Merge tag 'drm-misc-fixes-2018-05-02' of git://anongit.freedesktop.org/drm/drm-misc...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25
26 #define EFX_EF10_DRVGEN_EV              7
27 enum {
28         EFX_EF10_TEST = 1,
29         EFX_EF10_REFILL,
30 };
31 /* The maximum size of a shared RSS context */
32 /* TODO: this should really be from the mcdi protocol export */
33 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
34
35 /* The filter table(s) are managed by firmware and we have write-only
36  * access.  When removing filters we must identify them to the
37  * firmware by a 64-bit handle, but this is too wide for Linux kernel
38  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
39  * be able to tell in advance whether a requested insertion will
40  * replace an existing filter.  Therefore we maintain a software hash
41  * table, which should be at least as large as the hardware hash
42  * table.
43  *
44  * Huntington has a single 8K filter table shared between all filter
45  * types and both ports.
46  */
47 #define HUNT_FILTER_TBL_ROWS 8192
48
49 #define EFX_EF10_FILTER_ID_INVALID 0xffff
50
51 #define EFX_EF10_FILTER_DEV_UC_MAX      32
52 #define EFX_EF10_FILTER_DEV_MC_MAX      256
53
54 /* VLAN list entry */
55 struct efx_ef10_vlan {
56         struct list_head list;
57         u16 vid;
58 };
59
60 enum efx_ef10_default_filters {
61         EFX_EF10_BCAST,
62         EFX_EF10_UCDEF,
63         EFX_EF10_MCDEF,
64         EFX_EF10_VXLAN4_UCDEF,
65         EFX_EF10_VXLAN4_MCDEF,
66         EFX_EF10_VXLAN6_UCDEF,
67         EFX_EF10_VXLAN6_MCDEF,
68         EFX_EF10_NVGRE4_UCDEF,
69         EFX_EF10_NVGRE4_MCDEF,
70         EFX_EF10_NVGRE6_UCDEF,
71         EFX_EF10_NVGRE6_MCDEF,
72         EFX_EF10_GENEVE4_UCDEF,
73         EFX_EF10_GENEVE4_MCDEF,
74         EFX_EF10_GENEVE6_UCDEF,
75         EFX_EF10_GENEVE6_MCDEF,
76
77         EFX_EF10_NUM_DEFAULT_FILTERS
78 };
79
80 /* Per-VLAN filters information */
81 struct efx_ef10_filter_vlan {
82         struct list_head list;
83         u16 vid;
84         u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
85         u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
86         u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
87 };
88
89 struct efx_ef10_dev_addr {
90         u8 addr[ETH_ALEN];
91 };
92
93 struct efx_ef10_filter_table {
94 /* The MCDI match masks supported by this fw & hw, in order of priority */
95         u32 rx_match_mcdi_flags[
96                 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
97         unsigned int rx_match_count;
98
99         struct rw_semaphore lock; /* Protects entries */
100         struct {
101                 unsigned long spec;     /* pointer to spec plus flag bits */
102 /* AUTO_OLD is used to mark and sweep MAC filters for the device address lists. */
103 /* unused flag  1UL */
104 #define EFX_EF10_FILTER_FLAG_AUTO_OLD   2UL
105 #define EFX_EF10_FILTER_FLAGS           3UL
106                 u64 handle;             /* firmware handle */
107         } *entry;
108 /* Shadow of net_device address lists, guarded by mac_lock */
109         struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
110         struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
111         int dev_uc_count;
112         int dev_mc_count;
113         bool uc_promisc;
114         bool mc_promisc;
115 /* Whether in multicast promiscuous mode when last changed */
116         bool mc_promisc_last;
117         bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
118         bool vlan_filter;
119         struct list_head vlan_list;
120 };
121
122 /* An arbitrary search limit for the software hash table */
123 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
124
125 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
126 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
127 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
128 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
129                                               struct efx_ef10_filter_vlan *vlan);
130 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
131 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
132
133 static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
134 {
135         WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
136         return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
137 }
138
139 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
140 {
141         return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
142 }
143
144 static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
145 {
146         return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
147 }
148
149 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
150 {
151         efx_dword_t reg;
152
153         efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
154         return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
155                 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
156 }
157
158 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
159  * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
160  * bar; PFs use BAR 0/1 for memory.
161  */
162 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
163 {
164         switch (efx->pci_dev->device) {
165         case 0x0b03: /* SFC9250 PF */
166                 return 0;
167         default:
168                 return 2;
169         }
170 }
171
172 /* All VFs use BAR 0/1 for memory */
173 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
174 {
175         return 0;
176 }
177
178 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
179 {
180         int bar;
181
182         bar = efx->type->mem_bar(efx);
183         return resource_size(&efx->pci_dev->resource[bar]);
184 }
185
186 static bool efx_ef10_is_vf(struct efx_nic *efx)
187 {
188         return efx->type->is_vf;
189 }
190
191 static int efx_ef10_get_pf_index(struct efx_nic *efx)
192 {
193         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
194         struct efx_ef10_nic_data *nic_data = efx->nic_data;
195         size_t outlen;
196         int rc;
197
198         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
199                           sizeof(outbuf), &outlen);
200         if (rc)
201                 return rc;
202         if (outlen < sizeof(outbuf))
203                 return -EIO;
204
205         nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
206         return 0;
207 }
208
209 #ifdef CONFIG_SFC_SRIOV
210 static int efx_ef10_get_vf_index(struct efx_nic *efx)
211 {
212         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
213         struct efx_ef10_nic_data *nic_data = efx->nic_data;
214         size_t outlen;
215         int rc;
216
217         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
218                           sizeof(outbuf), &outlen);
219         if (rc)
220                 return rc;
221         if (outlen < sizeof(outbuf))
222                 return -EIO;
223
224         nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
225         return 0;
226 }
227 #endif
228
229 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
230 {
231         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
232         struct efx_ef10_nic_data *nic_data = efx->nic_data;
233         size_t outlen;
234         int rc;
235
236         BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
237
238         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
239                           outbuf, sizeof(outbuf), &outlen);
240         if (rc)
241                 return rc;
242         if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
243                 netif_err(efx, drv, efx->net_dev,
244                           "unable to read datapath firmware capabilities\n");
245                 return -EIO;
246         }
247
248         nic_data->datapath_caps =
249                 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
250
251         if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
252                 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
253                                 GET_CAPABILITIES_V2_OUT_FLAGS2);
254                 nic_data->piobuf_size = MCDI_WORD(outbuf,
255                                 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
256         } else {
257                 nic_data->datapath_caps2 = 0;
258                 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
259         }
260
261         /* record the DPCPU firmware IDs to determine VEB vswitching support.
262          */
263         nic_data->rx_dpcpu_fw_id =
264                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
265         nic_data->tx_dpcpu_fw_id =
266                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
267
268         if (!(nic_data->datapath_caps &
269               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
270                 netif_err(efx, probe, efx->net_dev,
271                           "current firmware does not support an RX prefix\n");
272                 return -ENODEV;
273         }
274
275         if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
276                 u8 vi_window_mode = MCDI_BYTE(outbuf,
277                                 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
278
279                 switch (vi_window_mode) {
280                 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
281                         efx->vi_stride = 8192;
282                         break;
283                 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
284                         efx->vi_stride = 16384;
285                         break;
286                 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
287                         efx->vi_stride = 65536;
288                         break;
289                 default:
290                         netif_err(efx, probe, efx->net_dev,
291                                   "Unrecognised VI window mode %d\n",
292                                   vi_window_mode);
293                         return -EIO;
294                 }
295                 netif_dbg(efx, probe, efx->net_dev, "vi_stride = %u\n",
296                           efx->vi_stride);
297         } else {
298                 /* keep default VI stride */
299                 netif_dbg(efx, probe, efx->net_dev,
300                           "firmware did not report VI window mode, assuming vi_stride = %u\n",
301                           efx->vi_stride);
302         }
303
304         if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
305                 efx->num_mac_stats = MCDI_WORD(outbuf,
306                                 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
307                 netif_dbg(efx, probe, efx->net_dev,
308                           "firmware reports num_mac_stats = %u\n",
309                           efx->num_mac_stats);
310         } else {
311                 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
312                 netif_dbg(efx, probe, efx->net_dev,
313                           "firmware did not report num_mac_stats, assuming %u\n",
314                           efx->num_mac_stats);
315         }
316
317         return 0;
318 }
319
320 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
321 {
322         MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
323         MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
324         struct efx_ef10_nic_data *nic_data = efx->nic_data;
325         size_t outlen;
326         int rc;
327
328         MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
329                        MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
330         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
331                                 outbuf, sizeof(outbuf), &outlen);
332         if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
333                 return;
334
335         nic_data->licensed_features = MCDI_QWORD(outbuf,
336                                          LICENSING_V3_OUT_LICENSED_FEATURES);
337 }
338
339 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
340 {
341         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
342         int rc;
343
344         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
345                           outbuf, sizeof(outbuf), NULL);
346         if (rc)
347                 return rc;
348         rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
349         return rc > 0 ? rc : -ERANGE;
350 }
351
352 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
353 {
354         struct efx_ef10_nic_data *nic_data = efx->nic_data;
355         unsigned int implemented;
356         unsigned int enabled;
357         int rc;
358
359         nic_data->workaround_35388 = false;
360         nic_data->workaround_61265 = false;
361
362         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
363
364         if (rc == -ENOSYS) {
365                 /* Firmware without GET_WORKAROUNDS - not a problem. */
366                 rc = 0;
367         } else if (rc == 0) {
368                 /* Bug61265 workaround is always enabled if implemented. */
369                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
370                         nic_data->workaround_61265 = true;
371
372                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
373                         nic_data->workaround_35388 = true;
374                 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
375                         /* Workaround is implemented but not enabled.
376                          * Try to enable it.
377                          */
378                         rc = efx_mcdi_set_workaround(efx,
379                                                      MC_CMD_WORKAROUND_BUG35388,
380                                                      true, NULL);
381                         if (rc == 0)
382                                 nic_data->workaround_35388 = true;
383                         /* If we failed to set the workaround just carry on. */
384                         rc = 0;
385                 }
386         }
387
388         netif_dbg(efx, probe, efx->net_dev,
389                   "workaround for bug 35388 is %sabled\n",
390                   nic_data->workaround_35388 ? "en" : "dis");
391         netif_dbg(efx, probe, efx->net_dev,
392                   "workaround for bug 61265 is %sabled\n",
393                   nic_data->workaround_61265 ? "en" : "dis");
394
395         return rc;
396 }
397
398 static void efx_ef10_process_timer_config(struct efx_nic *efx,
399                                           const efx_dword_t *data)
400 {
401         unsigned int max_count;
402
403         if (EFX_EF10_WORKAROUND_61265(efx)) {
404                 efx->timer_quantum_ns = MCDI_DWORD(data,
405                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
406                 efx->timer_max_ns = MCDI_DWORD(data,
407                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
408         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
409                 efx->timer_quantum_ns = MCDI_DWORD(data,
410                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
411                 max_count = MCDI_DWORD(data,
412                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
413                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
414         } else {
415                 efx->timer_quantum_ns = MCDI_DWORD(data,
416                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
417                 max_count = MCDI_DWORD(data,
418                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
419                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
420         }
421
422         netif_dbg(efx, probe, efx->net_dev,
423                   "got timer properties from MC: quantum %u ns; max %u ns\n",
424                   efx->timer_quantum_ns, efx->timer_max_ns);
425 }
426
427 static int efx_ef10_get_timer_config(struct efx_nic *efx)
428 {
429         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
430         int rc;
431
432         rc = efx_ef10_get_timer_workarounds(efx);
433         if (rc)
434                 return rc;
435
436         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
437                                 outbuf, sizeof(outbuf), NULL);
438
439         if (rc == 0) {
440                 efx_ef10_process_timer_config(efx, outbuf);
441         } else if (rc == -ENOSYS || rc == -EPERM) {
442                 /* Not available - fall back to Huntington defaults. */
443                 unsigned int quantum;
444
445                 rc = efx_ef10_get_sysclk_freq(efx);
446                 if (rc < 0)
447                         return rc;
448
449                 quantum = 1536000 / rc; /* 1536 cycles */
450                 efx->timer_quantum_ns = quantum;
451                 efx->timer_max_ns = efx->type->timer_period_max * quantum;
452                 rc = 0;
453         } else {
454                 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
455                                        MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
456                                        NULL, 0, rc);
457         }
458
459         return rc;
460 }
461
462 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
463 {
464         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
465         size_t outlen;
466         int rc;
467
468         BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
469
470         rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
471                           outbuf, sizeof(outbuf), &outlen);
472         if (rc)
473                 return rc;
474         if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
475                 return -EIO;
476
477         ether_addr_copy(mac_address,
478                         MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
479         return 0;
480 }
481
482 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
483 {
484         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
485         MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
486         size_t outlen;
487         int num_addrs, rc;
488
489         MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
490                        EVB_PORT_ID_ASSIGNED);
491         rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
492                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
493
494         if (rc)
495                 return rc;
496         if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
497                 return -EIO;
498
499         num_addrs = MCDI_DWORD(outbuf,
500                                VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
501
502         WARN_ON(num_addrs != 1);
503
504         ether_addr_copy(mac_address,
505                         MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
506
507         return 0;
508 }
509
510 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
511                                                struct device_attribute *attr,
512                                                char *buf)
513 {
514         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
515
516         return sprintf(buf, "%d\n",
517                        ((efx->mcdi->fn_flags) &
518                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
519                        ? 1 : 0);
520 }
521
522 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
523                                           struct device_attribute *attr,
524                                           char *buf)
525 {
526         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
527
528         return sprintf(buf, "%d\n",
529                        ((efx->mcdi->fn_flags) &
530                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
531                        ? 1 : 0);
532 }
533
534 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
535 {
536         struct efx_ef10_nic_data *nic_data = efx->nic_data;
537         struct efx_ef10_vlan *vlan;
538
539         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
540
541         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
542                 if (vlan->vid == vid)
543                         return vlan;
544         }
545
546         return NULL;
547 }
548
549 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
550 {
551         struct efx_ef10_nic_data *nic_data = efx->nic_data;
552         struct efx_ef10_vlan *vlan;
553         int rc;
554
555         mutex_lock(&nic_data->vlan_lock);
556
557         vlan = efx_ef10_find_vlan(efx, vid);
558         if (vlan) {
559                 /* We add VID 0 on init. 8021q adds it on module init
560                  * for all interfaces with VLAN filtring feature.
561                  */
562                 if (vid == 0)
563                         goto done_unlock;
564                 netif_warn(efx, drv, efx->net_dev,
565                            "VLAN %u already added\n", vid);
566                 rc = -EALREADY;
567                 goto fail_exist;
568         }
569
570         rc = -ENOMEM;
571         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
572         if (!vlan)
573                 goto fail_alloc;
574
575         vlan->vid = vid;
576
577         list_add_tail(&vlan->list, &nic_data->vlan_list);
578
579         if (efx->filter_state) {
580                 mutex_lock(&efx->mac_lock);
581                 down_write(&efx->filter_sem);
582                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
583                 up_write(&efx->filter_sem);
584                 mutex_unlock(&efx->mac_lock);
585                 if (rc)
586                         goto fail_filter_add_vlan;
587         }
588
589 done_unlock:
590         mutex_unlock(&nic_data->vlan_lock);
591         return 0;
592
593 fail_filter_add_vlan:
594         list_del(&vlan->list);
595         kfree(vlan);
596 fail_alloc:
597 fail_exist:
598         mutex_unlock(&nic_data->vlan_lock);
599         return rc;
600 }
601
602 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
603                                        struct efx_ef10_vlan *vlan)
604 {
605         struct efx_ef10_nic_data *nic_data = efx->nic_data;
606
607         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
608
609         if (efx->filter_state) {
610                 down_write(&efx->filter_sem);
611                 efx_ef10_filter_del_vlan(efx, vlan->vid);
612                 up_write(&efx->filter_sem);
613         }
614
615         list_del(&vlan->list);
616         kfree(vlan);
617 }
618
619 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
620 {
621         struct efx_ef10_nic_data *nic_data = efx->nic_data;
622         struct efx_ef10_vlan *vlan;
623         int rc = 0;
624
625         /* 8021q removes VID 0 on module unload for all interfaces
626          * with VLAN filtering feature. We need to keep it to receive
627          * untagged traffic.
628          */
629         if (vid == 0)
630                 return 0;
631
632         mutex_lock(&nic_data->vlan_lock);
633
634         vlan = efx_ef10_find_vlan(efx, vid);
635         if (!vlan) {
636                 netif_err(efx, drv, efx->net_dev,
637                           "VLAN %u to be deleted not found\n", vid);
638                 rc = -ENOENT;
639         } else {
640                 efx_ef10_del_vlan_internal(efx, vlan);
641         }
642
643         mutex_unlock(&nic_data->vlan_lock);
644
645         return rc;
646 }
647
648 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
649 {
650         struct efx_ef10_nic_data *nic_data = efx->nic_data;
651         struct efx_ef10_vlan *vlan, *next_vlan;
652
653         mutex_lock(&nic_data->vlan_lock);
654         list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
655                 efx_ef10_del_vlan_internal(efx, vlan);
656         mutex_unlock(&nic_data->vlan_lock);
657 }
658
659 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
660                    NULL);
661 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
662
663 static int efx_ef10_probe(struct efx_nic *efx)
664 {
665         struct efx_ef10_nic_data *nic_data;
666         int i, rc;
667
668         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
669         if (!nic_data)
670                 return -ENOMEM;
671         efx->nic_data = nic_data;
672
673         /* we assume later that we can copy from this buffer in dwords */
674         BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
675
676         rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
677                                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
678         if (rc)
679                 goto fail1;
680
681         /* Get the MC's warm boot count.  In case it's rebooting right
682          * now, be prepared to retry.
683          */
684         i = 0;
685         for (;;) {
686                 rc = efx_ef10_get_warm_boot_count(efx);
687                 if (rc >= 0)
688                         break;
689                 if (++i == 5)
690                         goto fail2;
691                 ssleep(1);
692         }
693         nic_data->warm_boot_count = rc;
694
695         efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
696
697         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
698
699         /* In case we're recovering from a crash (kexec), we want to
700          * cancel any outstanding request by the previous user of this
701          * function.  We send a special message using the least
702          * significant bits of the 'high' (doorbell) register.
703          */
704         _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
705
706         rc = efx_mcdi_init(efx);
707         if (rc)
708                 goto fail2;
709
710         mutex_init(&nic_data->udp_tunnels_lock);
711
712         /* Reset (most) configuration for this function */
713         rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
714         if (rc)
715                 goto fail3;
716
717         /* Enable event logging */
718         rc = efx_mcdi_log_ctrl(efx, true, false, 0);
719         if (rc)
720                 goto fail3;
721
722         rc = device_create_file(&efx->pci_dev->dev,
723                                 &dev_attr_link_control_flag);
724         if (rc)
725                 goto fail3;
726
727         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
728         if (rc)
729                 goto fail4;
730
731         rc = efx_ef10_get_pf_index(efx);
732         if (rc)
733                 goto fail5;
734
735         rc = efx_ef10_init_datapath_caps(efx);
736         if (rc < 0)
737                 goto fail5;
738
739         efx_ef10_read_licensed_features(efx);
740
741         /* We can have one VI for each vi_stride-byte region.
742          * However, until we use TX option descriptors we need two TX queues
743          * per channel.
744          */
745         efx->max_channels = min_t(unsigned int,
746                                   EFX_MAX_CHANNELS,
747                                   efx_ef10_mem_map_size(efx) /
748                                   (efx->vi_stride * EFX_TXQ_TYPES));
749         efx->max_tx_channels = efx->max_channels;
750         if (WARN_ON(efx->max_channels == 0)) {
751                 rc = -EIO;
752                 goto fail5;
753         }
754
755         efx->rx_packet_len_offset =
756                 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
757
758         if (nic_data->datapath_caps &
759             (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
760                 efx->net_dev->hw_features |= NETIF_F_RXFCS;
761
762         rc = efx_mcdi_port_get_number(efx);
763         if (rc < 0)
764                 goto fail5;
765         efx->port_num = rc;
766
767         rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
768         if (rc)
769                 goto fail5;
770
771         rc = efx_ef10_get_timer_config(efx);
772         if (rc < 0)
773                 goto fail5;
774
775         rc = efx_mcdi_mon_probe(efx);
776         if (rc && rc != -EPERM)
777                 goto fail5;
778
779         efx_ptp_defer_probe_with_channel(efx);
780
781 #ifdef CONFIG_SFC_SRIOV
782         if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
783                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
784                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
785
786                 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
787         } else
788 #endif
789                 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
790
791         INIT_LIST_HEAD(&nic_data->vlan_list);
792         mutex_init(&nic_data->vlan_lock);
793
794         /* Add unspecified VID to support VLAN filtering being disabled */
795         rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
796         if (rc)
797                 goto fail_add_vid_unspec;
798
799         /* If VLAN filtering is enabled, we need VID 0 to get untagged
800          * traffic.  It is added automatically if 8021q module is loaded,
801          * but we can't rely on it since module may be not loaded.
802          */
803         rc = efx_ef10_add_vlan(efx, 0);
804         if (rc)
805                 goto fail_add_vid_0;
806
807         return 0;
808
809 fail_add_vid_0:
810         efx_ef10_cleanup_vlans(efx);
811 fail_add_vid_unspec:
812         mutex_destroy(&nic_data->vlan_lock);
813         efx_ptp_remove(efx);
814         efx_mcdi_mon_remove(efx);
815 fail5:
816         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
817 fail4:
818         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
819 fail3:
820         efx_mcdi_detach(efx);
821
822         mutex_lock(&nic_data->udp_tunnels_lock);
823         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
824         (void)efx_ef10_set_udp_tnl_ports(efx, true);
825         mutex_unlock(&nic_data->udp_tunnels_lock);
826         mutex_destroy(&nic_data->udp_tunnels_lock);
827
828         efx_mcdi_fini(efx);
829 fail2:
830         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
831 fail1:
832         kfree(nic_data);
833         efx->nic_data = NULL;
834         return rc;
835 }
836
837 static int efx_ef10_free_vis(struct efx_nic *efx)
838 {
839         MCDI_DECLARE_BUF_ERR(outbuf);
840         size_t outlen;
841         int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
842                                     outbuf, sizeof(outbuf), &outlen);
843
844         /* -EALREADY means nothing to free, so ignore */
845         if (rc == -EALREADY)
846                 rc = 0;
847         if (rc)
848                 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
849                                        rc);
850         return rc;
851 }
852
853 #ifdef EFX_USE_PIO
854
855 static void efx_ef10_free_piobufs(struct efx_nic *efx)
856 {
857         struct efx_ef10_nic_data *nic_data = efx->nic_data;
858         MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
859         unsigned int i;
860         int rc;
861
862         BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
863
864         for (i = 0; i < nic_data->n_piobufs; i++) {
865                 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
866                                nic_data->piobuf_handle[i]);
867                 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
868                                   NULL, 0, NULL);
869                 WARN_ON(rc);
870         }
871
872         nic_data->n_piobufs = 0;
873 }
874
875 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
876 {
877         struct efx_ef10_nic_data *nic_data = efx->nic_data;
878         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
879         unsigned int i;
880         size_t outlen;
881         int rc = 0;
882
883         BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
884
885         for (i = 0; i < n; i++) {
886                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
887                                         outbuf, sizeof(outbuf), &outlen);
888                 if (rc) {
889                         /* Don't display the MC error if we didn't have space
890                          * for a VF.
891                          */
892                         if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
893                                 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
894                                                        0, outbuf, outlen, rc);
895                         break;
896                 }
897                 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
898                         rc = -EIO;
899                         break;
900                 }
901                 nic_data->piobuf_handle[i] =
902                         MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
903                 netif_dbg(efx, probe, efx->net_dev,
904                           "allocated PIO buffer %u handle %x\n", i,
905                           nic_data->piobuf_handle[i]);
906         }
907
908         nic_data->n_piobufs = i;
909         if (rc)
910                 efx_ef10_free_piobufs(efx);
911         return rc;
912 }
913
914 static int efx_ef10_link_piobufs(struct efx_nic *efx)
915 {
916         struct efx_ef10_nic_data *nic_data = efx->nic_data;
917         MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
918         struct efx_channel *channel;
919         struct efx_tx_queue *tx_queue;
920         unsigned int offset, index;
921         int rc;
922
923         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
924         BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
925
926         /* Link a buffer to each VI in the write-combining mapping */
927         for (index = 0; index < nic_data->n_piobufs; ++index) {
928                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
929                                nic_data->piobuf_handle[index]);
930                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
931                                nic_data->pio_write_vi_base + index);
932                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
933                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
934                                   NULL, 0, NULL);
935                 if (rc) {
936                         netif_err(efx, drv, efx->net_dev,
937                                   "failed to link VI %u to PIO buffer %u (%d)\n",
938                                   nic_data->pio_write_vi_base + index, index,
939                                   rc);
940                         goto fail;
941                 }
942                 netif_dbg(efx, probe, efx->net_dev,
943                           "linked VI %u to PIO buffer %u\n",
944                           nic_data->pio_write_vi_base + index, index);
945         }
946
947         /* Link a buffer to each TX queue */
948         efx_for_each_channel(channel, efx) {
949                 /* Extra channels, even those with TXQs (PTP), do not require
950                  * PIO resources.
951                  */
952                 if (!channel->type->want_pio)
953                         continue;
954                 efx_for_each_channel_tx_queue(tx_queue, channel) {
955                         /* We assign the PIO buffers to queues in
956                          * reverse order to allow for the following
957                          * special case.
958                          */
959                         offset = ((efx->tx_channel_offset + efx->n_tx_channels -
960                                    tx_queue->channel->channel - 1) *
961                                   efx_piobuf_size);
962                         index = offset / nic_data->piobuf_size;
963                         offset = offset % nic_data->piobuf_size;
964
965                         /* When the host page size is 4K, the first
966                          * host page in the WC mapping may be within
967                          * the same VI page as the last TX queue.  We
968                          * can only link one buffer to each VI.
969                          */
970                         if (tx_queue->queue == nic_data->pio_write_vi_base) {
971                                 BUG_ON(index != 0);
972                                 rc = 0;
973                         } else {
974                                 MCDI_SET_DWORD(inbuf,
975                                                LINK_PIOBUF_IN_PIOBUF_HANDLE,
976                                                nic_data->piobuf_handle[index]);
977                                 MCDI_SET_DWORD(inbuf,
978                                                LINK_PIOBUF_IN_TXQ_INSTANCE,
979                                                tx_queue->queue);
980                                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
981                                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
982                                                   NULL, 0, NULL);
983                         }
984
985                         if (rc) {
986                                 /* This is non-fatal; the TX path just
987                                  * won't use PIO for this queue
988                                  */
989                                 netif_err(efx, drv, efx->net_dev,
990                                           "failed to link VI %u to PIO buffer %u (%d)\n",
991                                           tx_queue->queue, index, rc);
992                                 tx_queue->piobuf = NULL;
993                         } else {
994                                 tx_queue->piobuf =
995                                         nic_data->pio_write_base +
996                                         index * efx->vi_stride + offset;
997                                 tx_queue->piobuf_offset = offset;
998                                 netif_dbg(efx, probe, efx->net_dev,
999                                           "linked VI %u to PIO buffer %u offset %x addr %p\n",
1000                                           tx_queue->queue, index,
1001                                           tx_queue->piobuf_offset,
1002                                           tx_queue->piobuf);
1003                         }
1004                 }
1005         }
1006
1007         return 0;
1008
1009 fail:
1010         /* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
1011          * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
1012          */
1013         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
1014         while (index--) {
1015                 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
1016                                nic_data->pio_write_vi_base + index);
1017                 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
1018                              inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
1019                              NULL, 0, NULL);
1020         }
1021         return rc;
1022 }
1023
1024 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1025 {
1026         struct efx_channel *channel;
1027         struct efx_tx_queue *tx_queue;
1028
1029         /* All our existing PIO buffers went away */
1030         efx_for_each_channel(channel, efx)
1031                 efx_for_each_channel_tx_queue(tx_queue, channel)
1032                         tx_queue->piobuf = NULL;
1033 }
1034
1035 #else /* !EFX_USE_PIO */
1036
1037 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
1038 {
1039         return n == 0 ? 0 : -ENOBUFS;
1040 }
1041
1042 static int efx_ef10_link_piobufs(struct efx_nic *efx)
1043 {
1044         return 0;
1045 }
1046
1047 static void efx_ef10_free_piobufs(struct efx_nic *efx)
1048 {
1049 }
1050
1051 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1052 {
1053 }
1054
1055 #endif /* EFX_USE_PIO */
1056
1057 static void efx_ef10_remove(struct efx_nic *efx)
1058 {
1059         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1060         int rc;
1061
1062 #ifdef CONFIG_SFC_SRIOV
1063         struct efx_ef10_nic_data *nic_data_pf;
1064         struct pci_dev *pci_dev_pf;
1065         struct efx_nic *efx_pf;
1066         struct ef10_vf *vf;
1067
1068         if (efx->pci_dev->is_virtfn) {
1069                 pci_dev_pf = efx->pci_dev->physfn;
1070                 if (pci_dev_pf) {
1071                         efx_pf = pci_get_drvdata(pci_dev_pf);
1072                         nic_data_pf = efx_pf->nic_data;
1073                         vf = nic_data_pf->vf + nic_data->vf_index;
1074                         vf->efx = NULL;
1075                 } else
1076                         netif_info(efx, drv, efx->net_dev,
1077                                    "Could not get the PF id from VF\n");
1078         }
1079 #endif
1080
1081         efx_ef10_cleanup_vlans(efx);
1082         mutex_destroy(&nic_data->vlan_lock);
1083
1084         efx_ptp_remove(efx);
1085
1086         efx_mcdi_mon_remove(efx);
1087
1088         efx_ef10_rx_free_indir_table(efx);
1089
1090         if (nic_data->wc_membase)
1091                 iounmap(nic_data->wc_membase);
1092
1093         rc = efx_ef10_free_vis(efx);
1094         WARN_ON(rc != 0);
1095
1096         if (!nic_data->must_restore_piobufs)
1097                 efx_ef10_free_piobufs(efx);
1098
1099         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1100         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1101
1102         efx_mcdi_detach(efx);
1103
1104         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1105         mutex_lock(&nic_data->udp_tunnels_lock);
1106         (void)efx_ef10_set_udp_tnl_ports(efx, true);
1107         mutex_unlock(&nic_data->udp_tunnels_lock);
1108
1109         mutex_destroy(&nic_data->udp_tunnels_lock);
1110
1111         efx_mcdi_fini(efx);
1112         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1113         kfree(nic_data);
1114 }
1115
1116 static int efx_ef10_probe_pf(struct efx_nic *efx)
1117 {
1118         return efx_ef10_probe(efx);
1119 }
1120
1121 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1122                             u32 *port_flags, u32 *vadaptor_flags,
1123                             unsigned int *vlan_tags)
1124 {
1125         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1126         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1127         MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1128         size_t outlen;
1129         int rc;
1130
1131         if (nic_data->datapath_caps &
1132             (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1133                 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1134                                port_id);
1135
1136                 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1137                                   outbuf, sizeof(outbuf), &outlen);
1138                 if (rc)
1139                         return rc;
1140
1141                 if (outlen < sizeof(outbuf)) {
1142                         rc = -EIO;
1143                         return rc;
1144                 }
1145         }
1146
1147         if (port_flags)
1148                 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1149         if (vadaptor_flags)
1150                 *vadaptor_flags =
1151                         MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1152         if (vlan_tags)
1153                 *vlan_tags =
1154                         MCDI_DWORD(outbuf,
1155                                    VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1156
1157         return 0;
1158 }
1159
1160 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1161 {
1162         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1163
1164         MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1165         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1166                             NULL, 0, NULL);
1167 }
1168
1169 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1170 {
1171         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1172
1173         MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1174         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1175                             NULL, 0, NULL);
1176 }
1177
1178 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1179                            unsigned int port_id, u8 *mac)
1180 {
1181         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1182
1183         MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1184         ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1185
1186         return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1187                             sizeof(inbuf), NULL, 0, NULL);
1188 }
1189
1190 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1191                            unsigned int port_id, u8 *mac)
1192 {
1193         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1194
1195         MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1196         ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1197
1198         return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1199                             sizeof(inbuf), NULL, 0, NULL);
1200 }
1201
1202 #ifdef CONFIG_SFC_SRIOV
1203 static int efx_ef10_probe_vf(struct efx_nic *efx)
1204 {
1205         int rc;
1206         struct pci_dev *pci_dev_pf;
1207
1208         /* If the parent PF has no VF data structure, it doesn't know about this
1209          * VF so fail probe.  The VF needs to be re-created.  This can happen
1210          * if the PF driver is unloaded while the VF is assigned to a guest.
1211          */
1212         pci_dev_pf = efx->pci_dev->physfn;
1213         if (pci_dev_pf) {
1214                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1215                 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1216
1217                 if (!nic_data_pf->vf) {
1218                         netif_info(efx, drv, efx->net_dev,
1219                                    "The VF cannot link to its parent PF; "
1220                                    "please destroy and re-create the VF\n");
1221                         return -EBUSY;
1222                 }
1223         }
1224
1225         rc = efx_ef10_probe(efx);
1226         if (rc)
1227                 return rc;
1228
1229         rc = efx_ef10_get_vf_index(efx);
1230         if (rc)
1231                 goto fail;
1232
1233         if (efx->pci_dev->is_virtfn) {
1234                 if (efx->pci_dev->physfn) {
1235                         struct efx_nic *efx_pf =
1236                                 pci_get_drvdata(efx->pci_dev->physfn);
1237                         struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1238                         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1239
1240                         nic_data_p->vf[nic_data->vf_index].efx = efx;
1241                         nic_data_p->vf[nic_data->vf_index].pci_dev =
1242                                 efx->pci_dev;
1243                 } else
1244                         netif_info(efx, drv, efx->net_dev,
1245                                    "Could not get the PF id from VF\n");
1246         }
1247
1248         return 0;
1249
1250 fail:
1251         efx_ef10_remove(efx);
1252         return rc;
1253 }
1254 #else
1255 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1256 {
1257         return 0;
1258 }
1259 #endif
1260
1261 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1262                               unsigned int min_vis, unsigned int max_vis)
1263 {
1264         MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1265         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1266         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1267         size_t outlen;
1268         int rc;
1269
1270         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1271         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1272         rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1273                           outbuf, sizeof(outbuf), &outlen);
1274         if (rc != 0)
1275                 return rc;
1276
1277         if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1278                 return -EIO;
1279
1280         netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1281                   MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1282
1283         nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1284         nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1285         return 0;
1286 }
1287
1288 /* Note that the failure path of this function does not free
1289  * resources, as this will be done by efx_ef10_remove().
1290  */
1291 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1292 {
1293         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1294         unsigned int uc_mem_map_size, wc_mem_map_size;
1295         unsigned int min_vis = max(EFX_TXQ_TYPES,
1296                                    efx_separate_tx_channels ? 2 : 1);
1297         unsigned int channel_vis, pio_write_vi_base, max_vis;
1298         void __iomem *membase;
1299         int rc;
1300
1301         channel_vis = max(efx->n_channels,
1302                           (efx->n_tx_channels + efx->n_extra_tx_channels) *
1303                           EFX_TXQ_TYPES);
1304
1305 #ifdef EFX_USE_PIO
1306         /* Try to allocate PIO buffers if wanted and if the full
1307          * number of PIO buffers would be sufficient to allocate one
1308          * copy-buffer per TX channel.  Failure is non-fatal, as there
1309          * are only a small number of PIO buffers shared between all
1310          * functions of the controller.
1311          */
1312         if (efx_piobuf_size != 0 &&
1313             nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1314             efx->n_tx_channels) {
1315                 unsigned int n_piobufs =
1316                         DIV_ROUND_UP(efx->n_tx_channels,
1317                                      nic_data->piobuf_size / efx_piobuf_size);
1318
1319                 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1320                 if (rc == -ENOSPC)
1321                         netif_dbg(efx, probe, efx->net_dev,
1322                                   "out of PIO buffers; cannot allocate more\n");
1323                 else if (rc == -EPERM)
1324                         netif_dbg(efx, probe, efx->net_dev,
1325                                   "not permitted to allocate PIO buffers\n");
1326                 else if (rc)
1327                         netif_err(efx, probe, efx->net_dev,
1328                                   "failed to allocate PIO buffers (%d)\n", rc);
1329                 else
1330                         netif_dbg(efx, probe, efx->net_dev,
1331                                   "allocated %u PIO buffers\n", n_piobufs);
1332         }
1333 #else
1334         nic_data->n_piobufs = 0;
1335 #endif
1336
1337         /* PIO buffers should be mapped with write-combining enabled,
1338          * and we want to make single UC and WC mappings rather than
1339          * several of each (in fact that's the only option if host
1340          * page size is >4K).  So we may allocate some extra VIs just
1341          * for writing PIO buffers through.
1342          *
1343          * The UC mapping contains (channel_vis - 1) complete VIs and the
1344          * first 4K of the next VI.  Then the WC mapping begins with
1345          * the remainder of this last VI.
1346          */
1347         uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1348                                      ER_DZ_TX_PIOBUF);
1349         if (nic_data->n_piobufs) {
1350                 /* pio_write_vi_base rounds down to give the number of complete
1351                  * VIs inside the UC mapping.
1352                  */
1353                 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1354                 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1355                                                nic_data->n_piobufs) *
1356                                               efx->vi_stride) -
1357                                    uc_mem_map_size);
1358                 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1359         } else {
1360                 pio_write_vi_base = 0;
1361                 wc_mem_map_size = 0;
1362                 max_vis = channel_vis;
1363         }
1364
1365         /* In case the last attached driver failed to free VIs, do it now */
1366         rc = efx_ef10_free_vis(efx);
1367         if (rc != 0)
1368                 return rc;
1369
1370         rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1371         if (rc != 0)
1372                 return rc;
1373
1374         if (nic_data->n_allocated_vis < channel_vis) {
1375                 netif_info(efx, drv, efx->net_dev,
1376                            "Could not allocate enough VIs to satisfy RSS"
1377                            " requirements. Performance may not be optimal.\n");
1378                 /* We didn't get the VIs to populate our channels.
1379                  * We could keep what we got but then we'd have more
1380                  * interrupts than we need.
1381                  * Instead calculate new max_channels and restart
1382                  */
1383                 efx->max_channels = nic_data->n_allocated_vis;
1384                 efx->max_tx_channels =
1385                         nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1386
1387                 efx_ef10_free_vis(efx);
1388                 return -EAGAIN;
1389         }
1390
1391         /* If we didn't get enough VIs to map all the PIO buffers, free the
1392          * PIO buffers
1393          */
1394         if (nic_data->n_piobufs &&
1395             nic_data->n_allocated_vis <
1396             pio_write_vi_base + nic_data->n_piobufs) {
1397                 netif_dbg(efx, probe, efx->net_dev,
1398                           "%u VIs are not sufficient to map %u PIO buffers\n",
1399                           nic_data->n_allocated_vis, nic_data->n_piobufs);
1400                 efx_ef10_free_piobufs(efx);
1401         }
1402
1403         /* Shrink the original UC mapping of the memory BAR */
1404         membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1405         if (!membase) {
1406                 netif_err(efx, probe, efx->net_dev,
1407                           "could not shrink memory BAR to %x\n",
1408                           uc_mem_map_size);
1409                 return -ENOMEM;
1410         }
1411         iounmap(efx->membase);
1412         efx->membase = membase;
1413
1414         /* Set up the WC mapping if needed */
1415         if (wc_mem_map_size) {
1416                 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1417                                                   uc_mem_map_size,
1418                                                   wc_mem_map_size);
1419                 if (!nic_data->wc_membase) {
1420                         netif_err(efx, probe, efx->net_dev,
1421                                   "could not allocate WC mapping of size %x\n",
1422                                   wc_mem_map_size);
1423                         return -ENOMEM;
1424                 }
1425                 nic_data->pio_write_vi_base = pio_write_vi_base;
1426                 nic_data->pio_write_base =
1427                         nic_data->wc_membase +
1428                         (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1429                          uc_mem_map_size);
1430
1431                 rc = efx_ef10_link_piobufs(efx);
1432                 if (rc)
1433                         efx_ef10_free_piobufs(efx);
1434         }
1435
1436         netif_dbg(efx, probe, efx->net_dev,
1437                   "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1438                   &efx->membase_phys, efx->membase, uc_mem_map_size,
1439                   nic_data->wc_membase, wc_mem_map_size);
1440
1441         return 0;
1442 }
1443
1444 static int efx_ef10_init_nic(struct efx_nic *efx)
1445 {
1446         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1447         int rc;
1448
1449         if (nic_data->must_check_datapath_caps) {
1450                 rc = efx_ef10_init_datapath_caps(efx);
1451                 if (rc)
1452                         return rc;
1453                 nic_data->must_check_datapath_caps = false;
1454         }
1455
1456         if (nic_data->must_realloc_vis) {
1457                 /* We cannot let the number of VIs change now */
1458                 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1459                                         nic_data->n_allocated_vis);
1460                 if (rc)
1461                         return rc;
1462                 nic_data->must_realloc_vis = false;
1463         }
1464
1465         if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1466                 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1467                 if (rc == 0) {
1468                         rc = efx_ef10_link_piobufs(efx);
1469                         if (rc)
1470                                 efx_ef10_free_piobufs(efx);
1471                 }
1472
1473                 /* Log an error on failure, but this is non-fatal.
1474                  * Permission errors are less important - we've presumably
1475                  * had the PIO buffer licence removed.
1476                  */
1477                 if (rc == -EPERM)
1478                         netif_dbg(efx, drv, efx->net_dev,
1479                                   "not permitted to restore PIO buffers\n");
1480                 else if (rc)
1481                         netif_err(efx, drv, efx->net_dev,
1482                                   "failed to restore PIO buffers (%d)\n", rc);
1483                 nic_data->must_restore_piobufs = false;
1484         }
1485
1486         /* don't fail init if RSS setup doesn't work */
1487         rc = efx->type->rx_push_rss_config(efx, false,
1488                                            efx->rss_context.rx_indir_table, NULL);
1489
1490         return 0;
1491 }
1492
1493 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1494 {
1495         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1496 #ifdef CONFIG_SFC_SRIOV
1497         unsigned int i;
1498 #endif
1499
1500         /* All our allocations have been reset */
1501         nic_data->must_realloc_vis = true;
1502         nic_data->must_restore_rss_contexts = true;
1503         nic_data->must_restore_filters = true;
1504         nic_data->must_restore_piobufs = true;
1505         efx_ef10_forget_old_piobufs(efx);
1506         efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
1507
1508         /* Driver-created vswitches and vports must be re-created */
1509         nic_data->must_probe_vswitching = true;
1510         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1511 #ifdef CONFIG_SFC_SRIOV
1512         if (nic_data->vf)
1513                 for (i = 0; i < efx->vf_count; i++)
1514                         nic_data->vf[i].vport_id = 0;
1515 #endif
1516 }
1517
1518 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1519 {
1520         if (reason == RESET_TYPE_MC_FAILURE)
1521                 return RESET_TYPE_DATAPATH;
1522
1523         return efx_mcdi_map_reset_reason(reason);
1524 }
1525
1526 static int efx_ef10_map_reset_flags(u32 *flags)
1527 {
1528         enum {
1529                 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1530                                    ETH_RESET_SHARED_SHIFT),
1531                 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1532                                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1533                                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
1534                                  ETH_RESET_SHARED_SHIFT)
1535         };
1536
1537         /* We assume for now that our PCI function is permitted to
1538          * reset everything.
1539          */
1540
1541         if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1542                 *flags &= ~EF10_RESET_MC;
1543                 return RESET_TYPE_WORLD;
1544         }
1545
1546         if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1547                 *flags &= ~EF10_RESET_PORT;
1548                 return RESET_TYPE_ALL;
1549         }
1550
1551         /* no invisible reset implemented */
1552
1553         return -EINVAL;
1554 }
1555
1556 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1557 {
1558         int rc = efx_mcdi_reset(efx, reset_type);
1559
1560         /* Unprivileged functions return -EPERM, but need to return success
1561          * here so that the datapath is brought back up.
1562          */
1563         if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1564                 rc = 0;
1565
1566         /* If it was a port reset, trigger reallocation of MC resources.
1567          * Note that on an MC reset nothing needs to be done now because we'll
1568          * detect the MC reset later and handle it then.
1569          * For an FLR, we never get an MC reset event, but the MC has reset all
1570          * resources assigned to us, so we have to trigger reallocation now.
1571          */
1572         if ((reset_type == RESET_TYPE_ALL ||
1573              reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1574                 efx_ef10_reset_mc_allocations(efx);
1575         return rc;
1576 }
1577
1578 #define EF10_DMA_STAT(ext_name, mcdi_name)                      \
1579         [EF10_STAT_ ## ext_name] =                              \
1580         { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1581 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
1582         [EF10_STAT_ ## int_name] =                              \
1583         { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1584 #define EF10_OTHER_STAT(ext_name)                               \
1585         [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1586 #define GENERIC_SW_STAT(ext_name)                               \
1587         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1588
1589 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1590         EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1591         EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1592         EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1593         EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1594         EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1595         EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1596         EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1597         EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1598         EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1599         EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1600         EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1601         EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1602         EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1603         EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1604         EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1605         EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1606         EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1607         EF10_OTHER_STAT(port_rx_good_bytes),
1608         EF10_OTHER_STAT(port_rx_bad_bytes),
1609         EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1610         EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1611         EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1612         EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1613         EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1614         EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1615         EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1616         EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1617         EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1618         EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1619         EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1620         EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1621         EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1622         EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1623         EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1624         EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1625         EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1626         EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1627         EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1628         EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1629         EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1630         EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1631         GENERIC_SW_STAT(rx_nodesc_trunc),
1632         GENERIC_SW_STAT(rx_noskb_drops),
1633         EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1634         EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1635         EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1636         EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1637         EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1638         EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1639         EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1640         EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1641         EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1642         EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1643         EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1644         EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1645         EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1646         EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1647         EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1648         EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1649         EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1650         EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1651         EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1652         EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1653         EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1654         EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1655         EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1656         EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1657         EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1658         EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1659         EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1660         EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1661         EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1662         EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1663         EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1664         EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1665         EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1666         EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1667         EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1668         EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1669         EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1670         EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1671         EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1672         EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1673         EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1674         EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1675         EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1676         EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1677         EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1678         EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1679         EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1680         EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1681         EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1682         EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1683         EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1684         EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1685 };
1686
1687 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |      \
1688                                (1ULL << EF10_STAT_port_tx_packets) |    \
1689                                (1ULL << EF10_STAT_port_tx_pause) |      \
1690                                (1ULL << EF10_STAT_port_tx_unicast) |    \
1691                                (1ULL << EF10_STAT_port_tx_multicast) |  \
1692                                (1ULL << EF10_STAT_port_tx_broadcast) |  \
1693                                (1ULL << EF10_STAT_port_rx_bytes) |      \
1694                                (1ULL <<                                 \
1695                                 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1696                                (1ULL << EF10_STAT_port_rx_good_bytes) | \
1697                                (1ULL << EF10_STAT_port_rx_bad_bytes) |  \
1698                                (1ULL << EF10_STAT_port_rx_packets) |    \
1699                                (1ULL << EF10_STAT_port_rx_good) |       \
1700                                (1ULL << EF10_STAT_port_rx_bad) |        \
1701                                (1ULL << EF10_STAT_port_rx_pause) |      \
1702                                (1ULL << EF10_STAT_port_rx_control) |    \
1703                                (1ULL << EF10_STAT_port_rx_unicast) |    \
1704                                (1ULL << EF10_STAT_port_rx_multicast) |  \
1705                                (1ULL << EF10_STAT_port_rx_broadcast) |  \
1706                                (1ULL << EF10_STAT_port_rx_lt64) |       \
1707                                (1ULL << EF10_STAT_port_rx_64) |         \
1708                                (1ULL << EF10_STAT_port_rx_65_to_127) |  \
1709                                (1ULL << EF10_STAT_port_rx_128_to_255) | \
1710                                (1ULL << EF10_STAT_port_rx_256_to_511) | \
1711                                (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1712                                (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1713                                (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1714                                (1ULL << EF10_STAT_port_rx_gtjumbo) |    \
1715                                (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1716                                (1ULL << EF10_STAT_port_rx_overflow) |   \
1717                                (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1718                                (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1719                                (1ULL << GENERIC_STAT_rx_noskb_drops))
1720
1721 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1722  * For a 10G/40G switchable port we do not expose these because they might
1723  * not include all the packets they should.
1724  * On 8000 series NICs these statistics are always provided.
1725  */
1726 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |  \
1727                                  (1ULL << EF10_STAT_port_tx_lt64) |     \
1728                                  (1ULL << EF10_STAT_port_tx_64) |       \
1729                                  (1ULL << EF10_STAT_port_tx_65_to_127) |\
1730                                  (1ULL << EF10_STAT_port_tx_128_to_255) |\
1731                                  (1ULL << EF10_STAT_port_tx_256_to_511) |\
1732                                  (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1733                                  (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1734                                  (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1735
1736 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1737  * switchable port we do expose these because the errors will otherwise
1738  * be silent.
1739  */
1740 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1741                                   (1ULL << EF10_STAT_port_rx_length_error))
1742
1743 /* These statistics are only provided if the firmware supports the
1744  * capability PM_AND_RXDP_COUNTERS.
1745  */
1746 #define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
1747         (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |              \
1748         (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |            \
1749         (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |               \
1750         (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |             \
1751         (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |                      \
1752         (1ULL << EF10_STAT_port_rx_pm_discard_qbb) |                    \
1753         (1ULL << EF10_STAT_port_rx_pm_discard_mapping) |                \
1754         (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |             \
1755         (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |             \
1756         (1ULL << EF10_STAT_port_rx_dp_streaming_packets) |              \
1757         (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |                      \
1758         (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1759
1760 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1761  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1762  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1763  * These bits are in the second u64 of the raw mask.
1764  */
1765 #define EF10_FEC_STAT_MASK (                                            \
1766         (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |             \
1767         (1ULL << (EF10_STAT_fec_corrected_errors - 64)) |               \
1768         (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |        \
1769         (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |        \
1770         (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |        \
1771         (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1772
1773 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1774  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1775  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1776  * These bits are in the second u64 of the raw mask.
1777  */
1778 #define EF10_CTPIO_STAT_MASK (                                          \
1779         (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |             \
1780         (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |           \
1781         (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |           \
1782         (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |                \
1783         (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |               \
1784         (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |                 \
1785         (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |            \
1786         (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |             \
1787         (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |              \
1788         (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |          \
1789         (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |         \
1790         (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |                \
1791         (1ULL << (EF10_STAT_ctpio_success - 64)) |                      \
1792         (1ULL << (EF10_STAT_ctpio_fallback - 64)) |                     \
1793         (1ULL << (EF10_STAT_ctpio_poison - 64)) |                       \
1794         (1ULL << (EF10_STAT_ctpio_erase - 64)))
1795
1796 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1797 {
1798         u64 raw_mask = HUNT_COMMON_STAT_MASK;
1799         u32 port_caps = efx_mcdi_phy_get_caps(efx);
1800         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1801
1802         if (!(efx->mcdi->fn_flags &
1803               1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1804                 return 0;
1805
1806         if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1807                 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1808                 /* 8000 series have everything even at 40G */
1809                 if (nic_data->datapath_caps2 &
1810                     (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1811                         raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1812         } else {
1813                 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1814         }
1815
1816         if (nic_data->datapath_caps &
1817             (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1818                 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1819
1820         return raw_mask;
1821 }
1822
1823 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1824 {
1825         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1826         u64 raw_mask[2];
1827
1828         raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1829
1830         /* Only show vadaptor stats when EVB capability is present */
1831         if (nic_data->datapath_caps &
1832             (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1833                 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1834                 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1835         } else {
1836                 raw_mask[1] = 0;
1837         }
1838         /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1839         if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1840                 raw_mask[1] |= EF10_FEC_STAT_MASK;
1841
1842         /* CTPIO stats appear in V3. Only show them on devices that actually
1843          * support CTPIO. Although this driver doesn't use CTPIO others might,
1844          * and we may be reporting the stats for the underlying port.
1845          */
1846         if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1847             (nic_data->datapath_caps2 &
1848              (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1849                 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1850
1851 #if BITS_PER_LONG == 64
1852         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1853         mask[0] = raw_mask[0];
1854         mask[1] = raw_mask[1];
1855 #else
1856         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1857         mask[0] = raw_mask[0] & 0xffffffff;
1858         mask[1] = raw_mask[0] >> 32;
1859         mask[2] = raw_mask[1] & 0xffffffff;
1860 #endif
1861 }
1862
1863 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1864 {
1865         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1866
1867         efx_ef10_get_stat_mask(efx, mask);
1868         return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1869                                       mask, names);
1870 }
1871
1872 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1873                                            struct rtnl_link_stats64 *core_stats)
1874 {
1875         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1876         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1877         u64 *stats = nic_data->stats;
1878         size_t stats_count = 0, index;
1879
1880         efx_ef10_get_stat_mask(efx, mask);
1881
1882         if (full_stats) {
1883                 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1884                         if (efx_ef10_stat_desc[index].name) {
1885                                 *full_stats++ = stats[index];
1886                                 ++stats_count;
1887                         }
1888                 }
1889         }
1890
1891         if (!core_stats)
1892                 return stats_count;
1893
1894         if (nic_data->datapath_caps &
1895                         1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1896                 /* Use vadaptor stats. */
1897                 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1898                                          stats[EF10_STAT_rx_multicast] +
1899                                          stats[EF10_STAT_rx_broadcast];
1900                 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1901                                          stats[EF10_STAT_tx_multicast] +
1902                                          stats[EF10_STAT_tx_broadcast];
1903                 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1904                                        stats[EF10_STAT_rx_multicast_bytes] +
1905                                        stats[EF10_STAT_rx_broadcast_bytes];
1906                 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1907                                        stats[EF10_STAT_tx_multicast_bytes] +
1908                                        stats[EF10_STAT_tx_broadcast_bytes];
1909                 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1910                                          stats[GENERIC_STAT_rx_noskb_drops];
1911                 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1912                 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1913                 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1914                 core_stats->rx_errors = core_stats->rx_crc_errors;
1915                 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1916         } else {
1917                 /* Use port stats. */
1918                 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1919                 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1920                 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1921                 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1922                 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1923                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
1924                                          stats[GENERIC_STAT_rx_noskb_drops];
1925                 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1926                 core_stats->rx_length_errors =
1927                                 stats[EF10_STAT_port_rx_gtjumbo] +
1928                                 stats[EF10_STAT_port_rx_length_error];
1929                 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1930                 core_stats->rx_frame_errors =
1931                                 stats[EF10_STAT_port_rx_align_error];
1932                 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1933                 core_stats->rx_errors = (core_stats->rx_length_errors +
1934                                          core_stats->rx_crc_errors +
1935                                          core_stats->rx_frame_errors);
1936         }
1937
1938         return stats_count;
1939 }
1940
1941 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1942 {
1943         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1944         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1945         __le64 generation_start, generation_end;
1946         u64 *stats = nic_data->stats;
1947         __le64 *dma_stats;
1948
1949         efx_ef10_get_stat_mask(efx, mask);
1950
1951         dma_stats = efx->stats_buffer.addr;
1952
1953         generation_end = dma_stats[efx->num_mac_stats - 1];
1954         if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1955                 return 0;
1956         rmb();
1957         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1958                              stats, efx->stats_buffer.addr, false);
1959         rmb();
1960         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1961         if (generation_end != generation_start)
1962                 return -EAGAIN;
1963
1964         /* Update derived statistics */
1965         efx_nic_fix_nodesc_drop_stat(efx,
1966                                      &stats[EF10_STAT_port_rx_nodesc_drops]);
1967         stats[EF10_STAT_port_rx_good_bytes] =
1968                 stats[EF10_STAT_port_rx_bytes] -
1969                 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1970         efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1971                              stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1972         efx_update_sw_stats(efx, stats);
1973         return 0;
1974 }
1975
1976
1977 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1978                                        struct rtnl_link_stats64 *core_stats)
1979 {
1980         int retry;
1981
1982         /* If we're unlucky enough to read statistics during the DMA, wait
1983          * up to 10ms for it to finish (typically takes <500us)
1984          */
1985         for (retry = 0; retry < 100; ++retry) {
1986                 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1987                         break;
1988                 udelay(100);
1989         }
1990
1991         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1992 }
1993
1994 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1995 {
1996         MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1997         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1998         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1999         __le64 generation_start, generation_end;
2000         u64 *stats = nic_data->stats;
2001         u32 dma_len = efx->num_mac_stats * sizeof(u64);
2002         struct efx_buffer stats_buf;
2003         __le64 *dma_stats;
2004         int rc;
2005
2006         spin_unlock_bh(&efx->stats_lock);
2007
2008         if (in_interrupt()) {
2009                 /* If in atomic context, cannot update stats.  Just update the
2010                  * software stats and return so the caller can continue.
2011                  */
2012                 spin_lock_bh(&efx->stats_lock);
2013                 efx_update_sw_stats(efx, stats);
2014                 return 0;
2015         }
2016
2017         efx_ef10_get_stat_mask(efx, mask);
2018
2019         rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
2020         if (rc) {
2021                 spin_lock_bh(&efx->stats_lock);
2022                 return rc;
2023         }
2024
2025         dma_stats = stats_buf.addr;
2026         dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
2027
2028         MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
2029         MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
2030                               MAC_STATS_IN_DMA, 1);
2031         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
2032         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2033
2034         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
2035                                 NULL, 0, NULL);
2036         spin_lock_bh(&efx->stats_lock);
2037         if (rc) {
2038                 /* Expect ENOENT if DMA queues have not been set up */
2039                 if (rc != -ENOENT || atomic_read(&efx->active_queues))
2040                         efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
2041                                                sizeof(inbuf), NULL, 0, rc);
2042                 goto out;
2043         }
2044
2045         generation_end = dma_stats[efx->num_mac_stats - 1];
2046         if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
2047                 WARN_ON_ONCE(1);
2048                 goto out;
2049         }
2050         rmb();
2051         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
2052                              stats, stats_buf.addr, false);
2053         rmb();
2054         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
2055         if (generation_end != generation_start) {
2056                 rc = -EAGAIN;
2057                 goto out;
2058         }
2059
2060         efx_update_sw_stats(efx, stats);
2061 out:
2062         efx_nic_free_buffer(efx, &stats_buf);
2063         return rc;
2064 }
2065
2066 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
2067                                        struct rtnl_link_stats64 *core_stats)
2068 {
2069         if (efx_ef10_try_update_nic_stats_vf(efx))
2070                 return 0;
2071
2072         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
2073 }
2074
2075 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
2076 {
2077         struct efx_nic *efx = channel->efx;
2078         unsigned int mode, usecs;
2079         efx_dword_t timer_cmd;
2080
2081         if (channel->irq_moderation_us) {
2082                 mode = 3;
2083                 usecs = channel->irq_moderation_us;
2084         } else {
2085                 mode = 0;
2086                 usecs = 0;
2087         }
2088
2089         if (EFX_EF10_WORKAROUND_61265(efx)) {
2090                 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
2091                 unsigned int ns = usecs * 1000;
2092
2093                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2094                                channel->channel);
2095                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2096                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2097                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2098
2099                 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2100                                    inbuf, sizeof(inbuf), 0, NULL, 0);
2101         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
2102                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2103
2104                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2105                                      EFE_DD_EVQ_IND_TIMER_FLAGS,
2106                                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
2107                                      ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2108                 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2109                                 channel->channel);
2110         } else {
2111                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2112
2113                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2114                                      ERF_DZ_TC_TIMER_VAL, ticks,
2115                                      ERF_FZ_TC_TMR_REL_VAL, ticks);
2116                 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2117                                 channel->channel);
2118         }
2119 }
2120
2121 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2122                                 struct ethtool_wolinfo *wol) {}
2123
2124 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2125 {
2126         return -EOPNOTSUPP;
2127 }
2128
2129 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2130 {
2131         wol->supported = 0;
2132         wol->wolopts = 0;
2133         memset(&wol->sopass, 0, sizeof(wol->sopass));
2134 }
2135
2136 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2137 {
2138         if (type != 0)
2139                 return -EINVAL;
2140         return 0;
2141 }
2142
2143 static void efx_ef10_mcdi_request(struct efx_nic *efx,
2144                                   const efx_dword_t *hdr, size_t hdr_len,
2145                                   const efx_dword_t *sdu, size_t sdu_len)
2146 {
2147         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2148         u8 *pdu = nic_data->mcdi_buf.addr;
2149
2150         memcpy(pdu, hdr, hdr_len);
2151         memcpy(pdu + hdr_len, sdu, sdu_len);
2152         wmb();
2153
2154         /* The hardware provides 'low' and 'high' (doorbell) registers
2155          * for passing the 64-bit address of an MCDI request to
2156          * firmware.  However the dwords are swapped by firmware.  The
2157          * least significant bits of the doorbell are then 0 for all
2158          * MCDI requests due to alignment.
2159          */
2160         _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2161                     ER_DZ_MC_DB_LWRD);
2162         _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2163                     ER_DZ_MC_DB_HWRD);
2164 }
2165
2166 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2167 {
2168         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2169         const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2170
2171         rmb();
2172         return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2173 }
2174
2175 static void
2176 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2177                             size_t offset, size_t outlen)
2178 {
2179         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2180         const u8 *pdu = nic_data->mcdi_buf.addr;
2181
2182         memcpy(outbuf, pdu + offset, outlen);
2183 }
2184
2185 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2186 {
2187         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2188
2189         /* All our allocations have been reset */
2190         efx_ef10_reset_mc_allocations(efx);
2191
2192         /* The datapath firmware might have been changed */
2193         nic_data->must_check_datapath_caps = true;
2194
2195         /* MAC statistics have been cleared on the NIC; clear the local
2196          * statistic that we update with efx_update_diff_stat().
2197          */
2198         nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2199 }
2200
2201 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2202 {
2203         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2204         int rc;
2205
2206         rc = efx_ef10_get_warm_boot_count(efx);
2207         if (rc < 0) {
2208                 /* The firmware is presumably in the process of
2209                  * rebooting.  However, we are supposed to report each
2210                  * reboot just once, so we must only do that once we
2211                  * can read and store the updated warm boot count.
2212                  */
2213                 return 0;
2214         }
2215
2216         if (rc == nic_data->warm_boot_count)
2217                 return 0;
2218
2219         nic_data->warm_boot_count = rc;
2220         efx_ef10_mcdi_reboot_detected(efx);
2221
2222         return -EIO;
2223 }
2224
2225 /* Handle an MSI interrupt
2226  *
2227  * Handle an MSI hardware interrupt.  This routine schedules event
2228  * queue processing.  No interrupt acknowledgement cycle is necessary.
2229  * Also, we never need to check that the interrupt is for us, since
2230  * MSI interrupts cannot be shared.
2231  */
2232 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2233 {
2234         struct efx_msi_context *context = dev_id;
2235         struct efx_nic *efx = context->efx;
2236
2237         netif_vdbg(efx, intr, efx->net_dev,
2238                    "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2239
2240         if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2241                 /* Note test interrupts */
2242                 if (context->index == efx->irq_level)
2243                         efx->last_irq_cpu = raw_smp_processor_id();
2244
2245                 /* Schedule processing of the channel */
2246                 efx_schedule_channel_irq(efx->channel[context->index]);
2247         }
2248
2249         return IRQ_HANDLED;
2250 }
2251
2252 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2253 {
2254         struct efx_nic *efx = dev_id;
2255         bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2256         struct efx_channel *channel;
2257         efx_dword_t reg;
2258         u32 queues;
2259
2260         /* Read the ISR which also ACKs the interrupts */
2261         efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2262         queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2263
2264         if (queues == 0)
2265                 return IRQ_NONE;
2266
2267         if (likely(soft_enabled)) {
2268                 /* Note test interrupts */
2269                 if (queues & (1U << efx->irq_level))
2270                         efx->last_irq_cpu = raw_smp_processor_id();
2271
2272                 efx_for_each_channel(channel, efx) {
2273                         if (queues & 1)
2274                                 efx_schedule_channel_irq(channel);
2275                         queues >>= 1;
2276                 }
2277         }
2278
2279         netif_vdbg(efx, intr, efx->net_dev,
2280                    "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2281                    irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2282
2283         return IRQ_HANDLED;
2284 }
2285
2286 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2287 {
2288         MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2289
2290         if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2291                                     NULL) == 0)
2292                 return -ENOTSUPP;
2293
2294         BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2295
2296         MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2297         return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2298                             inbuf, sizeof(inbuf), NULL, 0, NULL);
2299 }
2300
2301 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2302 {
2303         return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2304                                     (tx_queue->ptr_mask + 1) *
2305                                     sizeof(efx_qword_t),
2306                                     GFP_KERNEL);
2307 }
2308
2309 /* This writes to the TX_DESC_WPTR and also pushes data */
2310 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2311                                          const efx_qword_t *txd)
2312 {
2313         unsigned int write_ptr;
2314         efx_oword_t reg;
2315
2316         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2317         EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2318         reg.qword[0] = *txd;
2319         efx_writeo_page(tx_queue->efx, &reg,
2320                         ER_DZ_TX_DESC_UPD, tx_queue->queue);
2321 }
2322
2323 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2324  */
2325 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2326                                 struct sk_buff *skb,
2327                                 bool *data_mapped)
2328 {
2329         struct efx_tx_buffer *buffer;
2330         struct tcphdr *tcp;
2331         struct iphdr *ip;
2332
2333         u16 ipv4_id;
2334         u32 seqnum;
2335         u32 mss;
2336
2337         EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2338
2339         mss = skb_shinfo(skb)->gso_size;
2340
2341         if (unlikely(mss < 4)) {
2342                 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2343                 return -EINVAL;
2344         }
2345
2346         ip = ip_hdr(skb);
2347         if (ip->version == 4) {
2348                 /* Modify IPv4 header if needed. */
2349                 ip->tot_len = 0;
2350                 ip->check = 0;
2351                 ipv4_id = ntohs(ip->id);
2352         } else {
2353                 /* Modify IPv6 header if needed. */
2354                 struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2355
2356                 ipv6->payload_len = 0;
2357                 ipv4_id = 0;
2358         }
2359
2360         tcp = tcp_hdr(skb);
2361         seqnum = ntohl(tcp->seq);
2362
2363         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2364
2365         buffer->flags = EFX_TX_BUF_OPTION;
2366         buffer->len = 0;
2367         buffer->unmap_len = 0;
2368         EFX_POPULATE_QWORD_5(buffer->option,
2369                         ESF_DZ_TX_DESC_IS_OPT, 1,
2370                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2371                         ESF_DZ_TX_TSO_OPTION_TYPE,
2372                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2373                         ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2374                         ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2375                         );
2376         ++tx_queue->insert_count;
2377
2378         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2379
2380         buffer->flags = EFX_TX_BUF_OPTION;
2381         buffer->len = 0;
2382         buffer->unmap_len = 0;
2383         EFX_POPULATE_QWORD_4(buffer->option,
2384                         ESF_DZ_TX_DESC_IS_OPT, 1,
2385                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2386                         ESF_DZ_TX_TSO_OPTION_TYPE,
2387                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2388                         ESF_DZ_TX_TSO_TCP_MSS, mss
2389                         );
2390         ++tx_queue->insert_count;
2391
2392         return 0;
2393 }
2394
2395 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2396 {
2397         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2398         u32 tso_versions = 0;
2399
2400         if (nic_data->datapath_caps &
2401             (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2402                 tso_versions |= BIT(1);
2403         if (nic_data->datapath_caps2 &
2404             (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2405                 tso_versions |= BIT(2);
2406         return tso_versions;
2407 }
2408
2409 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2410 {
2411         MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2412                                                        EFX_BUF_SIZE));
2413         bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2414         size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2415         struct efx_channel *channel = tx_queue->channel;
2416         struct efx_nic *efx = tx_queue->efx;
2417         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2418         bool tso_v2 = false;
2419         size_t inlen;
2420         dma_addr_t dma_addr;
2421         efx_qword_t *txd;
2422         int rc;
2423         int i;
2424         BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2425
2426         /* Only attempt to enable TX timestamping if we have the license for it,
2427          * otherwise TXQ init will fail
2428          */
2429         if (!(nic_data->licensed_features &
2430               (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2431                 tx_queue->timestamping = false;
2432                 /* Disable sync events on this channel. */
2433                 if (efx->type->ptp_set_ts_sync_events)
2434                         efx->type->ptp_set_ts_sync_events(efx, false, false);
2435         }
2436
2437         /* TSOv2 is a limited resource that can only be configured on a limited
2438          * number of queues. TSO without checksum offload is not really a thing,
2439          * so we only enable it for those queues.
2440          * TSOv2 cannot be used with Hardware timestamping.
2441          */
2442         if (csum_offload && (nic_data->datapath_caps2 &
2443                         (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2444             !tx_queue->timestamping) {
2445                 tso_v2 = true;
2446                 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2447                                 channel->channel);
2448         }
2449
2450         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2451         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2452         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2453         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2454         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2455         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2456
2457         dma_addr = tx_queue->txd.buf.dma_addr;
2458
2459         netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2460                   tx_queue->queue, entries, (u64)dma_addr);
2461
2462         for (i = 0; i < entries; ++i) {
2463                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2464                 dma_addr += EFX_BUF_SIZE;
2465         }
2466
2467         inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2468
2469         do {
2470                 MCDI_POPULATE_DWORD_4(inbuf, INIT_TXQ_IN_FLAGS,
2471                                 /* This flag was removed from mcdi_pcol.h for
2472                                  * the non-_EXT version of INIT_TXQ.  However,
2473                                  * firmware still honours it.
2474                                  */
2475                                 INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2476                                 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2477                                 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload,
2478                                 INIT_TXQ_EXT_IN_FLAG_TIMESTAMP,
2479                                                 tx_queue->timestamping);
2480
2481                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2482                                         NULL, 0, NULL);
2483                 if (rc == -ENOSPC && tso_v2) {
2484                         /* Retry without TSOv2 if we're short on contexts. */
2485                         tso_v2 = false;
2486                         netif_warn(efx, probe, efx->net_dev,
2487                                    "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2488                 } else if (rc) {
2489                         efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2490                                                MC_CMD_INIT_TXQ_EXT_IN_LEN,
2491                                                NULL, 0, rc);
2492                         goto fail;
2493                 }
2494         } while (rc);
2495
2496         /* A previous user of this TX queue might have set us up the
2497          * bomb by writing a descriptor to the TX push collector but
2498          * not the doorbell.  (Each collector belongs to a port, not a
2499          * queue or function, so cannot easily be reset.)  We must
2500          * attempt to push a no-op descriptor in its place.
2501          */
2502         tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2503         tx_queue->insert_count = 1;
2504         txd = efx_tx_desc(tx_queue, 0);
2505         EFX_POPULATE_QWORD_5(*txd,
2506                              ESF_DZ_TX_DESC_IS_OPT, true,
2507                              ESF_DZ_TX_OPTION_TYPE,
2508                              ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2509                              ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2510                              ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2511                              ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2512         tx_queue->write_count = 1;
2513
2514         if (tso_v2) {
2515                 tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2516                 tx_queue->tso_version = 2;
2517         } else if (nic_data->datapath_caps &
2518                         (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2519                 tx_queue->tso_version = 1;
2520         }
2521
2522         wmb();
2523         efx_ef10_push_tx_desc(tx_queue, txd);
2524
2525         return;
2526
2527 fail:
2528         netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2529                     tx_queue->queue);
2530 }
2531
2532 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2533 {
2534         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2535         MCDI_DECLARE_BUF_ERR(outbuf);
2536         struct efx_nic *efx = tx_queue->efx;
2537         size_t outlen;
2538         int rc;
2539
2540         MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2541                        tx_queue->queue);
2542
2543         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2544                           outbuf, sizeof(outbuf), &outlen);
2545
2546         if (rc && rc != -EALREADY)
2547                 goto fail;
2548
2549         return;
2550
2551 fail:
2552         efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2553                                outbuf, outlen, rc);
2554 }
2555
2556 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2557 {
2558         efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2559 }
2560
2561 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2562 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2563 {
2564         unsigned int write_ptr;
2565         efx_dword_t reg;
2566
2567         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2568         EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2569         efx_writed_page(tx_queue->efx, &reg,
2570                         ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2571 }
2572
2573 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2574
2575 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2576                                           dma_addr_t dma_addr, unsigned int len)
2577 {
2578         if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2579                 /* If we need to break across multiple descriptors we should
2580                  * stop at a page boundary. This assumes the length limit is
2581                  * greater than the page size.
2582                  */
2583                 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2584
2585                 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2586                 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2587         }
2588
2589         return len;
2590 }
2591
2592 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2593 {
2594         unsigned int old_write_count = tx_queue->write_count;
2595         struct efx_tx_buffer *buffer;
2596         unsigned int write_ptr;
2597         efx_qword_t *txd;
2598
2599         tx_queue->xmit_more_available = false;
2600         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2601                 return;
2602
2603         do {
2604                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2605                 buffer = &tx_queue->buffer[write_ptr];
2606                 txd = efx_tx_desc(tx_queue, write_ptr);
2607                 ++tx_queue->write_count;
2608
2609                 /* Create TX descriptor ring entry */
2610                 if (buffer->flags & EFX_TX_BUF_OPTION) {
2611                         *txd = buffer->option;
2612                         if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2613                                 /* PIO descriptor */
2614                                 tx_queue->packet_write_count = tx_queue->write_count;
2615                 } else {
2616                         tx_queue->packet_write_count = tx_queue->write_count;
2617                         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2618                         EFX_POPULATE_QWORD_3(
2619                                 *txd,
2620                                 ESF_DZ_TX_KER_CONT,
2621                                 buffer->flags & EFX_TX_BUF_CONT,
2622                                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2623                                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2624                 }
2625         } while (tx_queue->write_count != tx_queue->insert_count);
2626
2627         wmb(); /* Ensure descriptors are written before they are fetched */
2628
2629         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2630                 txd = efx_tx_desc(tx_queue,
2631                                   old_write_count & tx_queue->ptr_mask);
2632                 efx_ef10_push_tx_desc(tx_queue, txd);
2633                 ++tx_queue->pushes;
2634         } else {
2635                 efx_ef10_notify_tx_desc(tx_queue);
2636         }
2637 }
2638
2639 #define RSS_MODE_HASH_ADDRS     (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2640                                  1 << RSS_MODE_HASH_DST_ADDR_LBN)
2641 #define RSS_MODE_HASH_PORTS     (1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2642                                  1 << RSS_MODE_HASH_DST_PORT_LBN)
2643 #define RSS_CONTEXT_FLAGS_DEFAULT       (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2644                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2645                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2646                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2647                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2648                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2649                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2650                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2651                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2652                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2653
2654 static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2655 {
2656         /* Firmware had a bug (sfc bug 61952) where it would not actually
2657          * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2658          * This meant that it would always contain whatever was previously
2659          * in the MCDI buffer.  Fortunately, all firmware versions with
2660          * this bug have the same default flags value for a newly-allocated
2661          * RSS context, and the only time we want to get the flags is just
2662          * after allocating.  Moreover, the response has a 32-bit hole
2663          * where the context ID would be in the request, so we can use an
2664          * overlength buffer in the request and pre-fill the flags field
2665          * with what we believe the default to be.  Thus if the firmware
2666          * has the bug, it will leave our pre-filled value in the flags
2667          * field of the response, and we will get the right answer.
2668          *
2669          * However, this does mean that this function should NOT be used if
2670          * the RSS context flags might not be their defaults - it is ONLY
2671          * reliably correct for a newly-allocated RSS context.
2672          */
2673         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2674         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2675         size_t outlen;
2676         int rc;
2677
2678         /* Check we have a hole for the context ID */
2679         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2680         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2681         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2682                        RSS_CONTEXT_FLAGS_DEFAULT);
2683         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2684                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2685         if (rc == 0) {
2686                 if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2687                         rc = -EIO;
2688                 else
2689                         *flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2690         }
2691         return rc;
2692 }
2693
2694 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2695  * If we fail, we just leave the RSS context at its default hash settings,
2696  * which is safe but may slightly reduce performance.
2697  * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2698  * just need to set the UDP ports flags (for both IP versions).
2699  */
2700 static void efx_ef10_set_rss_flags(struct efx_nic *efx,
2701                                    struct efx_rss_context *ctx)
2702 {
2703         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2704         u32 flags;
2705
2706         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2707
2708         if (efx_ef10_get_rss_flags(efx, ctx->context_id, &flags) != 0)
2709                 return;
2710         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID,
2711                        ctx->context_id);
2712         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2713         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2714         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2715         if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2716                           NULL, 0, NULL))
2717                 /* Succeeded, so UDP 4-tuple is now enabled */
2718                 ctx->rx_hash_udp_4tuple = true;
2719 }
2720
2721 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, bool exclusive,
2722                                       struct efx_rss_context *ctx,
2723                                       unsigned *context_size)
2724 {
2725         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2726         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2727         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2728         size_t outlen;
2729         int rc;
2730         u32 alloc_type = exclusive ?
2731                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2732                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2733         unsigned rss_spread = exclusive ?
2734                                 efx->rss_spread :
2735                                 min(rounddown_pow_of_two(efx->rss_spread),
2736                                     EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2737
2738         if (!exclusive && rss_spread == 1) {
2739                 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2740                 if (context_size)
2741                         *context_size = 1;
2742                 return 0;
2743         }
2744
2745         if (nic_data->datapath_caps &
2746             1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2747                 return -EOPNOTSUPP;
2748
2749         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2750                        nic_data->vport_id);
2751         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2752         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2753
2754         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2755                 outbuf, sizeof(outbuf), &outlen);
2756         if (rc != 0)
2757                 return rc;
2758
2759         if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2760                 return -EIO;
2761
2762         ctx->context_id = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2763
2764         if (context_size)
2765                 *context_size = rss_spread;
2766
2767         if (nic_data->datapath_caps &
2768             1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2769                 efx_ef10_set_rss_flags(efx, ctx);
2770
2771         return 0;
2772 }
2773
2774 static int efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2775 {
2776         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2777
2778         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2779                        context);
2780         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2781                             NULL, 0, NULL);
2782 }
2783
2784 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2785                                        const u32 *rx_indir_table, const u8 *key)
2786 {
2787         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2788         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2789         int i, rc;
2790
2791         MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2792                        context);
2793         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
2794                      MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2795
2796         /* This iterates over the length of efx->rss_context.rx_indir_table, but
2797          * copies bytes from rx_indir_table.  That's because the latter is a
2798          * pointer rather than an array, but should have the same length.
2799          * The efx->rss_context.rx_hash_key loop below is similar.
2800          */
2801         for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); ++i)
2802                 MCDI_PTR(tablebuf,
2803                          RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2804                                 (u8) rx_indir_table[i];
2805
2806         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2807                           sizeof(tablebuf), NULL, 0, NULL);
2808         if (rc != 0)
2809                 return rc;
2810
2811         MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2812                        context);
2813         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_hash_key) !=
2814                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2815         for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_hash_key); ++i)
2816                 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2817
2818         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2819                             sizeof(keybuf), NULL, 0, NULL);
2820 }
2821
2822 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2823 {
2824         int rc;
2825
2826         if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID) {
2827                 rc = efx_ef10_free_rss_context(efx, efx->rss_context.context_id);
2828                 WARN_ON(rc != 0);
2829         }
2830         efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2831 }
2832
2833 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2834                                               unsigned *context_size)
2835 {
2836         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2837         int rc = efx_ef10_alloc_rss_context(efx, false, &efx->rss_context,
2838                                             context_size);
2839
2840         if (rc != 0)
2841                 return rc;
2842
2843         nic_data->rx_rss_context_exclusive = false;
2844         efx_set_default_rx_indir_table(efx, &efx->rss_context);
2845         return 0;
2846 }
2847
2848 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2849                                                  const u32 *rx_indir_table,
2850                                                  const u8 *key)
2851 {
2852         u32 old_rx_rss_context = efx->rss_context.context_id;
2853         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2854         int rc;
2855
2856         if (efx->rss_context.context_id == EFX_EF10_RSS_CONTEXT_INVALID ||
2857             !nic_data->rx_rss_context_exclusive) {
2858                 rc = efx_ef10_alloc_rss_context(efx, true, &efx->rss_context,
2859                                                 NULL);
2860                 if (rc == -EOPNOTSUPP)
2861                         return rc;
2862                 else if (rc != 0)
2863                         goto fail1;
2864         }
2865
2866         rc = efx_ef10_populate_rss_table(efx, efx->rss_context.context_id,
2867                                          rx_indir_table, key);
2868         if (rc != 0)
2869                 goto fail2;
2870
2871         if (efx->rss_context.context_id != old_rx_rss_context &&
2872             old_rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2873                 WARN_ON(efx_ef10_free_rss_context(efx, old_rx_rss_context) != 0);
2874         nic_data->rx_rss_context_exclusive = true;
2875         if (rx_indir_table != efx->rss_context.rx_indir_table)
2876                 memcpy(efx->rss_context.rx_indir_table, rx_indir_table,
2877                        sizeof(efx->rss_context.rx_indir_table));
2878         if (key != efx->rss_context.rx_hash_key)
2879                 memcpy(efx->rss_context.rx_hash_key, key,
2880                        efx->type->rx_hash_key_size);
2881
2882         return 0;
2883
2884 fail2:
2885         if (old_rx_rss_context != efx->rss_context.context_id) {
2886                 WARN_ON(efx_ef10_free_rss_context(efx, efx->rss_context.context_id) != 0);
2887                 efx->rss_context.context_id = old_rx_rss_context;
2888         }
2889 fail1:
2890         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2891         return rc;
2892 }
2893
2894 static int efx_ef10_rx_push_rss_context_config(struct efx_nic *efx,
2895                                                struct efx_rss_context *ctx,
2896                                                const u32 *rx_indir_table,
2897                                                const u8 *key)
2898 {
2899         int rc;
2900
2901         WARN_ON(!mutex_is_locked(&efx->rss_lock));
2902
2903         if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
2904                 rc = efx_ef10_alloc_rss_context(efx, true, ctx, NULL);
2905                 if (rc)
2906                         return rc;
2907         }
2908
2909         if (!rx_indir_table) /* Delete this context */
2910                 return efx_ef10_free_rss_context(efx, ctx->context_id);
2911
2912         rc = efx_ef10_populate_rss_table(efx, ctx->context_id,
2913                                          rx_indir_table, key);
2914         if (rc)
2915                 return rc;
2916
2917         memcpy(ctx->rx_indir_table, rx_indir_table,
2918                sizeof(efx->rss_context.rx_indir_table));
2919         memcpy(ctx->rx_hash_key, key, efx->type->rx_hash_key_size);
2920
2921         return 0;
2922 }
2923
2924 static int efx_ef10_rx_pull_rss_context_config(struct efx_nic *efx,
2925                                                struct efx_rss_context *ctx)
2926 {
2927         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2928         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2929         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2930         size_t outlen;
2931         int rc, i;
2932
2933         WARN_ON(!mutex_is_locked(&efx->rss_lock));
2934
2935         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2936                      MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2937
2938         if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID)
2939                 return -ENOENT;
2940
2941         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2942                        ctx->context_id);
2943         BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_indir_table) !=
2944                      MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2945         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2946                           tablebuf, sizeof(tablebuf), &outlen);
2947         if (rc != 0)
2948                 return rc;
2949
2950         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2951                 return -EIO;
2952
2953         for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
2954                 ctx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2955                                 RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2956
2957         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2958                        ctx->context_id);
2959         BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_hash_key) !=
2960                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2961         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2962                           keybuf, sizeof(keybuf), &outlen);
2963         if (rc != 0)
2964                 return rc;
2965
2966         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2967                 return -EIO;
2968
2969         for (i = 0; i < ARRAY_SIZE(ctx->rx_hash_key); ++i)
2970                 ctx->rx_hash_key[i] = MCDI_PTR(
2971                                 keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2972
2973         return 0;
2974 }
2975
2976 static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2977 {
2978         int rc;
2979
2980         mutex_lock(&efx->rss_lock);
2981         rc = efx_ef10_rx_pull_rss_context_config(efx, &efx->rss_context);
2982         mutex_unlock(&efx->rss_lock);
2983         return rc;
2984 }
2985
2986 static void efx_ef10_rx_restore_rss_contexts(struct efx_nic *efx)
2987 {
2988         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2989         struct efx_rss_context *ctx;
2990         int rc;
2991
2992         WARN_ON(!mutex_is_locked(&efx->rss_lock));
2993
2994         if (!nic_data->must_restore_rss_contexts)
2995                 return;
2996
2997         list_for_each_entry(ctx, &efx->rss_context.list, list) {
2998                 /* previous NIC RSS context is gone */
2999                 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
3000                 /* so try to allocate a new one */
3001                 rc = efx_ef10_rx_push_rss_context_config(efx, ctx,
3002                                                          ctx->rx_indir_table,
3003                                                          ctx->rx_hash_key);
3004                 if (rc)
3005                         netif_warn(efx, probe, efx->net_dev,
3006                                    "failed to restore RSS context %u, rc=%d"
3007                                    "; RSS filters may fail to be applied\n",
3008                                    ctx->user_id, rc);
3009         }
3010         nic_data->must_restore_rss_contexts = false;
3011 }
3012
3013 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
3014                                           const u32 *rx_indir_table,
3015                                           const u8 *key)
3016 {
3017         int rc;
3018
3019         if (efx->rss_spread == 1)
3020                 return 0;
3021
3022         if (!key)
3023                 key = efx->rss_context.rx_hash_key;
3024
3025         rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
3026
3027         if (rc == -ENOBUFS && !user) {
3028                 unsigned context_size;
3029                 bool mismatch = false;
3030                 size_t i;
3031
3032                 for (i = 0;
3033                      i < ARRAY_SIZE(efx->rss_context.rx_indir_table) && !mismatch;
3034                      i++)
3035                         mismatch = rx_indir_table[i] !=
3036                                 ethtool_rxfh_indir_default(i, efx->rss_spread);
3037
3038                 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
3039                 if (rc == 0) {
3040                         if (context_size != efx->rss_spread)
3041                                 netif_warn(efx, probe, efx->net_dev,
3042                                            "Could not allocate an exclusive RSS"
3043                                            " context; allocated a shared one of"
3044                                            " different size."
3045                                            " Wanted %u, got %u.\n",
3046                                            efx->rss_spread, context_size);
3047                         else if (mismatch)
3048                                 netif_warn(efx, probe, efx->net_dev,
3049                                            "Could not allocate an exclusive RSS"
3050                                            " context; allocated a shared one but"
3051                                            " could not apply custom"
3052                                            " indirection.\n");
3053                         else
3054                                 netif_info(efx, probe, efx->net_dev,
3055                                            "Could not allocate an exclusive RSS"
3056                                            " context; allocated a shared one.\n");
3057                 }
3058         }
3059         return rc;
3060 }
3061
3062 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
3063                                           const u32 *rx_indir_table
3064                                           __attribute__ ((unused)),
3065                                           const u8 *key
3066                                           __attribute__ ((unused)))
3067 {
3068         if (user)
3069                 return -EOPNOTSUPP;
3070         if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID)
3071                 return 0;
3072         return efx_ef10_rx_push_shared_rss_config(efx, NULL);
3073 }
3074
3075 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
3076 {
3077         return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
3078                                     (rx_queue->ptr_mask + 1) *
3079                                     sizeof(efx_qword_t),
3080                                     GFP_KERNEL);
3081 }
3082
3083 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
3084 {
3085         MCDI_DECLARE_BUF(inbuf,
3086                          MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
3087                                                 EFX_BUF_SIZE));
3088         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3089         size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
3090         struct efx_nic *efx = rx_queue->efx;
3091         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3092         size_t inlen;
3093         dma_addr_t dma_addr;
3094         int rc;
3095         int i;
3096         BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
3097
3098         rx_queue->scatter_n = 0;
3099         rx_queue->scatter_len = 0;
3100
3101         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
3102         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
3103         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
3104         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
3105                        efx_rx_queue_index(rx_queue));
3106         MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
3107                               INIT_RXQ_IN_FLAG_PREFIX, 1,
3108                               INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
3109         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
3110         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
3111
3112         dma_addr = rx_queue->rxd.buf.dma_addr;
3113
3114         netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
3115                   efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
3116
3117         for (i = 0; i < entries; ++i) {
3118                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
3119                 dma_addr += EFX_BUF_SIZE;
3120         }
3121
3122         inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
3123
3124         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
3125                           NULL, 0, NULL);
3126         if (rc)
3127                 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
3128                             efx_rx_queue_index(rx_queue));
3129 }
3130
3131 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
3132 {
3133         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
3134         MCDI_DECLARE_BUF_ERR(outbuf);
3135         struct efx_nic *efx = rx_queue->efx;
3136         size_t outlen;
3137         int rc;
3138
3139         MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
3140                        efx_rx_queue_index(rx_queue));
3141
3142         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
3143                           outbuf, sizeof(outbuf), &outlen);
3144
3145         if (rc && rc != -EALREADY)
3146                 goto fail;
3147
3148         return;
3149
3150 fail:
3151         efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
3152                                outbuf, outlen, rc);
3153 }
3154
3155 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
3156 {
3157         efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
3158 }
3159
3160 /* This creates an entry in the RX descriptor queue */
3161 static inline void
3162 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
3163 {
3164         struct efx_rx_buffer *rx_buf;
3165         efx_qword_t *rxd;
3166
3167         rxd = efx_rx_desc(rx_queue, index);
3168         rx_buf = efx_rx_buffer(rx_queue, index);
3169         EFX_POPULATE_QWORD_2(*rxd,
3170                              ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
3171                              ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
3172 }
3173
3174 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
3175 {
3176         struct efx_nic *efx = rx_queue->efx;
3177         unsigned int write_count;
3178         efx_dword_t reg;
3179
3180         /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
3181         write_count = rx_queue->added_count & ~7;
3182         if (rx_queue->notified_count == write_count)
3183                 return;
3184
3185         do
3186                 efx_ef10_build_rx_desc(
3187                         rx_queue,
3188                         rx_queue->notified_count & rx_queue->ptr_mask);
3189         while (++rx_queue->notified_count != write_count);
3190
3191         wmb();
3192         EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
3193                              write_count & rx_queue->ptr_mask);
3194         efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
3195                         efx_rx_queue_index(rx_queue));
3196 }
3197
3198 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
3199
3200 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
3201 {
3202         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3203         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3204         efx_qword_t event;
3205
3206         EFX_POPULATE_QWORD_2(event,
3207                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3208                              ESF_DZ_EV_DATA, EFX_EF10_REFILL);
3209
3210         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3211
3212         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3213          * already swapped the data to little-endian order.
3214          */
3215         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3216                sizeof(efx_qword_t));
3217
3218         efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
3219                            inbuf, sizeof(inbuf), 0,
3220                            efx_ef10_rx_defer_refill_complete, 0);
3221 }
3222
3223 static void
3224 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
3225                                   int rc, efx_dword_t *outbuf,
3226                                   size_t outlen_actual)
3227 {
3228         /* nothing to do */
3229 }
3230
3231 static int efx_ef10_ev_probe(struct efx_channel *channel)
3232 {
3233         return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
3234                                     (channel->eventq_mask + 1) *
3235                                     sizeof(efx_qword_t),
3236                                     GFP_KERNEL);
3237 }
3238
3239 static void efx_ef10_ev_fini(struct efx_channel *channel)
3240 {
3241         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
3242         MCDI_DECLARE_BUF_ERR(outbuf);
3243         struct efx_nic *efx = channel->efx;
3244         size_t outlen;
3245         int rc;
3246
3247         MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
3248
3249         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3250                           outbuf, sizeof(outbuf), &outlen);
3251
3252         if (rc && rc != -EALREADY)
3253                 goto fail;
3254
3255         return;
3256
3257 fail:
3258         efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3259                                outbuf, outlen, rc);
3260 }
3261
3262 static int efx_ef10_ev_init(struct efx_channel *channel)
3263 {
3264         MCDI_DECLARE_BUF(inbuf,
3265                          MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3266                                                    EFX_BUF_SIZE));
3267         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3268         size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3269         struct efx_nic *efx = channel->efx;
3270         struct efx_ef10_nic_data *nic_data;
3271         size_t inlen, outlen;
3272         unsigned int enabled, implemented;
3273         dma_addr_t dma_addr;
3274         int rc;
3275         int i;
3276
3277         nic_data = efx->nic_data;
3278
3279         /* Fill event queue with all ones (i.e. empty events) */
3280         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3281
3282         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3283         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3284         /* INIT_EVQ expects index in vector table, not absolute */
3285         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3286         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3287                        MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3288         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3289         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3290         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3291                        MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3292         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3293
3294         if (nic_data->datapath_caps2 &
3295             1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3296                 /* Use the new generic approach to specifying event queue
3297                  * configuration, requesting lower latency or higher throughput.
3298                  * The options that actually get used appear in the output.
3299                  */
3300                 MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3301                                       INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3302                                       INIT_EVQ_V2_IN_FLAG_TYPE,
3303                                       MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3304         } else {
3305                 bool cut_thru = !(nic_data->datapath_caps &
3306                         1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3307
3308                 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3309                                       INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3310                                       INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3311                                       INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3312                                       INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3313         }
3314
3315         dma_addr = channel->eventq.buf.dma_addr;
3316         for (i = 0; i < entries; ++i) {
3317                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3318                 dma_addr += EFX_BUF_SIZE;
3319         }
3320
3321         inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3322
3323         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3324                           outbuf, sizeof(outbuf), &outlen);
3325
3326         if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3327                 netif_dbg(efx, drv, efx->net_dev,
3328                           "Channel %d using event queue flags %08x\n",
3329                           channel->channel,
3330                           MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3331
3332         /* IRQ return is ignored */
3333         if (channel->channel || rc)
3334                 return rc;
3335
3336         /* Successfully created event queue on channel 0 */
3337         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3338         if (rc == -ENOSYS) {
3339                 /* GET_WORKAROUNDS was implemented before this workaround,
3340                  * thus it must be unavailable in this firmware.
3341                  */
3342                 nic_data->workaround_26807 = false;
3343                 rc = 0;
3344         } else if (rc) {
3345                 goto fail;
3346         } else {
3347                 nic_data->workaround_26807 =
3348                         !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3349
3350                 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3351                     !nic_data->workaround_26807) {
3352                         unsigned int flags;
3353
3354                         rc = efx_mcdi_set_workaround(efx,
3355                                                      MC_CMD_WORKAROUND_BUG26807,
3356                                                      true, &flags);
3357
3358                         if (!rc) {
3359                                 if (flags &
3360                                     1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3361                                         netif_info(efx, drv, efx->net_dev,
3362                                                    "other functions on NIC have been reset\n");
3363
3364                                         /* With MCFW v4.6.x and earlier, the
3365                                          * boot count will have incremented,
3366                                          * so re-read the warm_boot_count
3367                                          * value now to ensure this function
3368                                          * doesn't think it has changed next
3369                                          * time it checks.
3370                                          */
3371                                         rc = efx_ef10_get_warm_boot_count(efx);
3372                                         if (rc >= 0) {
3373                                                 nic_data->warm_boot_count = rc;
3374                                                 rc = 0;
3375                                         }
3376                                 }
3377                                 nic_data->workaround_26807 = true;
3378                         } else if (rc == -EPERM) {
3379                                 rc = 0;
3380                         }
3381                 }
3382         }
3383
3384         if (!rc)
3385                 return 0;
3386
3387 fail:
3388         efx_ef10_ev_fini(channel);
3389         return rc;
3390 }
3391
3392 static void efx_ef10_ev_remove(struct efx_channel *channel)
3393 {
3394         efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3395 }
3396
3397 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3398                                            unsigned int rx_queue_label)
3399 {
3400         struct efx_nic *efx = rx_queue->efx;
3401
3402         netif_info(efx, hw, efx->net_dev,
3403                    "rx event arrived on queue %d labeled as queue %u\n",
3404                    efx_rx_queue_index(rx_queue), rx_queue_label);
3405
3406         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3407 }
3408
3409 static void
3410 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3411                              unsigned int actual, unsigned int expected)
3412 {
3413         unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3414         struct efx_nic *efx = rx_queue->efx;
3415
3416         netif_info(efx, hw, efx->net_dev,
3417                    "dropped %d events (index=%d expected=%d)\n",
3418                    dropped, actual, expected);
3419
3420         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3421 }
3422
3423 /* partially received RX was aborted. clean up. */
3424 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3425 {
3426         unsigned int rx_desc_ptr;
3427
3428         netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3429                   "scattered RX aborted (dropping %u buffers)\n",
3430                   rx_queue->scatter_n);
3431
3432         rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3433
3434         efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3435                       0, EFX_RX_PKT_DISCARD);
3436
3437         rx_queue->removed_count += rx_queue->scatter_n;
3438         rx_queue->scatter_n = 0;
3439         rx_queue->scatter_len = 0;
3440         ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3441 }
3442
3443 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3444                                            unsigned int n_packets,
3445                                            unsigned int rx_encap_hdr,
3446                                            unsigned int rx_l3_class,
3447                                            unsigned int rx_l4_class,
3448                                            const efx_qword_t *event)
3449 {
3450         struct efx_nic *efx = channel->efx;
3451         bool handled = false;
3452
3453         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3454                 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
3455                         if (!efx->loopback_selftest)
3456                                 channel->n_rx_eth_crc_err += n_packets;
3457                         return EFX_RX_PKT_DISCARD;
3458                 }
3459                 handled = true;
3460         }
3461         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3462                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3463                              rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3464                              rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3465                              rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3466                              rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3467                         netdev_WARN(efx->net_dev,
3468                                     "invalid class for RX_IPCKSUM_ERR: event="
3469                                     EFX_QWORD_FMT "\n",
3470                                     EFX_QWORD_VAL(*event));
3471                 if (!efx->loopback_selftest)
3472                         *(rx_encap_hdr ?
3473                           &channel->n_rx_outer_ip_hdr_chksum_err :
3474                           &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3475                 return 0;
3476         }
3477         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3478                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3479                              ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3480                                rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3481                               (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3482                                rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
3483                         netdev_WARN(efx->net_dev,
3484                                     "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3485                                     EFX_QWORD_FMT "\n",
3486                                     EFX_QWORD_VAL(*event));
3487                 if (!efx->loopback_selftest)
3488                         *(rx_encap_hdr ?
3489                           &channel->n_rx_outer_tcp_udp_chksum_err :
3490                           &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3491                 return 0;
3492         }
3493         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3494                 if (unlikely(!rx_encap_hdr))
3495                         netdev_WARN(efx->net_dev,
3496                                     "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3497                                     EFX_QWORD_FMT "\n",
3498                                     EFX_QWORD_VAL(*event));
3499                 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3500                                   rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3501                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3502                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3503                         netdev_WARN(efx->net_dev,
3504                                     "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3505                                     EFX_QWORD_FMT "\n",
3506                                     EFX_QWORD_VAL(*event));
3507                 if (!efx->loopback_selftest)
3508                         channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3509                 return 0;
3510         }
3511         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3512                 if (unlikely(!rx_encap_hdr))
3513                         netdev_WARN(efx->net_dev,
3514                                     "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3515                                     EFX_QWORD_FMT "\n",
3516                                     EFX_QWORD_VAL(*event));
3517                 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3518                                    rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3519                                   (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3520                                    rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
3521                         netdev_WARN(efx->net_dev,
3522                                     "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3523                                     EFX_QWORD_FMT "\n",
3524                                     EFX_QWORD_VAL(*event));
3525                 if (!efx->loopback_selftest)
3526                         channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3527                 return 0;
3528         }
3529
3530         WARN_ON(!handled); /* No error bits were recognised */
3531         return 0;
3532 }
3533
3534 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3535                                     const efx_qword_t *event)
3536 {
3537         unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3538         unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3539         unsigned int n_descs, n_packets, i;
3540         struct efx_nic *efx = channel->efx;
3541         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3542         struct efx_rx_queue *rx_queue;
3543         efx_qword_t errors;
3544         bool rx_cont;
3545         u16 flags = 0;
3546
3547         if (unlikely(READ_ONCE(efx->reset_pending)))
3548                 return 0;
3549
3550         /* Basic packet information */
3551         rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3552         next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3553         rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3554         rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3555         rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
3556         rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3557         rx_encap_hdr =
3558                 nic_data->datapath_caps &
3559                         (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3560                 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3561                 ESE_EZ_ENCAP_HDR_NONE;
3562
3563         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3564                 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3565                             EFX_QWORD_FMT "\n",
3566                             EFX_QWORD_VAL(*event));
3567
3568         rx_queue = efx_channel_get_rx_queue(channel);
3569
3570         if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3571                 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3572
3573         n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3574                    ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3575
3576         if (n_descs != rx_queue->scatter_n + 1) {
3577                 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3578
3579                 /* detect rx abort */
3580                 if (unlikely(n_descs == rx_queue->scatter_n)) {
3581                         if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3582                                 netdev_WARN(efx->net_dev,
3583                                             "invalid RX abort: scatter_n=%u event="
3584                                             EFX_QWORD_FMT "\n",
3585                                             rx_queue->scatter_n,
3586                                             EFX_QWORD_VAL(*event));
3587                         efx_ef10_handle_rx_abort(rx_queue);
3588                         return 0;
3589                 }
3590
3591                 /* Check that RX completion merging is valid, i.e.
3592                  * the current firmware supports it and this is a
3593                  * non-scattered packet.
3594                  */
3595                 if (!(nic_data->datapath_caps &
3596                       (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3597                     rx_queue->scatter_n != 0 || rx_cont) {
3598                         efx_ef10_handle_rx_bad_lbits(
3599                                 rx_queue, next_ptr_lbits,
3600                                 (rx_queue->removed_count +
3601                                  rx_queue->scatter_n + 1) &
3602                                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3603                         return 0;
3604                 }
3605
3606                 /* Merged completion for multiple non-scattered packets */
3607                 rx_queue->scatter_n = 1;
3608                 rx_queue->scatter_len = 0;
3609                 n_packets = n_descs;
3610                 ++channel->n_rx_merge_events;
3611                 channel->n_rx_merge_packets += n_packets;
3612                 flags |= EFX_RX_PKT_PREFIX_LEN;
3613         } else {
3614                 ++rx_queue->scatter_n;
3615                 rx_queue->scatter_len += rx_bytes;
3616                 if (rx_cont)
3617                         return 0;
3618                 n_packets = 1;
3619         }
3620
3621         EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3622                                      ESF_DZ_RX_IPCKSUM_ERR, 1,
3623                                      ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3624                                      ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3625                                      ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3626         EFX_AND_QWORD(errors, *event, errors);
3627         if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3628                 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3629                                                          rx_encap_hdr,
3630                                                          rx_l3_class, rx_l4_class,
3631                                                          event);
3632         } else {
3633                 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
3634                               rx_l4_class == ESE_FZ_L4_CLASS_UDP;
3635
3636                 switch (rx_encap_hdr) {
3637                 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3638                         flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3639                         if (tcpudp)
3640                                 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3641                         break;
3642                 case ESE_EZ_ENCAP_HDR_GRE:
3643                 case ESE_EZ_ENCAP_HDR_NONE:
3644                         if (tcpudp)
3645                                 flags |= EFX_RX_PKT_CSUMMED;
3646                         break;
3647                 default:
3648                         netdev_WARN(efx->net_dev,
3649                                     "unknown encapsulation type: event="
3650                                     EFX_QWORD_FMT "\n",
3651                                     EFX_QWORD_VAL(*event));
3652                 }
3653         }
3654
3655         if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
3656                 flags |= EFX_RX_PKT_TCP;
3657
3658         channel->irq_mod_score += 2 * n_packets;
3659
3660         /* Handle received packet(s) */
3661         for (i = 0; i < n_packets; i++) {
3662                 efx_rx_packet(rx_queue,
3663                               rx_queue->removed_count & rx_queue->ptr_mask,
3664                               rx_queue->scatter_n, rx_queue->scatter_len,
3665                               flags);
3666                 rx_queue->removed_count += rx_queue->scatter_n;
3667         }
3668
3669         rx_queue->scatter_n = 0;
3670         rx_queue->scatter_len = 0;
3671
3672         return n_packets;
3673 }
3674
3675 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
3676 {
3677         u32 tstamp;
3678
3679         tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
3680         tstamp <<= 16;
3681         tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
3682
3683         return tstamp;
3684 }
3685
3686 static void
3687 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3688 {
3689         struct efx_nic *efx = channel->efx;
3690         struct efx_tx_queue *tx_queue;
3691         unsigned int tx_ev_desc_ptr;
3692         unsigned int tx_ev_q_label;
3693         unsigned int tx_ev_type;
3694         u64 ts_part;
3695
3696         if (unlikely(READ_ONCE(efx->reset_pending)))
3697                 return;
3698
3699         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3700                 return;
3701
3702         /* Get the transmit queue */
3703         tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3704         tx_queue = efx_channel_get_tx_queue(channel,
3705                                             tx_ev_q_label % EFX_TXQ_TYPES);
3706
3707         if (!tx_queue->timestamping) {
3708                 /* Transmit completion */
3709                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3710                 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3711                 return;
3712         }
3713
3714         /* Transmit timestamps are only available for 8XXX series. They result
3715          * in three events per packet. These occur in order, and are:
3716          *  - the normal completion event
3717          *  - the low part of the timestamp
3718          *  - the high part of the timestamp
3719          *
3720          * Each part of the timestamp is itself split across two 16 bit
3721          * fields in the event.
3722          */
3723         tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3724
3725         switch (tx_ev_type) {
3726         case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3727                 /* In case of Queue flush or FLR, we might have received
3728                  * the previous TX completion event but not the Timestamp
3729                  * events.
3730                  */
3731                 if (tx_queue->completed_desc_ptr != tx_queue->ptr_mask)
3732                         efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3733
3734                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event,
3735                                                  ESF_DZ_TX_DESCR_INDX);
3736                 tx_queue->completed_desc_ptr =
3737                                         tx_ev_desc_ptr & tx_queue->ptr_mask;
3738                 break;
3739
3740         case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3741                 ts_part = efx_ef10_extract_event_ts(event);
3742                 tx_queue->completed_timestamp_minor = ts_part;
3743                 break;
3744
3745         case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3746                 ts_part = efx_ef10_extract_event_ts(event);
3747                 tx_queue->completed_timestamp_major = ts_part;
3748
3749                 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3750                 tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
3751                 break;
3752
3753         default:
3754                 netif_err(efx, hw, efx->net_dev,
3755                           "channel %d unknown tx event type %d (data "
3756                           EFX_QWORD_FMT ")\n",
3757                           channel->channel, tx_ev_type,
3758                           EFX_QWORD_VAL(*event));
3759                 break;
3760         }
3761 }
3762
3763 static void
3764 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3765 {
3766         struct efx_nic *efx = channel->efx;
3767         int subcode;
3768
3769         subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3770
3771         switch (subcode) {
3772         case ESE_DZ_DRV_TIMER_EV:
3773         case ESE_DZ_DRV_WAKE_UP_EV:
3774                 break;
3775         case ESE_DZ_DRV_START_UP_EV:
3776                 /* event queue init complete. ok. */
3777                 break;
3778         default:
3779                 netif_err(efx, hw, efx->net_dev,
3780                           "channel %d unknown driver event type %d"
3781                           " (data " EFX_QWORD_FMT ")\n",
3782                           channel->channel, subcode,
3783                           EFX_QWORD_VAL(*event));
3784
3785         }
3786 }
3787
3788 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3789                                                    efx_qword_t *event)
3790 {
3791         struct efx_nic *efx = channel->efx;
3792         u32 subcode;
3793
3794         subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3795
3796         switch (subcode) {
3797         case EFX_EF10_TEST:
3798                 channel->event_test_cpu = raw_smp_processor_id();
3799                 break;
3800         case EFX_EF10_REFILL:
3801                 /* The queue must be empty, so we won't receive any rx
3802                  * events, so efx_process_channel() won't refill the
3803                  * queue. Refill it here
3804                  */
3805                 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3806                 break;
3807         default:
3808                 netif_err(efx, hw, efx->net_dev,
3809                           "channel %d unknown driver event type %u"
3810                           " (data " EFX_QWORD_FMT ")\n",
3811                           channel->channel, (unsigned) subcode,
3812                           EFX_QWORD_VAL(*event));
3813         }
3814 }
3815
3816 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3817 {
3818         struct efx_nic *efx = channel->efx;
3819         efx_qword_t event, *p_event;
3820         unsigned int read_ptr;
3821         int ev_code;
3822         int spent = 0;
3823
3824         if (quota <= 0)
3825                 return spent;
3826
3827         read_ptr = channel->eventq_read_ptr;
3828
3829         for (;;) {
3830                 p_event = efx_event(channel, read_ptr);
3831                 event = *p_event;
3832
3833                 if (!efx_event_present(&event))
3834                         break;
3835
3836                 EFX_SET_QWORD(*p_event);
3837
3838                 ++read_ptr;
3839
3840                 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3841
3842                 netif_vdbg(efx, drv, efx->net_dev,
3843                            "processing event on %d " EFX_QWORD_FMT "\n",
3844                            channel->channel, EFX_QWORD_VAL(event));
3845
3846                 switch (ev_code) {
3847                 case ESE_DZ_EV_CODE_MCDI_EV:
3848                         efx_mcdi_process_event(channel, &event);
3849                         break;
3850                 case ESE_DZ_EV_CODE_RX_EV:
3851                         spent += efx_ef10_handle_rx_event(channel, &event);
3852                         if (spent >= quota) {
3853                                 /* XXX can we split a merged event to
3854                                  * avoid going over-quota?
3855                                  */
3856                                 spent = quota;
3857                                 goto out;
3858                         }
3859                         break;
3860                 case ESE_DZ_EV_CODE_TX_EV:
3861                         efx_ef10_handle_tx_event(channel, &event);
3862                         break;
3863                 case ESE_DZ_EV_CODE_DRIVER_EV:
3864                         efx_ef10_handle_driver_event(channel, &event);
3865                         if (++spent == quota)
3866                                 goto out;
3867                         break;
3868                 case EFX_EF10_DRVGEN_EV:
3869                         efx_ef10_handle_driver_generated_event(channel, &event);
3870                         break;
3871                 default:
3872                         netif_err(efx, hw, efx->net_dev,
3873                                   "channel %d unknown event type %d"
3874                                   " (data " EFX_QWORD_FMT ")\n",
3875                                   channel->channel, ev_code,
3876                                   EFX_QWORD_VAL(event));
3877                 }
3878         }
3879
3880 out:
3881         channel->eventq_read_ptr = read_ptr;
3882         return spent;
3883 }
3884
3885 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3886 {
3887         struct efx_nic *efx = channel->efx;
3888         efx_dword_t rptr;
3889
3890         if (EFX_EF10_WORKAROUND_35388(efx)) {
3891                 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3892                              (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3893                 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3894                              (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3895
3896                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3897                                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3898                                      ERF_DD_EVQ_IND_RPTR,
3899                                      (channel->eventq_read_ptr &
3900                                       channel->eventq_mask) >>
3901                                      ERF_DD_EVQ_IND_RPTR_WIDTH);
3902                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3903                                 channel->channel);
3904                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3905                                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3906                                      ERF_DD_EVQ_IND_RPTR,
3907                                      channel->eventq_read_ptr &
3908                                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3909                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3910                                 channel->channel);
3911         } else {
3912                 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3913                                      channel->eventq_read_ptr &
3914                                      channel->eventq_mask);
3915                 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3916         }
3917 }
3918
3919 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3920 {
3921         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3922         struct efx_nic *efx = channel->efx;
3923         efx_qword_t event;
3924         int rc;
3925
3926         EFX_POPULATE_QWORD_2(event,
3927                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3928                              ESF_DZ_EV_DATA, EFX_EF10_TEST);
3929
3930         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3931
3932         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3933          * already swapped the data to little-endian order.
3934          */
3935         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3936                sizeof(efx_qword_t));
3937
3938         rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3939                           NULL, 0, NULL);
3940         if (rc != 0)
3941                 goto fail;
3942
3943         return;
3944
3945 fail:
3946         WARN_ON(true);
3947         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3948 }
3949
3950 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3951 {
3952         if (atomic_dec_and_test(&efx->active_queues))
3953                 wake_up(&efx->flush_wq);
3954
3955         WARN_ON(atomic_read(&efx->active_queues) < 0);
3956 }
3957
3958 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3959 {
3960         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3961         struct efx_channel *channel;
3962         struct efx_tx_queue *tx_queue;
3963         struct efx_rx_queue *rx_queue;
3964         int pending;
3965
3966         /* If the MC has just rebooted, the TX/RX queues will have already been
3967          * torn down, but efx->active_queues needs to be set to zero.
3968          */
3969         if (nic_data->must_realloc_vis) {
3970                 atomic_set(&efx->active_queues, 0);
3971                 return 0;
3972         }
3973
3974         /* Do not attempt to write to the NIC during EEH recovery */
3975         if (efx->state != STATE_RECOVERY) {
3976                 efx_for_each_channel(channel, efx) {
3977                         efx_for_each_channel_rx_queue(rx_queue, channel)
3978                                 efx_ef10_rx_fini(rx_queue);
3979                         efx_for_each_channel_tx_queue(tx_queue, channel)
3980                                 efx_ef10_tx_fini(tx_queue);
3981                 }
3982
3983                 wait_event_timeout(efx->flush_wq,
3984                                    atomic_read(&efx->active_queues) == 0,
3985                                    msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3986                 pending = atomic_read(&efx->active_queues);
3987                 if (pending) {
3988                         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3989                                   pending);
3990                         return -ETIMEDOUT;
3991                 }
3992         }
3993
3994         return 0;
3995 }
3996
3997 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3998 {
3999         atomic_set(&efx->active_queues, 0);
4000 }
4001
4002 /* Decide whether a filter should be exclusive or else should allow
4003  * delivery to additional recipients.  Currently we decide that
4004  * filters for specific local unicast MAC and IP addresses are
4005  * exclusive.
4006  */
4007 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
4008 {
4009         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
4010             !is_multicast_ether_addr(spec->loc_mac))
4011                 return true;
4012
4013         if ((spec->match_flags &
4014              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
4015             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
4016                 if (spec->ether_type == htons(ETH_P_IP) &&
4017                     !ipv4_is_multicast(spec->loc_host[0]))
4018                         return true;
4019                 if (spec->ether_type == htons(ETH_P_IPV6) &&
4020                     ((const u8 *)spec->loc_host)[0] != 0xff)
4021                         return true;
4022         }
4023
4024         return false;
4025 }
4026
4027 static struct efx_filter_spec *
4028 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
4029                            unsigned int filter_idx)
4030 {
4031         return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
4032                                           ~EFX_EF10_FILTER_FLAGS);
4033 }
4034
4035 static unsigned int
4036 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
4037                            unsigned int filter_idx)
4038 {
4039         return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
4040 }
4041
4042 static void
4043 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
4044                           unsigned int filter_idx,
4045                           const struct efx_filter_spec *spec,
4046                           unsigned int flags)
4047 {
4048         table->entry[filter_idx].spec = (unsigned long)spec | flags;
4049 }
4050
4051 static void
4052 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
4053                                            const struct efx_filter_spec *spec,
4054                                            efx_dword_t *inbuf)
4055 {
4056         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4057         u32 match_fields = 0, uc_match, mc_match;
4058
4059         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4060                        efx_ef10_filter_is_exclusive(spec) ?
4061                        MC_CMD_FILTER_OP_IN_OP_INSERT :
4062                        MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
4063
4064         /* Convert match flags and values.  Unlike almost
4065          * everything else in MCDI, these fields are in
4066          * network byte order.
4067          */
4068 #define COPY_VALUE(value, mcdi_field)                                        \
4069         do {                                                         \
4070                 match_fields |=                                      \
4071                         1 << MC_CMD_FILTER_OP_IN_MATCH_ ##           \
4072                         mcdi_field ## _LBN;                          \
4073                 BUILD_BUG_ON(                                        \
4074                         MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
4075                         sizeof(value));                              \
4076                 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
4077                        &value, sizeof(value));                       \
4078         } while (0)
4079 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)                          \
4080         if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
4081                 COPY_VALUE(spec->gen_field, mcdi_field);             \
4082         }
4083         /* Handle encap filters first.  They will always be mismatch
4084          * (unknown UC or MC) filters
4085          */
4086         if (encap_type) {
4087                 /* ether_type and outer_ip_proto need to be variables
4088                  * because COPY_VALUE wants to memcpy them
4089                  */
4090                 __be16 ether_type =
4091                         htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
4092                               ETH_P_IPV6 : ETH_P_IP);
4093                 u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
4094                 u8 outer_ip_proto;
4095
4096                 switch (encap_type & EFX_ENCAP_TYPES_MASK) {
4097                 case EFX_ENCAP_TYPE_VXLAN:
4098                         vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
4099                         /* fallthrough */
4100                 case EFX_ENCAP_TYPE_GENEVE:
4101                         COPY_VALUE(ether_type, ETHER_TYPE);
4102                         outer_ip_proto = IPPROTO_UDP;
4103                         COPY_VALUE(outer_ip_proto, IP_PROTO);
4104                         /* We always need to set the type field, even
4105                          * though we're not matching on the TNI.
4106                          */
4107                         MCDI_POPULATE_DWORD_1(inbuf,
4108                                 FILTER_OP_EXT_IN_VNI_OR_VSID,
4109                                 FILTER_OP_EXT_IN_VNI_TYPE,
4110                                 vni_type);
4111                         break;
4112                 case EFX_ENCAP_TYPE_NVGRE:
4113                         COPY_VALUE(ether_type, ETHER_TYPE);
4114                         outer_ip_proto = IPPROTO_GRE;
4115                         COPY_VALUE(outer_ip_proto, IP_PROTO);
4116                         break;
4117                 default:
4118                         WARN_ON(1);
4119                 }
4120
4121                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4122                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4123         } else {
4124                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4125                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4126         }
4127
4128         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
4129                 match_fields |=
4130                         is_multicast_ether_addr(spec->loc_mac) ?
4131                         1 << mc_match :
4132                         1 << uc_match;
4133         COPY_FIELD(REM_HOST, rem_host, SRC_IP);
4134         COPY_FIELD(LOC_HOST, loc_host, DST_IP);
4135         COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
4136         COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
4137         COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
4138         COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
4139         COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
4140         COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
4141         COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
4142         COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
4143 #undef COPY_FIELD
4144 #undef COPY_VALUE
4145         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
4146                        match_fields);
4147 }
4148
4149 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
4150                                       const struct efx_filter_spec *spec,
4151                                       efx_dword_t *inbuf, u64 handle,
4152                                       struct efx_rss_context *ctx,
4153                                       bool replacing)
4154 {
4155         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4156         u32 flags = spec->flags;
4157
4158         memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
4159
4160         /* If RSS filter, caller better have given us an RSS context */
4161         if (flags & EFX_FILTER_FLAG_RX_RSS) {
4162                 /* We don't have the ability to return an error, so we'll just
4163                  * log a warning and disable RSS for the filter.
4164                  */
4165                 if (WARN_ON_ONCE(!ctx))
4166                         flags &= ~EFX_FILTER_FLAG_RX_RSS;
4167                 else if (WARN_ON_ONCE(ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID))
4168                         flags &= ~EFX_FILTER_FLAG_RX_RSS;
4169         }
4170
4171         if (replacing) {
4172                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4173                                MC_CMD_FILTER_OP_IN_OP_REPLACE);
4174                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
4175         } else {
4176                 efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
4177         }
4178
4179         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
4180         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
4181                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4182                        MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
4183                        MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
4184         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
4185         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
4186                        MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
4187         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
4188                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4189                        0 : spec->dmaq_id);
4190         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
4191                        (flags & EFX_FILTER_FLAG_RX_RSS) ?
4192                        MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
4193                        MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
4194         if (flags & EFX_FILTER_FLAG_RX_RSS)
4195                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT, ctx->context_id);
4196 }
4197
4198 static int efx_ef10_filter_push(struct efx_nic *efx,
4199                                 const struct efx_filter_spec *spec, u64 *handle,
4200                                 struct efx_rss_context *ctx, bool replacing)
4201 {
4202         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4203         MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
4204         int rc;
4205
4206         efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, ctx, replacing);
4207         rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4208                           outbuf, sizeof(outbuf), NULL);
4209         if (rc == 0)
4210                 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4211         if (rc == -ENOSPC)
4212                 rc = -EBUSY; /* to match efx_farch_filter_insert() */
4213         return rc;
4214 }
4215
4216 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
4217 {
4218         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4219         unsigned int match_flags = spec->match_flags;
4220         unsigned int uc_match, mc_match;
4221         u32 mcdi_flags = 0;
4222
4223 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {          \
4224                 unsigned int  old_match_flags = match_flags;            \
4225                 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;          \
4226                 if (match_flags != old_match_flags)                     \
4227                         mcdi_flags |=                                   \
4228                                 (1 << ((encap) ?                        \
4229                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
4230                                        mcdi_field ## _LBN :             \
4231                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
4232                                        mcdi_field ## _LBN));            \
4233         }
4234         /* inner or outer based on encap type */
4235         MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
4236         MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
4237         MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
4238         MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
4239         MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
4240         MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
4241         MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
4242         MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
4243         /* always outer */
4244         MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
4245         MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
4246 #undef MAP_FILTER_TO_MCDI_FLAG
4247
4248         /* special handling for encap type, and mismatch */
4249         if (encap_type) {
4250                 match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
4251                 mcdi_flags |=
4252                         (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4253                 mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4254
4255                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4256                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4257         } else {
4258                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4259                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4260         }
4261
4262         if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
4263                 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
4264                 mcdi_flags |=
4265                         is_multicast_ether_addr(spec->loc_mac) ?
4266                         1 << mc_match :
4267                         1 << uc_match;
4268         }
4269
4270         /* Did we map them all? */
4271         WARN_ON_ONCE(match_flags);
4272
4273         return mcdi_flags;
4274 }
4275
4276 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
4277                                const struct efx_filter_spec *spec)
4278 {
4279         u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4280         unsigned int match_pri;
4281
4282         for (match_pri = 0;
4283              match_pri < table->rx_match_count;
4284              match_pri++)
4285                 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4286                         return match_pri;
4287
4288         return -EPROTONOSUPPORT;
4289 }
4290
4291 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4292                                   struct efx_filter_spec *spec,
4293                                   bool replace_equal)
4294 {
4295         DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4296         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4297         struct efx_ef10_filter_table *table;
4298         struct efx_filter_spec *saved_spec;
4299         struct efx_rss_context *ctx = NULL;
4300         unsigned int match_pri, hash;
4301         unsigned int priv_flags;
4302         bool rss_locked = false;
4303         bool replacing = false;
4304         unsigned int depth, i;
4305         int ins_index = -1;
4306         DEFINE_WAIT(wait);
4307         bool is_mc_recip;
4308         s32 rc;
4309
4310         down_read(&efx->filter_sem);
4311         table = efx->filter_state;
4312         down_write(&table->lock);
4313
4314         /* For now, only support RX filters */
4315         if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4316             EFX_FILTER_FLAG_RX) {
4317                 rc = -EINVAL;
4318                 goto out_unlock;
4319         }
4320
4321         rc = efx_ef10_filter_pri(table, spec);
4322         if (rc < 0)
4323                 goto out_unlock;
4324         match_pri = rc;
4325
4326         hash = efx_filter_spec_hash(spec);
4327         is_mc_recip = efx_filter_is_mc_recipient(spec);
4328         if (is_mc_recip)
4329                 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4330
4331         if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
4332                 mutex_lock(&efx->rss_lock);
4333                 rss_locked = true;
4334                 if (spec->rss_context)
4335                         ctx = efx_find_rss_context_entry(efx, spec->rss_context);
4336                 else
4337                         ctx = &efx->rss_context;
4338                 if (!ctx) {
4339                         rc = -ENOENT;
4340                         goto out_unlock;
4341                 }
4342                 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
4343                         rc = -EOPNOTSUPP;
4344                         goto out_unlock;
4345                 }
4346         }
4347
4348         /* Find any existing filters with the same match tuple or
4349          * else a free slot to insert at.
4350          */
4351         for (depth = 1; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4352                 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4353                 saved_spec = efx_ef10_filter_entry_spec(table, i);
4354
4355                 if (!saved_spec) {
4356                         if (ins_index < 0)
4357                                 ins_index = i;
4358                 } else if (efx_filter_spec_equal(spec, saved_spec)) {
4359                         if (spec->priority < saved_spec->priority &&
4360                             spec->priority != EFX_FILTER_PRI_AUTO) {
4361                                 rc = -EPERM;
4362                                 goto out_unlock;
4363                         }
4364                         if (!is_mc_recip) {
4365                                 /* This is the only one */
4366                                 if (spec->priority ==
4367                                     saved_spec->priority &&
4368                                     !replace_equal) {
4369                                         rc = -EEXIST;
4370                                         goto out_unlock;
4371                                 }
4372                                 ins_index = i;
4373                                 break;
4374                         } else if (spec->priority >
4375                                    saved_spec->priority ||
4376                                    (spec->priority ==
4377                                     saved_spec->priority &&
4378                                     replace_equal)) {
4379                                 if (ins_index < 0)
4380                                         ins_index = i;
4381                                 else
4382                                         __set_bit(depth, mc_rem_map);
4383                         }
4384                 }
4385         }
4386
4387         /* Once we reach the maximum search depth, use the first suitable
4388          * slot, or return -EBUSY if there was none
4389          */
4390         if (ins_index < 0) {
4391                 rc = -EBUSY;
4392                 goto out_unlock;
4393         }
4394
4395         /* Create a software table entry if necessary. */
4396         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4397         if (saved_spec) {
4398                 if (spec->priority == EFX_FILTER_PRI_AUTO &&
4399                     saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4400                         /* Just make sure it won't be removed */
4401                         if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4402                                 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4403                         table->entry[ins_index].spec &=
4404                                 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4405                         rc = ins_index;
4406                         goto out_unlock;
4407                 }
4408                 replacing = true;
4409                 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4410         } else {
4411                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4412                 if (!saved_spec) {
4413                         rc = -ENOMEM;
4414                         goto out_unlock;
4415                 }
4416                 *saved_spec = *spec;
4417                 priv_flags = 0;
4418         }
4419         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4420
4421         /* Actually insert the filter on the HW */
4422         rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4423                                   ctx, replacing);
4424
4425         if (rc == -EINVAL && nic_data->must_realloc_vis)
4426                 /* The MC rebooted under us, causing it to reject our filter
4427                  * insertion as pointing to an invalid VI (spec->dmaq_id).
4428                  */
4429                 rc = -EAGAIN;
4430
4431         /* Finalise the software table entry */
4432         if (rc == 0) {
4433                 if (replacing) {
4434                         /* Update the fields that may differ */
4435                         if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4436                                 saved_spec->flags |=
4437                                         EFX_FILTER_FLAG_RX_OVER_AUTO;
4438                         saved_spec->priority = spec->priority;
4439                         saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4440                         saved_spec->flags |= spec->flags;
4441                         saved_spec->rss_context = spec->rss_context;
4442                         saved_spec->dmaq_id = spec->dmaq_id;
4443                 }
4444         } else if (!replacing) {
4445                 kfree(saved_spec);
4446                 saved_spec = NULL;
4447         } else {
4448                 /* We failed to replace, so the old filter is still present.
4449                  * Roll back the software table to reflect this.  In fact the
4450                  * efx_ef10_filter_set_entry() call below will do the right
4451                  * thing, so nothing extra is needed here.
4452                  */
4453         }
4454         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4455
4456         /* Remove and finalise entries for lower-priority multicast
4457          * recipients
4458          */
4459         if (is_mc_recip) {
4460                 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4461                 unsigned int depth, i;
4462
4463                 memset(inbuf, 0, sizeof(inbuf));
4464
4465                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4466                         if (!test_bit(depth, mc_rem_map))
4467                                 continue;
4468
4469                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4470                         saved_spec = efx_ef10_filter_entry_spec(table, i);
4471                         priv_flags = efx_ef10_filter_entry_flags(table, i);
4472
4473                         if (rc == 0) {
4474                                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4475                                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4476                                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4477                                                table->entry[i].handle);
4478                                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4479                                                   inbuf, sizeof(inbuf),
4480                                                   NULL, 0, NULL);
4481                         }
4482
4483                         if (rc == 0) {
4484                                 kfree(saved_spec);
4485                                 saved_spec = NULL;
4486                                 priv_flags = 0;
4487                         }
4488                         efx_ef10_filter_set_entry(table, i, saved_spec,
4489                                                   priv_flags);
4490                 }
4491         }
4492
4493         /* If successful, return the inserted filter ID */
4494         if (rc == 0)
4495                 rc = efx_ef10_make_filter_id(match_pri, ins_index);
4496
4497 out_unlock:
4498         if (rss_locked)
4499                 mutex_unlock(&efx->rss_lock);
4500         up_write(&table->lock);
4501         up_read(&efx->filter_sem);
4502         return rc;
4503 }
4504
4505 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4506 {
4507         /* no need to do anything here on EF10 */
4508 }
4509
4510 /* Remove a filter.
4511  * If !by_index, remove by ID
4512  * If by_index, remove by index
4513  * Filter ID may come from userland and must be range-checked.
4514  * Caller must hold efx->filter_sem for read, and efx->filter_state->lock
4515  * for write.
4516  */
4517 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4518                                            unsigned int priority_mask,
4519                                            u32 filter_id, bool by_index)
4520 {
4521         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4522         struct efx_ef10_filter_table *table = efx->filter_state;
4523         MCDI_DECLARE_BUF(inbuf,
4524                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4525                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4526         struct efx_filter_spec *spec;
4527         DEFINE_WAIT(wait);
4528         int rc;
4529
4530         spec = efx_ef10_filter_entry_spec(table, filter_idx);
4531         if (!spec ||
4532             (!by_index &&
4533              efx_ef10_filter_pri(table, spec) !=
4534              efx_ef10_filter_get_unsafe_pri(filter_id)))
4535                 return -ENOENT;
4536
4537         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4538             priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4539                 /* Just remove flags */
4540                 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4541                 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4542                 return 0;
4543         }
4544
4545         if (!(priority_mask & (1U << spec->priority)))
4546                 return -ENOENT;
4547
4548         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4549                 /* Reset to an automatic filter */
4550
4551                 struct efx_filter_spec new_spec = *spec;
4552
4553                 new_spec.priority = EFX_FILTER_PRI_AUTO;
4554                 new_spec.flags = (EFX_FILTER_FLAG_RX |
4555                                   (efx_rss_active(&efx->rss_context) ?
4556                                    EFX_FILTER_FLAG_RX_RSS : 0));
4557                 new_spec.dmaq_id = 0;
4558                 new_spec.rss_context = 0;
4559                 rc = efx_ef10_filter_push(efx, &new_spec,
4560                                           &table->entry[filter_idx].handle,
4561                                           &efx->rss_context,
4562                                           true);
4563
4564                 if (rc == 0)
4565                         *spec = new_spec;
4566         } else {
4567                 /* Really remove the filter */
4568
4569                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4570                                efx_ef10_filter_is_exclusive(spec) ?
4571                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
4572                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4573                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4574                                table->entry[filter_idx].handle);
4575                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4576                                         inbuf, sizeof(inbuf), NULL, 0, NULL);
4577
4578                 if ((rc == 0) || (rc == -ENOENT)) {
4579                         /* Filter removed OK or didn't actually exist */
4580                         kfree(spec);
4581                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4582                 } else {
4583                         efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4584                                                MC_CMD_FILTER_OP_EXT_IN_LEN,
4585                                                NULL, 0, rc);
4586                 }
4587         }
4588
4589         return rc;
4590 }
4591
4592 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4593                                        enum efx_filter_priority priority,
4594                                        u32 filter_id)
4595 {
4596         struct efx_ef10_filter_table *table;
4597         int rc;
4598
4599         down_read(&efx->filter_sem);
4600         table = efx->filter_state;
4601         down_write(&table->lock);
4602         rc = efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4603                                              false);
4604         up_write(&table->lock);
4605         up_read(&efx->filter_sem);
4606         return rc;
4607 }
4608
4609 /* Caller must hold efx->filter_sem for read */
4610 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4611                                           enum efx_filter_priority priority,
4612                                           u32 filter_id)
4613 {
4614         struct efx_ef10_filter_table *table = efx->filter_state;
4615
4616         if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4617                 return;
4618
4619         down_write(&table->lock);
4620         efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4621                                         true);
4622         up_write(&table->lock);
4623 }
4624
4625 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4626                                     enum efx_filter_priority priority,
4627                                     u32 filter_id, struct efx_filter_spec *spec)
4628 {
4629         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4630         const struct efx_filter_spec *saved_spec;
4631         struct efx_ef10_filter_table *table;
4632         int rc;
4633
4634         down_read(&efx->filter_sem);
4635         table = efx->filter_state;
4636         down_read(&table->lock);
4637         saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4638         if (saved_spec && saved_spec->priority == priority &&
4639             efx_ef10_filter_pri(table, saved_spec) ==
4640             efx_ef10_filter_get_unsafe_pri(filter_id)) {
4641                 *spec = *saved_spec;
4642                 rc = 0;
4643         } else {
4644                 rc = -ENOENT;
4645         }
4646         up_read(&table->lock);
4647         up_read(&efx->filter_sem);
4648         return rc;
4649 }
4650
4651 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4652                                     enum efx_filter_priority priority)
4653 {
4654         struct efx_ef10_filter_table *table;
4655         unsigned int priority_mask;
4656         unsigned int i;
4657         int rc;
4658
4659         priority_mask = (((1U << (priority + 1)) - 1) &
4660                          ~(1U << EFX_FILTER_PRI_AUTO));
4661
4662         down_read(&efx->filter_sem);
4663         table = efx->filter_state;
4664         down_write(&table->lock);
4665         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4666                 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4667                                                      i, true);
4668                 if (rc && rc != -ENOENT)
4669                         break;
4670                 rc = 0;
4671         }
4672
4673         up_write(&table->lock);
4674         up_read(&efx->filter_sem);
4675         return rc;
4676 }
4677
4678 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4679                                          enum efx_filter_priority priority)
4680 {
4681         struct efx_ef10_filter_table *table;
4682         unsigned int filter_idx;
4683         s32 count = 0;
4684
4685         down_read(&efx->filter_sem);
4686         table = efx->filter_state;
4687         down_read(&table->lock);
4688         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4689                 if (table->entry[filter_idx].spec &&
4690                     efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4691                     priority)
4692                         ++count;
4693         }
4694         up_read(&table->lock);
4695         up_read(&efx->filter_sem);
4696         return count;
4697 }
4698
4699 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4700 {
4701         struct efx_ef10_filter_table *table = efx->filter_state;
4702
4703         return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4704 }
4705
4706 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4707                                       enum efx_filter_priority priority,
4708                                       u32 *buf, u32 size)
4709 {
4710         struct efx_ef10_filter_table *table;
4711         struct efx_filter_spec *spec;
4712         unsigned int filter_idx;
4713         s32 count = 0;
4714
4715         down_read(&efx->filter_sem);
4716         table = efx->filter_state;
4717         down_read(&table->lock);
4718
4719         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4720                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4721                 if (spec && spec->priority == priority) {
4722                         if (count == size) {
4723                                 count = -EMSGSIZE;
4724                                 break;
4725                         }
4726                         buf[count++] =
4727                                 efx_ef10_make_filter_id(
4728                                         efx_ef10_filter_pri(table, spec),
4729                                         filter_idx);
4730                 }
4731         }
4732         up_read(&table->lock);
4733         up_read(&efx->filter_sem);
4734         return count;
4735 }
4736
4737 #ifdef CONFIG_RFS_ACCEL
4738
4739 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4740                                            unsigned int filter_idx)
4741 {
4742         struct efx_filter_spec *spec, saved_spec;
4743         struct efx_ef10_filter_table *table;
4744         struct efx_arfs_rule *rule = NULL;
4745         bool ret = true, force = false;
4746         u16 arfs_id;
4747
4748         down_read(&efx->filter_sem);
4749         table = efx->filter_state;
4750         down_write(&table->lock);
4751         spec = efx_ef10_filter_entry_spec(table, filter_idx);
4752
4753         if (!spec || spec->priority != EFX_FILTER_PRI_HINT)
4754                 goto out_unlock;
4755
4756         spin_lock_bh(&efx->rps_hash_lock);
4757         if (!efx->rps_hash_table) {
4758                 /* In the absence of the table, we always return 0 to ARFS. */
4759                 arfs_id = 0;
4760         } else {
4761                 rule = efx_rps_hash_find(efx, spec);
4762                 if (!rule)
4763                         /* ARFS table doesn't know of this filter, so remove it */
4764                         goto expire;
4765                 arfs_id = rule->arfs_id;
4766                 ret = efx_rps_check_rule(rule, filter_idx, &force);
4767                 if (force)
4768                         goto expire;
4769                 if (!ret) {
4770                         spin_unlock_bh(&efx->rps_hash_lock);
4771                         goto out_unlock;
4772                 }
4773         }
4774         if (!rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, arfs_id))
4775                 ret = false;
4776         else if (rule)
4777                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
4778 expire:
4779         saved_spec = *spec; /* remove operation will kfree spec */
4780         spin_unlock_bh(&efx->rps_hash_lock);
4781         /* At this point (since we dropped the lock), another thread might queue
4782          * up a fresh insertion request (but the actual insertion will be held
4783          * up by our possession of the filter table lock).  In that case, it
4784          * will set rule->filter_id to EFX_ARFS_FILTER_ID_PENDING, meaning that
4785          * the rule is not removed by efx_rps_hash_del() below.
4786          */
4787         ret = efx_ef10_filter_remove_internal(efx, 1U << spec->priority,
4788                                               filter_idx, true) == 0;
4789         /* While we can't safely dereference rule (we dropped the lock), we can
4790          * still test it for NULL.
4791          */
4792         if (ret && rule) {
4793                 /* Expiring, so remove entry from ARFS table */
4794                 spin_lock_bh(&efx->rps_hash_lock);
4795                 efx_rps_hash_del(efx, &saved_spec);
4796                 spin_unlock_bh(&efx->rps_hash_lock);
4797         }
4798 out_unlock:
4799         up_write(&table->lock);
4800         up_read(&efx->filter_sem);
4801         return ret;
4802 }
4803
4804 #endif /* CONFIG_RFS_ACCEL */
4805
4806 static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4807 {
4808         int match_flags = 0;
4809
4810 #define MAP_FLAG(gen_flag, mcdi_field) do {                             \
4811                 u32 old_mcdi_flags = mcdi_flags;                        \
4812                 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##  \
4813                                      mcdi_field ## _LBN);               \
4814                 if (mcdi_flags != old_mcdi_flags)                       \
4815                         match_flags |= EFX_FILTER_MATCH_ ## gen_flag;   \
4816         } while (0)
4817
4818         if (encap) {
4819                 /* encap filters must specify encap type */
4820                 match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4821                 /* and imply ethertype and ip proto */
4822                 mcdi_flags &=
4823                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4824                 mcdi_flags &=
4825                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4826                 /* VLAN tags refer to the outer packet */
4827                 MAP_FLAG(INNER_VID, INNER_VLAN);
4828                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4829                 /* everything else refers to the inner packet */
4830                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4831                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4832                 MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4833                 MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4834                 MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4835                 MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4836                 MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4837                 MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4838                 MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4839                 MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4840         } else {
4841                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4842                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4843                 MAP_FLAG(REM_HOST, SRC_IP);
4844                 MAP_FLAG(LOC_HOST, DST_IP);
4845                 MAP_FLAG(REM_MAC, SRC_MAC);
4846                 MAP_FLAG(REM_PORT, SRC_PORT);
4847                 MAP_FLAG(LOC_MAC, DST_MAC);
4848                 MAP_FLAG(LOC_PORT, DST_PORT);
4849                 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4850                 MAP_FLAG(INNER_VID, INNER_VLAN);
4851                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4852                 MAP_FLAG(IP_PROTO, IP_PROTO);
4853         }
4854 #undef MAP_FLAG
4855
4856         /* Did we map them all? */
4857         if (mcdi_flags)
4858                 return -EINVAL;
4859
4860         return match_flags;
4861 }
4862
4863 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4864 {
4865         struct efx_ef10_filter_table *table = efx->filter_state;
4866         struct efx_ef10_filter_vlan *vlan, *next_vlan;
4867
4868         /* See comment in efx_ef10_filter_table_remove() */
4869         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4870                 return;
4871
4872         if (!table)
4873                 return;
4874
4875         list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4876                 efx_ef10_filter_del_vlan_internal(efx, vlan);
4877 }
4878
4879 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4880                                             bool encap,
4881                                             enum efx_filter_match_flags match_flags)
4882 {
4883         unsigned int match_pri;
4884         int mf;
4885
4886         for (match_pri = 0;
4887              match_pri < table->rx_match_count;
4888              match_pri++) {
4889                 mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4890                                 table->rx_match_mcdi_flags[match_pri]);
4891                 if (mf == match_flags)
4892                         return true;
4893         }
4894
4895         return false;
4896 }
4897
4898 static int
4899 efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4900                                     struct efx_ef10_filter_table *table,
4901                                     bool encap)
4902 {
4903         MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4904         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4905         unsigned int pd_match_pri, pd_match_count;
4906         size_t outlen;
4907         int rc;
4908
4909         /* Find out which RX filter types are supported, and their priorities */
4910         MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4911                        encap ?
4912                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4913                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4914         rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4915                           inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4916                           &outlen);
4917         if (rc)
4918                 return rc;
4919
4920         pd_match_count = MCDI_VAR_ARRAY_LEN(
4921                 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4922
4923         for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4924                 u32 mcdi_flags =
4925                         MCDI_ARRAY_DWORD(
4926                                 outbuf,
4927                                 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4928                                 pd_match_pri);
4929                 rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4930                 if (rc < 0) {
4931                         netif_dbg(efx, probe, efx->net_dev,
4932                                   "%s: fw flags %#x pri %u not supported in driver\n",
4933                                   __func__, mcdi_flags, pd_match_pri);
4934                 } else {
4935                         netif_dbg(efx, probe, efx->net_dev,
4936                                   "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4937                                   __func__, mcdi_flags, pd_match_pri,
4938                                   rc, table->rx_match_count);
4939                         table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4940                         table->rx_match_count++;
4941                 }
4942         }
4943
4944         return 0;
4945 }
4946
4947 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4948 {
4949         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4950         struct net_device *net_dev = efx->net_dev;
4951         struct efx_ef10_filter_table *table;
4952         struct efx_ef10_vlan *vlan;
4953         int rc;
4954
4955         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4956                 return -EINVAL;
4957
4958         if (efx->filter_state) /* already probed */
4959                 return 0;
4960
4961         table = kzalloc(sizeof(*table), GFP_KERNEL);
4962         if (!table)
4963                 return -ENOMEM;
4964
4965         table->rx_match_count = 0;
4966         rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4967         if (rc)
4968                 goto fail;
4969         if (nic_data->datapath_caps &
4970                    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4971                 rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4972         if (rc)
4973                 goto fail;
4974         if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4975             !(efx_ef10_filter_match_supported(table, false,
4976                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4977               efx_ef10_filter_match_supported(table, false,
4978                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4979                 netif_info(efx, probe, net_dev,
4980                            "VLAN filters are not supported in this firmware variant\n");
4981                 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4982                 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4983                 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4984         }
4985
4986         table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4987         if (!table->entry) {
4988                 rc = -ENOMEM;
4989                 goto fail;
4990         }
4991
4992         table->mc_promisc_last = false;
4993         table->vlan_filter =
4994                 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4995         INIT_LIST_HEAD(&table->vlan_list);
4996         init_rwsem(&table->lock);
4997
4998         efx->filter_state = table;
4999
5000         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
5001                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
5002                 if (rc)
5003                         goto fail_add_vlan;
5004         }
5005
5006         return 0;
5007
5008 fail_add_vlan:
5009         efx_ef10_filter_cleanup_vlans(efx);
5010         efx->filter_state = NULL;
5011 fail:
5012         kfree(table);
5013         return rc;
5014 }
5015
5016 /* Caller must hold efx->filter_sem for read if race against
5017  * efx_ef10_filter_table_remove() is possible
5018  */
5019 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
5020 {
5021         struct efx_ef10_filter_table *table = efx->filter_state;
5022         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5023         unsigned int invalid_filters = 0, failed = 0;
5024         struct efx_ef10_filter_vlan *vlan;
5025         struct efx_filter_spec *spec;
5026         struct efx_rss_context *ctx;
5027         unsigned int filter_idx;
5028         u32 mcdi_flags;
5029         int match_pri;
5030         int rc, i;
5031
5032         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5033
5034         if (!nic_data->must_restore_filters)
5035                 return;
5036
5037         if (!table)
5038                 return;
5039
5040         down_write(&table->lock);
5041         mutex_lock(&efx->rss_lock);
5042
5043         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5044                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
5045                 if (!spec)
5046                         continue;
5047
5048                 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
5049                 match_pri = 0;
5050                 while (match_pri < table->rx_match_count &&
5051                        table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
5052                         ++match_pri;
5053                 if (match_pri >= table->rx_match_count) {
5054                         invalid_filters++;
5055                         goto not_restored;
5056                 }
5057                 if (spec->rss_context)
5058                         ctx = efx_find_rss_context_entry(efx, spec->rss_context);
5059                 else
5060                         ctx = &efx->rss_context;
5061                 if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
5062                         if (!ctx) {
5063                                 netif_warn(efx, drv, efx->net_dev,
5064                                            "Warning: unable to restore a filter with nonexistent RSS context %u.\n",
5065                                            spec->rss_context);
5066                                 invalid_filters++;
5067                                 goto not_restored;
5068                         }
5069                         if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
5070                                 netif_warn(efx, drv, efx->net_dev,
5071                                            "Warning: unable to restore a filter with RSS context %u as it was not created.\n",
5072                                            spec->rss_context);
5073                                 invalid_filters++;
5074                                 goto not_restored;
5075                         }
5076                 }
5077
5078                 rc = efx_ef10_filter_push(efx, spec,
5079                                           &table->entry[filter_idx].handle,
5080                                           ctx, false);
5081                 if (rc)
5082                         failed++;
5083
5084                 if (rc) {
5085 not_restored:
5086                         list_for_each_entry(vlan, &table->vlan_list, list)
5087                                 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
5088                                         if (vlan->default_filters[i] == filter_idx)
5089                                                 vlan->default_filters[i] =
5090                                                         EFX_EF10_FILTER_ID_INVALID;
5091
5092                         kfree(spec);
5093                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
5094                 }
5095         }
5096
5097         mutex_unlock(&efx->rss_lock);
5098         up_write(&table->lock);
5099
5100         /* This can happen validly if the MC's capabilities have changed, so
5101          * is not an error.
5102          */
5103         if (invalid_filters)
5104                 netif_dbg(efx, drv, efx->net_dev,
5105                           "Did not restore %u filters that are now unsupported.\n",
5106                           invalid_filters);
5107
5108         if (failed)
5109                 netif_err(efx, hw, efx->net_dev,
5110                           "unable to restore %u filters\n", failed);
5111         else
5112                 nic_data->must_restore_filters = false;
5113 }
5114
5115 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
5116 {
5117         struct efx_ef10_filter_table *table = efx->filter_state;
5118         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
5119         struct efx_filter_spec *spec;
5120         unsigned int filter_idx;
5121         int rc;
5122
5123         efx_ef10_filter_cleanup_vlans(efx);
5124         efx->filter_state = NULL;
5125         /* If we were called without locking, then it's not safe to free
5126          * the table as others might be using it.  So we just WARN, leak
5127          * the memory, and potentially get an inconsistent filter table
5128          * state.
5129          * This should never actually happen.
5130          */
5131         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5132                 return;
5133
5134         if (!table)
5135                 return;
5136
5137         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5138                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
5139                 if (!spec)
5140                         continue;
5141
5142                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
5143                                efx_ef10_filter_is_exclusive(spec) ?
5144                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
5145                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
5146                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
5147                                table->entry[filter_idx].handle);
5148                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
5149                                         sizeof(inbuf), NULL, 0, NULL);
5150                 if (rc)
5151                         netif_info(efx, drv, efx->net_dev,
5152                                    "%s: filter %04x remove failed\n",
5153                                    __func__, filter_idx);
5154                 kfree(spec);
5155         }
5156
5157         vfree(table->entry);
5158         kfree(table);
5159 }
5160
5161 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
5162 {
5163         struct efx_ef10_filter_table *table = efx->filter_state;
5164         unsigned int filter_idx;
5165
5166         efx_rwsem_assert_write_locked(&table->lock);
5167
5168         if (*id != EFX_EF10_FILTER_ID_INVALID) {
5169                 filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5170                 if (!table->entry[filter_idx].spec)
5171                         netif_dbg(efx, drv, efx->net_dev,
5172                                   "marked null spec old %04x:%04x\n", *id,
5173                                   filter_idx);
5174                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
5175                 *id = EFX_EF10_FILTER_ID_INVALID;
5176         }
5177 }
5178
5179 /* Mark old per-VLAN filters that may need to be removed */
5180 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5181                                            struct efx_ef10_filter_vlan *vlan)
5182 {
5183         struct efx_ef10_filter_table *table = efx->filter_state;
5184         unsigned int i;
5185
5186         for (i = 0; i < table->dev_uc_count; i++)
5187                 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5188         for (i = 0; i < table->dev_mc_count; i++)
5189                 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5190         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5191                 efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5192 }
5193
5194 /* Mark old filters that may need to be removed.
5195  * Caller must hold efx->filter_sem for read if race against
5196  * efx_ef10_filter_table_remove() is possible
5197  */
5198 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5199 {
5200         struct efx_ef10_filter_table *table = efx->filter_state;
5201         struct efx_ef10_filter_vlan *vlan;
5202
5203         down_write(&table->lock);
5204         list_for_each_entry(vlan, &table->vlan_list, list)
5205                 _efx_ef10_filter_vlan_mark_old(efx, vlan);
5206         up_write(&table->lock);
5207 }
5208
5209 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5210 {
5211         struct efx_ef10_filter_table *table = efx->filter_state;
5212         struct net_device *net_dev = efx->net_dev;
5213         struct netdev_hw_addr *uc;
5214         unsigned int i;
5215
5216         table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5217         ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5218         i = 1;
5219         netdev_for_each_uc_addr(uc, net_dev) {
5220                 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5221                         table->uc_promisc = true;
5222                         break;
5223                 }
5224                 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5225                 i++;
5226         }
5227
5228         table->dev_uc_count = i;
5229 }
5230
5231 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5232 {
5233         struct efx_ef10_filter_table *table = efx->filter_state;
5234         struct net_device *net_dev = efx->net_dev;
5235         struct netdev_hw_addr *mc;
5236         unsigned int i;
5237
5238         table->mc_overflow = false;
5239         table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5240
5241         i = 0;
5242         netdev_for_each_mc_addr(mc, net_dev) {
5243                 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5244                         table->mc_promisc = true;
5245                         table->mc_overflow = true;
5246                         break;
5247                 }
5248                 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5249                 i++;
5250         }
5251
5252         table->dev_mc_count = i;
5253 }
5254
5255 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5256                                             struct efx_ef10_filter_vlan *vlan,
5257                                             bool multicast, bool rollback)
5258 {
5259         struct efx_ef10_filter_table *table = efx->filter_state;
5260         struct efx_ef10_dev_addr *addr_list;
5261         enum efx_filter_flags filter_flags;
5262         struct efx_filter_spec spec;
5263         u8 baddr[ETH_ALEN];
5264         unsigned int i, j;
5265         int addr_count;
5266         u16 *ids;
5267         int rc;
5268
5269         if (multicast) {
5270                 addr_list = table->dev_mc_list;
5271                 addr_count = table->dev_mc_count;
5272                 ids = vlan->mc;
5273         } else {
5274                 addr_list = table->dev_uc_list;
5275                 addr_count = table->dev_uc_count;
5276                 ids = vlan->uc;
5277         }
5278
5279         filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5280
5281         /* Insert/renew filters */
5282         for (i = 0; i < addr_count; i++) {
5283                 EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5284                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5285                 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5286                 rc = efx_ef10_filter_insert(efx, &spec, true);
5287                 if (rc < 0) {
5288                         if (rollback) {
5289                                 netif_info(efx, drv, efx->net_dev,
5290                                            "efx_ef10_filter_insert failed rc=%d\n",
5291                                            rc);
5292                                 /* Fall back to promiscuous */
5293                                 for (j = 0; j < i; j++) {
5294                                         efx_ef10_filter_remove_unsafe(
5295                                                 efx, EFX_FILTER_PRI_AUTO,
5296                                                 ids[j]);
5297                                         ids[j] = EFX_EF10_FILTER_ID_INVALID;
5298                                 }
5299                                 return rc;
5300                         } else {
5301                                 /* keep invalid ID, and carry on */
5302                         }
5303                 } else {
5304                         ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5305                 }
5306         }
5307
5308         if (multicast && rollback) {
5309                 /* Also need an Ethernet broadcast filter */
5310                 EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5311                                      EFX_EF10_FILTER_ID_INVALID);
5312                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5313                 eth_broadcast_addr(baddr);
5314                 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5315                 rc = efx_ef10_filter_insert(efx, &spec, true);
5316                 if (rc < 0) {
5317                         netif_warn(efx, drv, efx->net_dev,
5318                                    "Broadcast filter insert failed rc=%d\n", rc);
5319                         /* Fall back to promiscuous */
5320                         for (j = 0; j < i; j++) {
5321                                 efx_ef10_filter_remove_unsafe(
5322                                         efx, EFX_FILTER_PRI_AUTO,
5323                                         ids[j]);
5324                                 ids[j] = EFX_EF10_FILTER_ID_INVALID;
5325                         }
5326                         return rc;
5327                 } else {
5328                         vlan->default_filters[EFX_EF10_BCAST] =
5329                                 efx_ef10_filter_get_unsafe_id(rc);
5330                 }
5331         }
5332
5333         return 0;
5334 }
5335
5336 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5337                                       struct efx_ef10_filter_vlan *vlan,
5338                                       enum efx_encap_type encap_type,
5339                                       bool multicast, bool rollback)
5340 {
5341         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5342         enum efx_filter_flags filter_flags;
5343         struct efx_filter_spec spec;
5344         u8 baddr[ETH_ALEN];
5345         int rc;
5346         u16 *id;
5347
5348         filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5349
5350         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5351
5352         if (multicast)
5353                 efx_filter_set_mc_def(&spec);
5354         else
5355                 efx_filter_set_uc_def(&spec);
5356
5357         if (encap_type) {
5358                 if (nic_data->datapath_caps &
5359                     (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5360                         efx_filter_set_encap_type(&spec, encap_type);
5361                 else
5362                         /* don't insert encap filters on non-supporting
5363                          * platforms. ID will be left as INVALID.
5364                          */
5365                         return 0;
5366         }
5367
5368         if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5369                 efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5370
5371         rc = efx_ef10_filter_insert(efx, &spec, true);
5372         if (rc < 0) {
5373                 const char *um = multicast ? "Multicast" : "Unicast";
5374                 const char *encap_name = "";
5375                 const char *encap_ipv = "";
5376
5377                 if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5378                     EFX_ENCAP_TYPE_VXLAN)
5379                         encap_name = "VXLAN ";
5380                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5381                          EFX_ENCAP_TYPE_NVGRE)
5382                         encap_name = "NVGRE ";
5383                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5384                          EFX_ENCAP_TYPE_GENEVE)
5385                         encap_name = "GENEVE ";
5386                 if (encap_type & EFX_ENCAP_FLAG_IPV6)
5387                         encap_ipv = "IPv6 ";
5388                 else if (encap_type)
5389                         encap_ipv = "IPv4 ";
5390
5391                 /* unprivileged functions can't insert mismatch filters
5392                  * for encapsulated or unicast traffic, so downgrade
5393                  * those warnings to debug.
5394                  */
5395                 netif_cond_dbg(efx, drv, efx->net_dev,
5396                                rc == -EPERM && (encap_type || !multicast), warn,
5397                                "%s%s%s mismatch filter insert failed rc=%d\n",
5398                                encap_name, encap_ipv, um, rc);
5399         } else if (multicast) {
5400                 /* mapping from encap types to default filter IDs (multicast) */
5401                 static enum efx_ef10_default_filters map[] = {
5402                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5403                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5404                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5405                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5406                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5407                                 EFX_EF10_VXLAN6_MCDEF,
5408                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5409                                 EFX_EF10_NVGRE6_MCDEF,
5410                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5411                                 EFX_EF10_GENEVE6_MCDEF,
5412                 };
5413
5414                 /* quick bounds check (BCAST result impossible) */
5415                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5416                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5417                         WARN_ON(1);
5418                         return -EINVAL;
5419                 }
5420                 /* then follow map */
5421                 id = &vlan->default_filters[map[encap_type]];
5422
5423                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5424                 *id = efx_ef10_filter_get_unsafe_id(rc);
5425                 if (!nic_data->workaround_26807 && !encap_type) {
5426                         /* Also need an Ethernet broadcast filter */
5427                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5428                                            filter_flags, 0);
5429                         eth_broadcast_addr(baddr);
5430                         efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5431                         rc = efx_ef10_filter_insert(efx, &spec, true);
5432                         if (rc < 0) {
5433                                 netif_warn(efx, drv, efx->net_dev,
5434                                            "Broadcast filter insert failed rc=%d\n",
5435                                            rc);
5436                                 if (rollback) {
5437                                         /* Roll back the mc_def filter */
5438                                         efx_ef10_filter_remove_unsafe(
5439                                                         efx, EFX_FILTER_PRI_AUTO,
5440                                                         *id);
5441                                         *id = EFX_EF10_FILTER_ID_INVALID;
5442                                         return rc;
5443                                 }
5444                         } else {
5445                                 EFX_WARN_ON_PARANOID(
5446                                         vlan->default_filters[EFX_EF10_BCAST] !=
5447                                         EFX_EF10_FILTER_ID_INVALID);
5448                                 vlan->default_filters[EFX_EF10_BCAST] =
5449                                         efx_ef10_filter_get_unsafe_id(rc);
5450                         }
5451                 }
5452                 rc = 0;
5453         } else {
5454                 /* mapping from encap types to default filter IDs (unicast) */
5455                 static enum efx_ef10_default_filters map[] = {
5456                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5457                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5458                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5459                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5460                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5461                                 EFX_EF10_VXLAN6_UCDEF,
5462                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5463                                 EFX_EF10_NVGRE6_UCDEF,
5464                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5465                                 EFX_EF10_GENEVE6_UCDEF,
5466                 };
5467
5468                 /* quick bounds check (BCAST result impossible) */
5469                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5470                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5471                         WARN_ON(1);
5472                         return -EINVAL;
5473                 }
5474                 /* then follow map */
5475                 id = &vlan->default_filters[map[encap_type]];
5476                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5477                 *id = rc;
5478                 rc = 0;
5479         }
5480         return rc;
5481 }
5482
5483 /* Remove filters that weren't renewed. */
5484 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5485 {
5486         struct efx_ef10_filter_table *table = efx->filter_state;
5487         int remove_failed = 0;
5488         int remove_noent = 0;
5489         int rc;
5490         int i;
5491
5492         down_write(&table->lock);
5493         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5494                 if (READ_ONCE(table->entry[i].spec) &
5495                     EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5496                         rc = efx_ef10_filter_remove_internal(efx,
5497                                         1U << EFX_FILTER_PRI_AUTO, i, true);
5498                         if (rc == -ENOENT)
5499                                 remove_noent++;
5500                         else if (rc)
5501                                 remove_failed++;
5502                 }
5503         }
5504         up_write(&table->lock);
5505
5506         if (remove_failed)
5507                 netif_info(efx, drv, efx->net_dev,
5508                            "%s: failed to remove %d filters\n",
5509                            __func__, remove_failed);
5510         if (remove_noent)
5511                 netif_info(efx, drv, efx->net_dev,
5512                            "%s: failed to remove %d non-existent filters\n",
5513                            __func__, remove_noent);
5514 }
5515
5516 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5517 {
5518         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5519         u8 mac_old[ETH_ALEN];
5520         int rc, rc2;
5521
5522         /* Only reconfigure a PF-created vport */
5523         if (is_zero_ether_addr(nic_data->vport_mac))
5524                 return 0;
5525
5526         efx_device_detach_sync(efx);
5527         efx_net_stop(efx->net_dev);
5528         down_write(&efx->filter_sem);
5529         efx_ef10_filter_table_remove(efx);
5530         up_write(&efx->filter_sem);
5531
5532         rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5533         if (rc)
5534                 goto restore_filters;
5535
5536         ether_addr_copy(mac_old, nic_data->vport_mac);
5537         rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5538                                     nic_data->vport_mac);
5539         if (rc)
5540                 goto restore_vadaptor;
5541
5542         rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5543                                     efx->net_dev->dev_addr);
5544         if (!rc) {
5545                 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5546         } else {
5547                 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5548                 if (rc2) {
5549                         /* Failed to add original MAC, so clear vport_mac */
5550                         eth_zero_addr(nic_data->vport_mac);
5551                         goto reset_nic;
5552                 }
5553         }
5554
5555 restore_vadaptor:
5556         rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5557         if (rc2)
5558                 goto reset_nic;
5559 restore_filters:
5560         down_write(&efx->filter_sem);
5561         rc2 = efx_ef10_filter_table_probe(efx);
5562         up_write(&efx->filter_sem);
5563         if (rc2)
5564                 goto reset_nic;
5565
5566         rc2 = efx_net_open(efx->net_dev);
5567         if (rc2)
5568                 goto reset_nic;
5569
5570         efx_device_attach_if_not_resetting(efx);
5571
5572         return rc;
5573
5574 reset_nic:
5575         netif_err(efx, drv, efx->net_dev,
5576                   "Failed to restore when changing MAC address - scheduling reset\n");
5577         efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5578
5579         return rc ? rc : rc2;
5580 }
5581
5582 /* Caller must hold efx->filter_sem for read if race against
5583  * efx_ef10_filter_table_remove() is possible
5584  */
5585 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5586                                               struct efx_ef10_filter_vlan *vlan)
5587 {
5588         struct efx_ef10_filter_table *table = efx->filter_state;
5589         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5590
5591         /* Do not install unspecified VID if VLAN filtering is enabled.
5592          * Do not install all specified VIDs if VLAN filtering is disabled.
5593          */
5594         if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5595                 return;
5596
5597         /* Insert/renew unicast filters */
5598         if (table->uc_promisc) {
5599                 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5600                                            false, false);
5601                 efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5602         } else {
5603                 /* If any of the filters failed to insert, fall back to
5604                  * promiscuous mode - add in the uc_def filter.  But keep
5605                  * our individual unicast filters.
5606                  */
5607                 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5608                         efx_ef10_filter_insert_def(efx, vlan,
5609                                                    EFX_ENCAP_TYPE_NONE,
5610                                                    false, false);
5611         }
5612         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5613                                    false, false);
5614         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5615                                               EFX_ENCAP_FLAG_IPV6,
5616                                    false, false);
5617         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5618                                    false, false);
5619         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5620                                               EFX_ENCAP_FLAG_IPV6,
5621                                    false, false);
5622         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5623                                    false, false);
5624         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5625                                               EFX_ENCAP_FLAG_IPV6,
5626                                    false, false);
5627
5628         /* Insert/renew multicast filters */
5629         /* If changing promiscuous state with cascaded multicast filters, remove
5630          * old filters first, so that packets are dropped rather than duplicated
5631          */
5632         if (nic_data->workaround_26807 &&
5633             table->mc_promisc_last != table->mc_promisc)
5634                 efx_ef10_filter_remove_old(efx);
5635         if (table->mc_promisc) {
5636                 if (nic_data->workaround_26807) {
5637                         /* If we failed to insert promiscuous filters, rollback
5638                          * and fall back to individual multicast filters
5639                          */
5640                         if (efx_ef10_filter_insert_def(efx, vlan,
5641                                                        EFX_ENCAP_TYPE_NONE,
5642                                                        true, true)) {
5643                                 /* Changing promisc state, so remove old filters */
5644                                 efx_ef10_filter_remove_old(efx);
5645                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5646                                                                  true, false);
5647                         }
5648                 } else {
5649                         /* If we failed to insert promiscuous filters, don't
5650                          * rollback.  Regardless, also insert the mc_list,
5651                          * unless it's incomplete due to overflow
5652                          */
5653                         efx_ef10_filter_insert_def(efx, vlan,
5654                                                    EFX_ENCAP_TYPE_NONE,
5655                                                    true, false);
5656                         if (!table->mc_overflow)
5657                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5658                                                                  true, false);
5659                 }
5660         } else {
5661                 /* If any filters failed to insert, rollback and fall back to
5662                  * promiscuous mode - mc_def filter and maybe broadcast.  If
5663                  * that fails, roll back again and insert as many of our
5664                  * individual multicast filters as we can.
5665                  */
5666                 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5667                         /* Changing promisc state, so remove old filters */
5668                         if (nic_data->workaround_26807)
5669                                 efx_ef10_filter_remove_old(efx);
5670                         if (efx_ef10_filter_insert_def(efx, vlan,
5671                                                        EFX_ENCAP_TYPE_NONE,
5672                                                        true, true))
5673                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5674                                                                  true, false);
5675                 }
5676         }
5677         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5678                                    true, false);
5679         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5680                                               EFX_ENCAP_FLAG_IPV6,
5681                                    true, false);
5682         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5683                                    true, false);
5684         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5685                                               EFX_ENCAP_FLAG_IPV6,
5686                                    true, false);
5687         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5688                                    true, false);
5689         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5690                                               EFX_ENCAP_FLAG_IPV6,
5691                                    true, false);
5692 }
5693
5694 /* Caller must hold efx->filter_sem for read if race against
5695  * efx_ef10_filter_table_remove() is possible
5696  */
5697 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5698 {
5699         struct efx_ef10_filter_table *table = efx->filter_state;
5700         struct net_device *net_dev = efx->net_dev;
5701         struct efx_ef10_filter_vlan *vlan;
5702         bool vlan_filter;
5703
5704         if (!efx_dev_registered(efx))
5705                 return;
5706
5707         if (!table)
5708                 return;
5709
5710         efx_ef10_filter_mark_old(efx);
5711
5712         /* Copy/convert the address lists; add the primary station
5713          * address and broadcast address
5714          */
5715         netif_addr_lock_bh(net_dev);
5716         efx_ef10_filter_uc_addr_list(efx);
5717         efx_ef10_filter_mc_addr_list(efx);
5718         netif_addr_unlock_bh(net_dev);
5719
5720         /* If VLAN filtering changes, all old filters are finally removed.
5721          * Do it in advance to avoid conflicts for unicast untagged and
5722          * VLAN 0 tagged filters.
5723          */
5724         vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5725         if (table->vlan_filter != vlan_filter) {
5726                 table->vlan_filter = vlan_filter;
5727                 efx_ef10_filter_remove_old(efx);
5728         }
5729
5730         list_for_each_entry(vlan, &table->vlan_list, list)
5731                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5732
5733         efx_ef10_filter_remove_old(efx);
5734         table->mc_promisc_last = table->mc_promisc;
5735 }
5736
5737 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5738 {
5739         struct efx_ef10_filter_table *table = efx->filter_state;
5740         struct efx_ef10_filter_vlan *vlan;
5741
5742         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5743
5744         list_for_each_entry(vlan, &table->vlan_list, list) {
5745                 if (vlan->vid == vid)
5746                         return vlan;
5747         }
5748
5749         return NULL;
5750 }
5751
5752 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5753 {
5754         struct efx_ef10_filter_table *table = efx->filter_state;
5755         struct efx_ef10_filter_vlan *vlan;
5756         unsigned int i;
5757
5758         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5759                 return -EINVAL;
5760
5761         vlan = efx_ef10_filter_find_vlan(efx, vid);
5762         if (WARN_ON(vlan)) {
5763                 netif_err(efx, drv, efx->net_dev,
5764                           "VLAN %u already added\n", vid);
5765                 return -EALREADY;
5766         }
5767
5768         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5769         if (!vlan)
5770                 return -ENOMEM;
5771
5772         vlan->vid = vid;
5773
5774         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5775                 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5776         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5777                 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5778         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5779                 vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5780
5781         list_add_tail(&vlan->list, &table->vlan_list);
5782
5783         if (efx_dev_registered(efx))
5784                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5785
5786         return 0;
5787 }
5788
5789 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5790                                               struct efx_ef10_filter_vlan *vlan)
5791 {
5792         unsigned int i;
5793
5794         /* See comment in efx_ef10_filter_table_remove() */
5795         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5796                 return;
5797
5798         list_del(&vlan->list);
5799
5800         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5801                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5802                                               vlan->uc[i]);
5803         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5804                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5805                                               vlan->mc[i]);
5806         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5807                 if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5808                         efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5809                                                       vlan->default_filters[i]);
5810
5811         kfree(vlan);
5812 }
5813
5814 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5815 {
5816         struct efx_ef10_filter_vlan *vlan;
5817
5818         /* See comment in efx_ef10_filter_table_remove() */
5819         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5820                 return;
5821
5822         vlan = efx_ef10_filter_find_vlan(efx, vid);
5823         if (!vlan) {
5824                 netif_err(efx, drv, efx->net_dev,
5825                           "VLAN %u not found in filter state\n", vid);
5826                 return;
5827         }
5828
5829         efx_ef10_filter_del_vlan_internal(efx, vlan);
5830 }
5831
5832 static int efx_ef10_set_mac_address(struct efx_nic *efx)
5833 {
5834         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5835         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5836         bool was_enabled = efx->port_enabled;
5837         int rc;
5838
5839         efx_device_detach_sync(efx);
5840         efx_net_stop(efx->net_dev);
5841
5842         mutex_lock(&efx->mac_lock);
5843         down_write(&efx->filter_sem);
5844         efx_ef10_filter_table_remove(efx);
5845
5846         ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5847                         efx->net_dev->dev_addr);
5848         MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5849                        nic_data->vport_id);
5850         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5851                                 sizeof(inbuf), NULL, 0, NULL);
5852
5853         efx_ef10_filter_table_probe(efx);
5854         up_write(&efx->filter_sem);
5855         mutex_unlock(&efx->mac_lock);
5856
5857         if (was_enabled)
5858                 efx_net_open(efx->net_dev);
5859         efx_device_attach_if_not_resetting(efx);
5860
5861 #ifdef CONFIG_SFC_SRIOV
5862         if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5863                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5864
5865                 if (rc == -EPERM) {
5866                         struct efx_nic *efx_pf;
5867
5868                         /* Switch to PF and change MAC address on vport */
5869                         efx_pf = pci_get_drvdata(pci_dev_pf);
5870
5871                         rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5872                                                        nic_data->vf_index,
5873                                                        efx->net_dev->dev_addr);
5874                 } else if (!rc) {
5875                         struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5876                         struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5877                         unsigned int i;
5878
5879                         /* MAC address successfully changed by VF (with MAC
5880                          * spoofing) so update the parent PF if possible.
5881                          */
5882                         for (i = 0; i < efx_pf->vf_count; ++i) {
5883                                 struct ef10_vf *vf = nic_data->vf + i;
5884
5885                                 if (vf->efx == efx) {
5886                                         ether_addr_copy(vf->mac,
5887                                                         efx->net_dev->dev_addr);
5888                                         return 0;
5889                                 }
5890                         }
5891                 }
5892         } else
5893 #endif
5894         if (rc == -EPERM) {
5895                 netif_err(efx, drv, efx->net_dev,
5896                           "Cannot change MAC address; use sfboot to enable"
5897                           " mac-spoofing on this interface\n");
5898         } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5899                 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5900                  * fall-back to the method of changing the MAC address on the
5901                  * vport.  This only applies to PFs because such versions of
5902                  * MCFW do not support VFs.
5903                  */
5904                 rc = efx_ef10_vport_set_mac_address(efx);
5905         } else if (rc) {
5906                 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5907                                        sizeof(inbuf), NULL, 0, rc);
5908         }
5909
5910         return rc;
5911 }
5912
5913 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5914 {
5915         efx_ef10_filter_sync_rx_mode(efx);
5916
5917         return efx_mcdi_set_mac(efx);
5918 }
5919
5920 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5921 {
5922         efx_ef10_filter_sync_rx_mode(efx);
5923
5924         return 0;
5925 }
5926
5927 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5928 {
5929         MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5930
5931         MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5932         return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5933                             NULL, 0, NULL);
5934 }
5935
5936 /* MC BISTs follow a different poll mechanism to phy BISTs.
5937  * The BIST is done in the poll handler on the MC, and the MCDI command
5938  * will block until the BIST is done.
5939  */
5940 static int efx_ef10_poll_bist(struct efx_nic *efx)
5941 {
5942         int rc;
5943         MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5944         size_t outlen;
5945         u32 result;
5946
5947         rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5948                            outbuf, sizeof(outbuf), &outlen);
5949         if (rc != 0)
5950                 return rc;
5951
5952         if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5953                 return -EIO;
5954
5955         result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5956         switch (result) {
5957         case MC_CMD_POLL_BIST_PASSED:
5958                 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5959                 return 0;
5960         case MC_CMD_POLL_BIST_TIMEOUT:
5961                 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5962                 return -EIO;
5963         case MC_CMD_POLL_BIST_FAILED:
5964                 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5965                 return -EIO;
5966         default:
5967                 netif_err(efx, hw, efx->net_dev,
5968                           "BIST returned unknown result %u", result);
5969                 return -EIO;
5970         }
5971 }
5972
5973 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5974 {
5975         int rc;
5976
5977         netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5978
5979         rc = efx_ef10_start_bist(efx, bist_type);
5980         if (rc != 0)
5981                 return rc;
5982
5983         return efx_ef10_poll_bist(efx);
5984 }
5985
5986 static int
5987 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5988 {
5989         int rc, rc2;
5990
5991         efx_reset_down(efx, RESET_TYPE_WORLD);
5992
5993         rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5994                           NULL, 0, NULL, 0, NULL);
5995         if (rc != 0)
5996                 goto out;
5997
5998         tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
5999         tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
6000
6001         rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
6002
6003 out:
6004         if (rc == -EPERM)
6005                 rc = 0;
6006         rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
6007         return rc ? rc : rc2;
6008 }
6009
6010 #ifdef CONFIG_SFC_MTD
6011
6012 struct efx_ef10_nvram_type_info {
6013         u16 type, type_mask;
6014         u8 port;
6015         const char *name;
6016 };
6017
6018 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
6019         { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
6020         { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
6021         { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
6022         { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
6023         { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
6024         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
6025         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
6026         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
6027         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
6028         { NVRAM_PARTITION_TYPE_LICENSE,            0,    0, "sfc_license" },
6029         { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
6030 };
6031
6032 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
6033                                         struct efx_mcdi_mtd_partition *part,
6034                                         unsigned int type)
6035 {
6036         MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
6037         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
6038         const struct efx_ef10_nvram_type_info *info;
6039         size_t size, erase_size, outlen;
6040         bool protected;
6041         int rc;
6042
6043         for (info = efx_ef10_nvram_types; ; info++) {
6044                 if (info ==
6045                     efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
6046                         return -ENODEV;
6047                 if ((type & ~info->type_mask) == info->type)
6048                         break;
6049         }
6050         if (info->port != efx_port_num(efx))
6051                 return -ENODEV;
6052
6053         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
6054         if (rc)
6055                 return rc;
6056         if (protected)
6057                 return -ENODEV; /* hide it */
6058
6059         part->nvram_type = type;
6060
6061         MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
6062         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
6063                           outbuf, sizeof(outbuf), &outlen);
6064         if (rc)
6065                 return rc;
6066         if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
6067                 return -EIO;
6068         if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
6069             (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
6070                 part->fw_subtype = MCDI_DWORD(outbuf,
6071                                               NVRAM_METADATA_OUT_SUBTYPE);
6072
6073         part->common.dev_type_name = "EF10 NVRAM manager";
6074         part->common.type_name = info->name;
6075
6076         part->common.mtd.type = MTD_NORFLASH;
6077         part->common.mtd.flags = MTD_CAP_NORFLASH;
6078         part->common.mtd.size = size;
6079         part->common.mtd.erasesize = erase_size;
6080
6081         return 0;
6082 }
6083
6084 static int efx_ef10_mtd_probe(struct efx_nic *efx)
6085 {
6086         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
6087         struct efx_mcdi_mtd_partition *parts;
6088         size_t outlen, n_parts_total, i, n_parts;
6089         unsigned int type;
6090         int rc;
6091
6092         ASSERT_RTNL();
6093
6094         BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
6095         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
6096                           outbuf, sizeof(outbuf), &outlen);
6097         if (rc)
6098                 return rc;
6099         if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
6100                 return -EIO;
6101
6102         n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
6103         if (n_parts_total >
6104             MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
6105                 return -EIO;
6106
6107         parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
6108         if (!parts)
6109                 return -ENOMEM;
6110
6111         n_parts = 0;
6112         for (i = 0; i < n_parts_total; i++) {
6113                 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
6114                                         i);
6115                 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
6116                 if (rc == 0)
6117                         n_parts++;
6118                 else if (rc != -ENODEV)
6119                         goto fail;
6120         }
6121
6122         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
6123 fail:
6124         if (rc)
6125                 kfree(parts);
6126         return rc;
6127 }
6128
6129 #endif /* CONFIG_SFC_MTD */
6130
6131 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
6132 {
6133         _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
6134 }
6135
6136 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
6137                                             u32 host_time) {}
6138
6139 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
6140                                            bool temp)
6141 {
6142         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
6143         int rc;
6144
6145         if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
6146             channel->sync_events_state == SYNC_EVENTS_VALID ||
6147             (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
6148                 return 0;
6149         channel->sync_events_state = SYNC_EVENTS_REQUESTED;
6150
6151         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
6152         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6153         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
6154                        channel->channel);
6155
6156         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6157                           inbuf, sizeof(inbuf), NULL, 0, NULL);
6158
6159         if (rc != 0)
6160                 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6161                                                     SYNC_EVENTS_DISABLED;
6162
6163         return rc;
6164 }
6165
6166 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
6167                                             bool temp)
6168 {
6169         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
6170         int rc;
6171
6172         if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
6173             (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
6174                 return 0;
6175         if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6176                 channel->sync_events_state = SYNC_EVENTS_DISABLED;
6177                 return 0;
6178         }
6179         channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6180                                             SYNC_EVENTS_DISABLED;
6181
6182         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6183         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6184         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6185                        MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6186         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6187                        channel->channel);
6188
6189         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6190                           inbuf, sizeof(inbuf), NULL, 0, NULL);
6191
6192         return rc;
6193 }
6194
6195 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6196                                            bool temp)
6197 {
6198         int (*set)(struct efx_channel *channel, bool temp);
6199         struct efx_channel *channel;
6200
6201         set = en ?
6202               efx_ef10_rx_enable_timestamping :
6203               efx_ef10_rx_disable_timestamping;
6204
6205         channel = efx_ptp_channel(efx);
6206         if (channel) {
6207                 int rc = set(channel, temp);
6208                 if (en && rc != 0) {
6209                         efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6210                         return rc;
6211                 }
6212         }
6213
6214         return 0;
6215 }
6216
6217 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6218                                          struct hwtstamp_config *init)
6219 {
6220         return -EOPNOTSUPP;
6221 }
6222
6223 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6224                                       struct hwtstamp_config *init)
6225 {
6226         int rc;
6227
6228         switch (init->rx_filter) {
6229         case HWTSTAMP_FILTER_NONE:
6230                 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6231                 /* if TX timestamping is still requested then leave PTP on */
6232                 return efx_ptp_change_mode(efx,
6233                                            init->tx_type != HWTSTAMP_TX_OFF, 0);
6234         case HWTSTAMP_FILTER_ALL:
6235         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6236         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6237         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6238         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6239         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6240         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6241         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6242         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6243         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6244         case HWTSTAMP_FILTER_PTP_V2_EVENT:
6245         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6246         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6247         case HWTSTAMP_FILTER_NTP_ALL:
6248                 init->rx_filter = HWTSTAMP_FILTER_ALL;
6249                 rc = efx_ptp_change_mode(efx, true, 0);
6250                 if (!rc)
6251                         rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6252                 if (rc)
6253                         efx_ptp_change_mode(efx, false, 0);
6254                 return rc;
6255         default:
6256                 return -ERANGE;
6257         }
6258 }
6259
6260 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6261                                      struct netdev_phys_item_id *ppid)
6262 {
6263         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6264
6265         if (!is_valid_ether_addr(nic_data->port_id))
6266                 return -EOPNOTSUPP;
6267
6268         ppid->id_len = ETH_ALEN;
6269         memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6270
6271         return 0;
6272 }
6273
6274 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6275 {
6276         if (proto != htons(ETH_P_8021Q))
6277                 return -EINVAL;
6278
6279         return efx_ef10_add_vlan(efx, vid);
6280 }
6281
6282 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6283 {
6284         if (proto != htons(ETH_P_8021Q))
6285                 return -EINVAL;
6286
6287         return efx_ef10_del_vlan(efx, vid);
6288 }
6289
6290 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
6291  * ports table, ensuring that any TSO descriptors that were made on a now-
6292  * removed tunnel port will be blown away and won't break things when we try
6293  * to transmit them using the new ports table.
6294  */
6295 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6296 {
6297         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6298         MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6299         MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6300         bool will_reset = false;
6301         size_t num_entries = 0;
6302         size_t inlen, outlen;
6303         size_t i;
6304         int rc;
6305         efx_dword_t flags_and_num_entries;
6306
6307         WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6308
6309         nic_data->udp_tunnels_dirty = false;
6310
6311         if (!(nic_data->datapath_caps &
6312             (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6313                 efx_device_attach_if_not_resetting(efx);
6314                 return 0;
6315         }
6316
6317         BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6318                      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6319
6320         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6321                 if (nic_data->udp_tunnels[i].count &&
6322                     nic_data->udp_tunnels[i].port) {
6323                         efx_dword_t entry;
6324
6325                         EFX_POPULATE_DWORD_2(entry,
6326                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6327                                         ntohs(nic_data->udp_tunnels[i].port),
6328                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6329                                         nic_data->udp_tunnels[i].type);
6330                         *_MCDI_ARRAY_DWORD(inbuf,
6331                                 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6332                                 num_entries++) = entry;
6333                 }
6334         }
6335
6336         BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6337                       MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6338                      EFX_WORD_1_LBN);
6339         BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6340                      EFX_WORD_1_WIDTH);
6341         EFX_POPULATE_DWORD_2(flags_and_num_entries,
6342                              MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6343                                 !!unloading,
6344                              EFX_WORD_1, num_entries);
6345         *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6346                 flags_and_num_entries;
6347
6348         inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6349
6350         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6351                                 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6352         if (rc == -EIO) {
6353                 /* Most likely the MC rebooted due to another function also
6354                  * setting its tunnel port list. Mark the tunnel port list as
6355                  * dirty, so it will be pushed upon coming up from the reboot.
6356                  */
6357                 nic_data->udp_tunnels_dirty = true;
6358                 return 0;
6359         }
6360
6361         if (rc) {
6362                 /* expected not available on unprivileged functions */
6363                 if (rc != -EPERM)
6364                         netif_warn(efx, drv, efx->net_dev,
6365                                    "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6366         } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6367                    (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6368                 netif_info(efx, drv, efx->net_dev,
6369                            "Rebooting MC due to UDP tunnel port list change\n");
6370                 will_reset = true;
6371                 if (unloading)
6372                         /* Delay for the MC reset to complete. This will make
6373                          * unloading other functions a bit smoother. This is a
6374                          * race, but the other unload will work whichever way
6375                          * it goes, this just avoids an unnecessary error
6376                          * message.
6377                          */
6378                         msleep(100);
6379         }
6380         if (!will_reset && !unloading) {
6381                 /* The caller will have detached, relying on the MC reset to
6382                  * trigger a re-attach.  Since there won't be an MC reset, we
6383                  * have to do the attach ourselves.
6384                  */
6385                 efx_device_attach_if_not_resetting(efx);
6386         }
6387
6388         return rc;
6389 }
6390
6391 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6392 {
6393         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6394         int rc = 0;
6395
6396         mutex_lock(&nic_data->udp_tunnels_lock);
6397         if (nic_data->udp_tunnels_dirty) {
6398                 /* Make sure all TX are stopped while we modify the table, else
6399                  * we might race against an efx_features_check().
6400                  */
6401                 efx_device_detach_sync(efx);
6402                 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6403         }
6404         mutex_unlock(&nic_data->udp_tunnels_lock);
6405         return rc;
6406 }
6407
6408 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6409                                                              __be16 port)
6410 {
6411         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6412         size_t i;
6413
6414         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6415                 if (!nic_data->udp_tunnels[i].count)
6416                         continue;
6417                 if (nic_data->udp_tunnels[i].port == port)
6418                         return &nic_data->udp_tunnels[i];
6419         }
6420         return NULL;
6421 }
6422
6423 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6424                                      struct efx_udp_tunnel tnl)
6425 {
6426         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6427         struct efx_udp_tunnel *match;
6428         char typebuf[8];
6429         size_t i;
6430         int rc;
6431
6432         if (!(nic_data->datapath_caps &
6433               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6434                 return 0;
6435
6436         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6437         netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6438                   typebuf, ntohs(tnl.port));
6439
6440         mutex_lock(&nic_data->udp_tunnels_lock);
6441         /* Make sure all TX are stopped while we add to the table, else we
6442          * might race against an efx_features_check().
6443          */
6444         efx_device_detach_sync(efx);
6445
6446         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6447         if (match != NULL) {
6448                 if (match->type == tnl.type) {
6449                         netif_dbg(efx, drv, efx->net_dev,
6450                                   "Referencing existing tunnel entry\n");
6451                         match->count++;
6452                         /* No need to cause an MCDI update */
6453                         rc = 0;
6454                         goto unlock_out;
6455                 }
6456                 efx_get_udp_tunnel_type_name(match->type,
6457                                              typebuf, sizeof(typebuf));
6458                 netif_dbg(efx, drv, efx->net_dev,
6459                           "UDP port %d is already in use by %s\n",
6460                           ntohs(tnl.port), typebuf);
6461                 rc = -EEXIST;
6462                 goto unlock_out;
6463         }
6464
6465         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6466                 if (!nic_data->udp_tunnels[i].count) {
6467                         nic_data->udp_tunnels[i] = tnl;
6468                         nic_data->udp_tunnels[i].count = 1;
6469                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6470                         goto unlock_out;
6471                 }
6472
6473         netif_dbg(efx, drv, efx->net_dev,
6474                   "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6475                   typebuf, ntohs(tnl.port));
6476
6477         rc = -ENOMEM;
6478
6479 unlock_out:
6480         mutex_unlock(&nic_data->udp_tunnels_lock);
6481         return rc;
6482 }
6483
6484 /* Called under the TX lock with the TX queue running, hence no-one can be
6485  * in the middle of updating the UDP tunnels table.  However, they could
6486  * have tried and failed the MCDI, in which case they'll have set the dirty
6487  * flag before dropping their locks.
6488  */
6489 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6490 {
6491         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6492
6493         if (!(nic_data->datapath_caps &
6494               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6495                 return false;
6496
6497         if (nic_data->udp_tunnels_dirty)
6498                 /* SW table may not match HW state, so just assume we can't
6499                  * use any UDP tunnel offloads.
6500                  */
6501                 return false;
6502
6503         return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6504 }
6505
6506 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6507                                      struct efx_udp_tunnel tnl)
6508 {
6509         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6510         struct efx_udp_tunnel *match;
6511         char typebuf[8];
6512         int rc;
6513
6514         if (!(nic_data->datapath_caps &
6515               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6516                 return 0;
6517
6518         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6519         netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6520                   typebuf, ntohs(tnl.port));
6521
6522         mutex_lock(&nic_data->udp_tunnels_lock);
6523         /* Make sure all TX are stopped while we remove from the table, else we
6524          * might race against an efx_features_check().
6525          */
6526         efx_device_detach_sync(efx);
6527
6528         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6529         if (match != NULL) {
6530                 if (match->type == tnl.type) {
6531                         if (--match->count) {
6532                                 /* Port is still in use, so nothing to do */
6533                                 netif_dbg(efx, drv, efx->net_dev,
6534                                           "UDP tunnel port %d remains active\n",
6535                                           ntohs(tnl.port));
6536                                 rc = 0;
6537                                 goto out_unlock;
6538                         }
6539                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6540                         goto out_unlock;
6541                 }
6542                 efx_get_udp_tunnel_type_name(match->type,
6543                                              typebuf, sizeof(typebuf));
6544                 netif_warn(efx, drv, efx->net_dev,
6545                            "UDP port %d is actually in use by %s, not removing\n",
6546                            ntohs(tnl.port), typebuf);
6547         }
6548         rc = -ENOENT;
6549
6550 out_unlock:
6551         mutex_unlock(&nic_data->udp_tunnels_lock);
6552         return rc;
6553 }
6554
6555 #define EF10_OFFLOAD_FEATURES           \
6556         (NETIF_F_IP_CSUM |              \
6557          NETIF_F_HW_VLAN_CTAG_FILTER |  \
6558          NETIF_F_IPV6_CSUM |            \
6559          NETIF_F_RXHASH |               \
6560          NETIF_F_NTUPLE)
6561
6562 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6563         .is_vf = true,
6564         .mem_bar = efx_ef10_vf_mem_bar,
6565         .mem_map_size = efx_ef10_mem_map_size,
6566         .probe = efx_ef10_probe_vf,
6567         .remove = efx_ef10_remove,
6568         .dimension_resources = efx_ef10_dimension_resources,
6569         .init = efx_ef10_init_nic,
6570         .fini = efx_port_dummy_op_void,
6571         .map_reset_reason = efx_ef10_map_reset_reason,
6572         .map_reset_flags = efx_ef10_map_reset_flags,
6573         .reset = efx_ef10_reset,
6574         .probe_port = efx_mcdi_port_probe,
6575         .remove_port = efx_mcdi_port_remove,
6576         .fini_dmaq = efx_ef10_fini_dmaq,
6577         .prepare_flr = efx_ef10_prepare_flr,
6578         .finish_flr = efx_port_dummy_op_void,
6579         .describe_stats = efx_ef10_describe_stats,
6580         .update_stats = efx_ef10_update_stats_vf,
6581         .start_stats = efx_port_dummy_op_void,
6582         .pull_stats = efx_port_dummy_op_void,
6583         .stop_stats = efx_port_dummy_op_void,
6584         .set_id_led = efx_mcdi_set_id_led,
6585         .push_irq_moderation = efx_ef10_push_irq_moderation,
6586         .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6587         .check_mac_fault = efx_mcdi_mac_check_fault,
6588         .reconfigure_port = efx_mcdi_port_reconfigure,
6589         .get_wol = efx_ef10_get_wol_vf,
6590         .set_wol = efx_ef10_set_wol_vf,
6591         .resume_wol = efx_port_dummy_op_void,
6592         .mcdi_request = efx_ef10_mcdi_request,
6593         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6594         .mcdi_read_response = efx_ef10_mcdi_read_response,
6595         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6596         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6597         .irq_enable_master = efx_port_dummy_op_void,
6598         .irq_test_generate = efx_ef10_irq_test_generate,
6599         .irq_disable_non_ev = efx_port_dummy_op_void,
6600         .irq_handle_msi = efx_ef10_msi_interrupt,
6601         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6602         .tx_probe = efx_ef10_tx_probe,
6603         .tx_init = efx_ef10_tx_init,
6604         .tx_remove = efx_ef10_tx_remove,
6605         .tx_write = efx_ef10_tx_write,
6606         .tx_limit_len = efx_ef10_tx_limit_len,
6607         .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6608         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6609         .rx_probe = efx_ef10_rx_probe,
6610         .rx_init = efx_ef10_rx_init,
6611         .rx_remove = efx_ef10_rx_remove,
6612         .rx_write = efx_ef10_rx_write,
6613         .rx_defer_refill = efx_ef10_rx_defer_refill,
6614         .ev_probe = efx_ef10_ev_probe,
6615         .ev_init = efx_ef10_ev_init,
6616         .ev_fini = efx_ef10_ev_fini,
6617         .ev_remove = efx_ef10_ev_remove,
6618         .ev_process = efx_ef10_ev_process,
6619         .ev_read_ack = efx_ef10_ev_read_ack,
6620         .ev_test_generate = efx_ef10_ev_test_generate,
6621         .filter_table_probe = efx_ef10_filter_table_probe,
6622         .filter_table_restore = efx_ef10_filter_table_restore,
6623         .filter_table_remove = efx_ef10_filter_table_remove,
6624         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6625         .filter_insert = efx_ef10_filter_insert,
6626         .filter_remove_safe = efx_ef10_filter_remove_safe,
6627         .filter_get_safe = efx_ef10_filter_get_safe,
6628         .filter_clear_rx = efx_ef10_filter_clear_rx,
6629         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6630         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6631         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6632 #ifdef CONFIG_RFS_ACCEL
6633         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6634 #endif
6635 #ifdef CONFIG_SFC_MTD
6636         .mtd_probe = efx_port_dummy_op_int,
6637 #endif
6638         .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6639         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6640         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6641         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6642 #ifdef CONFIG_SFC_SRIOV
6643         .vswitching_probe = efx_ef10_vswitching_probe_vf,
6644         .vswitching_restore = efx_ef10_vswitching_restore_vf,
6645         .vswitching_remove = efx_ef10_vswitching_remove_vf,
6646 #endif
6647         .get_mac_address = efx_ef10_get_mac_address_vf,
6648         .set_mac_address = efx_ef10_set_mac_address,
6649
6650         .get_phys_port_id = efx_ef10_get_phys_port_id,
6651         .revision = EFX_REV_HUNT_A0,
6652         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6653         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6654         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6655         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6656         .can_rx_scatter = true,
6657         .always_rx_scatter = true,
6658         .min_interrupt_mode = EFX_INT_MODE_MSIX,
6659         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6660         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6661         .offload_features = EF10_OFFLOAD_FEATURES,
6662         .mcdi_max_ver = 2,
6663         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6664         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6665                             1 << HWTSTAMP_FILTER_ALL,
6666         .rx_hash_key_size = 40,
6667 };
6668
6669 const struct efx_nic_type efx_hunt_a0_nic_type = {
6670         .is_vf = false,
6671         .mem_bar = efx_ef10_pf_mem_bar,
6672         .mem_map_size = efx_ef10_mem_map_size,
6673         .probe = efx_ef10_probe_pf,
6674         .remove = efx_ef10_remove,
6675         .dimension_resources = efx_ef10_dimension_resources,
6676         .init = efx_ef10_init_nic,
6677         .fini = efx_port_dummy_op_void,
6678         .map_reset_reason = efx_ef10_map_reset_reason,
6679         .map_reset_flags = efx_ef10_map_reset_flags,
6680         .reset = efx_ef10_reset,
6681         .probe_port = efx_mcdi_port_probe,
6682         .remove_port = efx_mcdi_port_remove,
6683         .fini_dmaq = efx_ef10_fini_dmaq,
6684         .prepare_flr = efx_ef10_prepare_flr,
6685         .finish_flr = efx_port_dummy_op_void,
6686         .describe_stats = efx_ef10_describe_stats,
6687         .update_stats = efx_ef10_update_stats_pf,
6688         .start_stats = efx_mcdi_mac_start_stats,
6689         .pull_stats = efx_mcdi_mac_pull_stats,
6690         .stop_stats = efx_mcdi_mac_stop_stats,
6691         .set_id_led = efx_mcdi_set_id_led,
6692         .push_irq_moderation = efx_ef10_push_irq_moderation,
6693         .reconfigure_mac = efx_ef10_mac_reconfigure,
6694         .check_mac_fault = efx_mcdi_mac_check_fault,
6695         .reconfigure_port = efx_mcdi_port_reconfigure,
6696         .get_wol = efx_ef10_get_wol,
6697         .set_wol = efx_ef10_set_wol,
6698         .resume_wol = efx_port_dummy_op_void,
6699         .test_chip = efx_ef10_test_chip,
6700         .test_nvram = efx_mcdi_nvram_test_all,
6701         .mcdi_request = efx_ef10_mcdi_request,
6702         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6703         .mcdi_read_response = efx_ef10_mcdi_read_response,
6704         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6705         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6706         .irq_enable_master = efx_port_dummy_op_void,
6707         .irq_test_generate = efx_ef10_irq_test_generate,
6708         .irq_disable_non_ev = efx_port_dummy_op_void,
6709         .irq_handle_msi = efx_ef10_msi_interrupt,
6710         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6711         .tx_probe = efx_ef10_tx_probe,
6712         .tx_init = efx_ef10_tx_init,
6713         .tx_remove = efx_ef10_tx_remove,
6714         .tx_write = efx_ef10_tx_write,
6715         .tx_limit_len = efx_ef10_tx_limit_len,
6716         .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6717         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6718         .rx_push_rss_context_config = efx_ef10_rx_push_rss_context_config,
6719         .rx_pull_rss_context_config = efx_ef10_rx_pull_rss_context_config,
6720         .rx_restore_rss_contexts = efx_ef10_rx_restore_rss_contexts,
6721         .rx_probe = efx_ef10_rx_probe,
6722         .rx_init = efx_ef10_rx_init,
6723         .rx_remove = efx_ef10_rx_remove,
6724         .rx_write = efx_ef10_rx_write,
6725         .rx_defer_refill = efx_ef10_rx_defer_refill,
6726         .ev_probe = efx_ef10_ev_probe,
6727         .ev_init = efx_ef10_ev_init,
6728         .ev_fini = efx_ef10_ev_fini,
6729         .ev_remove = efx_ef10_ev_remove,
6730         .ev_process = efx_ef10_ev_process,
6731         .ev_read_ack = efx_ef10_ev_read_ack,
6732         .ev_test_generate = efx_ef10_ev_test_generate,
6733         .filter_table_probe = efx_ef10_filter_table_probe,
6734         .filter_table_restore = efx_ef10_filter_table_restore,
6735         .filter_table_remove = efx_ef10_filter_table_remove,
6736         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6737         .filter_insert = efx_ef10_filter_insert,
6738         .filter_remove_safe = efx_ef10_filter_remove_safe,
6739         .filter_get_safe = efx_ef10_filter_get_safe,
6740         .filter_clear_rx = efx_ef10_filter_clear_rx,
6741         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6742         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6743         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6744 #ifdef CONFIG_RFS_ACCEL
6745         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6746 #endif
6747 #ifdef CONFIG_SFC_MTD
6748         .mtd_probe = efx_ef10_mtd_probe,
6749         .mtd_rename = efx_mcdi_mtd_rename,
6750         .mtd_read = efx_mcdi_mtd_read,
6751         .mtd_erase = efx_mcdi_mtd_erase,
6752         .mtd_write = efx_mcdi_mtd_write,
6753         .mtd_sync = efx_mcdi_mtd_sync,
6754 #endif
6755         .ptp_write_host_time = efx_ef10_ptp_write_host_time,
6756         .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6757         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6758         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6759         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6760         .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6761         .udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6762         .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6763         .udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6764 #ifdef CONFIG_SFC_SRIOV
6765         .sriov_configure = efx_ef10_sriov_configure,
6766         .sriov_init = efx_ef10_sriov_init,
6767         .sriov_fini = efx_ef10_sriov_fini,
6768         .sriov_wanted = efx_ef10_sriov_wanted,
6769         .sriov_reset = efx_ef10_sriov_reset,
6770         .sriov_flr = efx_ef10_sriov_flr,
6771         .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6772         .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6773         .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6774         .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6775         .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6776         .vswitching_probe = efx_ef10_vswitching_probe_pf,
6777         .vswitching_restore = efx_ef10_vswitching_restore_pf,
6778         .vswitching_remove = efx_ef10_vswitching_remove_pf,
6779 #endif
6780         .get_mac_address = efx_ef10_get_mac_address_pf,
6781         .set_mac_address = efx_ef10_set_mac_address,
6782         .tso_versions = efx_ef10_tso_versions,
6783
6784         .get_phys_port_id = efx_ef10_get_phys_port_id,
6785         .revision = EFX_REV_HUNT_A0,
6786         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6787         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6788         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6789         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6790         .can_rx_scatter = true,
6791         .always_rx_scatter = true,
6792         .option_descriptors = true,
6793         .min_interrupt_mode = EFX_INT_MODE_LEGACY,
6794         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6795         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6796         .offload_features = EF10_OFFLOAD_FEATURES,
6797         .mcdi_max_ver = 2,
6798         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6799         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6800                             1 << HWTSTAMP_FILTER_ALL,
6801         .rx_hash_key_size = 40,
6802 };