Merge tag 'linux-kselftest-5.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / qualcomm / emac / emac-mac.c
1 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  */
12
13 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
14  */
15
16 #include <linux/tcp.h>
17 #include <linux/ip.h>
18 #include <linux/ipv6.h>
19 #include <linux/crc32.h>
20 #include <linux/if_vlan.h>
21 #include <linux/jiffies.h>
22 #include <linux/phy.h>
23 #include <linux/of.h>
24 #include <net/ip6_checksum.h>
25 #include "emac.h"
26 #include "emac-sgmii.h"
27
28 /* EMAC_MAC_CTRL */
29 #define SINGLE_PAUSE_MODE               0x10000000
30 #define DEBUG_MODE                      0x08000000
31 #define BROAD_EN                        0x04000000
32 #define MULTI_ALL                       0x02000000
33 #define RX_CHKSUM_EN                    0x01000000
34 #define HUGE                            0x00800000
35 #define SPEED(x)                        (((x) & 0x3) << 20)
36 #define SPEED_MASK                      SPEED(0x3)
37 #define SIMR                            0x00080000
38 #define TPAUSE                          0x00010000
39 #define PROM_MODE                       0x00008000
40 #define VLAN_STRIP                      0x00004000
41 #define PRLEN_BMSK                      0x00003c00
42 #define PRLEN_SHFT                      10
43 #define HUGEN                           0x00000200
44 #define FLCHK                           0x00000100
45 #define PCRCE                           0x00000080
46 #define CRCE                            0x00000040
47 #define FULLD                           0x00000020
48 #define MAC_LP_EN                       0x00000010
49 #define RXFC                            0x00000008
50 #define TXFC                            0x00000004
51 #define RXEN                            0x00000002
52 #define TXEN                            0x00000001
53
54 /* EMAC_DESC_CTRL_3 */
55 #define RFD_RING_SIZE_BMSK                                       0xfff
56
57 /* EMAC_DESC_CTRL_4 */
58 #define RX_BUFFER_SIZE_BMSK                                     0xffff
59
60 /* EMAC_DESC_CTRL_6 */
61 #define RRD_RING_SIZE_BMSK                                       0xfff
62
63 /* EMAC_DESC_CTRL_9 */
64 #define TPD_RING_SIZE_BMSK                                      0xffff
65
66 /* EMAC_TXQ_CTRL_0 */
67 #define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
68 #define NUM_TXF_BURST_PREF_SHFT                                     16
69 #define LS_8023_SP                                                0x80
70 #define TXQ_MODE                                                  0x40
71 #define TXQ_EN                                                    0x20
72 #define IP_OP_SP                                                  0x10
73 #define NUM_TPD_BURST_PREF_BMSK                                    0xf
74 #define NUM_TPD_BURST_PREF_SHFT                                      0
75
76 /* EMAC_TXQ_CTRL_1 */
77 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
78
79 /* EMAC_TXQ_CTRL_2 */
80 #define TXF_HWM_BMSK                                         0xfff0000
81 #define TXF_LWM_BMSK                                             0xfff
82
83 /* EMAC_RXQ_CTRL_0 */
84 #define RXQ_EN                                                 BIT(31)
85 #define CUT_THRU_EN                                            BIT(30)
86 #define RSS_HASH_EN                                            BIT(29)
87 #define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
88 #define NUM_RFD_BURST_PREF_SHFT                                     20
89 #define IDT_TABLE_SIZE_BMSK                                    0x1ff00
90 #define IDT_TABLE_SIZE_SHFT                                          8
91 #define SP_IPV6                                                   0x80
92
93 /* EMAC_RXQ_CTRL_1 */
94 #define JUMBO_1KAH_BMSK                                         0xf000
95 #define JUMBO_1KAH_SHFT                                             12
96 #define RFD_PREF_LOW_TH                                           0x10
97 #define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
98 #define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
99 #define RFD_PREF_UP_TH                                            0x10
100 #define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
101 #define RFD_PREF_UP_THRESHOLD_SHFT                                   0
102
103 /* EMAC_RXQ_CTRL_2 */
104 #define RXF_DOF_THRESFHOLD                                       0x1a0
105 #define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
106 #define RXF_DOF_THRESHOLD_SHFT                                      16
107 #define RXF_UOF_THRESFHOLD                                        0xbe
108 #define RXF_UOF_THRESHOLD_BMSK                                   0xfff
109 #define RXF_UOF_THRESHOLD_SHFT                                       0
110
111 /* EMAC_RXQ_CTRL_3 */
112 #define RXD_TIMER_BMSK                                      0xffff0000
113 #define RXD_THRESHOLD_BMSK                                       0xfff
114 #define RXD_THRESHOLD_SHFT                                           0
115
116 /* EMAC_DMA_CTRL */
117 #define DMAW_DLY_CNT_BMSK                                      0xf0000
118 #define DMAW_DLY_CNT_SHFT                                           16
119 #define DMAR_DLY_CNT_BMSK                                       0xf800
120 #define DMAR_DLY_CNT_SHFT                                           11
121 #define DMAR_REQ_PRI                                             0x400
122 #define REGWRBLEN_BMSK                                           0x380
123 #define REGWRBLEN_SHFT                                               7
124 #define REGRDBLEN_BMSK                                            0x70
125 #define REGRDBLEN_SHFT                                               4
126 #define OUT_ORDER_MODE                                             0x4
127 #define ENH_ORDER_MODE                                             0x2
128 #define IN_ORDER_MODE                                              0x1
129
130 /* EMAC_MAILBOX_13 */
131 #define RFD3_PROC_IDX_BMSK                                   0xfff0000
132 #define RFD3_PROC_IDX_SHFT                                          16
133 #define RFD3_PROD_IDX_BMSK                                       0xfff
134 #define RFD3_PROD_IDX_SHFT                                           0
135
136 /* EMAC_MAILBOX_2 */
137 #define NTPD_CONS_IDX_BMSK                                  0xffff0000
138 #define NTPD_CONS_IDX_SHFT                                          16
139
140 /* EMAC_MAILBOX_3 */
141 #define RFD0_CONS_IDX_BMSK                                       0xfff
142 #define RFD0_CONS_IDX_SHFT                                           0
143
144 /* EMAC_MAILBOX_11 */
145 #define H3TPD_PROD_IDX_BMSK                                 0xffff0000
146 #define H3TPD_PROD_IDX_SHFT                                         16
147
148 /* EMAC_AXI_MAST_CTRL */
149 #define DATA_BYTE_SWAP                                             0x8
150 #define MAX_BOUND                                                  0x2
151 #define MAX_BTYPE                                                  0x1
152
153 /* EMAC_MAILBOX_12 */
154 #define H3TPD_CONS_IDX_BMSK                                 0xffff0000
155 #define H3TPD_CONS_IDX_SHFT                                         16
156
157 /* EMAC_MAILBOX_9 */
158 #define H2TPD_PROD_IDX_BMSK                                     0xffff
159 #define H2TPD_PROD_IDX_SHFT                                          0
160
161 /* EMAC_MAILBOX_10 */
162 #define H1TPD_CONS_IDX_BMSK                                 0xffff0000
163 #define H1TPD_CONS_IDX_SHFT                                         16
164 #define H2TPD_CONS_IDX_BMSK                                     0xffff
165 #define H2TPD_CONS_IDX_SHFT                                          0
166
167 /* EMAC_ATHR_HEADER_CTRL */
168 #define HEADER_CNT_EN                                              0x2
169 #define HEADER_ENABLE                                              0x1
170
171 /* EMAC_MAILBOX_0 */
172 #define RFD0_PROC_IDX_BMSK                                   0xfff0000
173 #define RFD0_PROC_IDX_SHFT                                          16
174 #define RFD0_PROD_IDX_BMSK                                       0xfff
175 #define RFD0_PROD_IDX_SHFT                                           0
176
177 /* EMAC_MAILBOX_5 */
178 #define RFD1_PROC_IDX_BMSK                                   0xfff0000
179 #define RFD1_PROC_IDX_SHFT                                          16
180 #define RFD1_PROD_IDX_BMSK                                       0xfff
181 #define RFD1_PROD_IDX_SHFT                                           0
182
183 /* EMAC_MISC_CTRL */
184 #define RX_UNCPL_INT_EN                                            0x1
185
186 /* EMAC_MAILBOX_7 */
187 #define RFD2_CONS_IDX_BMSK                                   0xfff0000
188 #define RFD2_CONS_IDX_SHFT                                          16
189 #define RFD1_CONS_IDX_BMSK                                       0xfff
190 #define RFD1_CONS_IDX_SHFT                                           0
191
192 /* EMAC_MAILBOX_8 */
193 #define RFD3_CONS_IDX_BMSK                                       0xfff
194 #define RFD3_CONS_IDX_SHFT                                           0
195
196 /* EMAC_MAILBOX_15 */
197 #define NTPD_PROD_IDX_BMSK                                      0xffff
198 #define NTPD_PROD_IDX_SHFT                                           0
199
200 /* EMAC_MAILBOX_16 */
201 #define H1TPD_PROD_IDX_BMSK                                     0xffff
202 #define H1TPD_PROD_IDX_SHFT                                          0
203
204 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
205 #define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
206 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
207 #define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
208
209 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
210 #define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
211 #define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
212
213 struct emac_skb_cb {
214         u32           tpd_idx;
215         unsigned long jiffies;
216 };
217
218 #define EMAC_SKB_CB(skb)        ((struct emac_skb_cb *)(skb)->cb)
219 #define EMAC_RSS_IDT_SIZE       256
220 #define JUMBO_1KAH              0x4
221 #define RXD_TH                  0x100
222 #define EMAC_TPD_LAST_FRAGMENT  0x80000000
223 #define EMAC_TPD_TSTAMP_SAVE    0x80000000
224
225 /* EMAC Errors in emac_rrd.word[3] */
226 #define EMAC_RRD_L4F            BIT(14)
227 #define EMAC_RRD_IPF            BIT(15)
228 #define EMAC_RRD_CRC            BIT(21)
229 #define EMAC_RRD_FAE            BIT(22)
230 #define EMAC_RRD_TRN            BIT(23)
231 #define EMAC_RRD_RNT            BIT(24)
232 #define EMAC_RRD_INC            BIT(25)
233 #define EMAC_RRD_FOV            BIT(29)
234 #define EMAC_RRD_LEN            BIT(30)
235
236 /* Error bits that will result in a received frame being discarded */
237 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
238                         EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
239                         EMAC_RRD_FOV | EMAC_RRD_LEN)
240 #define EMAC_RRD_STATS_DW_IDX 3
241
242 #define EMAC_RRD(RXQ, SIZE, IDX)        ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
243 #define EMAC_RFD(RXQ, SIZE, IDX)        ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
244 #define EMAC_TPD(TXQ, SIZE, IDX)        ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
245
246 #define GET_RFD_BUFFER(RXQ, IDX)        (&((RXQ)->rfd.rfbuff[(IDX)]))
247 #define GET_TPD_BUFFER(RTQ, IDX)        (&((RTQ)->tpd.tpbuff[(IDX)]))
248
249 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD       8
250
251 #define ISR_RX_PKT      (\
252         RX_PKT_INT0     |\
253         RX_PKT_INT1     |\
254         RX_PKT_INT2     |\
255         RX_PKT_INT3)
256
257 void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
258 {
259         u32 crc32, bit, reg, mta;
260
261         /* Calculate the CRC of the MAC address */
262         crc32 = ether_crc(ETH_ALEN, addr);
263
264         /* The HASH Table is an array of 2 32-bit registers. It is
265          * treated like an array of 64 bits (BitArray[hash_value]).
266          * Use the upper 6 bits of the above CRC as the hash value.
267          */
268         reg = (crc32 >> 31) & 0x1;
269         bit = (crc32 >> 26) & 0x1F;
270
271         mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
272         mta |= BIT(bit);
273         writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
274 }
275
276 void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
277 {
278         writel(0, adpt->base + EMAC_HASH_TAB_REG0);
279         writel(0, adpt->base + EMAC_HASH_TAB_REG1);
280 }
281
282 /* definitions for RSS */
283 #define EMAC_RSS_KEY(_i, _type) \
284                 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
285 #define EMAC_RSS_TBL(_i, _type) \
286                 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
287
288 /* Config MAC modes */
289 void emac_mac_mode_config(struct emac_adapter *adpt)
290 {
291         struct net_device *netdev = adpt->netdev;
292         u32 mac;
293
294         mac = readl(adpt->base + EMAC_MAC_CTRL);
295         mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
296
297         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
298                 mac |= VLAN_STRIP;
299
300         if (netdev->flags & IFF_PROMISC)
301                 mac |= PROM_MODE;
302
303         if (netdev->flags & IFF_ALLMULTI)
304                 mac |= MULTI_ALL;
305
306         writel(mac, adpt->base + EMAC_MAC_CTRL);
307 }
308
309 /* Config descriptor rings */
310 static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
311 {
312         /* TPD (Transmit Packet Descriptor) */
313         writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
314                adpt->base + EMAC_DESC_CTRL_1);
315
316         writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
317                adpt->base + EMAC_DESC_CTRL_8);
318
319         writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
320                adpt->base + EMAC_DESC_CTRL_9);
321
322         /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
323         writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
324                adpt->base + EMAC_DESC_CTRL_0);
325
326         writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
327                adpt->base + EMAC_DESC_CTRL_2);
328         writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
329                adpt->base + EMAC_DESC_CTRL_5);
330
331         writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
332                adpt->base + EMAC_DESC_CTRL_3);
333         writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
334                adpt->base + EMAC_DESC_CTRL_6);
335
336         writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
337                adpt->base + EMAC_DESC_CTRL_4);
338
339         writel(0, adpt->base + EMAC_DESC_CTRL_11);
340
341         /* Load all of the base addresses above and ensure that triggering HW to
342          * read ring pointers is flushed
343          */
344         writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
345 }
346
347 /* Config transmit parameters */
348 static void emac_mac_tx_config(struct emac_adapter *adpt)
349 {
350         u32 val;
351
352         writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
353                JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
354
355         val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
356                NUM_TPD_BURST_PREF_BMSK;
357
358         val |= TXQ_MODE | LS_8023_SP;
359         val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
360                 NUM_TXF_BURST_PREF_BMSK;
361
362         writel(val, adpt->base + EMAC_TXQ_CTRL_0);
363         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
364                           (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
365 }
366
367 /* Config receive parameters */
368 static void emac_mac_rx_config(struct emac_adapter *adpt)
369 {
370         u32 val;
371
372         val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
373                NUM_RFD_BURST_PREF_BMSK;
374         val |= (SP_IPV6 | CUT_THRU_EN);
375
376         writel(val, adpt->base + EMAC_RXQ_CTRL_0);
377
378         val = readl(adpt->base + EMAC_RXQ_CTRL_1);
379         val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
380                  RFD_PREF_UP_THRESHOLD_BMSK);
381         val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
382                 (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
383                 (RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
384         writel(val, adpt->base + EMAC_RXQ_CTRL_1);
385
386         val = readl(adpt->base + EMAC_RXQ_CTRL_2);
387         val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
388         val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
389                 (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
390         writel(val, adpt->base + EMAC_RXQ_CTRL_2);
391
392         val = readl(adpt->base + EMAC_RXQ_CTRL_3);
393         val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
394         val |= RXD_TH << RXD_THRESHOLD_SHFT;
395         writel(val, adpt->base + EMAC_RXQ_CTRL_3);
396 }
397
398 /* Config dma */
399 static void emac_mac_dma_config(struct emac_adapter *adpt)
400 {
401         u32 dma_ctrl = DMAR_REQ_PRI;
402
403         switch (adpt->dma_order) {
404         case emac_dma_ord_in:
405                 dma_ctrl |= IN_ORDER_MODE;
406                 break;
407         case emac_dma_ord_enh:
408                 dma_ctrl |= ENH_ORDER_MODE;
409                 break;
410         case emac_dma_ord_out:
411                 dma_ctrl |= OUT_ORDER_MODE;
412                 break;
413         default:
414                 break;
415         }
416
417         dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
418                                                 REGRDBLEN_BMSK;
419         dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
420                                                 REGWRBLEN_BMSK;
421         dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
422                                                 DMAR_DLY_CNT_BMSK;
423         dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
424                                                 DMAW_DLY_CNT_BMSK;
425
426         /* config DMA and ensure that configuration is flushed to HW */
427         writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
428 }
429
430 /* set MAC address */
431 static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
432 {
433         u32 sta;
434
435         /* for example: 00-A0-C6-11-22-33
436          * 0<-->C6112233, 1<-->00A0.
437          */
438
439         /* low 32bit word */
440         sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
441               (((u32)addr[4]) << 8)  | (((u32)addr[5]));
442         writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
443
444         /* hight 32bit word */
445         sta = (((u32)addr[0]) << 8) | (u32)addr[1];
446         writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
447 }
448
449 static void emac_mac_config(struct emac_adapter *adpt)
450 {
451         struct net_device *netdev = adpt->netdev;
452         unsigned int max_frame;
453         u32 val;
454
455         emac_set_mac_address(adpt, netdev->dev_addr);
456
457         max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
458         adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
459                 ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
460
461         emac_mac_dma_rings_config(adpt);
462
463         writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
464                adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
465
466         emac_mac_tx_config(adpt);
467         emac_mac_rx_config(adpt);
468         emac_mac_dma_config(adpt);
469
470         val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
471         val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
472         val |= MAX_BTYPE;
473         writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
474         writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
475         writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
476 }
477
478 void emac_mac_reset(struct emac_adapter *adpt)
479 {
480         emac_mac_stop(adpt);
481
482         emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
483         usleep_range(100, 150); /* reset may take up to 100usec */
484
485         /* interrupt clear-on-read */
486         emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
487 }
488
489 static void emac_mac_start(struct emac_adapter *adpt)
490 {
491         struct phy_device *phydev = adpt->phydev;
492         u32 mac, csr1;
493
494         /* enable tx queue */
495         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
496
497         /* enable rx queue */
498         emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
499
500         /* enable mac control */
501         mac = readl(adpt->base + EMAC_MAC_CTRL);
502         csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
503
504         mac |= TXEN | RXEN;     /* enable RX/TX */
505
506         /* Configure MAC flow control. If set to automatic, then match
507          * whatever the PHY does. Otherwise, enable or disable it, depending
508          * on what the user configured via ethtool.
509          */
510         mac &= ~(RXFC | TXFC);
511
512         if (adpt->automatic) {
513                 /* If it's set to automatic, then update our local values */
514                 adpt->rx_flow_control = phydev->pause;
515                 adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
516         }
517         mac |= adpt->rx_flow_control ? RXFC : 0;
518         mac |= adpt->tx_flow_control ? TXFC : 0;
519
520         /* setup link speed */
521         mac &= ~SPEED_MASK;
522         if (phydev->speed == SPEED_1000) {
523                 mac |= SPEED(2);
524                 csr1 |= FREQ_MODE;
525         } else {
526                 mac |= SPEED(1);
527                 csr1 &= ~FREQ_MODE;
528         }
529
530         if (phydev->duplex == DUPLEX_FULL)
531                 mac |= FULLD;
532         else
533                 mac &= ~FULLD;
534
535         /* other parameters */
536         mac |= (CRCE | PCRCE);
537         mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
538         mac |= BROAD_EN;
539         mac |= FLCHK;
540         mac &= ~RX_CHKSUM_EN;
541         mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
542                  DEBUG_MODE | SINGLE_PAUSE_MODE);
543
544         /* Enable single-pause-frame mode if requested.
545          *
546          * If enabled, the EMAC will send a single pause frame when the RX
547          * queue is full.  This normally leads to packet loss because
548          * the pause frame disables the remote MAC only for 33ms (the quanta),
549          * and then the remote MAC continues sending packets even though
550          * the RX queue is still full.
551          *
552          * If disabled, the EMAC sends a pause frame every 31ms until the RX
553          * queue is no longer full.  Normally, this is the preferred
554          * method of operation.  However, when the system is hung (e.g.
555          * cores are halted), the EMAC interrupt handler is never called
556          * and so the RX queue fills up quickly and stays full.  The resuling
557          * non-stop "flood" of pause frames sometimes has the effect of
558          * disabling nearby switches.  In some cases, other nearby switches
559          * are also affected, shutting down the entire network.
560          *
561          * The user can enable or disable single-pause-frame mode
562          * via ethtool.
563          */
564         mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
565
566         writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
567
568         writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
569
570         /* enable interrupt read clear, low power sleep mode and
571          * the irq moderators
572          */
573
574         writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
575         writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
576                         IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
577
578         emac_mac_mode_config(adpt);
579
580         emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
581                           (HEADER_ENABLE | HEADER_CNT_EN), 0);
582 }
583
584 void emac_mac_stop(struct emac_adapter *adpt)
585 {
586         emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
587         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
588         emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
589         usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
590 }
591
592 /* Free all descriptors of given transmit queue */
593 static void emac_tx_q_descs_free(struct emac_adapter *adpt)
594 {
595         struct emac_tx_queue *tx_q = &adpt->tx_q;
596         unsigned int i;
597         size_t size;
598
599         /* ring already cleared, nothing to do */
600         if (!tx_q->tpd.tpbuff)
601                 return;
602
603         for (i = 0; i < tx_q->tpd.count; i++) {
604                 struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
605
606                 if (tpbuf->dma_addr) {
607                         dma_unmap_single(adpt->netdev->dev.parent,
608                                          tpbuf->dma_addr, tpbuf->length,
609                                          DMA_TO_DEVICE);
610                         tpbuf->dma_addr = 0;
611                 }
612                 if (tpbuf->skb) {
613                         dev_kfree_skb_any(tpbuf->skb);
614                         tpbuf->skb = NULL;
615                 }
616         }
617
618         size = sizeof(struct emac_buffer) * tx_q->tpd.count;
619         memset(tx_q->tpd.tpbuff, 0, size);
620
621         /* clear the descriptor ring */
622         memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
623
624         tx_q->tpd.consume_idx = 0;
625         tx_q->tpd.produce_idx = 0;
626 }
627
628 /* Free all descriptors of given receive queue */
629 static void emac_rx_q_free_descs(struct emac_adapter *adpt)
630 {
631         struct device *dev = adpt->netdev->dev.parent;
632         struct emac_rx_queue *rx_q = &adpt->rx_q;
633         unsigned int i;
634         size_t size;
635
636         /* ring already cleared, nothing to do */
637         if (!rx_q->rfd.rfbuff)
638                 return;
639
640         for (i = 0; i < rx_q->rfd.count; i++) {
641                 struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
642
643                 if (rfbuf->dma_addr) {
644                         dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
645                                          DMA_FROM_DEVICE);
646                         rfbuf->dma_addr = 0;
647                 }
648                 if (rfbuf->skb) {
649                         dev_kfree_skb(rfbuf->skb);
650                         rfbuf->skb = NULL;
651                 }
652         }
653
654         size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
655         memset(rx_q->rfd.rfbuff, 0, size);
656
657         /* clear the descriptor rings */
658         memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
659         rx_q->rrd.produce_idx = 0;
660         rx_q->rrd.consume_idx = 0;
661
662         memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
663         rx_q->rfd.produce_idx = 0;
664         rx_q->rfd.consume_idx = 0;
665 }
666
667 /* Free all buffers associated with given transmit queue */
668 static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
669 {
670         struct emac_tx_queue *tx_q = &adpt->tx_q;
671
672         emac_tx_q_descs_free(adpt);
673
674         kfree(tx_q->tpd.tpbuff);
675         tx_q->tpd.tpbuff = NULL;
676         tx_q->tpd.v_addr = NULL;
677         tx_q->tpd.dma_addr = 0;
678         tx_q->tpd.size = 0;
679 }
680
681 /* Allocate TX descriptor ring for the given transmit queue */
682 static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
683                                 struct emac_tx_queue *tx_q)
684 {
685         struct emac_ring_header *ring_header = &adpt->ring_header;
686         int node = dev_to_node(adpt->netdev->dev.parent);
687         size_t size;
688
689         size = sizeof(struct emac_buffer) * tx_q->tpd.count;
690         tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
691         if (!tx_q->tpd.tpbuff)
692                 return -ENOMEM;
693
694         tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
695         tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
696         tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
697         ring_header->used += ALIGN(tx_q->tpd.size, 8);
698         tx_q->tpd.produce_idx = 0;
699         tx_q->tpd.consume_idx = 0;
700
701         return 0;
702 }
703
704 /* Free all buffers associated with given transmit queue */
705 static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
706 {
707         struct emac_rx_queue *rx_q = &adpt->rx_q;
708
709         emac_rx_q_free_descs(adpt);
710
711         kfree(rx_q->rfd.rfbuff);
712         rx_q->rfd.rfbuff   = NULL;
713
714         rx_q->rfd.v_addr   = NULL;
715         rx_q->rfd.dma_addr = 0;
716         rx_q->rfd.size     = 0;
717
718         rx_q->rrd.v_addr   = NULL;
719         rx_q->rrd.dma_addr = 0;
720         rx_q->rrd.size     = 0;
721 }
722
723 /* Allocate RX descriptor rings for the given receive queue */
724 static int emac_rx_descs_alloc(struct emac_adapter *adpt)
725 {
726         struct emac_ring_header *ring_header = &adpt->ring_header;
727         int node = dev_to_node(adpt->netdev->dev.parent);
728         struct emac_rx_queue *rx_q = &adpt->rx_q;
729         size_t size;
730
731         size = sizeof(struct emac_buffer) * rx_q->rfd.count;
732         rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
733         if (!rx_q->rfd.rfbuff)
734                 return -ENOMEM;
735
736         rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
737         rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
738
739         rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
740         rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
741         ring_header->used += ALIGN(rx_q->rrd.size, 8);
742
743         rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
744         rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
745         ring_header->used += ALIGN(rx_q->rfd.size, 8);
746
747         rx_q->rrd.produce_idx = 0;
748         rx_q->rrd.consume_idx = 0;
749
750         rx_q->rfd.produce_idx = 0;
751         rx_q->rfd.consume_idx = 0;
752
753         return 0;
754 }
755
756 /* Allocate all TX and RX descriptor rings */
757 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
758 {
759         struct emac_ring_header *ring_header = &adpt->ring_header;
760         struct device *dev = adpt->netdev->dev.parent;
761         unsigned int num_tx_descs = adpt->tx_desc_cnt;
762         unsigned int num_rx_descs = adpt->rx_desc_cnt;
763         int ret;
764
765         adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
766
767         adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
768         adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
769
770         /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
771          * hence the additional padding bytes are allocated.
772          */
773         ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
774                             num_rx_descs * (adpt->rfd_size * 4) +
775                             num_rx_descs * (adpt->rrd_size * 4) +
776                             8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
777
778         ring_header->used = 0;
779         ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
780                                                  &ring_header->dma_addr,
781                                                  GFP_KERNEL);
782         if (!ring_header->v_addr)
783                 return -ENOMEM;
784
785         ring_header->used = ALIGN(ring_header->dma_addr, 8) -
786                                                         ring_header->dma_addr;
787
788         ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
789         if (ret) {
790                 netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
791                 goto err_alloc_tx;
792         }
793
794         ret = emac_rx_descs_alloc(adpt);
795         if (ret) {
796                 netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
797                 goto err_alloc_rx;
798         }
799
800         return 0;
801
802 err_alloc_rx:
803         emac_tx_q_bufs_free(adpt);
804 err_alloc_tx:
805         dma_free_coherent(dev, ring_header->size,
806                           ring_header->v_addr, ring_header->dma_addr);
807
808         ring_header->v_addr   = NULL;
809         ring_header->dma_addr = 0;
810         ring_header->size     = 0;
811         ring_header->used     = 0;
812
813         return ret;
814 }
815
816 /* Free all TX and RX descriptor rings */
817 void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
818 {
819         struct emac_ring_header *ring_header = &adpt->ring_header;
820         struct device *dev = adpt->netdev->dev.parent;
821
822         emac_tx_q_bufs_free(adpt);
823         emac_rx_q_bufs_free(adpt);
824
825         dma_free_coherent(dev, ring_header->size,
826                           ring_header->v_addr, ring_header->dma_addr);
827
828         ring_header->v_addr   = NULL;
829         ring_header->dma_addr = 0;
830         ring_header->size     = 0;
831         ring_header->used     = 0;
832 }
833
834 /* Initialize descriptor rings */
835 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
836 {
837         unsigned int i;
838
839         adpt->tx_q.tpd.produce_idx = 0;
840         adpt->tx_q.tpd.consume_idx = 0;
841         for (i = 0; i < adpt->tx_q.tpd.count; i++)
842                 adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
843
844         adpt->rx_q.rrd.produce_idx = 0;
845         adpt->rx_q.rrd.consume_idx = 0;
846         adpt->rx_q.rfd.produce_idx = 0;
847         adpt->rx_q.rfd.consume_idx = 0;
848         for (i = 0; i < adpt->rx_q.rfd.count; i++)
849                 adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
850 }
851
852 /* Produce new receive free descriptor */
853 static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
854                                    struct emac_rx_queue *rx_q,
855                                    dma_addr_t addr)
856 {
857         u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
858
859         *(hw_rfd++) = lower_32_bits(addr);
860         *hw_rfd = upper_32_bits(addr);
861
862         if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
863                 rx_q->rfd.produce_idx = 0;
864 }
865
866 /* Fill up receive queue's RFD with preallocated receive buffers */
867 static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
868                                     struct emac_rx_queue *rx_q)
869 {
870         struct emac_buffer *curr_rxbuf;
871         struct emac_buffer *next_rxbuf;
872         unsigned int count = 0;
873         u32 next_produce_idx;
874
875         next_produce_idx = rx_q->rfd.produce_idx + 1;
876         if (next_produce_idx == rx_q->rfd.count)
877                 next_produce_idx = 0;
878
879         curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
880         next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
881
882         /* this always has a blank rx_buffer*/
883         while (!next_rxbuf->dma_addr) {
884                 struct sk_buff *skb;
885                 int ret;
886
887                 skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
888                 if (!skb)
889                         break;
890
891                 curr_rxbuf->dma_addr =
892                         dma_map_single(adpt->netdev->dev.parent, skb->data,
893                                        adpt->rxbuf_size, DMA_FROM_DEVICE);
894
895                 ret = dma_mapping_error(adpt->netdev->dev.parent,
896                                         curr_rxbuf->dma_addr);
897                 if (ret) {
898                         dev_kfree_skb(skb);
899                         break;
900                 }
901                 curr_rxbuf->skb = skb;
902                 curr_rxbuf->length = adpt->rxbuf_size;
903
904                 emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
905                 next_produce_idx = rx_q->rfd.produce_idx + 1;
906                 if (next_produce_idx == rx_q->rfd.count)
907                         next_produce_idx = 0;
908
909                 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
910                 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
911                 count++;
912         }
913
914         if (count) {
915                 u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
916                                 rx_q->produce_mask;
917                 emac_reg_update32(adpt->base + rx_q->produce_reg,
918                                   rx_q->produce_mask, prod_idx);
919         }
920 }
921
922 static void emac_adjust_link(struct net_device *netdev)
923 {
924         struct emac_adapter *adpt = netdev_priv(netdev);
925         struct phy_device *phydev = netdev->phydev;
926
927         if (phydev->link) {
928                 emac_mac_start(adpt);
929                 emac_sgmii_link_change(adpt, true);
930         } else {
931                 emac_sgmii_link_change(adpt, false);
932                 emac_mac_stop(adpt);
933         }
934
935         phy_print_status(phydev);
936 }
937
938 /* Bringup the interface/HW */
939 int emac_mac_up(struct emac_adapter *adpt)
940 {
941         struct net_device *netdev = adpt->netdev;
942         int ret;
943
944         emac_mac_rx_tx_ring_reset_all(adpt);
945         emac_mac_config(adpt);
946         emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
947
948         adpt->phydev->irq = PHY_POLL;
949         ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
950                                  PHY_INTERFACE_MODE_SGMII);
951         if (ret) {
952                 netdev_err(adpt->netdev, "could not connect phy\n");
953                 return ret;
954         }
955
956         phy_attached_print(adpt->phydev, NULL);
957
958         /* enable mac irq */
959         writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
960         writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
961
962         phy_start(adpt->phydev);
963
964         napi_enable(&adpt->rx_q.napi);
965         netif_start_queue(netdev);
966
967         return 0;
968 }
969
970 /* Bring down the interface/HW */
971 void emac_mac_down(struct emac_adapter *adpt)
972 {
973         struct net_device *netdev = adpt->netdev;
974
975         netif_stop_queue(netdev);
976         napi_disable(&adpt->rx_q.napi);
977
978         phy_stop(adpt->phydev);
979
980         /* Interrupts must be disabled before the PHY is disconnected, to
981          * avoid a race condition where adjust_link is null when we get
982          * an interrupt.
983          */
984         writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
985         writel(0, adpt->base + EMAC_INT_MASK);
986         synchronize_irq(adpt->irq.irq);
987
988         phy_disconnect(adpt->phydev);
989
990         emac_mac_reset(adpt);
991
992         emac_tx_q_descs_free(adpt);
993         netdev_reset_queue(adpt->netdev);
994         emac_rx_q_free_descs(adpt);
995 }
996
997 /* Consume next received packet descriptor */
998 static bool emac_rx_process_rrd(struct emac_adapter *adpt,
999                                 struct emac_rx_queue *rx_q,
1000                                 struct emac_rrd *rrd)
1001 {
1002         u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
1003
1004         rrd->word[3] = *(hw_rrd + 3);
1005
1006         if (!RRD_UPDT(rrd))
1007                 return false;
1008
1009         rrd->word[4] = 0;
1010         rrd->word[5] = 0;
1011
1012         rrd->word[0] = *(hw_rrd++);
1013         rrd->word[1] = *(hw_rrd++);
1014         rrd->word[2] = *(hw_rrd++);
1015
1016         if (unlikely(RRD_NOR(rrd) != 1)) {
1017                 netdev_err(adpt->netdev,
1018                            "error: multi-RFD not support yet! nor:%lu\n",
1019                            RRD_NOR(rrd));
1020         }
1021
1022         /* mark rrd as processed */
1023         RRD_UPDT_SET(rrd, 0);
1024         *hw_rrd = rrd->word[3];
1025
1026         if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1027                 rx_q->rrd.consume_idx = 0;
1028
1029         return true;
1030 }
1031
1032 /* Produce new transmit descriptor */
1033 static void emac_tx_tpd_create(struct emac_adapter *adpt,
1034                                struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1035 {
1036         u32 *hw_tpd;
1037
1038         tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1039         hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1040
1041         if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1042                 tx_q->tpd.produce_idx = 0;
1043
1044         *(hw_tpd++) = tpd->word[0];
1045         *(hw_tpd++) = tpd->word[1];
1046         *(hw_tpd++) = tpd->word[2];
1047         *hw_tpd = tpd->word[3];
1048 }
1049
1050 /* Mark the last transmit descriptor as such (for the transmit packet) */
1051 static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1052                                   struct emac_tx_queue *tx_q)
1053 {
1054         u32 *hw_tpd =
1055                 EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1056         u32 tmp_tpd;
1057
1058         tmp_tpd = *(hw_tpd + 1);
1059         tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1060         *(hw_tpd + 1) = tmp_tpd;
1061 }
1062
1063 static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1064 {
1065         struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1066         u32 consume_idx = RRD_SI(rrd);
1067         unsigned int i;
1068
1069         for (i = 0; i < RRD_NOR(rrd); i++) {
1070                 rfbuf[consume_idx].skb = NULL;
1071                 if (++consume_idx == rx_q->rfd.count)
1072                         consume_idx = 0;
1073         }
1074
1075         rx_q->rfd.consume_idx = consume_idx;
1076         rx_q->rfd.process_idx = consume_idx;
1077 }
1078
1079 /* Push the received skb to upper layers */
1080 static void emac_receive_skb(struct emac_rx_queue *rx_q,
1081                              struct sk_buff *skb,
1082                              u16 vlan_tag, bool vlan_flag)
1083 {
1084         if (vlan_flag) {
1085                 u16 vlan;
1086
1087                 EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1088                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1089         }
1090
1091         napi_gro_receive(&rx_q->napi, skb);
1092 }
1093
1094 /* Process receive event */
1095 void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1096                          int *num_pkts, int max_pkts)
1097 {
1098         u32 proc_idx, hw_consume_idx, num_consume_pkts;
1099         struct net_device *netdev  = adpt->netdev;
1100         struct emac_buffer *rfbuf;
1101         unsigned int count = 0;
1102         struct emac_rrd rrd;
1103         struct sk_buff *skb;
1104         u32 reg;
1105
1106         reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1107
1108         hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1109         num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1110                 (hw_consume_idx -  rx_q->rrd.consume_idx) :
1111                 (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1112
1113         do {
1114                 if (!num_consume_pkts)
1115                         break;
1116
1117                 if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1118                         break;
1119
1120                 if (likely(RRD_NOR(&rrd) == 1)) {
1121                         /* good receive */
1122                         rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1123                         dma_unmap_single(adpt->netdev->dev.parent,
1124                                          rfbuf->dma_addr, rfbuf->length,
1125                                          DMA_FROM_DEVICE);
1126                         rfbuf->dma_addr = 0;
1127                         skb = rfbuf->skb;
1128                 } else {
1129                         netdev_err(adpt->netdev,
1130                                    "error: multi-RFD not support yet!\n");
1131                         break;
1132                 }
1133                 emac_rx_rfd_clean(rx_q, &rrd);
1134                 num_consume_pkts--;
1135                 count++;
1136
1137                 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1138                  * with DF set are marked as error), drop packets based on the
1139                  * error mask rather than the summary bit (ignoring L4F errors)
1140                  */
1141                 if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1142                         netif_dbg(adpt, rx_status, adpt->netdev,
1143                                   "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1144                                   rrd.word[0], rrd.word[1],
1145                                   rrd.word[2], rrd.word[3]);
1146
1147                         dev_kfree_skb(skb);
1148                         continue;
1149                 }
1150
1151                 skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1152                 skb->dev = netdev;
1153                 skb->protocol = eth_type_trans(skb, skb->dev);
1154                 if (netdev->features & NETIF_F_RXCSUM)
1155                         skb->ip_summed = RRD_L4F(&rrd) ?
1156                                           CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1157                 else
1158                         skb_checksum_none_assert(skb);
1159
1160                 emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1161                                  (bool)RRD_CVTAG(&rrd));
1162
1163                 (*num_pkts)++;
1164         } while (*num_pkts < max_pkts);
1165
1166         if (count) {
1167                 proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1168                                 rx_q->process_mask;
1169                 emac_reg_update32(adpt->base + rx_q->process_reg,
1170                                   rx_q->process_mask, proc_idx);
1171                 emac_mac_rx_descs_refill(adpt, rx_q);
1172         }
1173 }
1174
1175 /* get the number of free transmit descriptors */
1176 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1177 {
1178         u32 produce_idx = tx_q->tpd.produce_idx;
1179         u32 consume_idx = tx_q->tpd.consume_idx;
1180
1181         return (consume_idx > produce_idx) ?
1182                 (consume_idx - produce_idx - 1) :
1183                 (tx_q->tpd.count + consume_idx - produce_idx - 1);
1184 }
1185
1186 /* Process transmit event */
1187 void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1188 {
1189         u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1190         u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1191         struct emac_buffer *tpbuf;
1192
1193         hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1194
1195         while (tx_q->tpd.consume_idx != hw_consume_idx) {
1196                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1197                 if (tpbuf->dma_addr) {
1198                         dma_unmap_page(adpt->netdev->dev.parent,
1199                                        tpbuf->dma_addr, tpbuf->length,
1200                                        DMA_TO_DEVICE);
1201                         tpbuf->dma_addr = 0;
1202                 }
1203
1204                 if (tpbuf->skb) {
1205                         pkts_compl++;
1206                         bytes_compl += tpbuf->skb->len;
1207                         dev_kfree_skb_irq(tpbuf->skb);
1208                         tpbuf->skb = NULL;
1209                 }
1210
1211                 if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1212                         tx_q->tpd.consume_idx = 0;
1213         }
1214
1215         netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1216
1217         if (netif_queue_stopped(adpt->netdev))
1218                 if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1219                         netif_wake_queue(adpt->netdev);
1220 }
1221
1222 /* Initialize all queue data structures */
1223 void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1224                                   struct emac_adapter *adpt)
1225 {
1226         adpt->rx_q.netdev = adpt->netdev;
1227
1228         adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1229         adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1230         adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1231
1232         adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1233         adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1234         adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1235
1236         adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1237         adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1238         adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1239
1240         adpt->rx_q.irq          = &adpt->irq;
1241         adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1242
1243         adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1244         adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1245         adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1246
1247         adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1248         adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1249         adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1250 }
1251
1252 /* Fill up transmit descriptors with TSO and Checksum offload information */
1253 static int emac_tso_csum(struct emac_adapter *adpt,
1254                          struct emac_tx_queue *tx_q,
1255                          struct sk_buff *skb,
1256                          struct emac_tpd *tpd)
1257 {
1258         unsigned int hdr_len;
1259         int ret;
1260
1261         if (skb_is_gso(skb)) {
1262                 if (skb_header_cloned(skb)) {
1263                         ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1264                         if (unlikely(ret))
1265                                 return ret;
1266                 }
1267
1268                 if (skb->protocol == htons(ETH_P_IP)) {
1269                         u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1270                                        + ntohs(ip_hdr(skb)->tot_len);
1271                         if (skb->len > pkt_len)
1272                                 pskb_trim(skb, pkt_len);
1273                 }
1274
1275                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1276                 if (unlikely(skb->len == hdr_len)) {
1277                         /* we only need to do csum */
1278                         netif_warn(adpt, tx_err, adpt->netdev,
1279                                    "tso not needed for packet with 0 data\n");
1280                         goto do_csum;
1281                 }
1282
1283                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1284                         ip_hdr(skb)->check = 0;
1285                         tcp_hdr(skb)->check =
1286                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1287                                                    ip_hdr(skb)->daddr,
1288                                                    0, IPPROTO_TCP, 0);
1289                         TPD_IPV4_SET(tpd, 1);
1290                 }
1291
1292                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1293                         /* ipv6 tso need an extra tpd */
1294                         struct emac_tpd extra_tpd;
1295
1296                         memset(tpd, 0, sizeof(*tpd));
1297                         memset(&extra_tpd, 0, sizeof(extra_tpd));
1298
1299                         ipv6_hdr(skb)->payload_len = 0;
1300                         tcp_hdr(skb)->check =
1301                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1302                                                  &ipv6_hdr(skb)->daddr,
1303                                                  0, IPPROTO_TCP, 0);
1304                         TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1305                         TPD_LSO_SET(&extra_tpd, 1);
1306                         TPD_LSOV_SET(&extra_tpd, 1);
1307                         emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1308                         TPD_LSOV_SET(tpd, 1);
1309                 }
1310
1311                 TPD_LSO_SET(tpd, 1);
1312                 TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1313                 TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1314                 return 0;
1315         }
1316
1317 do_csum:
1318         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1319                 unsigned int css, cso;
1320
1321                 cso = skb_transport_offset(skb);
1322                 if (unlikely(cso & 0x1)) {
1323                         netdev_err(adpt->netdev,
1324                                    "error: payload offset should be even\n");
1325                         return -EINVAL;
1326                 }
1327                 css = cso + skb->csum_offset;
1328
1329                 TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1330                 TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1331                 TPD_CSX_SET(tpd, 1);
1332         }
1333
1334         return 0;
1335 }
1336
1337 /* Fill up transmit descriptors */
1338 static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1339                              struct emac_tx_queue *tx_q, struct sk_buff *skb,
1340                              struct emac_tpd *tpd)
1341 {
1342         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1343         unsigned int first = tx_q->tpd.produce_idx;
1344         unsigned int len = skb_headlen(skb);
1345         struct emac_buffer *tpbuf = NULL;
1346         unsigned int mapped_len = 0;
1347         unsigned int i;
1348         int count = 0;
1349         int ret;
1350
1351         /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1352         if (TPD_LSO(tpd)) {
1353                 mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1354
1355                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1356                 tpbuf->length = mapped_len;
1357                 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1358                                                virt_to_page(skb->data),
1359                                                offset_in_page(skb->data),
1360                                                tpbuf->length,
1361                                                DMA_TO_DEVICE);
1362                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1363                                         tpbuf->dma_addr);
1364                 if (ret)
1365                         goto error;
1366
1367                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1368                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1369                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1370                 emac_tx_tpd_create(adpt, tx_q, tpd);
1371                 count++;
1372         }
1373
1374         if (mapped_len < len) {
1375                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1376                 tpbuf->length = len - mapped_len;
1377                 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1378                                                virt_to_page(skb->data +
1379                                                             mapped_len),
1380                                                offset_in_page(skb->data +
1381                                                               mapped_len),
1382                                                tpbuf->length, DMA_TO_DEVICE);
1383                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1384                                         tpbuf->dma_addr);
1385                 if (ret)
1386                         goto error;
1387
1388                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1389                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1390                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1391                 emac_tx_tpd_create(adpt, tx_q, tpd);
1392                 count++;
1393         }
1394
1395         for (i = 0; i < nr_frags; i++) {
1396                 struct skb_frag_struct *frag;
1397
1398                 frag = &skb_shinfo(skb)->frags[i];
1399
1400                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1401                 tpbuf->length = frag->size;
1402                 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1403                                                frag->page.p, frag->page_offset,
1404                                                tpbuf->length, DMA_TO_DEVICE);
1405                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1406                                         tpbuf->dma_addr);
1407                 if (ret)
1408                         goto error;
1409
1410                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1411                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1412                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1413                 emac_tx_tpd_create(adpt, tx_q, tpd);
1414                 count++;
1415         }
1416
1417         /* The last tpd */
1418         wmb();
1419         emac_tx_tpd_mark_last(adpt, tx_q);
1420
1421         /* The last buffer info contain the skb address,
1422          * so it will be freed after unmap
1423          */
1424         tpbuf->skb = skb;
1425
1426         return;
1427
1428 error:
1429         /* One of the memory mappings failed, so undo everything */
1430         tx_q->tpd.produce_idx = first;
1431
1432         while (count--) {
1433                 tpbuf = GET_TPD_BUFFER(tx_q, first);
1434                 dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1435                                tpbuf->length, DMA_TO_DEVICE);
1436                 tpbuf->dma_addr = 0;
1437                 tpbuf->length = 0;
1438
1439                 if (++first == tx_q->tpd.count)
1440                         first = 0;
1441         }
1442
1443         dev_kfree_skb(skb);
1444 }
1445
1446 /* Transmit the packet using specified transmit queue */
1447 int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1448                          struct sk_buff *skb)
1449 {
1450         struct emac_tpd tpd;
1451         u32 prod_idx;
1452
1453         memset(&tpd, 0, sizeof(tpd));
1454
1455         if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1456                 dev_kfree_skb_any(skb);
1457                 return NETDEV_TX_OK;
1458         }
1459
1460         if (skb_vlan_tag_present(skb)) {
1461                 u16 tag;
1462
1463                 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1464                 TPD_CVLAN_TAG_SET(&tpd, tag);
1465                 TPD_INSTC_SET(&tpd, 1);
1466         }
1467
1468         if (skb_network_offset(skb) != ETH_HLEN)
1469                 TPD_TYP_SET(&tpd, 1);
1470
1471         emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1472
1473         netdev_sent_queue(adpt->netdev, skb->len);
1474
1475         /* Make sure the are enough free descriptors to hold one
1476          * maximum-sized SKB.  We need one desc for each fragment,
1477          * one for the checksum (emac_tso_csum), one for TSO, and
1478          * and one for the SKB header.
1479          */
1480         if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1481                 netif_stop_queue(adpt->netdev);
1482
1483         /* update produce idx */
1484         prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1485                     tx_q->produce_mask;
1486         emac_reg_update32(adpt->base + tx_q->produce_reg,
1487                           tx_q->produce_mask, prod_idx);
1488
1489         return NETDEV_TX_OK;
1490 }