ptp: Enable clock drivers along with associated net/PHY drivers
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41
42 #include "igb.h"
43
44 struct igb_stats {
45         char stat_string[ETH_GSTRING_LEN];
46         int sizeof_stat;
47         int stat_offset;
48 };
49
50 #define IGB_STAT(_name, _stat) { \
51         .stat_string = _name, \
52         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
53         .stat_offset = offsetof(struct igb_adapter, _stat) \
54 }
55 static const struct igb_stats igb_gstrings_stats[] = {
56         IGB_STAT("rx_packets", stats.gprc),
57         IGB_STAT("tx_packets", stats.gptc),
58         IGB_STAT("rx_bytes", stats.gorc),
59         IGB_STAT("tx_bytes", stats.gotc),
60         IGB_STAT("rx_broadcast", stats.bprc),
61         IGB_STAT("tx_broadcast", stats.bptc),
62         IGB_STAT("rx_multicast", stats.mprc),
63         IGB_STAT("tx_multicast", stats.mptc),
64         IGB_STAT("multicast", stats.mprc),
65         IGB_STAT("collisions", stats.colc),
66         IGB_STAT("rx_crc_errors", stats.crcerrs),
67         IGB_STAT("rx_no_buffer_count", stats.rnbc),
68         IGB_STAT("rx_missed_errors", stats.mpc),
69         IGB_STAT("tx_aborted_errors", stats.ecol),
70         IGB_STAT("tx_carrier_errors", stats.tncrs),
71         IGB_STAT("tx_window_errors", stats.latecol),
72         IGB_STAT("tx_abort_late_coll", stats.latecol),
73         IGB_STAT("tx_deferred_ok", stats.dc),
74         IGB_STAT("tx_single_coll_ok", stats.scc),
75         IGB_STAT("tx_multi_coll_ok", stats.mcc),
76         IGB_STAT("tx_timeout_count", tx_timeout_count),
77         IGB_STAT("rx_long_length_errors", stats.roc),
78         IGB_STAT("rx_short_length_errors", stats.ruc),
79         IGB_STAT("rx_align_errors", stats.algnerrc),
80         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
81         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
82         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
83         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
84         IGB_STAT("tx_flow_control_xon", stats.xontxc),
85         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
86         IGB_STAT("rx_long_byte_count", stats.gorc),
87         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
88         IGB_STAT("tx_smbus", stats.mgptc),
89         IGB_STAT("rx_smbus", stats.mgprc),
90         IGB_STAT("dropped_smbus", stats.mgpdc),
91         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
92         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
93         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
94         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95 };
96
97 #define IGB_NETDEV_STAT(_net_stat) { \
98         .stat_string = __stringify(_net_stat), \
99         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
100         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
101 }
102 static const struct igb_stats igb_gstrings_net_stats[] = {
103         IGB_NETDEV_STAT(rx_errors),
104         IGB_NETDEV_STAT(tx_errors),
105         IGB_NETDEV_STAT(tx_dropped),
106         IGB_NETDEV_STAT(rx_length_errors),
107         IGB_NETDEV_STAT(rx_over_errors),
108         IGB_NETDEV_STAT(rx_frame_errors),
109         IGB_NETDEV_STAT(rx_fifo_errors),
110         IGB_NETDEV_STAT(tx_fifo_errors),
111         IGB_NETDEV_STAT(tx_heartbeat_errors)
112 };
113
114 #define IGB_GLOBAL_STATS_LEN    \
115         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
116 #define IGB_NETDEV_STATS_LEN    \
117         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
118 #define IGB_RX_QUEUE_STATS_LEN \
119         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
120
121 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
122
123 #define IGB_QUEUE_STATS_LEN \
124         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
125           IGB_RX_QUEUE_STATS_LEN) + \
126          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
127           IGB_TX_QUEUE_STATS_LEN))
128 #define IGB_STATS_LEN \
129         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
130
131 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
132         "Register test  (offline)", "Eeprom test    (offline)",
133         "Interrupt test (offline)", "Loopback test  (offline)",
134         "Link test   (on/offline)"
135 };
136 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
137
138 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
139 {
140         struct igb_adapter *adapter = netdev_priv(netdev);
141         struct e1000_hw *hw = &adapter->hw;
142         u32 status;
143
144         if (hw->phy.media_type == e1000_media_type_copper) {
145
146                 ecmd->supported = (SUPPORTED_10baseT_Half |
147                                    SUPPORTED_10baseT_Full |
148                                    SUPPORTED_100baseT_Half |
149                                    SUPPORTED_100baseT_Full |
150                                    SUPPORTED_1000baseT_Full|
151                                    SUPPORTED_Autoneg |
152                                    SUPPORTED_TP |
153                                    SUPPORTED_Pause);
154                 ecmd->advertising = ADVERTISED_TP;
155
156                 if (hw->mac.autoneg == 1) {
157                         ecmd->advertising |= ADVERTISED_Autoneg;
158                         /* the e1000 autoneg seems to match ethtool nicely */
159                         ecmd->advertising |= hw->phy.autoneg_advertised;
160                 }
161
162                 if (hw->mac.autoneg != 1)
163                         ecmd->advertising &= ~(ADVERTISED_Pause |
164                                                ADVERTISED_Asym_Pause);
165
166                 if (hw->fc.requested_mode == e1000_fc_full)
167                         ecmd->advertising |= ADVERTISED_Pause;
168                 else if (hw->fc.requested_mode == e1000_fc_rx_pause)
169                         ecmd->advertising |= (ADVERTISED_Pause |
170                                               ADVERTISED_Asym_Pause);
171                 else if (hw->fc.requested_mode == e1000_fc_tx_pause)
172                         ecmd->advertising |=  ADVERTISED_Asym_Pause;
173                 else
174                         ecmd->advertising &= ~(ADVERTISED_Pause |
175                                                ADVERTISED_Asym_Pause);
176
177                 ecmd->port = PORT_TP;
178                 ecmd->phy_address = hw->phy.addr;
179         } else {
180                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
181                                      SUPPORTED_FIBRE |
182                                      SUPPORTED_Autoneg);
183
184                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
185                                      ADVERTISED_FIBRE |
186                                      ADVERTISED_Autoneg |
187                                      ADVERTISED_Pause);
188
189                 ecmd->port = PORT_FIBRE;
190         }
191
192         ecmd->transceiver = XCVR_INTERNAL;
193
194         status = rd32(E1000_STATUS);
195
196         if (status & E1000_STATUS_LU) {
197
198                 if ((status & E1000_STATUS_SPEED_1000) ||
199                     hw->phy.media_type != e1000_media_type_copper)
200                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
201                 else if (status & E1000_STATUS_SPEED_100)
202                         ethtool_cmd_speed_set(ecmd, SPEED_100);
203                 else
204                         ethtool_cmd_speed_set(ecmd, SPEED_10);
205
206                 if ((status & E1000_STATUS_FD) ||
207                     hw->phy.media_type != e1000_media_type_copper)
208                         ecmd->duplex = DUPLEX_FULL;
209                 else
210                         ecmd->duplex = DUPLEX_HALF;
211         } else {
212                 ethtool_cmd_speed_set(ecmd, -1);
213                 ecmd->duplex = -1;
214         }
215
216         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
217
218         /* MDI-X => 2; MDI =>1; Invalid =>0 */
219         if (hw->phy.media_type == e1000_media_type_copper)
220                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
221                                                       ETH_TP_MDI;
222         else
223                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
224
225         if (hw->phy.mdix == AUTO_ALL_MODES)
226                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
227         else
228                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
229
230         return 0;
231 }
232
233 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
234 {
235         struct igb_adapter *adapter = netdev_priv(netdev);
236         struct e1000_hw *hw = &adapter->hw;
237
238         /* When SoL/IDER sessions are active, autoneg/speed/duplex
239          * cannot be changed */
240         if (igb_check_reset_block(hw)) {
241                 dev_err(&adapter->pdev->dev,
242                         "Cannot change link characteristics when SoL/IDER is active.\n");
243                 return -EINVAL;
244         }
245
246         /*
247          * MDI setting is only allowed when autoneg enabled because
248          * some hardware doesn't allow MDI setting when speed or
249          * duplex is forced.
250          */
251         if (ecmd->eth_tp_mdix_ctrl) {
252                 if (hw->phy.media_type != e1000_media_type_copper)
253                         return -EOPNOTSUPP;
254
255                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
256                     (ecmd->autoneg != AUTONEG_ENABLE)) {
257                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
258                         return -EINVAL;
259                 }
260         }
261
262         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
263                 msleep(1);
264
265         if (ecmd->autoneg == AUTONEG_ENABLE) {
266                 hw->mac.autoneg = 1;
267                 hw->phy.autoneg_advertised = ecmd->advertising |
268                                              ADVERTISED_TP |
269                                              ADVERTISED_Autoneg;
270                 ecmd->advertising = hw->phy.autoneg_advertised;
271                 if (adapter->fc_autoneg)
272                         hw->fc.requested_mode = e1000_fc_default;
273         } else {
274                 u32 speed = ethtool_cmd_speed(ecmd);
275                 /* calling this overrides forced MDI setting */
276                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
277                         clear_bit(__IGB_RESETTING, &adapter->state);
278                         return -EINVAL;
279                 }
280         }
281
282         /* MDI-X => 2; MDI => 1; Auto => 3 */
283         if (ecmd->eth_tp_mdix_ctrl) {
284                 /*
285                  * fix up the value for auto (3 => 0) as zero is mapped
286                  * internally to auto
287                  */
288                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
289                         hw->phy.mdix = AUTO_ALL_MODES;
290                 else
291                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
292         }
293
294         /* reset the link */
295         if (netif_running(adapter->netdev)) {
296                 igb_down(adapter);
297                 igb_up(adapter);
298         } else
299                 igb_reset(adapter);
300
301         clear_bit(__IGB_RESETTING, &adapter->state);
302         return 0;
303 }
304
305 static u32 igb_get_link(struct net_device *netdev)
306 {
307         struct igb_adapter *adapter = netdev_priv(netdev);
308         struct e1000_mac_info *mac = &adapter->hw.mac;
309
310         /*
311          * If the link is not reported up to netdev, interrupts are disabled,
312          * and so the physical link state may have changed since we last
313          * looked. Set get_link_status to make sure that the true link
314          * state is interrogated, rather than pulling a cached and possibly
315          * stale link state from the driver.
316          */
317         if (!netif_carrier_ok(netdev))
318                 mac->get_link_status = 1;
319
320         return igb_has_link(adapter);
321 }
322
323 static void igb_get_pauseparam(struct net_device *netdev,
324                                struct ethtool_pauseparam *pause)
325 {
326         struct igb_adapter *adapter = netdev_priv(netdev);
327         struct e1000_hw *hw = &adapter->hw;
328
329         pause->autoneg =
330                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
331
332         if (hw->fc.current_mode == e1000_fc_rx_pause)
333                 pause->rx_pause = 1;
334         else if (hw->fc.current_mode == e1000_fc_tx_pause)
335                 pause->tx_pause = 1;
336         else if (hw->fc.current_mode == e1000_fc_full) {
337                 pause->rx_pause = 1;
338                 pause->tx_pause = 1;
339         }
340 }
341
342 static int igb_set_pauseparam(struct net_device *netdev,
343                               struct ethtool_pauseparam *pause)
344 {
345         struct igb_adapter *adapter = netdev_priv(netdev);
346         struct e1000_hw *hw = &adapter->hw;
347         int retval = 0;
348
349         adapter->fc_autoneg = pause->autoneg;
350
351         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
352                 msleep(1);
353
354         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
355                 hw->fc.requested_mode = e1000_fc_default;
356                 if (netif_running(adapter->netdev)) {
357                         igb_down(adapter);
358                         igb_up(adapter);
359                 } else {
360                         igb_reset(adapter);
361                 }
362         } else {
363                 if (pause->rx_pause && pause->tx_pause)
364                         hw->fc.requested_mode = e1000_fc_full;
365                 else if (pause->rx_pause && !pause->tx_pause)
366                         hw->fc.requested_mode = e1000_fc_rx_pause;
367                 else if (!pause->rx_pause && pause->tx_pause)
368                         hw->fc.requested_mode = e1000_fc_tx_pause;
369                 else if (!pause->rx_pause && !pause->tx_pause)
370                         hw->fc.requested_mode = e1000_fc_none;
371
372                 hw->fc.current_mode = hw->fc.requested_mode;
373
374                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
375                           igb_force_mac_fc(hw) : igb_setup_link(hw));
376         }
377
378         clear_bit(__IGB_RESETTING, &adapter->state);
379         return retval;
380 }
381
382 static u32 igb_get_msglevel(struct net_device *netdev)
383 {
384         struct igb_adapter *adapter = netdev_priv(netdev);
385         return adapter->msg_enable;
386 }
387
388 static void igb_set_msglevel(struct net_device *netdev, u32 data)
389 {
390         struct igb_adapter *adapter = netdev_priv(netdev);
391         adapter->msg_enable = data;
392 }
393
394 static int igb_get_regs_len(struct net_device *netdev)
395 {
396 #define IGB_REGS_LEN 739
397         return IGB_REGS_LEN * sizeof(u32);
398 }
399
400 static void igb_get_regs(struct net_device *netdev,
401                          struct ethtool_regs *regs, void *p)
402 {
403         struct igb_adapter *adapter = netdev_priv(netdev);
404         struct e1000_hw *hw = &adapter->hw;
405         u32 *regs_buff = p;
406         u8 i;
407
408         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
409
410         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
411
412         /* General Registers */
413         regs_buff[0] = rd32(E1000_CTRL);
414         regs_buff[1] = rd32(E1000_STATUS);
415         regs_buff[2] = rd32(E1000_CTRL_EXT);
416         regs_buff[3] = rd32(E1000_MDIC);
417         regs_buff[4] = rd32(E1000_SCTL);
418         regs_buff[5] = rd32(E1000_CONNSW);
419         regs_buff[6] = rd32(E1000_VET);
420         regs_buff[7] = rd32(E1000_LEDCTL);
421         regs_buff[8] = rd32(E1000_PBA);
422         regs_buff[9] = rd32(E1000_PBS);
423         regs_buff[10] = rd32(E1000_FRTIMER);
424         regs_buff[11] = rd32(E1000_TCPTIMER);
425
426         /* NVM Register */
427         regs_buff[12] = rd32(E1000_EECD);
428
429         /* Interrupt */
430         /* Reading EICS for EICR because they read the
431          * same but EICS does not clear on read */
432         regs_buff[13] = rd32(E1000_EICS);
433         regs_buff[14] = rd32(E1000_EICS);
434         regs_buff[15] = rd32(E1000_EIMS);
435         regs_buff[16] = rd32(E1000_EIMC);
436         regs_buff[17] = rd32(E1000_EIAC);
437         regs_buff[18] = rd32(E1000_EIAM);
438         /* Reading ICS for ICR because they read the
439          * same but ICS does not clear on read */
440         regs_buff[19] = rd32(E1000_ICS);
441         regs_buff[20] = rd32(E1000_ICS);
442         regs_buff[21] = rd32(E1000_IMS);
443         regs_buff[22] = rd32(E1000_IMC);
444         regs_buff[23] = rd32(E1000_IAC);
445         regs_buff[24] = rd32(E1000_IAM);
446         regs_buff[25] = rd32(E1000_IMIRVP);
447
448         /* Flow Control */
449         regs_buff[26] = rd32(E1000_FCAL);
450         regs_buff[27] = rd32(E1000_FCAH);
451         regs_buff[28] = rd32(E1000_FCTTV);
452         regs_buff[29] = rd32(E1000_FCRTL);
453         regs_buff[30] = rd32(E1000_FCRTH);
454         regs_buff[31] = rd32(E1000_FCRTV);
455
456         /* Receive */
457         regs_buff[32] = rd32(E1000_RCTL);
458         regs_buff[33] = rd32(E1000_RXCSUM);
459         regs_buff[34] = rd32(E1000_RLPML);
460         regs_buff[35] = rd32(E1000_RFCTL);
461         regs_buff[36] = rd32(E1000_MRQC);
462         regs_buff[37] = rd32(E1000_VT_CTL);
463
464         /* Transmit */
465         regs_buff[38] = rd32(E1000_TCTL);
466         regs_buff[39] = rd32(E1000_TCTL_EXT);
467         regs_buff[40] = rd32(E1000_TIPG);
468         regs_buff[41] = rd32(E1000_DTXCTL);
469
470         /* Wake Up */
471         regs_buff[42] = rd32(E1000_WUC);
472         regs_buff[43] = rd32(E1000_WUFC);
473         regs_buff[44] = rd32(E1000_WUS);
474         regs_buff[45] = rd32(E1000_IPAV);
475         regs_buff[46] = rd32(E1000_WUPL);
476
477         /* MAC */
478         regs_buff[47] = rd32(E1000_PCS_CFG0);
479         regs_buff[48] = rd32(E1000_PCS_LCTL);
480         regs_buff[49] = rd32(E1000_PCS_LSTAT);
481         regs_buff[50] = rd32(E1000_PCS_ANADV);
482         regs_buff[51] = rd32(E1000_PCS_LPAB);
483         regs_buff[52] = rd32(E1000_PCS_NPTX);
484         regs_buff[53] = rd32(E1000_PCS_LPABNP);
485
486         /* Statistics */
487         regs_buff[54] = adapter->stats.crcerrs;
488         regs_buff[55] = adapter->stats.algnerrc;
489         regs_buff[56] = adapter->stats.symerrs;
490         regs_buff[57] = adapter->stats.rxerrc;
491         regs_buff[58] = adapter->stats.mpc;
492         regs_buff[59] = adapter->stats.scc;
493         regs_buff[60] = adapter->stats.ecol;
494         regs_buff[61] = adapter->stats.mcc;
495         regs_buff[62] = adapter->stats.latecol;
496         regs_buff[63] = adapter->stats.colc;
497         regs_buff[64] = adapter->stats.dc;
498         regs_buff[65] = adapter->stats.tncrs;
499         regs_buff[66] = adapter->stats.sec;
500         regs_buff[67] = adapter->stats.htdpmc;
501         regs_buff[68] = adapter->stats.rlec;
502         regs_buff[69] = adapter->stats.xonrxc;
503         regs_buff[70] = adapter->stats.xontxc;
504         regs_buff[71] = adapter->stats.xoffrxc;
505         regs_buff[72] = adapter->stats.xofftxc;
506         regs_buff[73] = adapter->stats.fcruc;
507         regs_buff[74] = adapter->stats.prc64;
508         regs_buff[75] = adapter->stats.prc127;
509         regs_buff[76] = adapter->stats.prc255;
510         regs_buff[77] = adapter->stats.prc511;
511         regs_buff[78] = adapter->stats.prc1023;
512         regs_buff[79] = adapter->stats.prc1522;
513         regs_buff[80] = adapter->stats.gprc;
514         regs_buff[81] = adapter->stats.bprc;
515         regs_buff[82] = adapter->stats.mprc;
516         regs_buff[83] = adapter->stats.gptc;
517         regs_buff[84] = adapter->stats.gorc;
518         regs_buff[86] = adapter->stats.gotc;
519         regs_buff[88] = adapter->stats.rnbc;
520         regs_buff[89] = adapter->stats.ruc;
521         regs_buff[90] = adapter->stats.rfc;
522         regs_buff[91] = adapter->stats.roc;
523         regs_buff[92] = adapter->stats.rjc;
524         regs_buff[93] = adapter->stats.mgprc;
525         regs_buff[94] = adapter->stats.mgpdc;
526         regs_buff[95] = adapter->stats.mgptc;
527         regs_buff[96] = adapter->stats.tor;
528         regs_buff[98] = adapter->stats.tot;
529         regs_buff[100] = adapter->stats.tpr;
530         regs_buff[101] = adapter->stats.tpt;
531         regs_buff[102] = adapter->stats.ptc64;
532         regs_buff[103] = adapter->stats.ptc127;
533         regs_buff[104] = adapter->stats.ptc255;
534         regs_buff[105] = adapter->stats.ptc511;
535         regs_buff[106] = adapter->stats.ptc1023;
536         regs_buff[107] = adapter->stats.ptc1522;
537         regs_buff[108] = adapter->stats.mptc;
538         regs_buff[109] = adapter->stats.bptc;
539         regs_buff[110] = adapter->stats.tsctc;
540         regs_buff[111] = adapter->stats.iac;
541         regs_buff[112] = adapter->stats.rpthc;
542         regs_buff[113] = adapter->stats.hgptc;
543         regs_buff[114] = adapter->stats.hgorc;
544         regs_buff[116] = adapter->stats.hgotc;
545         regs_buff[118] = adapter->stats.lenerrs;
546         regs_buff[119] = adapter->stats.scvpc;
547         regs_buff[120] = adapter->stats.hrmpc;
548
549         for (i = 0; i < 4; i++)
550                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
551         for (i = 0; i < 4; i++)
552                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
553         for (i = 0; i < 4; i++)
554                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
555         for (i = 0; i < 4; i++)
556                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
557         for (i = 0; i < 4; i++)
558                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
559         for (i = 0; i < 4; i++)
560                 regs_buff[141 + i] = rd32(E1000_RDH(i));
561         for (i = 0; i < 4; i++)
562                 regs_buff[145 + i] = rd32(E1000_RDT(i));
563         for (i = 0; i < 4; i++)
564                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
565
566         for (i = 0; i < 10; i++)
567                 regs_buff[153 + i] = rd32(E1000_EITR(i));
568         for (i = 0; i < 8; i++)
569                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
570         for (i = 0; i < 8; i++)
571                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
572         for (i = 0; i < 16; i++)
573                 regs_buff[179 + i] = rd32(E1000_RAL(i));
574         for (i = 0; i < 16; i++)
575                 regs_buff[195 + i] = rd32(E1000_RAH(i));
576
577         for (i = 0; i < 4; i++)
578                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
579         for (i = 0; i < 4; i++)
580                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
581         for (i = 0; i < 4; i++)
582                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
583         for (i = 0; i < 4; i++)
584                 regs_buff[223 + i] = rd32(E1000_TDH(i));
585         for (i = 0; i < 4; i++)
586                 regs_buff[227 + i] = rd32(E1000_TDT(i));
587         for (i = 0; i < 4; i++)
588                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
589         for (i = 0; i < 4; i++)
590                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
591         for (i = 0; i < 4; i++)
592                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
593         for (i = 0; i < 4; i++)
594                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
595
596         for (i = 0; i < 4; i++)
597                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
598         for (i = 0; i < 4; i++)
599                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
600         for (i = 0; i < 32; i++)
601                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
602         for (i = 0; i < 128; i++)
603                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
604         for (i = 0; i < 128; i++)
605                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
606         for (i = 0; i < 4; i++)
607                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
608
609         regs_buff[547] = rd32(E1000_TDFH);
610         regs_buff[548] = rd32(E1000_TDFT);
611         regs_buff[549] = rd32(E1000_TDFHS);
612         regs_buff[550] = rd32(E1000_TDFPC);
613
614         if (hw->mac.type > e1000_82580) {
615                 regs_buff[551] = adapter->stats.o2bgptc;
616                 regs_buff[552] = adapter->stats.b2ospc;
617                 regs_buff[553] = adapter->stats.o2bspc;
618                 regs_buff[554] = adapter->stats.b2ogprc;
619         }
620
621         if (hw->mac.type != e1000_82576)
622                 return;
623         for (i = 0; i < 12; i++)
624                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
625         for (i = 0; i < 4; i++)
626                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
627         for (i = 0; i < 12; i++)
628                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
629         for (i = 0; i < 12; i++)
630                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
631         for (i = 0; i < 12; i++)
632                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
633         for (i = 0; i < 12; i++)
634                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
635         for (i = 0; i < 12; i++)
636                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
637         for (i = 0; i < 12; i++)
638                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
639
640         for (i = 0; i < 12; i++)
641                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
642         for (i = 0; i < 12; i++)
643                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
644         for (i = 0; i < 12; i++)
645                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
646         for (i = 0; i < 12; i++)
647                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
648         for (i = 0; i < 12; i++)
649                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
650         for (i = 0; i < 12; i++)
651                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
652         for (i = 0; i < 12; i++)
653                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
654         for (i = 0; i < 12; i++)
655                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
656 }
657
658 static int igb_get_eeprom_len(struct net_device *netdev)
659 {
660         struct igb_adapter *adapter = netdev_priv(netdev);
661         return adapter->hw.nvm.word_size * 2;
662 }
663
664 static int igb_get_eeprom(struct net_device *netdev,
665                           struct ethtool_eeprom *eeprom, u8 *bytes)
666 {
667         struct igb_adapter *adapter = netdev_priv(netdev);
668         struct e1000_hw *hw = &adapter->hw;
669         u16 *eeprom_buff;
670         int first_word, last_word;
671         int ret_val = 0;
672         u16 i;
673
674         if (eeprom->len == 0)
675                 return -EINVAL;
676
677         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
678
679         first_word = eeprom->offset >> 1;
680         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
681
682         eeprom_buff = kmalloc(sizeof(u16) *
683                         (last_word - first_word + 1), GFP_KERNEL);
684         if (!eeprom_buff)
685                 return -ENOMEM;
686
687         if (hw->nvm.type == e1000_nvm_eeprom_spi)
688                 ret_val = hw->nvm.ops.read(hw, first_word,
689                                             last_word - first_word + 1,
690                                             eeprom_buff);
691         else {
692                 for (i = 0; i < last_word - first_word + 1; i++) {
693                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
694                                                     &eeprom_buff[i]);
695                         if (ret_val)
696                                 break;
697                 }
698         }
699
700         /* Device's eeprom is always little-endian, word addressable */
701         for (i = 0; i < last_word - first_word + 1; i++)
702                 le16_to_cpus(&eeprom_buff[i]);
703
704         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
705                         eeprom->len);
706         kfree(eeprom_buff);
707
708         return ret_val;
709 }
710
711 static int igb_set_eeprom(struct net_device *netdev,
712                           struct ethtool_eeprom *eeprom, u8 *bytes)
713 {
714         struct igb_adapter *adapter = netdev_priv(netdev);
715         struct e1000_hw *hw = &adapter->hw;
716         u16 *eeprom_buff;
717         void *ptr;
718         int max_len, first_word, last_word, ret_val = 0;
719         u16 i;
720
721         if (eeprom->len == 0)
722                 return -EOPNOTSUPP;
723
724         if (hw->mac.type == e1000_i211)
725                 return -EOPNOTSUPP;
726
727         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
728                 return -EFAULT;
729
730         max_len = hw->nvm.word_size * 2;
731
732         first_word = eeprom->offset >> 1;
733         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
734         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
735         if (!eeprom_buff)
736                 return -ENOMEM;
737
738         ptr = (void *)eeprom_buff;
739
740         if (eeprom->offset & 1) {
741                 /* need read/modify/write of first changed EEPROM word */
742                 /* only the second byte of the word is being modified */
743                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
744                                             &eeprom_buff[0]);
745                 ptr++;
746         }
747         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
748                 /* need read/modify/write of last changed EEPROM word */
749                 /* only the first byte of the word is being modified */
750                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
751                                    &eeprom_buff[last_word - first_word]);
752         }
753
754         /* Device's eeprom is always little-endian, word addressable */
755         for (i = 0; i < last_word - first_word + 1; i++)
756                 le16_to_cpus(&eeprom_buff[i]);
757
758         memcpy(ptr, bytes, eeprom->len);
759
760         for (i = 0; i < last_word - first_word + 1; i++)
761                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
762
763         ret_val = hw->nvm.ops.write(hw, first_word,
764                                      last_word - first_word + 1, eeprom_buff);
765
766         /* Update the checksum over the first part of the EEPROM if needed
767          * and flush shadow RAM for 82573 controllers */
768         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
769                 hw->nvm.ops.update(hw);
770
771         igb_set_fw_version(adapter);
772         kfree(eeprom_buff);
773         return ret_val;
774 }
775
776 static void igb_get_drvinfo(struct net_device *netdev,
777                             struct ethtool_drvinfo *drvinfo)
778 {
779         struct igb_adapter *adapter = netdev_priv(netdev);
780
781         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
782         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
783
784         /*
785          * EEPROM image version # is reported as firmware version # for
786          * 82575 controllers
787          */
788         strlcpy(drvinfo->fw_version, adapter->fw_version,
789                 sizeof(drvinfo->fw_version));
790         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
791                 sizeof(drvinfo->bus_info));
792         drvinfo->n_stats = IGB_STATS_LEN;
793         drvinfo->testinfo_len = IGB_TEST_LEN;
794         drvinfo->regdump_len = igb_get_regs_len(netdev);
795         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
796 }
797
798 static void igb_get_ringparam(struct net_device *netdev,
799                               struct ethtool_ringparam *ring)
800 {
801         struct igb_adapter *adapter = netdev_priv(netdev);
802
803         ring->rx_max_pending = IGB_MAX_RXD;
804         ring->tx_max_pending = IGB_MAX_TXD;
805         ring->rx_pending = adapter->rx_ring_count;
806         ring->tx_pending = adapter->tx_ring_count;
807 }
808
809 static int igb_set_ringparam(struct net_device *netdev,
810                              struct ethtool_ringparam *ring)
811 {
812         struct igb_adapter *adapter = netdev_priv(netdev);
813         struct igb_ring *temp_ring;
814         int i, err = 0;
815         u16 new_rx_count, new_tx_count;
816
817         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
818                 return -EINVAL;
819
820         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
821         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
822         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
823
824         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
825         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
826         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
827
828         if ((new_tx_count == adapter->tx_ring_count) &&
829             (new_rx_count == adapter->rx_ring_count)) {
830                 /* nothing to do */
831                 return 0;
832         }
833
834         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
835                 msleep(1);
836
837         if (!netif_running(adapter->netdev)) {
838                 for (i = 0; i < adapter->num_tx_queues; i++)
839                         adapter->tx_ring[i]->count = new_tx_count;
840                 for (i = 0; i < adapter->num_rx_queues; i++)
841                         adapter->rx_ring[i]->count = new_rx_count;
842                 adapter->tx_ring_count = new_tx_count;
843                 adapter->rx_ring_count = new_rx_count;
844                 goto clear_reset;
845         }
846
847         if (adapter->num_tx_queues > adapter->num_rx_queues)
848                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
849         else
850                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
851
852         if (!temp_ring) {
853                 err = -ENOMEM;
854                 goto clear_reset;
855         }
856
857         igb_down(adapter);
858
859         /*
860          * We can't just free everything and then setup again,
861          * because the ISRs in MSI-X mode get passed pointers
862          * to the tx and rx ring structs.
863          */
864         if (new_tx_count != adapter->tx_ring_count) {
865                 for (i = 0; i < adapter->num_tx_queues; i++) {
866                         memcpy(&temp_ring[i], adapter->tx_ring[i],
867                                sizeof(struct igb_ring));
868
869                         temp_ring[i].count = new_tx_count;
870                         err = igb_setup_tx_resources(&temp_ring[i]);
871                         if (err) {
872                                 while (i) {
873                                         i--;
874                                         igb_free_tx_resources(&temp_ring[i]);
875                                 }
876                                 goto err_setup;
877                         }
878                 }
879
880                 for (i = 0; i < adapter->num_tx_queues; i++) {
881                         igb_free_tx_resources(adapter->tx_ring[i]);
882
883                         memcpy(adapter->tx_ring[i], &temp_ring[i],
884                                sizeof(struct igb_ring));
885                 }
886
887                 adapter->tx_ring_count = new_tx_count;
888         }
889
890         if (new_rx_count != adapter->rx_ring_count) {
891                 for (i = 0; i < adapter->num_rx_queues; i++) {
892                         memcpy(&temp_ring[i], adapter->rx_ring[i],
893                                sizeof(struct igb_ring));
894
895                         temp_ring[i].count = new_rx_count;
896                         err = igb_setup_rx_resources(&temp_ring[i]);
897                         if (err) {
898                                 while (i) {
899                                         i--;
900                                         igb_free_rx_resources(&temp_ring[i]);
901                                 }
902                                 goto err_setup;
903                         }
904
905                 }
906
907                 for (i = 0; i < adapter->num_rx_queues; i++) {
908                         igb_free_rx_resources(adapter->rx_ring[i]);
909
910                         memcpy(adapter->rx_ring[i], &temp_ring[i],
911                                sizeof(struct igb_ring));
912                 }
913
914                 adapter->rx_ring_count = new_rx_count;
915         }
916 err_setup:
917         igb_up(adapter);
918         vfree(temp_ring);
919 clear_reset:
920         clear_bit(__IGB_RESETTING, &adapter->state);
921         return err;
922 }
923
924 /* ethtool register test data */
925 struct igb_reg_test {
926         u16 reg;
927         u16 reg_offset;
928         u16 array_len;
929         u16 test_type;
930         u32 mask;
931         u32 write;
932 };
933
934 /* In the hardware, registers are laid out either singly, in arrays
935  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
936  * most tests take place on arrays or single registers (handled
937  * as a single-element array) and special-case the tables.
938  * Table tests are always pattern tests.
939  *
940  * We also make provision for some required setup steps by specifying
941  * registers to be written without any read-back testing.
942  */
943
944 #define PATTERN_TEST    1
945 #define SET_READ_TEST   2
946 #define WRITE_NO_TEST   3
947 #define TABLE32_TEST    4
948 #define TABLE64_TEST_LO 5
949 #define TABLE64_TEST_HI 6
950
951 /* i210 reg test */
952 static struct igb_reg_test reg_test_i210[] = {
953         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
954         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
955         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
956         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
957         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
958         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
959         /* RDH is read-only for i210, only test RDT. */
960         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
961         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
962         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
963         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
964         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
965         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
966         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
967         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
968         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
969         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
970         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
971         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
972         { E1000_RA,        0, 16, TABLE64_TEST_LO,
973                                                 0xFFFFFFFF, 0xFFFFFFFF },
974         { E1000_RA,        0, 16, TABLE64_TEST_HI,
975                                                 0x900FFFFF, 0xFFFFFFFF },
976         { E1000_MTA,       0, 128, TABLE32_TEST,
977                                                 0xFFFFFFFF, 0xFFFFFFFF },
978         { 0, 0, 0, 0, 0 }
979 };
980
981 /* i350 reg test */
982 static struct igb_reg_test reg_test_i350[] = {
983         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
984         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
985         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
986         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
987         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
990         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
991         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
992         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
993         /* RDH is read-only for i350, only test RDT. */
994         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
995         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
996         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
997         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
998         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
999         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1000         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1001         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1002         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1003         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1004         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1005         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1006         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1007         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1008         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1009         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1010         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1011         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1012                                                 0xFFFFFFFF, 0xFFFFFFFF },
1013         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1014                                                 0xC3FFFFFF, 0xFFFFFFFF },
1015         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1016                                                 0xFFFFFFFF, 0xFFFFFFFF },
1017         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1018                                                 0xC3FFFFFF, 0xFFFFFFFF },
1019         { E1000_MTA,       0, 128, TABLE32_TEST,
1020                                                 0xFFFFFFFF, 0xFFFFFFFF },
1021         { 0, 0, 0, 0 }
1022 };
1023
1024 /* 82580 reg test */
1025 static struct igb_reg_test reg_test_82580[] = {
1026         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1029         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1030         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1031         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1032         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1033         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1034         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1036         /* RDH is read-only for 82580, only test RDT. */
1037         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1038         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1039         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1040         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1042         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1043         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1045         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1046         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1048         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1051         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1052         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1053         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1054         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1055                                                 0xFFFFFFFF, 0xFFFFFFFF },
1056         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1057                                                 0x83FFFFFF, 0xFFFFFFFF },
1058         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1059                                                 0xFFFFFFFF, 0xFFFFFFFF },
1060         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1061                                                 0x83FFFFFF, 0xFFFFFFFF },
1062         { E1000_MTA,       0, 128, TABLE32_TEST,
1063                                                 0xFFFFFFFF, 0xFFFFFFFF },
1064         { 0, 0, 0, 0 }
1065 };
1066
1067 /* 82576 reg test */
1068 static struct igb_reg_test reg_test_82576[] = {
1069         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1070         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1071         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1072         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1073         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1074         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1075         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1076         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1077         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1079         /* Enable all RX queues before testing. */
1080         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1081         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1082         /* RDH is read-only for 82576, only test RDT. */
1083         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1084         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1086         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1087         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1088         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1090         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1091         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1092         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1093         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1097         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1098         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1099         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1100         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1101         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1102         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1103         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1104         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105         { 0, 0, 0, 0 }
1106 };
1107
1108 /* 82575 register test */
1109 static struct igb_reg_test reg_test_82575[] = {
1110         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1112         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1113         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1114         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1115         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1116         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1117         /* Enable all four RX queues before testing. */
1118         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1119         /* RDH is read-only for 82575, only test RDT. */
1120         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1121         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1122         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1123         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1124         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1125         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1126         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1127         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1128         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1129         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1130         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1131         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1132         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1133         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1134         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1135         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1136         { 0, 0, 0, 0 }
1137 };
1138
1139 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1140                              int reg, u32 mask, u32 write)
1141 {
1142         struct e1000_hw *hw = &adapter->hw;
1143         u32 pat, val;
1144         static const u32 _test[] =
1145                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1146         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1147                 wr32(reg, (_test[pat] & write));
1148                 val = rd32(reg) & mask;
1149                 if (val != (_test[pat] & write & mask)) {
1150                         dev_err(&adapter->pdev->dev,
1151                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1152                                 reg, val, (_test[pat] & write & mask));
1153                         *data = reg;
1154                         return 1;
1155                 }
1156         }
1157
1158         return 0;
1159 }
1160
1161 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1162                               int reg, u32 mask, u32 write)
1163 {
1164         struct e1000_hw *hw = &adapter->hw;
1165         u32 val;
1166         wr32(reg, write & mask);
1167         val = rd32(reg);
1168         if ((write & mask) != (val & mask)) {
1169                 dev_err(&adapter->pdev->dev,
1170                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1171                         (val & mask), (write & mask));
1172                 *data = reg;
1173                 return 1;
1174         }
1175
1176         return 0;
1177 }
1178
1179 #define REG_PATTERN_TEST(reg, mask, write) \
1180         do { \
1181                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1182                         return 1; \
1183         } while (0)
1184
1185 #define REG_SET_AND_CHECK(reg, mask, write) \
1186         do { \
1187                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1188                         return 1; \
1189         } while (0)
1190
1191 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1192 {
1193         struct e1000_hw *hw = &adapter->hw;
1194         struct igb_reg_test *test;
1195         u32 value, before, after;
1196         u32 i, toggle;
1197
1198         switch (adapter->hw.mac.type) {
1199         case e1000_i350:
1200                 test = reg_test_i350;
1201                 toggle = 0x7FEFF3FF;
1202                 break;
1203         case e1000_i210:
1204         case e1000_i211:
1205                 test = reg_test_i210;
1206                 toggle = 0x7FEFF3FF;
1207                 break;
1208         case e1000_82580:
1209                 test = reg_test_82580;
1210                 toggle = 0x7FEFF3FF;
1211                 break;
1212         case e1000_82576:
1213                 test = reg_test_82576;
1214                 toggle = 0x7FFFF3FF;
1215                 break;
1216         default:
1217                 test = reg_test_82575;
1218                 toggle = 0x7FFFF3FF;
1219                 break;
1220         }
1221
1222         /* Because the status register is such a special case,
1223          * we handle it separately from the rest of the register
1224          * tests.  Some bits are read-only, some toggle, and some
1225          * are writable on newer MACs.
1226          */
1227         before = rd32(E1000_STATUS);
1228         value = (rd32(E1000_STATUS) & toggle);
1229         wr32(E1000_STATUS, toggle);
1230         after = rd32(E1000_STATUS) & toggle;
1231         if (value != after) {
1232                 dev_err(&adapter->pdev->dev,
1233                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1234                         after, value);
1235                 *data = 1;
1236                 return 1;
1237         }
1238         /* restore previous status */
1239         wr32(E1000_STATUS, before);
1240
1241         /* Perform the remainder of the register test, looping through
1242          * the test table until we either fail or reach the null entry.
1243          */
1244         while (test->reg) {
1245                 for (i = 0; i < test->array_len; i++) {
1246                         switch (test->test_type) {
1247                         case PATTERN_TEST:
1248                                 REG_PATTERN_TEST(test->reg +
1249                                                 (i * test->reg_offset),
1250                                                 test->mask,
1251                                                 test->write);
1252                                 break;
1253                         case SET_READ_TEST:
1254                                 REG_SET_AND_CHECK(test->reg +
1255                                                 (i * test->reg_offset),
1256                                                 test->mask,
1257                                                 test->write);
1258                                 break;
1259                         case WRITE_NO_TEST:
1260                                 writel(test->write,
1261                                     (adapter->hw.hw_addr + test->reg)
1262                                         + (i * test->reg_offset));
1263                                 break;
1264                         case TABLE32_TEST:
1265                                 REG_PATTERN_TEST(test->reg + (i * 4),
1266                                                 test->mask,
1267                                                 test->write);
1268                                 break;
1269                         case TABLE64_TEST_LO:
1270                                 REG_PATTERN_TEST(test->reg + (i * 8),
1271                                                 test->mask,
1272                                                 test->write);
1273                                 break;
1274                         case TABLE64_TEST_HI:
1275                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1276                                                 test->mask,
1277                                                 test->write);
1278                                 break;
1279                         }
1280                 }
1281                 test++;
1282         }
1283
1284         *data = 0;
1285         return 0;
1286 }
1287
1288 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1289 {
1290         *data = 0;
1291
1292         /* Validate eeprom on all parts but i211 */
1293         if (adapter->hw.mac.type != e1000_i211) {
1294                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1295                         *data = 2;
1296         }
1297
1298         return *data;
1299 }
1300
1301 static irqreturn_t igb_test_intr(int irq, void *data)
1302 {
1303         struct igb_adapter *adapter = (struct igb_adapter *) data;
1304         struct e1000_hw *hw = &adapter->hw;
1305
1306         adapter->test_icr |= rd32(E1000_ICR);
1307
1308         return IRQ_HANDLED;
1309 }
1310
1311 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1312 {
1313         struct e1000_hw *hw = &adapter->hw;
1314         struct net_device *netdev = adapter->netdev;
1315         u32 mask, ics_mask, i = 0, shared_int = true;
1316         u32 irq = adapter->pdev->irq;
1317
1318         *data = 0;
1319
1320         /* Hook up test interrupt handler just for this test */
1321         if (adapter->msix_entries) {
1322                 if (request_irq(adapter->msix_entries[0].vector,
1323                                 igb_test_intr, 0, netdev->name, adapter)) {
1324                         *data = 1;
1325                         return -1;
1326                 }
1327         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1328                 shared_int = false;
1329                 if (request_irq(irq,
1330                                 igb_test_intr, 0, netdev->name, adapter)) {
1331                         *data = 1;
1332                         return -1;
1333                 }
1334         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1335                                 netdev->name, adapter)) {
1336                 shared_int = false;
1337         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1338                  netdev->name, adapter)) {
1339                 *data = 1;
1340                 return -1;
1341         }
1342         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1343                 (shared_int ? "shared" : "unshared"));
1344
1345         /* Disable all the interrupts */
1346         wr32(E1000_IMC, ~0);
1347         wrfl();
1348         msleep(10);
1349
1350         /* Define all writable bits for ICS */
1351         switch (hw->mac.type) {
1352         case e1000_82575:
1353                 ics_mask = 0x37F47EDD;
1354                 break;
1355         case e1000_82576:
1356                 ics_mask = 0x77D4FBFD;
1357                 break;
1358         case e1000_82580:
1359                 ics_mask = 0x77DCFED5;
1360                 break;
1361         case e1000_i350:
1362         case e1000_i210:
1363         case e1000_i211:
1364                 ics_mask = 0x77DCFED5;
1365                 break;
1366         default:
1367                 ics_mask = 0x7FFFFFFF;
1368                 break;
1369         }
1370
1371         /* Test each interrupt */
1372         for (; i < 31; i++) {
1373                 /* Interrupt to test */
1374                 mask = 1 << i;
1375
1376                 if (!(mask & ics_mask))
1377                         continue;
1378
1379                 if (!shared_int) {
1380                         /* Disable the interrupt to be reported in
1381                          * the cause register and then force the same
1382                          * interrupt and see if one gets posted.  If
1383                          * an interrupt was posted to the bus, the
1384                          * test failed.
1385                          */
1386                         adapter->test_icr = 0;
1387
1388                         /* Flush any pending interrupts */
1389                         wr32(E1000_ICR, ~0);
1390
1391                         wr32(E1000_IMC, mask);
1392                         wr32(E1000_ICS, mask);
1393                         wrfl();
1394                         msleep(10);
1395
1396                         if (adapter->test_icr & mask) {
1397                                 *data = 3;
1398                                 break;
1399                         }
1400                 }
1401
1402                 /* Enable the interrupt to be reported in
1403                  * the cause register and then force the same
1404                  * interrupt and see if one gets posted.  If
1405                  * an interrupt was not posted to the bus, the
1406                  * test failed.
1407                  */
1408                 adapter->test_icr = 0;
1409
1410                 /* Flush any pending interrupts */
1411                 wr32(E1000_ICR, ~0);
1412
1413                 wr32(E1000_IMS, mask);
1414                 wr32(E1000_ICS, mask);
1415                 wrfl();
1416                 msleep(10);
1417
1418                 if (!(adapter->test_icr & mask)) {
1419                         *data = 4;
1420                         break;
1421                 }
1422
1423                 if (!shared_int) {
1424                         /* Disable the other interrupts to be reported in
1425                          * the cause register and then force the other
1426                          * interrupts and see if any get posted.  If
1427                          * an interrupt was posted to the bus, the
1428                          * test failed.
1429                          */
1430                         adapter->test_icr = 0;
1431
1432                         /* Flush any pending interrupts */
1433                         wr32(E1000_ICR, ~0);
1434
1435                         wr32(E1000_IMC, ~mask);
1436                         wr32(E1000_ICS, ~mask);
1437                         wrfl();
1438                         msleep(10);
1439
1440                         if (adapter->test_icr & mask) {
1441                                 *data = 5;
1442                                 break;
1443                         }
1444                 }
1445         }
1446
1447         /* Disable all the interrupts */
1448         wr32(E1000_IMC, ~0);
1449         wrfl();
1450         msleep(10);
1451
1452         /* Unhook test interrupt handler */
1453         if (adapter->msix_entries)
1454                 free_irq(adapter->msix_entries[0].vector, adapter);
1455         else
1456                 free_irq(irq, adapter);
1457
1458         return *data;
1459 }
1460
1461 static void igb_free_desc_rings(struct igb_adapter *adapter)
1462 {
1463         igb_free_tx_resources(&adapter->test_tx_ring);
1464         igb_free_rx_resources(&adapter->test_rx_ring);
1465 }
1466
1467 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1468 {
1469         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1470         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1471         struct e1000_hw *hw = &adapter->hw;
1472         int ret_val;
1473
1474         /* Setup Tx descriptor ring and Tx buffers */
1475         tx_ring->count = IGB_DEFAULT_TXD;
1476         tx_ring->dev = &adapter->pdev->dev;
1477         tx_ring->netdev = adapter->netdev;
1478         tx_ring->reg_idx = adapter->vfs_allocated_count;
1479
1480         if (igb_setup_tx_resources(tx_ring)) {
1481                 ret_val = 1;
1482                 goto err_nomem;
1483         }
1484
1485         igb_setup_tctl(adapter);
1486         igb_configure_tx_ring(adapter, tx_ring);
1487
1488         /* Setup Rx descriptor ring and Rx buffers */
1489         rx_ring->count = IGB_DEFAULT_RXD;
1490         rx_ring->dev = &adapter->pdev->dev;
1491         rx_ring->netdev = adapter->netdev;
1492         rx_ring->reg_idx = adapter->vfs_allocated_count;
1493
1494         if (igb_setup_rx_resources(rx_ring)) {
1495                 ret_val = 3;
1496                 goto err_nomem;
1497         }
1498
1499         /* set the default queue to queue 0 of PF */
1500         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1501
1502         /* enable receive ring */
1503         igb_setup_rctl(adapter);
1504         igb_configure_rx_ring(adapter, rx_ring);
1505
1506         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1507
1508         return 0;
1509
1510 err_nomem:
1511         igb_free_desc_rings(adapter);
1512         return ret_val;
1513 }
1514
1515 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1516 {
1517         struct e1000_hw *hw = &adapter->hw;
1518
1519         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1520         igb_write_phy_reg(hw, 29, 0x001F);
1521         igb_write_phy_reg(hw, 30, 0x8FFC);
1522         igb_write_phy_reg(hw, 29, 0x001A);
1523         igb_write_phy_reg(hw, 30, 0x8FF0);
1524 }
1525
1526 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1527 {
1528         struct e1000_hw *hw = &adapter->hw;
1529         u32 ctrl_reg = 0;
1530
1531         hw->mac.autoneg = false;
1532
1533         if (hw->phy.type == e1000_phy_m88) {
1534                 if (hw->phy.id != I210_I_PHY_ID) {
1535                         /* Auto-MDI/MDIX Off */
1536                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1537                         /* reset to update Auto-MDI/MDIX */
1538                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1539                         /* autoneg off */
1540                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1541                 } else {
1542                         /* force 1000, set loopback  */
1543                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1544                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1545                 }
1546         }
1547
1548         /* add small delay to avoid loopback test failure */
1549         msleep(50);
1550
1551         /* force 1000, set loopback */
1552         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1553
1554         /* Now set up the MAC to the same speed/duplex as the PHY. */
1555         ctrl_reg = rd32(E1000_CTRL);
1556         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1557         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1558                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1559                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1560                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1561                      E1000_CTRL_SLU);    /* Set link up enable bit */
1562
1563         if (hw->phy.type == e1000_phy_m88)
1564                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1565
1566         wr32(E1000_CTRL, ctrl_reg);
1567
1568         /* Disable the receiver on the PHY so when a cable is plugged in, the
1569          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1570          */
1571         if (hw->phy.type == e1000_phy_m88)
1572                 igb_phy_disable_receiver(adapter);
1573
1574         mdelay(500);
1575         return 0;
1576 }
1577
1578 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1579 {
1580         return igb_integrated_phy_loopback(adapter);
1581 }
1582
1583 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1584 {
1585         struct e1000_hw *hw = &adapter->hw;
1586         u32 reg;
1587
1588         reg = rd32(E1000_CTRL_EXT);
1589
1590         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1591         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1592                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1593                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1594                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1595                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1596
1597                         /* Enable DH89xxCC MPHY for near end loopback */
1598                         reg = rd32(E1000_MPHY_ADDR_CTL);
1599                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1600                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1601                         wr32(E1000_MPHY_ADDR_CTL, reg);
1602
1603                         reg = rd32(E1000_MPHY_DATA);
1604                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1605                         wr32(E1000_MPHY_DATA, reg);
1606                 }
1607
1608                 reg = rd32(E1000_RCTL);
1609                 reg |= E1000_RCTL_LBM_TCVR;
1610                 wr32(E1000_RCTL, reg);
1611
1612                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1613
1614                 reg = rd32(E1000_CTRL);
1615                 reg &= ~(E1000_CTRL_RFCE |
1616                          E1000_CTRL_TFCE |
1617                          E1000_CTRL_LRST);
1618                 reg |= E1000_CTRL_SLU |
1619                        E1000_CTRL_FD;
1620                 wr32(E1000_CTRL, reg);
1621
1622                 /* Unset switch control to serdes energy detect */
1623                 reg = rd32(E1000_CONNSW);
1624                 reg &= ~E1000_CONNSW_ENRGSRC;
1625                 wr32(E1000_CONNSW, reg);
1626
1627                 /* Set PCS register for forced speed */
1628                 reg = rd32(E1000_PCS_LCTL);
1629                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1630                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1631                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1632                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1633                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1634                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1635                 wr32(E1000_PCS_LCTL, reg);
1636
1637                 return 0;
1638         }
1639
1640         return igb_set_phy_loopback(adapter);
1641 }
1642
1643 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1644 {
1645         struct e1000_hw *hw = &adapter->hw;
1646         u32 rctl;
1647         u16 phy_reg;
1648
1649         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1650         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1651         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1652         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1653                 u32 reg;
1654
1655                 /* Disable near end loopback on DH89xxCC */
1656                 reg = rd32(E1000_MPHY_ADDR_CTL);
1657                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1658                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1659                 wr32(E1000_MPHY_ADDR_CTL, reg);
1660
1661                 reg = rd32(E1000_MPHY_DATA);
1662                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1663                 wr32(E1000_MPHY_DATA, reg);
1664         }
1665
1666         rctl = rd32(E1000_RCTL);
1667         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1668         wr32(E1000_RCTL, rctl);
1669
1670         hw->mac.autoneg = true;
1671         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1672         if (phy_reg & MII_CR_LOOPBACK) {
1673                 phy_reg &= ~MII_CR_LOOPBACK;
1674                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1675                 igb_phy_sw_reset(hw);
1676         }
1677 }
1678
1679 static void igb_create_lbtest_frame(struct sk_buff *skb,
1680                                     unsigned int frame_size)
1681 {
1682         memset(skb->data, 0xFF, frame_size);
1683         frame_size /= 2;
1684         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1685         memset(&skb->data[frame_size + 10], 0xBE, 1);
1686         memset(&skb->data[frame_size + 12], 0xAF, 1);
1687 }
1688
1689 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1690                                   unsigned int frame_size)
1691 {
1692         unsigned char *data;
1693         bool match = true;
1694
1695         frame_size >>= 1;
1696
1697         data = kmap(rx_buffer->page);
1698
1699         if (data[3] != 0xFF ||
1700             data[frame_size + 10] != 0xBE ||
1701             data[frame_size + 12] != 0xAF)
1702                 match = false;
1703
1704         kunmap(rx_buffer->page);
1705
1706         return match;
1707 }
1708
1709 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1710                                 struct igb_ring *tx_ring,
1711                                 unsigned int size)
1712 {
1713         union e1000_adv_rx_desc *rx_desc;
1714         struct igb_rx_buffer *rx_buffer_info;
1715         struct igb_tx_buffer *tx_buffer_info;
1716         u16 rx_ntc, tx_ntc, count = 0;
1717
1718         /* initialize next to clean and descriptor values */
1719         rx_ntc = rx_ring->next_to_clean;
1720         tx_ntc = tx_ring->next_to_clean;
1721         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1722
1723         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1724                 /* check rx buffer */
1725                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1726
1727                 /* sync Rx buffer for CPU read */
1728                 dma_sync_single_for_cpu(rx_ring->dev,
1729                                         rx_buffer_info->dma,
1730                                         IGB_RX_BUFSZ,
1731                                         DMA_FROM_DEVICE);
1732
1733                 /* verify contents of skb */
1734                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1735                         count++;
1736
1737                 /* sync Rx buffer for device write */
1738                 dma_sync_single_for_device(rx_ring->dev,
1739                                            rx_buffer_info->dma,
1740                                            IGB_RX_BUFSZ,
1741                                            DMA_FROM_DEVICE);
1742
1743                 /* unmap buffer on tx side */
1744                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1745                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1746
1747                 /* increment rx/tx next to clean counters */
1748                 rx_ntc++;
1749                 if (rx_ntc == rx_ring->count)
1750                         rx_ntc = 0;
1751                 tx_ntc++;
1752                 if (tx_ntc == tx_ring->count)
1753                         tx_ntc = 0;
1754
1755                 /* fetch next descriptor */
1756                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1757         }
1758
1759         netdev_tx_reset_queue(txring_txq(tx_ring));
1760
1761         /* re-map buffers to ring, store next to clean values */
1762         igb_alloc_rx_buffers(rx_ring, count);
1763         rx_ring->next_to_clean = rx_ntc;
1764         tx_ring->next_to_clean = tx_ntc;
1765
1766         return count;
1767 }
1768
1769 static int igb_run_loopback_test(struct igb_adapter *adapter)
1770 {
1771         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1772         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1773         u16 i, j, lc, good_cnt;
1774         int ret_val = 0;
1775         unsigned int size = IGB_RX_HDR_LEN;
1776         netdev_tx_t tx_ret_val;
1777         struct sk_buff *skb;
1778
1779         /* allocate test skb */
1780         skb = alloc_skb(size, GFP_KERNEL);
1781         if (!skb)
1782                 return 11;
1783
1784         /* place data into test skb */
1785         igb_create_lbtest_frame(skb, size);
1786         skb_put(skb, size);
1787
1788         /*
1789          * Calculate the loop count based on the largest descriptor ring
1790          * The idea is to wrap the largest ring a number of times using 64
1791          * send/receive pairs during each loop
1792          */
1793
1794         if (rx_ring->count <= tx_ring->count)
1795                 lc = ((tx_ring->count / 64) * 2) + 1;
1796         else
1797                 lc = ((rx_ring->count / 64) * 2) + 1;
1798
1799         for (j = 0; j <= lc; j++) { /* loop count loop */
1800                 /* reset count of good packets */
1801                 good_cnt = 0;
1802
1803                 /* place 64 packets on the transmit queue*/
1804                 for (i = 0; i < 64; i++) {
1805                         skb_get(skb);
1806                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1807                         if (tx_ret_val == NETDEV_TX_OK)
1808                                 good_cnt++;
1809                 }
1810
1811                 if (good_cnt != 64) {
1812                         ret_val = 12;
1813                         break;
1814                 }
1815
1816                 /* allow 200 milliseconds for packets to go from tx to rx */
1817                 msleep(200);
1818
1819                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1820                 if (good_cnt != 64) {
1821                         ret_val = 13;
1822                         break;
1823                 }
1824         } /* end loop count loop */
1825
1826         /* free the original skb */
1827         kfree_skb(skb);
1828
1829         return ret_val;
1830 }
1831
1832 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1833 {
1834         /* PHY loopback cannot be performed if SoL/IDER
1835          * sessions are active */
1836         if (igb_check_reset_block(&adapter->hw)) {
1837                 dev_err(&adapter->pdev->dev,
1838                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1839                 *data = 0;
1840                 goto out;
1841         }
1842         *data = igb_setup_desc_rings(adapter);
1843         if (*data)
1844                 goto out;
1845         *data = igb_setup_loopback_test(adapter);
1846         if (*data)
1847                 goto err_loopback;
1848         *data = igb_run_loopback_test(adapter);
1849         igb_loopback_cleanup(adapter);
1850
1851 err_loopback:
1852         igb_free_desc_rings(adapter);
1853 out:
1854         return *data;
1855 }
1856
1857 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1858 {
1859         struct e1000_hw *hw = &adapter->hw;
1860         *data = 0;
1861         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1862                 int i = 0;
1863                 hw->mac.serdes_has_link = false;
1864
1865                 /* On some blade server designs, link establishment
1866                  * could take as long as 2-3 minutes */
1867                 do {
1868                         hw->mac.ops.check_for_link(&adapter->hw);
1869                         if (hw->mac.serdes_has_link)
1870                                 return *data;
1871                         msleep(20);
1872                 } while (i++ < 3750);
1873
1874                 *data = 1;
1875         } else {
1876                 hw->mac.ops.check_for_link(&adapter->hw);
1877                 if (hw->mac.autoneg)
1878                         msleep(4000);
1879
1880                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1881                         *data = 1;
1882         }
1883         return *data;
1884 }
1885
1886 static void igb_diag_test(struct net_device *netdev,
1887                           struct ethtool_test *eth_test, u64 *data)
1888 {
1889         struct igb_adapter *adapter = netdev_priv(netdev);
1890         u16 autoneg_advertised;
1891         u8 forced_speed_duplex, autoneg;
1892         bool if_running = netif_running(netdev);
1893
1894         set_bit(__IGB_TESTING, &adapter->state);
1895         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1896                 /* Offline tests */
1897
1898                 /* save speed, duplex, autoneg settings */
1899                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1900                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1901                 autoneg = adapter->hw.mac.autoneg;
1902
1903                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1904
1905                 /* power up link for link test */
1906                 igb_power_up_link(adapter);
1907
1908                 /* Link test performed before hardware reset so autoneg doesn't
1909                  * interfere with test result */
1910                 if (igb_link_test(adapter, &data[4]))
1911                         eth_test->flags |= ETH_TEST_FL_FAILED;
1912
1913                 if (if_running)
1914                         /* indicate we're in test mode */
1915                         dev_close(netdev);
1916                 else
1917                         igb_reset(adapter);
1918
1919                 if (igb_reg_test(adapter, &data[0]))
1920                         eth_test->flags |= ETH_TEST_FL_FAILED;
1921
1922                 igb_reset(adapter);
1923                 if (igb_eeprom_test(adapter, &data[1]))
1924                         eth_test->flags |= ETH_TEST_FL_FAILED;
1925
1926                 igb_reset(adapter);
1927                 if (igb_intr_test(adapter, &data[2]))
1928                         eth_test->flags |= ETH_TEST_FL_FAILED;
1929
1930                 igb_reset(adapter);
1931                 /* power up link for loopback test */
1932                 igb_power_up_link(adapter);
1933                 if (igb_loopback_test(adapter, &data[3]))
1934                         eth_test->flags |= ETH_TEST_FL_FAILED;
1935
1936                 /* restore speed, duplex, autoneg settings */
1937                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1938                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1939                 adapter->hw.mac.autoneg = autoneg;
1940
1941                 /* force this routine to wait until autoneg complete/timeout */
1942                 adapter->hw.phy.autoneg_wait_to_complete = true;
1943                 igb_reset(adapter);
1944                 adapter->hw.phy.autoneg_wait_to_complete = false;
1945
1946                 clear_bit(__IGB_TESTING, &adapter->state);
1947                 if (if_running)
1948                         dev_open(netdev);
1949         } else {
1950                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1951
1952                 /* PHY is powered down when interface is down */
1953                 if (if_running && igb_link_test(adapter, &data[4]))
1954                         eth_test->flags |= ETH_TEST_FL_FAILED;
1955                 else
1956                         data[4] = 0;
1957
1958                 /* Online tests aren't run; pass by default */
1959                 data[0] = 0;
1960                 data[1] = 0;
1961                 data[2] = 0;
1962                 data[3] = 0;
1963
1964                 clear_bit(__IGB_TESTING, &adapter->state);
1965         }
1966         msleep_interruptible(4 * 1000);
1967 }
1968
1969 static int igb_wol_exclusion(struct igb_adapter *adapter,
1970                              struct ethtool_wolinfo *wol)
1971 {
1972         struct e1000_hw *hw = &adapter->hw;
1973         int retval = 1; /* fail by default */
1974
1975         switch (hw->device_id) {
1976         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1977                 /* WoL not supported */
1978                 wol->supported = 0;
1979                 break;
1980         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1981         case E1000_DEV_ID_82576_FIBER:
1982         case E1000_DEV_ID_82576_SERDES:
1983                 /* Wake events not supported on port B */
1984                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1985                         wol->supported = 0;
1986                         break;
1987                 }
1988                 /* return success for non excluded adapter ports */
1989                 retval = 0;
1990                 break;
1991         case E1000_DEV_ID_82576_QUAD_COPPER:
1992         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1993                 /* quad port adapters only support WoL on port A */
1994                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1995                         wol->supported = 0;
1996                         break;
1997                 }
1998                 /* return success for non excluded adapter ports */
1999                 retval = 0;
2000                 break;
2001         default:
2002                 /* dual port cards only support WoL on port A from now on
2003                  * unless it was enabled in the eeprom for port B
2004                  * so exclude FUNC_1 ports from having WoL enabled */
2005                 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
2006                     !adapter->eeprom_wol) {
2007                         wol->supported = 0;
2008                         break;
2009                 }
2010
2011                 retval = 0;
2012         }
2013
2014         return retval;
2015 }
2016
2017 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2018 {
2019         struct igb_adapter *adapter = netdev_priv(netdev);
2020
2021         wol->supported = WAKE_UCAST | WAKE_MCAST |
2022                          WAKE_BCAST | WAKE_MAGIC |
2023                          WAKE_PHY;
2024         wol->wolopts = 0;
2025
2026         /* this function will set ->supported = 0 and return 1 if wol is not
2027          * supported by this hardware */
2028         if (igb_wol_exclusion(adapter, wol) ||
2029             !device_can_wakeup(&adapter->pdev->dev))
2030                 return;
2031
2032         /* apply any specific unsupported masks here */
2033         switch (adapter->hw.device_id) {
2034         default:
2035                 break;
2036         }
2037
2038         if (adapter->wol & E1000_WUFC_EX)
2039                 wol->wolopts |= WAKE_UCAST;
2040         if (adapter->wol & E1000_WUFC_MC)
2041                 wol->wolopts |= WAKE_MCAST;
2042         if (adapter->wol & E1000_WUFC_BC)
2043                 wol->wolopts |= WAKE_BCAST;
2044         if (adapter->wol & E1000_WUFC_MAG)
2045                 wol->wolopts |= WAKE_MAGIC;
2046         if (adapter->wol & E1000_WUFC_LNKC)
2047                 wol->wolopts |= WAKE_PHY;
2048 }
2049
2050 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2051 {
2052         struct igb_adapter *adapter = netdev_priv(netdev);
2053
2054         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2055                 return -EOPNOTSUPP;
2056
2057         if (igb_wol_exclusion(adapter, wol) ||
2058             !device_can_wakeup(&adapter->pdev->dev))
2059                 return wol->wolopts ? -EOPNOTSUPP : 0;
2060
2061         /* these settings will always override what we currently have */
2062         adapter->wol = 0;
2063
2064         if (wol->wolopts & WAKE_UCAST)
2065                 adapter->wol |= E1000_WUFC_EX;
2066         if (wol->wolopts & WAKE_MCAST)
2067                 adapter->wol |= E1000_WUFC_MC;
2068         if (wol->wolopts & WAKE_BCAST)
2069                 adapter->wol |= E1000_WUFC_BC;
2070         if (wol->wolopts & WAKE_MAGIC)
2071                 adapter->wol |= E1000_WUFC_MAG;
2072         if (wol->wolopts & WAKE_PHY)
2073                 adapter->wol |= E1000_WUFC_LNKC;
2074         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2075
2076         return 0;
2077 }
2078
2079 /* bit defines for adapter->led_status */
2080 #define IGB_LED_ON              0
2081
2082 static int igb_set_phys_id(struct net_device *netdev,
2083                            enum ethtool_phys_id_state state)
2084 {
2085         struct igb_adapter *adapter = netdev_priv(netdev);
2086         struct e1000_hw *hw = &adapter->hw;
2087
2088         switch (state) {
2089         case ETHTOOL_ID_ACTIVE:
2090                 igb_blink_led(hw);
2091                 return 2;
2092         case ETHTOOL_ID_ON:
2093                 igb_blink_led(hw);
2094                 break;
2095         case ETHTOOL_ID_OFF:
2096                 igb_led_off(hw);
2097                 break;
2098         case ETHTOOL_ID_INACTIVE:
2099                 igb_led_off(hw);
2100                 clear_bit(IGB_LED_ON, &adapter->led_status);
2101                 igb_cleanup_led(hw);
2102                 break;
2103         }
2104
2105         return 0;
2106 }
2107
2108 static int igb_set_coalesce(struct net_device *netdev,
2109                             struct ethtool_coalesce *ec)
2110 {
2111         struct igb_adapter *adapter = netdev_priv(netdev);
2112         int i;
2113
2114         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2115             ((ec->rx_coalesce_usecs > 3) &&
2116              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2117             (ec->rx_coalesce_usecs == 2))
2118                 return -EINVAL;
2119
2120         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2121             ((ec->tx_coalesce_usecs > 3) &&
2122              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2123             (ec->tx_coalesce_usecs == 2))
2124                 return -EINVAL;
2125
2126         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2127                 return -EINVAL;
2128
2129         /* If ITR is disabled, disable DMAC */
2130         if (ec->rx_coalesce_usecs == 0) {
2131                 if (adapter->flags & IGB_FLAG_DMAC)
2132                         adapter->flags &= ~IGB_FLAG_DMAC;
2133         }
2134
2135         /* convert to rate of irq's per second */
2136         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2137                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2138         else
2139                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2140
2141         /* convert to rate of irq's per second */
2142         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2143                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2144         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2145                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2146         else
2147                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2148
2149         for (i = 0; i < adapter->num_q_vectors; i++) {
2150                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2151                 q_vector->tx.work_limit = adapter->tx_work_limit;
2152                 if (q_vector->rx.ring)
2153                         q_vector->itr_val = adapter->rx_itr_setting;
2154                 else
2155                         q_vector->itr_val = adapter->tx_itr_setting;
2156                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2157                         q_vector->itr_val = IGB_START_ITR;
2158                 q_vector->set_itr = 1;
2159         }
2160
2161         return 0;
2162 }
2163
2164 static int igb_get_coalesce(struct net_device *netdev,
2165                             struct ethtool_coalesce *ec)
2166 {
2167         struct igb_adapter *adapter = netdev_priv(netdev);
2168
2169         if (adapter->rx_itr_setting <= 3)
2170                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2171         else
2172                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2173
2174         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2175                 if (adapter->tx_itr_setting <= 3)
2176                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2177                 else
2178                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2179         }
2180
2181         return 0;
2182 }
2183
2184 static int igb_nway_reset(struct net_device *netdev)
2185 {
2186         struct igb_adapter *adapter = netdev_priv(netdev);
2187         if (netif_running(netdev))
2188                 igb_reinit_locked(adapter);
2189         return 0;
2190 }
2191
2192 static int igb_get_sset_count(struct net_device *netdev, int sset)
2193 {
2194         switch (sset) {
2195         case ETH_SS_STATS:
2196                 return IGB_STATS_LEN;
2197         case ETH_SS_TEST:
2198                 return IGB_TEST_LEN;
2199         default:
2200                 return -ENOTSUPP;
2201         }
2202 }
2203
2204 static void igb_get_ethtool_stats(struct net_device *netdev,
2205                                   struct ethtool_stats *stats, u64 *data)
2206 {
2207         struct igb_adapter *adapter = netdev_priv(netdev);
2208         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2209         unsigned int start;
2210         struct igb_ring *ring;
2211         int i, j;
2212         char *p;
2213
2214         spin_lock(&adapter->stats64_lock);
2215         igb_update_stats(adapter, net_stats);
2216
2217         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2218                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2219                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2220                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2221         }
2222         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2223                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2224                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2225                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2226         }
2227         for (j = 0; j < adapter->num_tx_queues; j++) {
2228                 u64     restart2;
2229
2230                 ring = adapter->tx_ring[j];
2231                 do {
2232                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2233                         data[i]   = ring->tx_stats.packets;
2234                         data[i+1] = ring->tx_stats.bytes;
2235                         data[i+2] = ring->tx_stats.restart_queue;
2236                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2237                 do {
2238                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2239                         restart2  = ring->tx_stats.restart_queue2;
2240                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2241                 data[i+2] += restart2;
2242
2243                 i += IGB_TX_QUEUE_STATS_LEN;
2244         }
2245         for (j = 0; j < adapter->num_rx_queues; j++) {
2246                 ring = adapter->rx_ring[j];
2247                 do {
2248                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2249                         data[i]   = ring->rx_stats.packets;
2250                         data[i+1] = ring->rx_stats.bytes;
2251                         data[i+2] = ring->rx_stats.drops;
2252                         data[i+3] = ring->rx_stats.csum_err;
2253                         data[i+4] = ring->rx_stats.alloc_failed;
2254                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2255                 i += IGB_RX_QUEUE_STATS_LEN;
2256         }
2257         spin_unlock(&adapter->stats64_lock);
2258 }
2259
2260 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2261 {
2262         struct igb_adapter *adapter = netdev_priv(netdev);
2263         u8 *p = data;
2264         int i;
2265
2266         switch (stringset) {
2267         case ETH_SS_TEST:
2268                 memcpy(data, *igb_gstrings_test,
2269                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2270                 break;
2271         case ETH_SS_STATS:
2272                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2273                         memcpy(p, igb_gstrings_stats[i].stat_string,
2274                                ETH_GSTRING_LEN);
2275                         p += ETH_GSTRING_LEN;
2276                 }
2277                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2278                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2279                                ETH_GSTRING_LEN);
2280                         p += ETH_GSTRING_LEN;
2281                 }
2282                 for (i = 0; i < adapter->num_tx_queues; i++) {
2283                         sprintf(p, "tx_queue_%u_packets", i);
2284                         p += ETH_GSTRING_LEN;
2285                         sprintf(p, "tx_queue_%u_bytes", i);
2286                         p += ETH_GSTRING_LEN;
2287                         sprintf(p, "tx_queue_%u_restart", i);
2288                         p += ETH_GSTRING_LEN;
2289                 }
2290                 for (i = 0; i < adapter->num_rx_queues; i++) {
2291                         sprintf(p, "rx_queue_%u_packets", i);
2292                         p += ETH_GSTRING_LEN;
2293                         sprintf(p, "rx_queue_%u_bytes", i);
2294                         p += ETH_GSTRING_LEN;
2295                         sprintf(p, "rx_queue_%u_drops", i);
2296                         p += ETH_GSTRING_LEN;
2297                         sprintf(p, "rx_queue_%u_csum_err", i);
2298                         p += ETH_GSTRING_LEN;
2299                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2300                         p += ETH_GSTRING_LEN;
2301                 }
2302 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2303                 break;
2304         }
2305 }
2306
2307 static int igb_get_ts_info(struct net_device *dev,
2308                            struct ethtool_ts_info *info)
2309 {
2310         struct igb_adapter *adapter = netdev_priv(dev);
2311
2312         switch (adapter->hw.mac.type) {
2313         case e1000_82576:
2314         case e1000_82580:
2315         case e1000_i350:
2316         case e1000_i210:
2317         case e1000_i211:
2318                 info->so_timestamping =
2319                         SOF_TIMESTAMPING_TX_HARDWARE |
2320                         SOF_TIMESTAMPING_RX_HARDWARE |
2321                         SOF_TIMESTAMPING_RAW_HARDWARE;
2322
2323                 if (adapter->ptp_clock)
2324                         info->phc_index = ptp_clock_index(adapter->ptp_clock);
2325                 else
2326                         info->phc_index = -1;
2327
2328                 info->tx_types =
2329                         (1 << HWTSTAMP_TX_OFF) |
2330                         (1 << HWTSTAMP_TX_ON);
2331
2332                 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2333
2334                 /* 82576 does not support timestamping all packets. */
2335                 if (adapter->hw.mac.type >= e1000_82580)
2336                         info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2337                 else
2338                         info->rx_filters |=
2339                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2340                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2341                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2342                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2343                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2344                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2345                                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2346
2347                 return 0;
2348         default:
2349                 return -EOPNOTSUPP;
2350         }
2351 }
2352
2353 static int igb_ethtool_begin(struct net_device *netdev)
2354 {
2355         struct igb_adapter *adapter = netdev_priv(netdev);
2356         pm_runtime_get_sync(&adapter->pdev->dev);
2357         return 0;
2358 }
2359
2360 static void igb_ethtool_complete(struct net_device *netdev)
2361 {
2362         struct igb_adapter *adapter = netdev_priv(netdev);
2363         pm_runtime_put(&adapter->pdev->dev);
2364 }
2365
2366 static const struct ethtool_ops igb_ethtool_ops = {
2367         .get_settings           = igb_get_settings,
2368         .set_settings           = igb_set_settings,
2369         .get_drvinfo            = igb_get_drvinfo,
2370         .get_regs_len           = igb_get_regs_len,
2371         .get_regs               = igb_get_regs,
2372         .get_wol                = igb_get_wol,
2373         .set_wol                = igb_set_wol,
2374         .get_msglevel           = igb_get_msglevel,
2375         .set_msglevel           = igb_set_msglevel,
2376         .nway_reset             = igb_nway_reset,
2377         .get_link               = igb_get_link,
2378         .get_eeprom_len         = igb_get_eeprom_len,
2379         .get_eeprom             = igb_get_eeprom,
2380         .set_eeprom             = igb_set_eeprom,
2381         .get_ringparam          = igb_get_ringparam,
2382         .set_ringparam          = igb_set_ringparam,
2383         .get_pauseparam         = igb_get_pauseparam,
2384         .set_pauseparam         = igb_set_pauseparam,
2385         .self_test              = igb_diag_test,
2386         .get_strings            = igb_get_strings,
2387         .set_phys_id            = igb_set_phys_id,
2388         .get_sset_count         = igb_get_sset_count,
2389         .get_ethtool_stats      = igb_get_ethtool_stats,
2390         .get_coalesce           = igb_get_coalesce,
2391         .set_coalesce           = igb_set_coalesce,
2392         .get_ts_info            = igb_get_ts_info,
2393         .begin                  = igb_ethtool_begin,
2394         .complete               = igb_ethtool_complete,
2395 };
2396
2397 void igb_set_ethtool_ops(struct net_device *netdev)
2398 {
2399         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2400 }