Merge branch 'drm-nouveau-fixes' of git://anongit.freedesktop.org/git/nouveau/linux...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40
41 #include "igb.h"
42
43 struct igb_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int sizeof_stat;
46         int stat_offset;
47 };
48
49 #define IGB_STAT(_name, _stat) { \
50         .stat_string = _name, \
51         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52         .stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55         IGB_STAT("rx_packets", stats.gprc),
56         IGB_STAT("tx_packets", stats.gptc),
57         IGB_STAT("rx_bytes", stats.gorc),
58         IGB_STAT("tx_bytes", stats.gotc),
59         IGB_STAT("rx_broadcast", stats.bprc),
60         IGB_STAT("tx_broadcast", stats.bptc),
61         IGB_STAT("rx_multicast", stats.mprc),
62         IGB_STAT("tx_multicast", stats.mptc),
63         IGB_STAT("multicast", stats.mprc),
64         IGB_STAT("collisions", stats.colc),
65         IGB_STAT("rx_crc_errors", stats.crcerrs),
66         IGB_STAT("rx_no_buffer_count", stats.rnbc),
67         IGB_STAT("rx_missed_errors", stats.mpc),
68         IGB_STAT("tx_aborted_errors", stats.ecol),
69         IGB_STAT("tx_carrier_errors", stats.tncrs),
70         IGB_STAT("tx_window_errors", stats.latecol),
71         IGB_STAT("tx_abort_late_coll", stats.latecol),
72         IGB_STAT("tx_deferred_ok", stats.dc),
73         IGB_STAT("tx_single_coll_ok", stats.scc),
74         IGB_STAT("tx_multi_coll_ok", stats.mcc),
75         IGB_STAT("tx_timeout_count", tx_timeout_count),
76         IGB_STAT("rx_long_length_errors", stats.roc),
77         IGB_STAT("rx_short_length_errors", stats.ruc),
78         IGB_STAT("rx_align_errors", stats.algnerrc),
79         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83         IGB_STAT("tx_flow_control_xon", stats.xontxc),
84         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85         IGB_STAT("rx_long_byte_count", stats.gorc),
86         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87         IGB_STAT("tx_smbus", stats.mgptc),
88         IGB_STAT("rx_smbus", stats.mgprc),
89         IGB_STAT("dropped_smbus", stats.mgpdc),
90         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97         .stat_string = __stringify(_net_stat), \
98         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102         IGB_NETDEV_STAT(rx_errors),
103         IGB_NETDEV_STAT(tx_errors),
104         IGB_NETDEV_STAT(tx_dropped),
105         IGB_NETDEV_STAT(rx_length_errors),
106         IGB_NETDEV_STAT(rx_over_errors),
107         IGB_NETDEV_STAT(rx_frame_errors),
108         IGB_NETDEV_STAT(rx_fifo_errors),
109         IGB_NETDEV_STAT(tx_fifo_errors),
110         IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN    \
114         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN    \
116         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124           IGB_RX_QUEUE_STATS_LEN) + \
125          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126           IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131         "Register test  (offline)", "Eeprom test    (offline)",
132         "Interrupt test (offline)", "Loopback test  (offline)",
133         "Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139         struct igb_adapter *adapter = netdev_priv(netdev);
140         struct e1000_hw *hw = &adapter->hw;
141         u32 status;
142
143         if (hw->phy.media_type == e1000_media_type_copper) {
144
145                 ecmd->supported = (SUPPORTED_10baseT_Half |
146                                    SUPPORTED_10baseT_Full |
147                                    SUPPORTED_100baseT_Half |
148                                    SUPPORTED_100baseT_Full |
149                                    SUPPORTED_1000baseT_Full|
150                                    SUPPORTED_Autoneg |
151                                    SUPPORTED_TP |
152                                    SUPPORTED_Pause);
153                 ecmd->advertising = ADVERTISED_TP;
154
155                 if (hw->mac.autoneg == 1) {
156                         ecmd->advertising |= ADVERTISED_Autoneg;
157                         /* the e1000 autoneg seems to match ethtool nicely */
158                         ecmd->advertising |= hw->phy.autoneg_advertised;
159                 }
160
161                 if (hw->mac.autoneg != 1)
162                         ecmd->advertising &= ~(ADVERTISED_Pause |
163                                                ADVERTISED_Asym_Pause);
164
165                 if (hw->fc.requested_mode == e1000_fc_full)
166                         ecmd->advertising |= ADVERTISED_Pause;
167                 else if (hw->fc.requested_mode == e1000_fc_rx_pause)
168                         ecmd->advertising |= (ADVERTISED_Pause |
169                                               ADVERTISED_Asym_Pause);
170                 else if (hw->fc.requested_mode == e1000_fc_tx_pause)
171                         ecmd->advertising |=  ADVERTISED_Asym_Pause;
172                 else
173                         ecmd->advertising &= ~(ADVERTISED_Pause |
174                                                ADVERTISED_Asym_Pause);
175
176                 ecmd->port = PORT_TP;
177                 ecmd->phy_address = hw->phy.addr;
178         } else {
179                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
180                                      SUPPORTED_FIBRE |
181                                      SUPPORTED_Autoneg);
182
183                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
184                                      ADVERTISED_FIBRE |
185                                      ADVERTISED_Autoneg |
186                                      ADVERTISED_Pause);
187
188                 ecmd->port = PORT_FIBRE;
189         }
190
191         ecmd->transceiver = XCVR_INTERNAL;
192
193         status = rd32(E1000_STATUS);
194
195         if (status & E1000_STATUS_LU) {
196
197                 if ((status & E1000_STATUS_SPEED_1000) ||
198                     hw->phy.media_type != e1000_media_type_copper)
199                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
200                 else if (status & E1000_STATUS_SPEED_100)
201                         ethtool_cmd_speed_set(ecmd, SPEED_100);
202                 else
203                         ethtool_cmd_speed_set(ecmd, SPEED_10);
204
205                 if ((status & E1000_STATUS_FD) ||
206                     hw->phy.media_type != e1000_media_type_copper)
207                         ecmd->duplex = DUPLEX_FULL;
208                 else
209                         ecmd->duplex = DUPLEX_HALF;
210         } else {
211                 ethtool_cmd_speed_set(ecmd, -1);
212                 ecmd->duplex = -1;
213         }
214
215         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
216
217         /* MDI-X => 2; MDI =>1; Invalid =>0 */
218         if (hw->phy.media_type == e1000_media_type_copper)
219                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
220                                                       ETH_TP_MDI;
221         else
222                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
223
224         if (hw->phy.mdix == AUTO_ALL_MODES)
225                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
226         else
227                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
228
229         return 0;
230 }
231
232 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
233 {
234         struct igb_adapter *adapter = netdev_priv(netdev);
235         struct e1000_hw *hw = &adapter->hw;
236
237         /* When SoL/IDER sessions are active, autoneg/speed/duplex
238          * cannot be changed */
239         if (igb_check_reset_block(hw)) {
240                 dev_err(&adapter->pdev->dev,
241                         "Cannot change link characteristics when SoL/IDER is active.\n");
242                 return -EINVAL;
243         }
244
245         /*
246          * MDI setting is only allowed when autoneg enabled because
247          * some hardware doesn't allow MDI setting when speed or
248          * duplex is forced.
249          */
250         if (ecmd->eth_tp_mdix_ctrl) {
251                 if (hw->phy.media_type != e1000_media_type_copper)
252                         return -EOPNOTSUPP;
253
254                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
255                     (ecmd->autoneg != AUTONEG_ENABLE)) {
256                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
257                         return -EINVAL;
258                 }
259         }
260
261         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
262                 msleep(1);
263
264         if (ecmd->autoneg == AUTONEG_ENABLE) {
265                 hw->mac.autoneg = 1;
266                 hw->phy.autoneg_advertised = ecmd->advertising |
267                                              ADVERTISED_TP |
268                                              ADVERTISED_Autoneg;
269                 ecmd->advertising = hw->phy.autoneg_advertised;
270                 if (adapter->fc_autoneg)
271                         hw->fc.requested_mode = e1000_fc_default;
272         } else {
273                 u32 speed = ethtool_cmd_speed(ecmd);
274                 /* calling this overrides forced MDI setting */
275                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
276                         clear_bit(__IGB_RESETTING, &adapter->state);
277                         return -EINVAL;
278                 }
279         }
280
281         /* MDI-X => 2; MDI => 1; Auto => 3 */
282         if (ecmd->eth_tp_mdix_ctrl) {
283                 /*
284                  * fix up the value for auto (3 => 0) as zero is mapped
285                  * internally to auto
286                  */
287                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
288                         hw->phy.mdix = AUTO_ALL_MODES;
289                 else
290                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
291         }
292
293         /* reset the link */
294         if (netif_running(adapter->netdev)) {
295                 igb_down(adapter);
296                 igb_up(adapter);
297         } else
298                 igb_reset(adapter);
299
300         clear_bit(__IGB_RESETTING, &adapter->state);
301         return 0;
302 }
303
304 static u32 igb_get_link(struct net_device *netdev)
305 {
306         struct igb_adapter *adapter = netdev_priv(netdev);
307         struct e1000_mac_info *mac = &adapter->hw.mac;
308
309         /*
310          * If the link is not reported up to netdev, interrupts are disabled,
311          * and so the physical link state may have changed since we last
312          * looked. Set get_link_status to make sure that the true link
313          * state is interrogated, rather than pulling a cached and possibly
314          * stale link state from the driver.
315          */
316         if (!netif_carrier_ok(netdev))
317                 mac->get_link_status = 1;
318
319         return igb_has_link(adapter);
320 }
321
322 static void igb_get_pauseparam(struct net_device *netdev,
323                                struct ethtool_pauseparam *pause)
324 {
325         struct igb_adapter *adapter = netdev_priv(netdev);
326         struct e1000_hw *hw = &adapter->hw;
327
328         pause->autoneg =
329                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
330
331         if (hw->fc.current_mode == e1000_fc_rx_pause)
332                 pause->rx_pause = 1;
333         else if (hw->fc.current_mode == e1000_fc_tx_pause)
334                 pause->tx_pause = 1;
335         else if (hw->fc.current_mode == e1000_fc_full) {
336                 pause->rx_pause = 1;
337                 pause->tx_pause = 1;
338         }
339 }
340
341 static int igb_set_pauseparam(struct net_device *netdev,
342                               struct ethtool_pauseparam *pause)
343 {
344         struct igb_adapter *adapter = netdev_priv(netdev);
345         struct e1000_hw *hw = &adapter->hw;
346         int retval = 0;
347
348         adapter->fc_autoneg = pause->autoneg;
349
350         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
351                 msleep(1);
352
353         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
354                 hw->fc.requested_mode = e1000_fc_default;
355                 if (netif_running(adapter->netdev)) {
356                         igb_down(adapter);
357                         igb_up(adapter);
358                 } else {
359                         igb_reset(adapter);
360                 }
361         } else {
362                 if (pause->rx_pause && pause->tx_pause)
363                         hw->fc.requested_mode = e1000_fc_full;
364                 else if (pause->rx_pause && !pause->tx_pause)
365                         hw->fc.requested_mode = e1000_fc_rx_pause;
366                 else if (!pause->rx_pause && pause->tx_pause)
367                         hw->fc.requested_mode = e1000_fc_tx_pause;
368                 else if (!pause->rx_pause && !pause->tx_pause)
369                         hw->fc.requested_mode = e1000_fc_none;
370
371                 hw->fc.current_mode = hw->fc.requested_mode;
372
373                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
374                           igb_force_mac_fc(hw) : igb_setup_link(hw));
375         }
376
377         clear_bit(__IGB_RESETTING, &adapter->state);
378         return retval;
379 }
380
381 static u32 igb_get_msglevel(struct net_device *netdev)
382 {
383         struct igb_adapter *adapter = netdev_priv(netdev);
384         return adapter->msg_enable;
385 }
386
387 static void igb_set_msglevel(struct net_device *netdev, u32 data)
388 {
389         struct igb_adapter *adapter = netdev_priv(netdev);
390         adapter->msg_enable = data;
391 }
392
393 static int igb_get_regs_len(struct net_device *netdev)
394 {
395 #define IGB_REGS_LEN 739
396         return IGB_REGS_LEN * sizeof(u32);
397 }
398
399 static void igb_get_regs(struct net_device *netdev,
400                          struct ethtool_regs *regs, void *p)
401 {
402         struct igb_adapter *adapter = netdev_priv(netdev);
403         struct e1000_hw *hw = &adapter->hw;
404         u32 *regs_buff = p;
405         u8 i;
406
407         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
408
409         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
410
411         /* General Registers */
412         regs_buff[0] = rd32(E1000_CTRL);
413         regs_buff[1] = rd32(E1000_STATUS);
414         regs_buff[2] = rd32(E1000_CTRL_EXT);
415         regs_buff[3] = rd32(E1000_MDIC);
416         regs_buff[4] = rd32(E1000_SCTL);
417         regs_buff[5] = rd32(E1000_CONNSW);
418         regs_buff[6] = rd32(E1000_VET);
419         regs_buff[7] = rd32(E1000_LEDCTL);
420         regs_buff[8] = rd32(E1000_PBA);
421         regs_buff[9] = rd32(E1000_PBS);
422         regs_buff[10] = rd32(E1000_FRTIMER);
423         regs_buff[11] = rd32(E1000_TCPTIMER);
424
425         /* NVM Register */
426         regs_buff[12] = rd32(E1000_EECD);
427
428         /* Interrupt */
429         /* Reading EICS for EICR because they read the
430          * same but EICS does not clear on read */
431         regs_buff[13] = rd32(E1000_EICS);
432         regs_buff[14] = rd32(E1000_EICS);
433         regs_buff[15] = rd32(E1000_EIMS);
434         regs_buff[16] = rd32(E1000_EIMC);
435         regs_buff[17] = rd32(E1000_EIAC);
436         regs_buff[18] = rd32(E1000_EIAM);
437         /* Reading ICS for ICR because they read the
438          * same but ICS does not clear on read */
439         regs_buff[19] = rd32(E1000_ICS);
440         regs_buff[20] = rd32(E1000_ICS);
441         regs_buff[21] = rd32(E1000_IMS);
442         regs_buff[22] = rd32(E1000_IMC);
443         regs_buff[23] = rd32(E1000_IAC);
444         regs_buff[24] = rd32(E1000_IAM);
445         regs_buff[25] = rd32(E1000_IMIRVP);
446
447         /* Flow Control */
448         regs_buff[26] = rd32(E1000_FCAL);
449         regs_buff[27] = rd32(E1000_FCAH);
450         regs_buff[28] = rd32(E1000_FCTTV);
451         regs_buff[29] = rd32(E1000_FCRTL);
452         regs_buff[30] = rd32(E1000_FCRTH);
453         regs_buff[31] = rd32(E1000_FCRTV);
454
455         /* Receive */
456         regs_buff[32] = rd32(E1000_RCTL);
457         regs_buff[33] = rd32(E1000_RXCSUM);
458         regs_buff[34] = rd32(E1000_RLPML);
459         regs_buff[35] = rd32(E1000_RFCTL);
460         regs_buff[36] = rd32(E1000_MRQC);
461         regs_buff[37] = rd32(E1000_VT_CTL);
462
463         /* Transmit */
464         regs_buff[38] = rd32(E1000_TCTL);
465         regs_buff[39] = rd32(E1000_TCTL_EXT);
466         regs_buff[40] = rd32(E1000_TIPG);
467         regs_buff[41] = rd32(E1000_DTXCTL);
468
469         /* Wake Up */
470         regs_buff[42] = rd32(E1000_WUC);
471         regs_buff[43] = rd32(E1000_WUFC);
472         regs_buff[44] = rd32(E1000_WUS);
473         regs_buff[45] = rd32(E1000_IPAV);
474         regs_buff[46] = rd32(E1000_WUPL);
475
476         /* MAC */
477         regs_buff[47] = rd32(E1000_PCS_CFG0);
478         regs_buff[48] = rd32(E1000_PCS_LCTL);
479         regs_buff[49] = rd32(E1000_PCS_LSTAT);
480         regs_buff[50] = rd32(E1000_PCS_ANADV);
481         regs_buff[51] = rd32(E1000_PCS_LPAB);
482         regs_buff[52] = rd32(E1000_PCS_NPTX);
483         regs_buff[53] = rd32(E1000_PCS_LPABNP);
484
485         /* Statistics */
486         regs_buff[54] = adapter->stats.crcerrs;
487         regs_buff[55] = adapter->stats.algnerrc;
488         regs_buff[56] = adapter->stats.symerrs;
489         regs_buff[57] = adapter->stats.rxerrc;
490         regs_buff[58] = adapter->stats.mpc;
491         regs_buff[59] = adapter->stats.scc;
492         regs_buff[60] = adapter->stats.ecol;
493         regs_buff[61] = adapter->stats.mcc;
494         regs_buff[62] = adapter->stats.latecol;
495         regs_buff[63] = adapter->stats.colc;
496         regs_buff[64] = adapter->stats.dc;
497         regs_buff[65] = adapter->stats.tncrs;
498         regs_buff[66] = adapter->stats.sec;
499         regs_buff[67] = adapter->stats.htdpmc;
500         regs_buff[68] = adapter->stats.rlec;
501         regs_buff[69] = adapter->stats.xonrxc;
502         regs_buff[70] = adapter->stats.xontxc;
503         regs_buff[71] = adapter->stats.xoffrxc;
504         regs_buff[72] = adapter->stats.xofftxc;
505         regs_buff[73] = adapter->stats.fcruc;
506         regs_buff[74] = adapter->stats.prc64;
507         regs_buff[75] = adapter->stats.prc127;
508         regs_buff[76] = adapter->stats.prc255;
509         regs_buff[77] = adapter->stats.prc511;
510         regs_buff[78] = adapter->stats.prc1023;
511         regs_buff[79] = adapter->stats.prc1522;
512         regs_buff[80] = adapter->stats.gprc;
513         regs_buff[81] = adapter->stats.bprc;
514         regs_buff[82] = adapter->stats.mprc;
515         regs_buff[83] = adapter->stats.gptc;
516         regs_buff[84] = adapter->stats.gorc;
517         regs_buff[86] = adapter->stats.gotc;
518         regs_buff[88] = adapter->stats.rnbc;
519         regs_buff[89] = adapter->stats.ruc;
520         regs_buff[90] = adapter->stats.rfc;
521         regs_buff[91] = adapter->stats.roc;
522         regs_buff[92] = adapter->stats.rjc;
523         regs_buff[93] = adapter->stats.mgprc;
524         regs_buff[94] = adapter->stats.mgpdc;
525         regs_buff[95] = adapter->stats.mgptc;
526         regs_buff[96] = adapter->stats.tor;
527         regs_buff[98] = adapter->stats.tot;
528         regs_buff[100] = adapter->stats.tpr;
529         regs_buff[101] = adapter->stats.tpt;
530         regs_buff[102] = adapter->stats.ptc64;
531         regs_buff[103] = adapter->stats.ptc127;
532         regs_buff[104] = adapter->stats.ptc255;
533         regs_buff[105] = adapter->stats.ptc511;
534         regs_buff[106] = adapter->stats.ptc1023;
535         regs_buff[107] = adapter->stats.ptc1522;
536         regs_buff[108] = adapter->stats.mptc;
537         regs_buff[109] = adapter->stats.bptc;
538         regs_buff[110] = adapter->stats.tsctc;
539         regs_buff[111] = adapter->stats.iac;
540         regs_buff[112] = adapter->stats.rpthc;
541         regs_buff[113] = adapter->stats.hgptc;
542         regs_buff[114] = adapter->stats.hgorc;
543         regs_buff[116] = adapter->stats.hgotc;
544         regs_buff[118] = adapter->stats.lenerrs;
545         regs_buff[119] = adapter->stats.scvpc;
546         regs_buff[120] = adapter->stats.hrmpc;
547
548         for (i = 0; i < 4; i++)
549                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
550         for (i = 0; i < 4; i++)
551                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
552         for (i = 0; i < 4; i++)
553                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
554         for (i = 0; i < 4; i++)
555                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
556         for (i = 0; i < 4; i++)
557                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
558         for (i = 0; i < 4; i++)
559                 regs_buff[141 + i] = rd32(E1000_RDH(i));
560         for (i = 0; i < 4; i++)
561                 regs_buff[145 + i] = rd32(E1000_RDT(i));
562         for (i = 0; i < 4; i++)
563                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
564
565         for (i = 0; i < 10; i++)
566                 regs_buff[153 + i] = rd32(E1000_EITR(i));
567         for (i = 0; i < 8; i++)
568                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
569         for (i = 0; i < 8; i++)
570                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
571         for (i = 0; i < 16; i++)
572                 regs_buff[179 + i] = rd32(E1000_RAL(i));
573         for (i = 0; i < 16; i++)
574                 regs_buff[195 + i] = rd32(E1000_RAH(i));
575
576         for (i = 0; i < 4; i++)
577                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
578         for (i = 0; i < 4; i++)
579                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
580         for (i = 0; i < 4; i++)
581                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
582         for (i = 0; i < 4; i++)
583                 regs_buff[223 + i] = rd32(E1000_TDH(i));
584         for (i = 0; i < 4; i++)
585                 regs_buff[227 + i] = rd32(E1000_TDT(i));
586         for (i = 0; i < 4; i++)
587                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
588         for (i = 0; i < 4; i++)
589                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
590         for (i = 0; i < 4; i++)
591                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
592         for (i = 0; i < 4; i++)
593                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
594
595         for (i = 0; i < 4; i++)
596                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
597         for (i = 0; i < 4; i++)
598                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
599         for (i = 0; i < 32; i++)
600                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
601         for (i = 0; i < 128; i++)
602                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
603         for (i = 0; i < 128; i++)
604                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
605         for (i = 0; i < 4; i++)
606                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
607
608         regs_buff[547] = rd32(E1000_TDFH);
609         regs_buff[548] = rd32(E1000_TDFT);
610         regs_buff[549] = rd32(E1000_TDFHS);
611         regs_buff[550] = rd32(E1000_TDFPC);
612
613         if (hw->mac.type > e1000_82580) {
614                 regs_buff[551] = adapter->stats.o2bgptc;
615                 regs_buff[552] = adapter->stats.b2ospc;
616                 regs_buff[553] = adapter->stats.o2bspc;
617                 regs_buff[554] = adapter->stats.b2ogprc;
618         }
619
620         if (hw->mac.type != e1000_82576)
621                 return;
622         for (i = 0; i < 12; i++)
623                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
624         for (i = 0; i < 4; i++)
625                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
626         for (i = 0; i < 12; i++)
627                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
628         for (i = 0; i < 12; i++)
629                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
630         for (i = 0; i < 12; i++)
631                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
632         for (i = 0; i < 12; i++)
633                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
634         for (i = 0; i < 12; i++)
635                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
636         for (i = 0; i < 12; i++)
637                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
638
639         for (i = 0; i < 12; i++)
640                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
641         for (i = 0; i < 12; i++)
642                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
643         for (i = 0; i < 12; i++)
644                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
645         for (i = 0; i < 12; i++)
646                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
647         for (i = 0; i < 12; i++)
648                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
649         for (i = 0; i < 12; i++)
650                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
651         for (i = 0; i < 12; i++)
652                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
653         for (i = 0; i < 12; i++)
654                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
655 }
656
657 static int igb_get_eeprom_len(struct net_device *netdev)
658 {
659         struct igb_adapter *adapter = netdev_priv(netdev);
660         return adapter->hw.nvm.word_size * 2;
661 }
662
663 static int igb_get_eeprom(struct net_device *netdev,
664                           struct ethtool_eeprom *eeprom, u8 *bytes)
665 {
666         struct igb_adapter *adapter = netdev_priv(netdev);
667         struct e1000_hw *hw = &adapter->hw;
668         u16 *eeprom_buff;
669         int first_word, last_word;
670         int ret_val = 0;
671         u16 i;
672
673         if (eeprom->len == 0)
674                 return -EINVAL;
675
676         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
677
678         first_word = eeprom->offset >> 1;
679         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
680
681         eeprom_buff = kmalloc(sizeof(u16) *
682                         (last_word - first_word + 1), GFP_KERNEL);
683         if (!eeprom_buff)
684                 return -ENOMEM;
685
686         if (hw->nvm.type == e1000_nvm_eeprom_spi)
687                 ret_val = hw->nvm.ops.read(hw, first_word,
688                                             last_word - first_word + 1,
689                                             eeprom_buff);
690         else {
691                 for (i = 0; i < last_word - first_word + 1; i++) {
692                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
693                                                     &eeprom_buff[i]);
694                         if (ret_val)
695                                 break;
696                 }
697         }
698
699         /* Device's eeprom is always little-endian, word addressable */
700         for (i = 0; i < last_word - first_word + 1; i++)
701                 le16_to_cpus(&eeprom_buff[i]);
702
703         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
704                         eeprom->len);
705         kfree(eeprom_buff);
706
707         return ret_val;
708 }
709
710 static int igb_set_eeprom(struct net_device *netdev,
711                           struct ethtool_eeprom *eeprom, u8 *bytes)
712 {
713         struct igb_adapter *adapter = netdev_priv(netdev);
714         struct e1000_hw *hw = &adapter->hw;
715         u16 *eeprom_buff;
716         void *ptr;
717         int max_len, first_word, last_word, ret_val = 0;
718         u16 i;
719
720         if (eeprom->len == 0)
721                 return -EOPNOTSUPP;
722
723         if (hw->mac.type == e1000_i211)
724                 return -EOPNOTSUPP;
725
726         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
727                 return -EFAULT;
728
729         max_len = hw->nvm.word_size * 2;
730
731         first_word = eeprom->offset >> 1;
732         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
733         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
734         if (!eeprom_buff)
735                 return -ENOMEM;
736
737         ptr = (void *)eeprom_buff;
738
739         if (eeprom->offset & 1) {
740                 /* need read/modify/write of first changed EEPROM word */
741                 /* only the second byte of the word is being modified */
742                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
743                                             &eeprom_buff[0]);
744                 ptr++;
745         }
746         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
747                 /* need read/modify/write of last changed EEPROM word */
748                 /* only the first byte of the word is being modified */
749                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
750                                    &eeprom_buff[last_word - first_word]);
751         }
752
753         /* Device's eeprom is always little-endian, word addressable */
754         for (i = 0; i < last_word - first_word + 1; i++)
755                 le16_to_cpus(&eeprom_buff[i]);
756
757         memcpy(ptr, bytes, eeprom->len);
758
759         for (i = 0; i < last_word - first_word + 1; i++)
760                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
761
762         ret_val = hw->nvm.ops.write(hw, first_word,
763                                      last_word - first_word + 1, eeprom_buff);
764
765         /* Update the checksum over the first part of the EEPROM if needed
766          * and flush shadow RAM for 82573 controllers */
767         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
768                 hw->nvm.ops.update(hw);
769
770         igb_set_fw_version(adapter);
771         kfree(eeprom_buff);
772         return ret_val;
773 }
774
775 static void igb_get_drvinfo(struct net_device *netdev,
776                             struct ethtool_drvinfo *drvinfo)
777 {
778         struct igb_adapter *adapter = netdev_priv(netdev);
779
780         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
781         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
782
783         /*
784          * EEPROM image version # is reported as firmware version # for
785          * 82575 controllers
786          */
787         strlcpy(drvinfo->fw_version, adapter->fw_version,
788                 sizeof(drvinfo->fw_version));
789         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
790                 sizeof(drvinfo->bus_info));
791         drvinfo->n_stats = IGB_STATS_LEN;
792         drvinfo->testinfo_len = IGB_TEST_LEN;
793         drvinfo->regdump_len = igb_get_regs_len(netdev);
794         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
795 }
796
797 static void igb_get_ringparam(struct net_device *netdev,
798                               struct ethtool_ringparam *ring)
799 {
800         struct igb_adapter *adapter = netdev_priv(netdev);
801
802         ring->rx_max_pending = IGB_MAX_RXD;
803         ring->tx_max_pending = IGB_MAX_TXD;
804         ring->rx_pending = adapter->rx_ring_count;
805         ring->tx_pending = adapter->tx_ring_count;
806 }
807
808 static int igb_set_ringparam(struct net_device *netdev,
809                              struct ethtool_ringparam *ring)
810 {
811         struct igb_adapter *adapter = netdev_priv(netdev);
812         struct igb_ring *temp_ring;
813         int i, err = 0;
814         u16 new_rx_count, new_tx_count;
815
816         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
817                 return -EINVAL;
818
819         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
820         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
821         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
822
823         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
824         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
825         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
826
827         if ((new_tx_count == adapter->tx_ring_count) &&
828             (new_rx_count == adapter->rx_ring_count)) {
829                 /* nothing to do */
830                 return 0;
831         }
832
833         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
834                 msleep(1);
835
836         if (!netif_running(adapter->netdev)) {
837                 for (i = 0; i < adapter->num_tx_queues; i++)
838                         adapter->tx_ring[i]->count = new_tx_count;
839                 for (i = 0; i < adapter->num_rx_queues; i++)
840                         adapter->rx_ring[i]->count = new_rx_count;
841                 adapter->tx_ring_count = new_tx_count;
842                 adapter->rx_ring_count = new_rx_count;
843                 goto clear_reset;
844         }
845
846         if (adapter->num_tx_queues > adapter->num_rx_queues)
847                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
848         else
849                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
850
851         if (!temp_ring) {
852                 err = -ENOMEM;
853                 goto clear_reset;
854         }
855
856         igb_down(adapter);
857
858         /*
859          * We can't just free everything and then setup again,
860          * because the ISRs in MSI-X mode get passed pointers
861          * to the tx and rx ring structs.
862          */
863         if (new_tx_count != adapter->tx_ring_count) {
864                 for (i = 0; i < adapter->num_tx_queues; i++) {
865                         memcpy(&temp_ring[i], adapter->tx_ring[i],
866                                sizeof(struct igb_ring));
867
868                         temp_ring[i].count = new_tx_count;
869                         err = igb_setup_tx_resources(&temp_ring[i]);
870                         if (err) {
871                                 while (i) {
872                                         i--;
873                                         igb_free_tx_resources(&temp_ring[i]);
874                                 }
875                                 goto err_setup;
876                         }
877                 }
878
879                 for (i = 0; i < adapter->num_tx_queues; i++) {
880                         igb_free_tx_resources(adapter->tx_ring[i]);
881
882                         memcpy(adapter->tx_ring[i], &temp_ring[i],
883                                sizeof(struct igb_ring));
884                 }
885
886                 adapter->tx_ring_count = new_tx_count;
887         }
888
889         if (new_rx_count != adapter->rx_ring_count) {
890                 for (i = 0; i < adapter->num_rx_queues; i++) {
891                         memcpy(&temp_ring[i], adapter->rx_ring[i],
892                                sizeof(struct igb_ring));
893
894                         temp_ring[i].count = new_rx_count;
895                         err = igb_setup_rx_resources(&temp_ring[i]);
896                         if (err) {
897                                 while (i) {
898                                         i--;
899                                         igb_free_rx_resources(&temp_ring[i]);
900                                 }
901                                 goto err_setup;
902                         }
903
904                 }
905
906                 for (i = 0; i < adapter->num_rx_queues; i++) {
907                         igb_free_rx_resources(adapter->rx_ring[i]);
908
909                         memcpy(adapter->rx_ring[i], &temp_ring[i],
910                                sizeof(struct igb_ring));
911                 }
912
913                 adapter->rx_ring_count = new_rx_count;
914         }
915 err_setup:
916         igb_up(adapter);
917         vfree(temp_ring);
918 clear_reset:
919         clear_bit(__IGB_RESETTING, &adapter->state);
920         return err;
921 }
922
923 /* ethtool register test data */
924 struct igb_reg_test {
925         u16 reg;
926         u16 reg_offset;
927         u16 array_len;
928         u16 test_type;
929         u32 mask;
930         u32 write;
931 };
932
933 /* In the hardware, registers are laid out either singly, in arrays
934  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
935  * most tests take place on arrays or single registers (handled
936  * as a single-element array) and special-case the tables.
937  * Table tests are always pattern tests.
938  *
939  * We also make provision for some required setup steps by specifying
940  * registers to be written without any read-back testing.
941  */
942
943 #define PATTERN_TEST    1
944 #define SET_READ_TEST   2
945 #define WRITE_NO_TEST   3
946 #define TABLE32_TEST    4
947 #define TABLE64_TEST_LO 5
948 #define TABLE64_TEST_HI 6
949
950 /* i210 reg test */
951 static struct igb_reg_test reg_test_i210[] = {
952         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
953         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
954         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
955         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
956         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
957         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
958         /* RDH is read-only for i210, only test RDT. */
959         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
960         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
961         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
963         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
964         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
965         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
966         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
967         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
968         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
969         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
970         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
971         { E1000_RA,        0, 16, TABLE64_TEST_LO,
972                                                 0xFFFFFFFF, 0xFFFFFFFF },
973         { E1000_RA,        0, 16, TABLE64_TEST_HI,
974                                                 0x900FFFFF, 0xFFFFFFFF },
975         { E1000_MTA,       0, 128, TABLE32_TEST,
976                                                 0xFFFFFFFF, 0xFFFFFFFF },
977         { 0, 0, 0, 0, 0 }
978 };
979
980 /* i350 reg test */
981 static struct igb_reg_test reg_test_i350[] = {
982         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
983         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
984         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
985         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
986         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
987         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
988         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
989         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
990         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
991         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
992         /* RDH is read-only for i350, only test RDT. */
993         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
994         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
995         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
996         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
997         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
998         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
999         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1000         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1001         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1002         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1003         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1004         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1005         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1006         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1007         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1008         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1009         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1010         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1011                                                 0xFFFFFFFF, 0xFFFFFFFF },
1012         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1013                                                 0xC3FFFFFF, 0xFFFFFFFF },
1014         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1015                                                 0xFFFFFFFF, 0xFFFFFFFF },
1016         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1017                                                 0xC3FFFFFF, 0xFFFFFFFF },
1018         { E1000_MTA,       0, 128, TABLE32_TEST,
1019                                                 0xFFFFFFFF, 0xFFFFFFFF },
1020         { 0, 0, 0, 0 }
1021 };
1022
1023 /* 82580 reg test */
1024 static struct igb_reg_test reg_test_82580[] = {
1025         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1026         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1027         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1029         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1032         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1035         /* RDH is read-only for 82580, only test RDT. */
1036         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1037         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1038         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1039         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1041         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1044         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1045         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1046         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1047         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1048         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1050         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1051         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1052         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1053         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1054                                                 0xFFFFFFFF, 0xFFFFFFFF },
1055         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1056                                                 0x83FFFFFF, 0xFFFFFFFF },
1057         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1058                                                 0xFFFFFFFF, 0xFFFFFFFF },
1059         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1060                                                 0x83FFFFFF, 0xFFFFFFFF },
1061         { E1000_MTA,       0, 128, TABLE32_TEST,
1062                                                 0xFFFFFFFF, 0xFFFFFFFF },
1063         { 0, 0, 0, 0 }
1064 };
1065
1066 /* 82576 reg test */
1067 static struct igb_reg_test reg_test_82576[] = {
1068         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1069         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1070         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1071         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1073         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1075         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1078         /* Enable all RX queues before testing. */
1079         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1080         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1081         /* RDH is read-only for 82576, only test RDT. */
1082         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1083         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1084         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1085         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1086         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1087         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1089         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1096         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1097         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1098         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1099         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1100         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1101         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1102         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1103         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1104         { 0, 0, 0, 0 }
1105 };
1106
1107 /* 82575 register test */
1108 static struct igb_reg_test reg_test_82575[] = {
1109         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1110         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1111         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1112         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1113         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1114         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1115         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1116         /* Enable all four RX queues before testing. */
1117         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1118         /* RDH is read-only for 82575, only test RDT. */
1119         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1120         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1121         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1122         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1124         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1127         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1128         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1129         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1130         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1131         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1132         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1133         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1134         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1135         { 0, 0, 0, 0 }
1136 };
1137
1138 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1139                              int reg, u32 mask, u32 write)
1140 {
1141         struct e1000_hw *hw = &adapter->hw;
1142         u32 pat, val;
1143         static const u32 _test[] =
1144                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1145         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1146                 wr32(reg, (_test[pat] & write));
1147                 val = rd32(reg) & mask;
1148                 if (val != (_test[pat] & write & mask)) {
1149                         dev_err(&adapter->pdev->dev,
1150                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1151                                 reg, val, (_test[pat] & write & mask));
1152                         *data = reg;
1153                         return 1;
1154                 }
1155         }
1156
1157         return 0;
1158 }
1159
1160 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1161                               int reg, u32 mask, u32 write)
1162 {
1163         struct e1000_hw *hw = &adapter->hw;
1164         u32 val;
1165         wr32(reg, write & mask);
1166         val = rd32(reg);
1167         if ((write & mask) != (val & mask)) {
1168                 dev_err(&adapter->pdev->dev,
1169                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1170                         (val & mask), (write & mask));
1171                 *data = reg;
1172                 return 1;
1173         }
1174
1175         return 0;
1176 }
1177
1178 #define REG_PATTERN_TEST(reg, mask, write) \
1179         do { \
1180                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1181                         return 1; \
1182         } while (0)
1183
1184 #define REG_SET_AND_CHECK(reg, mask, write) \
1185         do { \
1186                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1187                         return 1; \
1188         } while (0)
1189
1190 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1191 {
1192         struct e1000_hw *hw = &adapter->hw;
1193         struct igb_reg_test *test;
1194         u32 value, before, after;
1195         u32 i, toggle;
1196
1197         switch (adapter->hw.mac.type) {
1198         case e1000_i350:
1199                 test = reg_test_i350;
1200                 toggle = 0x7FEFF3FF;
1201                 break;
1202         case e1000_i210:
1203         case e1000_i211:
1204                 test = reg_test_i210;
1205                 toggle = 0x7FEFF3FF;
1206                 break;
1207         case e1000_82580:
1208                 test = reg_test_82580;
1209                 toggle = 0x7FEFF3FF;
1210                 break;
1211         case e1000_82576:
1212                 test = reg_test_82576;
1213                 toggle = 0x7FFFF3FF;
1214                 break;
1215         default:
1216                 test = reg_test_82575;
1217                 toggle = 0x7FFFF3FF;
1218                 break;
1219         }
1220
1221         /* Because the status register is such a special case,
1222          * we handle it separately from the rest of the register
1223          * tests.  Some bits are read-only, some toggle, and some
1224          * are writable on newer MACs.
1225          */
1226         before = rd32(E1000_STATUS);
1227         value = (rd32(E1000_STATUS) & toggle);
1228         wr32(E1000_STATUS, toggle);
1229         after = rd32(E1000_STATUS) & toggle;
1230         if (value != after) {
1231                 dev_err(&adapter->pdev->dev,
1232                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1233                         after, value);
1234                 *data = 1;
1235                 return 1;
1236         }
1237         /* restore previous status */
1238         wr32(E1000_STATUS, before);
1239
1240         /* Perform the remainder of the register test, looping through
1241          * the test table until we either fail or reach the null entry.
1242          */
1243         while (test->reg) {
1244                 for (i = 0; i < test->array_len; i++) {
1245                         switch (test->test_type) {
1246                         case PATTERN_TEST:
1247                                 REG_PATTERN_TEST(test->reg +
1248                                                 (i * test->reg_offset),
1249                                                 test->mask,
1250                                                 test->write);
1251                                 break;
1252                         case SET_READ_TEST:
1253                                 REG_SET_AND_CHECK(test->reg +
1254                                                 (i * test->reg_offset),
1255                                                 test->mask,
1256                                                 test->write);
1257                                 break;
1258                         case WRITE_NO_TEST:
1259                                 writel(test->write,
1260                                     (adapter->hw.hw_addr + test->reg)
1261                                         + (i * test->reg_offset));
1262                                 break;
1263                         case TABLE32_TEST:
1264                                 REG_PATTERN_TEST(test->reg + (i * 4),
1265                                                 test->mask,
1266                                                 test->write);
1267                                 break;
1268                         case TABLE64_TEST_LO:
1269                                 REG_PATTERN_TEST(test->reg + (i * 8),
1270                                                 test->mask,
1271                                                 test->write);
1272                                 break;
1273                         case TABLE64_TEST_HI:
1274                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1275                                                 test->mask,
1276                                                 test->write);
1277                                 break;
1278                         }
1279                 }
1280                 test++;
1281         }
1282
1283         *data = 0;
1284         return 0;
1285 }
1286
1287 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1288 {
1289         *data = 0;
1290
1291         /* Validate eeprom on all parts but i211 */
1292         if (adapter->hw.mac.type != e1000_i211) {
1293                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1294                         *data = 2;
1295         }
1296
1297         return *data;
1298 }
1299
1300 static irqreturn_t igb_test_intr(int irq, void *data)
1301 {
1302         struct igb_adapter *adapter = (struct igb_adapter *) data;
1303         struct e1000_hw *hw = &adapter->hw;
1304
1305         adapter->test_icr |= rd32(E1000_ICR);
1306
1307         return IRQ_HANDLED;
1308 }
1309
1310 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1311 {
1312         struct e1000_hw *hw = &adapter->hw;
1313         struct net_device *netdev = adapter->netdev;
1314         u32 mask, ics_mask, i = 0, shared_int = true;
1315         u32 irq = adapter->pdev->irq;
1316
1317         *data = 0;
1318
1319         /* Hook up test interrupt handler just for this test */
1320         if (adapter->msix_entries) {
1321                 if (request_irq(adapter->msix_entries[0].vector,
1322                                 igb_test_intr, 0, netdev->name, adapter)) {
1323                         *data = 1;
1324                         return -1;
1325                 }
1326         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1327                 shared_int = false;
1328                 if (request_irq(irq,
1329                                 igb_test_intr, 0, netdev->name, adapter)) {
1330                         *data = 1;
1331                         return -1;
1332                 }
1333         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1334                                 netdev->name, adapter)) {
1335                 shared_int = false;
1336         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1337                  netdev->name, adapter)) {
1338                 *data = 1;
1339                 return -1;
1340         }
1341         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1342                 (shared_int ? "shared" : "unshared"));
1343
1344         /* Disable all the interrupts */
1345         wr32(E1000_IMC, ~0);
1346         wrfl();
1347         msleep(10);
1348
1349         /* Define all writable bits for ICS */
1350         switch (hw->mac.type) {
1351         case e1000_82575:
1352                 ics_mask = 0x37F47EDD;
1353                 break;
1354         case e1000_82576:
1355                 ics_mask = 0x77D4FBFD;
1356                 break;
1357         case e1000_82580:
1358                 ics_mask = 0x77DCFED5;
1359                 break;
1360         case e1000_i350:
1361         case e1000_i210:
1362         case e1000_i211:
1363                 ics_mask = 0x77DCFED5;
1364                 break;
1365         default:
1366                 ics_mask = 0x7FFFFFFF;
1367                 break;
1368         }
1369
1370         /* Test each interrupt */
1371         for (; i < 31; i++) {
1372                 /* Interrupt to test */
1373                 mask = 1 << i;
1374
1375                 if (!(mask & ics_mask))
1376                         continue;
1377
1378                 if (!shared_int) {
1379                         /* Disable the interrupt to be reported in
1380                          * the cause register and then force the same
1381                          * interrupt and see if one gets posted.  If
1382                          * an interrupt was posted to the bus, the
1383                          * test failed.
1384                          */
1385                         adapter->test_icr = 0;
1386
1387                         /* Flush any pending interrupts */
1388                         wr32(E1000_ICR, ~0);
1389
1390                         wr32(E1000_IMC, mask);
1391                         wr32(E1000_ICS, mask);
1392                         wrfl();
1393                         msleep(10);
1394
1395                         if (adapter->test_icr & mask) {
1396                                 *data = 3;
1397                                 break;
1398                         }
1399                 }
1400
1401                 /* Enable the interrupt to be reported in
1402                  * the cause register and then force the same
1403                  * interrupt and see if one gets posted.  If
1404                  * an interrupt was not posted to the bus, the
1405                  * test failed.
1406                  */
1407                 adapter->test_icr = 0;
1408
1409                 /* Flush any pending interrupts */
1410                 wr32(E1000_ICR, ~0);
1411
1412                 wr32(E1000_IMS, mask);
1413                 wr32(E1000_ICS, mask);
1414                 wrfl();
1415                 msleep(10);
1416
1417                 if (!(adapter->test_icr & mask)) {
1418                         *data = 4;
1419                         break;
1420                 }
1421
1422                 if (!shared_int) {
1423                         /* Disable the other interrupts to be reported in
1424                          * the cause register and then force the other
1425                          * interrupts and see if any get posted.  If
1426                          * an interrupt was posted to the bus, the
1427                          * test failed.
1428                          */
1429                         adapter->test_icr = 0;
1430
1431                         /* Flush any pending interrupts */
1432                         wr32(E1000_ICR, ~0);
1433
1434                         wr32(E1000_IMC, ~mask);
1435                         wr32(E1000_ICS, ~mask);
1436                         wrfl();
1437                         msleep(10);
1438
1439                         if (adapter->test_icr & mask) {
1440                                 *data = 5;
1441                                 break;
1442                         }
1443                 }
1444         }
1445
1446         /* Disable all the interrupts */
1447         wr32(E1000_IMC, ~0);
1448         wrfl();
1449         msleep(10);
1450
1451         /* Unhook test interrupt handler */
1452         if (adapter->msix_entries)
1453                 free_irq(adapter->msix_entries[0].vector, adapter);
1454         else
1455                 free_irq(irq, adapter);
1456
1457         return *data;
1458 }
1459
1460 static void igb_free_desc_rings(struct igb_adapter *adapter)
1461 {
1462         igb_free_tx_resources(&adapter->test_tx_ring);
1463         igb_free_rx_resources(&adapter->test_rx_ring);
1464 }
1465
1466 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1467 {
1468         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1469         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1470         struct e1000_hw *hw = &adapter->hw;
1471         int ret_val;
1472
1473         /* Setup Tx descriptor ring and Tx buffers */
1474         tx_ring->count = IGB_DEFAULT_TXD;
1475         tx_ring->dev = &adapter->pdev->dev;
1476         tx_ring->netdev = adapter->netdev;
1477         tx_ring->reg_idx = adapter->vfs_allocated_count;
1478
1479         if (igb_setup_tx_resources(tx_ring)) {
1480                 ret_val = 1;
1481                 goto err_nomem;
1482         }
1483
1484         igb_setup_tctl(adapter);
1485         igb_configure_tx_ring(adapter, tx_ring);
1486
1487         /* Setup Rx descriptor ring and Rx buffers */
1488         rx_ring->count = IGB_DEFAULT_RXD;
1489         rx_ring->dev = &adapter->pdev->dev;
1490         rx_ring->netdev = adapter->netdev;
1491         rx_ring->reg_idx = adapter->vfs_allocated_count;
1492
1493         if (igb_setup_rx_resources(rx_ring)) {
1494                 ret_val = 3;
1495                 goto err_nomem;
1496         }
1497
1498         /* set the default queue to queue 0 of PF */
1499         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1500
1501         /* enable receive ring */
1502         igb_setup_rctl(adapter);
1503         igb_configure_rx_ring(adapter, rx_ring);
1504
1505         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1506
1507         return 0;
1508
1509 err_nomem:
1510         igb_free_desc_rings(adapter);
1511         return ret_val;
1512 }
1513
1514 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1515 {
1516         struct e1000_hw *hw = &adapter->hw;
1517
1518         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1519         igb_write_phy_reg(hw, 29, 0x001F);
1520         igb_write_phy_reg(hw, 30, 0x8FFC);
1521         igb_write_phy_reg(hw, 29, 0x001A);
1522         igb_write_phy_reg(hw, 30, 0x8FF0);
1523 }
1524
1525 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1526 {
1527         struct e1000_hw *hw = &adapter->hw;
1528         u32 ctrl_reg = 0;
1529
1530         hw->mac.autoneg = false;
1531
1532         if (hw->phy.type == e1000_phy_m88) {
1533                 if (hw->phy.id != I210_I_PHY_ID) {
1534                         /* Auto-MDI/MDIX Off */
1535                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1536                         /* reset to update Auto-MDI/MDIX */
1537                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1538                         /* autoneg off */
1539                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1540                 } else {
1541                         /* force 1000, set loopback  */
1542                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1543                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1544                 }
1545         }
1546
1547         /* add small delay to avoid loopback test failure */
1548         msleep(50);
1549
1550         /* force 1000, set loopback */
1551         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1552
1553         /* Now set up the MAC to the same speed/duplex as the PHY. */
1554         ctrl_reg = rd32(E1000_CTRL);
1555         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1556         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1557                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1558                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1559                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1560                      E1000_CTRL_SLU);    /* Set link up enable bit */
1561
1562         if (hw->phy.type == e1000_phy_m88)
1563                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1564
1565         wr32(E1000_CTRL, ctrl_reg);
1566
1567         /* Disable the receiver on the PHY so when a cable is plugged in, the
1568          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1569          */
1570         if (hw->phy.type == e1000_phy_m88)
1571                 igb_phy_disable_receiver(adapter);
1572
1573         mdelay(500);
1574         return 0;
1575 }
1576
1577 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1578 {
1579         return igb_integrated_phy_loopback(adapter);
1580 }
1581
1582 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1583 {
1584         struct e1000_hw *hw = &adapter->hw;
1585         u32 reg;
1586
1587         reg = rd32(E1000_CTRL_EXT);
1588
1589         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1590         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1591                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1592                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1593                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1594                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1595
1596                         /* Enable DH89xxCC MPHY for near end loopback */
1597                         reg = rd32(E1000_MPHY_ADDR_CTL);
1598                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1599                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1600                         wr32(E1000_MPHY_ADDR_CTL, reg);
1601
1602                         reg = rd32(E1000_MPHY_DATA);
1603                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1604                         wr32(E1000_MPHY_DATA, reg);
1605                 }
1606
1607                 reg = rd32(E1000_RCTL);
1608                 reg |= E1000_RCTL_LBM_TCVR;
1609                 wr32(E1000_RCTL, reg);
1610
1611                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1612
1613                 reg = rd32(E1000_CTRL);
1614                 reg &= ~(E1000_CTRL_RFCE |
1615                          E1000_CTRL_TFCE |
1616                          E1000_CTRL_LRST);
1617                 reg |= E1000_CTRL_SLU |
1618                        E1000_CTRL_FD;
1619                 wr32(E1000_CTRL, reg);
1620
1621                 /* Unset switch control to serdes energy detect */
1622                 reg = rd32(E1000_CONNSW);
1623                 reg &= ~E1000_CONNSW_ENRGSRC;
1624                 wr32(E1000_CONNSW, reg);
1625
1626                 /* Set PCS register for forced speed */
1627                 reg = rd32(E1000_PCS_LCTL);
1628                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1629                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1630                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1631                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1632                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1633                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1634                 wr32(E1000_PCS_LCTL, reg);
1635
1636                 return 0;
1637         }
1638
1639         return igb_set_phy_loopback(adapter);
1640 }
1641
1642 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1643 {
1644         struct e1000_hw *hw = &adapter->hw;
1645         u32 rctl;
1646         u16 phy_reg;
1647
1648         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1649         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1650         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1651         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1652                 u32 reg;
1653
1654                 /* Disable near end loopback on DH89xxCC */
1655                 reg = rd32(E1000_MPHY_ADDR_CTL);
1656                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1657                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1658                 wr32(E1000_MPHY_ADDR_CTL, reg);
1659
1660                 reg = rd32(E1000_MPHY_DATA);
1661                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1662                 wr32(E1000_MPHY_DATA, reg);
1663         }
1664
1665         rctl = rd32(E1000_RCTL);
1666         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1667         wr32(E1000_RCTL, rctl);
1668
1669         hw->mac.autoneg = true;
1670         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1671         if (phy_reg & MII_CR_LOOPBACK) {
1672                 phy_reg &= ~MII_CR_LOOPBACK;
1673                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1674                 igb_phy_sw_reset(hw);
1675         }
1676 }
1677
1678 static void igb_create_lbtest_frame(struct sk_buff *skb,
1679                                     unsigned int frame_size)
1680 {
1681         memset(skb->data, 0xFF, frame_size);
1682         frame_size /= 2;
1683         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1684         memset(&skb->data[frame_size + 10], 0xBE, 1);
1685         memset(&skb->data[frame_size + 12], 0xAF, 1);
1686 }
1687
1688 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1689 {
1690         frame_size /= 2;
1691         if (*(skb->data + 3) == 0xFF) {
1692                 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1693                    (*(skb->data + frame_size + 12) == 0xAF)) {
1694                         return 0;
1695                 }
1696         }
1697         return 13;
1698 }
1699
1700 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1701                                 struct igb_ring *tx_ring,
1702                                 unsigned int size)
1703 {
1704         union e1000_adv_rx_desc *rx_desc;
1705         struct igb_rx_buffer *rx_buffer_info;
1706         struct igb_tx_buffer *tx_buffer_info;
1707         struct netdev_queue *txq;
1708         u16 rx_ntc, tx_ntc, count = 0;
1709         unsigned int total_bytes = 0, total_packets = 0;
1710
1711         /* initialize next to clean and descriptor values */
1712         rx_ntc = rx_ring->next_to_clean;
1713         tx_ntc = tx_ring->next_to_clean;
1714         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1715
1716         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1717                 /* check rx buffer */
1718                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1719
1720                 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1721                 dma_unmap_single(rx_ring->dev,
1722                                  rx_buffer_info->dma,
1723                                  IGB_RX_HDR_LEN,
1724                                  DMA_FROM_DEVICE);
1725                 rx_buffer_info->dma = 0;
1726
1727                 /* verify contents of skb */
1728                 if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1729                         count++;
1730
1731                 /* unmap buffer on tx side */
1732                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1733                 total_bytes += tx_buffer_info->bytecount;
1734                 total_packets += tx_buffer_info->gso_segs;
1735                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1736
1737                 /* increment rx/tx next to clean counters */
1738                 rx_ntc++;
1739                 if (rx_ntc == rx_ring->count)
1740                         rx_ntc = 0;
1741                 tx_ntc++;
1742                 if (tx_ntc == tx_ring->count)
1743                         tx_ntc = 0;
1744
1745                 /* fetch next descriptor */
1746                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1747         }
1748
1749         txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1750         netdev_tx_completed_queue(txq, total_packets, total_bytes);
1751
1752         /* re-map buffers to ring, store next to clean values */
1753         igb_alloc_rx_buffers(rx_ring, count);
1754         rx_ring->next_to_clean = rx_ntc;
1755         tx_ring->next_to_clean = tx_ntc;
1756
1757         return count;
1758 }
1759
1760 static int igb_run_loopback_test(struct igb_adapter *adapter)
1761 {
1762         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1763         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1764         u16 i, j, lc, good_cnt;
1765         int ret_val = 0;
1766         unsigned int size = IGB_RX_HDR_LEN;
1767         netdev_tx_t tx_ret_val;
1768         struct sk_buff *skb;
1769
1770         /* allocate test skb */
1771         skb = alloc_skb(size, GFP_KERNEL);
1772         if (!skb)
1773                 return 11;
1774
1775         /* place data into test skb */
1776         igb_create_lbtest_frame(skb, size);
1777         skb_put(skb, size);
1778
1779         /*
1780          * Calculate the loop count based on the largest descriptor ring
1781          * The idea is to wrap the largest ring a number of times using 64
1782          * send/receive pairs during each loop
1783          */
1784
1785         if (rx_ring->count <= tx_ring->count)
1786                 lc = ((tx_ring->count / 64) * 2) + 1;
1787         else
1788                 lc = ((rx_ring->count / 64) * 2) + 1;
1789
1790         for (j = 0; j <= lc; j++) { /* loop count loop */
1791                 /* reset count of good packets */
1792                 good_cnt = 0;
1793
1794                 /* place 64 packets on the transmit queue*/
1795                 for (i = 0; i < 64; i++) {
1796                         skb_get(skb);
1797                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1798                         if (tx_ret_val == NETDEV_TX_OK)
1799                                 good_cnt++;
1800                 }
1801
1802                 if (good_cnt != 64) {
1803                         ret_val = 12;
1804                         break;
1805                 }
1806
1807                 /* allow 200 milliseconds for packets to go from tx to rx */
1808                 msleep(200);
1809
1810                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1811                 if (good_cnt != 64) {
1812                         ret_val = 13;
1813                         break;
1814                 }
1815         } /* end loop count loop */
1816
1817         /* free the original skb */
1818         kfree_skb(skb);
1819
1820         return ret_val;
1821 }
1822
1823 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1824 {
1825         /* PHY loopback cannot be performed if SoL/IDER
1826          * sessions are active */
1827         if (igb_check_reset_block(&adapter->hw)) {
1828                 dev_err(&adapter->pdev->dev,
1829                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1830                 *data = 0;
1831                 goto out;
1832         }
1833         *data = igb_setup_desc_rings(adapter);
1834         if (*data)
1835                 goto out;
1836         *data = igb_setup_loopback_test(adapter);
1837         if (*data)
1838                 goto err_loopback;
1839         *data = igb_run_loopback_test(adapter);
1840         igb_loopback_cleanup(adapter);
1841
1842 err_loopback:
1843         igb_free_desc_rings(adapter);
1844 out:
1845         return *data;
1846 }
1847
1848 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1849 {
1850         struct e1000_hw *hw = &adapter->hw;
1851         *data = 0;
1852         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1853                 int i = 0;
1854                 hw->mac.serdes_has_link = false;
1855
1856                 /* On some blade server designs, link establishment
1857                  * could take as long as 2-3 minutes */
1858                 do {
1859                         hw->mac.ops.check_for_link(&adapter->hw);
1860                         if (hw->mac.serdes_has_link)
1861                                 return *data;
1862                         msleep(20);
1863                 } while (i++ < 3750);
1864
1865                 *data = 1;
1866         } else {
1867                 hw->mac.ops.check_for_link(&adapter->hw);
1868                 if (hw->mac.autoneg)
1869                         msleep(4000);
1870
1871                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1872                         *data = 1;
1873         }
1874         return *data;
1875 }
1876
1877 static void igb_diag_test(struct net_device *netdev,
1878                           struct ethtool_test *eth_test, u64 *data)
1879 {
1880         struct igb_adapter *adapter = netdev_priv(netdev);
1881         u16 autoneg_advertised;
1882         u8 forced_speed_duplex, autoneg;
1883         bool if_running = netif_running(netdev);
1884
1885         set_bit(__IGB_TESTING, &adapter->state);
1886         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1887                 /* Offline tests */
1888
1889                 /* save speed, duplex, autoneg settings */
1890                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1891                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1892                 autoneg = adapter->hw.mac.autoneg;
1893
1894                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1895
1896                 /* power up link for link test */
1897                 igb_power_up_link(adapter);
1898
1899                 /* Link test performed before hardware reset so autoneg doesn't
1900                  * interfere with test result */
1901                 if (igb_link_test(adapter, &data[4]))
1902                         eth_test->flags |= ETH_TEST_FL_FAILED;
1903
1904                 if (if_running)
1905                         /* indicate we're in test mode */
1906                         dev_close(netdev);
1907                 else
1908                         igb_reset(adapter);
1909
1910                 if (igb_reg_test(adapter, &data[0]))
1911                         eth_test->flags |= ETH_TEST_FL_FAILED;
1912
1913                 igb_reset(adapter);
1914                 if (igb_eeprom_test(adapter, &data[1]))
1915                         eth_test->flags |= ETH_TEST_FL_FAILED;
1916
1917                 igb_reset(adapter);
1918                 if (igb_intr_test(adapter, &data[2]))
1919                         eth_test->flags |= ETH_TEST_FL_FAILED;
1920
1921                 igb_reset(adapter);
1922                 /* power up link for loopback test */
1923                 igb_power_up_link(adapter);
1924                 if (igb_loopback_test(adapter, &data[3]))
1925                         eth_test->flags |= ETH_TEST_FL_FAILED;
1926
1927                 /* restore speed, duplex, autoneg settings */
1928                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1929                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1930                 adapter->hw.mac.autoneg = autoneg;
1931
1932                 /* force this routine to wait until autoneg complete/timeout */
1933                 adapter->hw.phy.autoneg_wait_to_complete = true;
1934                 igb_reset(adapter);
1935                 adapter->hw.phy.autoneg_wait_to_complete = false;
1936
1937                 clear_bit(__IGB_TESTING, &adapter->state);
1938                 if (if_running)
1939                         dev_open(netdev);
1940         } else {
1941                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1942
1943                 /* PHY is powered down when interface is down */
1944                 if (if_running && igb_link_test(adapter, &data[4]))
1945                         eth_test->flags |= ETH_TEST_FL_FAILED;
1946                 else
1947                         data[4] = 0;
1948
1949                 /* Online tests aren't run; pass by default */
1950                 data[0] = 0;
1951                 data[1] = 0;
1952                 data[2] = 0;
1953                 data[3] = 0;
1954
1955                 clear_bit(__IGB_TESTING, &adapter->state);
1956         }
1957         msleep_interruptible(4 * 1000);
1958 }
1959
1960 static int igb_wol_exclusion(struct igb_adapter *adapter,
1961                              struct ethtool_wolinfo *wol)
1962 {
1963         struct e1000_hw *hw = &adapter->hw;
1964         int retval = 1; /* fail by default */
1965
1966         switch (hw->device_id) {
1967         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1968                 /* WoL not supported */
1969                 wol->supported = 0;
1970                 break;
1971         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1972         case E1000_DEV_ID_82576_FIBER:
1973         case E1000_DEV_ID_82576_SERDES:
1974                 /* Wake events not supported on port B */
1975                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1976                         wol->supported = 0;
1977                         break;
1978                 }
1979                 /* return success for non excluded adapter ports */
1980                 retval = 0;
1981                 break;
1982         case E1000_DEV_ID_82576_QUAD_COPPER:
1983         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1984                 /* quad port adapters only support WoL on port A */
1985                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1986                         wol->supported = 0;
1987                         break;
1988                 }
1989                 /* return success for non excluded adapter ports */
1990                 retval = 0;
1991                 break;
1992         default:
1993                 /* dual port cards only support WoL on port A from now on
1994                  * unless it was enabled in the eeprom for port B
1995                  * so exclude FUNC_1 ports from having WoL enabled */
1996                 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1997                     !adapter->eeprom_wol) {
1998                         wol->supported = 0;
1999                         break;
2000                 }
2001
2002                 retval = 0;
2003         }
2004
2005         return retval;
2006 }
2007
2008 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2009 {
2010         struct igb_adapter *adapter = netdev_priv(netdev);
2011
2012         wol->supported = WAKE_UCAST | WAKE_MCAST |
2013                          WAKE_BCAST | WAKE_MAGIC |
2014                          WAKE_PHY;
2015         wol->wolopts = 0;
2016
2017         /* this function will set ->supported = 0 and return 1 if wol is not
2018          * supported by this hardware */
2019         if (igb_wol_exclusion(adapter, wol) ||
2020             !device_can_wakeup(&adapter->pdev->dev))
2021                 return;
2022
2023         /* apply any specific unsupported masks here */
2024         switch (adapter->hw.device_id) {
2025         default:
2026                 break;
2027         }
2028
2029         if (adapter->wol & E1000_WUFC_EX)
2030                 wol->wolopts |= WAKE_UCAST;
2031         if (adapter->wol & E1000_WUFC_MC)
2032                 wol->wolopts |= WAKE_MCAST;
2033         if (adapter->wol & E1000_WUFC_BC)
2034                 wol->wolopts |= WAKE_BCAST;
2035         if (adapter->wol & E1000_WUFC_MAG)
2036                 wol->wolopts |= WAKE_MAGIC;
2037         if (adapter->wol & E1000_WUFC_LNKC)
2038                 wol->wolopts |= WAKE_PHY;
2039 }
2040
2041 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2042 {
2043         struct igb_adapter *adapter = netdev_priv(netdev);
2044
2045         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2046                 return -EOPNOTSUPP;
2047
2048         if (igb_wol_exclusion(adapter, wol) ||
2049             !device_can_wakeup(&adapter->pdev->dev))
2050                 return wol->wolopts ? -EOPNOTSUPP : 0;
2051
2052         /* these settings will always override what we currently have */
2053         adapter->wol = 0;
2054
2055         if (wol->wolopts & WAKE_UCAST)
2056                 adapter->wol |= E1000_WUFC_EX;
2057         if (wol->wolopts & WAKE_MCAST)
2058                 adapter->wol |= E1000_WUFC_MC;
2059         if (wol->wolopts & WAKE_BCAST)
2060                 adapter->wol |= E1000_WUFC_BC;
2061         if (wol->wolopts & WAKE_MAGIC)
2062                 adapter->wol |= E1000_WUFC_MAG;
2063         if (wol->wolopts & WAKE_PHY)
2064                 adapter->wol |= E1000_WUFC_LNKC;
2065         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2066
2067         return 0;
2068 }
2069
2070 /* bit defines for adapter->led_status */
2071 #define IGB_LED_ON              0
2072
2073 static int igb_set_phys_id(struct net_device *netdev,
2074                            enum ethtool_phys_id_state state)
2075 {
2076         struct igb_adapter *adapter = netdev_priv(netdev);
2077         struct e1000_hw *hw = &adapter->hw;
2078
2079         switch (state) {
2080         case ETHTOOL_ID_ACTIVE:
2081                 igb_blink_led(hw);
2082                 return 2;
2083         case ETHTOOL_ID_ON:
2084                 igb_blink_led(hw);
2085                 break;
2086         case ETHTOOL_ID_OFF:
2087                 igb_led_off(hw);
2088                 break;
2089         case ETHTOOL_ID_INACTIVE:
2090                 igb_led_off(hw);
2091                 clear_bit(IGB_LED_ON, &adapter->led_status);
2092                 igb_cleanup_led(hw);
2093                 break;
2094         }
2095
2096         return 0;
2097 }
2098
2099 static int igb_set_coalesce(struct net_device *netdev,
2100                             struct ethtool_coalesce *ec)
2101 {
2102         struct igb_adapter *adapter = netdev_priv(netdev);
2103         int i;
2104
2105         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2106             ((ec->rx_coalesce_usecs > 3) &&
2107              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2108             (ec->rx_coalesce_usecs == 2))
2109                 return -EINVAL;
2110
2111         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2112             ((ec->tx_coalesce_usecs > 3) &&
2113              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2114             (ec->tx_coalesce_usecs == 2))
2115                 return -EINVAL;
2116
2117         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2118                 return -EINVAL;
2119
2120         /* If ITR is disabled, disable DMAC */
2121         if (ec->rx_coalesce_usecs == 0) {
2122                 if (adapter->flags & IGB_FLAG_DMAC)
2123                         adapter->flags &= ~IGB_FLAG_DMAC;
2124         }
2125
2126         /* convert to rate of irq's per second */
2127         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2128                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2129         else
2130                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2131
2132         /* convert to rate of irq's per second */
2133         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2134                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2135         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2136                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2137         else
2138                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2139
2140         for (i = 0; i < adapter->num_q_vectors; i++) {
2141                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2142                 q_vector->tx.work_limit = adapter->tx_work_limit;
2143                 if (q_vector->rx.ring)
2144                         q_vector->itr_val = adapter->rx_itr_setting;
2145                 else
2146                         q_vector->itr_val = adapter->tx_itr_setting;
2147                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2148                         q_vector->itr_val = IGB_START_ITR;
2149                 q_vector->set_itr = 1;
2150         }
2151
2152         return 0;
2153 }
2154
2155 static int igb_get_coalesce(struct net_device *netdev,
2156                             struct ethtool_coalesce *ec)
2157 {
2158         struct igb_adapter *adapter = netdev_priv(netdev);
2159
2160         if (adapter->rx_itr_setting <= 3)
2161                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2162         else
2163                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2164
2165         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2166                 if (adapter->tx_itr_setting <= 3)
2167                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2168                 else
2169                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2170         }
2171
2172         return 0;
2173 }
2174
2175 static int igb_nway_reset(struct net_device *netdev)
2176 {
2177         struct igb_adapter *adapter = netdev_priv(netdev);
2178         if (netif_running(netdev))
2179                 igb_reinit_locked(adapter);
2180         return 0;
2181 }
2182
2183 static int igb_get_sset_count(struct net_device *netdev, int sset)
2184 {
2185         switch (sset) {
2186         case ETH_SS_STATS:
2187                 return IGB_STATS_LEN;
2188         case ETH_SS_TEST:
2189                 return IGB_TEST_LEN;
2190         default:
2191                 return -ENOTSUPP;
2192         }
2193 }
2194
2195 static void igb_get_ethtool_stats(struct net_device *netdev,
2196                                   struct ethtool_stats *stats, u64 *data)
2197 {
2198         struct igb_adapter *adapter = netdev_priv(netdev);
2199         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2200         unsigned int start;
2201         struct igb_ring *ring;
2202         int i, j;
2203         char *p;
2204
2205         spin_lock(&adapter->stats64_lock);
2206         igb_update_stats(adapter, net_stats);
2207
2208         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2209                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2210                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2211                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2212         }
2213         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2214                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2215                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2216                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2217         }
2218         for (j = 0; j < adapter->num_tx_queues; j++) {
2219                 u64     restart2;
2220
2221                 ring = adapter->tx_ring[j];
2222                 do {
2223                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2224                         data[i]   = ring->tx_stats.packets;
2225                         data[i+1] = ring->tx_stats.bytes;
2226                         data[i+2] = ring->tx_stats.restart_queue;
2227                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2228                 do {
2229                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2230                         restart2  = ring->tx_stats.restart_queue2;
2231                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2232                 data[i+2] += restart2;
2233
2234                 i += IGB_TX_QUEUE_STATS_LEN;
2235         }
2236         for (j = 0; j < adapter->num_rx_queues; j++) {
2237                 ring = adapter->rx_ring[j];
2238                 do {
2239                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2240                         data[i]   = ring->rx_stats.packets;
2241                         data[i+1] = ring->rx_stats.bytes;
2242                         data[i+2] = ring->rx_stats.drops;
2243                         data[i+3] = ring->rx_stats.csum_err;
2244                         data[i+4] = ring->rx_stats.alloc_failed;
2245                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2246                 i += IGB_RX_QUEUE_STATS_LEN;
2247         }
2248         spin_unlock(&adapter->stats64_lock);
2249 }
2250
2251 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2252 {
2253         struct igb_adapter *adapter = netdev_priv(netdev);
2254         u8 *p = data;
2255         int i;
2256
2257         switch (stringset) {
2258         case ETH_SS_TEST:
2259                 memcpy(data, *igb_gstrings_test,
2260                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2261                 break;
2262         case ETH_SS_STATS:
2263                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2264                         memcpy(p, igb_gstrings_stats[i].stat_string,
2265                                ETH_GSTRING_LEN);
2266                         p += ETH_GSTRING_LEN;
2267                 }
2268                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2269                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2270                                ETH_GSTRING_LEN);
2271                         p += ETH_GSTRING_LEN;
2272                 }
2273                 for (i = 0; i < adapter->num_tx_queues; i++) {
2274                         sprintf(p, "tx_queue_%u_packets", i);
2275                         p += ETH_GSTRING_LEN;
2276                         sprintf(p, "tx_queue_%u_bytes", i);
2277                         p += ETH_GSTRING_LEN;
2278                         sprintf(p, "tx_queue_%u_restart", i);
2279                         p += ETH_GSTRING_LEN;
2280                 }
2281                 for (i = 0; i < adapter->num_rx_queues; i++) {
2282                         sprintf(p, "rx_queue_%u_packets", i);
2283                         p += ETH_GSTRING_LEN;
2284                         sprintf(p, "rx_queue_%u_bytes", i);
2285                         p += ETH_GSTRING_LEN;
2286                         sprintf(p, "rx_queue_%u_drops", i);
2287                         p += ETH_GSTRING_LEN;
2288                         sprintf(p, "rx_queue_%u_csum_err", i);
2289                         p += ETH_GSTRING_LEN;
2290                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2291                         p += ETH_GSTRING_LEN;
2292                 }
2293 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2294                 break;
2295         }
2296 }
2297
2298 static int igb_get_ts_info(struct net_device *dev,
2299                            struct ethtool_ts_info *info)
2300 {
2301         struct igb_adapter *adapter = netdev_priv(dev);
2302
2303         switch (adapter->hw.mac.type) {
2304 #ifdef CONFIG_IGB_PTP
2305         case e1000_82576:
2306         case e1000_82580:
2307         case e1000_i350:
2308         case e1000_i210:
2309         case e1000_i211:
2310                 info->so_timestamping =
2311                         SOF_TIMESTAMPING_TX_HARDWARE |
2312                         SOF_TIMESTAMPING_RX_HARDWARE |
2313                         SOF_TIMESTAMPING_RAW_HARDWARE;
2314
2315                 if (adapter->ptp_clock)
2316                         info->phc_index = ptp_clock_index(adapter->ptp_clock);
2317                 else
2318                         info->phc_index = -1;
2319
2320                 info->tx_types =
2321                         (1 << HWTSTAMP_TX_OFF) |
2322                         (1 << HWTSTAMP_TX_ON);
2323
2324                 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2325
2326                 /* 82576 does not support timestamping all packets. */
2327                 if (adapter->hw.mac.type >= e1000_82580)
2328                         info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2329                 else
2330                         info->rx_filters |=
2331                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2332                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2333                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2334                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2335                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2336                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2337                                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2338
2339                 return 0;
2340 #endif /* CONFIG_IGB_PTP */
2341         default:
2342                 return -EOPNOTSUPP;
2343         }
2344 }
2345
2346 static int igb_ethtool_begin(struct net_device *netdev)
2347 {
2348         struct igb_adapter *adapter = netdev_priv(netdev);
2349         pm_runtime_get_sync(&adapter->pdev->dev);
2350         return 0;
2351 }
2352
2353 static void igb_ethtool_complete(struct net_device *netdev)
2354 {
2355         struct igb_adapter *adapter = netdev_priv(netdev);
2356         pm_runtime_put(&adapter->pdev->dev);
2357 }
2358
2359 static const struct ethtool_ops igb_ethtool_ops = {
2360         .get_settings           = igb_get_settings,
2361         .set_settings           = igb_set_settings,
2362         .get_drvinfo            = igb_get_drvinfo,
2363         .get_regs_len           = igb_get_regs_len,
2364         .get_regs               = igb_get_regs,
2365         .get_wol                = igb_get_wol,
2366         .set_wol                = igb_set_wol,
2367         .get_msglevel           = igb_get_msglevel,
2368         .set_msglevel           = igb_set_msglevel,
2369         .nway_reset             = igb_nway_reset,
2370         .get_link               = igb_get_link,
2371         .get_eeprom_len         = igb_get_eeprom_len,
2372         .get_eeprom             = igb_get_eeprom,
2373         .set_eeprom             = igb_set_eeprom,
2374         .get_ringparam          = igb_get_ringparam,
2375         .set_ringparam          = igb_set_ringparam,
2376         .get_pauseparam         = igb_get_pauseparam,
2377         .set_pauseparam         = igb_set_pauseparam,
2378         .self_test              = igb_diag_test,
2379         .get_strings            = igb_get_strings,
2380         .set_phys_id            = igb_set_phys_id,
2381         .get_sset_count         = igb_get_sset_count,
2382         .get_ethtool_stats      = igb_get_ethtool_stats,
2383         .get_coalesce           = igb_get_coalesce,
2384         .set_coalesce           = igb_set_coalesce,
2385         .get_ts_info            = igb_get_ts_info,
2386         .begin                  = igb_ethtool_begin,
2387         .complete               = igb_ethtool_complete,
2388 };
2389
2390 void igb_set_ethtool_ops(struct net_device *netdev)
2391 {
2392         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2393 }