_boot_count(efx);
3123                                         if (rc >= 0) {
3124                                                 nic_data->warm_boot_count = rc;
3125                                                 rc = 0;
3126                                         }
3127                                 }
3128                                 nic_data->workaround_26807 = true;
3129                         } else if (rc == -EPERM) {
3130                                 rc = 0;
3131                         }
3132                 }
3133         }
3134
3135         if (!rc)
3136                 return 0;
3137
3138 fail:
3139         efx_ef10_ev_fini(channel);
3140         return rc;
3141 }
3142
3143 static void efx_ef10_ev_remove(struct efx_channel *channel)
3144 {
3145         efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3146 }
3147
3148 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3149                                            unsigned int rx_queue_label)
3150 {
3151         struct efx_nic *efx = rx_queue->efx;
3152
3153         netif_info(efx, hw, efx->net_dev,
3154                    "rx event arrived on queue %d labeled as queue %u\n",
3155                    efx_rx_queue_index(rx_queue), rx_queue_label);
3156
3157         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3158 }
3159
3160 static void
3161 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3162                              unsigned int actual, unsigned int expected)
3163 {
3164         unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3165         struct efx_nic *efx = rx_queue->efx;
3166
3167         netif_info(efx, hw, efx->net_dev,
3168                    "dropped %d events (index=%d expected=%d)\n",
3169                    dropped, actual, expected);
3170
3171         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3172 }
3173
3174 /* partially received RX was aborted. clean up. */
3175 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3176 {
3177         unsigned int rx_desc_ptr;
3178
3179         netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3180                   "scattered RX aborted (dropping %u buffers)\n",
3181                   rx_queue->scatter_n);
3182
3183         rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3184
3185         efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3186                       0, EFX_RX_PKT_DISCARD);
3187
3188         rx_queue->removed_count += rx_queue->scatter_n;
3189         rx_queue->scatter_n = 0;
3190         rx_queue->scatter_len = 0;
3191         ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3192 }
3193
3194 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3195                                            unsigned int n_packets,
3196                                            unsigned int rx_encap_hdr,
3197                                            unsigned int rx_l3_class,
3198                                            unsigned int rx_l4_class,
3199                                            const efx_qword_t *event)
3200 {
3201         struct efx_nic *efx = channel->efx;
3202
3203         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3204                 if (!efx->loopback_selftest)
3205                         channel->n_rx_eth_crc_err += n_packets;
3206                 return EFX_RX_PKT_DISCARD;
3207         }
3208         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3209                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3210                              rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3211                              rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3212                              rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3213                              rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3214                         netdev_WARN(efx->net_dev,
3215                                     "invalid class for RX_IPCKSUM_ERR: event="
3216                                     EFX_QWORD_FMT "\n",
3217                                     EFX_QWORD_VAL(*event));
3218                 if (!efx->loopback_selftest)
3219                         *(rx_encap_hdr ?
3220                           &channel->n_rx_outer_ip_hdr_chksum_err :
3221                           &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3222                 return 0;
3223         }
3224         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3225                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3226                              ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3227                                rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3228                               (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3229                                rx_l4_class != ESE_DZ_L4_CLASS_UDP))))
3230                         netdev_WARN(efx->net_dev,
3231                                     "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3232                                     EFX_QWORD_FMT "\n",
3233                                     EFX_QWORD_VAL(*event));
3234                 if (!efx->loopback_selftest)
3235                         *(rx_encap_hdr ?
3236                           &channel->n_rx_outer_tcp_udp_chksum_err :
3237                           &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3238                 return 0;
3239         }
3240         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3241                 if (unlikely(!rx_encap_hdr))
3242                         netdev_WARN(efx->net_dev,
3243                                     "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3244                                     EFX_QWORD_FMT "\n",
3245                                     EFX_QWORD_VAL(*event));
3246                 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3247                                   rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3248                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3249                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3250                         netdev_WARN(efx->net_dev,
3251                                     "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3252                                     EFX_QWORD_FMT "\n",
3253                                     EFX_QWORD_VAL(*event));
3254                 if (!efx->loopback_selftest)
3255                         channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3256                 return 0;
3257         }
3258         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3259                 if (unlikely(!rx_encap_hdr))
3260                         netdev_WARN(efx->net_dev,
3261                                     "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3262                                     EFX_QWORD_FMT "\n",
3263                                     EFX_QWORD_VAL(*event));
3264                 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3265                                    rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3266                                   (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3267                                    rx_l4_class != ESE_DZ_L4_CLASS_UDP)))
3268                         netdev_WARN(efx->net_dev,
3269                                     "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3270                                     EFX_QWORD_FMT "\n",
3271                                     EFX_QWORD_VAL(*event));
3272                 if (!efx->loopback_selftest)
3273                         channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3274                 return 0;
3275         }
3276
3277         WARN_ON(1); /* No error bits were recognised */
3278         return 0;
3279 }
3280
3281 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3282                                     const efx_qword_t *event)
3283 {
3284         unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3285         unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3286         unsigned int n_descs, n_packets, i;
3287         struct efx_nic *efx = channel->efx;
3288         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3289         struct efx_rx_queue *rx_queue;
3290         efx_qword_t errors;
3291         bool rx_cont;
3292         u16 flags = 0;
3293
3294         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
3295                 return 0;
3296
3297         /* Basic packet information */
3298         rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3299         next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3300         rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3301         rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3302         rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
3303         rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3304         rx_encap_hdr =
3305                 nic_data->datapath_caps &
3306                         (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3307                 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3308                 ESE_EZ_ENCAP_HDR_NONE;
3309
3310         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3311                 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3312                             EFX_QWORD_FMT "\n",
3313                             EFX_QWORD_VAL(*event));
3314
3315         rx_queue = efx_channel_get_rx_queue(channel);
3316
3317         if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3318                 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3319
3320         n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3321                    ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3322
3323         if (n_descs != rx_queue->scatter_n + 1) {
3324                 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3325
3326                 /* detect rx abort */
3327                 if (unlikely(n_descs == rx_queue->scatter_n)) {
3328                         if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3329                                 netdev_WARN(efx->net_dev,
3330                                             "invalid RX abort: scatter_n=%u event="
3331                                             EFX_QWORD_FMT "\n",
3332                                             rx_queue->scatter_n,
3333                                             EFX_QWORD_VAL(*event));
3334                         efx_ef10_handle_rx_abort(rx_queue);
3335                         return 0;
3336                 }
3337
3338                 /* Check that RX completion merging is valid, i.e.
3339                  * the current firmware supports it and this is a
3340                  * non-scattered packet.
3341                  */
3342                 if (!(nic_data->datapath_caps &
3343                       (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3344                     rx_queue->scatter_n != 0 || rx_cont) {
3345                         efx_ef10_handle_rx_bad_lbits(
3346                                 rx_queue, next_ptr_lbits,
3347                                 (rx_queue->removed_count +
3348                                  rx_queue->scatter_n + 1) &
3349                                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3350                         return 0;
3351                 }
3352
3353                 /* Merged completion for multiple non-scattered packets */
3354                 rx_queue->scatter_n = 1;
3355                 rx_queue->scatter_len = 0;
3356                 n_packets = n_descs;
3357                 ++channel->n_rx_merge_events;
3358                 channel->n_rx_merge_packets += n_packets;
3359                 flags |= EFX_RX_PKT_PREFIX_LEN;
3360         } else {
3361                 ++rx_queue->scatter_n;
3362                 rx_queue->scatter_len += rx_bytes;
3363                 if (rx_cont)
3364                         return 0;
3365                 n_packets = 1;
3366         }
3367
3368         EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3369                                      ESF_DZ_RX_IPCKSUM_ERR, 1,
3370                                      ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3371                                      ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3372                                      ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3373         EFX_AND_QWORD(errors, *event, errors);
3374         if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3375                 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3376                                                          rx_encap_hdr,
3377                                                          rx_l3_class, rx_l4_class,
3378                                                          event);
3379         } else {
3380                 bool tcpudp = rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
3381                               rx_l4_class == ESE_DZ_L4_CLASS_UDP;
3382
3383                 switch (rx_encap_hdr) {
3384                 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3385                         flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3386                         if (tcpudp)
3387                                 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3388                         break;
3389                 case ESE_EZ_ENCAP_HDR_GRE:
3390                 case ESE_EZ_ENCAP_HDR_NONE:
3391                         if (tcpudp)
3392                                 flags |= EFX_RX_PKT_CSUMMED;
3393                         break;
3394                 default:
3395                         netdev_WARN(efx->net_dev,
3396                                     "unknown encapsulation type: event="
3397                                     EFX_QWORD_FMT "\n",
3398                                     EFX_QWORD_VAL(*event));
3399                 }
3400         }
3401
3402         if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
3403                 flags |= EFX_RX_PKT_TCP;
3404
3405         channel->irq_mod_score += 2 * n_packets;
3406
3407         /* Handle received packet(s) */
3408         for (i = 0; i < n_packets; i++) {
3409                 efx_rx_packet(rx_queue,
3410                               rx_queue->removed_count & rx_queue->ptr_mask,
3411                               rx_queue->scatter_n, rx_queue->scatter_len,
3412                               flags);
3413                 rx_queue->removed_count += rx_queue->scatter_n;
3414         }
3415
3416         rx_queue->scatter_n = 0;
3417         rx_queue->scatter_len = 0;
3418
3419         return n_packets;
3420 }
3421
3422 static int
3423 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3424 {
3425         struct efx_nic *efx = channel->efx;
3426         struct efx_tx_queue *tx_queue;
3427         unsigned int tx_ev_desc_ptr;
3428         unsigned int tx_ev_q_label;
3429         int tx_descs = 0;
3430
3431         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
3432                 return 0;
3433
3434         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3435                 return 0;
3436
3437         /* Transmit completion */
3438         tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3439         tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3440         tx_queue = efx_channel_get_tx_queue(channel,
3441                                             tx_ev_q_label % EFX_TXQ_TYPES);
3442         tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
3443                     tx_queue->ptr_mask);
3444         efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3445
3446         return tx_descs;
3447 }
3448
3449 static void
3450 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3451 {
3452         struct efx_nic *efx = channel->efx;
3453         int subcode;
3454
3455         subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3456
3457         switch (subcode) {
3458         case ESE_DZ_DRV_TIMER_EV:
3459         case ESE_DZ_DRV_WAKE_UP_EV:
3460                 break;
3461         case ESE_DZ_DRV_START_UP_EV:
3462                 /* event queue init complete. ok. */
3463                 break;
3464         default:
3465                 netif_err(efx, hw, efx->net_dev,
3466                           "channel %d unknown driver event type %d"
3467                           " (data " EFX_QWORD_FMT ")\n",
3468                           channel->channel, subcode,
3469                           EFX_QWORD_VAL(*event));
3470
3471         }
3472 }
3473
3474 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3475                                                    efx_qword_t *event)
3476 {
3477         struct efx_nic *efx = channel->efx;
3478         u32 subcode;
3479
3480         subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3481
3482         switch (subcode) {
3483         case EFX_EF10_TEST:
3484                 channel->event_test_cpu = raw_smp_processor_id();
3485                 break;
3486         case EFX_EF10_REFILL:
3487                 /* The queue must be empty, so we won't receive any rx
3488                  * events, so efx_process_channel() won't refill the
3489                  * queue. Refill it here
3490                  */
3491                 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3492                 break;
3493         default:
3494                 netif_err(efx, hw, efx->net_dev,
3495                           "channel %d unknown driver event type %u"
3496                           " (data " EFX_QWORD_FMT ")\n",
3497                           channel->channel, (unsigned) subcode,
3498                           EFX_QWORD_VAL(*event));
3499         }
3500 }
3501
3502 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3503 {
3504         struct efx_nic *efx = channel->efx;
3505         efx_qword_t event, *p_event;
3506         unsigned int read_ptr;
3507         int ev_code;
3508         int tx_descs = 0;
3509         int spent = 0;
3510
3511         if (quota <= 0)
3512                 return spent;
3513
3514         read_ptr = channel->eventq_read_ptr;
3515
3516         for (;;) {
3517                 p_event = efx_event(channel, read_ptr);
3518                 event = *p_event;
3519
3520                 if (!efx_event_present(&event))
3521                         break;
3522
3523                 EFX_SET_QWORD(*p_event);
3524
3525                 ++read_ptr;
3526
3527                 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3528
3529                 netif_vdbg(efx, drv, efx->net_dev,
3530                            "processing event on %d " EFX_QWORD_FMT "\n",
3531                            channel->channel, EFX_QWORD_VAL(event));
3532
3533                 switch (ev_code) {
3534                 case ESE_DZ_EV_CODE_MCDI_EV:
3535                         efx_mcdi_process_event(channel, &event);
3536                         break;
3537                 case ESE_DZ_EV_CODE_RX_EV:
3538                         spent += efx_ef10_handle_rx_event(channel, &event);
3539                         if (spent >= quota) {
3540                                 /* XXX can we split a merged event to
3541                                  * avoid going over-quota?
3542                                  */
3543                                 spent = quota;
3544                                 goto out;
3545                         }
3546                         break;
3547                 case ESE_DZ_EV_CODE_TX_EV:
3548                         tx_descs += efx_ef10_handle_tx_event(channel, &event);
3549                         if (tx_descs > efx->txq_entries) {
3550                                 spent = quota;
3551                                 goto out;
3552                         } else if (++spent == quota) {
3553                                 goto out;
3554                         }
3555                         break;
3556                 case ESE_DZ_EV_CODE_DRIVER_EV:
3557                         efx_ef10_handle_driver_event(channel, &event);
3558                         if (++spent == quota)
3559                                 goto out;
3560                         break;
3561                 case EFX_EF10_DRVGEN_EV:
3562                         efx_ef10_handle_driver_generated_event(channel, &event);
3563                         break;
3564                 default:
3565                         netif_err(efx, hw, efx->net_dev,
3566                                   "channel %d unknown event type %d"
3567                                   " (data " EFX_QWORD_FMT ")\n",
3568                                   channel->channel, ev_code,
3569                                   EFX_QWORD_VAL(event));
3570                 }
3571         }
3572
3573 out:
3574         channel->eventq_read_ptr = read_ptr;
3575         return spent;
3576 }
3577
3578 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3579 {
3580         struct efx_nic *efx = channel->efx;
3581         efx_dword_t rptr;
3582
3583         if (EFX_EF10_WORKAROUND_35388(efx)) {
3584                 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3585                              (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3586                 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3587                              (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3588
3589                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3590                                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3591                                      ERF_DD_EVQ_IND_RPTR,
3592                                      (channel->eventq_read_ptr &
3593                                       channel->eventq_mask) >>
3594                                      ERF_DD_EVQ_IND_RPTR_WIDTH);
3595                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3596                                 channel->channel);
3597                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3598                                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3599                                      ERF_DD_EVQ_IND_RPTR,
3600                                      channel->eventq_read_ptr &
3601                                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3602                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3603                                 channel->channel);
3604         } else {
3605                 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3606                                      channel->eventq_read_ptr &
3607                                      channel->eventq_mask);
3608                 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3609         }
3610 }
3611
3612 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3613 {
3614         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3615         struct efx_nic *efx = channel->efx;
3616         efx_qword_t event;
3617         int rc;
3618
3619         EFX_POPULATE_QWORD_2(event,
3620                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3621                              ESF_DZ_EV_DATA, EFX_EF10_TEST);
3622
3623         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3624
3625         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3626          * already swapped the data to little-endian order.
3627          */
3628         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3629                sizeof(efx_qword_t));
3630
3631         rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3632                           NULL, 0, NULL);
3633         if (rc != 0)
3634                 goto fail;
3635
3636         return;
3637
3638 fail:
3639         WARN_ON(true);
3640         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3641 }
3642
3643 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3644 {
3645         if (atomic_dec_and_test(&efx->active_queues))
3646                 wake_up(&efx->flush_wq);
3647
3648         WARN_ON(atomic_read(&efx->active_queues) < 0);
3649 }
3650
3651 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3652 {
3653         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3654         struct efx_channel *channel;
3655         struct efx_tx_queue *tx_queue;
3656         struct efx_rx_queue *rx_queue;
3657         int pending;
3658
3659         /* If the MC has just rebooted, the TX/RX queues will have already been
3660          * torn down, but efx->active_queues needs to be set to zero.
3661          */
3662         if (nic_data->must_realloc_vis) {
3663                 atomic_set(&efx->active_queues, 0);
3664                 return 0;
3665         }
3666
3667         /* Do not attempt to write to the NIC during EEH recovery */
3668         if (efx->state != STATE_RECOVERY) {
3669                 efx_for_each_channel(channel, efx) {
3670                         efx_for_each_channel_rx_queue(rx_queue, channel)
3671                                 efx_ef10_rx_fini(rx_queue);
3672                         efx_for_each_channel_tx_queue(tx_queue, channel)
3673                                 efx_ef10_tx_fini(tx_queue);
3674                 }
3675
3676                 wait_event_timeout(efx->flush_wq,
3677                                    atomic_read(&efx->active_queues) == 0,
3678                                    msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3679                 pending = atomic_read(&efx->active_queues);
3680                 if (pending) {
3681                         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3682                                   pending);
3683                         return -ETIMEDOUT;
3684                 }
3685         }
3686
3687         return 0;
3688 }
3689
3690 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3691 {
3692         atomic_set(&efx->active_queues, 0);
3693 }
3694
3695 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3696                                   const struct efx_filter_spec *right)
3697 {
3698         if ((left->match_flags ^ right->match_flags) |
3699             ((left->flags ^ right->flags) &
3700              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3701                 return false;
3702
3703         return memcmp(&left->outer_vid, &right->outer_vid,
3704                       sizeof(struct efx_filter_spec) -
3705                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
3706 }
3707
3708 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3709 {
3710         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3711         return jhash2((const u32 *)&spec->outer_vid,
3712                       (sizeof(struct efx_filter_spec) -
3713                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
3714                       0);
3715         /* XXX should we randomise the initval? */
3716 }
3717
3718 /* Decide whether a filter should be exclusive or else should allow
3719  * delivery to additional recipients.  Currently we decide that
3720  * filters for specific local unicast MAC and IP addresses are
3721  * exclusive.
3722  */
3723 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3724 {
3725         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3726             !is_multicast_ether_addr(spec->loc_mac))
3727                 return true;
3728
3729         if ((spec->match_flags &
3730              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3731             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3732                 if (spec->ether_type == htons(ETH_P_IP) &&
3733                     !ipv4_is_multicast(spec->loc_host[0]))
3734                         return true;
3735                 if (spec->ether_type == htons(ETH_P_IPV6) &&
3736                     ((const u8 *)spec->loc_host)[0] != 0xff)
3737                         return true;
3738         }
3739
3740         return false;
3741 }
3742
3743 static struct efx_filter_spec *
3744 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3745                            unsigned int filter_idx)
3746 {
3747         return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3748                                           ~EFX_EF10_FILTER_FLAGS);
3749 }
3750
3751 static unsigned int
3752 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3753                            unsigned int filter_idx)
3754 {
3755         return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
3756 }
3757
3758 static void
3759 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
3760                           unsigned int filter_idx,
3761                           const struct efx_filter_spec *spec,
3762                           unsigned int flags)
3763 {
3764         table->entry[filter_idx].spec = (unsigned long)spec | flags;
3765 }
3766
3767 static void
3768 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
3769                                            const struct efx_filter_spec *spec,
3770                                            efx_dword_t *inbuf)
3771 {
3772         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3773         u32 match_fields = 0, uc_match, mc_match;
3774
3775         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3776                        efx_ef10_filter_is_exclusive(spec) ?
3777                        MC_CMD_FILTER_OP_IN_OP_INSERT :
3778                        MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
3779
3780         /* Convert match flags and values.  Unlike almost
3781          * everything else in MCDI, these fields are in
3782          * network byte order.
3783          */
3784 #define COPY_VALUE(value, mcdi_field)                                        \
3785         do {                                                         \
3786                 match_fields |=                                      \
3787                         1 << MC_CMD_FILTER_OP_IN_MATCH_ ##           \
3788                         mcdi_field ## _LBN;                          \
3789                 BUILD_BUG_ON(                                        \
3790                         MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
3791                         sizeof(value));                              \
3792                 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
3793                        &value, sizeof(value));                       \
3794         } while (0)
3795 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)                          \
3796         if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
3797                 COPY_VALUE(spec->gen_field, mcdi_field);             \
3798         }
3799         /* Handle encap filters first.  They will always be mismatch
3800          * (unknown UC or MC) filters
3801          */
3802         if (encap_type) {
3803                 /* ether_type and outer_ip_proto need to be variables
3804                  * because COPY_VALUE wants to memcpy them
3805                  */
3806                 __be16 ether_type =
3807                         htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
3808                               ETH_P_IPV6 : ETH_P_IP);
3809                 u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
3810                 u8 outer_ip_proto;
3811
3812                 switch (encap_type & EFX_ENCAP_TYPES_MASK) {
3813                 case EFX_ENCAP_TYPE_VXLAN:
3814                         vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
3815                         /* fallthrough */
3816                 case EFX_ENCAP_TYPE_GENEVE:
3817                         COPY_VALUE(ether_type, ETHER_TYPE);
3818                         outer_ip_proto = IPPROTO_UDP;
3819                         COPY_VALUE(outer_ip_proto, IP_PROTO);
3820                         /* We always need to set the type field, even
3821                          * though we're not matching on the TNI.
3822                          */
3823                         MCDI_POPULATE_DWORD_1(inbuf,
3824                                 FILTER_OP_EXT_IN_VNI_OR_VSID,
3825                                 FILTER_OP_EXT_IN_VNI_TYPE,
3826                                 vni_type);
3827                         break;
3828                 case EFX_ENCAP_TYPE_NVGRE:
3829                         COPY_VALUE(ether_type, ETHER_TYPE);
3830                         outer_ip_proto = IPPROTO_GRE;
3831                         COPY_VALUE(outer_ip_proto, IP_PROTO);
3832                         break;
3833                 default:
3834                         WARN_ON(1);
3835                 }
3836
3837                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3838                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3839         } else {
3840                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3841                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3842         }
3843
3844         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
3845                 match_fields |=
3846                         is_multicast_ether_addr(spec->loc_mac) ?
3847                         1 << mc_match :
3848                         1 << uc_match;
3849         COPY_FIELD(REM_HOST, rem_host, SRC_IP);
3850         COPY_FIELD(LOC_HOST, loc_host, DST_IP);
3851         COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
3852         COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
3853         COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
3854         COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
3855         COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
3856         COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
3857         COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
3858         COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3859 #undef COPY_FIELD
3860 #undef COPY_VALUE
3861         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3862                        match_fields);
3863 }
3864
3865 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
3866                                       const struct efx_filter_spec *spec,
3867                                       efx_dword_t *inbuf, u64 handle,
3868                                       bool replacing)
3869 {
3870         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3871         u32 flags = spec->flags;
3872
3873         memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
3874
3875         /* Remove RSS flag if we don't have an RSS context. */
3876         if (flags & EFX_FILTER_FLAG_RX_RSS &&
3877             spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
3878             nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
3879                 flags &= ~EFX_FILTER_FLAG_RX_RSS;
3880
3881         if (replacing) {
3882                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3883                                MC_CMD_FILTER_OP_IN_OP_REPLACE);
3884                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
3885         } else {
3886                 efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
3887         }
3888
3889         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3890         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3891                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3892                        MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3893                        MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3894         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3895         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3896                        MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3897         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3898                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3899                        0 : spec->dmaq_id);
3900         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3901                        (flags & EFX_FILTER_FLAG_RX_RSS) ?
3902                        MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3903                        MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3904         if (flags & EFX_FILTER_FLAG_RX_RSS)
3905                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3906                                spec->rss_context !=
3907                                EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3908                                spec->rss_context : nic_data->rx_rss_context);
3909 }
3910
3911 static int efx_ef10_filter_push(struct efx_nic *efx,
3912                                 const struct efx_filter_spec *spec,
3913                                 u64 *handle, bool replacing)
3914 {
3915         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
3916         MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
3917         int rc;
3918
3919         efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3920         rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3921                           outbuf, sizeof(outbuf), NULL);
3922         if (rc == 0)
3923                 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3924         if (rc == -ENOSPC)
3925                 rc = -EBUSY; /* to match efx_farch_filter_insert() */
3926         return rc;
3927 }
3928
3929 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3930 {
3931         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3932         unsigned int match_flags = spec->match_flags;
3933         unsigned int uc_match, mc_match;
3934         u32 mcdi_flags = 0;
3935
3936 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {          \
3937                 unsigned int  old_match_flags = match_flags;            \
3938                 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;          \
3939                 if (match_flags != old_match_flags)                     \
3940                         mcdi_flags |=                                   \
3941                                 (1 << ((encap) ?                        \
3942                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
3943                                        mcdi_field ## _LBN :             \
3944                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
3945                                        mcdi_field ## _LBN));            \
3946         }
3947         /* inner or outer based on encap type */
3948         MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
3949         MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
3950         MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
3951         MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
3952         MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
3953         MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
3954         MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
3955         MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
3956         /* always outer */
3957         MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
3958         MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
3959 #undef MAP_FILTER_TO_MCDI_FLAG
3960
3961         /* special handling for encap type, and mismatch */
3962         if (encap_type) {
3963                 match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
3964                 mcdi_flags |=
3965                         (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
3966                 mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
3967
3968                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3969                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3970         } else {
3971                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3972                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3973         }
3974
3975         if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
3976                 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
3977                 mcdi_flags |=
3978                         is_multicast_ether_addr(spec->loc_mac) ?
3979                         1 << mc_match :
3980                         1 << uc_match;
3981         }
3982
3983         /* Did we map them all? */
3984         WARN_ON_ONCE(match_flags);
3985
3986         return mcdi_flags;
3987 }
3988
3989 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
3990                                const struct efx_filter_spec *spec)
3991 {
3992         u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
3993         unsigned int match_pri;
3994
3995         for (match_pri = 0;
3996              match_pri < table->rx_match_count;
3997              match_pri++)
3998                 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
3999                         return match_pri;
4000
4001         return -EPROTONOSUPPORT;
4002 }
4003
4004 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4005                                   struct efx_filter_spec *spec,
4006                                   bool replace_equal)
4007 {
4008         struct efx_ef10_filter_table *table = efx->filter_state;
4009         DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4010         struct efx_filter_spec *saved_spec;
4011         unsigned int match_pri, hash;
4012         unsigned int priv_flags;
4013         bool replacing = false;
4014         int ins_index = -1;
4015         DEFINE_WAIT(wait);
4016         bool is_mc_recip;
4017         s32 rc;
4018
4019         /* For now, only support RX filters */
4020         if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4021             EFX_FILTER_FLAG_RX)
4022                 return -EINVAL;
4023
4024         rc = efx_ef10_filter_pri(table, spec);
4025         if (rc < 0)
4026                 return rc;
4027         match_pri = rc;
4028
4029         hash = efx_ef10_filter_hash(spec);
4030         is_mc_recip = efx_filter_is_mc_recipient(spec);
4031         if (is_mc_recip)
4032                 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4033
4034         /* Find any existing filters with the same match tuple or
4035          * else a free slot to insert at.  If any of them are busy,
4036          * we have to wait and retry.
4037          */
4038         for (;;) {
4039                 unsigned int depth = 1;
4040                 unsigned int i;
4041
4042                 spin_lock_bh(&efx->filter_lock);
4043
4044                 for (;;) {
4045                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4046                         saved_spec = efx_ef10_filter_entry_spec(table, i);
4047
4048                         if (!saved_spec) {
4049                                 if (ins_index < 0)
4050                                         ins_index = i;
4051                         } else if (efx_ef10_filter_equal(spec, saved_spec)) {
4052                                 if (table->entry[i].spec &
4053                                     EFX_EF10_FILTER_FLAG_BUSY)
4054                                         break;
4055                                 if (spec->priority < saved_spec->priority &&
4056                                     spec->priority != EFX_FILTER_PRI_AUTO) {
4057                                         rc = -EPERM;
4058                                         goto out_unlock;
4059                                 }
4060                                 if (!is_mc_recip) {
4061                                         /* This is the only one */
4062                                         if (spec->priority ==
4063                                             saved_spec->priority &&
4064                                             !replace_equal) {
4065                                                 rc = -EEXIST;
4066                                                 goto out_unlock;
4067                                         }
4068                                         ins_index = i;
4069                                         goto found;
4070                                 } else if (spec->priority >
4071                                            saved_spec->priority ||
4072                                            (spec->priority ==
4073                                             saved_spec->priority &&
4074                                             replace_equal)) {
4075                                         if (ins_index < 0)
4076                                                 ins_index = i;
4077                                         else
4078                                                 __set_bit(depth, mc_rem_map);
4079                                 }
4080                         }
4081
4082                         /* Once we reach the maximum search depth, use
4083                          * the first suitable slot or return -EBUSY if
4084                          * there was none
4085                          */
4086                         if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4087                                 if (ins_index < 0) {
4088                                         rc = -EBUSY;
4089                                         goto out_unlock;
4090                                 }
4091                                 goto found;
4092                         }
4093
4094                         ++depth;
4095                 }
4096
4097                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4098                 spin_unlock_bh(&efx->filter_lock);
4099                 schedule();
4100         }
4101
4102 found:
4103         /* Create a software table entry if necessary, and mark it
4104          * busy.  We might yet fail to insert, but any attempt to
4105          * insert a conflicting filter while we're waiting for the
4106          * firmware must find the busy entry.
4107          */
4108         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4109         if (saved_spec) {
4110                 if (spec->priority == EFX_FILTER_PRI_AUTO &&
4111                     saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4112                         /* Just make sure it won't be removed */
4113                         if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4114                                 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4115                         table->entry[ins_index].spec &=
4116                                 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4117                         rc = ins_index;
4118                         goto out_unlock;
4119                 }
4120                 replacing = true;
4121                 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4122         } else {
4123                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4124                 if (!saved_spec) {
4125                         rc = -ENOMEM;
4126                         goto out_unlock;
4127                 }
4128                 *saved_spec = *spec;
4129                 priv_flags = 0;
4130         }
4131         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4132                                   priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
4133
4134         /* Mark lower-priority multicast recipients busy prior to removal */
4135         if (is_mc_recip) {
4136                 unsigned int depth, i;
4137
4138                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4139                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4140                         if (test_bit(depth, mc_rem_map))
4141                                 table->entry[i].spec |=
4142                                         EFX_EF10_FILTER_FLAG_BUSY;
4143                 }
4144         }
4145
4146         spin_unlock_bh(&efx->filter_lock);
4147
4148         rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4149                                   replacing);
4150
4151         /* Finalise the software table entry */
4152         spin_lock_bh(&efx->filter_lock);
4153         if (rc == 0) {
4154                 if (replacing) {
4155                         /* Update the fields that may differ */
4156                         if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4157                                 saved_spec->flags |=
4158                                         EFX_FILTER_FLAG_RX_OVER_AUTO;
4159                         saved_spec->priority = spec->priority;
4160                         saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4161                         saved_spec->flags |= spec->flags;
4162                         saved_spec->rss_context = spec->rss_context;
4163                         saved_spec->dmaq_id = spec->dmaq_id;
4164                 }
4165         } else if (!replacing) {
4166                 kfree(saved_spec);
4167                 saved_spec = NULL;
4168         }
4169         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4170
4171         /* Remove and finalise entries for lower-priority multicast
4172          * recipients
4173          */
4174         if (is_mc_recip) {
4175                 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4176                 unsigned int depth, i;
4177
4178                 memset(inbuf, 0, sizeof(inbuf));
4179
4180                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4181                         if (!test_bit(depth, mc_rem_map))
4182                                 continue;
4183
4184                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4185                         saved_spec = efx_ef10_filter_entry_spec(table, i);
4186                         priv_flags = efx_ef10_filter_entry_flags(table, i);
4187
4188                         if (rc == 0) {
4189                                 spin_unlock_bh(&efx->filter_lock);
4190                                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4191                                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4192                                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4193                                                table->entry[i].handle);
4194                                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4195                                                   inbuf, sizeof(inbuf),
4196                                                   NULL, 0, NULL);
4197                                 spin_lock_bh(&efx->filter_lock);
4198                         }
4199
4200                         if (rc == 0) {
4201                                 kfree(saved_spec);
4202                                 saved_spec = NULL;
4203                                 priv_flags = 0;
4204                         } else {
4205                                 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
4206                         }
4207                         efx_ef10_filter_set_entry(table, i, saved_spec,
4208                                                   priv_flags);
4209                 }
4210         }
4211
4212         /* If successful, return the inserted filter ID */
4213         if (rc == 0)
4214                 rc = efx_ef10_make_filter_id(match_pri, ins_index);
4215
4216         wake_up_all(&table->waitq);
4217 out_unlock:
4218         spin_unlock_bh(&efx->filter_lock);
4219         finish_wait(&table->waitq, &wait);
4220         return rc;
4221 }
4222
4223 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4224 {
4225         /* no need to do anything here on EF10 */
4226 }
4227
4228 /* Remove a filter.
4229  * If !by_index, remove by ID
4230  * If by_index, remove by index
4231  * Filter ID may come from userland and must be range-checked.
4232  */
4233 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4234                                            unsigned int priority_mask,
4235                                            u32 filter_id, bool by_index)
4236 {
4237         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4238         struct efx_ef10_filter_table *table = efx->filter_state;
4239         MCDI_DECLARE_BUF(inbuf,
4240                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4241                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4242         struct efx_filter_spec *spec;
4243         DEFINE_WAIT(wait);
4244         int rc;
4245
4246         /* Find the software table entry and mark it busy.  Don't
4247          * remove it yet; any attempt to update while we're waiting
4248          * for the firmware must find the busy entry.
4249          */
4250         for (;;) {
4251                 spin_lock_bh(&efx->filter_lock);
4252                 if (!(table->entry[filter_idx].spec &
4253                       EFX_EF10_FILTER_FLAG_BUSY))
4254                         break;
4255                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4256                 spin_unlock_bh(&efx->filter_lock);
4257                 schedule();
4258         }
4259
4260         spec = efx_ef10_filter_entry_spec(table, filter_idx);
4261         if (!spec ||
4262             (!by_index &&
4263              efx_ef10_filter_pri(table, spec) !=
4264              efx_ef10_filter_get_unsafe_pri(filter_id))) {
4265                 rc = -ENOENT;
4266                 goto out_unlock;
4267         }
4268
4269         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4270             priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4271                 /* Just remove flags */
4272                 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4273                 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4274                 rc = 0;
4275                 goto out_unlock;
4276         }
4277
4278         if (!(priority_mask & (1U << spec->priority))) {
4279                 rc = -ENOENT;
4280                 goto out_unlock;
4281         }
4282
4283         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4284         spin_unlock_bh(&efx->filter_lock);
4285
4286         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4287                 /* Reset to an automatic filter */
4288
4289                 struct efx_filter_spec new_spec = *spec;
4290
4291                 new_spec.priority = EFX_FILTER_PRI_AUTO;
4292                 new_spec.flags = (EFX_FILTER_FLAG_RX |
4293                                   (efx_rss_enabled(efx) ?
4294                                    EFX_FILTER_FLAG_RX_RSS : 0));
4295                 new_spec.dmaq_id = 0;
4296                 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
4297                 rc = efx_ef10_filter_push(efx, &new_spec,
4298                                           &table->entry[filter_idx].handle,
4299                                           true);
4300
4301                 spin_lock_bh(&efx->filter_lock);
4302                 if (rc == 0)
4303                         *spec = new_spec;
4304         } else {
4305                 /* Really remove the filter */
4306
4307                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4308                                efx_ef10_filter_is_exclusive(spec) ?
4309                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
4310                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4311                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4312                                table->entry[filter_idx].handle);
4313                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4314                                         inbuf, sizeof(inbuf), NULL, 0, NULL);
4315
4316                 spin_lock_bh(&efx->filter_lock);
4317                 if ((rc == 0) || (rc == -ENOENT)) {
4318                         /* Filter removed OK or didn't actually exist */
4319                         kfree(spec);
4320                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4321                 } else {
4322                         efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4323                                                MC_CMD_FILTER_OP_EXT_IN_LEN,
4324                                                NULL, 0, rc);
4325                 }
4326         }
4327
4328         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4329         wake_up_all(&table->waitq);
4330 out_unlock:
4331         spin_unlock_bh(&efx->filter_lock);
4332         finish_wait(&table->waitq, &wait);
4333         return rc;
4334 }
4335
4336 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4337                                        enum efx_filter_priority priority,
4338                                        u32 filter_id)
4339 {
4340         return efx_ef10_filter_remove_internal(efx, 1U << priority,
4341                                                filter_id, false);
4342 }
4343
4344 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4345                                           enum efx_filter_priority priority,
4346                                           u32 filter_id)
4347 {
4348         if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4349                 return;
4350         efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
4351 }
4352
4353 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4354                                     enum efx_filter_priority priority,
4355                                     u32 filter_id, struct efx_filter_spec *spec)
4356 {
4357         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4358         struct efx_ef10_filter_table *table = efx->filter_state;
4359         const struct efx_filter_spec *saved_spec;
4360         int rc;
4361
4362         spin_lock_bh(&efx->filter_lock);
4363         saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4364         if (saved_spec && saved_spec->priority == priority &&
4365             efx_ef10_filter_pri(table, saved_spec) ==
4366             efx_ef10_filter_get_unsafe_pri(filter_id)) {
4367                 *spec = *saved_spec;
4368                 rc = 0;
4369         } else {
4370                 rc = -ENOENT;
4371         }
4372         spin_unlock_bh(&efx->filter_lock);
4373         return rc;
4374 }
4375
4376 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4377                                      enum efx_filter_priority priority)
4378 {
4379         unsigned int priority_mask;
4380         unsigned int i;
4381         int rc;
4382
4383         priority_mask = (((1U << (priority + 1)) - 1) &
4384                          ~(1U << EFX_FILTER_PRI_AUTO));
4385
4386         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4387                 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4388                                                      i, true);
4389                 if (rc && rc != -ENOENT)
4390                         return rc;
4391         }
4392
4393         return 0;
4394 }
4395
4396 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4397                                          enum efx_filter_priority priority)
4398 {
4399         struct efx_ef10_filter_table *table = efx->filter_state;
4400         unsigned int filter_idx;
4401         s32 count = 0;
4402
4403         spin_lock_bh(&efx->filter_lock);
4404         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4405                 if (table->entry[filter_idx].spec &&
4406                     efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4407                     priority)
4408                         ++count;
4409         }
4410         spin_unlock_bh(&efx->filter_lock);
4411         return count;
4412 }
4413
4414 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4415 {
4416         struct efx_ef10_filter_table *table = efx->filter_state;
4417
4418         return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4419 }
4420
4421 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4422                                       enum efx_filter_priority priority,
4423                                       u32 *buf, u32 size)
4424 {
4425         struct efx_ef10_filter_table *table = efx->filter_state;
4426         struct efx_filter_spec *spec;
4427         unsigned int filter_idx;
4428         s32 count = 0;
4429
4430         spin_lock_bh(&efx->filter_lock);
4431         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4432                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4433                 if (spec && spec->priority == priority) {
4434                         if (count == size) {
4435                                 count = -EMSGSIZE;
4436                                 break;
4437                         }
4438                         buf[count++] =
4439                                 efx_ef10_make_filter_id(
4440                                         efx_ef10_filter_pri(table, spec),
4441                                         filter_idx);
4442                 }
4443         }
4444         spin_unlock_bh(&efx->filter_lock);
4445         return count;
4446 }
4447
4448 #ifdef CONFIG_RFS_ACCEL
4449
4450 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
4451
4452 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
4453                                       struct efx_filter_spec *spec)
4454 {
4455         struct efx_ef10_filter_table *table = efx->filter_state;
4456         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4457         struct efx_filter_spec *saved_spec;
4458         unsigned int hash, i, depth = 1;
4459         bool replacing = false;
4460         int ins_index = -1;
4461         u64 cookie;
4462         s32 rc;
4463
4464         /* Must be an RX filter without RSS and not for a multicast
4465          * destination address (RFS only works for connected sockets).
4466          * These restrictions allow us to pass only a tiny amount of
4467          * data through to the completion function.
4468          */
4469         EFX_WARN_ON_PARANOID(spec->flags !=
4470                              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
4471         EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
4472         EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
4473
4474         hash = efx_ef10_filter_hash(spec);
4475
4476         spin_lock_bh(&efx->filter_lock);
4477
4478         /* Find any existing filter with the same match tuple or else
4479          * a free slot to insert at.  If an existing filter is busy,
4480          * we have to give up.
4481          */
4482         for (;;) {
4483                 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4484                 saved_spec = efx_ef10_filter_entry_spec(table, i);
4485
4486                 if (!saved_spec) {
4487                         if (ins_index < 0)
4488                                 ins_index = i;
4489                 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
4490                         if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
4491                                 rc = -EBUSY;
4492                                 goto fail_unlock;
4493                         }
4494                         if (spec->priority < saved_spec->priority) {
4495                                 rc = -EPERM;
4496                                 goto fail_unlock;
4497                         }
4498                         ins_index = i;
4499                         break;
4500                 }
4501
4502                 /* Once we reach the maximum search depth, use the
4503                  * first suitable slot or return -EBUSY if there was
4504                  * none
4505                  */
4506                 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4507                         if (ins_index < 0) {
4508                                 rc = -EBUSY;
4509                                 goto fail_unlock;
4510                         }
4511                         break;
4512                 }
4513
4514                 ++depth;
4515         }
4516
4517         /* Create a software table entry if necessary, and mark it
4518          * busy.  We might yet fail to insert, but any attempt to
4519          * insert a conflicting filter while we're waiting for the
4520          * firmware must find the busy entry.
4521          */
4522         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4523         if (saved_spec) {
4524                 replacing = true;
4525         } else {
4526                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4527                 if (!saved_spec) {
4528                         rc = -ENOMEM;
4529                         goto fail_unlock;
4530                 }
4531                 *saved_spec = *spec;
4532         }
4533         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4534                                   EFX_EF10_FILTER_FLAG_BUSY);
4535
4536         spin_unlock_bh(&efx->filter_lock);
4537
4538         /* Pack up the variables needed on completion */
4539         cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
4540
4541         efx_ef10_filter_push_prep(efx, spec, inbuf,
4542                                   table->entry[ins_index].handle, replacing);
4543         efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4544                            MC_CMD_FILTER_OP_OUT_LEN,
4545                            efx_ef10_filter_rfs_insert_complete, cookie);
4546
4547         return ins_index;
4548
4549 fail_unlock:
4550         spin_unlock_bh(&efx->filter_lock);
4551         return rc;
4552 }
4553
4554 static void
4555 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
4556                                     int rc, efx_dword_t *outbuf,
4557                                     size_t outlen_actual)
4558 {
4559         struct efx_ef10_filter_table *table = efx->filter_state;
4560         unsigned int ins_index, dmaq_id;
4561         struct efx_filter_spec *spec;
4562         bool replacing;
4563
4564         /* Unpack the cookie */
4565         replacing = cookie >> 31;
4566         ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
4567         dmaq_id = cookie & 0xffff;
4568
4569         spin_lock_bh(&efx->filter_lock);
4570         spec = efx_ef10_filter_entry_spec(table, ins_index);
4571         if (rc == 0) {
4572                 table->entry[ins_index].handle =
4573                         MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4574                 if (replacing)
4575                         spec->dmaq_id = dmaq_id;
4576         } else if (!replacing) {
4577                 kfree(spec);
4578                 spec = NULL;
4579         }
4580         efx_ef10_filter_set_entry(table, ins_index, spec, 0);
4581         spin_unlock_bh(&efx->filter_lock);
4582
4583         wake_up_all(&table->waitq);
4584 }
4585
4586 static void
4587 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4588                                     unsigned long filter_idx,
4589                                     int rc, efx_dword_t *outbuf,
4590                                     size_t outlen_actual);
4591
4592 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4593                                            unsigned int filter_idx)
4594 {
4595         struct efx_ef10_filter_table *table = efx->filter_state;
4596         struct efx_filter_spec *spec =
4597                 efx_ef10_filter_entry_spec(table, filter_idx);
4598         MCDI_DECLARE_BUF(inbuf,
4599                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4600                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4601
4602         if (!spec ||
4603             (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
4604             spec->priority != EFX_FILTER_PRI_HINT ||
4605             !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
4606                                  flow_id, filter_idx))
4607                 return false;
4608
4609         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4610                        MC_CMD_FILTER_OP_IN_OP_REMOVE);
4611         MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4612                        table->entry[filter_idx].handle);
4613         if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
4614                                efx_ef10_filter_rfs_expire_complete, filter_idx))
4615                 return false;
4616
4617         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4618         return true;
4619 }
4620
4621 static void
4622 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4623                                     unsigned long filter_idx,
4624                                     int rc, efx_dword_t *outbuf,
4625                                     size_t outlen_actual)
4626 {
4627         struct efx_ef10_filter_table *table = efx->filter_state;
4628         struct efx_filter_spec *spec =
4629                 efx_ef10_filter_entry_spec(table, filter_idx);
4630
4631         spin_lock_bh(&efx->filter_lock);
4632         if (rc == 0) {
4633                 kfree(spec);
4634                 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4635         }
4636         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4637         wake_up_all(&table->waitq);
4638         spin_unlock_bh(&efx->filter_lock);
4639 }
4640
4641 #endif /* CONFIG_RFS_ACCEL */
4642
4643 static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4644 {
4645         int match_flags = 0;
4646
4647 #define MAP_FLAG(gen_flag, mcdi_field) do {                             \
4648                 u32 old_mcdi_flags = mcdi_flags;                        \
4649                 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##  \
4650                                      mcdi_field ## _LBN);               \
4651                 if (mcdi_flags != old_mcdi_flags)                       \
4652                         match_flags |= EFX_FILTER_MATCH_ ## gen_flag;   \
4653         } while (0)
4654
4655         if (encap) {
4656                 /* encap filters must specify encap type */
4657                 match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4658                 /* and imply ethertype and ip proto */
4659                 mcdi_flags &=
4660                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4661                 mcdi_flags &=
4662                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4663                 /* VLAN tags refer to the outer packet */
4664                 MAP_FLAG(INNER_VID, INNER_VLAN);
4665                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4666                 /* everything else refers to the inner packet */
4667                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4668                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4669                 MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4670                 MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4671                 MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4672                 MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4673                 MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4674                 MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4675                 MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4676                 MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4677         } else {
4678                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4679                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4680                 MAP_FLAG(REM_HOST, SRC_IP);
4681                 MAP_FLAG(LOC_HOST, DST_IP);
4682                 MAP_FLAG(REM_MAC, SRC_MAC);
4683                 MAP_FLAG(REM_PORT, SRC_PORT);
4684                 MAP_FLAG(LOC_MAC, DST_MAC);
4685                 MAP_FLAG(LOC_PORT, DST_PORT);
4686                 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4687                 MAP_FLAG(INNER_VID, INNER_VLAN);
4688                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4689                 MAP_FLAG(IP_PROTO, IP_PROTO);
4690         }
4691 #undef MAP_FLAG
4692
4693         /* Did we map them all? */
4694         if (mcdi_flags)
4695                 return -EINVAL;
4696
4697         return match_flags;
4698 }
4699
4700 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4701 {
4702         struct efx_ef10_filter_table *table = efx->filter_state;
4703         struct efx_ef10_filter_vlan *vlan, *next_vlan;
4704
4705         /* See comment in efx_ef10_filter_table_remove() */
4706         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4707                 return;
4708
4709         if (!table)
4710                 return;
4711
4712         list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4713                 efx_ef10_filter_del_vlan_internal(efx, vlan);
4714 }
4715
4716 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4717                                             bool encap,
4718                                             enum efx_filter_match_flags match_flags)
4719 {
4720         unsigned int match_pri;
4721         int mf;
4722
4723         for (match_pri = 0;
4724              match_pri < table->rx_match_count;
4725              match_pri++) {
4726                 mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4727                                 table->rx_match_mcdi_flags[match_pri]);
4728                 if (mf == match_flags)
4729                         return true;
4730         }
4731
4732         return false;
4733 }
4734
4735 static int
4736 efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4737                                     struct efx_ef10_filter_table *table,
4738                                     bool encap)
4739 {
4740         MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4741         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4742         unsigned int pd_match_pri, pd_match_count;
4743         size_t outlen;
4744         int rc;
4745
4746         /* Find out which RX filter types are supported, and their priorities */
4747         MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4748                        encap ?
4749                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4750                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4751         rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4752                           inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4753                           &outlen);
4754         if (rc)
4755                 return rc;
4756
4757         pd_match_count = MCDI_VAR_ARRAY_LEN(
4758                 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4759
4760         for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4761                 u32 mcdi_flags =
4762                         MCDI_ARRAY_DWORD(
4763                                 outbuf,
4764                                 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4765                                 pd_match_pri);
4766                 rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4767                 if (rc < 0) {
4768                         netif_dbg(efx, probe, efx->net_dev,
4769                                   "%s: fw flags %#x pri %u not supported in driver\n",
4770                                   __func__, mcdi_flags, pd_match_pri);
4771                 } else {
4772                         netif_dbg(efx, probe, efx->net_dev,
4773                                   "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4774                                   __func__, mcdi_flags, pd_match_pri,
4775                                   rc, table->rx_match_count);
4776                         table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4777                         table->rx_match_count++;
4778                 }
4779         }
4780
4781         return 0;
4782 }
4783
4784 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4785 {
4786         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4787         struct net_device *net_dev = efx->net_dev;
4788         struct efx_ef10_filter_table *table;
4789         struct efx_ef10_vlan *vlan;
4790         int rc;
4791
4792         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4793                 return -EINVAL;
4794
4795         if (efx->filter_state) /* already probed */
4796                 return 0;
4797
4798         table = kzalloc(sizeof(*table), GFP_KERNEL);
4799         if (!table)
4800                 return -ENOMEM;
4801
4802         table->rx_match_count = 0;
4803         rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4804         if (rc)
4805                 goto fail;
4806         if (nic_data->datapath_caps &
4807                    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4808                 rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4809         if (rc)
4810                 goto fail;
4811         if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4812             !(efx_ef10_filter_match_supported(table, false,
4813                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4814               efx_ef10_filter_match_supported(table, false,
4815                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4816                 netif_info(efx, probe, net_dev,
4817                            "VLAN filters are not supported in this firmware variant\n");
4818                 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4819                 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4820                 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4821         }
4822
4823         table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4824         if (!table->entry) {
4825                 rc = -ENOMEM;
4826                 goto fail;
4827         }
4828
4829         table->mc_promisc_last = false;
4830         table->vlan_filter =
4831                 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4832         INIT_LIST_HEAD(&table->vlan_list);
4833
4834         efx->filter_state = table;
4835         init_waitqueue_head(&table->waitq);
4836
4837         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
4838                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
4839                 if (rc)
4840                         goto fail_add_vlan;
4841         }
4842
4843         return 0;
4844
4845 fail_add_vlan:
4846         efx_ef10_filter_cleanup_vlans(efx);
4847         efx->filter_state = NULL;
4848 fail:
4849         kfree(table);
4850         return rc;
4851 }
4852
4853 /* Caller must hold efx->filter_sem for read if race against
4854  * efx_ef10_filter_table_remove() is possible
4855  */
4856 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
4857 {
4858         struct efx_ef10_filter_table *table = efx->filter_state;
4859         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4860         unsigned int invalid_filters = 0, failed = 0;
4861         struct efx_ef10_filter_vlan *vlan;
4862         struct efx_filter_spec *spec;
4863         unsigned int filter_idx;
4864         u32 mcdi_flags;
4865         int match_pri;
4866         int rc, i;
4867
4868         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4869
4870         if (!nic_data->must_restore_filters)
4871                 return;
4872
4873         if (!table)
4874                 return;
4875
4876         spin_lock_bh(&efx->filter_lock);
4877
4878         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4879                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4880                 if (!spec)
4881                         continue;
4882
4883                 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4884                 match_pri = 0;
4885                 while (match_pri < table->rx_match_count &&
4886                        table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
4887                         ++match_pri;
4888                 if (match_pri >= table->rx_match_count) {
4889                         invalid_filters++;
4890                         goto not_restored;
4891                 }
4892                 if (spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT &&
4893                     spec->rss_context != nic_data->rx_rss_context)
4894                         netif_warn(efx, drv, efx->net_dev,
4895                                    "Warning: unable to restore a filter with specific RSS context.\n");
4896
4897                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4898                 spin_unlock_bh(&efx->filter_lock);
4899
4900                 rc = efx_ef10_filter_push(efx, spec,
4901                                           &table->entry[filter_idx].handle,
4902                                           false);
4903                 if (rc)
4904                         failed++;
4905                 spin_lock_bh(&efx->filter_lock);
4906
4907                 if (rc) {
4908 not_restored:
4909                         list_for_each_entry(vlan, &table->vlan_list, list)
4910                                 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
4911                                         if (vlan->default_filters[i] == filter_idx)
4912                                                 vlan->default_filters[i] =
4913                                                         EFX_EF10_FILTER_ID_INVALID;
4914
4915                         kfree(spec);
4916                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4917                 } else {
4918                         table->entry[filter_idx].spec &=
4919                                 ~EFX_EF10_FILTER_FLAG_BUSY;
4920                 }
4921         }
4922
4923         spin_unlock_bh(&efx->filter_lock);
4924
4925         /* This can happen validly if the MC's capabilities have changed, so
4926          * is not an error.
4927          */
4928         if (invalid_filters)
4929                 netif_dbg(efx, drv, efx->net_dev,
4930                           "Did not restore %u filters that are now unsupported.\n",
4931                           invalid_filters);
4932
4933         if (failed)
4934                 netif_err(efx, hw, efx->net_dev,
4935                           "unable to restore %u filters\n", failed);
4936         else
4937                 nic_data->must_restore_filters = false;
4938 }
4939
4940 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
4941 {
4942         struct efx_ef10_filter_table *table = efx->filter_state;
4943         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4944         struct efx_filter_spec *spec;
4945         unsigned int filter_idx;
4946         int rc;
4947
4948         efx_ef10_filter_cleanup_vlans(efx);
4949         efx->filter_state = NULL;
4950         /* If we were called without locking, then it's not safe to free
4951          * the table as others might be using it.  So we just WARN, leak
4952          * the memory, and potentially get an inconsistent filter table
4953          * state.
4954          * This should never actually happen.
4955          */
4956         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4957                 return;
4958
4959         if (!table)
4960                 return;
4961
4962         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4963                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4964                 if (!spec)
4965                         continue;
4966
4967                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4968                                efx_ef10_filter_is_exclusive(spec) ?
4969                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
4970                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4971                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4972                                table->entry[filter_idx].handle);
4973                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
4974                                         sizeof(inbuf), NULL, 0, NULL);
4975                 if (rc)
4976                         netif_info(efx, drv, efx->net_dev,
4977                                    "%s: filter %04x remove failed\n",
4978                                    __func__, filter_idx);
4979                 kfree(spec);
4980         }
4981
4982         vfree(table->entry);
4983         kfree(table);
4984 }
4985
4986 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
4987 {
4988         struct efx_ef10_filter_table *table = efx->filter_state;
4989         unsigned int filter_idx;
4990
4991         if (*id != EFX_EF10_FILTER_ID_INVALID) {
4992                 filter_idx = efx_ef10_filter_get_unsafe_id(*id);
4993                 if (!table->entry[filter_idx].spec)
4994                         netif_dbg(efx, drv, efx->net_dev,
4995                                   "marked null spec old %04x:%04x\n", *id,
4996                                   filter_idx);
4997                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
4998                 *id = EFX_EF10_FILTER_ID_INVALID;
4999         }
5000 }
5001
5002 /* Mark old per-VLAN filters that may need to be removed */
5003 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5004                                            struct efx_ef10_filter_vlan *vlan)
5005 {
5006         struct efx_ef10_filter_table *table = efx->filter_state;
5007         unsigned int i;
5008
5009         for (i = 0; i < table->dev_uc_count; i++)
5010                 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5011         for (i = 0; i < table->dev_mc_count; i++)
5012                 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5013         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5014                 efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5015 }
5016
5017 /* Mark old filters that may need to be removed.
5018  * Caller must hold efx->filter_sem for read if race against
5019  * efx_ef10_filter_table_remove() is possible
5020  */
5021 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5022 {
5023         struct efx_ef10_filter_table *table = efx->filter_state;
5024         struct efx_ef10_filter_vlan *vlan;
5025
5026         spin_lock_bh(&efx->filter_lock);
5027         list_for_each_entry(vlan, &table->vlan_list, list)
5028                 _efx_ef10_filter_vlan_mark_old(efx, vlan);
5029         spin_unlock_bh(&efx->filter_lock);
5030 }
5031
5032 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5033 {
5034         struct efx_ef10_filter_table *table = efx->filter_state;
5035         struct net_device *net_dev = efx->net_dev;
5036         struct netdev_hw_addr *uc;
5037         unsigned int i;
5038
5039         table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5040         ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5041         i = 1;
5042         netdev_for_each_uc_addr(uc, net_dev) {
5043                 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5044                         table->uc_promisc = true;
5045                         break;
5046                 }
5047                 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5048                 i++;
5049         }
5050
5051         table->dev_uc_count = i;
5052 }
5053
5054 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5055 {
5056         struct efx_ef10_filter_table *table = efx->filter_state;
5057         struct net_device *net_dev = efx->net_dev;
5058         struct netdev_hw_addr *mc;
5059         unsigned int i;
5060
5061         table->mc_overflow = false;
5062         table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5063
5064         i = 0;
5065         netdev_for_each_mc_addr(mc, net_dev) {
5066                 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5067                         table->mc_promisc = true;
5068                         table->mc_overflow = true;
5069                         break;
5070                 }
5071                 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5072                 i++;
5073         }
5074
5075         table->dev_mc_count = i;
5076 }
5077
5078 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5079                                             struct efx_ef10_filter_vlan *vlan,
5080                                             bool multicast, bool rollback)
5081 {
5082         struct efx_ef10_filter_table *table = efx->filter_state;
5083         struct efx_ef10_dev_addr *addr_list;
5084         enum efx_filter_flags filter_flags;
5085         struct efx_filter_spec spec;
5086         u8 baddr[ETH_ALEN];
5087         unsigned int i, j;
5088         int addr_count;
5089         u16 *ids;
5090         int rc;
5091
5092         if (multicast) {
5093                 addr_list = table->dev_mc_list;
5094                 addr_count = table->dev_mc_count;
5095                 ids = vlan->mc;
5096         } else {
5097                 addr_list = table->dev_uc_list;
5098                 addr_count = table->dev_uc_count;
5099                 ids = vlan->uc;
5100         }
5101
5102         filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5103
5104         /* Insert/renew filters */
5105         for (i = 0; i < addr_count; i++) {
5106                 EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5107                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5108                 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5109                 rc = efx_ef10_filter_insert(efx, &spec, true);
5110                 if (rc < 0) {
5111                         if (rollback) {
5112                                 netif_info(efx, drv, efx->net_dev,
5113                                            "efx_ef10_filter_insert failed rc=%d\n",
5114                                            rc);
5115                                 /* Fall back to promiscuous */
5116                                 for (j = 0; j < i; j++) {
5117                                         efx_ef10_filter_remove_unsafe(
5118                                                 efx, EFX_FILTER_PRI_AUTO,
5119                                                 ids[j]);
5120                                         ids[j] = EFX_EF10_FILTER_ID_INVALID;
5121                                 }
5122                                 return rc;
5123                         } else {
5124                                 /* keep invalid ID, and carry on */
5125                         }
5126                 } else {
5127                         ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5128                 }
5129         }
5130
5131         if (multicast && rollback) {
5132                 /* Also need an Ethernet broadcast filter */
5133                 EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5134                                      EFX_EF10_FILTER_ID_INVALID);
5135                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5136                 eth_broadcast_addr(baddr);
5137                 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5138                 rc = efx_ef10_filter_insert(efx, &spec, true);
5139                 if (rc < 0) {
5140                         netif_warn(efx, drv, efx->net_dev,
5141                                    "Broadcast filter insert failed rc=%d\n", rc);
5142                         /* Fall back to promiscuous */
5143                         for (j = 0; j < i; j++) {
5144                                 efx_ef10_filter_remove_unsafe(
5145                                         efx, EFX_FILTER_PRI_AUTO,
5146                                         ids[j]);
5147                                 ids[j] = EFX_EF10_FILTER_ID_INVALID;
5148                         }
5149                         return rc;
5150                 } else {
5151                         vlan->default_filters[EFX_EF10_BCAST] =
5152                                 efx_ef10_filter_get_unsafe_id(rc);
5153                 }
5154         }
5155
5156         return 0;
5157 }
5158
5159 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5160                                       struct efx_ef10_filter_vlan *vlan,
5161                                       enum efx_encap_type encap_type,
5162                                       bool multicast, bool rollback)
5163 {
5164         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5165         enum efx_filter_flags filter_flags;
5166         struct efx_filter_spec spec;
5167         u8 baddr[ETH_ALEN];
5168         int rc;
5169         u16 *id;
5170
5171         filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5172
5173         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5174
5175         if (multicast)
5176                 efx_filter_set_mc_def(&spec);
5177         else
5178                 efx_filter_set_uc_def(&spec);
5179
5180         if (encap_type) {
5181                 if (nic_data->datapath_caps &
5182                     (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5183                         efx_filter_set_encap_type(&spec, encap_type);
5184                 else
5185                         /* don't insert encap filters on non-supporting
5186                          * platforms. ID will be left as INVALID.
5187                          */
5188                         return 0;
5189         }
5190
5191         if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5192                 efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5193
5194         rc = efx_ef10_filter_insert(efx, &spec, true);
5195         if (rc < 0) {
5196                 const char *um = multicast ? "Multicast" : "Unicast";
5197                 const char *encap_name = "";
5198                 const char *encap_ipv = "";
5199
5200                 if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5201                     EFX_ENCAP_TYPE_VXLAN)
5202                         encap_name = "VXLAN ";
5203                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5204                          EFX_ENCAP_TYPE_NVGRE)
5205                         encap_name = "NVGRE ";
5206                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5207                          EFX_ENCAP_TYPE_GENEVE)
5208                         encap_name = "GENEVE ";
5209                 if (encap_type & EFX_ENCAP_FLAG_IPV6)
5210                         encap_ipv = "IPv6 ";
5211                 else if (encap_type)
5212                         encap_ipv = "IPv4 ";
5213
5214                 /* unprivileged functions can't insert mismatch filters
5215                  * for encapsulated or unicast traffic, so downgrade
5216                  * those warnings to debug.
5217                  */
5218                 netif_cond_dbg(efx, drv, efx->net_dev,
5219                                rc == -EPERM && (encap_type || !multicast), warn,
5220                                "%s%s%s mismatch filter insert failed rc=%d\n",
5221                                encap_name, encap_ipv, um, rc);
5222         } else if (multicast) {
5223                 /* mapping from encap types to default filter IDs (multicast) */
5224                 static enum efx_ef10_default_filters map[] = {
5225                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5226                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5227                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5228                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5229                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5230                                 EFX_EF10_VXLAN6_MCDEF,
5231                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5232                                 EFX_EF10_NVGRE6_MCDEF,
5233                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5234                                 EFX_EF10_GENEVE6_MCDEF,
5235                 };
5236
5237                 /* quick bounds check (BCAST result impossible) */
5238                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5239                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5240                         WARN_ON(1);
5241                         return -EINVAL;
5242                 }
5243                 /* then follow map */
5244                 id = &vlan->default_filters[map[encap_type]];
5245
5246                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5247                 *id = efx_ef10_filter_get_unsafe_id(rc);
5248                 if (!nic_data->workaround_26807 && !encap_type) {
5249                         /* Also need an Ethernet broadcast filter */
5250                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5251                                            filter_flags, 0);
5252                         eth_broadcast_addr(baddr);
5253                         efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5254                         rc = efx_ef10_filter_insert(efx, &spec, true);
5255                         if (rc < 0) {
5256                                 netif_warn(efx, drv, efx->net_dev,
5257                                            "Broadcast filter insert failed rc=%d\n",
5258                                            rc);
5259                                 if (rollback) {
5260                                         /* Roll back the mc_def filter */
5261                                         efx_ef10_filter_remove_unsafe(
5262                                                         efx, EFX_FILTER_PRI_AUTO,
5263                                                         *id);
5264                                         *id = EFX_EF10_FILTER_ID_INVALID;
5265                                         return rc;
5266                                 }
5267                         } else {
5268                                 EFX_WARN_ON_PARANOID(
5269                                         vlan->default_filters[EFX_EF10_BCAST] !=
5270                                         EFX_EF10_FILTER_ID_INVALID);
5271                                 vlan->default_filters[EFX_EF10_BCAST] =
5272                                         efx_ef10_filter_get_unsafe_id(rc);
5273                         }
5274                 }
5275                 rc = 0;
5276         } else {
5277                 /* mapping from encap types to default filter IDs (unicast) */
5278                 static enum efx_ef10_default_filters map[] = {
5279                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5280                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5281                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5282                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5283                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5284                                 EFX_EF10_VXLAN6_UCDEF,
5285                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5286                                 EFX_EF10_NVGRE6_UCDEF,
5287                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5288                                 EFX_EF10_GENEVE6_UCDEF,
5289                 };
5290
5291                 /* quick bounds check (BCAST result impossible) */
5292                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5293                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5294                         WARN_ON(1);
5295                         return -EINVAL;
5296                 }
5297                 /* then follow map */
5298                 id = &vlan->default_filters[map[encap_type]];
5299                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5300                 *id = rc;
5301                 rc = 0;
5302         }
5303         return rc;
5304 }
5305
5306 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
5307  * flag or removes these filters, we don't need to hold the filter_lock while
5308  * scanning for these filters.
5309  */
5310 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5311 {
5312         struct efx_ef10_filter_table *table = efx->filter_state;
5313         int remove_failed = 0;
5314         int remove_noent = 0;
5315         int rc;
5316         int i;
5317
5318         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5319                 if (ACCESS_ONCE(table->entry[i].spec) &
5320                     EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5321                         rc = efx_ef10_filter_remove_internal(efx,
5322                                         1U << EFX_FILTER_PRI_AUTO, i, true);
5323                         if (rc == -ENOENT)
5324                                 remove_noent++;
5325                         else if (rc)
5326                                 remove_failed++;
5327                 }
5328         }
5329
5330         if (remove_failed)
5331                 netif_info(efx, drv, efx->net_dev,
5332                            "%s: failed to remove %d filters\n",
5333                            __func__, remove_failed);
5334         if (remove_noent)
5335                 netif_info(efx, drv, efx->net_dev,
5336                            "%s: failed to remove %d non-existent filters\n",
5337                            __func__, remove_noent);
5338 }
5339
5340 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5341 {
5342         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5343         u8 mac_old[ETH_ALEN];
5344         int rc, rc2;
5345
5346         /* Only reconfigure a PF-created vport */
5347         if (is_zero_ether_addr(nic_data->vport_mac))
5348                 return 0;
5349
5350         efx_device_detach_sync(efx);
5351         efx_net_stop(efx->net_dev);
5352         down_write(&efx->filter_sem);
5353         efx_ef10_filter_table_remove(efx);
5354         up_write(&efx->filter_sem);
5355
5356         rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5357         if (rc)
5358                 goto restore_filters;
5359
5360         ether_addr_copy(mac_old, nic_data->vport_mac);
5361         rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5362                                     nic_data->vport_mac);
5363         if (rc)
5364                 goto restore_vadaptor;
5365
5366         rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5367                                     efx->net_dev->dev_addr);
5368         if (!rc) {
5369                 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5370         } else {
5371                 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5372                 if (rc2) {
5373                         /* Failed to add original MAC, so clear vport_mac */
5374                         eth_zero_addr(nic_data->vport_mac);
5375                         goto reset_nic;
5376                 }
5377         }
5378
5379 restore_vadaptor:
5380         rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5381         if (rc2)
5382                 goto reset_nic;
5383 restore_filters:
5384         down_write(&efx->filter_sem);
5385         rc2 = efx_ef10_filter_table_probe(efx);
5386         up_write(&efx->filter_sem);
5387         if (rc2)
5388                 goto reset_nic;
5389
5390         rc2 = efx_net_open(efx->net_dev);
5391         if (rc2)
5392                 goto reset_nic;
5393
5394         efx_device_attach_if_not_resetting(efx);
5395
5396         return rc;
5397
5398 reset_nic:
5399         netif_err(efx, drv, efx->net_dev,
5400                   "Failed to restore when changing MAC address - scheduling reset\n");
5401         efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5402
5403         return rc ? rc : rc2;
5404 }
5405
5406 /* Caller must hold efx->filter_sem for read if race against
5407  * efx_ef10_filter_table_remove() is possible
5408  */
5409 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5410                                               struct efx_ef10_filter_vlan *vlan)
5411 {
5412         struct efx_ef10_filter_table *table = efx->filter_state;
5413         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5414
5415         /* Do not install unspecified VID if VLAN filtering is enabled.
5416          * Do not install all specified VIDs if VLAN filtering is disabled.
5417          */
5418         if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5419                 return;
5420
5421         /* Insert/renew unicast filters */
5422         if (table->uc_promisc) {
5423                 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5424                                            false, false);
5425                 efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5426         } else {
5427                 /* If any of the filters failed to insert, fall back to
5428                  * promiscuous mode - add in the uc_def filter.  But keep
5429                  * our individual unicast filters.
5430                  */
5431                 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5432                         efx_ef10_filter_insert_def(efx, vlan,
5433                                                    EFX_ENCAP_TYPE_NONE,
5434                                                    false, false);
5435         }
5436         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5437                                    false, false);
5438         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5439                                               EFX_ENCAP_FLAG_IPV6,
5440                                    false, false);
5441         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5442                                    false, false);
5443         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5444                                               EFX_ENCAP_FLAG_IPV6,
5445                                    false, false);
5446         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5447                                    false, false);
5448         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5449                                               EFX_ENCAP_FLAG_IPV6,
5450                                    false, false);
5451
5452         /* Insert/renew multicast filters */
5453         /* If changing promiscuous state with cascaded multicast filters, remove
5454          * old filters first, so that packets are dropped rather than duplicated
5455          */
5456         if (nic_data->workaround_26807 &&
5457             table->mc_promisc_last != table->mc_promisc)
5458                 efx_ef10_filter_remove_old(efx);
5459         if (table->mc_promisc) {
5460                 if (nic_data->workaround_26807) {
5461                         /* If we failed to insert promiscuous filters, rollback
5462                          * and fall back to individual multicast filters
5463                          */
5464                         if (efx_ef10_filter_insert_def(efx, vlan,
5465                                                        EFX_ENCAP_TYPE_NONE,
5466                                                        true, true)) {
5467                                 /* Changing promisc state, so remove old filters */
5468                                 efx_ef10_filter_remove_old(efx);
5469                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5470                                                                  true, false);
5471                         }
5472                 } else {
5473                         /* If we failed to insert promiscuous filters, don't
5474                          * rollback.  Regardless, also insert the mc_list,
5475                          * unless it's incomplete due to overflow
5476                          */
5477                         efx_ef10_filter_insert_def(efx, vlan,
5478                                                    EFX_ENCAP_TYPE_NONE,
5479                                                    true, false);
5480                         if (!table->mc_overflow)
5481                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5482                                                                  true, false);
5483                 }
5484         } else {
5485                 /* If any filters failed to insert, rollback and fall back to
5486                  * promiscuous mode - mc_def filter and maybe broadcast.  If
5487                  * that fails, roll back again and insert as many of our
5488                  * individual multicast filters as we can.
5489                  */
5490                 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5491                         /* Changing promisc state, so remove old filters */
5492                         if (nic_data->workaround_26807)
5493                                 efx_ef10_filter_remove_old(efx);
5494                         if (efx_ef10_filter_insert_def(efx, vlan,
5495                                                        EFX_ENCAP_TYPE_NONE,
5496                                                        true, true))
5497                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5498                                                                  true, false);
5499                 }
5500         }
5501         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5502                                    true, false);
5503         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5504                                               EFX_ENCAP_FLAG_IPV6,
5505                                    true, false);
5506         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5507                                    true, false);
5508         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5509                                               EFX_ENCAP_FLAG_IPV6,
5510                                    true, false);
5511         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5512                                    true, false);
5513         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5514                                               EFX_ENCAP_FLAG_IPV6,
5515                                    true, false);
5516 }
5517
5518 /* Caller must hold efx->filter_sem for read if race against
5519  * efx_ef10_filter_table_remove() is possible
5520  */
5521 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5522 {
5523         struct efx_ef10_filter_table *table = efx->filter_state;
5524         struct net_device *net_dev = efx->net_dev;
5525         struct efx_ef10_filter_vlan *vlan;
5526         bool vlan_filter;
5527
5528         if (!efx_dev_registered(efx))
5529                 return;
5530
5531         if (!table)
5532                 return;
5533
5534         efx_ef10_filter_mark_old(efx);
5535
5536         /* Copy/convert the address lists; add the primary station
5537          * address and broadcast address
5538          */
5539         netif_addr_lock_bh(net_dev);
5540         efx_ef10_filter_uc_addr_list(efx);
5541         efx_ef10_filter_mc_addr_list(efx);
5542         netif_addr_unlock_bh(net_dev);
5543
5544         /* If VLAN filtering changes, all old filters are finally removed.
5545          * Do it in advance to avoid conflicts for unicast untagged and
5546          * VLAN 0 tagged filters.
5547          */
5548         vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5549         if (table->vlan_filter != vlan_filter) {
5550                 table->vlan_filter = vlan_filter;
5551                 efx_ef10_filter_remove_old(efx);
5552         }
5553
5554         list_for_each_entry(vlan, &table->vlan_list, list)
5555                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5556
5557         efx_ef10_filter_remove_old(efx);
5558         table->mc_promisc_last = table->mc_promisc;
5559 }
5560
5561 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5562 {
5563         struct efx_ef10_filter_table *table = efx->filter_state;
5564         struct efx_ef10_filter_vlan *vlan;
5565
5566         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5567
5568         list_for_each_entry(vlan, &table->vlan_list, list) {
5569                 if (vlan->vid == vid)
5570                         return vlan;
5571         }
5572
5573         return NULL;
5574 }
5575
5576 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5577 {
5578         struct efx_ef10_filter_table *table = efx->filter_state;
5579         struct efx_ef10_filter_vlan *vlan;
5580         unsigned int i;
5581
5582         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5583                 return -EINVAL;
5584
5585         vlan = efx_ef10_filter_find_vlan(efx, vid);
5586         if (WARN_ON(vlan)) {
5587                 netif_err(efx, drv, efx->net_dev,
5588                           "VLAN %u already added\n", vid);
5589                 return -EALREADY;
5590         }
5591
5592         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5593         if (!vlan)
5594                 return -ENOMEM;
5595
5596         vlan->vid = vid;
5597
5598         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5599                 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5600         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5601                 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5602         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5603                 vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5604
5605         list_add_tail(&vlan->list, &table->vlan_list);
5606
5607         if (efx_dev_registered(efx))
5608                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5609
5610         return 0;
5611 }
5612
5613 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5614                                               struct efx_ef10_filter_vlan *vlan)
5615 {
5616         unsigned int i;
5617
5618         /* See comment in efx_ef10_filter_table_remove() */
5619         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5620                 return;
5621
5622         list_del(&vlan->list);
5623
5624         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5625                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5626                                               vlan->uc[i]);
5627         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5628                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5629                                               vlan->mc[i]);
5630         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5631                 if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5632                         efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5633                                                       vlan->default_filters[i]);
5634
5635         kfree(vlan);
5636 }
5637
5638 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5639 {
5640         struct efx_ef10_filter_vlan *vlan;
5641
5642         /* See comment in efx_ef10_filter_table_remove() */
5643         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5644                 return;
5645
5646         vlan = efx_ef10_filter_find_vlan(efx, vid);
5647         if (!vlan) {
5648                 netif_err(efx, drv, efx->net_dev,
5649                           "VLAN %u not found in filter state\n", vid);
5650                 return;
5651         }
5652
5653         efx_ef10_filter_del_vlan_internal(efx, vlan);
5654 }
5655
5656 static int efx_ef10_set_mac_address(struct efx_nic *efx)
5657 {
5658         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5659         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5660         bool was_enabled = efx->port_enabled;
5661         int rc;
5662
5663         efx_device_detach_sync(efx);
5664         efx_net_stop(efx->net_dev);
5665
5666         mutex_lock(&efx->mac_lock);
5667         down_write(&efx->filter_sem);
5668         efx_ef10_filter_table_remove(efx);
5669
5670         ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5671                         efx->net_dev->dev_addr);
5672         MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5673                        nic_data->vport_id);
5674         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5675                                 sizeof(inbuf), NULL, 0, NULL);
5676
5677         efx_ef10_filter_table_probe(efx);
5678         up_write(&efx->filter_sem);
5679         mutex_unlock(&efx->mac_lock);
5680
5681         if (was_enabled)
5682                 efx_net_open(efx->net_dev);
5683         efx_device_attach_if_not_resetting(efx);
5684
5685 #ifdef CONFIG_SFC_SRIOV
5686         if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5687                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5688
5689                 if (rc == -EPERM) {
5690                         struct efx_nic *efx_pf;
5691
5692                         /* Switch to PF and change MAC address on vport */
5693                         efx_pf = pci_get_drvdata(pci_dev_pf);
5694
5695                         rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5696                                                        nic_data->vf_index,
5697                                                        efx->net_dev->dev_addr);
5698                 } else if (!rc) {
5699                         struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5700                         struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5701                         unsigned int i;
5702
5703                         /* MAC address successfully changed by VF (with MAC
5704                          * spoofing) so update the parent PF if possible.
5705                          */
5706                         for (i = 0; i < efx_pf->vf_count; ++i) {
5707                                 struct ef10_vf *vf = nic_data->vf + i;
5708
5709                                 if (vf->efx == efx) {
5710                                         ether_addr_copy(vf->mac,
5711                                                         efx->net_dev->dev_addr);
5712                                         return 0;
5713                                 }
5714                         }
5715                 }
5716         } else
5717 #endif
5718         if (rc == -EPERM) {
5719                 netif_err(efx, drv, efx->net_dev,
5720                           "Cannot change MAC address; use sfboot to enable"
5721                           " mac-spoofing on this interface\n");
5722         } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5723                 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5724                  * fall-back to the method of changing the MAC address on the
5725                  * vport.  This only applies to PFs because such versions of
5726                  * MCFW do not support VFs.
5727                  */
5728                 rc = efx_ef10_vport_set_mac_address(efx);
5729         } else {
5730                 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5731                                        sizeof(inbuf), NULL, 0, rc);
5732         }
5733
5734         return rc;
5735 }
5736
5737 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5738 {
5739         efx_ef10_filter_sync_rx_mode(efx);
5740
5741         return efx_mcdi_set_mac(efx);
5742 }
5743
5744 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5745 {
5746         efx_ef10_filter_sync_rx_mode(efx);
5747
5748         return 0;
5749 }
5750
5751 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5752 {
5753         MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5754
5755         MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5756         return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5757                             NULL, 0, NULL);
5758 }
5759
5760 /* MC BISTs follow a different poll mechanism to phy BISTs.
5761  * The BIST is done in the poll handler on the MC, and the MCDI command
5762  * will block until the BIST is done.
5763  */
5764 static int efx_ef10_poll_bist(struct efx_nic *efx)
5765 {
5766         int rc;
5767         MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5768         size_t outlen;
5769         u32 result;
5770
5771         rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5772                            outbuf, sizeof(outbuf), &outlen);
5773         if (rc != 0)
5774                 return rc;
5775
5776         if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5777                 return -EIO;
5778
5779         result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5780         switch (result) {
5781         case MC_CMD_POLL_BIST_PASSED:
5782                 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5783                 return 0;
5784         case MC_CMD_POLL_BIST_TIMEOUT:
5785                 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5786                 return -EIO;
5787         case MC_CMD_POLL_BIST_FAILED:
5788                 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5789                 return -EIO;
5790         default:
5791                 netif_err(efx, hw, efx->net_dev,
5792                           "BIST returned unknown result %u", result);
5793                 return -EIO;
5794         }
5795 }
5796
5797 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5798 {
5799         int rc;
5800
5801         netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5802
5803         rc = efx_ef10_start_bist(efx, bist_type);
5804         if (rc != 0)
5805                 return rc;
5806
5807         return efx_ef10_poll_bist(efx);
5808 }
5809
5810 static int
5811 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5812 {
5813         int rc, rc2;
5814
5815         efx_reset_down(efx, RESET_TYPE_WORLD);
5816
5817         rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5818                           NULL, 0, NULL, 0, NULL);
5819         if (rc != 0)
5820                 goto out;
5821
5822         tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
5823         tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
5824
5825         rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
5826
5827 out:
5828         if (rc == -EPERM)
5829                 rc = 0;
5830         rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
5831         return rc ? rc : rc2;
5832 }
5833
5834 #ifdef CONFIG_SFC_MTD
5835
5836 struct efx_ef10_nvram_type_info {
5837         u16 type, type_mask;
5838         u8 port;
5839         const char *name;
5840 };
5841
5842 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
5843         { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
5844         { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
5845         { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
5846         { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
5847         { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
5848         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
5849         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
5850         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
5851         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5852         { NVRAM_PARTITION_TYPE_LICENSE,            0,    0, "sfc_license" },
5853         { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
5854 };
5855
5856 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
5857                                         struct efx_mcdi_mtd_partition *part,
5858                                         unsigned int type)
5859 {
5860         MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
5861         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
5862         const struct efx_ef10_nvram_type_info *info;
5863         size_t size, erase_size, outlen;
5864         bool protected;
5865         int rc;
5866
5867         for (info = efx_ef10_nvram_types; ; info++) {
5868                 if (info ==
5869                     efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
5870                         return -ENODEV;
5871                 if ((type & ~info->type_mask) == info->type)
5872                         break;
5873         }
5874         if (info->port != efx_port_num(efx))
5875                 return -ENODEV;
5876
5877         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
5878         if (rc)
5879                 return rc;
5880         if (protected)
5881                 return -ENODEV; /* hide it */
5882
5883         part->nvram_type = type;
5884
5885         MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
5886         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
5887                           outbuf, sizeof(outbuf), &outlen);
5888         if (rc)
5889                 return rc;
5890         if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
5891                 return -EIO;
5892         if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
5893             (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
5894                 part->fw_subtype = MCDI_DWORD(outbuf,
5895                                               NVRAM_METADATA_OUT_SUBTYPE);
5896
5897         part->common.dev_type_name = "EF10 NVRAM manager";
5898         part->common.type_name = info->name;
5899
5900         part->common.mtd.type = MTD_NORFLASH;
5901         part->common.mtd.flags = MTD_CAP_NORFLASH;
5902         part->common.mtd.size = size;
5903         part->common.mtd.erasesize = erase_size;
5904
5905         return 0;
5906 }
5907
5908 static int efx_ef10_mtd_probe(struct efx_nic *efx)
5909 {
5910         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
5911         struct efx_mcdi_mtd_partition *parts;
5912         size_t outlen, n_parts_total, i, n_parts;
5913         unsigned int type;
5914         int rc;
5915
5916         ASSERT_RTNL();
5917
5918         BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
5919         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
5920                           outbuf, sizeof(outbuf), &outlen);
5921         if (rc)
5922                 return rc;
5923         if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
5924                 return -EIO;
5925
5926         n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
5927         if (n_parts_total >
5928             MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
5929                 return -EIO;
5930
5931         parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
5932         if (!parts)
5933                 return -ENOMEM;
5934
5935         n_parts = 0;
5936         for (i = 0; i < n_parts_total; i++) {
5937                 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
5938                                         i);
5939                 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
5940                 if (rc == 0)
5941                         n_parts++;
5942                 else if (rc != -ENODEV)
5943                         goto fail;
5944         }
5945
5946         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
5947 fail:
5948         if (rc)
5949                 kfree(parts);
5950         return rc;
5951 }
5952
5953 #endif /* CONFIG_SFC_MTD */
5954
5955 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
5956 {
5957         _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
5958 }
5959
5960 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
5961                                             u32 host_time) {}
5962
5963 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
5964                                            bool temp)
5965 {
5966         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
5967         int rc;
5968
5969         if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
5970             channel->sync_events_state == SYNC_EVENTS_VALID ||
5971             (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
5972                 return 0;
5973         channel->sync_events_state = SYNC_EVENTS_REQUESTED;
5974
5975         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
5976         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5977         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
5978                        channel->channel);
5979
5980         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5981                           inbuf, sizeof(inbuf), NULL, 0, NULL);
5982
5983         if (rc != 0)
5984                 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5985                                                     SYNC_EVENTS_DISABLED;
5986
5987         return rc;
5988 }
5989
5990 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
5991                                             bool temp)
5992 {
5993         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
5994         int rc;
5995
5996         if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
5997             (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
5998                 return 0;
5999         if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6000                 channel->sync_events_state = SYNC_EVENTS_DISABLED;
6001                 return 0;
6002         }
6003         channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6004                                             SYNC_EVENTS_DISABLED;
6005
6006         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6007         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6008         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6009                        MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6010         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6011                        channel->channel);
6012
6013         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6014                           inbuf, sizeof(inbuf), NULL, 0, NULL);
6015
6016         return rc;
6017 }
6018
6019 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6020                                            bool temp)
6021 {
6022         int (*set)(struct efx_channel *channel, bool temp);
6023         struct efx_channel *channel;
6024
6025         set = en ?
6026               efx_ef10_rx_enable_timestamping :
6027               efx_ef10_rx_disable_timestamping;
6028
6029         efx_for_each_channel(channel, efx) {
6030                 int rc = set(channel, temp);
6031                 if (en && rc != 0) {
6032                         efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6033                         return rc;
6034                 }
6035         }
6036
6037         return 0;
6038 }
6039
6040 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6041                                          struct hwtstamp_config *init)
6042 {
6043         return -EOPNOTSUPP;
6044 }
6045
6046 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6047                                       struct hwtstamp_config *init)
6048 {
6049         int rc;
6050
6051         switch (init->rx_filter) {
6052         case HWTSTAMP_FILTER_NONE:
6053                 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6054                 /* if TX timestamping is still requested then leave PTP on */
6055                 return efx_ptp_change_mode(efx,
6056                                            init->tx_type != HWTSTAMP_TX_OFF, 0);
6057         case HWTSTAMP_FILTER_ALL:
6058         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6059         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6060         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6061         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6062         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6063         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6064         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6065         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6066         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6067         case HWTSTAMP_FILTER_PTP_V2_EVENT:
6068         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6069         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6070         case HWTSTAMP_FILTER_NTP_ALL:
6071                 init->rx_filter = HWTSTAMP_FILTER_ALL;
6072                 rc = efx_ptp_change_mode(efx, true, 0);
6073                 if (!rc)
6074                         rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6075                 if (rc)
6076                         efx_ptp_change_mode(efx, false, 0);
6077                 return rc;
6078         default:
6079                 return -ERANGE;
6080         }
6081 }
6082
6083 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6084                                      struct netdev_phys_item_id *ppid)
6085 {
6086         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6087
6088         if (!is_valid_ether_addr(nic_data->port_id))
6089                 return -EOPNOTSUPP;
6090
6091         ppid->id_len = ETH_ALEN;
6092         memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6093
6094         return 0;
6095 }
6096
6097 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6098 {
6099         if (proto != htons(ETH_P_8021Q))
6100                 return -EINVAL;
6101
6102         return efx_ef10_add_vlan(efx, vid);
6103 }
6104
6105 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6106 {
6107         if (proto != htons(ETH_P_8021Q))
6108                 return -EINVAL;
6109
6110         return efx_ef10_del_vlan(efx, vid);
6111 }
6112
6113 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
6114  * ports table, ensuring that any TSO descriptors that were made on a now-
6115  * removed tunnel port will be blown away and won't break things when we try
6116  * to transmit them using the new ports table.
6117  */
6118 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6119 {
6120         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6121         MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6122         MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6123         bool will_reset = false;
6124         size_t num_entries = 0;
6125         size_t inlen, outlen;
6126         size_t i;
6127         int rc;
6128         efx_dword_t flags_and_num_entries;
6129
6130         WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6131
6132         nic_data->udp_tunnels_dirty = false;
6133
6134         if (!(nic_data->datapath_caps &
6135             (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6136                 efx_device_attach_if_not_resetting(efx);
6137                 return 0;
6138         }
6139
6140         BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6141                      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6142
6143         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6144                 if (nic_data->udp_tunnels[i].count &&
6145                     nic_data->udp_tunnels[i].port) {
6146                         efx_dword_t entry;
6147
6148                         EFX_POPULATE_DWORD_2(entry,
6149                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6150                                         ntohs(nic_data->udp_tunnels[i].port),
6151                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6152                                         nic_data->udp_tunnels[i].type);
6153                         *_MCDI_ARRAY_DWORD(inbuf,
6154                                 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6155                                 num_entries++) = entry;
6156                 }
6157         }
6158
6159         BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6160                       MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6161                      EFX_WORD_1_LBN);
6162         BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6163                      EFX_WORD_1_WIDTH);
6164         EFX_POPULATE_DWORD_2(flags_and_num_entries,
6165                              MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6166                                 !!unloading,
6167                              EFX_WORD_1, num_entries);
6168         *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6169                 flags_and_num_entries;
6170
6171         inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6172
6173         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6174                                 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6175         if (rc == -EIO) {
6176                 /* Most likely the MC rebooted due to another function also
6177                  * setting its tunnel port list. Mark the tunnel port list as
6178                  * dirty, so it will be pushed upon coming up from the reboot.
6179                  */
6180                 nic_data->udp_tunnels_dirty = true;
6181                 return 0;
6182         }
6183
6184         if (rc) {
6185                 /* expected not available on unprivileged functions */
6186                 if (rc != -EPERM)
6187                         netif_warn(efx, drv, efx->net_dev,
6188                                    "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6189         } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6190                    (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6191                 netif_info(efx, drv, efx->net_dev,
6192                            "Rebooting MC due to UDP tunnel port list change\n");
6193                 will_reset = true;
6194                 if (unloading)
6195                         /* Delay for the MC reset to complete. This will make
6196                          * unloading other functions a bit smoother. This is a
6197                          * race, but the other unload will work whichever way
6198                          * it goes, this just avoids an unnecessary error
6199                          * message.
6200                          */
6201                         msleep(100);
6202         }
6203         if (!will_reset && !unloading) {
6204                 /* The caller will have detached, relying on the MC reset to
6205                  * trigger a re-attach.  Since there won't be an MC reset, we
6206                  * have to do the attach ourselves.
6207                  */
6208                 efx_device_attach_if_not_resetting(efx);
6209         }
6210
6211         return rc;
6212 }
6213
6214 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6215 {
6216         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6217         int rc = 0;
6218
6219         mutex_lock(&nic_data->udp_tunnels_lock);
6220         if (nic_data->udp_tunnels_dirty) {
6221                 /* Make sure all TX are stopped while we modify the table, else
6222                  * we might race against an efx_features_check().
6223                  */
6224                 efx_device_detach_sync(efx);
6225                 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6226         }
6227         mutex_unlock(&nic_data->udp_tunnels_lock);
6228         return rc;
6229 }
6230
6231 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6232                                                              __be16 port)
6233 {
6234         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6235         size_t i;
6236
6237         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6238                 if (!nic_data->udp_tunnels[i].count)
6239                         continue;
6240                 if (nic_data->udp_tunnels[i].port == port)
6241                         return &nic_data->udp_tunnels[i];
6242         }
6243         return NULL;
6244 }
6245
6246 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6247                                      struct efx_udp_tunnel tnl)
6248 {
6249         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6250         struct efx_udp_tunnel *match;
6251         char typebuf[8];
6252         size_t i;
6253         int rc;
6254
6255         if (!(nic_data->datapath_caps &
6256               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6257                 return 0;
6258
6259         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6260         netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6261                   typebuf, ntohs(tnl.port));
6262
6263         mutex_lock(&nic_data->udp_tunnels_lock);
6264         /* Make sure all TX are stopped while we add to the table, else we
6265          * might race against an efx_features_check().
6266          */
6267         efx_device_detach_sync(efx);
6268
6269         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6270         if (match != NULL) {
6271                 if (match->type == tnl.type) {
6272                         netif_dbg(efx, drv, efx->net_dev,
6273                                   "Referencing existing tunnel entry\n");
6274                         match->count++;
6275                         /* No need to cause an MCDI update */
6276                         rc = 0;
6277                         goto unlock_out;
6278                 }
6279                 efx_get_udp_tunnel_type_name(match->type,
6280                                              typebuf, sizeof(typebuf));
6281                 netif_dbg(efx, drv, efx->net_dev,
6282                           "UDP port %d is already in use by %s\n",
6283                           ntohs(tnl.port), typebuf);
6284                 rc = -EEXIST;
6285                 goto unlock_out;
6286         }
6287
6288         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6289                 if (!nic_data->udp_tunnels[i].count) {
6290                         nic_data->udp_tunnels[i] = tnl;
6291                         nic_data->udp_tunnels[i].count = 1;
6292                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6293                         goto unlock_out;
6294                 }
6295
6296         netif_dbg(efx, drv, efx->net_dev,
6297                   "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6298                   typebuf, ntohs(tnl.port));
6299
6300         rc = -ENOMEM;
6301
6302 unlock_out:
6303         mutex_unlock(&nic_data->udp_tunnels_lock);
6304         return rc;
6305 }
6306
6307 /* Called under the TX lock with the TX queue running, hence no-one can be
6308  * in the middle of updating the UDP tunnels table.  However, they could
6309  * have tried and failed the MCDI, in which case they'll have set the dirty
6310  * flag before dropping their locks.
6311  */
6312 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6313 {
6314         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6315
6316         if (!(nic_data->datapath_caps &
6317               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6318                 return false;
6319
6320         if (nic_data->udp_tunnels_dirty)
6321                 /* SW table may not match HW state, so just assume we can't
6322                  * use any UDP tunnel offloads.
6323                  */
6324                 return false;
6325
6326         return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6327 }
6328
6329 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6330                                      struct efx_udp_tunnel tnl)
6331 {
6332         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6333         struct efx_udp_tunnel *match;
6334         char typebuf[8];
6335         int rc;
6336
6337         if (!(nic_data->datapath_caps &
6338               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6339                 return 0;
6340
6341         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6342         netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6343                   typebuf, ntohs(tnl.port));
6344
6345         mutex_lock(&nic_data->udp_tunnels_lock);
6346         /* Make sure all TX are stopped while we remove from the table, else we
6347          * might race against an efx_features_check().
6348          */
6349         efx_device_detach_sync(efx);
6350
6351         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6352         if (match != NULL) {
6353                 if (match->type == tnl.type) {
6354                         if (--match->count) {
6355                                 /* Port is still in use, so nothing to do */
6356                                 netif_dbg(efx, drv, efx->net_dev,
6357                                           "UDP tunnel port %d remains active\n",
6358                                           ntohs(tnl.port));
6359                                 rc = 0;
6360                                 goto out_unlock;
6361                         }
6362                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6363                         goto out_unlock;
6364                 }
6365                 efx_get_udp_tunnel_type_name(match->type,
6366                                              typebuf, sizeof(typebuf));
6367                 netif_warn(efx, drv, efx->net_dev,
6368                            "UDP port %d is actually in use by %s, not removing\n",
6369                            ntohs(tnl.port), typebuf);
6370         }
6371         rc = -ENOENT;
6372
6373 out_unlock:
6374         mutex_unlock(&nic_data->udp_tunnels_lock);
6375         return rc;
6376 }
6377
6378 #define EF10_OFFLOAD_FEATURES           \
6379         (NETIF_F_IP_CSUM |              \
6380          NETIF_F_HW_VLAN_CTAG_FILTER |  \
6381          NETIF_F_IPV6_CSUM |            \
6382          NETIF_F_RXHASH |               \
6383          NETIF_F_NTUPLE)
6384
6385 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6386         .is_vf = true,
6387         .mem_bar = EFX_MEM_VF_BAR,
6388         .mem_map_size = efx_ef10_mem_map_size,
6389         .probe = efx_ef10_probe_vf,
6390         .remove = efx_ef10_remove,
6391         .dimension_resources = efx_ef10_dimension_resources,
6392         .init = efx_ef10_init_nic,
6393         .fini = efx_port_dummy_op_void,
6394         .map_reset_reason = efx_ef10_map_reset_reason,
6395         .map_reset_flags = efx_ef10_map_reset_flags,
6396         .reset = efx_ef10_reset,
6397         .probe_port = efx_mcdi_port_probe,
6398         .remove_port = efx_mcdi_port_remove,
6399         .fini_dmaq = efx_ef10_fini_dmaq,
6400         .prepare_flr = efx_ef10_prepare_flr,
6401         .finish_flr = efx_port_dummy_op_void,
6402         .describe_stats = efx_ef10_describe_stats,
6403         .update_stats = efx_ef10_update_stats_vf,
6404         .start_stats = efx_port_dummy_op_void,
6405         .pull_stats = efx_port_dummy_op_void,
6406         .stop_stats = efx_port_dummy_op_void,
6407         .set_id_led = efx_mcdi_set_id_led,
6408         .push_irq_moderation = efx_ef10_push_irq_moderation,
6409         .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6410         .check_mac_fault = efx_mcdi_mac_check_fault,
6411         .reconfigure_port = efx_mcdi_port_reconfigure,
6412         .get_wol = efx_ef10_get_wol_vf,
6413         .set_wol = efx_ef10_set_wol_vf,
6414         .resume_wol = efx_port_dummy_op_void,
6415         .mcdi_request = efx_ef10_mcdi_request,
6416         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6417         .mcdi_read_response = efx_ef10_mcdi_read_response,
6418         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6419         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6420         .irq_enable_master = efx_port_dummy_op_void,
6421         .irq_test_generate = efx_ef10_irq_test_generate,
6422         .irq_disable_non_ev = efx_port_dummy_op_void,
6423         .irq_handle_msi = efx_ef10_msi_interrupt,
6424         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6425         .tx_probe = efx_ef10_tx_probe,
6426         .tx_init = efx_ef10_tx_init,
6427         .tx_remove = efx_ef10_tx_remove,
6428         .tx_write = efx_ef10_tx_write,
6429         .tx_limit_len = efx_ef10_tx_limit_len,
6430         .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6431         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6432         .rx_probe = efx_ef10_rx_probe,
6433         .rx_init = efx_ef10_rx_init,
6434         .rx_remove = efx_ef10_rx_remove,
6435         .rx_write = efx_ef10_rx_write,
6436         .rx_defer_refill = efx_ef10_rx_defer_refill,
6437         .ev_probe = efx_ef10_ev_probe,
6438         .ev_init = efx_ef10_ev_init,
6439         .ev_fini = efx_ef10_ev_fini,
6440         .ev_remove = efx_ef10_ev_remove,
6441         .ev_process = efx_ef10_ev_process,
6442         .ev_read_ack = efx_ef10_ev_read_ack,
6443         .ev_test_generate = efx_ef10_ev_test_generate,
6444         .filter_table_probe = efx_ef10_filter_table_probe,
6445         .filter_table_restore = efx_ef10_filter_table_restore,
6446         .filter_table_remove = efx_ef10_filter_table_remove,
6447         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6448         .filter_insert = efx_ef10_filter_insert,
6449         .filter_remove_safe = efx_ef10_filter_remove_safe,
6450         .filter_get_safe = efx_ef10_filter_get_safe,
6451         .filter_clear_rx = efx_ef10_filter_clear_rx,
6452         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6453         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6454         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6455 #ifdef CONFIG_RFS_ACCEL
6456         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
6457         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6458 #endif
6459 #ifdef CONFIG_SFC_MTD
6460         .mtd_probe = efx_port_dummy_op_int,
6461 #endif
6462         .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6463         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6464         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6465         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6466 #ifdef CONFIG_SFC_SRIOV
6467         .vswitching_probe = efx_ef10_vswitching_probe_vf,
6468         .vswitching_restore = efx_ef10_vswitching_restore_vf,
6469         .vswitching_remove = efx_ef10_vswitching_remove_vf,
6470 #endif
6471         .get_mac_address = efx_ef10_get_mac_address_vf,
6472         .set_mac_address = efx_ef10_set_mac_address,
6473
6474         .get_phys_port_id = efx_ef10_get_phys_port_id,
6475         .revision = EFX_REV_HUNT_A0,
6476         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6477         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6478         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6479         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6480         .can_rx_scatter = true,
6481         .always_rx_scatter = true,
6482         .min_interrupt_mode = EFX_INT_MODE_MSIX,
6483         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6484         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6485         .offload_features = EF10_OFFLOAD_FEATURES,
6486         .mcdi_max_ver = 2,
6487         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6488         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6489                             1 << HWTSTAMP_FILTER_ALL,
6490         .rx_hash_key_size = 40,
6491 };
6492
6493 const struct efx_nic_type efx_hunt_a0_nic_type = {
6494         .is_vf = false,
6495         .mem_bar = EFX_MEM_BAR,
6496         .mem_map_size = efx_ef10_mem_map_size,
6497         .probe = efx_ef10_probe_pf,
6498         .remove = efx_ef10_remove,
6499         .dimension_resources = efx_ef10_dimension_resources,
6500         .init = efx_ef10_init_nic,
6501         .fini = efx_port_dummy_op_void,
6502         .map_reset_reason = efx_ef10_map_reset_reason,
6503         .map_reset_flags = efx_ef10_map_reset_flags,
6504         .reset = efx_ef10_reset,
6505         .probe_port = efx_mcdi_port_probe,
6506         .remove_port = efx_mcdi_port_remove,
6507         .fini_dmaq = efx_ef10_fini_dmaq,
6508         .prepare_flr = efx_ef10_prepare_flr,
6509         .finish_flr = efx_port_dummy_op_void,
6510         .describe_stats = efx_ef10_describe_stats,
6511         .update_stats = efx_ef10_update_stats_pf,
6512         .start_stats = efx_mcdi_mac_start_stats,
6513         .pull_stats = efx_mcdi_mac_pull_stats,
6514         .stop_stats = efx_mcdi_mac_stop_stats,
6515         .set_id_led = efx_mcdi_set_id_led,
6516         .push_irq_moderation = efx_ef10_push_irq_moderation,
6517         .reconfigure_mac = efx_ef10_mac_reconfigure,
6518         .check_mac_fault = efx_mcdi_mac_check_fault,
6519         .reconfigure_port = efx_mcdi_port_reconfigure,
6520         .get_wol = efx_ef10_get_wol,
6521         .set_wol = efx_ef10_set_wol,
6522         .resume_wol = efx_port_dummy_op_void,
6523         .test_chip = efx_ef10_test_chip,
6524         .test_nvram = efx_mcdi_nvram_test_all,
6525         .mcdi_request = efx_ef10_mcdi_request,
6526         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6527         .mcdi_read_response = efx_ef10_mcdi_read_response,
6528         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6529         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6530         .irq_enable_master = efx_port_dummy_op_void,
6531         .irq_test_generate = efx_ef10_irq_test_generate,
6532         .irq_disable_non_ev = efx_port_dummy_op_void,
6533         .irq_handle_msi = efx_ef10_msi_interrupt,
6534         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6535         .tx_probe = efx_ef10_tx_probe,
6536         .tx_init = efx_ef10_tx_init,
6537         .tx_remove = efx_ef10_tx_remove,
6538         .tx_write = efx_ef10_tx_write,
6539         .tx_limit_len = efx_ef10_tx_limit_len,
6540         .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6541         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6542         .rx_probe = efx_ef10_rx_probe,
6543         .rx_init = efx_ef10_rx_init,
6544         .rx_remove = efx_ef10_rx_remove,
6545         .rx_write = efx_ef10_rx_write,
6546         .rx_defer_refill = efx_ef10_rx_defer_refill,
6547         .ev_probe = efx_ef10_ev_probe,
6548         .ev_init = efx_ef10_ev_init,
6549         .ev_fini = efx_ef10_ev_fini,
6550         .ev_remove = efx_ef10_ev_remove,
6551         .ev_process = efx_ef10_ev_process,
6552         .ev_read_ack = efx_ef10_ev_read_ack,
6553         .ev_test_generate = efx_ef10_ev_test_generate,
6554         .filter_table_probe = efx_ef10_filter_table_probe,
6555         .filter_table_restore = efx_ef10_filter_table_restore,
6556         .filter_table_remove = efx_ef10_filter_table_remove,
6557         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6558         .filter_insert = efx_ef10_filter_insert,
6559         .filter_remove_safe = efx_ef10_filter_remove_safe,
6560         .filter_get_safe = efx_ef10_filter_get_safe,
6561         .filter_clear_rx = efx_ef10_filter_clear_rx,
6562         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6563         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6564         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6565 #ifdef CONFIG_RFS_ACCEL
6566         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
6567         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6568 #endif
6569 #ifdef CONFIG_SFC_MTD
6570         .mtd_probe = efx_ef10_mtd_probe,
6571         .mtd_rename = efx_mcdi_mtd_rename,
6572         .mtd_read = efx_mcdi_mtd_read,
6573         .mtd_erase = efx_mcdi_mtd_erase,
6574         .mtd_write = efx_mcdi_mtd_write,
6575         .mtd_sync = efx_mcdi_mtd_sync,
6576 #endif
6577         .ptp_write_host_time = efx_ef10_ptp_write_host_time,
6578         .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6579         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6580         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6581         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6582         .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6583         .udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6584         .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6585         .udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6586 #ifdef CONFIG_SFC_SRIOV
6587         .sriov_configure = efx_ef10_sriov_configure,
6588         .sriov_init = efx_ef10_sriov_init,
6589         .sriov_fini = efx_ef10_sriov_fini,
6590         .sriov_wanted = efx_ef10_sriov_wanted,
6591         .sriov_reset = efx_ef10_sriov_reset,
6592         .sriov_flr = efx_ef10_sriov_flr,
6593         .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6594         .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6595         .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6596         .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6597         .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6598         .vswitching_probe = efx_ef10_vswitching_probe_pf,
6599         .vswitching_restore = efx_ef10_vswitching_restore_pf,
6600         .vswitching_remove = efx_ef10_vswitching_remove_pf,
6601 #endif
6602         .get_mac_address = efx_ef10_get_mac_address_pf,
6603         .set_mac_address = efx_ef10_set_mac_address,
6604         .tso_versions = efx_ef10_tso_versions,
6605
6606         .get_phys_port_id = efx_ef10_get_phys_port_id,
6607         .revision = EFX_REV_HUNT_A0,
6608         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6609         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6610         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6611         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6612         .can_rx_scatter = true,
6613         .always_rx_scatter = true,
6614         .option_descriptors = true,
6615         .min_interrupt_mode = EFX_INT_MODE_LEGACY,
6616         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6617         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6618         .offload_features = EF10_OFFLOAD_FEATURES,
6619         .mcdi_max_ver = 2,
6620         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6621         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6622                             1 << HWTSTAMP_FILTER_ALL,
6623         .rx_hash_key_size = 40,
6624 };