Merge tag 'selinux-pr-20190429' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / i40e / i40e_xsk.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7
8 #include "i40e.h"
9 #include "i40e_txrx_common.h"
10 #include "i40e_xsk.h"
11
12 /**
13  * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
14  * @vsi: Current VSI
15  * @umem: UMEM to DMA map
16  *
17  * Returns 0 on success, <0 on failure
18  **/
19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
20 {
21         struct i40e_pf *pf = vsi->back;
22         struct device *dev;
23         unsigned int i, j;
24         dma_addr_t dma;
25
26         dev = &pf->pdev->dev;
27         for (i = 0; i < umem->npgs; i++) {
28                 dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
29                                          DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
30                 if (dma_mapping_error(dev, dma))
31                         goto out_unmap;
32
33                 umem->pages[i].dma = dma;
34         }
35
36         return 0;
37
38 out_unmap:
39         for (j = 0; j < i; j++) {
40                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
41                                      DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
42                 umem->pages[i].dma = 0;
43         }
44
45         return -1;
46 }
47
48 /**
49  * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
50  * @vsi: Current VSI
51  * @umem: UMEM to DMA map
52  **/
53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
54 {
55         struct i40e_pf *pf = vsi->back;
56         struct device *dev;
57         unsigned int i;
58
59         dev = &pf->pdev->dev;
60
61         for (i = 0; i < umem->npgs; i++) {
62                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
63                                      DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
64
65                 umem->pages[i].dma = 0;
66         }
67 }
68
69 /**
70  * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
71  * @vsi: Current VSI
72  * @umem: UMEM
73  * @qid: Rx ring to associate UMEM to
74  *
75  * Returns 0 on success, <0 on failure
76  **/
77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
78                                 u16 qid)
79 {
80         struct net_device *netdev = vsi->netdev;
81         struct xdp_umem_fq_reuse *reuseq;
82         bool if_running;
83         int err;
84
85         if (vsi->type != I40E_VSI_MAIN)
86                 return -EINVAL;
87
88         if (qid >= vsi->num_queue_pairs)
89                 return -EINVAL;
90
91         if (qid >= netdev->real_num_rx_queues ||
92             qid >= netdev->real_num_tx_queues)
93                 return -EINVAL;
94
95         reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
96         if (!reuseq)
97                 return -ENOMEM;
98
99         xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
100
101         err = i40e_xsk_umem_dma_map(vsi, umem);
102         if (err)
103                 return err;
104
105         set_bit(qid, vsi->af_xdp_zc_qps);
106
107         if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
108
109         if (if_running) {
110                 err = i40e_queue_pair_disable(vsi, qid);
111                 if (err)
112                         return err;
113
114                 err = i40e_queue_pair_enable(vsi, qid);
115                 if (err)
116                         return err;
117
118                 /* Kick start the NAPI context so that receiving will start */
119                 err = i40e_xsk_async_xmit(vsi->netdev, qid);
120                 if (err)
121                         return err;
122         }
123
124         return 0;
125 }
126
127 /**
128  * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
129  * @vsi: Current VSI
130  * @qid: Rx ring to associate UMEM to
131  *
132  * Returns 0 on success, <0 on failure
133  **/
134 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
135 {
136         struct net_device *netdev = vsi->netdev;
137         struct xdp_umem *umem;
138         bool if_running;
139         int err;
140
141         umem = xdp_get_umem_from_qid(netdev, qid);
142         if (!umem)
143                 return -EINVAL;
144
145         if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
146
147         if (if_running) {
148                 err = i40e_queue_pair_disable(vsi, qid);
149                 if (err)
150                         return err;
151         }
152
153         clear_bit(qid, vsi->af_xdp_zc_qps);
154         i40e_xsk_umem_dma_unmap(vsi, umem);
155
156         if (if_running) {
157                 err = i40e_queue_pair_enable(vsi, qid);
158                 if (err)
159                         return err;
160         }
161
162         return 0;
163 }
164
165 /**
166  * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
167  * @vsi: Current VSI
168  * @umem: UMEM to enable/associate to a ring, or NULL to disable
169  * @qid: Rx ring to (dis)associate UMEM (from)to
170  *
171  * This function enables or disables a UMEM to a certain ring.
172  *
173  * Returns 0 on success, <0 on failure
174  **/
175 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
176                         u16 qid)
177 {
178         return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
179                 i40e_xsk_umem_disable(vsi, qid);
180 }
181
182 /**
183  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
184  * @rx_ring: Rx ring
185  * @xdp: xdp_buff used as input to the XDP program
186  *
187  * This function enables or disables a UMEM to a certain ring.
188  *
189  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
190  **/
191 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
192 {
193         int err, result = I40E_XDP_PASS;
194         struct i40e_ring *xdp_ring;
195         struct bpf_prog *xdp_prog;
196         u32 act;
197
198         rcu_read_lock();
199         /* NB! xdp_prog will always be !NULL, due to the fact that
200          * this path is enabled by setting an XDP program.
201          */
202         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
203         act = bpf_prog_run_xdp(xdp_prog, xdp);
204         xdp->handle += xdp->data - xdp->data_hard_start;
205         switch (act) {
206         case XDP_PASS:
207                 break;
208         case XDP_TX:
209                 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
210                 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
211                 break;
212         case XDP_REDIRECT:
213                 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
214                 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
215                 break;
216         default:
217                 bpf_warn_invalid_xdp_action(act);
218         case XDP_ABORTED:
219                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
220                 /* fallthrough -- handle aborts by dropping packet */
221         case XDP_DROP:
222                 result = I40E_XDP_CONSUMED;
223                 break;
224         }
225         rcu_read_unlock();
226         return result;
227 }
228
229 /**
230  * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
231  * @rx_ring: Rx ring
232  * @bi: Rx buffer to populate
233  *
234  * This function allocates an Rx buffer. The buffer can come from fill
235  * queue, or via the recycle queue (next_to_alloc).
236  *
237  * Returns true for a successful allocation, false otherwise
238  **/
239 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
240                                  struct i40e_rx_buffer *bi)
241 {
242         struct xdp_umem *umem = rx_ring->xsk_umem;
243         void *addr = bi->addr;
244         u64 handle, hr;
245
246         if (addr) {
247                 rx_ring->rx_stats.page_reuse_count++;
248                 return true;
249         }
250
251         if (!xsk_umem_peek_addr(umem, &handle)) {
252                 rx_ring->rx_stats.alloc_page_failed++;
253                 return false;
254         }
255
256         hr = umem->headroom + XDP_PACKET_HEADROOM;
257
258         bi->dma = xdp_umem_get_dma(umem, handle);
259         bi->dma += hr;
260
261         bi->addr = xdp_umem_get_data(umem, handle);
262         bi->addr += hr;
263
264         bi->handle = handle + umem->headroom;
265
266         xsk_umem_discard_addr(umem);
267         return true;
268 }
269
270 /**
271  * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
272  * @rx_ring: Rx ring
273  * @bi: Rx buffer to populate
274  *
275  * This function allocates an Rx buffer. The buffer can come from fill
276  * queue, or via the reuse queue.
277  *
278  * Returns true for a successful allocation, false otherwise
279  **/
280 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
281                                       struct i40e_rx_buffer *bi)
282 {
283         struct xdp_umem *umem = rx_ring->xsk_umem;
284         u64 handle, hr;
285
286         if (!xsk_umem_peek_addr_rq(umem, &handle)) {
287                 rx_ring->rx_stats.alloc_page_failed++;
288                 return false;
289         }
290
291         handle &= rx_ring->xsk_umem->chunk_mask;
292
293         hr = umem->headroom + XDP_PACKET_HEADROOM;
294
295         bi->dma = xdp_umem_get_dma(umem, handle);
296         bi->dma += hr;
297
298         bi->addr = xdp_umem_get_data(umem, handle);
299         bi->addr += hr;
300
301         bi->handle = handle + umem->headroom;
302
303         xsk_umem_discard_addr_rq(umem);
304         return true;
305 }
306
307 static __always_inline bool
308 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
309                            bool alloc(struct i40e_ring *rx_ring,
310                                       struct i40e_rx_buffer *bi))
311 {
312         u16 ntu = rx_ring->next_to_use;
313         union i40e_rx_desc *rx_desc;
314         struct i40e_rx_buffer *bi;
315         bool ok = true;
316
317         rx_desc = I40E_RX_DESC(rx_ring, ntu);
318         bi = &rx_ring->rx_bi[ntu];
319         do {
320                 if (!alloc(rx_ring, bi)) {
321                         ok = false;
322                         goto no_buffers;
323                 }
324
325                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
326                                                  rx_ring->rx_buf_len,
327                                                  DMA_BIDIRECTIONAL);
328
329                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
330
331                 rx_desc++;
332                 bi++;
333                 ntu++;
334
335                 if (unlikely(ntu == rx_ring->count)) {
336                         rx_desc = I40E_RX_DESC(rx_ring, 0);
337                         bi = rx_ring->rx_bi;
338                         ntu = 0;
339                 }
340
341                 rx_desc->wb.qword1.status_error_len = 0;
342                 count--;
343         } while (count);
344
345 no_buffers:
346         if (rx_ring->next_to_use != ntu)
347                 i40e_release_rx_desc(rx_ring, ntu);
348
349         return ok;
350 }
351
352 /**
353  * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
354  * @rx_ring: Rx ring
355  * @count: The number of buffers to allocate
356  *
357  * This function allocates a number of Rx buffers from the reuse queue
358  * or fill ring and places them on the Rx ring.
359  *
360  * Returns true for a successful allocation, false otherwise
361  **/
362 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
363 {
364         return __i40e_alloc_rx_buffers_zc(rx_ring, count,
365                                           i40e_alloc_buffer_slow_zc);
366 }
367
368 /**
369  * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
370  * @rx_ring: Rx ring
371  * @count: The number of buffers to allocate
372  *
373  * This function allocates a number of Rx buffers from the fill ring
374  * or the internal recycle mechanism and places them on the Rx ring.
375  *
376  * Returns true for a successful allocation, false otherwise
377  **/
378 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
379 {
380         return __i40e_alloc_rx_buffers_zc(rx_ring, count,
381                                           i40e_alloc_buffer_zc);
382 }
383
384 /**
385  * i40e_get_rx_buffer_zc - Return the current Rx buffer
386  * @rx_ring: Rx ring
387  * @size: The size of the rx buffer (read from descriptor)
388  *
389  * This function returns the current, received Rx buffer, and also
390  * does DMA synchronization.  the Rx ring.
391  *
392  * Returns the received Rx buffer
393  **/
394 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
395                                                     const unsigned int size)
396 {
397         struct i40e_rx_buffer *bi;
398
399         bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
400
401         /* we are reusing so sync this buffer for CPU use */
402         dma_sync_single_range_for_cpu(rx_ring->dev,
403                                       bi->dma, 0,
404                                       size,
405                                       DMA_BIDIRECTIONAL);
406
407         return bi;
408 }
409
410 /**
411  * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
412  * @rx_ring: Rx ring
413  * @old_bi: The Rx buffer to recycle
414  *
415  * This function recycles a finished Rx buffer, and places it on the
416  * recycle queue (next_to_alloc).
417  **/
418 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
419                                     struct i40e_rx_buffer *old_bi)
420 {
421         struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
422         unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
423         u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
424         u16 nta = rx_ring->next_to_alloc;
425
426         /* update, and store next to alloc */
427         nta++;
428         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
429
430         /* transfer page from old buffer to new buffer */
431         new_bi->dma = old_bi->dma & mask;
432         new_bi->dma += hr;
433
434         new_bi->addr = (void *)((unsigned long)old_bi->addr & mask);
435         new_bi->addr += hr;
436
437         new_bi->handle = old_bi->handle & mask;
438         new_bi->handle += rx_ring->xsk_umem->headroom;
439
440         old_bi->addr = NULL;
441 }
442
443 /**
444  * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
445  * @alloc: Zero-copy allocator
446  * @handle: Buffer handle
447  **/
448 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
449 {
450         struct i40e_rx_buffer *bi;
451         struct i40e_ring *rx_ring;
452         u64 hr, mask;
453         u16 nta;
454
455         rx_ring = container_of(alloc, struct i40e_ring, zca);
456         hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
457         mask = rx_ring->xsk_umem->chunk_mask;
458
459         nta = rx_ring->next_to_alloc;
460         bi = &rx_ring->rx_bi[nta];
461
462         nta++;
463         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
464
465         handle &= mask;
466
467         bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
468         bi->dma += hr;
469
470         bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
471         bi->addr += hr;
472
473         bi->handle = (u64)handle + rx_ring->xsk_umem->headroom;
474 }
475
476 /**
477  * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
478  * @rx_ring: Rx ring
479  * @bi: Rx buffer
480  * @xdp: xdp_buff
481  *
482  * This functions allocates a new skb from a zero-copy Rx buffer.
483  *
484  * Returns the skb, or NULL on failure.
485  **/
486 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
487                                              struct i40e_rx_buffer *bi,
488                                              struct xdp_buff *xdp)
489 {
490         unsigned int metasize = xdp->data - xdp->data_meta;
491         unsigned int datasize = xdp->data_end - xdp->data;
492         struct sk_buff *skb;
493
494         /* allocate a skb to store the frags */
495         skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
496                                xdp->data_end - xdp->data_hard_start,
497                                GFP_ATOMIC | __GFP_NOWARN);
498         if (unlikely(!skb))
499                 return NULL;
500
501         skb_reserve(skb, xdp->data - xdp->data_hard_start);
502         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
503         if (metasize)
504                 skb_metadata_set(skb, metasize);
505
506         i40e_reuse_rx_buffer_zc(rx_ring, bi);
507         return skb;
508 }
509
510 /**
511  * i40e_inc_ntc: Advance the next_to_clean index
512  * @rx_ring: Rx ring
513  **/
514 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
515 {
516         u32 ntc = rx_ring->next_to_clean + 1;
517
518         ntc = (ntc < rx_ring->count) ? ntc : 0;
519         rx_ring->next_to_clean = ntc;
520         prefetch(I40E_RX_DESC(rx_ring, ntc));
521 }
522
523 /**
524  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
525  * @rx_ring: Rx ring
526  * @budget: NAPI budget
527  *
528  * Returns amount of work completed
529  **/
530 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
531 {
532         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
533         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
534         unsigned int xdp_res, xdp_xmit = 0;
535         bool failure = false;
536         struct sk_buff *skb;
537         struct xdp_buff xdp;
538
539         xdp.rxq = &rx_ring->xdp_rxq;
540
541         while (likely(total_rx_packets < (unsigned int)budget)) {
542                 struct i40e_rx_buffer *bi;
543                 union i40e_rx_desc *rx_desc;
544                 unsigned int size;
545                 u64 qword;
546
547                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
548                         failure = failure ||
549                                   !i40e_alloc_rx_buffers_fast_zc(rx_ring,
550                                                                  cleaned_count);
551                         cleaned_count = 0;
552                 }
553
554                 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
555                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
556
557                 /* This memory barrier is needed to keep us from reading
558                  * any other fields out of the rx_desc until we have
559                  * verified the descriptor has been written back.
560                  */
561                 dma_rmb();
562
563                 bi = i40e_clean_programming_status(rx_ring, rx_desc,
564                                                    qword);
565                 if (unlikely(bi)) {
566                         i40e_reuse_rx_buffer_zc(rx_ring, bi);
567                         cleaned_count++;
568                         continue;
569                 }
570
571                 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
572                        I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
573                 if (!size)
574                         break;
575
576                 bi = i40e_get_rx_buffer_zc(rx_ring, size);
577                 xdp.data = bi->addr;
578                 xdp.data_meta = xdp.data;
579                 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
580                 xdp.data_end = xdp.data + size;
581                 xdp.handle = bi->handle;
582
583                 xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
584                 if (xdp_res) {
585                         if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
586                                 xdp_xmit |= xdp_res;
587                                 bi->addr = NULL;
588                         } else {
589                                 i40e_reuse_rx_buffer_zc(rx_ring, bi);
590                         }
591
592                         total_rx_bytes += size;
593                         total_rx_packets++;
594
595                         cleaned_count++;
596                         i40e_inc_ntc(rx_ring);
597                         continue;
598                 }
599
600                 /* XDP_PASS path */
601
602                 /* NB! We are not checking for errors using
603                  * i40e_test_staterr with
604                  * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
605                  * SBP is *not* set in PRT_SBPVSI (default not set).
606                  */
607                 skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
608                 if (!skb) {
609                         rx_ring->rx_stats.alloc_buff_failed++;
610                         break;
611                 }
612
613                 cleaned_count++;
614                 i40e_inc_ntc(rx_ring);
615
616                 if (eth_skb_pad(skb))
617                         continue;
618
619                 total_rx_bytes += skb->len;
620                 total_rx_packets++;
621
622                 i40e_process_skb_fields(rx_ring, rx_desc, skb);
623                 napi_gro_receive(&rx_ring->q_vector->napi, skb);
624         }
625
626         i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
627         i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
628         return failure ? budget : (int)total_rx_packets;
629 }
630
631 /**
632  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
633  * @xdp_ring: XDP Tx ring
634  * @budget: NAPI budget
635  *
636  * Returns true if the work is finished.
637  **/
638 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
639 {
640         struct i40e_tx_desc *tx_desc = NULL;
641         struct i40e_tx_buffer *tx_bi;
642         bool work_done = true;
643         dma_addr_t dma;
644         u32 len;
645
646         while (budget-- > 0) {
647                 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
648                         xdp_ring->tx_stats.tx_busy++;
649                         work_done = false;
650                         break;
651                 }
652
653                 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len))
654                         break;
655
656                 dma_sync_single_for_device(xdp_ring->dev, dma, len,
657                                            DMA_BIDIRECTIONAL);
658
659                 tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
660                 tx_bi->bytecount = len;
661
662                 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
663                 tx_desc->buffer_addr = cpu_to_le64(dma);
664                 tx_desc->cmd_type_offset_bsz =
665                         build_ctob(I40E_TX_DESC_CMD_ICRC
666                                    | I40E_TX_DESC_CMD_EOP,
667                                    0, len, 0);
668
669                 xdp_ring->next_to_use++;
670                 if (xdp_ring->next_to_use == xdp_ring->count)
671                         xdp_ring->next_to_use = 0;
672         }
673
674         if (tx_desc) {
675                 /* Request an interrupt for the last frame and bump tail ptr. */
676                 tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
677                                                  I40E_TXD_QW1_CMD_SHIFT);
678                 i40e_xdp_ring_update_tail(xdp_ring);
679
680                 xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
681         }
682
683         return !!budget && work_done;
684 }
685
686 /**
687  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
688  * @tx_ring: XDP Tx ring
689  * @tx_bi: Tx buffer info to clean
690  **/
691 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
692                                      struct i40e_tx_buffer *tx_bi)
693 {
694         xdp_return_frame(tx_bi->xdpf);
695         dma_unmap_single(tx_ring->dev,
696                          dma_unmap_addr(tx_bi, dma),
697                          dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
698         dma_unmap_len_set(tx_bi, len, 0);
699 }
700
701 /**
702  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
703  * @tx_ring: XDP Tx ring
704  * @tx_bi: Tx buffer info to clean
705  *
706  * Returns true if cleanup/tranmission is done.
707  **/
708 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
709                            struct i40e_ring *tx_ring, int napi_budget)
710 {
711         unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
712         u32 i, completed_frames, frames_ready, xsk_frames = 0;
713         struct xdp_umem *umem = tx_ring->xsk_umem;
714         u32 head_idx = i40e_get_head(tx_ring);
715         bool work_done = true, xmit_done;
716         struct i40e_tx_buffer *tx_bi;
717
718         if (head_idx < tx_ring->next_to_clean)
719                 head_idx += tx_ring->count;
720         frames_ready = head_idx - tx_ring->next_to_clean;
721
722         if (frames_ready == 0) {
723                 goto out_xmit;
724         } else if (frames_ready > budget) {
725                 completed_frames = budget;
726                 work_done = false;
727         } else {
728                 completed_frames = frames_ready;
729         }
730
731         ntc = tx_ring->next_to_clean;
732
733         for (i = 0; i < completed_frames; i++) {
734                 tx_bi = &tx_ring->tx_bi[ntc];
735
736                 if (tx_bi->xdpf)
737                         i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
738                 else
739                         xsk_frames++;
740
741                 tx_bi->xdpf = NULL;
742                 total_bytes += tx_bi->bytecount;
743
744                 if (++ntc >= tx_ring->count)
745                         ntc = 0;
746         }
747
748         tx_ring->next_to_clean += completed_frames;
749         if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
750                 tx_ring->next_to_clean -= tx_ring->count;
751
752         if (xsk_frames)
753                 xsk_umem_complete_tx(umem, xsk_frames);
754
755         i40e_arm_wb(tx_ring, vsi, budget);
756         i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
757
758 out_xmit:
759         xmit_done = i40e_xmit_zc(tx_ring, budget);
760
761         return work_done && xmit_done;
762 }
763
764 /**
765  * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit
766  * @dev: the netdevice
767  * @queue_id: queue id to wake up
768  *
769  * Returns <0 for errors, 0 otherwise.
770  **/
771 int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id)
772 {
773         struct i40e_netdev_priv *np = netdev_priv(dev);
774         struct i40e_vsi *vsi = np->vsi;
775         struct i40e_ring *ring;
776
777         if (test_bit(__I40E_VSI_DOWN, vsi->state))
778                 return -ENETDOWN;
779
780         if (!i40e_enabled_xdp_vsi(vsi))
781                 return -ENXIO;
782
783         if (queue_id >= vsi->num_queue_pairs)
784                 return -ENXIO;
785
786         if (!vsi->xdp_rings[queue_id]->xsk_umem)
787                 return -ENXIO;
788
789         ring = vsi->xdp_rings[queue_id];
790
791         /* The idea here is that if NAPI is running, mark a miss, so
792          * it will run again. If not, trigger an interrupt and
793          * schedule the NAPI from interrupt context. If NAPI would be
794          * scheduled here, the interrupt affinity would not be
795          * honored.
796          */
797         if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
798                 i40e_force_wb(vsi, ring->q_vector);
799
800         return 0;
801 }
802
803 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
804 {
805         u16 i;
806
807         for (i = 0; i < rx_ring->count; i++) {
808                 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
809
810                 if (!rx_bi->addr)
811                         continue;
812
813                 xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
814                 rx_bi->addr = NULL;
815         }
816 }
817
818 /**
819  * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
820  * @xdp_ring: XDP Tx ring
821  **/
822 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
823 {
824         u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
825         struct xdp_umem *umem = tx_ring->xsk_umem;
826         struct i40e_tx_buffer *tx_bi;
827         u32 xsk_frames = 0;
828
829         while (ntc != ntu) {
830                 tx_bi = &tx_ring->tx_bi[ntc];
831
832                 if (tx_bi->xdpf)
833                         i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
834                 else
835                         xsk_frames++;
836
837                 tx_bi->xdpf = NULL;
838
839                 ntc++;
840                 if (ntc >= tx_ring->count)
841                         ntc = 0;
842         }
843
844         if (xsk_frames)
845                 xsk_umem_complete_tx(umem, xsk_frames);
846 }
847
848 /**
849  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
850  * @vsi: vsi
851  *
852  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
853  **/
854 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
855 {
856         struct net_device *netdev = vsi->netdev;
857         int i;
858
859         for (i = 0; i < vsi->num_queue_pairs; i++) {
860                 if (xdp_get_umem_from_qid(netdev, i))
861                         return true;
862         }
863
864         return false;
865 }