Merge tag 'stable/for-linus-3.14-rc1-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 5
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71                                 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73                                 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76         [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115         /* required last entry */
116         {0, }
117 };
118
119 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120
121 void igb_reset(struct igb_adapter *);
122 static int igb_setup_all_tx_resources(struct igb_adapter *);
123 static int igb_setup_all_rx_resources(struct igb_adapter *);
124 static void igb_free_all_tx_resources(struct igb_adapter *);
125 static void igb_free_all_rx_resources(struct igb_adapter *);
126 static void igb_setup_mrqc(struct igb_adapter *);
127 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128 static void igb_remove(struct pci_dev *pdev);
129 static int igb_sw_init(struct igb_adapter *);
130 static int igb_open(struct net_device *);
131 static int igb_close(struct net_device *);
132 static void igb_configure(struct igb_adapter *);
133 static void igb_configure_tx(struct igb_adapter *);
134 static void igb_configure_rx(struct igb_adapter *);
135 static void igb_clean_all_tx_rings(struct igb_adapter *);
136 static void igb_clean_all_rx_rings(struct igb_adapter *);
137 static void igb_clean_tx_ring(struct igb_ring *);
138 static void igb_clean_rx_ring(struct igb_ring *);
139 static void igb_set_rx_mode(struct net_device *);
140 static void igb_update_phy_info(unsigned long);
141 static void igb_watchdog(unsigned long);
142 static void igb_watchdog_task(struct work_struct *);
143 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
144 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145                                                  struct rtnl_link_stats64 *stats);
146 static int igb_change_mtu(struct net_device *, int);
147 static int igb_set_mac(struct net_device *, void *);
148 static void igb_set_uta(struct igb_adapter *adapter);
149 static irqreturn_t igb_intr(int irq, void *);
150 static irqreturn_t igb_intr_msi(int irq, void *);
151 static irqreturn_t igb_msix_other(int irq, void *);
152 static irqreturn_t igb_msix_ring(int irq, void *);
153 #ifdef CONFIG_IGB_DCA
154 static void igb_update_dca(struct igb_q_vector *);
155 static void igb_setup_dca(struct igb_adapter *);
156 #endif /* CONFIG_IGB_DCA */
157 static int igb_poll(struct napi_struct *, int);
158 static bool igb_clean_tx_irq(struct igb_q_vector *);
159 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161 static void igb_tx_timeout(struct net_device *);
162 static void igb_reset_task(struct work_struct *);
163 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166 static void igb_restore_vlan(struct igb_adapter *);
167 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 static void igb_ping_all_vfs(struct igb_adapter *);
169 static void igb_msg_task(struct igb_adapter *);
170 static void igb_vmm_control(struct igb_adapter *);
171 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175                                int vf, u16 vlan, u8 qos);
176 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
177 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178                                    bool setting);
179 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180                                  struct ifla_vf_info *ivi);
181 static void igb_check_vf_rate_limit(struct igb_adapter *);
182
183 #ifdef CONFIG_PCI_IOV
184 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
186 #endif
187
188 #ifdef CONFIG_PM
189 #ifdef CONFIG_PM_SLEEP
190 static int igb_suspend(struct device *);
191 #endif
192 static int igb_resume(struct device *);
193 #ifdef CONFIG_PM_RUNTIME
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 #endif
198 static const struct dev_pm_ops igb_pm_ops = {
199         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
200         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
201                         igb_runtime_idle)
202 };
203 #endif
204 static void igb_shutdown(struct pci_dev *);
205 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
206 #ifdef CONFIG_IGB_DCA
207 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
208 static struct notifier_block dca_notifier = {
209         .notifier_call  = igb_notify_dca,
210         .next           = NULL,
211         .priority       = 0
212 };
213 #endif
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 /* for netdump / net console */
216 static void igb_netpoll(struct net_device *);
217 #endif
218 #ifdef CONFIG_PCI_IOV
219 static unsigned int max_vfs = 0;
220 module_param(max_vfs, uint, 0);
221 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
222                  "per physical function");
223 #endif /* CONFIG_PCI_IOV */
224
225 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
226                      pci_channel_state_t);
227 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
228 static void igb_io_resume(struct pci_dev *);
229
230 static const struct pci_error_handlers igb_err_handler = {
231         .error_detected = igb_io_error_detected,
232         .slot_reset = igb_io_slot_reset,
233         .resume = igb_io_resume,
234 };
235
236 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
237
238 static struct pci_driver igb_driver = {
239         .name     = igb_driver_name,
240         .id_table = igb_pci_tbl,
241         .probe    = igb_probe,
242         .remove   = igb_remove,
243 #ifdef CONFIG_PM
244         .driver.pm = &igb_pm_ops,
245 #endif
246         .shutdown = igb_shutdown,
247         .sriov_configure = igb_pci_sriov_configure,
248         .err_handler = &igb_err_handler
249 };
250
251 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
252 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
253 MODULE_LICENSE("GPL");
254 MODULE_VERSION(DRV_VERSION);
255
256 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
257 static int debug = -1;
258 module_param(debug, int, 0);
259 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
260
261 struct igb_reg_info {
262         u32 ofs;
263         char *name;
264 };
265
266 static const struct igb_reg_info igb_reg_info_tbl[] = {
267
268         /* General Registers */
269         {E1000_CTRL, "CTRL"},
270         {E1000_STATUS, "STATUS"},
271         {E1000_CTRL_EXT, "CTRL_EXT"},
272
273         /* Interrupt Registers */
274         {E1000_ICR, "ICR"},
275
276         /* RX Registers */
277         {E1000_RCTL, "RCTL"},
278         {E1000_RDLEN(0), "RDLEN"},
279         {E1000_RDH(0), "RDH"},
280         {E1000_RDT(0), "RDT"},
281         {E1000_RXDCTL(0), "RXDCTL"},
282         {E1000_RDBAL(0), "RDBAL"},
283         {E1000_RDBAH(0), "RDBAH"},
284
285         /* TX Registers */
286         {E1000_TCTL, "TCTL"},
287         {E1000_TDBAL(0), "TDBAL"},
288         {E1000_TDBAH(0), "TDBAH"},
289         {E1000_TDLEN(0), "TDLEN"},
290         {E1000_TDH(0), "TDH"},
291         {E1000_TDT(0), "TDT"},
292         {E1000_TXDCTL(0), "TXDCTL"},
293         {E1000_TDFH, "TDFH"},
294         {E1000_TDFT, "TDFT"},
295         {E1000_TDFHS, "TDFHS"},
296         {E1000_TDFPC, "TDFPC"},
297
298         /* List Terminator */
299         {}
300 };
301
302 /* igb_regdump - register printout routine */
303 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
304 {
305         int n = 0;
306         char rname[16];
307         u32 regs[8];
308
309         switch (reginfo->ofs) {
310         case E1000_RDLEN(0):
311                 for (n = 0; n < 4; n++)
312                         regs[n] = rd32(E1000_RDLEN(n));
313                 break;
314         case E1000_RDH(0):
315                 for (n = 0; n < 4; n++)
316                         regs[n] = rd32(E1000_RDH(n));
317                 break;
318         case E1000_RDT(0):
319                 for (n = 0; n < 4; n++)
320                         regs[n] = rd32(E1000_RDT(n));
321                 break;
322         case E1000_RXDCTL(0):
323                 for (n = 0; n < 4; n++)
324                         regs[n] = rd32(E1000_RXDCTL(n));
325                 break;
326         case E1000_RDBAL(0):
327                 for (n = 0; n < 4; n++)
328                         regs[n] = rd32(E1000_RDBAL(n));
329                 break;
330         case E1000_RDBAH(0):
331                 for (n = 0; n < 4; n++)
332                         regs[n] = rd32(E1000_RDBAH(n));
333                 break;
334         case E1000_TDBAL(0):
335                 for (n = 0; n < 4; n++)
336                         regs[n] = rd32(E1000_RDBAL(n));
337                 break;
338         case E1000_TDBAH(0):
339                 for (n = 0; n < 4; n++)
340                         regs[n] = rd32(E1000_TDBAH(n));
341                 break;
342         case E1000_TDLEN(0):
343                 for (n = 0; n < 4; n++)
344                         regs[n] = rd32(E1000_TDLEN(n));
345                 break;
346         case E1000_TDH(0):
347                 for (n = 0; n < 4; n++)
348                         regs[n] = rd32(E1000_TDH(n));
349                 break;
350         case E1000_TDT(0):
351                 for (n = 0; n < 4; n++)
352                         regs[n] = rd32(E1000_TDT(n));
353                 break;
354         case E1000_TXDCTL(0):
355                 for (n = 0; n < 4; n++)
356                         regs[n] = rd32(E1000_TXDCTL(n));
357                 break;
358         default:
359                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
360                 return;
361         }
362
363         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
364         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
365                 regs[2], regs[3]);
366 }
367
368 /* igb_dump - Print registers, Tx-rings and Rx-rings */
369 static void igb_dump(struct igb_adapter *adapter)
370 {
371         struct net_device *netdev = adapter->netdev;
372         struct e1000_hw *hw = &adapter->hw;
373         struct igb_reg_info *reginfo;
374         struct igb_ring *tx_ring;
375         union e1000_adv_tx_desc *tx_desc;
376         struct my_u0 { u64 a; u64 b; } *u0;
377         struct igb_ring *rx_ring;
378         union e1000_adv_rx_desc *rx_desc;
379         u32 staterr;
380         u16 i, n;
381
382         if (!netif_msg_hw(adapter))
383                 return;
384
385         /* Print netdevice Info */
386         if (netdev) {
387                 dev_info(&adapter->pdev->dev, "Net device Info\n");
388                 pr_info("Device Name     state            trans_start      "
389                         "last_rx\n");
390                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
391                         netdev->state, netdev->trans_start, netdev->last_rx);
392         }
393
394         /* Print Registers */
395         dev_info(&adapter->pdev->dev, "Register Dump\n");
396         pr_info(" Register Name   Value\n");
397         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
398              reginfo->name; reginfo++) {
399                 igb_regdump(hw, reginfo);
400         }
401
402         /* Print TX Ring Summary */
403         if (!netdev || !netif_running(netdev))
404                 goto exit;
405
406         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
407         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
408         for (n = 0; n < adapter->num_tx_queues; n++) {
409                 struct igb_tx_buffer *buffer_info;
410                 tx_ring = adapter->tx_ring[n];
411                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
412                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
413                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
414                         (u64)dma_unmap_addr(buffer_info, dma),
415                         dma_unmap_len(buffer_info, len),
416                         buffer_info->next_to_watch,
417                         (u64)buffer_info->time_stamp);
418         }
419
420         /* Print TX Rings */
421         if (!netif_msg_tx_done(adapter))
422                 goto rx_ring_summary;
423
424         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
425
426         /* Transmit Descriptor Formats
427          *
428          * Advanced Transmit Descriptor
429          *   +--------------------------------------------------------------+
430          * 0 |         Buffer Address [63:0]                                |
431          *   +--------------------------------------------------------------+
432          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
433          *   +--------------------------------------------------------------+
434          *   63      46 45    40 39 38 36 35 32 31   24             15       0
435          */
436
437         for (n = 0; n < adapter->num_tx_queues; n++) {
438                 tx_ring = adapter->tx_ring[n];
439                 pr_info("------------------------------------\n");
440                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
441                 pr_info("------------------------------------\n");
442                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
443                         "[bi->dma       ] leng  ntw timestamp        "
444                         "bi->skb\n");
445
446                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
447                         const char *next_desc;
448                         struct igb_tx_buffer *buffer_info;
449                         tx_desc = IGB_TX_DESC(tx_ring, i);
450                         buffer_info = &tx_ring->tx_buffer_info[i];
451                         u0 = (struct my_u0 *)tx_desc;
452                         if (i == tx_ring->next_to_use &&
453                             i == tx_ring->next_to_clean)
454                                 next_desc = " NTC/U";
455                         else if (i == tx_ring->next_to_use)
456                                 next_desc = " NTU";
457                         else if (i == tx_ring->next_to_clean)
458                                 next_desc = " NTC";
459                         else
460                                 next_desc = "";
461
462                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
463                                 " %04X  %p %016llX %p%s\n", i,
464                                 le64_to_cpu(u0->a),
465                                 le64_to_cpu(u0->b),
466                                 (u64)dma_unmap_addr(buffer_info, dma),
467                                 dma_unmap_len(buffer_info, len),
468                                 buffer_info->next_to_watch,
469                                 (u64)buffer_info->time_stamp,
470                                 buffer_info->skb, next_desc);
471
472                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
473                                 print_hex_dump(KERN_INFO, "",
474                                         DUMP_PREFIX_ADDRESS,
475                                         16, 1, buffer_info->skb->data,
476                                         dma_unmap_len(buffer_info, len),
477                                         true);
478                 }
479         }
480
481         /* Print RX Rings Summary */
482 rx_ring_summary:
483         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
484         pr_info("Queue [NTU] [NTC]\n");
485         for (n = 0; n < adapter->num_rx_queues; n++) {
486                 rx_ring = adapter->rx_ring[n];
487                 pr_info(" %5d %5X %5X\n",
488                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
489         }
490
491         /* Print RX Rings */
492         if (!netif_msg_rx_status(adapter))
493                 goto exit;
494
495         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
496
497         /* Advanced Receive Descriptor (Read) Format
498          *    63                                           1        0
499          *    +-----------------------------------------------------+
500          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
501          *    +----------------------------------------------+------+
502          *  8 |       Header Buffer Address [63:1]           |  DD  |
503          *    +-----------------------------------------------------+
504          *
505          *
506          * Advanced Receive Descriptor (Write-Back) Format
507          *
508          *   63       48 47    32 31  30      21 20 17 16   4 3     0
509          *   +------------------------------------------------------+
510          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
511          *   | Checksum   Ident  |   |           |    | Type | Type |
512          *   +------------------------------------------------------+
513          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
514          *   +------------------------------------------------------+
515          *   63       48 47    32 31            20 19               0
516          */
517
518         for (n = 0; n < adapter->num_rx_queues; n++) {
519                 rx_ring = adapter->rx_ring[n];
520                 pr_info("------------------------------------\n");
521                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
522                 pr_info("------------------------------------\n");
523                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
524                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
525                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
526                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
527
528                 for (i = 0; i < rx_ring->count; i++) {
529                         const char *next_desc;
530                         struct igb_rx_buffer *buffer_info;
531                         buffer_info = &rx_ring->rx_buffer_info[i];
532                         rx_desc = IGB_RX_DESC(rx_ring, i);
533                         u0 = (struct my_u0 *)rx_desc;
534                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
535
536                         if (i == rx_ring->next_to_use)
537                                 next_desc = " NTU";
538                         else if (i == rx_ring->next_to_clean)
539                                 next_desc = " NTC";
540                         else
541                                 next_desc = "";
542
543                         if (staterr & E1000_RXD_STAT_DD) {
544                                 /* Descriptor Done */
545                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
546                                         "RWB", i,
547                                         le64_to_cpu(u0->a),
548                                         le64_to_cpu(u0->b),
549                                         next_desc);
550                         } else {
551                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
552                                         "R  ", i,
553                                         le64_to_cpu(u0->a),
554                                         le64_to_cpu(u0->b),
555                                         (u64)buffer_info->dma,
556                                         next_desc);
557
558                                 if (netif_msg_pktdata(adapter) &&
559                                     buffer_info->dma && buffer_info->page) {
560                                         print_hex_dump(KERN_INFO, "",
561                                           DUMP_PREFIX_ADDRESS,
562                                           16, 1,
563                                           page_address(buffer_info->page) +
564                                                       buffer_info->page_offset,
565                                           IGB_RX_BUFSZ, true);
566                                 }
567                         }
568                 }
569         }
570
571 exit:
572         return;
573 }
574
575 /**
576  *  igb_get_i2c_data - Reads the I2C SDA data bit
577  *  @hw: pointer to hardware structure
578  *  @i2cctl: Current value of I2CCTL register
579  *
580  *  Returns the I2C data bit value
581  **/
582 static int igb_get_i2c_data(void *data)
583 {
584         struct igb_adapter *adapter = (struct igb_adapter *)data;
585         struct e1000_hw *hw = &adapter->hw;
586         s32 i2cctl = rd32(E1000_I2CPARAMS);
587
588         return ((i2cctl & E1000_I2C_DATA_IN) != 0);
589 }
590
591 /**
592  *  igb_set_i2c_data - Sets the I2C data bit
593  *  @data: pointer to hardware structure
594  *  @state: I2C data value (0 or 1) to set
595  *
596  *  Sets the I2C data bit
597  **/
598 static void igb_set_i2c_data(void *data, int state)
599 {
600         struct igb_adapter *adapter = (struct igb_adapter *)data;
601         struct e1000_hw *hw = &adapter->hw;
602         s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604         if (state)
605                 i2cctl |= E1000_I2C_DATA_OUT;
606         else
607                 i2cctl &= ~E1000_I2C_DATA_OUT;
608
609         i2cctl &= ~E1000_I2C_DATA_OE_N;
610         i2cctl |= E1000_I2C_CLK_OE_N;
611         wr32(E1000_I2CPARAMS, i2cctl);
612         wrfl();
613
614 }
615
616 /**
617  *  igb_set_i2c_clk - Sets the I2C SCL clock
618  *  @data: pointer to hardware structure
619  *  @state: state to set clock
620  *
621  *  Sets the I2C clock line to state
622  **/
623 static void igb_set_i2c_clk(void *data, int state)
624 {
625         struct igb_adapter *adapter = (struct igb_adapter *)data;
626         struct e1000_hw *hw = &adapter->hw;
627         s32 i2cctl = rd32(E1000_I2CPARAMS);
628
629         if (state) {
630                 i2cctl |= E1000_I2C_CLK_OUT;
631                 i2cctl &= ~E1000_I2C_CLK_OE_N;
632         } else {
633                 i2cctl &= ~E1000_I2C_CLK_OUT;
634                 i2cctl &= ~E1000_I2C_CLK_OE_N;
635         }
636         wr32(E1000_I2CPARAMS, i2cctl);
637         wrfl();
638 }
639
640 /**
641  *  igb_get_i2c_clk - Gets the I2C SCL clock state
642  *  @data: pointer to hardware structure
643  *
644  *  Gets the I2C clock state
645  **/
646 static int igb_get_i2c_clk(void *data)
647 {
648         struct igb_adapter *adapter = (struct igb_adapter *)data;
649         struct e1000_hw *hw = &adapter->hw;
650         s32 i2cctl = rd32(E1000_I2CPARAMS);
651
652         return ((i2cctl & E1000_I2C_CLK_IN) != 0);
653 }
654
655 static const struct i2c_algo_bit_data igb_i2c_algo = {
656         .setsda         = igb_set_i2c_data,
657         .setscl         = igb_set_i2c_clk,
658         .getsda         = igb_get_i2c_data,
659         .getscl         = igb_get_i2c_clk,
660         .udelay         = 5,
661         .timeout        = 20,
662 };
663
664 /**
665  *  igb_get_hw_dev - return device
666  *  @hw: pointer to hardware structure
667  *
668  *  used by hardware layer to print debugging information
669  **/
670 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
671 {
672         struct igb_adapter *adapter = hw->back;
673         return adapter->netdev;
674 }
675
676 /**
677  *  igb_init_module - Driver Registration Routine
678  *
679  *  igb_init_module is the first routine called when the driver is
680  *  loaded. All it does is register with the PCI subsystem.
681  **/
682 static int __init igb_init_module(void)
683 {
684         int ret;
685         pr_info("%s - version %s\n",
686                igb_driver_string, igb_driver_version);
687
688         pr_info("%s\n", igb_copyright);
689
690 #ifdef CONFIG_IGB_DCA
691         dca_register_notify(&dca_notifier);
692 #endif
693         ret = pci_register_driver(&igb_driver);
694         return ret;
695 }
696
697 module_init(igb_init_module);
698
699 /**
700  *  igb_exit_module - Driver Exit Cleanup Routine
701  *
702  *  igb_exit_module is called just before the driver is removed
703  *  from memory.
704  **/
705 static void __exit igb_exit_module(void)
706 {
707 #ifdef CONFIG_IGB_DCA
708         dca_unregister_notify(&dca_notifier);
709 #endif
710         pci_unregister_driver(&igb_driver);
711 }
712
713 module_exit(igb_exit_module);
714
715 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
716 /**
717  *  igb_cache_ring_register - Descriptor ring to register mapping
718  *  @adapter: board private structure to initialize
719  *
720  *  Once we know the feature-set enabled for the device, we'll cache
721  *  the register offset the descriptor ring is assigned to.
722  **/
723 static void igb_cache_ring_register(struct igb_adapter *adapter)
724 {
725         int i = 0, j = 0;
726         u32 rbase_offset = adapter->vfs_allocated_count;
727
728         switch (adapter->hw.mac.type) {
729         case e1000_82576:
730                 /* The queues are allocated for virtualization such that VF 0
731                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
732                  * In order to avoid collision we start at the first free queue
733                  * and continue consuming queues in the same sequence
734                  */
735                 if (adapter->vfs_allocated_count) {
736                         for (; i < adapter->rss_queues; i++)
737                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
738                                                                Q_IDX_82576(i);
739                 }
740         case e1000_82575:
741         case e1000_82580:
742         case e1000_i350:
743         case e1000_i354:
744         case e1000_i210:
745         case e1000_i211:
746         default:
747                 for (; i < adapter->num_rx_queues; i++)
748                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
749                 for (; j < adapter->num_tx_queues; j++)
750                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
751                 break;
752         }
753 }
754
755 /**
756  *  igb_write_ivar - configure ivar for given MSI-X vector
757  *  @hw: pointer to the HW structure
758  *  @msix_vector: vector number we are allocating to a given ring
759  *  @index: row index of IVAR register to write within IVAR table
760  *  @offset: column offset of in IVAR, should be multiple of 8
761  *
762  *  This function is intended to handle the writing of the IVAR register
763  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
764  *  each containing an cause allocation for an Rx and Tx ring, and a
765  *  variable number of rows depending on the number of queues supported.
766  **/
767 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
768                            int index, int offset)
769 {
770         u32 ivar = array_rd32(E1000_IVAR0, index);
771
772         /* clear any bits that are currently set */
773         ivar &= ~((u32)0xFF << offset);
774
775         /* write vector and valid bit */
776         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
777
778         array_wr32(E1000_IVAR0, index, ivar);
779 }
780
781 #define IGB_N0_QUEUE -1
782 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
783 {
784         struct igb_adapter *adapter = q_vector->adapter;
785         struct e1000_hw *hw = &adapter->hw;
786         int rx_queue = IGB_N0_QUEUE;
787         int tx_queue = IGB_N0_QUEUE;
788         u32 msixbm = 0;
789
790         if (q_vector->rx.ring)
791                 rx_queue = q_vector->rx.ring->reg_idx;
792         if (q_vector->tx.ring)
793                 tx_queue = q_vector->tx.ring->reg_idx;
794
795         switch (hw->mac.type) {
796         case e1000_82575:
797                 /* The 82575 assigns vectors using a bitmask, which matches the
798                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
799                  * or more queues to a vector, we write the appropriate bits
800                  * into the MSIXBM register for that vector.
801                  */
802                 if (rx_queue > IGB_N0_QUEUE)
803                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
804                 if (tx_queue > IGB_N0_QUEUE)
805                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
806                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
807                         msixbm |= E1000_EIMS_OTHER;
808                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
809                 q_vector->eims_value = msixbm;
810                 break;
811         case e1000_82576:
812                 /* 82576 uses a table that essentially consists of 2 columns
813                  * with 8 rows.  The ordering is column-major so we use the
814                  * lower 3 bits as the row index, and the 4th bit as the
815                  * column offset.
816                  */
817                 if (rx_queue > IGB_N0_QUEUE)
818                         igb_write_ivar(hw, msix_vector,
819                                        rx_queue & 0x7,
820                                        (rx_queue & 0x8) << 1);
821                 if (tx_queue > IGB_N0_QUEUE)
822                         igb_write_ivar(hw, msix_vector,
823                                        tx_queue & 0x7,
824                                        ((tx_queue & 0x8) << 1) + 8);
825                 q_vector->eims_value = 1 << msix_vector;
826                 break;
827         case e1000_82580:
828         case e1000_i350:
829         case e1000_i354:
830         case e1000_i210:
831         case e1000_i211:
832                 /* On 82580 and newer adapters the scheme is similar to 82576
833                  * however instead of ordering column-major we have things
834                  * ordered row-major.  So we traverse the table by using
835                  * bit 0 as the column offset, and the remaining bits as the
836                  * row index.
837                  */
838                 if (rx_queue > IGB_N0_QUEUE)
839                         igb_write_ivar(hw, msix_vector,
840                                        rx_queue >> 1,
841                                        (rx_queue & 0x1) << 4);
842                 if (tx_queue > IGB_N0_QUEUE)
843                         igb_write_ivar(hw, msix_vector,
844                                        tx_queue >> 1,
845                                        ((tx_queue & 0x1) << 4) + 8);
846                 q_vector->eims_value = 1 << msix_vector;
847                 break;
848         default:
849                 BUG();
850                 break;
851         }
852
853         /* add q_vector eims value to global eims_enable_mask */
854         adapter->eims_enable_mask |= q_vector->eims_value;
855
856         /* configure q_vector to set itr on first interrupt */
857         q_vector->set_itr = 1;
858 }
859
860 /**
861  *  igb_configure_msix - Configure MSI-X hardware
862  *  @adapter: board private structure to initialize
863  *
864  *  igb_configure_msix sets up the hardware to properly
865  *  generate MSI-X interrupts.
866  **/
867 static void igb_configure_msix(struct igb_adapter *adapter)
868 {
869         u32 tmp;
870         int i, vector = 0;
871         struct e1000_hw *hw = &adapter->hw;
872
873         adapter->eims_enable_mask = 0;
874
875         /* set vector for other causes, i.e. link changes */
876         switch (hw->mac.type) {
877         case e1000_82575:
878                 tmp = rd32(E1000_CTRL_EXT);
879                 /* enable MSI-X PBA support*/
880                 tmp |= E1000_CTRL_EXT_PBA_CLR;
881
882                 /* Auto-Mask interrupts upon ICR read. */
883                 tmp |= E1000_CTRL_EXT_EIAME;
884                 tmp |= E1000_CTRL_EXT_IRCA;
885
886                 wr32(E1000_CTRL_EXT, tmp);
887
888                 /* enable msix_other interrupt */
889                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
890                 adapter->eims_other = E1000_EIMS_OTHER;
891
892                 break;
893
894         case e1000_82576:
895         case e1000_82580:
896         case e1000_i350:
897         case e1000_i354:
898         case e1000_i210:
899         case e1000_i211:
900                 /* Turn on MSI-X capability first, or our settings
901                  * won't stick.  And it will take days to debug.
902                  */
903                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
904                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
905                      E1000_GPIE_NSICR);
906
907                 /* enable msix_other interrupt */
908                 adapter->eims_other = 1 << vector;
909                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
910
911                 wr32(E1000_IVAR_MISC, tmp);
912                 break;
913         default:
914                 /* do nothing, since nothing else supports MSI-X */
915                 break;
916         } /* switch (hw->mac.type) */
917
918         adapter->eims_enable_mask |= adapter->eims_other;
919
920         for (i = 0; i < adapter->num_q_vectors; i++)
921                 igb_assign_vector(adapter->q_vector[i], vector++);
922
923         wrfl();
924 }
925
926 /**
927  *  igb_request_msix - Initialize MSI-X interrupts
928  *  @adapter: board private structure to initialize
929  *
930  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
931  *  kernel.
932  **/
933 static int igb_request_msix(struct igb_adapter *adapter)
934 {
935         struct net_device *netdev = adapter->netdev;
936         struct e1000_hw *hw = &adapter->hw;
937         int i, err = 0, vector = 0, free_vector = 0;
938
939         err = request_irq(adapter->msix_entries[vector].vector,
940                           igb_msix_other, 0, netdev->name, adapter);
941         if (err)
942                 goto err_out;
943
944         for (i = 0; i < adapter->num_q_vectors; i++) {
945                 struct igb_q_vector *q_vector = adapter->q_vector[i];
946
947                 vector++;
948
949                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
950
951                 if (q_vector->rx.ring && q_vector->tx.ring)
952                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
953                                 q_vector->rx.ring->queue_index);
954                 else if (q_vector->tx.ring)
955                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
956                                 q_vector->tx.ring->queue_index);
957                 else if (q_vector->rx.ring)
958                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
959                                 q_vector->rx.ring->queue_index);
960                 else
961                         sprintf(q_vector->name, "%s-unused", netdev->name);
962
963                 err = request_irq(adapter->msix_entries[vector].vector,
964                                   igb_msix_ring, 0, q_vector->name,
965                                   q_vector);
966                 if (err)
967                         goto err_free;
968         }
969
970         igb_configure_msix(adapter);
971         return 0;
972
973 err_free:
974         /* free already assigned IRQs */
975         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
976
977         vector--;
978         for (i = 0; i < vector; i++) {
979                 free_irq(adapter->msix_entries[free_vector++].vector,
980                          adapter->q_vector[i]);
981         }
982 err_out:
983         return err;
984 }
985
986 /**
987  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
988  *  @adapter: board private structure to initialize
989  *  @v_idx: Index of vector to be freed
990  *
991  *  This function frees the memory allocated to the q_vector.
992  **/
993 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994 {
995         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996
997         adapter->q_vector[v_idx] = NULL;
998
999         /* igb_get_stats64() might access the rings on this vector,
1000          * we must wait a grace period before freeing it.
1001          */
1002         kfree_rcu(q_vector, rcu);
1003 }
1004
1005 /**
1006  *  igb_reset_q_vector - Reset config for interrupt vector
1007  *  @adapter: board private structure to initialize
1008  *  @v_idx: Index of vector to be reset
1009  *
1010  *  If NAPI is enabled it will delete any references to the
1011  *  NAPI struct. This is preparation for igb_free_q_vector.
1012  **/
1013 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1014 {
1015         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1016
1017         if (q_vector->tx.ring)
1018                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1019
1020         if (q_vector->rx.ring)
1021                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1022
1023         netif_napi_del(&q_vector->napi);
1024
1025 }
1026
1027 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1028 {
1029         int v_idx = adapter->num_q_vectors;
1030
1031         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1032                 pci_disable_msix(adapter->pdev);
1033         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1034                 pci_disable_msi(adapter->pdev);
1035
1036         while (v_idx--)
1037                 igb_reset_q_vector(adapter, v_idx);
1038 }
1039
1040 /**
1041  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1042  *  @adapter: board private structure to initialize
1043  *
1044  *  This function frees the memory allocated to the q_vectors.  In addition if
1045  *  NAPI is enabled it will delete any references to the NAPI struct prior
1046  *  to freeing the q_vector.
1047  **/
1048 static void igb_free_q_vectors(struct igb_adapter *adapter)
1049 {
1050         int v_idx = adapter->num_q_vectors;
1051
1052         adapter->num_tx_queues = 0;
1053         adapter->num_rx_queues = 0;
1054         adapter->num_q_vectors = 0;
1055
1056         while (v_idx--) {
1057                 igb_reset_q_vector(adapter, v_idx);
1058                 igb_free_q_vector(adapter, v_idx);
1059         }
1060 }
1061
1062 /**
1063  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1064  *  @adapter: board private structure to initialize
1065  *
1066  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1067  *  MSI-X interrupts allocated.
1068  */
1069 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1070 {
1071         igb_free_q_vectors(adapter);
1072         igb_reset_interrupt_capability(adapter);
1073 }
1074
1075 /**
1076  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1077  *  @adapter: board private structure to initialize
1078  *  @msix: boolean value of MSIX capability
1079  *
1080  *  Attempt to configure interrupts using the best available
1081  *  capabilities of the hardware and kernel.
1082  **/
1083 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1084 {
1085         int err;
1086         int numvecs, i;
1087
1088         if (!msix)
1089                 goto msi_only;
1090         adapter->flags |= IGB_FLAG_HAS_MSIX;
1091
1092         /* Number of supported queues. */
1093         adapter->num_rx_queues = adapter->rss_queues;
1094         if (adapter->vfs_allocated_count)
1095                 adapter->num_tx_queues = 1;
1096         else
1097                 adapter->num_tx_queues = adapter->rss_queues;
1098
1099         /* start with one vector for every Rx queue */
1100         numvecs = adapter->num_rx_queues;
1101
1102         /* if Tx handler is separate add 1 for every Tx queue */
1103         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1104                 numvecs += adapter->num_tx_queues;
1105
1106         /* store the number of vectors reserved for queues */
1107         adapter->num_q_vectors = numvecs;
1108
1109         /* add 1 vector for link status interrupts */
1110         numvecs++;
1111         for (i = 0; i < numvecs; i++)
1112                 adapter->msix_entries[i].entry = i;
1113
1114         err = pci_enable_msix(adapter->pdev,
1115                               adapter->msix_entries,
1116                               numvecs);
1117         if (err == 0)
1118                 return;
1119
1120         igb_reset_interrupt_capability(adapter);
1121
1122         /* If we can't do MSI-X, try MSI */
1123 msi_only:
1124 #ifdef CONFIG_PCI_IOV
1125         /* disable SR-IOV for non MSI-X configurations */
1126         if (adapter->vf_data) {
1127                 struct e1000_hw *hw = &adapter->hw;
1128                 /* disable iov and allow time for transactions to clear */
1129                 pci_disable_sriov(adapter->pdev);
1130                 msleep(500);
1131
1132                 kfree(adapter->vf_data);
1133                 adapter->vf_data = NULL;
1134                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1135                 wrfl();
1136                 msleep(100);
1137                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1138         }
1139 #endif
1140         adapter->vfs_allocated_count = 0;
1141         adapter->rss_queues = 1;
1142         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1143         adapter->num_rx_queues = 1;
1144         adapter->num_tx_queues = 1;
1145         adapter->num_q_vectors = 1;
1146         if (!pci_enable_msi(adapter->pdev))
1147                 adapter->flags |= IGB_FLAG_HAS_MSI;
1148 }
1149
1150 static void igb_add_ring(struct igb_ring *ring,
1151                          struct igb_ring_container *head)
1152 {
1153         head->ring = ring;
1154         head->count++;
1155 }
1156
1157 /**
1158  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1159  *  @adapter: board private structure to initialize
1160  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1161  *  @v_idx: index of vector in adapter struct
1162  *  @txr_count: total number of Tx rings to allocate
1163  *  @txr_idx: index of first Tx ring to allocate
1164  *  @rxr_count: total number of Rx rings to allocate
1165  *  @rxr_idx: index of first Rx ring to allocate
1166  *
1167  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1168  **/
1169 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1170                               int v_count, int v_idx,
1171                               int txr_count, int txr_idx,
1172                               int rxr_count, int rxr_idx)
1173 {
1174         struct igb_q_vector *q_vector;
1175         struct igb_ring *ring;
1176         int ring_count, size;
1177
1178         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1179         if (txr_count > 1 || rxr_count > 1)
1180                 return -ENOMEM;
1181
1182         ring_count = txr_count + rxr_count;
1183         size = sizeof(struct igb_q_vector) +
1184                (sizeof(struct igb_ring) * ring_count);
1185
1186         /* allocate q_vector and rings */
1187         q_vector = adapter->q_vector[v_idx];
1188         if (!q_vector)
1189                 q_vector = kzalloc(size, GFP_KERNEL);
1190         if (!q_vector)
1191                 return -ENOMEM;
1192
1193         /* initialize NAPI */
1194         netif_napi_add(adapter->netdev, &q_vector->napi,
1195                        igb_poll, 64);
1196
1197         /* tie q_vector and adapter together */
1198         adapter->q_vector[v_idx] = q_vector;
1199         q_vector->adapter = adapter;
1200
1201         /* initialize work limits */
1202         q_vector->tx.work_limit = adapter->tx_work_limit;
1203
1204         /* initialize ITR configuration */
1205         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1206         q_vector->itr_val = IGB_START_ITR;
1207
1208         /* initialize pointer to rings */
1209         ring = q_vector->ring;
1210
1211         /* intialize ITR */
1212         if (rxr_count) {
1213                 /* rx or rx/tx vector */
1214                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1215                         q_vector->itr_val = adapter->rx_itr_setting;
1216         } else {
1217                 /* tx only vector */
1218                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1219                         q_vector->itr_val = adapter->tx_itr_setting;
1220         }
1221
1222         if (txr_count) {
1223                 /* assign generic ring traits */
1224                 ring->dev = &adapter->pdev->dev;
1225                 ring->netdev = adapter->netdev;
1226
1227                 /* configure backlink on ring */
1228                 ring->q_vector = q_vector;
1229
1230                 /* update q_vector Tx values */
1231                 igb_add_ring(ring, &q_vector->tx);
1232
1233                 /* For 82575, context index must be unique per ring. */
1234                 if (adapter->hw.mac.type == e1000_82575)
1235                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1236
1237                 /* apply Tx specific ring traits */
1238                 ring->count = adapter->tx_ring_count;
1239                 ring->queue_index = txr_idx;
1240
1241                 u64_stats_init(&ring->tx_syncp);
1242                 u64_stats_init(&ring->tx_syncp2);
1243
1244                 /* assign ring to adapter */
1245                 adapter->tx_ring[txr_idx] = ring;
1246
1247                 /* push pointer to next ring */
1248                 ring++;
1249         }
1250
1251         if (rxr_count) {
1252                 /* assign generic ring traits */
1253                 ring->dev = &adapter->pdev->dev;
1254                 ring->netdev = adapter->netdev;
1255
1256                 /* configure backlink on ring */
1257                 ring->q_vector = q_vector;
1258
1259                 /* update q_vector Rx values */
1260                 igb_add_ring(ring, &q_vector->rx);
1261
1262                 /* set flag indicating ring supports SCTP checksum offload */
1263                 if (adapter->hw.mac.type >= e1000_82576)
1264                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1265
1266                 /*
1267                  * On i350, i354, i210, and i211, loopback VLAN packets
1268                  * have the tag byte-swapped.
1269                  */
1270                 if (adapter->hw.mac.type >= e1000_i350)
1271                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1272
1273                 /* apply Rx specific ring traits */
1274                 ring->count = adapter->rx_ring_count;
1275                 ring->queue_index = rxr_idx;
1276
1277                 u64_stats_init(&ring->rx_syncp);
1278
1279                 /* assign ring to adapter */
1280                 adapter->rx_ring[rxr_idx] = ring;
1281         }
1282
1283         return 0;
1284 }
1285
1286
1287 /**
1288  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1289  *  @adapter: board private structure to initialize
1290  *
1291  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1292  *  return -ENOMEM.
1293  **/
1294 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1295 {
1296         int q_vectors = adapter->num_q_vectors;
1297         int rxr_remaining = adapter->num_rx_queues;
1298         int txr_remaining = adapter->num_tx_queues;
1299         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1300         int err;
1301
1302         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1303                 for (; rxr_remaining; v_idx++) {
1304                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1305                                                  0, 0, 1, rxr_idx);
1306
1307                         if (err)
1308                                 goto err_out;
1309
1310                         /* update counts and index */
1311                         rxr_remaining--;
1312                         rxr_idx++;
1313                 }
1314         }
1315
1316         for (; v_idx < q_vectors; v_idx++) {
1317                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1318                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1319                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1320                                          tqpv, txr_idx, rqpv, rxr_idx);
1321
1322                 if (err)
1323                         goto err_out;
1324
1325                 /* update counts and index */
1326                 rxr_remaining -= rqpv;
1327                 txr_remaining -= tqpv;
1328                 rxr_idx++;
1329                 txr_idx++;
1330         }
1331
1332         return 0;
1333
1334 err_out:
1335         adapter->num_tx_queues = 0;
1336         adapter->num_rx_queues = 0;
1337         adapter->num_q_vectors = 0;
1338
1339         while (v_idx--)
1340                 igb_free_q_vector(adapter, v_idx);
1341
1342         return -ENOMEM;
1343 }
1344
1345 /**
1346  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1347  *  @adapter: board private structure to initialize
1348  *  @msix: boolean value of MSIX capability
1349  *
1350  *  This function initializes the interrupts and allocates all of the queues.
1351  **/
1352 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1353 {
1354         struct pci_dev *pdev = adapter->pdev;
1355         int err;
1356
1357         igb_set_interrupt_capability(adapter, msix);
1358
1359         err = igb_alloc_q_vectors(adapter);
1360         if (err) {
1361                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1362                 goto err_alloc_q_vectors;
1363         }
1364
1365         igb_cache_ring_register(adapter);
1366
1367         return 0;
1368
1369 err_alloc_q_vectors:
1370         igb_reset_interrupt_capability(adapter);
1371         return err;
1372 }
1373
1374 /**
1375  *  igb_request_irq - initialize interrupts
1376  *  @adapter: board private structure to initialize
1377  *
1378  *  Attempts to configure interrupts using the best available
1379  *  capabilities of the hardware and kernel.
1380  **/
1381 static int igb_request_irq(struct igb_adapter *adapter)
1382 {
1383         struct net_device *netdev = adapter->netdev;
1384         struct pci_dev *pdev = adapter->pdev;
1385         int err = 0;
1386
1387         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1388                 err = igb_request_msix(adapter);
1389                 if (!err)
1390                         goto request_done;
1391                 /* fall back to MSI */
1392                 igb_free_all_tx_resources(adapter);
1393                 igb_free_all_rx_resources(adapter);
1394
1395                 igb_clear_interrupt_scheme(adapter);
1396                 err = igb_init_interrupt_scheme(adapter, false);
1397                 if (err)
1398                         goto request_done;
1399
1400                 igb_setup_all_tx_resources(adapter);
1401                 igb_setup_all_rx_resources(adapter);
1402                 igb_configure(adapter);
1403         }
1404
1405         igb_assign_vector(adapter->q_vector[0], 0);
1406
1407         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1408                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1409                                   netdev->name, adapter);
1410                 if (!err)
1411                         goto request_done;
1412
1413                 /* fall back to legacy interrupts */
1414                 igb_reset_interrupt_capability(adapter);
1415                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1416         }
1417
1418         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1419                           netdev->name, adapter);
1420
1421         if (err)
1422                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1423                         err);
1424
1425 request_done:
1426         return err;
1427 }
1428
1429 static void igb_free_irq(struct igb_adapter *adapter)
1430 {
1431         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1432                 int vector = 0, i;
1433
1434                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1435
1436                 for (i = 0; i < adapter->num_q_vectors; i++)
1437                         free_irq(adapter->msix_entries[vector++].vector,
1438                                  adapter->q_vector[i]);
1439         } else {
1440                 free_irq(adapter->pdev->irq, adapter);
1441         }
1442 }
1443
1444 /**
1445  *  igb_irq_disable - Mask off interrupt generation on the NIC
1446  *  @adapter: board private structure
1447  **/
1448 static void igb_irq_disable(struct igb_adapter *adapter)
1449 {
1450         struct e1000_hw *hw = &adapter->hw;
1451
1452         /* we need to be careful when disabling interrupts.  The VFs are also
1453          * mapped into these registers and so clearing the bits can cause
1454          * issues on the VF drivers so we only need to clear what we set
1455          */
1456         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1457                 u32 regval = rd32(E1000_EIAM);
1458                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1459                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1460                 regval = rd32(E1000_EIAC);
1461                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1462         }
1463
1464         wr32(E1000_IAM, 0);
1465         wr32(E1000_IMC, ~0);
1466         wrfl();
1467         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1468                 int i;
1469                 for (i = 0; i < adapter->num_q_vectors; i++)
1470                         synchronize_irq(adapter->msix_entries[i].vector);
1471         } else {
1472                 synchronize_irq(adapter->pdev->irq);
1473         }
1474 }
1475
1476 /**
1477  *  igb_irq_enable - Enable default interrupt generation settings
1478  *  @adapter: board private structure
1479  **/
1480 static void igb_irq_enable(struct igb_adapter *adapter)
1481 {
1482         struct e1000_hw *hw = &adapter->hw;
1483
1484         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1486                 u32 regval = rd32(E1000_EIAC);
1487                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1488                 regval = rd32(E1000_EIAM);
1489                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1490                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1491                 if (adapter->vfs_allocated_count) {
1492                         wr32(E1000_MBVFIMR, 0xFF);
1493                         ims |= E1000_IMS_VMMB;
1494                 }
1495                 wr32(E1000_IMS, ims);
1496         } else {
1497                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1498                                 E1000_IMS_DRSTA);
1499                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1500                                 E1000_IMS_DRSTA);
1501         }
1502 }
1503
1504 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1505 {
1506         struct e1000_hw *hw = &adapter->hw;
1507         u16 vid = adapter->hw.mng_cookie.vlan_id;
1508         u16 old_vid = adapter->mng_vlan_id;
1509
1510         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1511                 /* add VID to filter table */
1512                 igb_vfta_set(hw, vid, true);
1513                 adapter->mng_vlan_id = vid;
1514         } else {
1515                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1516         }
1517
1518         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1519             (vid != old_vid) &&
1520             !test_bit(old_vid, adapter->active_vlans)) {
1521                 /* remove VID from filter table */
1522                 igb_vfta_set(hw, old_vid, false);
1523         }
1524 }
1525
1526 /**
1527  *  igb_release_hw_control - release control of the h/w to f/w
1528  *  @adapter: address of board private structure
1529  *
1530  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1531  *  For ASF and Pass Through versions of f/w this means that the
1532  *  driver is no longer loaded.
1533  **/
1534 static void igb_release_hw_control(struct igb_adapter *adapter)
1535 {
1536         struct e1000_hw *hw = &adapter->hw;
1537         u32 ctrl_ext;
1538
1539         /* Let firmware take over control of h/w */
1540         ctrl_ext = rd32(E1000_CTRL_EXT);
1541         wr32(E1000_CTRL_EXT,
1542                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1543 }
1544
1545 /**
1546  *  igb_get_hw_control - get control of the h/w from f/w
1547  *  @adapter: address of board private structure
1548  *
1549  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1550  *  For ASF and Pass Through versions of f/w this means that
1551  *  the driver is loaded.
1552  **/
1553 static void igb_get_hw_control(struct igb_adapter *adapter)
1554 {
1555         struct e1000_hw *hw = &adapter->hw;
1556         u32 ctrl_ext;
1557
1558         /* Let firmware know the driver has taken over */
1559         ctrl_ext = rd32(E1000_CTRL_EXT);
1560         wr32(E1000_CTRL_EXT,
1561                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1562 }
1563
1564 /**
1565  *  igb_configure - configure the hardware for RX and TX
1566  *  @adapter: private board structure
1567  **/
1568 static void igb_configure(struct igb_adapter *adapter)
1569 {
1570         struct net_device *netdev = adapter->netdev;
1571         int i;
1572
1573         igb_get_hw_control(adapter);
1574         igb_set_rx_mode(netdev);
1575
1576         igb_restore_vlan(adapter);
1577
1578         igb_setup_tctl(adapter);
1579         igb_setup_mrqc(adapter);
1580         igb_setup_rctl(adapter);
1581
1582         igb_configure_tx(adapter);
1583         igb_configure_rx(adapter);
1584
1585         igb_rx_fifo_flush_82575(&adapter->hw);
1586
1587         /* call igb_desc_unused which always leaves
1588          * at least 1 descriptor unused to make sure
1589          * next_to_use != next_to_clean
1590          */
1591         for (i = 0; i < adapter->num_rx_queues; i++) {
1592                 struct igb_ring *ring = adapter->rx_ring[i];
1593                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1594         }
1595 }
1596
1597 /**
1598  *  igb_power_up_link - Power up the phy/serdes link
1599  *  @adapter: address of board private structure
1600  **/
1601 void igb_power_up_link(struct igb_adapter *adapter)
1602 {
1603         igb_reset_phy(&adapter->hw);
1604
1605         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1606                 igb_power_up_phy_copper(&adapter->hw);
1607         else
1608                 igb_power_up_serdes_link_82575(&adapter->hw);
1609 }
1610
1611 /**
1612  *  igb_power_down_link - Power down the phy/serdes link
1613  *  @adapter: address of board private structure
1614  */
1615 static void igb_power_down_link(struct igb_adapter *adapter)
1616 {
1617         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1618                 igb_power_down_phy_copper_82575(&adapter->hw);
1619         else
1620                 igb_shutdown_serdes_link_82575(&adapter->hw);
1621 }
1622
1623 /**
1624  * Detect and switch function for Media Auto Sense
1625  * @adapter: address of the board private structure
1626  **/
1627 static void igb_check_swap_media(struct igb_adapter *adapter)
1628 {
1629         struct e1000_hw *hw = &adapter->hw;
1630         u32 ctrl_ext, connsw;
1631         bool swap_now = false;
1632
1633         ctrl_ext = rd32(E1000_CTRL_EXT);
1634         connsw = rd32(E1000_CONNSW);
1635
1636         /* need to live swap if current media is copper and we have fiber/serdes
1637          * to go to.
1638          */
1639
1640         if ((hw->phy.media_type == e1000_media_type_copper) &&
1641             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1642                 swap_now = true;
1643         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1644                 /* copper signal takes time to appear */
1645                 if (adapter->copper_tries < 4) {
1646                         adapter->copper_tries++;
1647                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1648                         wr32(E1000_CONNSW, connsw);
1649                         return;
1650                 } else {
1651                         adapter->copper_tries = 0;
1652                         if ((connsw & E1000_CONNSW_PHYSD) &&
1653                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1654                                 swap_now = true;
1655                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1656                                 wr32(E1000_CONNSW, connsw);
1657                         }
1658                 }
1659         }
1660
1661         if (!swap_now)
1662                 return;
1663
1664         switch (hw->phy.media_type) {
1665         case e1000_media_type_copper:
1666                 netdev_info(adapter->netdev,
1667                         "MAS: changing media to fiber/serdes\n");
1668                 ctrl_ext |=
1669                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1670                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1671                 adapter->copper_tries = 0;
1672                 break;
1673         case e1000_media_type_internal_serdes:
1674         case e1000_media_type_fiber:
1675                 netdev_info(adapter->netdev,
1676                         "MAS: changing media to copper\n");
1677                 ctrl_ext &=
1678                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1679                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1680                 break;
1681         default:
1682                 /* shouldn't get here during regular operation */
1683                 netdev_err(adapter->netdev,
1684                         "AMS: Invalid media type found, returning\n");
1685                 break;
1686         }
1687         wr32(E1000_CTRL_EXT, ctrl_ext);
1688 }
1689
1690 /**
1691  *  igb_up - Open the interface and prepare it to handle traffic
1692  *  @adapter: board private structure
1693  **/
1694 int igb_up(struct igb_adapter *adapter)
1695 {
1696         struct e1000_hw *hw = &adapter->hw;
1697         int i;
1698
1699         /* hardware has been reset, we need to reload some things */
1700         igb_configure(adapter);
1701
1702         clear_bit(__IGB_DOWN, &adapter->state);
1703
1704         for (i = 0; i < adapter->num_q_vectors; i++)
1705                 napi_enable(&(adapter->q_vector[i]->napi));
1706
1707         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1708                 igb_configure_msix(adapter);
1709         else
1710                 igb_assign_vector(adapter->q_vector[0], 0);
1711
1712         /* Clear any pending interrupts. */
1713         rd32(E1000_ICR);
1714         igb_irq_enable(adapter);
1715
1716         /* notify VFs that reset has been completed */
1717         if (adapter->vfs_allocated_count) {
1718                 u32 reg_data = rd32(E1000_CTRL_EXT);
1719                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1720                 wr32(E1000_CTRL_EXT, reg_data);
1721         }
1722
1723         netif_tx_start_all_queues(adapter->netdev);
1724
1725         /* start the watchdog. */
1726         hw->mac.get_link_status = 1;
1727         schedule_work(&adapter->watchdog_task);
1728
1729         return 0;
1730 }
1731
1732 void igb_down(struct igb_adapter *adapter)
1733 {
1734         struct net_device *netdev = adapter->netdev;
1735         struct e1000_hw *hw = &adapter->hw;
1736         u32 tctl, rctl;
1737         int i;
1738
1739         /* signal that we're down so the interrupt handler does not
1740          * reschedule our watchdog timer
1741          */
1742         set_bit(__IGB_DOWN, &adapter->state);
1743
1744         /* disable receives in the hardware */
1745         rctl = rd32(E1000_RCTL);
1746         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1747         /* flush and sleep below */
1748
1749         netif_tx_stop_all_queues(netdev);
1750
1751         /* disable transmits in the hardware */
1752         tctl = rd32(E1000_TCTL);
1753         tctl &= ~E1000_TCTL_EN;
1754         wr32(E1000_TCTL, tctl);
1755         /* flush both disables and wait for them to finish */
1756         wrfl();
1757         msleep(10);
1758
1759         igb_irq_disable(adapter);
1760
1761         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1762
1763         for (i = 0; i < adapter->num_q_vectors; i++) {
1764                 napi_synchronize(&(adapter->q_vector[i]->napi));
1765                 napi_disable(&(adapter->q_vector[i]->napi));
1766         }
1767
1768
1769         del_timer_sync(&adapter->watchdog_timer);
1770         del_timer_sync(&adapter->phy_info_timer);
1771
1772         netif_carrier_off(netdev);
1773
1774         /* record the stats before reset*/
1775         spin_lock(&adapter->stats64_lock);
1776         igb_update_stats(adapter, &adapter->stats64);
1777         spin_unlock(&adapter->stats64_lock);
1778
1779         adapter->link_speed = 0;
1780         adapter->link_duplex = 0;
1781
1782         if (!pci_channel_offline(adapter->pdev))
1783                 igb_reset(adapter);
1784         igb_clean_all_tx_rings(adapter);
1785         igb_clean_all_rx_rings(adapter);
1786 #ifdef CONFIG_IGB_DCA
1787
1788         /* since we reset the hardware DCA settings were cleared */
1789         igb_setup_dca(adapter);
1790 #endif
1791 }
1792
1793 void igb_reinit_locked(struct igb_adapter *adapter)
1794 {
1795         WARN_ON(in_interrupt());
1796         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1797                 msleep(1);
1798         igb_down(adapter);
1799         igb_up(adapter);
1800         clear_bit(__IGB_RESETTING, &adapter->state);
1801 }
1802
1803 /** igb_enable_mas - Media Autosense re-enable after swap
1804  *
1805  * @adapter: adapter struct
1806  **/
1807 static s32 igb_enable_mas(struct igb_adapter *adapter)
1808 {
1809         struct e1000_hw *hw = &adapter->hw;
1810         u32 connsw;
1811         s32 ret_val = 0;
1812
1813         connsw = rd32(E1000_CONNSW);
1814         if (!(hw->phy.media_type == e1000_media_type_copper))
1815                 return ret_val;
1816
1817         /* configure for SerDes media detect */
1818         if (!(connsw & E1000_CONNSW_SERDESD)) {
1819                 connsw |= E1000_CONNSW_ENRGSRC;
1820                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1821                 wr32(E1000_CONNSW, connsw);
1822                 wrfl();
1823         } else if (connsw & E1000_CONNSW_SERDESD) {
1824                 /* already SerDes, no need to enable anything */
1825                 return ret_val;
1826         } else {
1827                 netdev_info(adapter->netdev,
1828                         "MAS: Unable to configure feature, disabling..\n");
1829                 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1830         }
1831         return ret_val;
1832 }
1833
1834 void igb_reset(struct igb_adapter *adapter)
1835 {
1836         struct pci_dev *pdev = adapter->pdev;
1837         struct e1000_hw *hw = &adapter->hw;
1838         struct e1000_mac_info *mac = &hw->mac;
1839         struct e1000_fc_info *fc = &hw->fc;
1840         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1841
1842         /* Repartition Pba for greater than 9k mtu
1843          * To take effect CTRL.RST is required.
1844          */
1845         switch (mac->type) {
1846         case e1000_i350:
1847         case e1000_i354:
1848         case e1000_82580:
1849                 pba = rd32(E1000_RXPBS);
1850                 pba = igb_rxpbs_adjust_82580(pba);
1851                 break;
1852         case e1000_82576:
1853                 pba = rd32(E1000_RXPBS);
1854                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1855                 break;
1856         case e1000_82575:
1857         case e1000_i210:
1858         case e1000_i211:
1859         default:
1860                 pba = E1000_PBA_34K;
1861                 break;
1862         }
1863
1864         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1865             (mac->type < e1000_82576)) {
1866                 /* adjust PBA for jumbo frames */
1867                 wr32(E1000_PBA, pba);
1868
1869                 /* To maintain wire speed transmits, the Tx FIFO should be
1870                  * large enough to accommodate two full transmit packets,
1871                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1872                  * the Rx FIFO should be large enough to accommodate at least
1873                  * one full receive packet and is similarly rounded up and
1874                  * expressed in KB.
1875                  */
1876                 pba = rd32(E1000_PBA);
1877                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1878                 tx_space = pba >> 16;
1879                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1880                 pba &= 0xffff;
1881                 /* the Tx fifo also stores 16 bytes of information about the Tx
1882                  * but don't include ethernet FCS because hardware appends it
1883                  */
1884                 min_tx_space = (adapter->max_frame_size +
1885                                 sizeof(union e1000_adv_tx_desc) -
1886                                 ETH_FCS_LEN) * 2;
1887                 min_tx_space = ALIGN(min_tx_space, 1024);
1888                 min_tx_space >>= 10;
1889                 /* software strips receive CRC, so leave room for it */
1890                 min_rx_space = adapter->max_frame_size;
1891                 min_rx_space = ALIGN(min_rx_space, 1024);
1892                 min_rx_space >>= 10;
1893
1894                 /* If current Tx allocation is less than the min Tx FIFO size,
1895                  * and the min Tx FIFO size is less than the current Rx FIFO
1896                  * allocation, take space away from current Rx allocation
1897                  */
1898                 if (tx_space < min_tx_space &&
1899                     ((min_tx_space - tx_space) < pba)) {
1900                         pba = pba - (min_tx_space - tx_space);
1901
1902                         /* if short on Rx space, Rx wins and must trump Tx
1903                          * adjustment
1904                          */
1905                         if (pba < min_rx_space)
1906                                 pba = min_rx_space;
1907                 }
1908                 wr32(E1000_PBA, pba);
1909         }
1910
1911         /* flow control settings */
1912         /* The high water mark must be low enough to fit one full frame
1913          * (or the size used for early receive) above it in the Rx FIFO.
1914          * Set it to the lower of:
1915          * - 90% of the Rx FIFO size, or
1916          * - the full Rx FIFO size minus one full frame
1917          */
1918         hwm = min(((pba << 10) * 9 / 10),
1919                         ((pba << 10) - 2 * adapter->max_frame_size));
1920
1921         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1922         fc->low_water = fc->high_water - 16;
1923         fc->pause_time = 0xFFFF;
1924         fc->send_xon = 1;
1925         fc->current_mode = fc->requested_mode;
1926
1927         /* disable receive for all VFs and wait one second */
1928         if (adapter->vfs_allocated_count) {
1929                 int i;
1930                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1931                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1932
1933                 /* ping all the active vfs to let them know we are going down */
1934                 igb_ping_all_vfs(adapter);
1935
1936                 /* disable transmits and receives */
1937                 wr32(E1000_VFRE, 0);
1938                 wr32(E1000_VFTE, 0);
1939         }
1940
1941         /* Allow time for pending master requests to run */
1942         hw->mac.ops.reset_hw(hw);
1943         wr32(E1000_WUC, 0);
1944
1945         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1946                 /* need to resetup here after media swap */
1947                 adapter->ei.get_invariants(hw);
1948                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1949         }
1950         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1951                 if (igb_enable_mas(adapter))
1952                         dev_err(&pdev->dev,
1953                                 "Error enabling Media Auto Sense\n");
1954         }
1955         if (hw->mac.ops.init_hw(hw))
1956                 dev_err(&pdev->dev, "Hardware Error\n");
1957
1958         /* Flow control settings reset on hardware reset, so guarantee flow
1959          * control is off when forcing speed.
1960          */
1961         if (!hw->mac.autoneg)
1962                 igb_force_mac_fc(hw);
1963
1964         igb_init_dmac(adapter, pba);
1965 #ifdef CONFIG_IGB_HWMON
1966         /* Re-initialize the thermal sensor on i350 devices. */
1967         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1968                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1969                         /* If present, re-initialize the external thermal sensor
1970                          * interface.
1971                          */
1972                         if (adapter->ets)
1973                                 mac->ops.init_thermal_sensor_thresh(hw);
1974                 }
1975         }
1976 #endif
1977         if (!netif_running(adapter->netdev))
1978                 igb_power_down_link(adapter);
1979
1980         igb_update_mng_vlan(adapter);
1981
1982         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1983         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1984
1985         /* Re-enable PTP, where applicable. */
1986         igb_ptp_reset(adapter);
1987
1988         igb_get_phy_info(hw);
1989 }
1990
1991 static netdev_features_t igb_fix_features(struct net_device *netdev,
1992         netdev_features_t features)
1993 {
1994         /* Since there is no support for separate Rx/Tx vlan accel
1995          * enable/disable make sure Tx flag is always in same state as Rx.
1996          */
1997         if (features & NETIF_F_HW_VLAN_CTAG_RX)
1998                 features |= NETIF_F_HW_VLAN_CTAG_TX;
1999         else
2000                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2001
2002         return features;
2003 }
2004
2005 static int igb_set_features(struct net_device *netdev,
2006         netdev_features_t features)
2007 {
2008         netdev_features_t changed = netdev->features ^ features;
2009         struct igb_adapter *adapter = netdev_priv(netdev);
2010
2011         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2012                 igb_vlan_mode(netdev, features);
2013
2014         if (!(changed & NETIF_F_RXALL))
2015                 return 0;
2016
2017         netdev->features = features;
2018
2019         if (netif_running(netdev))
2020                 igb_reinit_locked(adapter);
2021         else
2022                 igb_reset(adapter);
2023
2024         return 0;
2025 }
2026
2027 static const struct net_device_ops igb_netdev_ops = {
2028         .ndo_open               = igb_open,
2029         .ndo_stop               = igb_close,
2030         .ndo_start_xmit         = igb_xmit_frame,
2031         .ndo_get_stats64        = igb_get_stats64,
2032         .ndo_set_rx_mode        = igb_set_rx_mode,
2033         .ndo_set_mac_address    = igb_set_mac,
2034         .ndo_change_mtu         = igb_change_mtu,
2035         .ndo_do_ioctl           = igb_ioctl,
2036         .ndo_tx_timeout         = igb_tx_timeout,
2037         .ndo_validate_addr      = eth_validate_addr,
2038         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2039         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2040         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2041         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2042         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
2043         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2044         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2045 #ifdef CONFIG_NET_POLL_CONTROLLER
2046         .ndo_poll_controller    = igb_netpoll,
2047 #endif
2048         .ndo_fix_features       = igb_fix_features,
2049         .ndo_set_features       = igb_set_features,
2050 };
2051
2052 /**
2053  * igb_set_fw_version - Configure version string for ethtool
2054  * @adapter: adapter struct
2055  **/
2056 void igb_set_fw_version(struct igb_adapter *adapter)
2057 {
2058         struct e1000_hw *hw = &adapter->hw;
2059         struct e1000_fw_version fw;
2060
2061         igb_get_fw_version(hw, &fw);
2062
2063         switch (hw->mac.type) {
2064         case e1000_i210:
2065         case e1000_i211:
2066                 if (!(igb_get_flash_presence_i210(hw))) {
2067                         snprintf(adapter->fw_version,
2068                                  sizeof(adapter->fw_version),
2069                                  "%2d.%2d-%d",
2070                                  fw.invm_major, fw.invm_minor,
2071                                  fw.invm_img_type);
2072                         break;
2073                 }
2074                 /* fall through */
2075         default:
2076                 /* if option is rom valid, display its version too */
2077                 if (fw.or_valid) {
2078                         snprintf(adapter->fw_version,
2079                                  sizeof(adapter->fw_version),
2080                                  "%d.%d, 0x%08x, %d.%d.%d",
2081                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2082                                  fw.or_major, fw.or_build, fw.or_patch);
2083                 /* no option rom */
2084                 } else if (fw.etrack_id != 0X0000) {
2085                         snprintf(adapter->fw_version,
2086                             sizeof(adapter->fw_version),
2087                             "%d.%d, 0x%08x",
2088                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2089                 } else {
2090                 snprintf(adapter->fw_version,
2091                     sizeof(adapter->fw_version),
2092                     "%d.%d.%d",
2093                     fw.eep_major, fw.eep_minor, fw.eep_build);
2094                 }
2095                 break;
2096         }
2097         return;
2098 }
2099
2100 /**
2101  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2102  *
2103  * @adapter: adapter struct
2104  **/
2105 static void igb_init_mas(struct igb_adapter *adapter)
2106 {
2107         struct e1000_hw *hw = &adapter->hw;
2108         u16 eeprom_data;
2109
2110         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2111         switch (hw->bus.func) {
2112         case E1000_FUNC_0:
2113                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2114                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2115                         netdev_info(adapter->netdev,
2116                                 "MAS: Enabling Media Autosense for port %d\n",
2117                                 hw->bus.func);
2118                 }
2119                 break;
2120         case E1000_FUNC_1:
2121                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2122                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2123                         netdev_info(adapter->netdev,
2124                                 "MAS: Enabling Media Autosense for port %d\n",
2125                                 hw->bus.func);
2126                 }
2127                 break;
2128         case E1000_FUNC_2:
2129                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2130                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2131                         netdev_info(adapter->netdev,
2132                                 "MAS: Enabling Media Autosense for port %d\n",
2133                                 hw->bus.func);
2134                 }
2135                 break;
2136         case E1000_FUNC_3:
2137                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2138                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2139                         netdev_info(adapter->netdev,
2140                                 "MAS: Enabling Media Autosense for port %d\n",
2141                                 hw->bus.func);
2142                 }
2143                 break;
2144         default:
2145                 /* Shouldn't get here */
2146                 netdev_err(adapter->netdev,
2147                         "MAS: Invalid port configuration, returning\n");
2148                 break;
2149         }
2150 }
2151
2152 /**
2153  *  igb_init_i2c - Init I2C interface
2154  *  @adapter: pointer to adapter structure
2155  **/
2156 static s32 igb_init_i2c(struct igb_adapter *adapter)
2157 {
2158         s32 status = E1000_SUCCESS;
2159
2160         /* I2C interface supported on i350 devices */
2161         if (adapter->hw.mac.type != e1000_i350)
2162                 return E1000_SUCCESS;
2163
2164         /* Initialize the i2c bus which is controlled by the registers.
2165          * This bus will use the i2c_algo_bit structue that implements
2166          * the protocol through toggling of the 4 bits in the register.
2167          */
2168         adapter->i2c_adap.owner = THIS_MODULE;
2169         adapter->i2c_algo = igb_i2c_algo;
2170         adapter->i2c_algo.data = adapter;
2171         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2172         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2173         strlcpy(adapter->i2c_adap.name, "igb BB",
2174                 sizeof(adapter->i2c_adap.name));
2175         status = i2c_bit_add_bus(&adapter->i2c_adap);
2176         return status;
2177 }
2178
2179 /**
2180  *  igb_probe - Device Initialization Routine
2181  *  @pdev: PCI device information struct
2182  *  @ent: entry in igb_pci_tbl
2183  *
2184  *  Returns 0 on success, negative on failure
2185  *
2186  *  igb_probe initializes an adapter identified by a pci_dev structure.
2187  *  The OS initialization, configuring of the adapter private structure,
2188  *  and a hardware reset occur.
2189  **/
2190 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2191 {
2192         struct net_device *netdev;
2193         struct igb_adapter *adapter;
2194         struct e1000_hw *hw;
2195         u16 eeprom_data = 0;
2196         s32 ret_val;
2197         static int global_quad_port_a; /* global quad port a indication */
2198         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2199         int err, pci_using_dac;
2200         u8 part_str[E1000_PBANUM_LENGTH];
2201
2202         /* Catch broken hardware that put the wrong VF device ID in
2203          * the PCIe SR-IOV capability.
2204          */
2205         if (pdev->is_virtfn) {
2206                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2207                         pci_name(pdev), pdev->vendor, pdev->device);
2208                 return -EINVAL;
2209         }
2210
2211         err = pci_enable_device_mem(pdev);
2212         if (err)
2213                 return err;
2214
2215         pci_using_dac = 0;
2216         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2217         if (!err) {
2218                 pci_using_dac = 1;
2219         } else {
2220                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2221                 if (err) {
2222                         dev_err(&pdev->dev,
2223                                 "No usable DMA configuration, aborting\n");
2224                         goto err_dma;
2225                 }
2226         }
2227
2228         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2229                                            IORESOURCE_MEM),
2230                                            igb_driver_name);
2231         if (err)
2232                 goto err_pci_reg;
2233
2234         pci_enable_pcie_error_reporting(pdev);
2235
2236         pci_set_master(pdev);
2237         pci_save_state(pdev);
2238
2239         err = -ENOMEM;
2240         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2241                                    IGB_MAX_TX_QUEUES);
2242         if (!netdev)
2243                 goto err_alloc_etherdev;
2244
2245         SET_NETDEV_DEV(netdev, &pdev->dev);
2246
2247         pci_set_drvdata(pdev, netdev);
2248         adapter = netdev_priv(netdev);
2249         adapter->netdev = netdev;
2250         adapter->pdev = pdev;
2251         hw = &adapter->hw;
2252         hw->back = adapter;
2253         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2254
2255         err = -EIO;
2256         hw->hw_addr = pci_iomap(pdev, 0, 0);
2257         if (!hw->hw_addr)
2258                 goto err_ioremap;
2259
2260         netdev->netdev_ops = &igb_netdev_ops;
2261         igb_set_ethtool_ops(netdev);
2262         netdev->watchdog_timeo = 5 * HZ;
2263
2264         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2265
2266         netdev->mem_start = pci_resource_start(pdev, 0);
2267         netdev->mem_end = pci_resource_end(pdev, 0);
2268
2269         /* PCI config space info */
2270         hw->vendor_id = pdev->vendor;
2271         hw->device_id = pdev->device;
2272         hw->revision_id = pdev->revision;
2273         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2274         hw->subsystem_device_id = pdev->subsystem_device;
2275
2276         /* Copy the default MAC, PHY and NVM function pointers */
2277         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2278         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2279         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2280         /* Initialize skew-specific constants */
2281         err = ei->get_invariants(hw);
2282         if (err)
2283                 goto err_sw_init;
2284
2285         /* setup the private structure */
2286         err = igb_sw_init(adapter);
2287         if (err)
2288                 goto err_sw_init;
2289
2290         igb_get_bus_info_pcie(hw);
2291
2292         hw->phy.autoneg_wait_to_complete = false;
2293
2294         /* Copper options */
2295         if (hw->phy.media_type == e1000_media_type_copper) {
2296                 hw->phy.mdix = AUTO_ALL_MODES;
2297                 hw->phy.disable_polarity_correction = false;
2298                 hw->phy.ms_type = e1000_ms_hw_default;
2299         }
2300
2301         if (igb_check_reset_block(hw))
2302                 dev_info(&pdev->dev,
2303                         "PHY reset is blocked due to SOL/IDER session.\n");
2304
2305         /* features is initialized to 0 in allocation, it might have bits
2306          * set by igb_sw_init so we should use an or instead of an
2307          * assignment.
2308          */
2309         netdev->features |= NETIF_F_SG |
2310                             NETIF_F_IP_CSUM |
2311                             NETIF_F_IPV6_CSUM |
2312                             NETIF_F_TSO |
2313                             NETIF_F_TSO6 |
2314                             NETIF_F_RXHASH |
2315                             NETIF_F_RXCSUM |
2316                             NETIF_F_HW_VLAN_CTAG_RX |
2317                             NETIF_F_HW_VLAN_CTAG_TX;
2318
2319         /* copy netdev features into list of user selectable features */
2320         netdev->hw_features |= netdev->features;
2321         netdev->hw_features |= NETIF_F_RXALL;
2322
2323         /* set this bit last since it cannot be part of hw_features */
2324         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2325
2326         netdev->vlan_features |= NETIF_F_TSO |
2327                                  NETIF_F_TSO6 |
2328                                  NETIF_F_IP_CSUM |
2329                                  NETIF_F_IPV6_CSUM |
2330                                  NETIF_F_SG;
2331
2332         netdev->priv_flags |= IFF_SUPP_NOFCS;
2333
2334         if (pci_using_dac) {
2335                 netdev->features |= NETIF_F_HIGHDMA;
2336                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2337         }
2338
2339         if (hw->mac.type >= e1000_82576) {
2340                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2341                 netdev->features |= NETIF_F_SCTP_CSUM;
2342         }
2343
2344         netdev->priv_flags |= IFF_UNICAST_FLT;
2345
2346         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2347
2348         /* before reading the NVM, reset the controller to put the device in a
2349          * known good starting state
2350          */
2351         hw->mac.ops.reset_hw(hw);
2352
2353         /* make sure the NVM is good , i211/i210 parts can have special NVM
2354          * that doesn't contain a checksum
2355          */
2356         switch (hw->mac.type) {
2357         case e1000_i210:
2358         case e1000_i211:
2359                 if (igb_get_flash_presence_i210(hw)) {
2360                         if (hw->nvm.ops.validate(hw) < 0) {
2361                                 dev_err(&pdev->dev,
2362                                         "The NVM Checksum Is Not Valid\n");
2363                                 err = -EIO;
2364                                 goto err_eeprom;
2365                         }
2366                 }
2367                 break;
2368         default:
2369                 if (hw->nvm.ops.validate(hw) < 0) {
2370                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2371                         err = -EIO;
2372                         goto err_eeprom;
2373                 }
2374                 break;
2375         }
2376
2377         /* copy the MAC address out of the NVM */
2378         if (hw->mac.ops.read_mac_addr(hw))
2379                 dev_err(&pdev->dev, "NVM Read Error\n");
2380
2381         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2382
2383         if (!is_valid_ether_addr(netdev->dev_addr)) {
2384                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2385                 err = -EIO;
2386                 goto err_eeprom;
2387         }
2388
2389         /* get firmware version for ethtool -i */
2390         igb_set_fw_version(adapter);
2391
2392         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2393                     (unsigned long) adapter);
2394         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2395                     (unsigned long) adapter);
2396
2397         INIT_WORK(&adapter->reset_task, igb_reset_task);
2398         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2399
2400         /* Initialize link properties that are user-changeable */
2401         adapter->fc_autoneg = true;
2402         hw->mac.autoneg = true;
2403         hw->phy.autoneg_advertised = 0x2f;
2404
2405         hw->fc.requested_mode = e1000_fc_default;
2406         hw->fc.current_mode = e1000_fc_default;
2407
2408         igb_validate_mdi_setting(hw);
2409
2410         /* By default, support wake on port A */
2411         if (hw->bus.func == 0)
2412                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2413
2414         /* Check the NVM for wake support on non-port A ports */
2415         if (hw->mac.type >= e1000_82580)
2416                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2417                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2418                                  &eeprom_data);
2419         else if (hw->bus.func == 1)
2420                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2421
2422         if (eeprom_data & IGB_EEPROM_APME)
2423                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2424
2425         /* now that we have the eeprom settings, apply the special cases where
2426          * the eeprom may be wrong or the board simply won't support wake on
2427          * lan on a particular port
2428          */
2429         switch (pdev->device) {
2430         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2431                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2432                 break;
2433         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2434         case E1000_DEV_ID_82576_FIBER:
2435         case E1000_DEV_ID_82576_SERDES:
2436                 /* Wake events only supported on port A for dual fiber
2437                  * regardless of eeprom setting
2438                  */
2439                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2440                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2441                 break;
2442         case E1000_DEV_ID_82576_QUAD_COPPER:
2443         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2444                 /* if quad port adapter, disable WoL on all but port A */
2445                 if (global_quad_port_a != 0)
2446                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2447                 else
2448                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2449                 /* Reset for multiple quad port adapters */
2450                 if (++global_quad_port_a == 4)
2451                         global_quad_port_a = 0;
2452                 break;
2453         default:
2454                 /* If the device can't wake, don't set software support */
2455                 if (!device_can_wakeup(&adapter->pdev->dev))
2456                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2457         }
2458
2459         /* initialize the wol settings based on the eeprom settings */
2460         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2461                 adapter->wol |= E1000_WUFC_MAG;
2462
2463         /* Some vendors want WoL disabled by default, but still supported */
2464         if ((hw->mac.type == e1000_i350) &&
2465             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2466                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2467                 adapter->wol = 0;
2468         }
2469
2470         device_set_wakeup_enable(&adapter->pdev->dev,
2471                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2472
2473         /* reset the hardware with the new settings */
2474         igb_reset(adapter);
2475
2476         /* Init the I2C interface */
2477         err = igb_init_i2c(adapter);
2478         if (err) {
2479                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2480                 goto err_eeprom;
2481         }
2482
2483         /* let the f/w know that the h/w is now under the control of the
2484          * driver. */
2485         igb_get_hw_control(adapter);
2486
2487         strcpy(netdev->name, "eth%d");
2488         err = register_netdev(netdev);
2489         if (err)
2490                 goto err_register;
2491
2492         /* carrier off reporting is important to ethtool even BEFORE open */
2493         netif_carrier_off(netdev);
2494
2495 #ifdef CONFIG_IGB_DCA
2496         if (dca_add_requester(&pdev->dev) == 0) {
2497                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2498                 dev_info(&pdev->dev, "DCA enabled\n");
2499                 igb_setup_dca(adapter);
2500         }
2501
2502 #endif
2503 #ifdef CONFIG_IGB_HWMON
2504         /* Initialize the thermal sensor on i350 devices. */
2505         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2506                 u16 ets_word;
2507
2508                 /* Read the NVM to determine if this i350 device supports an
2509                  * external thermal sensor.
2510                  */
2511                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2512                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2513                         adapter->ets = true;
2514                 else
2515                         adapter->ets = false;
2516                 if (igb_sysfs_init(adapter))
2517                         dev_err(&pdev->dev,
2518                                 "failed to allocate sysfs resources\n");
2519         } else {
2520                 adapter->ets = false;
2521         }
2522 #endif
2523         /* Check if Media Autosense is enabled */
2524         adapter->ei = *ei;
2525         if (hw->dev_spec._82575.mas_capable)
2526                 igb_init_mas(adapter);
2527
2528         /* do hw tstamp init after resetting */
2529         igb_ptp_init(adapter);
2530
2531         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2532         /* print bus type/speed/width info, not applicable to i354 */
2533         if (hw->mac.type != e1000_i354) {
2534                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2535                          netdev->name,
2536                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2537                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2538                            "unknown"),
2539                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2540                           "Width x4" :
2541                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2542                           "Width x2" :
2543                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2544                           "Width x1" : "unknown"), netdev->dev_addr);
2545         }
2546
2547         if ((hw->mac.type >= e1000_i210 ||
2548              igb_get_flash_presence_i210(hw))) {
2549                 ret_val = igb_read_part_string(hw, part_str,
2550                                                E1000_PBANUM_LENGTH);
2551         } else {
2552                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2553         }
2554
2555         if (ret_val)
2556                 strcpy(part_str, "Unknown");
2557         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2558         dev_info(&pdev->dev,
2559                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2560                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2561                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2562                 adapter->num_rx_queues, adapter->num_tx_queues);
2563         switch (hw->mac.type) {
2564         case e1000_i350:
2565         case e1000_i210:
2566         case e1000_i211:
2567                 igb_set_eee_i350(hw);
2568                 break;
2569         case e1000_i354:
2570                 if (hw->phy.media_type == e1000_media_type_copper) {
2571                         if ((rd32(E1000_CTRL_EXT) &
2572                             E1000_CTRL_EXT_LINK_MODE_SGMII))
2573                                 igb_set_eee_i354(hw);
2574                 }
2575                 break;
2576         default:
2577                 break;
2578         }
2579
2580         pm_runtime_put_noidle(&pdev->dev);
2581         return 0;
2582
2583 err_register:
2584         igb_release_hw_control(adapter);
2585         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2586 err_eeprom:
2587         if (!igb_check_reset_block(hw))
2588                 igb_reset_phy(hw);
2589
2590         if (hw->flash_address)
2591                 iounmap(hw->flash_address);
2592 err_sw_init:
2593         igb_clear_interrupt_scheme(adapter);
2594         iounmap(hw->hw_addr);
2595 err_ioremap:
2596         free_netdev(netdev);
2597 err_alloc_etherdev:
2598         pci_release_selected_regions(pdev,
2599                                      pci_select_bars(pdev, IORESOURCE_MEM));
2600 err_pci_reg:
2601 err_dma:
2602         pci_disable_device(pdev);
2603         return err;
2604 }
2605
2606 #ifdef CONFIG_PCI_IOV
2607 static int igb_disable_sriov(struct pci_dev *pdev)
2608 {
2609         struct net_device *netdev = pci_get_drvdata(pdev);
2610         struct igb_adapter *adapter = netdev_priv(netdev);
2611         struct e1000_hw *hw = &adapter->hw;
2612
2613         /* reclaim resources allocated to VFs */
2614         if (adapter->vf_data) {
2615                 /* disable iov and allow time for transactions to clear */
2616                 if (pci_vfs_assigned(pdev)) {
2617                         dev_warn(&pdev->dev,
2618                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2619                         return -EPERM;
2620                 } else {
2621                         pci_disable_sriov(pdev);
2622                         msleep(500);
2623                 }
2624
2625                 kfree(adapter->vf_data);
2626                 adapter->vf_data = NULL;
2627                 adapter->vfs_allocated_count = 0;
2628                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2629                 wrfl();
2630                 msleep(100);
2631                 dev_info(&pdev->dev, "IOV Disabled\n");
2632
2633                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2634                 adapter->flags |= IGB_FLAG_DMAC;
2635         }
2636
2637         return 0;
2638 }
2639
2640 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2641 {
2642         struct net_device *netdev = pci_get_drvdata(pdev);
2643         struct igb_adapter *adapter = netdev_priv(netdev);
2644         int old_vfs = pci_num_vf(pdev);
2645         int err = 0;
2646         int i;
2647
2648         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2649                 err = -EPERM;
2650                 goto out;
2651         }
2652         if (!num_vfs)
2653                 goto out;
2654
2655         if (old_vfs) {
2656                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2657                          old_vfs, max_vfs);
2658                 adapter->vfs_allocated_count = old_vfs;
2659         } else
2660                 adapter->vfs_allocated_count = num_vfs;
2661
2662         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2663                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2664
2665         /* if allocation failed then we do not support SR-IOV */
2666         if (!adapter->vf_data) {
2667                 adapter->vfs_allocated_count = 0;
2668                 dev_err(&pdev->dev,
2669                         "Unable to allocate memory for VF Data Storage\n");
2670                 err = -ENOMEM;
2671                 goto out;
2672         }
2673
2674         /* only call pci_enable_sriov() if no VFs are allocated already */
2675         if (!old_vfs) {
2676                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2677                 if (err)
2678                         goto err_out;
2679         }
2680         dev_info(&pdev->dev, "%d VFs allocated\n",
2681                  adapter->vfs_allocated_count);
2682         for (i = 0; i < adapter->vfs_allocated_count; i++)
2683                 igb_vf_configure(adapter, i);
2684
2685         /* DMA Coalescing is not supported in IOV mode. */
2686         adapter->flags &= ~IGB_FLAG_DMAC;
2687         goto out;
2688
2689 err_out:
2690         kfree(adapter->vf_data);
2691         adapter->vf_data = NULL;
2692         adapter->vfs_allocated_count = 0;
2693 out:
2694         return err;
2695 }
2696
2697 #endif
2698 /**
2699  *  igb_remove_i2c - Cleanup  I2C interface
2700  *  @adapter: pointer to adapter structure
2701  **/
2702 static void igb_remove_i2c(struct igb_adapter *adapter)
2703 {
2704         /* free the adapter bus structure */
2705         i2c_del_adapter(&adapter->i2c_adap);
2706 }
2707
2708 /**
2709  *  igb_remove - Device Removal Routine
2710  *  @pdev: PCI device information struct
2711  *
2712  *  igb_remove is called by the PCI subsystem to alert the driver
2713  *  that it should release a PCI device.  The could be caused by a
2714  *  Hot-Plug event, or because the driver is going to be removed from
2715  *  memory.
2716  **/
2717 static void igb_remove(struct pci_dev *pdev)
2718 {
2719         struct net_device *netdev = pci_get_drvdata(pdev);
2720         struct igb_adapter *adapter = netdev_priv(netdev);
2721         struct e1000_hw *hw = &adapter->hw;
2722
2723         pm_runtime_get_noresume(&pdev->dev);
2724 #ifdef CONFIG_IGB_HWMON
2725         igb_sysfs_exit(adapter);
2726 #endif
2727         igb_remove_i2c(adapter);
2728         igb_ptp_stop(adapter);
2729         /* The watchdog timer may be rescheduled, so explicitly
2730          * disable watchdog from being rescheduled.
2731          */
2732         set_bit(__IGB_DOWN, &adapter->state);
2733         del_timer_sync(&adapter->watchdog_timer);
2734         del_timer_sync(&adapter->phy_info_timer);
2735
2736         cancel_work_sync(&adapter->reset_task);
2737         cancel_work_sync(&adapter->watchdog_task);
2738
2739 #ifdef CONFIG_IGB_DCA
2740         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2741                 dev_info(&pdev->dev, "DCA disabled\n");
2742                 dca_remove_requester(&pdev->dev);
2743                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2744                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2745         }
2746 #endif
2747
2748         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2749          * would have already happened in close and is redundant.
2750          */
2751         igb_release_hw_control(adapter);
2752
2753         unregister_netdev(netdev);
2754
2755         igb_clear_interrupt_scheme(adapter);
2756
2757 #ifdef CONFIG_PCI_IOV
2758         igb_disable_sriov(pdev);
2759 #endif
2760
2761         iounmap(hw->hw_addr);
2762         if (hw->flash_address)
2763                 iounmap(hw->flash_address);
2764         pci_release_selected_regions(pdev,
2765                                      pci_select_bars(pdev, IORESOURCE_MEM));
2766
2767         kfree(adapter->shadow_vfta);
2768         free_netdev(netdev);
2769
2770         pci_disable_pcie_error_reporting(pdev);
2771
2772         pci_disable_device(pdev);
2773 }
2774
2775 /**
2776  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2777  *  @adapter: board private structure to initialize
2778  *
2779  *  This function initializes the vf specific data storage and then attempts to
2780  *  allocate the VFs.  The reason for ordering it this way is because it is much
2781  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2782  *  the memory for the VFs.
2783  **/
2784 static void igb_probe_vfs(struct igb_adapter *adapter)
2785 {
2786 #ifdef CONFIG_PCI_IOV
2787         struct pci_dev *pdev = adapter->pdev;
2788         struct e1000_hw *hw = &adapter->hw;
2789
2790         /* Virtualization features not supported on i210 family. */
2791         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2792                 return;
2793
2794         pci_sriov_set_totalvfs(pdev, 7);
2795         igb_pci_enable_sriov(pdev, max_vfs);
2796
2797 #endif /* CONFIG_PCI_IOV */
2798 }
2799
2800 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2801 {
2802         struct e1000_hw *hw = &adapter->hw;
2803         u32 max_rss_queues;
2804
2805         /* Determine the maximum number of RSS queues supported. */
2806         switch (hw->mac.type) {
2807         case e1000_i211:
2808                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2809                 break;
2810         case e1000_82575:
2811         case e1000_i210:
2812                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2813                 break;
2814         case e1000_i350:
2815                 /* I350 cannot do RSS and SR-IOV at the same time */
2816                 if (!!adapter->vfs_allocated_count) {
2817                         max_rss_queues = 1;
2818                         break;
2819                 }
2820                 /* fall through */
2821         case e1000_82576:
2822                 if (!!adapter->vfs_allocated_count) {
2823                         max_rss_queues = 2;
2824                         break;
2825                 }
2826                 /* fall through */
2827         case e1000_82580:
2828         case e1000_i354:
2829         default:
2830                 max_rss_queues = IGB_MAX_RX_QUEUES;
2831                 break;
2832         }
2833
2834         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2835
2836         /* Determine if we need to pair queues. */
2837         switch (hw->mac.type) {
2838         case e1000_82575:
2839         case e1000_i211:
2840                 /* Device supports enough interrupts without queue pairing. */
2841                 break;
2842         case e1000_82576:
2843                 /* If VFs are going to be allocated with RSS queues then we
2844                  * should pair the queues in order to conserve interrupts due
2845                  * to limited supply.
2846                  */
2847                 if ((adapter->rss_queues > 1) &&
2848                     (adapter->vfs_allocated_count > 6))
2849                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2850                 /* fall through */
2851         case e1000_82580:
2852         case e1000_i350:
2853         case e1000_i354:
2854         case e1000_i210:
2855         default:
2856                 /* If rss_queues > half of max_rss_queues, pair the queues in
2857                  * order to conserve interrupts due to limited supply.
2858                  */
2859                 if (adapter->rss_queues > (max_rss_queues / 2))
2860                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2861                 break;
2862         }
2863 }
2864
2865 /**
2866  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2867  *  @adapter: board private structure to initialize
2868  *
2869  *  igb_sw_init initializes the Adapter private data structure.
2870  *  Fields are initialized based on PCI device information and
2871  *  OS network device settings (MTU size).
2872  **/
2873 static int igb_sw_init(struct igb_adapter *adapter)
2874 {
2875         struct e1000_hw *hw = &adapter->hw;
2876         struct net_device *netdev = adapter->netdev;
2877         struct pci_dev *pdev = adapter->pdev;
2878
2879         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2880
2881         /* set default ring sizes */
2882         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2883         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2884
2885         /* set default ITR values */
2886         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2887         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2888
2889         /* set default work limits */
2890         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2891
2892         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2893                                   VLAN_HLEN;
2894         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2895
2896         spin_lock_init(&adapter->stats64_lock);
2897 #ifdef CONFIG_PCI_IOV
2898         switch (hw->mac.type) {
2899         case e1000_82576:
2900         case e1000_i350:
2901                 if (max_vfs > 7) {
2902                         dev_warn(&pdev->dev,
2903                                  "Maximum of 7 VFs per PF, using max\n");
2904                         max_vfs = adapter->vfs_allocated_count = 7;
2905                 } else
2906                         adapter->vfs_allocated_count = max_vfs;
2907                 if (adapter->vfs_allocated_count)
2908                         dev_warn(&pdev->dev,
2909                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2910                 break;
2911         default:
2912                 break;
2913         }
2914 #endif /* CONFIG_PCI_IOV */
2915
2916         igb_init_queue_configuration(adapter);
2917
2918         /* Setup and initialize a copy of the hw vlan table array */
2919         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2920                                        GFP_ATOMIC);
2921
2922         /* This call may decrease the number of queues */
2923         if (igb_init_interrupt_scheme(adapter, true)) {
2924                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2925                 return -ENOMEM;
2926         }
2927
2928         igb_probe_vfs(adapter);
2929
2930         /* Explicitly disable IRQ since the NIC can be in any state. */
2931         igb_irq_disable(adapter);
2932
2933         if (hw->mac.type >= e1000_i350)
2934                 adapter->flags &= ~IGB_FLAG_DMAC;
2935
2936         set_bit(__IGB_DOWN, &adapter->state);
2937         return 0;
2938 }
2939
2940 /**
2941  *  igb_open - Called when a network interface is made active
2942  *  @netdev: network interface device structure
2943  *
2944  *  Returns 0 on success, negative value on failure
2945  *
2946  *  The open entry point is called when a network interface is made
2947  *  active by the system (IFF_UP).  At this point all resources needed
2948  *  for transmit and receive operations are allocated, the interrupt
2949  *  handler is registered with the OS, the watchdog timer is started,
2950  *  and the stack is notified that the interface is ready.
2951  **/
2952 static int __igb_open(struct net_device *netdev, bool resuming)
2953 {
2954         struct igb_adapter *adapter = netdev_priv(netdev);
2955         struct e1000_hw *hw = &adapter->hw;
2956         struct pci_dev *pdev = adapter->pdev;
2957         int err;
2958         int i;
2959
2960         /* disallow open during test */
2961         if (test_bit(__IGB_TESTING, &adapter->state)) {
2962                 WARN_ON(resuming);
2963                 return -EBUSY;
2964         }
2965
2966         if (!resuming)
2967                 pm_runtime_get_sync(&pdev->dev);
2968
2969         netif_carrier_off(netdev);
2970
2971         /* allocate transmit descriptors */
2972         err = igb_setup_all_tx_resources(adapter);
2973         if (err)
2974                 goto err_setup_tx;
2975
2976         /* allocate receive descriptors */
2977         err = igb_setup_all_rx_resources(adapter);
2978         if (err)
2979                 goto err_setup_rx;
2980
2981         igb_power_up_link(adapter);
2982
2983         /* before we allocate an interrupt, we must be ready to handle it.
2984          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2985          * as soon as we call pci_request_irq, so we have to setup our
2986          * clean_rx handler before we do so.
2987          */
2988         igb_configure(adapter);
2989
2990         err = igb_request_irq(adapter);
2991         if (err)
2992                 goto err_req_irq;
2993
2994         /* Notify the stack of the actual queue counts. */
2995         err = netif_set_real_num_tx_queues(adapter->netdev,
2996                                            adapter->num_tx_queues);
2997         if (err)
2998                 goto err_set_queues;
2999
3000         err = netif_set_real_num_rx_queues(adapter->netdev,
3001                                            adapter->num_rx_queues);
3002         if (err)
3003                 goto err_set_queues;
3004
3005         /* From here on the code is the same as igb_up() */
3006         clear_bit(__IGB_DOWN, &adapter->state);
3007
3008         for (i = 0; i < adapter->num_q_vectors; i++)
3009                 napi_enable(&(adapter->q_vector[i]->napi));
3010
3011         /* Clear any pending interrupts. */
3012         rd32(E1000_ICR);
3013
3014         igb_irq_enable(adapter);
3015
3016         /* notify VFs that reset has been completed */
3017         if (adapter->vfs_allocated_count) {
3018                 u32 reg_data = rd32(E1000_CTRL_EXT);
3019                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3020                 wr32(E1000_CTRL_EXT, reg_data);
3021         }
3022
3023         netif_tx_start_all_queues(netdev);
3024
3025         if (!resuming)
3026                 pm_runtime_put(&pdev->dev);
3027
3028         /* start the watchdog. */
3029         hw->mac.get_link_status = 1;
3030         schedule_work(&adapter->watchdog_task);
3031
3032         return 0;
3033
3034 err_set_queues:
3035         igb_free_irq(adapter);
3036 err_req_irq:
3037         igb_release_hw_control(adapter);
3038         igb_power_down_link(adapter);
3039         igb_free_all_rx_resources(adapter);
3040 err_setup_rx:
3041         igb_free_all_tx_resources(adapter);
3042 err_setup_tx:
3043         igb_reset(adapter);
3044         if (!resuming)
3045                 pm_runtime_put(&pdev->dev);
3046
3047         return err;
3048 }
3049
3050 static int igb_open(struct net_device *netdev)
3051 {
3052         return __igb_open(netdev, false);
3053 }
3054
3055 /**
3056  *  igb_close - Disables a network interface
3057  *  @netdev: network interface device structure
3058  *
3059  *  Returns 0, this is not allowed to fail
3060  *
3061  *  The close entry point is called when an interface is de-activated
3062  *  by the OS.  The hardware is still under the driver's control, but
3063  *  needs to be disabled.  A global MAC reset is issued to stop the
3064  *  hardware, and all transmit and receive resources are freed.
3065  **/
3066 static int __igb_close(struct net_device *netdev, bool suspending)
3067 {
3068         struct igb_adapter *adapter = netdev_priv(netdev);
3069         struct pci_dev *pdev = adapter->pdev;
3070
3071         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3072
3073         if (!suspending)
3074                 pm_runtime_get_sync(&pdev->dev);
3075
3076         igb_down(adapter);
3077         igb_free_irq(adapter);
3078
3079         igb_free_all_tx_resources(adapter);
3080         igb_free_all_rx_resources(adapter);
3081
3082         if (!suspending)
3083                 pm_runtime_put_sync(&pdev->dev);
3084         return 0;
3085 }
3086
3087 static int igb_close(struct net_device *netdev)
3088 {
3089         return __igb_close(netdev, false);
3090 }
3091
3092 /**
3093  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3094  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3095  *
3096  *  Return 0 on success, negative on failure
3097  **/
3098 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3099 {
3100         struct device *dev = tx_ring->dev;
3101         int size;
3102
3103         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3104
3105         tx_ring->tx_buffer_info = vzalloc(size);
3106         if (!tx_ring->tx_buffer_info)
3107                 goto err;
3108
3109         /* round up to nearest 4K */
3110         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3111         tx_ring->size = ALIGN(tx_ring->size, 4096);
3112
3113         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3114                                            &tx_ring->dma, GFP_KERNEL);
3115         if (!tx_ring->desc)
3116                 goto err;
3117
3118         tx_ring->next_to_use = 0;
3119         tx_ring->next_to_clean = 0;
3120
3121         return 0;
3122
3123 err:
3124         vfree(tx_ring->tx_buffer_info);
3125         tx_ring->tx_buffer_info = NULL;
3126         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3127         return -ENOMEM;
3128 }
3129
3130 /**
3131  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3132  *                               (Descriptors) for all queues
3133  *  @adapter: board private structure
3134  *
3135  *  Return 0 on success, negative on failure
3136  **/
3137 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3138 {
3139         struct pci_dev *pdev = adapter->pdev;
3140         int i, err = 0;
3141
3142         for (i = 0; i < adapter->num_tx_queues; i++) {
3143                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3144                 if (err) {
3145                         dev_err(&pdev->dev,
3146                                 "Allocation for Tx Queue %u failed\n", i);
3147                         for (i--; i >= 0; i--)
3148                                 igb_free_tx_resources(adapter->tx_ring[i]);
3149                         break;
3150                 }
3151         }
3152
3153         return err;
3154 }
3155
3156 /**
3157  *  igb_setup_tctl - configure the transmit control registers
3158  *  @adapter: Board private structure
3159  **/
3160 void igb_setup_tctl(struct igb_adapter *adapter)
3161 {
3162         struct e1000_hw *hw = &adapter->hw;
3163         u32 tctl;
3164
3165         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3166         wr32(E1000_TXDCTL(0), 0);
3167
3168         /* Program the Transmit Control Register */
3169         tctl = rd32(E1000_TCTL);
3170         tctl &= ~E1000_TCTL_CT;
3171         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3172                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3173
3174         igb_config_collision_dist(hw);
3175
3176         /* Enable transmits */
3177         tctl |= E1000_TCTL_EN;
3178
3179         wr32(E1000_TCTL, tctl);
3180 }
3181
3182 /**
3183  *  igb_configure_tx_ring - Configure transmit ring after Reset
3184  *  @adapter: board private structure
3185  *  @ring: tx ring to configure
3186  *
3187  *  Configure a transmit ring after a reset.
3188  **/
3189 void igb_configure_tx_ring(struct igb_adapter *adapter,
3190                            struct igb_ring *ring)
3191 {
3192         struct e1000_hw *hw = &adapter->hw;
3193         u32 txdctl = 0;
3194         u64 tdba = ring->dma;
3195         int reg_idx = ring->reg_idx;
3196
3197         /* disable the queue */
3198         wr32(E1000_TXDCTL(reg_idx), 0);
3199         wrfl();
3200         mdelay(10);
3201
3202         wr32(E1000_TDLEN(reg_idx),
3203              ring->count * sizeof(union e1000_adv_tx_desc));
3204         wr32(E1000_TDBAL(reg_idx),
3205              tdba & 0x00000000ffffffffULL);
3206         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3207
3208         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3209         wr32(E1000_TDH(reg_idx), 0);
3210         writel(0, ring->tail);
3211
3212         txdctl |= IGB_TX_PTHRESH;
3213         txdctl |= IGB_TX_HTHRESH << 8;
3214         txdctl |= IGB_TX_WTHRESH << 16;
3215
3216         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3217         wr32(E1000_TXDCTL(reg_idx), txdctl);
3218 }
3219
3220 /**
3221  *  igb_configure_tx - Configure transmit Unit after Reset
3222  *  @adapter: board private structure
3223  *
3224  *  Configure the Tx unit of the MAC after a reset.
3225  **/
3226 static void igb_configure_tx(struct igb_adapter *adapter)
3227 {
3228         int i;
3229
3230         for (i = 0; i < adapter->num_tx_queues; i++)
3231                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3232 }
3233
3234 /**
3235  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3236  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3237  *
3238  *  Returns 0 on success, negative on failure
3239  **/
3240 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3241 {
3242         struct device *dev = rx_ring->dev;
3243         int size;
3244
3245         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3246
3247         rx_ring->rx_buffer_info = vzalloc(size);
3248         if (!rx_ring->rx_buffer_info)
3249                 goto err;
3250
3251         /* Round up to nearest 4K */
3252         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3253         rx_ring->size = ALIGN(rx_ring->size, 4096);
3254
3255         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3256                                            &rx_ring->dma, GFP_KERNEL);
3257         if (!rx_ring->desc)
3258                 goto err;
3259
3260         rx_ring->next_to_alloc = 0;
3261         rx_ring->next_to_clean = 0;
3262         rx_ring->next_to_use = 0;
3263
3264         return 0;
3265
3266 err:
3267         vfree(rx_ring->rx_buffer_info);
3268         rx_ring->rx_buffer_info = NULL;
3269         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3270         return -ENOMEM;
3271 }
3272
3273 /**
3274  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3275  *                               (Descriptors) for all queues
3276  *  @adapter: board private structure
3277  *
3278  *  Return 0 on success, negative on failure
3279  **/
3280 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3281 {
3282         struct pci_dev *pdev = adapter->pdev;
3283         int i, err = 0;
3284
3285         for (i = 0; i < adapter->num_rx_queues; i++) {
3286                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3287                 if (err) {
3288                         dev_err(&pdev->dev,
3289                                 "Allocation for Rx Queue %u failed\n", i);
3290                         for (i--; i >= 0; i--)
3291                                 igb_free_rx_resources(adapter->rx_ring[i]);
3292                         break;
3293                 }
3294         }
3295
3296         return err;
3297 }
3298
3299 /**
3300  *  igb_setup_mrqc - configure the multiple receive queue control registers
3301  *  @adapter: Board private structure
3302  **/
3303 static void igb_setup_mrqc(struct igb_adapter *adapter)
3304 {
3305         struct e1000_hw *hw = &adapter->hw;
3306         u32 mrqc, rxcsum;
3307         u32 j, num_rx_queues;
3308         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3309                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3310                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3311                                         0xFA01ACBE };
3312
3313         /* Fill out hash function seeds */
3314         for (j = 0; j < 10; j++)
3315                 wr32(E1000_RSSRK(j), rsskey[j]);
3316
3317         num_rx_queues = adapter->rss_queues;
3318
3319         switch (hw->mac.type) {
3320         case e1000_82576:
3321                 /* 82576 supports 2 RSS queues for SR-IOV */
3322                 if (adapter->vfs_allocated_count)
3323                         num_rx_queues = 2;
3324                 break;
3325         default:
3326                 break;
3327         }
3328
3329         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3330                 for (j = 0; j < IGB_RETA_SIZE; j++)
3331                         adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3332                 adapter->rss_indir_tbl_init = num_rx_queues;
3333         }
3334         igb_write_rss_indir_tbl(adapter);
3335
3336         /* Disable raw packet checksumming so that RSS hash is placed in
3337          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3338          * offloads as they are enabled by default
3339          */
3340         rxcsum = rd32(E1000_RXCSUM);
3341         rxcsum |= E1000_RXCSUM_PCSD;
3342
3343         if (adapter->hw.mac.type >= e1000_82576)
3344                 /* Enable Receive Checksum Offload for SCTP */
3345                 rxcsum |= E1000_RXCSUM_CRCOFL;
3346
3347         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3348         wr32(E1000_RXCSUM, rxcsum);
3349
3350         /* Generate RSS hash based on packet types, TCP/UDP
3351          * port numbers and/or IPv4/v6 src and dst addresses
3352          */
3353         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3354                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3355                E1000_MRQC_RSS_FIELD_IPV6 |
3356                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3357                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3358
3359         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3360                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3361         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3362                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3363
3364         /* If VMDq is enabled then we set the appropriate mode for that, else
3365          * we default to RSS so that an RSS hash is calculated per packet even
3366          * if we are only using one queue
3367          */
3368         if (adapter->vfs_allocated_count) {
3369                 if (hw->mac.type > e1000_82575) {
3370                         /* Set the default pool for the PF's first queue */
3371                         u32 vtctl = rd32(E1000_VT_CTL);
3372                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3373                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3374                         vtctl |= adapter->vfs_allocated_count <<
3375                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3376                         wr32(E1000_VT_CTL, vtctl);
3377                 }
3378                 if (adapter->rss_queues > 1)
3379                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3380                 else
3381                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3382         } else {
3383                 if (hw->mac.type != e1000_i211)
3384                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3385         }
3386         igb_vmm_control(adapter);
3387
3388         wr32(E1000_MRQC, mrqc);
3389 }
3390
3391 /**
3392  *  igb_setup_rctl - configure the receive control registers
3393  *  @adapter: Board private structure
3394  **/
3395 void igb_setup_rctl(struct igb_adapter *adapter)
3396 {
3397         struct e1000_hw *hw = &adapter->hw;
3398         u32 rctl;
3399
3400         rctl = rd32(E1000_RCTL);
3401
3402         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3403         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3404
3405         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3406                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3407
3408         /* enable stripping of CRC. It's unlikely this will break BMC
3409          * redirection as it did with e1000. Newer features require
3410          * that the HW strips the CRC.
3411          */
3412         rctl |= E1000_RCTL_SECRC;
3413
3414         /* disable store bad packets and clear size bits. */
3415         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3416
3417         /* enable LPE to prevent packets larger than max_frame_size */
3418         rctl |= E1000_RCTL_LPE;
3419
3420         /* disable queue 0 to prevent tail write w/o re-config */
3421         wr32(E1000_RXDCTL(0), 0);
3422
3423         /* Attention!!!  For SR-IOV PF driver operations you must enable
3424          * queue drop for all VF and PF queues to prevent head of line blocking
3425          * if an un-trusted VF does not provide descriptors to hardware.
3426          */
3427         if (adapter->vfs_allocated_count) {
3428                 /* set all queue drop enable bits */
3429                 wr32(E1000_QDE, ALL_QUEUES);
3430         }
3431
3432         /* This is useful for sniffing bad packets. */
3433         if (adapter->netdev->features & NETIF_F_RXALL) {
3434                 /* UPE and MPE will be handled by normal PROMISC logic
3435                  * in e1000e_set_rx_mode
3436                  */
3437                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3438                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3439                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3440
3441                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3442                           E1000_RCTL_DPF | /* Allow filtered pause */
3443                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3444                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3445                  * and that breaks VLANs.
3446                  */
3447         }
3448
3449         wr32(E1000_RCTL, rctl);
3450 }
3451
3452 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3453                                    int vfn)
3454 {
3455         struct e1000_hw *hw = &adapter->hw;
3456         u32 vmolr;
3457
3458         /* if it isn't the PF check to see if VFs are enabled and
3459          * increase the size to support vlan tags
3460          */
3461         if (vfn < adapter->vfs_allocated_count &&
3462             adapter->vf_data[vfn].vlans_enabled)
3463                 size += VLAN_TAG_SIZE;
3464
3465         vmolr = rd32(E1000_VMOLR(vfn));
3466         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3467         vmolr |= size | E1000_VMOLR_LPE;
3468         wr32(E1000_VMOLR(vfn), vmolr);
3469
3470         return 0;
3471 }
3472
3473 /**
3474  *  igb_rlpml_set - set maximum receive packet size
3475  *  @adapter: board private structure
3476  *
3477  *  Configure maximum receivable packet size.
3478  **/
3479 static void igb_rlpml_set(struct igb_adapter *adapter)
3480 {
3481         u32 max_frame_size = adapter->max_frame_size;
3482         struct e1000_hw *hw = &adapter->hw;
3483         u16 pf_id = adapter->vfs_allocated_count;
3484
3485         if (pf_id) {
3486                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3487                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3488                  * to our max jumbo frame size, in case we need to enable
3489                  * jumbo frames on one of the rings later.
3490                  * This will not pass over-length frames into the default
3491                  * queue because it's gated by the VMOLR.RLPML.
3492                  */
3493                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3494         }
3495
3496         wr32(E1000_RLPML, max_frame_size);
3497 }
3498
3499 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3500                                  int vfn, bool aupe)
3501 {
3502         struct e1000_hw *hw = &adapter->hw;
3503         u32 vmolr;
3504
3505         /* This register exists only on 82576 and newer so if we are older then
3506          * we should exit and do nothing
3507          */
3508         if (hw->mac.type < e1000_82576)
3509                 return;
3510
3511         vmolr = rd32(E1000_VMOLR(vfn));
3512         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3513         if (aupe)
3514                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3515         else
3516                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3517
3518         /* clear all bits that might not be set */
3519         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3520
3521         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3522                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3523         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3524          * multicast packets
3525          */
3526         if (vfn <= adapter->vfs_allocated_count)
3527                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3528
3529         wr32(E1000_VMOLR(vfn), vmolr);
3530 }
3531
3532 /**
3533  *  igb_configure_rx_ring - Configure a receive ring after Reset
3534  *  @adapter: board private structure
3535  *  @ring: receive ring to be configured
3536  *
3537  *  Configure the Rx unit of the MAC after a reset.
3538  **/
3539 void igb_configure_rx_ring(struct igb_adapter *adapter,
3540                            struct igb_ring *ring)
3541 {
3542         struct e1000_hw *hw = &adapter->hw;
3543         u64 rdba = ring->dma;
3544         int reg_idx = ring->reg_idx;
3545         u32 srrctl = 0, rxdctl = 0;
3546
3547         /* disable the queue */
3548         wr32(E1000_RXDCTL(reg_idx), 0);
3549
3550         /* Set DMA base address registers */
3551         wr32(E1000_RDBAL(reg_idx),
3552              rdba & 0x00000000ffffffffULL);
3553         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3554         wr32(E1000_RDLEN(reg_idx),
3555              ring->count * sizeof(union e1000_adv_rx_desc));
3556
3557         /* initialize head and tail */
3558         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3559         wr32(E1000_RDH(reg_idx), 0);
3560         writel(0, ring->tail);
3561
3562         /* set descriptor configuration */
3563         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3564         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3565         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3566         if (hw->mac.type >= e1000_82580)
3567                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3568         /* Only set Drop Enable if we are supporting multiple queues */
3569         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3570                 srrctl |= E1000_SRRCTL_DROP_EN;
3571
3572         wr32(E1000_SRRCTL(reg_idx), srrctl);
3573
3574         /* set filtering for VMDQ pools */
3575         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3576
3577         rxdctl |= IGB_RX_PTHRESH;
3578         rxdctl |= IGB_RX_HTHRESH << 8;
3579         rxdctl |= IGB_RX_WTHRESH << 16;
3580
3581         /* enable receive descriptor fetching */
3582         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3583         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3584 }
3585
3586 /**
3587  *  igb_configure_rx - Configure receive Unit after Reset
3588  *  @adapter: board private structure
3589  *
3590  *  Configure the Rx unit of the MAC after a reset.
3591  **/
3592 static void igb_configure_rx(struct igb_adapter *adapter)
3593 {
3594         int i;
3595
3596         /* set UTA to appropriate mode */
3597         igb_set_uta(adapter);
3598
3599         /* set the correct pool for the PF default MAC address in entry 0 */
3600         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3601                          adapter->vfs_allocated_count);
3602
3603         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3604          * the Base and Length of the Rx Descriptor Ring
3605          */
3606         for (i = 0; i < adapter->num_rx_queues; i++)
3607                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3608 }
3609
3610 /**
3611  *  igb_free_tx_resources - Free Tx Resources per Queue
3612  *  @tx_ring: Tx descriptor ring for a specific queue
3613  *
3614  *  Free all transmit software resources
3615  **/
3616 void igb_free_tx_resources(struct igb_ring *tx_ring)
3617 {
3618         igb_clean_tx_ring(tx_ring);
3619
3620         vfree(tx_ring->tx_buffer_info);
3621         tx_ring->tx_buffer_info = NULL;
3622
3623         /* if not set, then don't free */
3624         if (!tx_ring->desc)
3625                 return;
3626
3627         dma_free_coherent(tx_ring->dev, tx_ring->size,
3628                           tx_ring->desc, tx_ring->dma);
3629
3630         tx_ring->desc = NULL;
3631 }
3632
3633 /**
3634  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3635  *  @adapter: board private structure
3636  *
3637  *  Free all transmit software resources
3638  **/
3639 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3640 {
3641         int i;
3642
3643         for (i = 0; i < adapter->num_tx_queues; i++)
3644                 igb_free_tx_resources(adapter->tx_ring[i]);
3645 }
3646
3647 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3648                                     struct igb_tx_buffer *tx_buffer)
3649 {
3650         if (tx_buffer->skb) {
3651                 dev_kfree_skb_any(tx_buffer->skb);
3652                 if (dma_unmap_len(tx_buffer, len))
3653                         dma_unmap_single(ring->dev,
3654                                          dma_unmap_addr(tx_buffer, dma),
3655                                          dma_unmap_len(tx_buffer, len),
3656                                          DMA_TO_DEVICE);
3657         } else if (dma_unmap_len(tx_buffer, len)) {
3658                 dma_unmap_page(ring->dev,
3659                                dma_unmap_addr(tx_buffer, dma),
3660                                dma_unmap_len(tx_buffer, len),
3661                                DMA_TO_DEVICE);
3662         }
3663         tx_buffer->next_to_watch = NULL;
3664         tx_buffer->skb = NULL;
3665         dma_unmap_len_set(tx_buffer, len, 0);
3666         /* buffer_info must be completely set up in the transmit path */
3667 }
3668
3669 /**
3670  *  igb_clean_tx_ring - Free Tx Buffers
3671  *  @tx_ring: ring to be cleaned
3672  **/
3673 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3674 {
3675         struct igb_tx_buffer *buffer_info;
3676         unsigned long size;
3677         u16 i;
3678
3679         if (!tx_ring->tx_buffer_info)
3680                 return;
3681         /* Free all the Tx ring sk_buffs */
3682
3683         for (i = 0; i < tx_ring->count; i++) {
3684                 buffer_info = &tx_ring->tx_buffer_info[i];
3685                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3686         }
3687
3688         netdev_tx_reset_queue(txring_txq(tx_ring));
3689
3690         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3691         memset(tx_ring->tx_buffer_info, 0, size);
3692
3693         /* Zero out the descriptor ring */
3694         memset(tx_ring->desc, 0, tx_ring->size);
3695
3696         tx_ring->next_to_use = 0;
3697         tx_ring->next_to_clean = 0;
3698 }
3699
3700 /**
3701  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3702  *  @adapter: board private structure
3703  **/
3704 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3705 {
3706         int i;
3707
3708         for (i = 0; i < adapter->num_tx_queues; i++)
3709                 igb_clean_tx_ring(adapter->tx_ring[i]);
3710 }
3711
3712 /**
3713  *  igb_free_rx_resources - Free Rx Resources
3714  *  @rx_ring: ring to clean the resources from
3715  *
3716  *  Free all receive software resources
3717  **/
3718 void igb_free_rx_resources(struct igb_ring *rx_ring)
3719 {
3720         igb_clean_rx_ring(rx_ring);
3721
3722         vfree(rx_ring->rx_buffer_info);
3723         rx_ring->rx_buffer_info = NULL;
3724
3725         /* if not set, then don't free */
3726         if (!rx_ring->desc)
3727                 return;
3728
3729         dma_free_coherent(rx_ring->dev, rx_ring->size,
3730                           rx_ring->desc, rx_ring->dma);
3731
3732         rx_ring->desc = NULL;
3733 }
3734
3735 /**
3736  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3737  *  @adapter: board private structure
3738  *
3739  *  Free all receive software resources
3740  **/
3741 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3742 {
3743         int i;
3744
3745         for (i = 0; i < adapter->num_rx_queues; i++)
3746                 igb_free_rx_resources(adapter->rx_ring[i]);
3747 }
3748
3749 /**
3750  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3751  *  @rx_ring: ring to free buffers from
3752  **/
3753 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3754 {
3755         unsigned long size;
3756         u16 i;
3757
3758         if (rx_ring->skb)
3759                 dev_kfree_skb(rx_ring->skb);
3760         rx_ring->skb = NULL;
3761
3762         if (!rx_ring->rx_buffer_info)
3763                 return;
3764
3765         /* Free all the Rx ring sk_buffs */
3766         for (i = 0; i < rx_ring->count; i++) {
3767                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3768
3769                 if (!buffer_info->page)
3770                         continue;
3771
3772                 dma_unmap_page(rx_ring->dev,
3773                                buffer_info->dma,
3774                                PAGE_SIZE,
3775                                DMA_FROM_DEVICE);
3776                 __free_page(buffer_info->page);
3777
3778                 buffer_info->page = NULL;
3779         }
3780
3781         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3782         memset(rx_ring->rx_buffer_info, 0, size);
3783
3784         /* Zero out the descriptor ring */
3785         memset(rx_ring->desc, 0, rx_ring->size);
3786
3787         rx_ring->next_to_alloc = 0;
3788         rx_ring->next_to_clean = 0;
3789         rx_ring->next_to_use = 0;
3790 }
3791
3792 /**
3793  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3794  *  @adapter: board private structure
3795  **/
3796 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3797 {
3798         int i;
3799
3800         for (i = 0; i < adapter->num_rx_queues; i++)
3801                 igb_clean_rx_ring(adapter->rx_ring[i]);
3802 }
3803
3804 /**
3805  *  igb_set_mac - Change the Ethernet Address of the NIC
3806  *  @netdev: network interface device structure
3807  *  @p: pointer to an address structure
3808  *
3809  *  Returns 0 on success, negative on failure
3810  **/
3811 static int igb_set_mac(struct net_device *netdev, void *p)
3812 {
3813         struct igb_adapter *adapter = netdev_priv(netdev);
3814         struct e1000_hw *hw = &adapter->hw;
3815         struct sockaddr *addr = p;
3816
3817         if (!is_valid_ether_addr(addr->sa_data))
3818                 return -EADDRNOTAVAIL;
3819
3820         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3821         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3822
3823         /* set the correct pool for the new PF MAC address in entry 0 */
3824         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3825                          adapter->vfs_allocated_count);
3826
3827         return 0;
3828 }
3829
3830 /**
3831  *  igb_write_mc_addr_list - write multicast addresses to MTA
3832  *  @netdev: network interface device structure
3833  *
3834  *  Writes multicast address list to the MTA hash table.
3835  *  Returns: -ENOMEM on failure
3836  *           0 on no addresses written
3837  *           X on writing X addresses to MTA
3838  **/
3839 static int igb_write_mc_addr_list(struct net_device *netdev)
3840 {
3841         struct igb_adapter *adapter = netdev_priv(netdev);
3842         struct e1000_hw *hw = &adapter->hw;
3843         struct netdev_hw_addr *ha;
3844         u8  *mta_list;
3845         int i;
3846
3847         if (netdev_mc_empty(netdev)) {
3848                 /* nothing to program, so clear mc list */
3849                 igb_update_mc_addr_list(hw, NULL, 0);
3850                 igb_restore_vf_multicasts(adapter);
3851                 return 0;
3852         }
3853
3854         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3855         if (!mta_list)
3856                 return -ENOMEM;
3857
3858         /* The shared function expects a packed array of only addresses. */
3859         i = 0;
3860         netdev_for_each_mc_addr(ha, netdev)
3861                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3862
3863         igb_update_mc_addr_list(hw, mta_list, i);
3864         kfree(mta_list);
3865
3866         return netdev_mc_count(netdev);
3867 }
3868
3869 /**
3870  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3871  *  @netdev: network interface device structure
3872  *
3873  *  Writes unicast address list to the RAR table.
3874  *  Returns: -ENOMEM on failure/insufficient address space
3875  *           0 on no addresses written
3876  *           X on writing X addresses to the RAR table
3877  **/
3878 static int igb_write_uc_addr_list(struct net_device *netdev)
3879 {
3880         struct igb_adapter *adapter = netdev_priv(netdev);
3881         struct e1000_hw *hw = &adapter->hw;
3882         unsigned int vfn = adapter->vfs_allocated_count;
3883         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3884         int count = 0;
3885
3886         /* return ENOMEM indicating insufficient memory for addresses */
3887         if (netdev_uc_count(netdev) > rar_entries)
3888                 return -ENOMEM;
3889
3890         if (!netdev_uc_empty(netdev) && rar_entries) {
3891                 struct netdev_hw_addr *ha;
3892
3893                 netdev_for_each_uc_addr(ha, netdev) {
3894                         if (!rar_entries)
3895                                 break;
3896                         igb_rar_set_qsel(adapter, ha->addr,
3897                                          rar_entries--,
3898                                          vfn);
3899                         count++;
3900                 }
3901         }
3902         /* write the addresses in reverse order to avoid write combining */
3903         for (; rar_entries > 0 ; rar_entries--) {
3904                 wr32(E1000_RAH(rar_entries), 0);
3905                 wr32(E1000_RAL(rar_entries), 0);
3906         }
3907         wrfl();
3908
3909         return count;
3910 }
3911
3912 /**
3913  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3914  *  @netdev: network interface device structure
3915  *
3916  *  The set_rx_mode entry point is called whenever the unicast or multicast
3917  *  address lists or the network interface flags are updated.  This routine is
3918  *  responsible for configuring the hardware for proper unicast, multicast,
3919  *  promiscuous mode, and all-multi behavior.
3920  **/
3921 static void igb_set_rx_mode(struct net_device *netdev)
3922 {
3923         struct igb_adapter *adapter = netdev_priv(netdev);
3924         struct e1000_hw *hw = &adapter->hw;
3925         unsigned int vfn = adapter->vfs_allocated_count;
3926         u32 rctl, vmolr = 0;
3927         int count;
3928
3929         /* Check for Promiscuous and All Multicast modes */
3930         rctl = rd32(E1000_RCTL);
3931
3932         /* clear the effected bits */
3933         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3934
3935         if (netdev->flags & IFF_PROMISC) {
3936                 /* retain VLAN HW filtering if in VT mode */
3937                 if (adapter->vfs_allocated_count)
3938                         rctl |= E1000_RCTL_VFE;
3939                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3940                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3941         } else {
3942                 if (netdev->flags & IFF_ALLMULTI) {
3943                         rctl |= E1000_RCTL_MPE;
3944                         vmolr |= E1000_VMOLR_MPME;
3945                 } else {
3946                         /* Write addresses to the MTA, if the attempt fails
3947                          * then we should just turn on promiscuous mode so
3948                          * that we can at least receive multicast traffic
3949                          */
3950                         count = igb_write_mc_addr_list(netdev);
3951                         if (count < 0) {
3952                                 rctl |= E1000_RCTL_MPE;
3953                                 vmolr |= E1000_VMOLR_MPME;
3954                         } else if (count) {
3955                                 vmolr |= E1000_VMOLR_ROMPE;
3956                         }
3957                 }
3958                 /* Write addresses to available RAR registers, if there is not
3959                  * sufficient space to store all the addresses then enable
3960                  * unicast promiscuous mode
3961                  */
3962                 count = igb_write_uc_addr_list(netdev);
3963                 if (count < 0) {
3964                         rctl |= E1000_RCTL_UPE;
3965                         vmolr |= E1000_VMOLR_ROPE;
3966                 }
3967                 rctl |= E1000_RCTL_VFE;
3968         }
3969         wr32(E1000_RCTL, rctl);
3970
3971         /* In order to support SR-IOV and eventually VMDq it is necessary to set
3972          * the VMOLR to enable the appropriate modes.  Without this workaround
3973          * we will have issues with VLAN tag stripping not being done for frames
3974          * that are only arriving because we are the default pool
3975          */
3976         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3977                 return;
3978
3979         vmolr |= rd32(E1000_VMOLR(vfn)) &
3980                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3981         wr32(E1000_VMOLR(vfn), vmolr);
3982         igb_restore_vf_multicasts(adapter);
3983 }
3984
3985 static void igb_check_wvbr(struct igb_adapter *adapter)
3986 {
3987         struct e1000_hw *hw = &adapter->hw;
3988         u32 wvbr = 0;
3989
3990         switch (hw->mac.type) {
3991         case e1000_82576:
3992         case e1000_i350:
3993                 if (!(wvbr = rd32(E1000_WVBR)))
3994                         return;
3995                 break;
3996         default:
3997                 break;
3998         }
3999
4000         adapter->wvbr |= wvbr;
4001 }
4002
4003 #define IGB_STAGGERED_QUEUE_OFFSET 8
4004
4005 static void igb_spoof_check(struct igb_adapter *adapter)
4006 {
4007         int j;
4008
4009         if (!adapter->wvbr)
4010                 return;
4011
4012         for(j = 0; j < adapter->vfs_allocated_count; j++) {
4013                 if (adapter->wvbr & (1 << j) ||
4014                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4015                         dev_warn(&adapter->pdev->dev,
4016                                 "Spoof event(s) detected on VF %d\n", j);
4017                         adapter->wvbr &=
4018                                 ~((1 << j) |
4019                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4020                 }
4021         }
4022 }
4023
4024 /* Need to wait a few seconds after link up to get diagnostic information from
4025  * the phy
4026  */
4027 static void igb_update_phy_info(unsigned long data)
4028 {
4029         struct igb_adapter *adapter = (struct igb_adapter *) data;
4030         igb_get_phy_info(&adapter->hw);
4031 }
4032
4033 /**
4034  *  igb_has_link - check shared code for link and determine up/down
4035  *  @adapter: pointer to driver private info
4036  **/
4037 bool igb_has_link(struct igb_adapter *adapter)
4038 {
4039         struct e1000_hw *hw = &adapter->hw;
4040         bool link_active = false;
4041
4042         /* get_link_status is set on LSC (link status) interrupt or
4043          * rx sequence error interrupt.  get_link_status will stay
4044          * false until the e1000_check_for_link establishes link
4045          * for copper adapters ONLY
4046          */
4047         switch (hw->phy.media_type) {
4048         case e1000_media_type_copper:
4049                 if (!hw->mac.get_link_status)
4050                         return true;
4051         case e1000_media_type_internal_serdes:
4052                 hw->mac.ops.check_for_link(hw);
4053                 link_active = !hw->mac.get_link_status;
4054                 break;
4055         default:
4056         case e1000_media_type_unknown:
4057                 break;
4058         }
4059
4060         if (((hw->mac.type == e1000_i210) ||
4061              (hw->mac.type == e1000_i211)) &&
4062              (hw->phy.id == I210_I_PHY_ID)) {
4063                 if (!netif_carrier_ok(adapter->netdev)) {
4064                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4065                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4066                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4067                         adapter->link_check_timeout = jiffies;
4068                 }
4069         }
4070
4071         return link_active;
4072 }
4073
4074 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4075 {
4076         bool ret = false;
4077         u32 ctrl_ext, thstat;
4078
4079         /* check for thermal sensor event on i350 copper only */
4080         if (hw->mac.type == e1000_i350) {
4081                 thstat = rd32(E1000_THSTAT);
4082                 ctrl_ext = rd32(E1000_CTRL_EXT);
4083
4084                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4085                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4086                         ret = !!(thstat & event);
4087         }
4088
4089         return ret;
4090 }
4091
4092 /**
4093  *  igb_watchdog - Timer Call-back
4094  *  @data: pointer to adapter cast into an unsigned long
4095  **/
4096 static void igb_watchdog(unsigned long data)
4097 {
4098         struct igb_adapter *adapter = (struct igb_adapter *)data;
4099         /* Do the rest outside of interrupt context */
4100         schedule_work(&adapter->watchdog_task);
4101 }
4102
4103 static void igb_watchdog_task(struct work_struct *work)
4104 {
4105         struct igb_adapter *adapter = container_of(work,
4106                                                    struct igb_adapter,
4107                                                    watchdog_task);
4108         struct e1000_hw *hw = &adapter->hw;
4109         struct e1000_phy_info *phy = &hw->phy;
4110         struct net_device *netdev = adapter->netdev;
4111         u32 link;
4112         int i;
4113         u32 connsw;
4114
4115         link = igb_has_link(adapter);
4116
4117         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4118                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4119                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4120                 else
4121                         link = false;
4122         }
4123
4124         /* Force link down if we have fiber to swap to */
4125         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4126                 if (hw->phy.media_type == e1000_media_type_copper) {
4127                         connsw = rd32(E1000_CONNSW);
4128                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4129                                 link = 0;
4130                 }
4131         }
4132         if (link) {
4133                 /* Perform a reset if the media type changed. */
4134                 if (hw->dev_spec._82575.media_changed) {
4135                         hw->dev_spec._82575.media_changed = false;
4136                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4137                         igb_reset(adapter);
4138                 }
4139                 /* Cancel scheduled suspend requests. */
4140                 pm_runtime_resume(netdev->dev.parent);
4141
4142                 if (!netif_carrier_ok(netdev)) {
4143                         u32 ctrl;
4144                         hw->mac.ops.get_speed_and_duplex(hw,
4145                                                          &adapter->link_speed,
4146                                                          &adapter->link_duplex);
4147
4148                         ctrl = rd32(E1000_CTRL);
4149                         /* Links status message must follow this format */
4150                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4151                                "Duplex, Flow Control: %s\n",
4152                                netdev->name,
4153                                adapter->link_speed,
4154                                adapter->link_duplex == FULL_DUPLEX ?
4155                                "Full" : "Half",
4156                                (ctrl & E1000_CTRL_TFCE) &&
4157                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4158                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4159                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4160
4161                         /* check if SmartSpeed worked */
4162                         igb_check_downshift(hw);
4163                         if (phy->speed_downgraded)
4164                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4165
4166                         /* check for thermal sensor event */
4167                         if (igb_thermal_sensor_event(hw,
4168                             E1000_THSTAT_LINK_THROTTLE)) {
4169                                 netdev_info(netdev, "The network adapter link "
4170                                             "speed was downshifted because it "
4171                                             "overheated\n");
4172                         }
4173
4174                         /* adjust timeout factor according to speed/duplex */
4175                         adapter->tx_timeout_factor = 1;
4176                         switch (adapter->link_speed) {
4177                         case SPEED_10:
4178                                 adapter->tx_timeout_factor = 14;
4179                                 break;
4180                         case SPEED_100:
4181                                 /* maybe add some timeout factor ? */
4182                                 break;
4183                         }
4184
4185                         netif_carrier_on(netdev);
4186
4187                         igb_ping_all_vfs(adapter);
4188                         igb_check_vf_rate_limit(adapter);
4189
4190                         /* link state has changed, schedule phy info update */
4191                         if (!test_bit(__IGB_DOWN, &adapter->state))
4192                                 mod_timer(&adapter->phy_info_timer,
4193                                           round_jiffies(jiffies + 2 * HZ));
4194                 }
4195         } else {
4196                 if (netif_carrier_ok(netdev)) {
4197                         adapter->link_speed = 0;
4198                         adapter->link_duplex = 0;
4199
4200                         /* check for thermal sensor event */
4201                         if (igb_thermal_sensor_event(hw,
4202                             E1000_THSTAT_PWR_DOWN)) {
4203                                 netdev_err(netdev, "The network adapter was "
4204                                            "stopped because it overheated\n");
4205                         }
4206
4207                         /* Links status message must follow this format */
4208                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
4209                                netdev->name);
4210                         netif_carrier_off(netdev);
4211
4212                         igb_ping_all_vfs(adapter);
4213
4214                         /* link state has changed, schedule phy info update */
4215                         if (!test_bit(__IGB_DOWN, &adapter->state))
4216                                 mod_timer(&adapter->phy_info_timer,
4217                                           round_jiffies(jiffies + 2 * HZ));
4218
4219                         /* link is down, time to check for alternate media */
4220                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4221                                 igb_check_swap_media(adapter);
4222                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4223                                         schedule_work(&adapter->reset_task);
4224                                         /* return immediately */
4225                                         return;
4226                                 }
4227                         }
4228                         pm_schedule_suspend(netdev->dev.parent,
4229                                             MSEC_PER_SEC * 5);
4230
4231                 /* also check for alternate media here */
4232                 } else if (!netif_carrier_ok(netdev) &&
4233                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4234                         igb_check_swap_media(adapter);
4235                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4236                                 schedule_work(&adapter->reset_task);
4237                                 /* return immediately */
4238                                 return;
4239                         }
4240                 }
4241         }
4242
4243         spin_lock(&adapter->stats64_lock);
4244         igb_update_stats(adapter, &adapter->stats64);
4245         spin_unlock(&adapter->stats64_lock);
4246
4247         for (i = 0; i < adapter->num_tx_queues; i++) {
4248                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4249                 if (!netif_carrier_ok(netdev)) {
4250                         /* We've lost link, so the controller stops DMA,
4251                          * but we've got queued Tx work that's never going
4252                          * to get done, so reset controller to flush Tx.
4253                          * (Do the reset outside of interrupt context).
4254                          */
4255                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4256                                 adapter->tx_timeout_count++;
4257                                 schedule_work(&adapter->reset_task);
4258                                 /* return immediately since reset is imminent */
4259                                 return;
4260                         }
4261                 }
4262
4263                 /* Force detection of hung controller every watchdog period */
4264                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4265         }
4266
4267         /* Cause software interrupt to ensure Rx ring is cleaned */
4268         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4269                 u32 eics = 0;
4270                 for (i = 0; i < adapter->num_q_vectors; i++)
4271                         eics |= adapter->q_vector[i]->eims_value;
4272                 wr32(E1000_EICS, eics);
4273         } else {
4274                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4275         }
4276
4277         igb_spoof_check(adapter);
4278         igb_ptp_rx_hang(adapter);
4279
4280         /* Reset the timer */
4281         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4282                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4283                         mod_timer(&adapter->watchdog_timer,
4284                                   round_jiffies(jiffies +  HZ));
4285                 else
4286                         mod_timer(&adapter->watchdog_timer,
4287                                   round_jiffies(jiffies + 2 * HZ));
4288         }
4289 }
4290
4291 enum latency_range {
4292         lowest_latency = 0,
4293         low_latency = 1,
4294         bulk_latency = 2,
4295         latency_invalid = 255
4296 };
4297
4298 /**
4299  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4300  *  @q_vector: pointer to q_vector
4301  *
4302  *  Stores a new ITR value based on strictly on packet size.  This
4303  *  algorithm is less sophisticated than that used in igb_update_itr,
4304  *  due to the difficulty of synchronizing statistics across multiple
4305  *  receive rings.  The divisors and thresholds used by this function
4306  *  were determined based on theoretical maximum wire speed and testing
4307  *  data, in order to minimize response time while increasing bulk
4308  *  throughput.
4309  *  This functionality is controlled by the InterruptThrottleRate module
4310  *  parameter (see igb_param.c)
4311  *  NOTE:  This function is called only when operating in a multiqueue
4312  *         receive environment.
4313  **/
4314 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4315 {
4316         int new_val = q_vector->itr_val;
4317         int avg_wire_size = 0;
4318         struct igb_adapter *adapter = q_vector->adapter;
4319         unsigned int packets;
4320
4321         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4322          * ints/sec - ITR timer value of 120 ticks.
4323          */
4324         if (adapter->link_speed != SPEED_1000) {
4325                 new_val = IGB_4K_ITR;
4326                 goto set_itr_val;
4327         }
4328
4329         packets = q_vector->rx.total_packets;
4330         if (packets)
4331                 avg_wire_size = q_vector->rx.total_bytes / packets;
4332
4333         packets = q_vector->tx.total_packets;
4334         if (packets)
4335                 avg_wire_size = max_t(u32, avg_wire_size,
4336                                       q_vector->tx.total_bytes / packets);
4337
4338         /* if avg_wire_size isn't set no work was done */
4339         if (!avg_wire_size)
4340                 goto clear_counts;
4341
4342         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4343         avg_wire_size += 24;
4344
4345         /* Don't starve jumbo frames */
4346         avg_wire_size = min(avg_wire_size, 3000);
4347
4348         /* Give a little boost to mid-size frames */
4349         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4350                 new_val = avg_wire_size / 3;
4351         else
4352                 new_val = avg_wire_size / 2;
4353
4354         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4355         if (new_val < IGB_20K_ITR &&
4356             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4357              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4358                 new_val = IGB_20K_ITR;
4359
4360 set_itr_val:
4361         if (new_val != q_vector->itr_val) {
4362                 q_vector->itr_val = new_val;
4363                 q_vector->set_itr = 1;
4364         }
4365 clear_counts:
4366         q_vector->rx.total_bytes = 0;
4367         q_vector->rx.total_packets = 0;
4368         q_vector->tx.total_bytes = 0;
4369         q_vector->tx.total_packets = 0;
4370 }
4371
4372 /**
4373  *  igb_update_itr - update the dynamic ITR value based on statistics
4374  *  @q_vector: pointer to q_vector
4375  *  @ring_container: ring info to update the itr for
4376  *
4377  *  Stores a new ITR value based on packets and byte
4378  *  counts during the last interrupt.  The advantage of per interrupt
4379  *  computation is faster updates and more accurate ITR for the current
4380  *  traffic pattern.  Constants in this function were computed
4381  *  based on theoretical maximum wire speed and thresholds were set based
4382  *  on testing data as well as attempting to minimize response time
4383  *  while increasing bulk throughput.
4384  *  this functionality is controlled by the InterruptThrottleRate module
4385  *  parameter (see igb_param.c)
4386  *  NOTE:  These calculations are only valid when operating in a single-
4387  *         queue environment.
4388  **/
4389 static void igb_update_itr(struct igb_q_vector *q_vector,
4390                            struct igb_ring_container *ring_container)
4391 {
4392         unsigned int packets = ring_container->total_packets;
4393         unsigned int bytes = ring_container->total_bytes;
4394         u8 itrval = ring_container->itr;
4395
4396         /* no packets, exit with status unchanged */
4397         if (packets == 0)
4398                 return;
4399
4400         switch (itrval) {
4401         case lowest_latency:
4402                 /* handle TSO and jumbo frames */
4403                 if (bytes/packets > 8000)
4404                         itrval = bulk_latency;
4405                 else if ((packets < 5) && (bytes > 512))
4406                         itrval = low_latency;
4407                 break;
4408         case low_latency:  /* 50 usec aka 20000 ints/s */
4409                 if (bytes > 10000) {
4410                         /* this if handles the TSO accounting */
4411                         if (bytes/packets > 8000) {
4412                                 itrval = bulk_latency;
4413                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4414                                 itrval = bulk_latency;
4415                         } else if ((packets > 35)) {
4416                                 itrval = lowest_latency;
4417                         }
4418                 } else if (bytes/packets > 2000) {
4419                         itrval = bulk_latency;
4420                 } else if (packets <= 2 && bytes < 512) {
4421                         itrval = lowest_latency;
4422                 }
4423                 break;
4424         case bulk_latency: /* 250 usec aka 4000 ints/s */
4425                 if (bytes > 25000) {
4426                         if (packets > 35)
4427                                 itrval = low_latency;
4428                 } else if (bytes < 1500) {
4429                         itrval = low_latency;
4430                 }
4431                 break;
4432         }
4433
4434         /* clear work counters since we have the values we need */
4435         ring_container->total_bytes = 0;
4436         ring_container->total_packets = 0;
4437
4438         /* write updated itr to ring container */
4439         ring_container->itr = itrval;
4440 }
4441
4442 static void igb_set_itr(struct igb_q_vector *q_vector)
4443 {
4444         struct igb_adapter *adapter = q_vector->adapter;
4445         u32 new_itr = q_vector->itr_val;
4446         u8 current_itr = 0;
4447
4448         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4449         if (adapter->link_speed != SPEED_1000) {
4450                 current_itr = 0;
4451                 new_itr = IGB_4K_ITR;
4452                 goto set_itr_now;
4453         }
4454
4455         igb_update_itr(q_vector, &q_vector->tx);
4456         igb_update_itr(q_vector, &q_vector->rx);
4457
4458         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4459
4460         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4461         if (current_itr == lowest_latency &&
4462             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4463              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4464                 current_itr = low_latency;
4465
4466         switch (current_itr) {
4467         /* counts and packets in update_itr are dependent on these numbers */
4468         case lowest_latency:
4469                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4470                 break;
4471         case low_latency:
4472                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4473                 break;
4474         case bulk_latency:
4475                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4476                 break;
4477         default:
4478                 break;
4479         }
4480
4481 set_itr_now:
4482         if (new_itr != q_vector->itr_val) {
4483                 /* this attempts to bias the interrupt rate towards Bulk
4484                  * by adding intermediate steps when interrupt rate is
4485                  * increasing
4486                  */
4487                 new_itr = new_itr > q_vector->itr_val ?
4488                           max((new_itr * q_vector->itr_val) /
4489                           (new_itr + (q_vector->itr_val >> 2)),
4490                           new_itr) : new_itr;
4491                 /* Don't write the value here; it resets the adapter's
4492                  * internal timer, and causes us to delay far longer than
4493                  * we should between interrupts.  Instead, we write the ITR
4494                  * value at the beginning of the next interrupt so the timing
4495                  * ends up being correct.
4496                  */
4497                 q_vector->itr_val = new_itr;
4498                 q_vector->set_itr = 1;
4499         }
4500 }
4501
4502 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4503                             u32 type_tucmd, u32 mss_l4len_idx)
4504 {
4505         struct e1000_adv_tx_context_desc *context_desc;
4506         u16 i = tx_ring->next_to_use;
4507
4508         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4509
4510         i++;
4511         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4512
4513         /* set bits to identify this as an advanced context descriptor */
4514         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4515
4516         /* For 82575, context index must be unique per ring. */
4517         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4518                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4519
4520         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4521         context_desc->seqnum_seed       = 0;
4522         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4523         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4524 }
4525
4526 static int igb_tso(struct igb_ring *tx_ring,
4527                    struct igb_tx_buffer *first,
4528                    u8 *hdr_len)
4529 {
4530         struct sk_buff *skb = first->skb;
4531         u32 vlan_macip_lens, type_tucmd;
4532         u32 mss_l4len_idx, l4len;
4533
4534         if (skb->ip_summed != CHECKSUM_PARTIAL)
4535                 return 0;
4536
4537         if (!skb_is_gso(skb))
4538                 return 0;
4539
4540         if (skb_header_cloned(skb)) {
4541                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4542                 if (err)
4543                         return err;
4544         }
4545
4546         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4547         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4548
4549         if (first->protocol == __constant_htons(ETH_P_IP)) {
4550                 struct iphdr *iph = ip_hdr(skb);
4551                 iph->tot_len = 0;
4552                 iph->check = 0;
4553                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4554                                                          iph->daddr, 0,
4555                                                          IPPROTO_TCP,
4556                                                          0);
4557                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4558                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4559                                    IGB_TX_FLAGS_CSUM |
4560                                    IGB_TX_FLAGS_IPV4;
4561         } else if (skb_is_gso_v6(skb)) {
4562                 ipv6_hdr(skb)->payload_len = 0;
4563                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4564                                                        &ipv6_hdr(skb)->daddr,
4565                                                        0, IPPROTO_TCP, 0);
4566                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4567                                    IGB_TX_FLAGS_CSUM;
4568         }
4569
4570         /* compute header lengths */
4571         l4len = tcp_hdrlen(skb);
4572         *hdr_len = skb_transport_offset(skb) + l4len;
4573
4574         /* update gso size and bytecount with header size */
4575         first->gso_segs = skb_shinfo(skb)->gso_segs;
4576         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4577
4578         /* MSS L4LEN IDX */
4579         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4580         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4581
4582         /* VLAN MACLEN IPLEN */
4583         vlan_macip_lens = skb_network_header_len(skb);
4584         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4585         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4586
4587         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4588
4589         return 1;
4590 }
4591
4592 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4593 {
4594         struct sk_buff *skb = first->skb;
4595         u32 vlan_macip_lens = 0;
4596         u32 mss_l4len_idx = 0;
4597         u32 type_tucmd = 0;
4598
4599         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4600                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4601                         return;
4602         } else {
4603                 u8 l4_hdr = 0;
4604                 switch (first->protocol) {
4605                 case __constant_htons(ETH_P_IP):
4606                         vlan_macip_lens |= skb_network_header_len(skb);
4607                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4608                         l4_hdr = ip_hdr(skb)->protocol;
4609                         break;
4610                 case __constant_htons(ETH_P_IPV6):
4611                         vlan_macip_lens |= skb_network_header_len(skb);
4612                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4613                         break;
4614                 default:
4615                         if (unlikely(net_ratelimit())) {
4616                                 dev_warn(tx_ring->dev,
4617                                          "partial checksum but proto=%x!\n",
4618                                          first->protocol);
4619                         }
4620                         break;
4621                 }
4622
4623                 switch (l4_hdr) {
4624                 case IPPROTO_TCP:
4625                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4626                         mss_l4len_idx = tcp_hdrlen(skb) <<
4627                                         E1000_ADVTXD_L4LEN_SHIFT;
4628                         break;
4629                 case IPPROTO_SCTP:
4630                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4631                         mss_l4len_idx = sizeof(struct sctphdr) <<
4632                                         E1000_ADVTXD_L4LEN_SHIFT;
4633                         break;
4634                 case IPPROTO_UDP:
4635                         mss_l4len_idx = sizeof(struct udphdr) <<
4636                                         E1000_ADVTXD_L4LEN_SHIFT;
4637                         break;
4638                 default:
4639                         if (unlikely(net_ratelimit())) {
4640                                 dev_warn(tx_ring->dev,
4641                                          "partial checksum but l4 proto=%x!\n",
4642                                          l4_hdr);
4643                         }
4644                         break;
4645                 }
4646
4647                 /* update TX checksum flag */
4648                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4649         }
4650
4651         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4652         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4653
4654         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4655 }
4656
4657 #define IGB_SET_FLAG(_input, _flag, _result) \
4658         ((_flag <= _result) ? \
4659          ((u32)(_input & _flag) * (_result / _flag)) : \
4660          ((u32)(_input & _flag) / (_flag / _result)))
4661
4662 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4663 {
4664         /* set type for advanced descriptor with frame checksum insertion */
4665         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4666                        E1000_ADVTXD_DCMD_DEXT |
4667                        E1000_ADVTXD_DCMD_IFCS;
4668
4669         /* set HW vlan bit if vlan is present */
4670         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4671                                  (E1000_ADVTXD_DCMD_VLE));
4672
4673         /* set segmentation bits for TSO */
4674         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4675                                  (E1000_ADVTXD_DCMD_TSE));
4676
4677         /* set timestamp bit if present */
4678         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4679                                  (E1000_ADVTXD_MAC_TSTAMP));
4680
4681         /* insert frame checksum */
4682         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4683
4684         return cmd_type;
4685 }
4686
4687 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4688                                  union e1000_adv_tx_desc *tx_desc,
4689                                  u32 tx_flags, unsigned int paylen)
4690 {
4691         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4692
4693         /* 82575 requires a unique index per ring */
4694         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4695                 olinfo_status |= tx_ring->reg_idx << 4;
4696
4697         /* insert L4 checksum */
4698         olinfo_status |= IGB_SET_FLAG(tx_flags,
4699                                       IGB_TX_FLAGS_CSUM,
4700                                       (E1000_TXD_POPTS_TXSM << 8));
4701
4702         /* insert IPv4 checksum */
4703         olinfo_status |= IGB_SET_FLAG(tx_flags,
4704                                       IGB_TX_FLAGS_IPV4,
4705                                       (E1000_TXD_POPTS_IXSM << 8));
4706
4707         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4708 }
4709
4710 static void igb_tx_map(struct igb_ring *tx_ring,
4711                        struct igb_tx_buffer *first,
4712                        const u8 hdr_len)
4713 {
4714         struct sk_buff *skb = first->skb;
4715         struct igb_tx_buffer *tx_buffer;
4716         union e1000_adv_tx_desc *tx_desc;
4717         struct skb_frag_struct *frag;
4718         dma_addr_t dma;
4719         unsigned int data_len, size;
4720         u32 tx_flags = first->tx_flags;
4721         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4722         u16 i = tx_ring->next_to_use;
4723
4724         tx_desc = IGB_TX_DESC(tx_ring, i);
4725
4726         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4727
4728         size = skb_headlen(skb);
4729         data_len = skb->data_len;
4730
4731         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4732
4733         tx_buffer = first;
4734
4735         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4736                 if (dma_mapping_error(tx_ring->dev, dma))
4737                         goto dma_error;
4738
4739                 /* record length, and DMA address */
4740                 dma_unmap_len_set(tx_buffer, len, size);
4741                 dma_unmap_addr_set(tx_buffer, dma, dma);
4742
4743                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4744
4745                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4746                         tx_desc->read.cmd_type_len =
4747                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4748
4749                         i++;
4750                         tx_desc++;
4751                         if (i == tx_ring->count) {
4752                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4753                                 i = 0;
4754                         }
4755                         tx_desc->read.olinfo_status = 0;
4756
4757                         dma += IGB_MAX_DATA_PER_TXD;
4758                         size -= IGB_MAX_DATA_PER_TXD;
4759
4760                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4761                 }
4762
4763                 if (likely(!data_len))
4764                         break;
4765
4766                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4767
4768                 i++;
4769                 tx_desc++;
4770                 if (i == tx_ring->count) {
4771                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4772                         i = 0;
4773                 }
4774                 tx_desc->read.olinfo_status = 0;
4775
4776                 size = skb_frag_size(frag);
4777                 data_len -= size;
4778
4779                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4780                                        size, DMA_TO_DEVICE);
4781
4782                 tx_buffer = &tx_ring->tx_buffer_info[i];
4783         }
4784
4785         /* write last descriptor with RS and EOP bits */
4786         cmd_type |= size | IGB_TXD_DCMD;
4787         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4788
4789         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4790
4791         /* set the timestamp */
4792         first->time_stamp = jiffies;
4793
4794         /* Force memory writes to complete before letting h/w know there
4795          * are new descriptors to fetch.  (Only applicable for weak-ordered
4796          * memory model archs, such as IA-64).
4797          *
4798          * We also need this memory barrier to make certain all of the
4799          * status bits have been updated before next_to_watch is written.
4800          */
4801         wmb();
4802
4803         /* set next_to_watch value indicating a packet is present */
4804         first->next_to_watch = tx_desc;
4805
4806         i++;
4807         if (i == tx_ring->count)
4808                 i = 0;
4809
4810         tx_ring->next_to_use = i;
4811
4812         writel(i, tx_ring->tail);
4813
4814         /* we need this if more than one processor can write to our tail
4815          * at a time, it synchronizes IO on IA64/Altix systems
4816          */
4817         mmiowb();
4818
4819         return;
4820
4821 dma_error:
4822         dev_err(tx_ring->dev, "TX DMA map failed\n");
4823
4824         /* clear dma mappings for failed tx_buffer_info map */
4825         for (;;) {
4826                 tx_buffer = &tx_ring->tx_buffer_info[i];
4827                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4828                 if (tx_buffer == first)
4829                         break;
4830                 if (i == 0)
4831                         i = tx_ring->count;
4832                 i--;
4833         }
4834
4835         tx_ring->next_to_use = i;
4836 }
4837
4838 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4839 {
4840         struct net_device *netdev = tx_ring->netdev;
4841
4842         netif_stop_subqueue(netdev, tx_ring->queue_index);
4843
4844         /* Herbert's original patch had:
4845          *  smp_mb__after_netif_stop_queue();
4846          * but since that doesn't exist yet, just open code it.
4847          */
4848         smp_mb();
4849
4850         /* We need to check again in a case another CPU has just
4851          * made room available.
4852          */
4853         if (igb_desc_unused(tx_ring) < size)
4854                 return -EBUSY;
4855
4856         /* A reprieve! */
4857         netif_wake_subqueue(netdev, tx_ring->queue_index);
4858
4859         u64_stats_update_begin(&tx_ring->tx_syncp2);
4860         tx_ring->tx_stats.restart_queue2++;
4861         u64_stats_update_end(&tx_ring->tx_syncp2);
4862
4863         return 0;
4864 }
4865
4866 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4867 {
4868         if (igb_desc_unused(tx_ring) >= size)
4869                 return 0;
4870         return __igb_maybe_stop_tx(tx_ring, size);
4871 }
4872
4873 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4874                                 struct igb_ring *tx_ring)
4875 {
4876         struct igb_tx_buffer *first;
4877         int tso;
4878         u32 tx_flags = 0;
4879         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4880         __be16 protocol = vlan_get_protocol(skb);
4881         u8 hdr_len = 0;
4882
4883         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4884          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4885          *       + 2 desc gap to keep tail from touching head,
4886          *       + 1 desc for context descriptor,
4887          * otherwise try next time
4888          */
4889         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4890                 unsigned short f;
4891                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4892                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4893         } else {
4894                 count += skb_shinfo(skb)->nr_frags;
4895         }
4896
4897         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4898                 /* this is a hard error */
4899                 return NETDEV_TX_BUSY;
4900         }
4901
4902         /* record the location of the first descriptor for this packet */
4903         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4904         first->skb = skb;
4905         first->bytecount = skb->len;
4906         first->gso_segs = 1;
4907
4908         skb_tx_timestamp(skb);
4909
4910         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4911                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4912
4913                 if (!(adapter->ptp_tx_skb)) {
4914                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4915                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
4916
4917                         adapter->ptp_tx_skb = skb_get(skb);
4918                         adapter->ptp_tx_start = jiffies;
4919                         if (adapter->hw.mac.type == e1000_82576)
4920                                 schedule_work(&adapter->ptp_tx_work);
4921                 }
4922         }
4923
4924         if (vlan_tx_tag_present(skb)) {
4925                 tx_flags |= IGB_TX_FLAGS_VLAN;
4926                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4927         }
4928
4929         /* record initial flags and protocol */
4930         first->tx_flags = tx_flags;
4931         first->protocol = protocol;
4932
4933         tso = igb_tso(tx_ring, first, &hdr_len);
4934         if (tso < 0)
4935                 goto out_drop;
4936         else if (!tso)
4937                 igb_tx_csum(tx_ring, first);
4938
4939         igb_tx_map(tx_ring, first, hdr_len);
4940
4941         /* Make sure there is space in the ring for the next send. */
4942         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4943
4944         return NETDEV_TX_OK;
4945
4946 out_drop:
4947         igb_unmap_and_free_tx_resource(tx_ring, first);
4948
4949         return NETDEV_TX_OK;
4950 }
4951
4952 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4953                                                     struct sk_buff *skb)
4954 {
4955         unsigned int r_idx = skb->queue_mapping;
4956
4957         if (r_idx >= adapter->num_tx_queues)
4958                 r_idx = r_idx % adapter->num_tx_queues;
4959
4960         return adapter->tx_ring[r_idx];
4961 }
4962
4963 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4964                                   struct net_device *netdev)
4965 {
4966         struct igb_adapter *adapter = netdev_priv(netdev);
4967
4968         if (test_bit(__IGB_DOWN, &adapter->state)) {
4969                 dev_kfree_skb_any(skb);
4970                 return NETDEV_TX_OK;
4971         }
4972
4973         if (skb->len <= 0) {
4974                 dev_kfree_skb_any(skb);
4975                 return NETDEV_TX_OK;
4976         }
4977
4978         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4979          * in order to meet this minimum size requirement.
4980          */
4981         if (unlikely(skb->len < 17)) {
4982                 if (skb_pad(skb, 17 - skb->len))
4983                         return NETDEV_TX_OK;
4984                 skb->len = 17;
4985                 skb_set_tail_pointer(skb, 17);
4986         }
4987
4988         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4989 }
4990
4991 /**
4992  *  igb_tx_timeout - Respond to a Tx Hang
4993  *  @netdev: network interface device structure
4994  **/
4995 static void igb_tx_timeout(struct net_device *netdev)
4996 {
4997         struct igb_adapter *adapter = netdev_priv(netdev);
4998         struct e1000_hw *hw = &adapter->hw;
4999
5000         /* Do the reset outside of interrupt context */
5001         adapter->tx_timeout_count++;
5002
5003         if (hw->mac.type >= e1000_82580)
5004                 hw->dev_spec._82575.global_device_reset = true;
5005
5006         schedule_work(&adapter->reset_task);
5007         wr32(E1000_EICS,
5008              (adapter->eims_enable_mask & ~adapter->eims_other));
5009 }
5010
5011 static void igb_reset_task(struct work_struct *work)
5012 {
5013         struct igb_adapter *adapter;
5014         adapter = container_of(work, struct igb_adapter, reset_task);
5015
5016         igb_dump(adapter);
5017         netdev_err(adapter->netdev, "Reset adapter\n");
5018         igb_reinit_locked(adapter);
5019 }
5020
5021 /**
5022  *  igb_get_stats64 - Get System Network Statistics
5023  *  @netdev: network interface device structure
5024  *  @stats: rtnl_link_stats64 pointer
5025  **/
5026 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5027                                                 struct rtnl_link_stats64 *stats)
5028 {
5029         struct igb_adapter *adapter = netdev_priv(netdev);
5030
5031         spin_lock(&adapter->stats64_lock);
5032         igb_update_stats(adapter, &adapter->stats64);
5033         memcpy(stats, &adapter->stats64, sizeof(*stats));
5034         spin_unlock(&adapter->stats64_lock);
5035
5036         return stats;
5037 }
5038
5039 /**
5040  *  igb_change_mtu - Change the Maximum Transfer Unit
5041  *  @netdev: network interface device structure
5042  *  @new_mtu: new value for maximum frame size
5043  *
5044  *  Returns 0 on success, negative on failure
5045  **/
5046 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5047 {
5048         struct igb_adapter *adapter = netdev_priv(netdev);
5049         struct pci_dev *pdev = adapter->pdev;
5050         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5051
5052         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5053                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5054                 return -EINVAL;
5055         }
5056
5057 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5058         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5059                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5060                 return -EINVAL;
5061         }
5062
5063         /* adjust max frame to be at least the size of a standard frame */
5064         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5065                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5066
5067         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5068                 msleep(1);
5069
5070         /* igb_down has a dependency on max_frame_size */
5071         adapter->max_frame_size = max_frame;
5072
5073         if (netif_running(netdev))
5074                 igb_down(adapter);
5075
5076         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5077                  netdev->mtu, new_mtu);
5078         netdev->mtu = new_mtu;
5079
5080         if (netif_running(netdev))
5081                 igb_up(adapter);
5082         else
5083                 igb_reset(adapter);
5084
5085         clear_bit(__IGB_RESETTING, &adapter->state);
5086
5087         return 0;
5088 }
5089
5090 /**
5091  *  igb_update_stats - Update the board statistics counters
5092  *  @adapter: board private structure
5093  **/
5094 void igb_update_stats(struct igb_adapter *adapter,
5095                       struct rtnl_link_stats64 *net_stats)
5096 {
5097         struct e1000_hw *hw = &adapter->hw;
5098         struct pci_dev *pdev = adapter->pdev;
5099         u32 reg, mpc;
5100         u16 phy_tmp;
5101         int i;
5102         u64 bytes, packets;
5103         unsigned int start;
5104         u64 _bytes, _packets;
5105
5106 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5107
5108         /* Prevent stats update while adapter is being reset, or if the pci
5109          * connection is down.
5110          */
5111         if (adapter->link_speed == 0)
5112                 return;
5113         if (pci_channel_offline(pdev))
5114                 return;
5115
5116         bytes = 0;
5117         packets = 0;
5118
5119         rcu_read_lock();
5120         for (i = 0; i < adapter->num_rx_queues; i++) {
5121                 u32 rqdpc = rd32(E1000_RQDPC(i));
5122                 struct igb_ring *ring = adapter->rx_ring[i];
5123
5124                 if (rqdpc) {
5125                         ring->rx_stats.drops += rqdpc;
5126                         net_stats->rx_fifo_errors += rqdpc;
5127                 }
5128
5129                 do {
5130                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
5131                         _bytes = ring->rx_stats.bytes;
5132                         _packets = ring->rx_stats.packets;
5133                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
5134                 bytes += _bytes;
5135                 packets += _packets;
5136         }
5137
5138         net_stats->rx_bytes = bytes;
5139         net_stats->rx_packets = packets;
5140
5141         bytes = 0;
5142         packets = 0;
5143         for (i = 0; i < adapter->num_tx_queues; i++) {
5144                 struct igb_ring *ring = adapter->tx_ring[i];
5145                 do {
5146                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
5147                         _bytes = ring->tx_stats.bytes;
5148                         _packets = ring->tx_stats.packets;
5149                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
5150                 bytes += _bytes;
5151                 packets += _packets;
5152         }
5153         net_stats->tx_bytes = bytes;
5154         net_stats->tx_packets = packets;
5155         rcu_read_unlock();
5156
5157         /* read stats registers */
5158         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5159         adapter->stats.gprc += rd32(E1000_GPRC);
5160         adapter->stats.gorc += rd32(E1000_GORCL);
5161         rd32(E1000_GORCH); /* clear GORCL */
5162         adapter->stats.bprc += rd32(E1000_BPRC);
5163         adapter->stats.mprc += rd32(E1000_MPRC);
5164         adapter->stats.roc += rd32(E1000_ROC);
5165
5166         adapter->stats.prc64 += rd32(E1000_PRC64);
5167         adapter->stats.prc127 += rd32(E1000_PRC127);
5168         adapter->stats.prc255 += rd32(E1000_PRC255);
5169         adapter->stats.prc511 += rd32(E1000_PRC511);
5170         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5171         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5172         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5173         adapter->stats.sec += rd32(E1000_SEC);
5174
5175         mpc = rd32(E1000_MPC);
5176         adapter->stats.mpc += mpc;
5177         net_stats->rx_fifo_errors += mpc;
5178         adapter->stats.scc += rd32(E1000_SCC);
5179         adapter->stats.ecol += rd32(E1000_ECOL);
5180         adapter->stats.mcc += rd32(E1000_MCC);
5181         adapter->stats.latecol += rd32(E1000_LATECOL);
5182         adapter->stats.dc += rd32(E1000_DC);
5183         adapter->stats.rlec += rd32(E1000_RLEC);
5184         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5185         adapter->stats.xontxc += rd32(E1000_XONTXC);
5186         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5187         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5188         adapter->stats.fcruc += rd32(E1000_FCRUC);
5189         adapter->stats.gptc += rd32(E1000_GPTC);
5190         adapter->stats.gotc += rd32(E1000_GOTCL);
5191         rd32(E1000_GOTCH); /* clear GOTCL */
5192         adapter->stats.rnbc += rd32(E1000_RNBC);
5193         adapter->stats.ruc += rd32(E1000_RUC);
5194         adapter->stats.rfc += rd32(E1000_RFC);
5195         adapter->stats.rjc += rd32(E1000_RJC);
5196         adapter->stats.tor += rd32(E1000_TORH);
5197         adapter->stats.tot += rd32(E1000_TOTH);
5198         adapter->stats.tpr += rd32(E1000_TPR);
5199
5200         adapter->stats.ptc64 += rd32(E1000_PTC64);
5201         adapter->stats.ptc127 += rd32(E1000_PTC127);
5202         adapter->stats.ptc255 += rd32(E1000_PTC255);
5203         adapter->stats.ptc511 += rd32(E1000_PTC511);
5204         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5205         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5206
5207         adapter->stats.mptc += rd32(E1000_MPTC);
5208         adapter->stats.bptc += rd32(E1000_BPTC);
5209
5210         adapter->stats.tpt += rd32(E1000_TPT);
5211         adapter->stats.colc += rd32(E1000_COLC);
5212
5213         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5214         /* read internal phy specific stats */
5215         reg = rd32(E1000_CTRL_EXT);
5216         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5217                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5218
5219                 /* this stat has invalid values on i210/i211 */
5220                 if ((hw->mac.type != e1000_i210) &&
5221                     (hw->mac.type != e1000_i211))
5222                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5223         }
5224
5225         adapter->stats.tsctc += rd32(E1000_TSCTC);
5226         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5227
5228         adapter->stats.iac += rd32(E1000_IAC);
5229         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5230         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5231         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5232         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5233         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5234         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5235         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5236         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5237
5238         /* Fill out the OS statistics structure */
5239         net_stats->multicast = adapter->stats.mprc;
5240         net_stats->collisions = adapter->stats.colc;
5241
5242         /* Rx Errors */
5243
5244         /* RLEC on some newer hardware can be incorrect so build
5245          * our own version based on RUC and ROC
5246          */
5247         net_stats->rx_errors = adapter->stats.rxerrc +
5248                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5249                 adapter->stats.ruc + adapter->stats.roc +
5250                 adapter->stats.cexterr;
5251         net_stats->rx_length_errors = adapter->stats.ruc +
5252                                       adapter->stats.roc;
5253         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5254         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5255         net_stats->rx_missed_errors = adapter->stats.mpc;
5256
5257         /* Tx Errors */
5258         net_stats->tx_errors = adapter->stats.ecol +
5259                                adapter->stats.latecol;
5260         net_stats->tx_aborted_errors = adapter->stats.ecol;
5261         net_stats->tx_window_errors = adapter->stats.latecol;
5262         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5263
5264         /* Tx Dropped needs to be maintained elsewhere */
5265
5266         /* Phy Stats */
5267         if (hw->phy.media_type == e1000_media_type_copper) {
5268                 if ((adapter->link_speed == SPEED_1000) &&
5269                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5270                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5271                         adapter->phy_stats.idle_errors += phy_tmp;
5272                 }
5273         }
5274
5275         /* Management Stats */
5276         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5277         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5278         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5279
5280         /* OS2BMC Stats */
5281         reg = rd32(E1000_MANC);
5282         if (reg & E1000_MANC_EN_BMC2OS) {
5283                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5284                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5285                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5286                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5287         }
5288 }
5289
5290 static irqreturn_t igb_msix_other(int irq, void *data)
5291 {
5292         struct igb_adapter *adapter = data;
5293         struct e1000_hw *hw = &adapter->hw;
5294         u32 icr = rd32(E1000_ICR);
5295         /* reading ICR causes bit 31 of EICR to be cleared */
5296
5297         if (icr & E1000_ICR_DRSTA)
5298                 schedule_work(&adapter->reset_task);
5299
5300         if (icr & E1000_ICR_DOUTSYNC) {
5301                 /* HW is reporting DMA is out of sync */
5302                 adapter->stats.doosync++;
5303                 /* The DMA Out of Sync is also indication of a spoof event
5304                  * in IOV mode. Check the Wrong VM Behavior register to
5305                  * see if it is really a spoof event.
5306                  */
5307                 igb_check_wvbr(adapter);
5308         }
5309
5310         /* Check for a mailbox event */
5311         if (icr & E1000_ICR_VMMB)
5312                 igb_msg_task(adapter);
5313
5314         if (icr & E1000_ICR_LSC) {
5315                 hw->mac.get_link_status = 1;
5316                 /* guard against interrupt when we're going down */
5317                 if (!test_bit(__IGB_DOWN, &adapter->state))
5318                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5319         }
5320
5321         if (icr & E1000_ICR_TS) {
5322                 u32 tsicr = rd32(E1000_TSICR);
5323
5324                 if (tsicr & E1000_TSICR_TXTS) {
5325                         /* acknowledge the interrupt */
5326                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5327                         /* retrieve hardware timestamp */
5328                         schedule_work(&adapter->ptp_tx_work);
5329                 }
5330         }
5331
5332         wr32(E1000_EIMS, adapter->eims_other);
5333
5334         return IRQ_HANDLED;
5335 }
5336
5337 static void igb_write_itr(struct igb_q_vector *q_vector)
5338 {
5339         struct igb_adapter *adapter = q_vector->adapter;
5340         u32 itr_val = q_vector->itr_val & 0x7FFC;
5341
5342         if (!q_vector->set_itr)
5343                 return;
5344
5345         if (!itr_val)
5346                 itr_val = 0x4;
5347
5348         if (adapter->hw.mac.type == e1000_82575)
5349                 itr_val |= itr_val << 16;
5350         else
5351                 itr_val |= E1000_EITR_CNT_IGNR;
5352
5353         writel(itr_val, q_vector->itr_register);
5354         q_vector->set_itr = 0;
5355 }
5356
5357 static irqreturn_t igb_msix_ring(int irq, void *data)
5358 {
5359         struct igb_q_vector *q_vector = data;
5360
5361         /* Write the ITR value calculated from the previous interrupt. */
5362         igb_write_itr(q_vector);
5363
5364         napi_schedule(&q_vector->napi);
5365
5366         return IRQ_HANDLED;
5367 }
5368
5369 #ifdef CONFIG_IGB_DCA
5370 static void igb_update_tx_dca(struct igb_adapter *adapter,
5371                               struct igb_ring *tx_ring,
5372                               int cpu)
5373 {
5374         struct e1000_hw *hw = &adapter->hw;
5375         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5376
5377         if (hw->mac.type != e1000_82575)
5378                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5379
5380         /* We can enable relaxed ordering for reads, but not writes when
5381          * DCA is enabled.  This is due to a known issue in some chipsets
5382          * which will cause the DCA tag to be cleared.
5383          */
5384         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5385                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5386                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5387
5388         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5389 }
5390
5391 static void igb_update_rx_dca(struct igb_adapter *adapter,
5392                               struct igb_ring *rx_ring,
5393                               int cpu)
5394 {
5395         struct e1000_hw *hw = &adapter->hw;
5396         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5397
5398         if (hw->mac.type != e1000_82575)
5399                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5400
5401         /* We can enable relaxed ordering for reads, but not writes when
5402          * DCA is enabled.  This is due to a known issue in some chipsets
5403          * which will cause the DCA tag to be cleared.
5404          */
5405         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5406                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5407
5408         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5409 }
5410
5411 static void igb_update_dca(struct igb_q_vector *q_vector)
5412 {
5413         struct igb_adapter *adapter = q_vector->adapter;
5414         int cpu = get_cpu();
5415
5416         if (q_vector->cpu == cpu)
5417                 goto out_no_update;
5418
5419         if (q_vector->tx.ring)
5420                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5421
5422         if (q_vector->rx.ring)
5423                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5424
5425         q_vector->cpu = cpu;
5426 out_no_update:
5427         put_cpu();
5428 }
5429
5430 static void igb_setup_dca(struct igb_adapter *adapter)
5431 {
5432         struct e1000_hw *hw = &adapter->hw;
5433         int i;
5434
5435         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5436                 return;
5437
5438         /* Always use CB2 mode, difference is masked in the CB driver. */
5439         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5440
5441         for (i = 0; i < adapter->num_q_vectors; i++) {
5442                 adapter->q_vector[i]->cpu = -1;
5443                 igb_update_dca(adapter->q_vector[i]);
5444         }
5445 }
5446
5447 static int __igb_notify_dca(struct device *dev, void *data)
5448 {
5449         struct net_device *netdev = dev_get_drvdata(dev);
5450         struct igb_adapter *adapter = netdev_priv(netdev);
5451         struct pci_dev *pdev = adapter->pdev;
5452         struct e1000_hw *hw = &adapter->hw;
5453         unsigned long event = *(unsigned long *)data;
5454
5455         switch (event) {
5456         case DCA_PROVIDER_ADD:
5457                 /* if already enabled, don't do it again */
5458                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5459                         break;
5460                 if (dca_add_requester(dev) == 0) {
5461                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5462                         dev_info(&pdev->dev, "DCA enabled\n");
5463                         igb_setup_dca(adapter);
5464                         break;
5465                 }
5466                 /* Fall Through since DCA is disabled. */
5467         case DCA_PROVIDER_REMOVE:
5468                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5469                         /* without this a class_device is left
5470                          * hanging around in the sysfs model
5471                          */
5472                         dca_remove_requester(dev);
5473                         dev_info(&pdev->dev, "DCA disabled\n");
5474                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5475                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5476                 }
5477                 break;
5478         }
5479
5480         return 0;
5481 }
5482
5483 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5484                           void *p)
5485 {
5486         int ret_val;
5487
5488         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5489                                          __igb_notify_dca);
5490
5491         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5492 }
5493 #endif /* CONFIG_IGB_DCA */
5494
5495 #ifdef CONFIG_PCI_IOV
5496 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5497 {
5498         unsigned char mac_addr[ETH_ALEN];
5499
5500         eth_zero_addr(mac_addr);
5501         igb_set_vf_mac(adapter, vf, mac_addr);
5502
5503         /* By default spoof check is enabled for all VFs */
5504         adapter->vf_data[vf].spoofchk_enabled = true;
5505
5506         return 0;
5507 }
5508
5509 #endif
5510 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5511 {
5512         struct e1000_hw *hw = &adapter->hw;
5513         u32 ping;
5514         int i;
5515
5516         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5517                 ping = E1000_PF_CONTROL_MSG;
5518                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5519                         ping |= E1000_VT_MSGTYPE_CTS;
5520                 igb_write_mbx(hw, &ping, 1, i);
5521         }
5522 }
5523
5524 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5525 {
5526         struct e1000_hw *hw = &adapter->hw;
5527         u32 vmolr = rd32(E1000_VMOLR(vf));
5528         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5529
5530         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5531                             IGB_VF_FLAG_MULTI_PROMISC);
5532         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5533
5534         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5535                 vmolr |= E1000_VMOLR_MPME;
5536                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5537                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5538         } else {
5539                 /* if we have hashes and we are clearing a multicast promisc
5540                  * flag we need to write the hashes to the MTA as this step
5541                  * was previously skipped
5542                  */
5543                 if (vf_data->num_vf_mc_hashes > 30) {
5544                         vmolr |= E1000_VMOLR_MPME;
5545                 } else if (vf_data->num_vf_mc_hashes) {
5546                         int j;
5547                         vmolr |= E1000_VMOLR_ROMPE;
5548                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5549                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5550                 }
5551         }
5552
5553         wr32(E1000_VMOLR(vf), vmolr);
5554
5555         /* there are flags left unprocessed, likely not supported */
5556         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5557                 return -EINVAL;
5558
5559         return 0;
5560 }
5561
5562 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5563                                   u32 *msgbuf, u32 vf)
5564 {
5565         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5566         u16 *hash_list = (u16 *)&msgbuf[1];
5567         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5568         int i;
5569
5570         /* salt away the number of multicast addresses assigned
5571          * to this VF for later use to restore when the PF multi cast
5572          * list changes
5573          */
5574         vf_data->num_vf_mc_hashes = n;
5575
5576         /* only up to 30 hash values supported */
5577         if (n > 30)
5578                 n = 30;
5579
5580         /* store the hashes for later use */
5581         for (i = 0; i < n; i++)
5582                 vf_data->vf_mc_hashes[i] = hash_list[i];
5583
5584         /* Flush and reset the mta with the new values */
5585         igb_set_rx_mode(adapter->netdev);
5586
5587         return 0;
5588 }
5589
5590 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5591 {
5592         struct e1000_hw *hw = &adapter->hw;
5593         struct vf_data_storage *vf_data;
5594         int i, j;
5595
5596         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5597                 u32 vmolr = rd32(E1000_VMOLR(i));
5598                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5599
5600                 vf_data = &adapter->vf_data[i];
5601
5602                 if ((vf_data->num_vf_mc_hashes > 30) ||
5603                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5604                         vmolr |= E1000_VMOLR_MPME;
5605                 } else if (vf_data->num_vf_mc_hashes) {
5606                         vmolr |= E1000_VMOLR_ROMPE;
5607                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5608                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5609                 }
5610                 wr32(E1000_VMOLR(i), vmolr);
5611         }
5612 }
5613
5614 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5615 {
5616         struct e1000_hw *hw = &adapter->hw;
5617         u32 pool_mask, reg, vid;
5618         int i;
5619
5620         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5621
5622         /* Find the vlan filter for this id */
5623         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5624                 reg = rd32(E1000_VLVF(i));
5625
5626                 /* remove the vf from the pool */
5627                 reg &= ~pool_mask;
5628
5629                 /* if pool is empty then remove entry from vfta */
5630                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5631                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5632                         reg = 0;
5633                         vid = reg & E1000_VLVF_VLANID_MASK;
5634                         igb_vfta_set(hw, vid, false);
5635                 }
5636
5637                 wr32(E1000_VLVF(i), reg);
5638         }
5639
5640         adapter->vf_data[vf].vlans_enabled = 0;
5641 }
5642
5643 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5644 {
5645         struct e1000_hw *hw = &adapter->hw;
5646         u32 reg, i;
5647
5648         /* The vlvf table only exists on 82576 hardware and newer */
5649         if (hw->mac.type < e1000_82576)
5650                 return -1;
5651
5652         /* we only need to do this if VMDq is enabled */
5653         if (!adapter->vfs_allocated_count)
5654                 return -1;
5655
5656         /* Find the vlan filter for this id */
5657         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5658                 reg = rd32(E1000_VLVF(i));
5659                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5660                     vid == (reg & E1000_VLVF_VLANID_MASK))
5661                         break;
5662         }
5663
5664         if (add) {
5665                 if (i == E1000_VLVF_ARRAY_SIZE) {
5666                         /* Did not find a matching VLAN ID entry that was
5667                          * enabled.  Search for a free filter entry, i.e.
5668                          * one without the enable bit set
5669                          */
5670                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5671                                 reg = rd32(E1000_VLVF(i));
5672                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5673                                         break;
5674                         }
5675                 }
5676                 if (i < E1000_VLVF_ARRAY_SIZE) {
5677                         /* Found an enabled/available entry */
5678                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5679
5680                         /* if !enabled we need to set this up in vfta */
5681                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5682                                 /* add VID to filter table */
5683                                 igb_vfta_set(hw, vid, true);
5684                                 reg |= E1000_VLVF_VLANID_ENABLE;
5685                         }
5686                         reg &= ~E1000_VLVF_VLANID_MASK;
5687                         reg |= vid;
5688                         wr32(E1000_VLVF(i), reg);
5689
5690                         /* do not modify RLPML for PF devices */
5691                         if (vf >= adapter->vfs_allocated_count)
5692                                 return 0;
5693
5694                         if (!adapter->vf_data[vf].vlans_enabled) {
5695                                 u32 size;
5696                                 reg = rd32(E1000_VMOLR(vf));
5697                                 size = reg & E1000_VMOLR_RLPML_MASK;
5698                                 size += 4;
5699                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5700                                 reg |= size;
5701                                 wr32(E1000_VMOLR(vf), reg);
5702                         }
5703
5704                         adapter->vf_data[vf].vlans_enabled++;
5705                 }
5706         } else {
5707                 if (i < E1000_VLVF_ARRAY_SIZE) {
5708                         /* remove vf from the pool */
5709                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5710                         /* if pool is empty then remove entry from vfta */
5711                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5712                                 reg = 0;
5713                                 igb_vfta_set(hw, vid, false);
5714                         }
5715                         wr32(E1000_VLVF(i), reg);
5716
5717                         /* do not modify RLPML for PF devices */
5718                         if (vf >= adapter->vfs_allocated_count)
5719                                 return 0;
5720
5721                         adapter->vf_data[vf].vlans_enabled--;
5722                         if (!adapter->vf_data[vf].vlans_enabled) {
5723                                 u32 size;
5724                                 reg = rd32(E1000_VMOLR(vf));
5725                                 size = reg & E1000_VMOLR_RLPML_MASK;
5726                                 size -= 4;
5727                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5728                                 reg |= size;
5729                                 wr32(E1000_VMOLR(vf), reg);
5730                         }
5731                 }
5732         }
5733         return 0;
5734 }
5735
5736 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5737 {
5738         struct e1000_hw *hw = &adapter->hw;
5739
5740         if (vid)
5741                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5742         else
5743                 wr32(E1000_VMVIR(vf), 0);
5744 }
5745
5746 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5747                                int vf, u16 vlan, u8 qos)
5748 {
5749         int err = 0;
5750         struct igb_adapter *adapter = netdev_priv(netdev);
5751
5752         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5753                 return -EINVAL;
5754         if (vlan || qos) {
5755                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5756                 if (err)
5757                         goto out;
5758                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5759                 igb_set_vmolr(adapter, vf, !vlan);
5760                 adapter->vf_data[vf].pf_vlan = vlan;
5761                 adapter->vf_data[vf].pf_qos = qos;
5762                 dev_info(&adapter->pdev->dev,
5763                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5764                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5765                         dev_warn(&adapter->pdev->dev,
5766                                  "The VF VLAN has been set, but the PF device is not up.\n");
5767                         dev_warn(&adapter->pdev->dev,
5768                                  "Bring the PF device up before attempting to use the VF device.\n");
5769                 }
5770         } else {
5771                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5772                              false, vf);
5773                 igb_set_vmvir(adapter, vlan, vf);
5774                 igb_set_vmolr(adapter, vf, true);
5775                 adapter->vf_data[vf].pf_vlan = 0;
5776                 adapter->vf_data[vf].pf_qos = 0;
5777         }
5778 out:
5779         return err;
5780 }
5781
5782 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5783 {
5784         struct e1000_hw *hw = &adapter->hw;
5785         int i;
5786         u32 reg;
5787
5788         /* Find the vlan filter for this id */
5789         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5790                 reg = rd32(E1000_VLVF(i));
5791                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5792                     vid == (reg & E1000_VLVF_VLANID_MASK))
5793                         break;
5794         }
5795
5796         if (i >= E1000_VLVF_ARRAY_SIZE)
5797                 i = -1;
5798
5799         return i;
5800 }
5801
5802 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5803 {
5804         struct e1000_hw *hw = &adapter->hw;
5805         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5806         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5807         int err = 0;
5808
5809         /* If in promiscuous mode we need to make sure the PF also has
5810          * the VLAN filter set.
5811          */
5812         if (add && (adapter->netdev->flags & IFF_PROMISC))
5813                 err = igb_vlvf_set(adapter, vid, add,
5814                                    adapter->vfs_allocated_count);
5815         if (err)
5816                 goto out;
5817
5818         err = igb_vlvf_set(adapter, vid, add, vf);
5819
5820         if (err)
5821                 goto out;
5822
5823         /* Go through all the checks to see if the VLAN filter should
5824          * be wiped completely.
5825          */
5826         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5827                 u32 vlvf, bits;
5828
5829                 int regndx = igb_find_vlvf_entry(adapter, vid);
5830                 if (regndx < 0)
5831                         goto out;
5832                 /* See if any other pools are set for this VLAN filter
5833                  * entry other than the PF.
5834                  */
5835                 vlvf = bits = rd32(E1000_VLVF(regndx));
5836                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5837                               adapter->vfs_allocated_count);
5838                 /* If the filter was removed then ensure PF pool bit
5839                  * is cleared if the PF only added itself to the pool
5840                  * because the PF is in promiscuous mode.
5841                  */
5842                 if ((vlvf & VLAN_VID_MASK) == vid &&
5843                     !test_bit(vid, adapter->active_vlans) &&
5844                     !bits)
5845                         igb_vlvf_set(adapter, vid, add,
5846                                      adapter->vfs_allocated_count);
5847         }
5848
5849 out:
5850         return err;
5851 }
5852
5853 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5854 {
5855         /* clear flags - except flag that indicates PF has set the MAC */
5856         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5857         adapter->vf_data[vf].last_nack = jiffies;
5858
5859         /* reset offloads to defaults */
5860         igb_set_vmolr(adapter, vf, true);
5861
5862         /* reset vlans for device */
5863         igb_clear_vf_vfta(adapter, vf);
5864         if (adapter->vf_data[vf].pf_vlan)
5865                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5866                                     adapter->vf_data[vf].pf_vlan,
5867                                     adapter->vf_data[vf].pf_qos);
5868         else
5869                 igb_clear_vf_vfta(adapter, vf);
5870
5871         /* reset multicast table array for vf */
5872         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5873
5874         /* Flush and reset the mta with the new values */
5875         igb_set_rx_mode(adapter->netdev);
5876 }
5877
5878 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5879 {
5880         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5881
5882         /* clear mac address as we were hotplug removed/added */
5883         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5884                 eth_zero_addr(vf_mac);
5885
5886         /* process remaining reset events */
5887         igb_vf_reset(adapter, vf);
5888 }
5889
5890 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5891 {
5892         struct e1000_hw *hw = &adapter->hw;
5893         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5894         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5895         u32 reg, msgbuf[3];
5896         u8 *addr = (u8 *)(&msgbuf[1]);
5897
5898         /* process all the same items cleared in a function level reset */
5899         igb_vf_reset(adapter, vf);
5900
5901         /* set vf mac address */
5902         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5903
5904         /* enable transmit and receive for vf */
5905         reg = rd32(E1000_VFTE);
5906         wr32(E1000_VFTE, reg | (1 << vf));
5907         reg = rd32(E1000_VFRE);
5908         wr32(E1000_VFRE, reg | (1 << vf));
5909
5910         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5911
5912         /* reply to reset with ack and vf mac address */
5913         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5914         memcpy(addr, vf_mac, ETH_ALEN);
5915         igb_write_mbx(hw, msgbuf, 3, vf);
5916 }
5917
5918 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5919 {
5920         /* The VF MAC Address is stored in a packed array of bytes
5921          * starting at the second 32 bit word of the msg array
5922          */
5923         unsigned char *addr = (char *)&msg[1];
5924         int err = -1;
5925
5926         if (is_valid_ether_addr(addr))
5927                 err = igb_set_vf_mac(adapter, vf, addr);
5928
5929         return err;
5930 }
5931
5932 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5933 {
5934         struct e1000_hw *hw = &adapter->hw;
5935         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5936         u32 msg = E1000_VT_MSGTYPE_NACK;
5937
5938         /* if device isn't clear to send it shouldn't be reading either */
5939         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5940             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5941                 igb_write_mbx(hw, &msg, 1, vf);
5942                 vf_data->last_nack = jiffies;
5943         }
5944 }
5945
5946 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5947 {
5948         struct pci_dev *pdev = adapter->pdev;
5949         u32 msgbuf[E1000_VFMAILBOX_SIZE];
5950         struct e1000_hw *hw = &adapter->hw;
5951         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5952         s32 retval;
5953
5954         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5955
5956         if (retval) {
5957                 /* if receive failed revoke VF CTS stats and restart init */
5958                 dev_err(&pdev->dev, "Error receiving message from VF\n");
5959                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5960                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5961                         return;
5962                 goto out;
5963         }
5964
5965         /* this is a message we already processed, do nothing */
5966         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5967                 return;
5968
5969         /* until the vf completes a reset it should not be
5970          * allowed to start any configuration.
5971          */
5972         if (msgbuf[0] == E1000_VF_RESET) {
5973                 igb_vf_reset_msg(adapter, vf);
5974                 return;
5975         }
5976
5977         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5978                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5979                         return;
5980                 retval = -1;
5981                 goto out;
5982         }
5983
5984         switch ((msgbuf[0] & 0xFFFF)) {
5985         case E1000_VF_SET_MAC_ADDR:
5986                 retval = -EINVAL;
5987                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5988                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5989                 else
5990                         dev_warn(&pdev->dev,
5991                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5992                                  vf);
5993                 break;
5994         case E1000_VF_SET_PROMISC:
5995                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5996                 break;
5997         case E1000_VF_SET_MULTICAST:
5998                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5999                 break;
6000         case E1000_VF_SET_LPE:
6001                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6002                 break;
6003         case E1000_VF_SET_VLAN:
6004                 retval = -1;
6005                 if (vf_data->pf_vlan)
6006                         dev_warn(&pdev->dev,
6007                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6008                                  vf);
6009                 else
6010                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6011                 break;
6012         default:
6013                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6014                 retval = -1;
6015                 break;
6016         }
6017
6018         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6019 out:
6020         /* notify the VF of the results of what it sent us */
6021         if (retval)
6022                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6023         else
6024                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6025
6026         igb_write_mbx(hw, msgbuf, 1, vf);
6027 }
6028
6029 static void igb_msg_task(struct igb_adapter *adapter)
6030 {
6031         struct e1000_hw *hw = &adapter->hw;
6032         u32 vf;
6033
6034         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6035                 /* process any reset requests */
6036                 if (!igb_check_for_rst(hw, vf))
6037                         igb_vf_reset_event(adapter, vf);
6038
6039                 /* process any messages pending */
6040                 if (!igb_check_for_msg(hw, vf))
6041                         igb_rcv_msg_from_vf(adapter, vf);
6042
6043                 /* process any acks */
6044                 if (!igb_check_for_ack(hw, vf))
6045                         igb_rcv_ack_from_vf(adapter, vf);
6046         }
6047 }
6048
6049 /**
6050  *  igb_set_uta - Set unicast filter table address
6051  *  @adapter: board private structure
6052  *
6053  *  The unicast table address is a register array of 32-bit registers.
6054  *  The table is meant to be used in a way similar to how the MTA is used
6055  *  however due to certain limitations in the hardware it is necessary to
6056  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6057  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6058  **/
6059 static void igb_set_uta(struct igb_adapter *adapter)
6060 {
6061         struct e1000_hw *hw = &adapter->hw;
6062         int i;
6063
6064         /* The UTA table only exists on 82576 hardware and newer */
6065         if (hw->mac.type < e1000_82576)
6066                 return;
6067
6068         /* we only need to do this if VMDq is enabled */
6069         if (!adapter->vfs_allocated_count)
6070                 return;
6071
6072         for (i = 0; i < hw->mac.uta_reg_count; i++)
6073                 array_wr32(E1000_UTA, i, ~0);
6074 }
6075
6076 /**
6077  *  igb_intr_msi - Interrupt Handler
6078  *  @irq: interrupt number
6079  *  @data: pointer to a network interface device structure
6080  **/
6081 static irqreturn_t igb_intr_msi(int irq, void *data)
6082 {
6083         struct igb_adapter *adapter = data;
6084         struct igb_q_vector *q_vector = adapter->q_vector[0];
6085         struct e1000_hw *hw = &adapter->hw;
6086         /* read ICR disables interrupts using IAM */
6087         u32 icr = rd32(E1000_ICR);
6088
6089         igb_write_itr(q_vector);
6090
6091         if (icr & E1000_ICR_DRSTA)
6092                 schedule_work(&adapter->reset_task);
6093
6094         if (icr & E1000_ICR_DOUTSYNC) {
6095                 /* HW is reporting DMA is out of sync */
6096                 adapter->stats.doosync++;
6097         }
6098
6099         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6100                 hw->mac.get_link_status = 1;
6101                 if (!test_bit(__IGB_DOWN, &adapter->state))
6102                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6103         }
6104
6105         if (icr & E1000_ICR_TS) {
6106                 u32 tsicr = rd32(E1000_TSICR);
6107
6108                 if (tsicr & E1000_TSICR_TXTS) {
6109                         /* acknowledge the interrupt */
6110                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6111                         /* retrieve hardware timestamp */
6112                         schedule_work(&adapter->ptp_tx_work);
6113                 }
6114         }
6115
6116         napi_schedule(&q_vector->napi);
6117
6118         return IRQ_HANDLED;
6119 }
6120
6121 /**
6122  *  igb_intr - Legacy Interrupt Handler
6123  *  @irq: interrupt number
6124  *  @data: pointer to a network interface device structure
6125  **/
6126 static irqreturn_t igb_intr(int irq, void *data)
6127 {
6128         struct igb_adapter *adapter = data;
6129         struct igb_q_vector *q_vector = adapter->q_vector[0];
6130         struct e1000_hw *hw = &adapter->hw;
6131         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6132          * need for the IMC write
6133          */
6134         u32 icr = rd32(E1000_ICR);
6135
6136         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6137          * not set, then the adapter didn't send an interrupt
6138          */
6139         if (!(icr & E1000_ICR_INT_ASSERTED))
6140                 return IRQ_NONE;
6141
6142         igb_write_itr(q_vector);
6143
6144         if (icr & E1000_ICR_DRSTA)
6145                 schedule_work(&adapter->reset_task);
6146
6147         if (icr & E1000_ICR_DOUTSYNC) {
6148                 /* HW is reporting DMA is out of sync */
6149                 adapter->stats.doosync++;
6150         }
6151
6152         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6153                 hw->mac.get_link_status = 1;
6154                 /* guard against interrupt when we're going down */
6155                 if (!test_bit(__IGB_DOWN, &adapter->state))
6156                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6157         }
6158
6159         if (icr & E1000_ICR_TS) {
6160                 u32 tsicr = rd32(E1000_TSICR);
6161
6162                 if (tsicr & E1000_TSICR_TXTS) {
6163                         /* acknowledge the interrupt */
6164                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6165                         /* retrieve hardware timestamp */
6166                         schedule_work(&adapter->ptp_tx_work);
6167                 }
6168         }
6169
6170         napi_schedule(&q_vector->napi);
6171
6172         return IRQ_HANDLED;
6173 }
6174
6175 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6176 {
6177         struct igb_adapter *adapter = q_vector->adapter;
6178         struct e1000_hw *hw = &adapter->hw;
6179
6180         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6181             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6182                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6183                         igb_set_itr(q_vector);
6184                 else
6185                         igb_update_ring_itr(q_vector);
6186         }
6187
6188         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6189                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6190                         wr32(E1000_EIMS, q_vector->eims_value);
6191                 else
6192                         igb_irq_enable(adapter);
6193         }
6194 }
6195
6196 /**
6197  *  igb_poll - NAPI Rx polling callback
6198  *  @napi: napi polling structure
6199  *  @budget: count of how many packets we should handle
6200  **/
6201 static int igb_poll(struct napi_struct *napi, int budget)
6202 {
6203         struct igb_q_vector *q_vector = container_of(napi,
6204                                                      struct igb_q_vector,
6205                                                      napi);
6206         bool clean_complete = true;
6207
6208 #ifdef CONFIG_IGB_DCA
6209         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6210                 igb_update_dca(q_vector);
6211 #endif
6212         if (q_vector->tx.ring)
6213                 clean_complete = igb_clean_tx_irq(q_vector);
6214
6215         if (q_vector->rx.ring)
6216                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6217
6218         /* If all work not completed, return budget and keep polling */
6219         if (!clean_complete)
6220                 return budget;
6221
6222         /* If not enough Rx work done, exit the polling mode */
6223         napi_complete(napi);
6224         igb_ring_irq_enable(q_vector);
6225
6226         return 0;
6227 }
6228
6229 /**
6230  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6231  *  @q_vector: pointer to q_vector containing needed info
6232  *
6233  *  returns true if ring is completely cleaned
6234  **/
6235 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6236 {
6237         struct igb_adapter *adapter = q_vector->adapter;
6238         struct igb_ring *tx_ring = q_vector->tx.ring;
6239         struct igb_tx_buffer *tx_buffer;
6240         union e1000_adv_tx_desc *tx_desc;
6241         unsigned int total_bytes = 0, total_packets = 0;
6242         unsigned int budget = q_vector->tx.work_limit;
6243         unsigned int i = tx_ring->next_to_clean;
6244
6245         if (test_bit(__IGB_DOWN, &adapter->state))
6246                 return true;
6247
6248         tx_buffer = &tx_ring->tx_buffer_info[i];
6249         tx_desc = IGB_TX_DESC(tx_ring, i);
6250         i -= tx_ring->count;
6251
6252         do {
6253                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6254
6255                 /* if next_to_watch is not set then there is no work pending */
6256                 if (!eop_desc)
6257                         break;
6258
6259                 /* prevent any other reads prior to eop_desc */
6260                 read_barrier_depends();
6261
6262                 /* if DD is not set pending work has not been completed */
6263                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6264                         break;
6265
6266                 /* clear next_to_watch to prevent false hangs */
6267                 tx_buffer->next_to_watch = NULL;
6268
6269                 /* update the statistics for this packet */
6270                 total_bytes += tx_buffer->bytecount;
6271                 total_packets += tx_buffer->gso_segs;
6272
6273                 /* free the skb */
6274                 dev_kfree_skb_any(tx_buffer->skb);
6275
6276                 /* unmap skb header data */
6277                 dma_unmap_single(tx_ring->dev,
6278                                  dma_unmap_addr(tx_buffer, dma),
6279                                  dma_unmap_len(tx_buffer, len),
6280                                  DMA_TO_DEVICE);
6281
6282                 /* clear tx_buffer data */
6283                 tx_buffer->skb = NULL;
6284                 dma_unmap_len_set(tx_buffer, len, 0);
6285
6286                 /* clear last DMA location and unmap remaining buffers */
6287                 while (tx_desc != eop_desc) {
6288                         tx_buffer++;
6289                         tx_desc++;
6290                         i++;
6291                         if (unlikely(!i)) {
6292                                 i -= tx_ring->count;
6293                                 tx_buffer = tx_ring->tx_buffer_info;
6294                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6295                         }
6296
6297                         /* unmap any remaining paged data */
6298                         if (dma_unmap_len(tx_buffer, len)) {
6299                                 dma_unmap_page(tx_ring->dev,
6300                                                dma_unmap_addr(tx_buffer, dma),
6301                                                dma_unmap_len(tx_buffer, len),
6302                                                DMA_TO_DEVICE);
6303                                 dma_unmap_len_set(tx_buffer, len, 0);
6304                         }
6305                 }
6306
6307                 /* move us one more past the eop_desc for start of next pkt */
6308                 tx_buffer++;
6309                 tx_desc++;
6310                 i++;
6311                 if (unlikely(!i)) {
6312                         i -= tx_ring->count;
6313                         tx_buffer = tx_ring->tx_buffer_info;
6314                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6315                 }
6316
6317                 /* issue prefetch for next Tx descriptor */
6318                 prefetch(tx_desc);
6319
6320                 /* update budget accounting */
6321                 budget--;
6322         } while (likely(budget));
6323
6324         netdev_tx_completed_queue(txring_txq(tx_ring),
6325                                   total_packets, total_bytes);
6326         i += tx_ring->count;
6327         tx_ring->next_to_clean = i;
6328         u64_stats_update_begin(&tx_ring->tx_syncp);
6329         tx_ring->tx_stats.bytes += total_bytes;
6330         tx_ring->tx_stats.packets += total_packets;
6331         u64_stats_update_end(&tx_ring->tx_syncp);
6332         q_vector->tx.total_bytes += total_bytes;
6333         q_vector->tx.total_packets += total_packets;
6334
6335         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6336                 struct e1000_hw *hw = &adapter->hw;
6337
6338                 /* Detect a transmit hang in hardware, this serializes the
6339                  * check with the clearing of time_stamp and movement of i
6340                  */
6341                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6342                 if (tx_buffer->next_to_watch &&
6343                     time_after(jiffies, tx_buffer->time_stamp +
6344                                (adapter->tx_timeout_factor * HZ)) &&
6345                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6346
6347                         /* detected Tx unit hang */
6348                         dev_err(tx_ring->dev,
6349                                 "Detected Tx Unit Hang\n"
6350                                 "  Tx Queue             <%d>\n"
6351                                 "  TDH                  <%x>\n"
6352                                 "  TDT                  <%x>\n"
6353                                 "  next_to_use          <%x>\n"
6354                                 "  next_to_clean        <%x>\n"
6355                                 "buffer_info[next_to_clean]\n"
6356                                 "  time_stamp           <%lx>\n"
6357                                 "  next_to_watch        <%p>\n"
6358                                 "  jiffies              <%lx>\n"
6359                                 "  desc.status          <%x>\n",
6360                                 tx_ring->queue_index,
6361                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6362                                 readl(tx_ring->tail),
6363                                 tx_ring->next_to_use,
6364                                 tx_ring->next_to_clean,
6365                                 tx_buffer->time_stamp,
6366                                 tx_buffer->next_to_watch,
6367                                 jiffies,
6368                                 tx_buffer->next_to_watch->wb.status);
6369                         netif_stop_subqueue(tx_ring->netdev,
6370                                             tx_ring->queue_index);
6371
6372                         /* we are about to reset, no point in enabling stuff */
6373                         return true;
6374                 }
6375         }
6376
6377 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6378         if (unlikely(total_packets &&
6379             netif_carrier_ok(tx_ring->netdev) &&
6380             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6381                 /* Make sure that anybody stopping the queue after this
6382                  * sees the new next_to_clean.
6383                  */
6384                 smp_mb();
6385                 if (__netif_subqueue_stopped(tx_ring->netdev,
6386                                              tx_ring->queue_index) &&
6387                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6388                         netif_wake_subqueue(tx_ring->netdev,
6389                                             tx_ring->queue_index);
6390
6391                         u64_stats_update_begin(&tx_ring->tx_syncp);
6392                         tx_ring->tx_stats.restart_queue++;
6393                         u64_stats_update_end(&tx_ring->tx_syncp);
6394                 }
6395         }
6396
6397         return !!budget;
6398 }
6399
6400 /**
6401  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6402  *  @rx_ring: rx descriptor ring to store buffers on
6403  *  @old_buff: donor buffer to have page reused
6404  *
6405  *  Synchronizes page for reuse by the adapter
6406  **/
6407 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6408                               struct igb_rx_buffer *old_buff)
6409 {
6410         struct igb_rx_buffer *new_buff;
6411         u16 nta = rx_ring->next_to_alloc;
6412
6413         new_buff = &rx_ring->rx_buffer_info[nta];
6414
6415         /* update, and store next to alloc */
6416         nta++;
6417         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6418
6419         /* transfer page from old buffer to new buffer */
6420         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6421
6422         /* sync the buffer for use by the device */
6423         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6424                                          old_buff->page_offset,
6425                                          IGB_RX_BUFSZ,
6426                                          DMA_FROM_DEVICE);
6427 }
6428
6429 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6430                                   struct page *page,
6431                                   unsigned int truesize)
6432 {
6433         /* avoid re-using remote pages */
6434         if (unlikely(page_to_nid(page) != numa_node_id()))
6435                 return false;
6436
6437 #if (PAGE_SIZE < 8192)
6438         /* if we are only owner of page we can reuse it */
6439         if (unlikely(page_count(page) != 1))
6440                 return false;
6441
6442         /* flip page offset to other buffer */
6443         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6444
6445         /* since we are the only owner of the page and we need to
6446          * increment it, just set the value to 2 in order to avoid
6447          * an unnecessary locked operation
6448          */
6449         atomic_set(&page->_count, 2);
6450 #else
6451         /* move offset up to the next cache line */
6452         rx_buffer->page_offset += truesize;
6453
6454         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6455                 return false;
6456
6457         /* bump ref count on page before it is given to the stack */
6458         get_page(page);
6459 #endif
6460
6461         return true;
6462 }
6463
6464 /**
6465  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6466  *  @rx_ring: rx descriptor ring to transact packets on
6467  *  @rx_buffer: buffer containing page to add
6468  *  @rx_desc: descriptor containing length of buffer written by hardware
6469  *  @skb: sk_buff to place the data into
6470  *
6471  *  This function will add the data contained in rx_buffer->page to the skb.
6472  *  This is done either through a direct copy if the data in the buffer is
6473  *  less than the skb header size, otherwise it will just attach the page as
6474  *  a frag to the skb.
6475  *
6476  *  The function will then update the page offset if necessary and return
6477  *  true if the buffer can be reused by the adapter.
6478  **/
6479 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6480                             struct igb_rx_buffer *rx_buffer,
6481                             union e1000_adv_rx_desc *rx_desc,
6482                             struct sk_buff *skb)
6483 {
6484         struct page *page = rx_buffer->page;
6485         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6486 #if (PAGE_SIZE < 8192)
6487         unsigned int truesize = IGB_RX_BUFSZ;
6488 #else
6489         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6490 #endif
6491
6492         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6493                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6494
6495                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6496                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6497                         va += IGB_TS_HDR_LEN;
6498                         size -= IGB_TS_HDR_LEN;
6499                 }
6500
6501                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6502
6503                 /* we can reuse buffer as-is, just make sure it is local */
6504                 if (likely(page_to_nid(page) == numa_node_id()))
6505                         return true;
6506
6507                 /* this page cannot be reused so discard it */
6508                 put_page(page);
6509                 return false;
6510         }
6511
6512         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6513                         rx_buffer->page_offset, size, truesize);
6514
6515         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6516 }
6517
6518 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6519                                            union e1000_adv_rx_desc *rx_desc,
6520                                            struct sk_buff *skb)
6521 {
6522         struct igb_rx_buffer *rx_buffer;
6523         struct page *page;
6524
6525         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6526
6527         page = rx_buffer->page;
6528         prefetchw(page);
6529
6530         if (likely(!skb)) {
6531                 void *page_addr = page_address(page) +
6532                                   rx_buffer->page_offset;
6533
6534                 /* prefetch first cache line of first page */
6535                 prefetch(page_addr);
6536 #if L1_CACHE_BYTES < 128
6537                 prefetch(page_addr + L1_CACHE_BYTES);
6538 #endif
6539
6540                 /* allocate a skb to store the frags */
6541                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6542                                                 IGB_RX_HDR_LEN);
6543                 if (unlikely(!skb)) {
6544                         rx_ring->rx_stats.alloc_failed++;
6545                         return NULL;
6546                 }
6547
6548                 /* we will be copying header into skb->data in
6549                  * pskb_may_pull so it is in our interest to prefetch
6550                  * it now to avoid a possible cache miss
6551                  */
6552                 prefetchw(skb->data);
6553         }
6554
6555         /* we are reusing so sync this buffer for CPU use */
6556         dma_sync_single_range_for_cpu(rx_ring->dev,
6557                                       rx_buffer->dma,
6558                                       rx_buffer->page_offset,
6559                                       IGB_RX_BUFSZ,
6560                                       DMA_FROM_DEVICE);
6561
6562         /* pull page into skb */
6563         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6564                 /* hand second half of page back to the ring */
6565                 igb_reuse_rx_page(rx_ring, rx_buffer);
6566         } else {
6567                 /* we are not reusing the buffer so unmap it */
6568                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6569                                PAGE_SIZE, DMA_FROM_DEVICE);
6570         }
6571
6572         /* clear contents of rx_buffer */
6573         rx_buffer->page = NULL;
6574
6575         return skb;
6576 }
6577
6578 static inline void igb_rx_checksum(struct igb_ring *ring,
6579                                    union e1000_adv_rx_desc *rx_desc,
6580                                    struct sk_buff *skb)
6581 {
6582         skb_checksum_none_assert(skb);
6583
6584         /* Ignore Checksum bit is set */
6585         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6586                 return;
6587
6588         /* Rx checksum disabled via ethtool */
6589         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6590                 return;
6591
6592         /* TCP/UDP checksum error bit is set */
6593         if (igb_test_staterr(rx_desc,
6594                              E1000_RXDEXT_STATERR_TCPE |
6595                              E1000_RXDEXT_STATERR_IPE)) {
6596                 /* work around errata with sctp packets where the TCPE aka
6597                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6598                  * packets, (aka let the stack check the crc32c)
6599                  */
6600                 if (!((skb->len == 60) &&
6601                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6602                         u64_stats_update_begin(&ring->rx_syncp);
6603                         ring->rx_stats.csum_err++;
6604                         u64_stats_update_end(&ring->rx_syncp);
6605                 }
6606                 /* let the stack verify checksum errors */
6607                 return;
6608         }
6609         /* It must be a TCP or UDP packet with a valid checksum */
6610         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6611                                       E1000_RXD_STAT_UDPCS))
6612                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6613
6614         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6615                 le32_to_cpu(rx_desc->wb.upper.status_error));
6616 }
6617
6618 static inline void igb_rx_hash(struct igb_ring *ring,
6619                                union e1000_adv_rx_desc *rx_desc,
6620                                struct sk_buff *skb)
6621 {
6622         if (ring->netdev->features & NETIF_F_RXHASH)
6623                 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6624 }
6625
6626 /**
6627  *  igb_is_non_eop - process handling of non-EOP buffers
6628  *  @rx_ring: Rx ring being processed
6629  *  @rx_desc: Rx descriptor for current buffer
6630  *  @skb: current socket buffer containing buffer in progress
6631  *
6632  *  This function updates next to clean.  If the buffer is an EOP buffer
6633  *  this function exits returning false, otherwise it will place the
6634  *  sk_buff in the next buffer to be chained and return true indicating
6635  *  that this is in fact a non-EOP buffer.
6636  **/
6637 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6638                            union e1000_adv_rx_desc *rx_desc)
6639 {
6640         u32 ntc = rx_ring->next_to_clean + 1;
6641
6642         /* fetch, update, and store next to clean */
6643         ntc = (ntc < rx_ring->count) ? ntc : 0;
6644         rx_ring->next_to_clean = ntc;
6645
6646         prefetch(IGB_RX_DESC(rx_ring, ntc));
6647
6648         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6649                 return false;
6650
6651         return true;
6652 }
6653
6654 /**
6655  *  igb_get_headlen - determine size of header for LRO/GRO
6656  *  @data: pointer to the start of the headers
6657  *  @max_len: total length of section to find headers in
6658  *
6659  *  This function is meant to determine the length of headers that will
6660  *  be recognized by hardware for LRO, and GRO offloads.  The main
6661  *  motivation of doing this is to only perform one pull for IPv4 TCP
6662  *  packets so that we can do basic things like calculating the gso_size
6663  *  based on the average data per packet.
6664  **/
6665 static unsigned int igb_get_headlen(unsigned char *data,
6666                                     unsigned int max_len)
6667 {
6668         union {
6669                 unsigned char *network;
6670                 /* l2 headers */
6671                 struct ethhdr *eth;
6672                 struct vlan_hdr *vlan;
6673                 /* l3 headers */
6674                 struct iphdr *ipv4;
6675                 struct ipv6hdr *ipv6;
6676         } hdr;
6677         __be16 protocol;
6678         u8 nexthdr = 0; /* default to not TCP */
6679         u8 hlen;
6680
6681         /* this should never happen, but better safe than sorry */
6682         if (max_len < ETH_HLEN)
6683                 return max_len;
6684
6685         /* initialize network frame pointer */
6686         hdr.network = data;
6687
6688         /* set first protocol and move network header forward */
6689         protocol = hdr.eth->h_proto;
6690         hdr.network += ETH_HLEN;
6691
6692         /* handle any vlan tag if present */
6693         if (protocol == __constant_htons(ETH_P_8021Q)) {
6694                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6695                         return max_len;
6696
6697                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6698                 hdr.network += VLAN_HLEN;
6699         }
6700
6701         /* handle L3 protocols */
6702         if (protocol == __constant_htons(ETH_P_IP)) {
6703                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6704                         return max_len;
6705
6706                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6707                 hlen = (hdr.network[0] & 0x0F) << 2;
6708
6709                 /* verify hlen meets minimum size requirements */
6710                 if (hlen < sizeof(struct iphdr))
6711                         return hdr.network - data;
6712
6713                 /* record next protocol if header is present */
6714                 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6715                         nexthdr = hdr.ipv4->protocol;
6716         } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6717                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6718                         return max_len;
6719
6720                 /* record next protocol */
6721                 nexthdr = hdr.ipv6->nexthdr;
6722                 hlen = sizeof(struct ipv6hdr);
6723         } else {
6724                 return hdr.network - data;
6725         }
6726
6727         /* relocate pointer to start of L4 header */
6728         hdr.network += hlen;
6729
6730         /* finally sort out TCP */
6731         if (nexthdr == IPPROTO_TCP) {
6732                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6733                         return max_len;
6734
6735                 /* access doff as a u8 to avoid unaligned access on ia64 */
6736                 hlen = (hdr.network[12] & 0xF0) >> 2;
6737
6738                 /* verify hlen meets minimum size requirements */
6739                 if (hlen < sizeof(struct tcphdr))
6740                         return hdr.network - data;
6741
6742                 hdr.network += hlen;
6743         } else if (nexthdr == IPPROTO_UDP) {
6744                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6745                         return max_len;
6746
6747                 hdr.network += sizeof(struct udphdr);
6748         }
6749
6750         /* If everything has gone correctly hdr.network should be the
6751          * data section of the packet and will be the end of the header.
6752          * If not then it probably represents the end of the last recognized
6753          * header.
6754          */
6755         if ((hdr.network - data) < max_len)
6756                 return hdr.network - data;
6757         else
6758                 return max_len;
6759 }
6760
6761 /**
6762  *  igb_pull_tail - igb specific version of skb_pull_tail
6763  *  @rx_ring: rx descriptor ring packet is being transacted on
6764  *  @rx_desc: pointer to the EOP Rx descriptor
6765  *  @skb: pointer to current skb being adjusted
6766  *
6767  *  This function is an igb specific version of __pskb_pull_tail.  The
6768  *  main difference between this version and the original function is that
6769  *  this function can make several assumptions about the state of things
6770  *  that allow for significant optimizations versus the standard function.
6771  *  As a result we can do things like drop a frag and maintain an accurate
6772  *  truesize for the skb.
6773  */
6774 static void igb_pull_tail(struct igb_ring *rx_ring,
6775                           union e1000_adv_rx_desc *rx_desc,
6776                           struct sk_buff *skb)
6777 {
6778         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6779         unsigned char *va;
6780         unsigned int pull_len;
6781
6782         /* it is valid to use page_address instead of kmap since we are
6783          * working with pages allocated out of the lomem pool per
6784          * alloc_page(GFP_ATOMIC)
6785          */
6786         va = skb_frag_address(frag);
6787
6788         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6789                 /* retrieve timestamp from buffer */
6790                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6791
6792                 /* update pointers to remove timestamp header */
6793                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6794                 frag->page_offset += IGB_TS_HDR_LEN;
6795                 skb->data_len -= IGB_TS_HDR_LEN;
6796                 skb->len -= IGB_TS_HDR_LEN;
6797
6798                 /* move va to start of packet data */
6799                 va += IGB_TS_HDR_LEN;
6800         }
6801
6802         /* we need the header to contain the greater of either ETH_HLEN or
6803          * 60 bytes if the skb->len is less than 60 for skb_pad.
6804          */
6805         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6806
6807         /* align pull length to size of long to optimize memcpy performance */
6808         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6809
6810         /* update all of the pointers */
6811         skb_frag_size_sub(frag, pull_len);
6812         frag->page_offset += pull_len;
6813         skb->data_len -= pull_len;
6814         skb->tail += pull_len;
6815 }
6816
6817 /**
6818  *  igb_cleanup_headers - Correct corrupted or empty headers
6819  *  @rx_ring: rx descriptor ring packet is being transacted on
6820  *  @rx_desc: pointer to the EOP Rx descriptor
6821  *  @skb: pointer to current skb being fixed
6822  *
6823  *  Address the case where we are pulling data in on pages only
6824  *  and as such no data is present in the skb header.
6825  *
6826  *  In addition if skb is not at least 60 bytes we need to pad it so that
6827  *  it is large enough to qualify as a valid Ethernet frame.
6828  *
6829  *  Returns true if an error was encountered and skb was freed.
6830  **/
6831 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6832                                 union e1000_adv_rx_desc *rx_desc,
6833                                 struct sk_buff *skb)
6834 {
6835         if (unlikely((igb_test_staterr(rx_desc,
6836                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6837                 struct net_device *netdev = rx_ring->netdev;
6838                 if (!(netdev->features & NETIF_F_RXALL)) {
6839                         dev_kfree_skb_any(skb);
6840                         return true;
6841                 }
6842         }
6843
6844         /* place header in linear portion of buffer */
6845         if (skb_is_nonlinear(skb))
6846                 igb_pull_tail(rx_ring, rx_desc, skb);
6847
6848         /* if skb_pad returns an error the skb was freed */
6849         if (unlikely(skb->len < 60)) {
6850                 int pad_len = 60 - skb->len;
6851
6852                 if (skb_pad(skb, pad_len))
6853                         return true;
6854                 __skb_put(skb, pad_len);
6855         }
6856
6857         return false;
6858 }
6859
6860 /**
6861  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6862  *  @rx_ring: rx descriptor ring packet is being transacted on
6863  *  @rx_desc: pointer to the EOP Rx descriptor
6864  *  @skb: pointer to current skb being populated
6865  *
6866  *  This function checks the ring, descriptor, and packet information in
6867  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6868  *  other fields within the skb.
6869  **/
6870 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6871                                    union e1000_adv_rx_desc *rx_desc,
6872                                    struct sk_buff *skb)
6873 {
6874         struct net_device *dev = rx_ring->netdev;
6875
6876         igb_rx_hash(rx_ring, rx_desc, skb);
6877
6878         igb_rx_checksum(rx_ring, rx_desc, skb);
6879
6880         igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6881
6882         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6883             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6884                 u16 vid;
6885                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6886                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6887                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6888                 else
6889                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6890
6891                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6892         }
6893
6894         skb_record_rx_queue(skb, rx_ring->queue_index);
6895
6896         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6897 }
6898
6899 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6900 {
6901         struct igb_ring *rx_ring = q_vector->rx.ring;
6902         struct sk_buff *skb = rx_ring->skb;
6903         unsigned int total_bytes = 0, total_packets = 0;
6904         u16 cleaned_count = igb_desc_unused(rx_ring);
6905
6906         do {
6907                 union e1000_adv_rx_desc *rx_desc;
6908
6909                 /* return some buffers to hardware, one at a time is too slow */
6910                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6911                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6912                         cleaned_count = 0;
6913                 }
6914
6915                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6916
6917                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6918                         break;
6919
6920                 /* This memory barrier is needed to keep us from reading
6921                  * any other fields out of the rx_desc until we know the
6922                  * RXD_STAT_DD bit is set
6923                  */
6924                 rmb();
6925
6926                 /* retrieve a buffer from the ring */
6927                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6928
6929                 /* exit if we failed to retrieve a buffer */
6930                 if (!skb)
6931                         break;
6932
6933                 cleaned_count++;
6934
6935                 /* fetch next buffer in frame if non-eop */
6936                 if (igb_is_non_eop(rx_ring, rx_desc))
6937                         continue;
6938
6939                 /* verify the packet layout is correct */
6940                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6941                         skb = NULL;
6942                         continue;
6943                 }
6944
6945                 /* probably a little skewed due to removing CRC */
6946                 total_bytes += skb->len;
6947
6948                 /* populate checksum, timestamp, VLAN, and protocol */
6949                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6950
6951                 napi_gro_receive(&q_vector->napi, skb);
6952
6953                 /* reset skb pointer */
6954                 skb = NULL;
6955
6956                 /* update budget accounting */
6957                 total_packets++;
6958         } while (likely(total_packets < budget));
6959
6960         /* place incomplete frames back on ring for completion */
6961         rx_ring->skb = skb;
6962
6963         u64_stats_update_begin(&rx_ring->rx_syncp);
6964         rx_ring->rx_stats.packets += total_packets;
6965         rx_ring->rx_stats.bytes += total_bytes;
6966         u64_stats_update_end(&rx_ring->rx_syncp);
6967         q_vector->rx.total_packets += total_packets;
6968         q_vector->rx.total_bytes += total_bytes;
6969
6970         if (cleaned_count)
6971                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6972
6973         return (total_packets < budget);
6974 }
6975
6976 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6977                                   struct igb_rx_buffer *bi)
6978 {
6979         struct page *page = bi->page;
6980         dma_addr_t dma;
6981
6982         /* since we are recycling buffers we should seldom need to alloc */
6983         if (likely(page))
6984                 return true;
6985
6986         /* alloc new page for storage */
6987         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6988         if (unlikely(!page)) {
6989                 rx_ring->rx_stats.alloc_failed++;
6990                 return false;
6991         }
6992
6993         /* map page for use */
6994         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6995
6996         /* if mapping failed free memory back to system since
6997          * there isn't much point in holding memory we can't use
6998          */
6999         if (dma_mapping_error(rx_ring->dev, dma)) {
7000                 __free_page(page);
7001
7002                 rx_ring->rx_stats.alloc_failed++;
7003                 return false;
7004         }
7005
7006         bi->dma = dma;
7007         bi->page = page;
7008         bi->page_offset = 0;
7009
7010         return true;
7011 }
7012
7013 /**
7014  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7015  *  @adapter: address of board private structure
7016  **/
7017 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7018 {
7019         union e1000_adv_rx_desc *rx_desc;
7020         struct igb_rx_buffer *bi;
7021         u16 i = rx_ring->next_to_use;
7022
7023         /* nothing to do */
7024         if (!cleaned_count)
7025                 return;
7026
7027         rx_desc = IGB_RX_DESC(rx_ring, i);
7028         bi = &rx_ring->rx_buffer_info[i];
7029         i -= rx_ring->count;
7030
7031         do {
7032                 if (!igb_alloc_mapped_page(rx_ring, bi))
7033                         break;
7034
7035                 /* Refresh the desc even if buffer_addrs didn't change
7036                  * because each write-back erases this info.
7037                  */
7038                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7039
7040                 rx_desc++;
7041                 bi++;
7042                 i++;
7043                 if (unlikely(!i)) {
7044                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7045                         bi = rx_ring->rx_buffer_info;
7046                         i -= rx_ring->count;
7047                 }
7048
7049                 /* clear the hdr_addr for the next_to_use descriptor */
7050                 rx_desc->read.hdr_addr = 0;
7051
7052                 cleaned_count--;
7053         } while (cleaned_count);
7054
7055         i += rx_ring->count;
7056
7057         if (rx_ring->next_to_use != i) {
7058                 /* record the next descriptor to use */
7059                 rx_ring->next_to_use = i;
7060
7061                 /* update next to alloc since we have filled the ring */
7062                 rx_ring->next_to_alloc = i;
7063
7064                 /* Force memory writes to complete before letting h/w
7065                  * know there are new descriptors to fetch.  (Only
7066                  * applicable for weak-ordered memory model archs,
7067                  * such as IA-64).
7068                  */
7069                 wmb();
7070                 writel(i, rx_ring->tail);
7071         }
7072 }
7073
7074 /**
7075  * igb_mii_ioctl -
7076  * @netdev:
7077  * @ifreq:
7078  * @cmd:
7079  **/
7080 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7081 {
7082         struct igb_adapter *adapter = netdev_priv(netdev);
7083         struct mii_ioctl_data *data = if_mii(ifr);
7084
7085         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7086                 return -EOPNOTSUPP;
7087
7088         switch (cmd) {
7089         case SIOCGMIIPHY:
7090                 data->phy_id = adapter->hw.phy.addr;
7091                 break;
7092         case SIOCGMIIREG:
7093                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7094                                      &data->val_out))
7095                         return -EIO;
7096                 break;
7097         case SIOCSMIIREG:
7098         default:
7099                 return -EOPNOTSUPP;
7100         }
7101         return 0;
7102 }
7103
7104 /**
7105  * igb_ioctl -
7106  * @netdev:
7107  * @ifreq:
7108  * @cmd:
7109  **/
7110 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7111 {
7112         switch (cmd) {
7113         case SIOCGMIIPHY:
7114         case SIOCGMIIREG:
7115         case SIOCSMIIREG:
7116                 return igb_mii_ioctl(netdev, ifr, cmd);
7117         case SIOCSHWTSTAMP:
7118                 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
7119         default:
7120                 return -EOPNOTSUPP;
7121         }
7122 }
7123
7124 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7125 {
7126         struct igb_adapter *adapter = hw->back;
7127
7128         if (pcie_capability_read_word(adapter->pdev, reg, value))
7129                 return -E1000_ERR_CONFIG;
7130
7131         return 0;
7132 }
7133
7134 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7135 {
7136         struct igb_adapter *adapter = hw->back;
7137
7138         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7139                 return -E1000_ERR_CONFIG;
7140
7141         return 0;
7142 }
7143
7144 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7145 {
7146         struct igb_adapter *adapter = netdev_priv(netdev);
7147         struct e1000_hw *hw = &adapter->hw;
7148         u32 ctrl, rctl;
7149         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7150
7151         if (enable) {
7152                 /* enable VLAN tag insert/strip */
7153                 ctrl = rd32(E1000_CTRL);
7154                 ctrl |= E1000_CTRL_VME;
7155                 wr32(E1000_CTRL, ctrl);
7156
7157                 /* Disable CFI check */
7158                 rctl = rd32(E1000_RCTL);
7159                 rctl &= ~E1000_RCTL_CFIEN;
7160                 wr32(E1000_RCTL, rctl);
7161         } else {
7162                 /* disable VLAN tag insert/strip */
7163                 ctrl = rd32(E1000_CTRL);
7164                 ctrl &= ~E1000_CTRL_VME;
7165                 wr32(E1000_CTRL, ctrl);
7166         }
7167
7168         igb_rlpml_set(adapter);
7169 }
7170
7171 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7172                                __be16 proto, u16 vid)
7173 {
7174         struct igb_adapter *adapter = netdev_priv(netdev);
7175         struct e1000_hw *hw = &adapter->hw;
7176         int pf_id = adapter->vfs_allocated_count;
7177
7178         /* attempt to add filter to vlvf array */
7179         igb_vlvf_set(adapter, vid, true, pf_id);
7180
7181         /* add the filter since PF can receive vlans w/o entry in vlvf */
7182         igb_vfta_set(hw, vid, true);
7183
7184         set_bit(vid, adapter->active_vlans);
7185
7186         return 0;
7187 }
7188
7189 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7190                                 __be16 proto, u16 vid)
7191 {
7192         struct igb_adapter *adapter = netdev_priv(netdev);
7193         struct e1000_hw *hw = &adapter->hw;
7194         int pf_id = adapter->vfs_allocated_count;
7195         s32 err;
7196
7197         /* remove vlan from VLVF table array */
7198         err = igb_vlvf_set(adapter, vid, false, pf_id);
7199
7200         /* if vid was not present in VLVF just remove it from table */
7201         if (err)
7202                 igb_vfta_set(hw, vid, false);
7203
7204         clear_bit(vid, adapter->active_vlans);
7205
7206         return 0;
7207 }
7208
7209 static void igb_restore_vlan(struct igb_adapter *adapter)
7210 {
7211         u16 vid;
7212
7213         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7214
7215         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7216                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7217 }
7218
7219 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7220 {
7221         struct pci_dev *pdev = adapter->pdev;
7222         struct e1000_mac_info *mac = &adapter->hw.mac;
7223
7224         mac->autoneg = 0;
7225
7226         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7227          * for the switch() below to work
7228          */
7229         if ((spd & 1) || (dplx & ~1))
7230                 goto err_inval;
7231
7232         /* Fiber NIC's only allow 1000 gbps Full duplex
7233          * and 100Mbps Full duplex for 100baseFx sfp
7234          */
7235         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7236                 switch (spd + dplx) {
7237                 case SPEED_10 + DUPLEX_HALF:
7238                 case SPEED_10 + DUPLEX_FULL:
7239                 case SPEED_100 + DUPLEX_HALF:
7240                         goto err_inval;
7241                 default:
7242                         break;
7243                 }
7244         }
7245
7246         switch (spd + dplx) {
7247         case SPEED_10 + DUPLEX_HALF:
7248                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7249                 break;
7250         case SPEED_10 + DUPLEX_FULL:
7251                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7252                 break;
7253         case SPEED_100 + DUPLEX_HALF:
7254                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7255                 break;
7256         case SPEED_100 + DUPLEX_FULL:
7257                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7258                 break;
7259         case SPEED_1000 + DUPLEX_FULL:
7260                 mac->autoneg = 1;
7261                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7262                 break;
7263         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7264         default:
7265                 goto err_inval;
7266         }
7267
7268         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7269         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7270
7271         return 0;
7272
7273 err_inval:
7274         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7275         return -EINVAL;
7276 }
7277
7278 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7279                           bool runtime)
7280 {
7281         struct net_device *netdev = pci_get_drvdata(pdev);
7282         struct igb_adapter *adapter = netdev_priv(netdev);
7283         struct e1000_hw *hw = &adapter->hw;
7284         u32 ctrl, rctl, status;
7285         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7286 #ifdef CONFIG_PM
7287         int retval = 0;
7288 #endif
7289
7290         netif_device_detach(netdev);
7291
7292         if (netif_running(netdev))
7293                 __igb_close(netdev, true);
7294
7295         igb_clear_interrupt_scheme(adapter);
7296
7297 #ifdef CONFIG_PM
7298         retval = pci_save_state(pdev);
7299         if (retval)
7300                 return retval;
7301 #endif
7302
7303         status = rd32(E1000_STATUS);
7304         if (status & E1000_STATUS_LU)
7305                 wufc &= ~E1000_WUFC_LNKC;
7306
7307         if (wufc) {
7308                 igb_setup_rctl(adapter);
7309                 igb_set_rx_mode(netdev);
7310
7311                 /* turn on all-multi mode if wake on multicast is enabled */
7312                 if (wufc & E1000_WUFC_MC) {
7313                         rctl = rd32(E1000_RCTL);
7314                         rctl |= E1000_RCTL_MPE;
7315                         wr32(E1000_RCTL, rctl);
7316                 }
7317
7318                 ctrl = rd32(E1000_CTRL);
7319                 /* advertise wake from D3Cold */
7320                 #define E1000_CTRL_ADVD3WUC 0x00100000
7321                 /* phy power management enable */
7322                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7323                 ctrl |= E1000_CTRL_ADVD3WUC;
7324                 wr32(E1000_CTRL, ctrl);
7325
7326                 /* Allow time for pending master requests to run */
7327                 igb_disable_pcie_master(hw);
7328
7329                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7330                 wr32(E1000_WUFC, wufc);
7331         } else {
7332                 wr32(E1000_WUC, 0);
7333                 wr32(E1000_WUFC, 0);
7334         }
7335
7336         *enable_wake = wufc || adapter->en_mng_pt;
7337         if (!*enable_wake)
7338                 igb_power_down_link(adapter);
7339         else
7340                 igb_power_up_link(adapter);
7341
7342         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7343          * would have already happened in close and is redundant.
7344          */
7345         igb_release_hw_control(adapter);
7346
7347         pci_disable_device(pdev);
7348
7349         return 0;
7350 }
7351
7352 #ifdef CONFIG_PM
7353 #ifdef CONFIG_PM_SLEEP
7354 static int igb_suspend(struct device *dev)
7355 {
7356         int retval;
7357         bool wake;
7358         struct pci_dev *pdev = to_pci_dev(dev);
7359
7360         retval = __igb_shutdown(pdev, &wake, 0);
7361         if (retval)
7362                 return retval;
7363
7364         if (wake) {
7365                 pci_prepare_to_sleep(pdev);
7366         } else {
7367                 pci_wake_from_d3(pdev, false);
7368                 pci_set_power_state(pdev, PCI_D3hot);
7369         }
7370
7371         return 0;
7372 }
7373 #endif /* CONFIG_PM_SLEEP */
7374
7375 static int igb_resume(struct device *dev)
7376 {
7377         struct pci_dev *pdev = to_pci_dev(dev);
7378         struct net_device *netdev = pci_get_drvdata(pdev);
7379         struct igb_adapter *adapter = netdev_priv(netdev);
7380         struct e1000_hw *hw = &adapter->hw;
7381         u32 err;
7382
7383         pci_set_power_state(pdev, PCI_D0);
7384         pci_restore_state(pdev);
7385         pci_save_state(pdev);
7386
7387         err = pci_enable_device_mem(pdev);
7388         if (err) {
7389                 dev_err(&pdev->dev,
7390                         "igb: Cannot enable PCI device from suspend\n");
7391                 return err;
7392         }
7393         pci_set_master(pdev);
7394
7395         pci_enable_wake(pdev, PCI_D3hot, 0);
7396         pci_enable_wake(pdev, PCI_D3cold, 0);
7397
7398         if (igb_init_interrupt_scheme(adapter, true)) {
7399                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7400                 return -ENOMEM;
7401         }
7402
7403         igb_reset(adapter);
7404
7405         /* let the f/w know that the h/w is now under the control of the
7406          * driver.
7407          */
7408         igb_get_hw_control(adapter);
7409
7410         wr32(E1000_WUS, ~0);
7411
7412         if (netdev->flags & IFF_UP) {
7413                 rtnl_lock();
7414                 err = __igb_open(netdev, true);
7415                 rtnl_unlock();
7416                 if (err)
7417                         return err;
7418         }
7419
7420         netif_device_attach(netdev);
7421         return 0;
7422 }
7423
7424 #ifdef CONFIG_PM_RUNTIME
7425 static int igb_runtime_idle(struct device *dev)
7426 {
7427         struct pci_dev *pdev = to_pci_dev(dev);
7428         struct net_device *netdev = pci_get_drvdata(pdev);
7429         struct igb_adapter *adapter = netdev_priv(netdev);
7430
7431         if (!igb_has_link(adapter))
7432                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7433
7434         return -EBUSY;
7435 }
7436
7437 static int igb_runtime_suspend(struct device *dev)
7438 {
7439         struct pci_dev *pdev = to_pci_dev(dev);
7440         int retval;
7441         bool wake;
7442
7443         retval = __igb_shutdown(pdev, &wake, 1);
7444         if (retval)
7445                 return retval;
7446
7447         if (wake) {
7448                 pci_prepare_to_sleep(pdev);
7449         } else {
7450                 pci_wake_from_d3(pdev, false);
7451                 pci_set_power_state(pdev, PCI_D3hot);
7452         }
7453
7454         return 0;
7455 }
7456
7457 static int igb_runtime_resume(struct device *dev)
7458 {
7459         return igb_resume(dev);
7460 }
7461 #endif /* CONFIG_PM_RUNTIME */
7462 #endif
7463
7464 static void igb_shutdown(struct pci_dev *pdev)
7465 {
7466         bool wake;
7467
7468         __igb_shutdown(pdev, &wake, 0);
7469
7470         if (system_state == SYSTEM_POWER_OFF) {
7471                 pci_wake_from_d3(pdev, wake);
7472                 pci_set_power_state(pdev, PCI_D3hot);
7473         }
7474 }
7475
7476 #ifdef CONFIG_PCI_IOV
7477 static int igb_sriov_reinit(struct pci_dev *dev)
7478 {
7479         struct net_device *netdev = pci_get_drvdata(dev);
7480         struct igb_adapter *adapter = netdev_priv(netdev);
7481         struct pci_dev *pdev = adapter->pdev;
7482
7483         rtnl_lock();
7484
7485         if (netif_running(netdev))
7486                 igb_close(netdev);
7487
7488         igb_clear_interrupt_scheme(adapter);
7489
7490         igb_init_queue_configuration(adapter);
7491
7492         if (igb_init_interrupt_scheme(adapter, true)) {
7493                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7494                 return -ENOMEM;
7495         }
7496
7497         if (netif_running(netdev))
7498                 igb_open(netdev);
7499
7500         rtnl_unlock();
7501
7502         return 0;
7503 }
7504
7505 static int igb_pci_disable_sriov(struct pci_dev *dev)
7506 {
7507         int err = igb_disable_sriov(dev);
7508
7509         if (!err)
7510                 err = igb_sriov_reinit(dev);
7511
7512         return err;
7513 }
7514
7515 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7516 {
7517         int err = igb_enable_sriov(dev, num_vfs);
7518
7519         if (err)
7520                 goto out;
7521
7522         err = igb_sriov_reinit(dev);
7523         if (!err)
7524                 return num_vfs;
7525
7526 out:
7527         return err;
7528 }
7529
7530 #endif
7531 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7532 {
7533 #ifdef CONFIG_PCI_IOV
7534         if (num_vfs == 0)
7535                 return igb_pci_disable_sriov(dev);
7536         else
7537                 return igb_pci_enable_sriov(dev, num_vfs);
7538 #endif
7539         return 0;
7540 }
7541
7542 #ifdef CONFIG_NET_POLL_CONTROLLER
7543 /* Polling 'interrupt' - used by things like netconsole to send skbs
7544  * without having to re-enable interrupts. It's not called while
7545  * the interrupt routine is executing.
7546  */
7547 static void igb_netpoll(struct net_device *netdev)
7548 {
7549         struct igb_adapter *adapter = netdev_priv(netdev);
7550         struct e1000_hw *hw = &adapter->hw;
7551         struct igb_q_vector *q_vector;
7552         int i;
7553
7554         for (i = 0; i < adapter->num_q_vectors; i++) {
7555                 q_vector = adapter->q_vector[i];
7556                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7557                         wr32(E1000_EIMC, q_vector->eims_value);
7558                 else
7559                         igb_irq_disable(adapter);
7560                 napi_schedule(&q_vector->napi);
7561         }
7562 }
7563 #endif /* CONFIG_NET_POLL_CONTROLLER */
7564
7565 /**
7566  *  igb_io_error_detected - called when PCI error is detected
7567  *  @pdev: Pointer to PCI device
7568  *  @state: The current pci connection state
7569  *
7570  *  This function is called after a PCI bus error affecting
7571  *  this device has been detected.
7572  **/
7573 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7574                                               pci_channel_state_t state)
7575 {
7576         struct net_device *netdev = pci_get_drvdata(pdev);
7577         struct igb_adapter *adapter = netdev_priv(netdev);
7578
7579         netif_device_detach(netdev);
7580
7581         if (state == pci_channel_io_perm_failure)
7582                 return PCI_ERS_RESULT_DISCONNECT;
7583
7584         if (netif_running(netdev))
7585                 igb_down(adapter);
7586         pci_disable_device(pdev);
7587
7588         /* Request a slot slot reset. */
7589         return PCI_ERS_RESULT_NEED_RESET;
7590 }
7591
7592 /**
7593  *  igb_io_slot_reset - called after the pci bus has been reset.
7594  *  @pdev: Pointer to PCI device
7595  *
7596  *  Restart the card from scratch, as if from a cold-boot. Implementation
7597  *  resembles the first-half of the igb_resume routine.
7598  **/
7599 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7600 {
7601         struct net_device *netdev = pci_get_drvdata(pdev);
7602         struct igb_adapter *adapter = netdev_priv(netdev);
7603         struct e1000_hw *hw = &adapter->hw;
7604         pci_ers_result_t result;
7605         int err;
7606
7607         if (pci_enable_device_mem(pdev)) {
7608                 dev_err(&pdev->dev,
7609                         "Cannot re-enable PCI device after reset.\n");
7610                 result = PCI_ERS_RESULT_DISCONNECT;
7611         } else {
7612                 pci_set_master(pdev);
7613                 pci_restore_state(pdev);
7614                 pci_save_state(pdev);
7615
7616                 pci_enable_wake(pdev, PCI_D3hot, 0);
7617                 pci_enable_wake(pdev, PCI_D3cold, 0);
7618
7619                 igb_reset(adapter);
7620                 wr32(E1000_WUS, ~0);
7621                 result = PCI_ERS_RESULT_RECOVERED;
7622         }
7623
7624         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7625         if (err) {
7626                 dev_err(&pdev->dev,
7627                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7628                         err);
7629                 /* non-fatal, continue */
7630         }
7631
7632         return result;
7633 }
7634
7635 /**
7636  *  igb_io_resume - called when traffic can start flowing again.
7637  *  @pdev: Pointer to PCI device
7638  *
7639  *  This callback is called when the error recovery driver tells us that
7640  *  its OK to resume normal operation. Implementation resembles the
7641  *  second-half of the igb_resume routine.
7642  */
7643 static void igb_io_resume(struct pci_dev *pdev)
7644 {
7645         struct net_device *netdev = pci_get_drvdata(pdev);
7646         struct igb_adapter *adapter = netdev_priv(netdev);
7647
7648         if (netif_running(netdev)) {
7649                 if (igb_up(adapter)) {
7650                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7651                         return;
7652                 }
7653         }
7654
7655         netif_device_attach(netdev);
7656
7657         /* let the f/w know that the h/w is now under the control of the
7658          * driver.
7659          */
7660         igb_get_hw_control(adapter);
7661 }
7662
7663 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7664                              u8 qsel)
7665 {
7666         u32 rar_low, rar_high;
7667         struct e1000_hw *hw = &adapter->hw;
7668
7669         /* HW expects these in little endian so we reverse the byte order
7670          * from network order (big endian) to little endian
7671          */
7672         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7673                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7674         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7675
7676         /* Indicate to hardware the Address is Valid. */
7677         rar_high |= E1000_RAH_AV;
7678
7679         if (hw->mac.type == e1000_82575)
7680                 rar_high |= E1000_RAH_POOL_1 * qsel;
7681         else
7682                 rar_high |= E1000_RAH_POOL_1 << qsel;
7683
7684         wr32(E1000_RAL(index), rar_low);
7685         wrfl();
7686         wr32(E1000_RAH(index), rar_high);
7687         wrfl();
7688 }
7689
7690 static int igb_set_vf_mac(struct igb_adapter *adapter,
7691                           int vf, unsigned char *mac_addr)
7692 {
7693         struct e1000_hw *hw = &adapter->hw;
7694         /* VF MAC addresses start at end of receive addresses and moves
7695          * towards the first, as a result a collision should not be possible
7696          */
7697         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7698
7699         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7700
7701         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7702
7703         return 0;
7704 }
7705
7706 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7707 {
7708         struct igb_adapter *adapter = netdev_priv(netdev);
7709         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7710                 return -EINVAL;
7711         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7712         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7713         dev_info(&adapter->pdev->dev,
7714                  "Reload the VF driver to make this change effective.");
7715         if (test_bit(__IGB_DOWN, &adapter->state)) {
7716                 dev_warn(&adapter->pdev->dev,
7717                          "The VF MAC address has been set, but the PF device is not up.\n");
7718                 dev_warn(&adapter->pdev->dev,
7719                          "Bring the PF device up before attempting to use the VF device.\n");
7720         }
7721         return igb_set_vf_mac(adapter, vf, mac);
7722 }
7723
7724 static int igb_link_mbps(int internal_link_speed)
7725 {
7726         switch (internal_link_speed) {
7727         case SPEED_100:
7728                 return 100;
7729         case SPEED_1000:
7730                 return 1000;
7731         default:
7732                 return 0;
7733         }
7734 }
7735
7736 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7737                                   int link_speed)
7738 {
7739         int rf_dec, rf_int;
7740         u32 bcnrc_val;
7741
7742         if (tx_rate != 0) {
7743                 /* Calculate the rate factor values to set */
7744                 rf_int = link_speed / tx_rate;
7745                 rf_dec = (link_speed - (rf_int * tx_rate));
7746                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7747                          tx_rate;
7748
7749                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7750                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7751                               E1000_RTTBCNRC_RF_INT_MASK);
7752                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7753         } else {
7754                 bcnrc_val = 0;
7755         }
7756
7757         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7758         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7759          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7760          */
7761         wr32(E1000_RTTBCNRM, 0x14);
7762         wr32(E1000_RTTBCNRC, bcnrc_val);
7763 }
7764
7765 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7766 {
7767         int actual_link_speed, i;
7768         bool reset_rate = false;
7769
7770         /* VF TX rate limit was not set or not supported */
7771         if ((adapter->vf_rate_link_speed == 0) ||
7772             (adapter->hw.mac.type != e1000_82576))
7773                 return;
7774
7775         actual_link_speed = igb_link_mbps(adapter->link_speed);
7776         if (actual_link_speed != adapter->vf_rate_link_speed) {
7777                 reset_rate = true;
7778                 adapter->vf_rate_link_speed = 0;
7779                 dev_info(&adapter->pdev->dev,
7780                          "Link speed has been changed. VF Transmit rate is disabled\n");
7781         }
7782
7783         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7784                 if (reset_rate)
7785                         adapter->vf_data[i].tx_rate = 0;
7786
7787                 igb_set_vf_rate_limit(&adapter->hw, i,
7788                                       adapter->vf_data[i].tx_rate,
7789                                       actual_link_speed);
7790         }
7791 }
7792
7793 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7794 {
7795         struct igb_adapter *adapter = netdev_priv(netdev);
7796         struct e1000_hw *hw = &adapter->hw;
7797         int actual_link_speed;
7798
7799         if (hw->mac.type != e1000_82576)
7800                 return -EOPNOTSUPP;
7801
7802         actual_link_speed = igb_link_mbps(adapter->link_speed);
7803         if ((vf >= adapter->vfs_allocated_count) ||
7804             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7805             (tx_rate < 0) || (tx_rate > actual_link_speed))
7806                 return -EINVAL;
7807
7808         adapter->vf_rate_link_speed = actual_link_speed;
7809         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7810         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7811
7812         return 0;
7813 }
7814
7815 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7816                                    bool setting)
7817 {
7818         struct igb_adapter *adapter = netdev_priv(netdev);
7819         struct e1000_hw *hw = &adapter->hw;
7820         u32 reg_val, reg_offset;
7821
7822         if (!adapter->vfs_allocated_count)
7823                 return -EOPNOTSUPP;
7824
7825         if (vf >= adapter->vfs_allocated_count)
7826                 return -EINVAL;
7827
7828         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7829         reg_val = rd32(reg_offset);
7830         if (setting)
7831                 reg_val |= ((1 << vf) |
7832                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7833         else
7834                 reg_val &= ~((1 << vf) |
7835                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7836         wr32(reg_offset, reg_val);
7837
7838         adapter->vf_data[vf].spoofchk_enabled = setting;
7839         return E1000_SUCCESS;
7840 }
7841
7842 static int igb_ndo_get_vf_config(struct net_device *netdev,
7843                                  int vf, struct ifla_vf_info *ivi)
7844 {
7845         struct igb_adapter *adapter = netdev_priv(netdev);
7846         if (vf >= adapter->vfs_allocated_count)
7847                 return -EINVAL;
7848         ivi->vf = vf;
7849         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7850         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7851         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7852         ivi->qos = adapter->vf_data[vf].pf_qos;
7853         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7854         return 0;
7855 }
7856
7857 static void igb_vmm_control(struct igb_adapter *adapter)
7858 {
7859         struct e1000_hw *hw = &adapter->hw;
7860         u32 reg;
7861
7862         switch (hw->mac.type) {
7863         case e1000_82575:
7864         case e1000_i210:
7865         case e1000_i211:
7866         case e1000_i354:
7867         default:
7868                 /* replication is not supported for 82575 */
7869                 return;
7870         case e1000_82576:
7871                 /* notify HW that the MAC is adding vlan tags */
7872                 reg = rd32(E1000_DTXCTL);
7873                 reg |= E1000_DTXCTL_VLAN_ADDED;
7874                 wr32(E1000_DTXCTL, reg);
7875         case e1000_82580:
7876                 /* enable replication vlan tag stripping */
7877                 reg = rd32(E1000_RPLOLR);
7878                 reg |= E1000_RPLOLR_STRVLAN;
7879                 wr32(E1000_RPLOLR, reg);
7880         case e1000_i350:
7881                 /* none of the above registers are supported by i350 */
7882                 break;
7883         }
7884
7885         if (adapter->vfs_allocated_count) {
7886                 igb_vmdq_set_loopback_pf(hw, true);
7887                 igb_vmdq_set_replication_pf(hw, true);
7888                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7889                                               adapter->vfs_allocated_count);
7890         } else {
7891                 igb_vmdq_set_loopback_pf(hw, false);
7892                 igb_vmdq_set_replication_pf(hw, false);
7893         }
7894 }
7895
7896 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7897 {
7898         struct e1000_hw *hw = &adapter->hw;
7899         u32 dmac_thr;
7900         u16 hwm;
7901
7902         if (hw->mac.type > e1000_82580) {
7903                 if (adapter->flags & IGB_FLAG_DMAC) {
7904                         u32 reg;
7905
7906                         /* force threshold to 0. */
7907                         wr32(E1000_DMCTXTH, 0);
7908
7909                         /* DMA Coalescing high water mark needs to be greater
7910                          * than the Rx threshold. Set hwm to PBA - max frame
7911                          * size in 16B units, capping it at PBA - 6KB.
7912                          */
7913                         hwm = 64 * pba - adapter->max_frame_size / 16;
7914                         if (hwm < 64 * (pba - 6))
7915                                 hwm = 64 * (pba - 6);
7916                         reg = rd32(E1000_FCRTC);
7917                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7918                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7919                                 & E1000_FCRTC_RTH_COAL_MASK);
7920                         wr32(E1000_FCRTC, reg);
7921
7922                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7923                          * frame size, capping it at PBA - 10KB.
7924                          */
7925                         dmac_thr = pba - adapter->max_frame_size / 512;
7926                         if (dmac_thr < pba - 10)
7927                                 dmac_thr = pba - 10;
7928                         reg = rd32(E1000_DMACR);
7929                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7930                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7931                                 & E1000_DMACR_DMACTHR_MASK);
7932
7933                         /* transition to L0x or L1 if available..*/
7934                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7935
7936                         /* watchdog timer= +-1000 usec in 32usec intervals */
7937                         reg |= (1000 >> 5);
7938
7939                         /* Disable BMC-to-OS Watchdog Enable */
7940                         if (hw->mac.type != e1000_i354)
7941                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7942
7943                         wr32(E1000_DMACR, reg);
7944
7945                         /* no lower threshold to disable
7946                          * coalescing(smart fifb)-UTRESH=0
7947                          */
7948                         wr32(E1000_DMCRTRH, 0);
7949
7950                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7951
7952                         wr32(E1000_DMCTLX, reg);
7953
7954                         /* free space in tx packet buffer to wake from
7955                          * DMA coal
7956                          */
7957                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7958                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7959
7960                         /* make low power state decision controlled
7961                          * by DMA coal
7962                          */
7963                         reg = rd32(E1000_PCIEMISC);
7964                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7965                         wr32(E1000_PCIEMISC, reg);
7966                 } /* endif adapter->dmac is not disabled */
7967         } else if (hw->mac.type == e1000_82580) {
7968                 u32 reg = rd32(E1000_PCIEMISC);
7969                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7970                 wr32(E1000_DMACR, 0);
7971         }
7972 }
7973
7974 /**
7975  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7976  *  @hw: pointer to hardware structure
7977  *  @byte_offset: byte offset to read
7978  *  @dev_addr: device address
7979  *  @data: value read
7980  *
7981  *  Performs byte read operation over I2C interface at
7982  *  a specified device address.
7983  **/
7984 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7985                       u8 dev_addr, u8 *data)
7986 {
7987         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7988         struct i2c_client *this_client = adapter->i2c_client;
7989         s32 status;
7990         u16 swfw_mask = 0;
7991
7992         if (!this_client)
7993                 return E1000_ERR_I2C;
7994
7995         swfw_mask = E1000_SWFW_PHY0_SM;
7996
7997         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7998             != E1000_SUCCESS)
7999                 return E1000_ERR_SWFW_SYNC;
8000
8001         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8002         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8003
8004         if (status < 0)
8005                 return E1000_ERR_I2C;
8006         else {
8007                 *data = status;
8008                 return E1000_SUCCESS;
8009         }
8010 }
8011
8012 /**
8013  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8014  *  @hw: pointer to hardware structure
8015  *  @byte_offset: byte offset to write
8016  *  @dev_addr: device address
8017  *  @data: value to write
8018  *
8019  *  Performs byte write operation over I2C interface at
8020  *  a specified device address.
8021  **/
8022 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8023                        u8 dev_addr, u8 data)
8024 {
8025         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8026         struct i2c_client *this_client = adapter->i2c_client;
8027         s32 status;
8028         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8029
8030         if (!this_client)
8031                 return E1000_ERR_I2C;
8032
8033         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8034                 return E1000_ERR_SWFW_SYNC;
8035         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8036         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8037
8038         if (status)
8039                 return E1000_ERR_I2C;
8040         else
8041                 return E1000_SUCCESS;
8042
8043 }
8044
8045 int igb_reinit_queues(struct igb_adapter *adapter)
8046 {
8047         struct net_device *netdev = adapter->netdev;
8048         struct pci_dev *pdev = adapter->pdev;
8049         int err = 0;
8050
8051         if (netif_running(netdev))
8052                 igb_close(netdev);
8053
8054         igb_reset_interrupt_capability(adapter);
8055
8056         if (igb_init_interrupt_scheme(adapter, true)) {
8057                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8058                 return -ENOMEM;
8059         }
8060
8061         if (netif_running(netdev))
8062                 err = igb_open(netdev);
8063
8064         return err;
8065 }
8066 /* igb_main.c */