ACPI / scan: Add labels for PNP button devices
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / i40e / i40e_xsk.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7
8 #include "i40e.h"
9 #include "i40e_txrx_common.h"
10 #include "i40e_xsk.h"
11
12 /**
13  * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
14  * @vsi: Current VSI
15  * @umem: UMEM to DMA map
16  *
17  * Returns 0 on success, <0 on failure
18  **/
19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
20 {
21         struct i40e_pf *pf = vsi->back;
22         struct device *dev;
23         unsigned int i, j;
24         dma_addr_t dma;
25
26         dev = &pf->pdev->dev;
27         for (i = 0; i < umem->npgs; i++) {
28                 dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
29                                          DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
30                 if (dma_mapping_error(dev, dma))
31                         goto out_unmap;
32
33                 umem->pages[i].dma = dma;
34         }
35
36         return 0;
37
38 out_unmap:
39         for (j = 0; j < i; j++) {
40                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
41                                      DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
42                 umem->pages[i].dma = 0;
43         }
44
45         return -1;
46 }
47
48 /**
49  * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
50  * @vsi: Current VSI
51  * @umem: UMEM to DMA map
52  **/
53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
54 {
55         struct i40e_pf *pf = vsi->back;
56         struct device *dev;
57         unsigned int i;
58
59         dev = &pf->pdev->dev;
60
61         for (i = 0; i < umem->npgs; i++) {
62                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
63                                      DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
64
65                 umem->pages[i].dma = 0;
66         }
67 }
68
69 /**
70  * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
71  * @vsi: Current VSI
72  * @umem: UMEM
73  * @qid: Rx ring to associate UMEM to
74  *
75  * Returns 0 on success, <0 on failure
76  **/
77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
78                                 u16 qid)
79 {
80         struct net_device *netdev = vsi->netdev;
81         struct xdp_umem_fq_reuse *reuseq;
82         bool if_running;
83         int err;
84
85         if (vsi->type != I40E_VSI_MAIN)
86                 return -EINVAL;
87
88         if (qid >= vsi->num_queue_pairs)
89                 return -EINVAL;
90
91         if (qid >= netdev->real_num_rx_queues ||
92             qid >= netdev->real_num_tx_queues)
93                 return -EINVAL;
94
95         reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
96         if (!reuseq)
97                 return -ENOMEM;
98
99         xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
100
101         err = i40e_xsk_umem_dma_map(vsi, umem);
102         if (err)
103                 return err;
104
105         if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
106
107         if (if_running) {
108                 err = i40e_queue_pair_disable(vsi, qid);
109                 if (err)
110                         return err;
111
112                 err = i40e_queue_pair_enable(vsi, qid);
113                 if (err)
114                         return err;
115
116                 /* Kick start the NAPI context so that receiving will start */
117                 err = i40e_xsk_async_xmit(vsi->netdev, qid);
118                 if (err)
119                         return err;
120         }
121
122         return 0;
123 }
124
125 /**
126  * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
127  * @vsi: Current VSI
128  * @qid: Rx ring to associate UMEM to
129  *
130  * Returns 0 on success, <0 on failure
131  **/
132 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
133 {
134         struct net_device *netdev = vsi->netdev;
135         struct xdp_umem *umem;
136         bool if_running;
137         int err;
138
139         umem = xdp_get_umem_from_qid(netdev, qid);
140         if (!umem)
141                 return -EINVAL;
142
143         if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
144
145         if (if_running) {
146                 err = i40e_queue_pair_disable(vsi, qid);
147                 if (err)
148                         return err;
149         }
150
151         i40e_xsk_umem_dma_unmap(vsi, umem);
152
153         if (if_running) {
154                 err = i40e_queue_pair_enable(vsi, qid);
155                 if (err)
156                         return err;
157         }
158
159         return 0;
160 }
161
162 /**
163  * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
164  * @vsi: Current VSI
165  * @umem: UMEM to enable/associate to a ring, or NULL to disable
166  * @qid: Rx ring to (dis)associate UMEM (from)to
167  *
168  * This function enables or disables a UMEM to a certain ring.
169  *
170  * Returns 0 on success, <0 on failure
171  **/
172 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
173                         u16 qid)
174 {
175         return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
176                 i40e_xsk_umem_disable(vsi, qid);
177 }
178
179 /**
180  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
181  * @rx_ring: Rx ring
182  * @xdp: xdp_buff used as input to the XDP program
183  *
184  * This function enables or disables a UMEM to a certain ring.
185  *
186  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
187  **/
188 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
189 {
190         int err, result = I40E_XDP_PASS;
191         struct i40e_ring *xdp_ring;
192         struct bpf_prog *xdp_prog;
193         u32 act;
194
195         rcu_read_lock();
196         /* NB! xdp_prog will always be !NULL, due to the fact that
197          * this path is enabled by setting an XDP program.
198          */
199         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
200         act = bpf_prog_run_xdp(xdp_prog, xdp);
201         xdp->handle += xdp->data - xdp->data_hard_start;
202         switch (act) {
203         case XDP_PASS:
204                 break;
205         case XDP_TX:
206                 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
207                 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
208                 break;
209         case XDP_REDIRECT:
210                 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
211                 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
212                 break;
213         default:
214                 bpf_warn_invalid_xdp_action(act);
215         case XDP_ABORTED:
216                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
217                 /* fallthrough -- handle aborts by dropping packet */
218         case XDP_DROP:
219                 result = I40E_XDP_CONSUMED;
220                 break;
221         }
222         rcu_read_unlock();
223         return result;
224 }
225
226 /**
227  * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
228  * @rx_ring: Rx ring
229  * @bi: Rx buffer to populate
230  *
231  * This function allocates an Rx buffer. The buffer can come from fill
232  * queue, or via the recycle queue (next_to_alloc).
233  *
234  * Returns true for a successful allocation, false otherwise
235  **/
236 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
237                                  struct i40e_rx_buffer *bi)
238 {
239         struct xdp_umem *umem = rx_ring->xsk_umem;
240         void *addr = bi->addr;
241         u64 handle, hr;
242
243         if (addr) {
244                 rx_ring->rx_stats.page_reuse_count++;
245                 return true;
246         }
247
248         if (!xsk_umem_peek_addr(umem, &handle)) {
249                 rx_ring->rx_stats.alloc_page_failed++;
250                 return false;
251         }
252
253         hr = umem->headroom + XDP_PACKET_HEADROOM;
254
255         bi->dma = xdp_umem_get_dma(umem, handle);
256         bi->dma += hr;
257
258         bi->addr = xdp_umem_get_data(umem, handle);
259         bi->addr += hr;
260
261         bi->handle = handle + umem->headroom;
262
263         xsk_umem_discard_addr(umem);
264         return true;
265 }
266
267 /**
268  * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
269  * @rx_ring: Rx ring
270  * @bi: Rx buffer to populate
271  *
272  * This function allocates an Rx buffer. The buffer can come from fill
273  * queue, or via the reuse queue.
274  *
275  * Returns true for a successful allocation, false otherwise
276  **/
277 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
278                                       struct i40e_rx_buffer *bi)
279 {
280         struct xdp_umem *umem = rx_ring->xsk_umem;
281         u64 handle, hr;
282
283         if (!xsk_umem_peek_addr_rq(umem, &handle)) {
284                 rx_ring->rx_stats.alloc_page_failed++;
285                 return false;
286         }
287
288         handle &= rx_ring->xsk_umem->chunk_mask;
289
290         hr = umem->headroom + XDP_PACKET_HEADROOM;
291
292         bi->dma = xdp_umem_get_dma(umem, handle);
293         bi->dma += hr;
294
295         bi->addr = xdp_umem_get_data(umem, handle);
296         bi->addr += hr;
297
298         bi->handle = handle + umem->headroom;
299
300         xsk_umem_discard_addr_rq(umem);
301         return true;
302 }
303
304 static __always_inline bool
305 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
306                            bool alloc(struct i40e_ring *rx_ring,
307                                       struct i40e_rx_buffer *bi))
308 {
309         u16 ntu = rx_ring->next_to_use;
310         union i40e_rx_desc *rx_desc;
311         struct i40e_rx_buffer *bi;
312         bool ok = true;
313
314         rx_desc = I40E_RX_DESC(rx_ring, ntu);
315         bi = &rx_ring->rx_bi[ntu];
316         do {
317                 if (!alloc(rx_ring, bi)) {
318                         ok = false;
319                         goto no_buffers;
320                 }
321
322                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
323                                                  rx_ring->rx_buf_len,
324                                                  DMA_BIDIRECTIONAL);
325
326                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
327
328                 rx_desc++;
329                 bi++;
330                 ntu++;
331
332                 if (unlikely(ntu == rx_ring->count)) {
333                         rx_desc = I40E_RX_DESC(rx_ring, 0);
334                         bi = rx_ring->rx_bi;
335                         ntu = 0;
336                 }
337
338                 rx_desc->wb.qword1.status_error_len = 0;
339                 count--;
340         } while (count);
341
342 no_buffers:
343         if (rx_ring->next_to_use != ntu)
344                 i40e_release_rx_desc(rx_ring, ntu);
345
346         return ok;
347 }
348
349 /**
350  * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
351  * @rx_ring: Rx ring
352  * @count: The number of buffers to allocate
353  *
354  * This function allocates a number of Rx buffers from the reuse queue
355  * or fill ring and places them on the Rx ring.
356  *
357  * Returns true for a successful allocation, false otherwise
358  **/
359 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
360 {
361         return __i40e_alloc_rx_buffers_zc(rx_ring, count,
362                                           i40e_alloc_buffer_slow_zc);
363 }
364
365 /**
366  * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
367  * @rx_ring: Rx ring
368  * @count: The number of buffers to allocate
369  *
370  * This function allocates a number of Rx buffers from the fill ring
371  * or the internal recycle mechanism and places them on the Rx ring.
372  *
373  * Returns true for a successful allocation, false otherwise
374  **/
375 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
376 {
377         return __i40e_alloc_rx_buffers_zc(rx_ring, count,
378                                           i40e_alloc_buffer_zc);
379 }
380
381 /**
382  * i40e_get_rx_buffer_zc - Return the current Rx buffer
383  * @rx_ring: Rx ring
384  * @size: The size of the rx buffer (read from descriptor)
385  *
386  * This function returns the current, received Rx buffer, and also
387  * does DMA synchronization.  the Rx ring.
388  *
389  * Returns the received Rx buffer
390  **/
391 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
392                                                     const unsigned int size)
393 {
394         struct i40e_rx_buffer *bi;
395
396         bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
397
398         /* we are reusing so sync this buffer for CPU use */
399         dma_sync_single_range_for_cpu(rx_ring->dev,
400                                       bi->dma, 0,
401                                       size,
402                                       DMA_BIDIRECTIONAL);
403
404         return bi;
405 }
406
407 /**
408  * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
409  * @rx_ring: Rx ring
410  * @old_bi: The Rx buffer to recycle
411  *
412  * This function recycles a finished Rx buffer, and places it on the
413  * recycle queue (next_to_alloc).
414  **/
415 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
416                                     struct i40e_rx_buffer *old_bi)
417 {
418         struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
419         unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
420         u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
421         u16 nta = rx_ring->next_to_alloc;
422
423         /* update, and store next to alloc */
424         nta++;
425         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
426
427         /* transfer page from old buffer to new buffer */
428         new_bi->dma = old_bi->dma & mask;
429         new_bi->dma += hr;
430
431         new_bi->addr = (void *)((unsigned long)old_bi->addr & mask);
432         new_bi->addr += hr;
433
434         new_bi->handle = old_bi->handle & mask;
435         new_bi->handle += rx_ring->xsk_umem->headroom;
436
437         old_bi->addr = NULL;
438 }
439
440 /**
441  * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
442  * @alloc: Zero-copy allocator
443  * @handle: Buffer handle
444  **/
445 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
446 {
447         struct i40e_rx_buffer *bi;
448         struct i40e_ring *rx_ring;
449         u64 hr, mask;
450         u16 nta;
451
452         rx_ring = container_of(alloc, struct i40e_ring, zca);
453         hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
454         mask = rx_ring->xsk_umem->chunk_mask;
455
456         nta = rx_ring->next_to_alloc;
457         bi = &rx_ring->rx_bi[nta];
458
459         nta++;
460         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
461
462         handle &= mask;
463
464         bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
465         bi->dma += hr;
466
467         bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
468         bi->addr += hr;
469
470         bi->handle = (u64)handle + rx_ring->xsk_umem->headroom;
471 }
472
473 /**
474  * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
475  * @rx_ring: Rx ring
476  * @bi: Rx buffer
477  * @xdp: xdp_buff
478  *
479  * This functions allocates a new skb from a zero-copy Rx buffer.
480  *
481  * Returns the skb, or NULL on failure.
482  **/
483 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
484                                              struct i40e_rx_buffer *bi,
485                                              struct xdp_buff *xdp)
486 {
487         unsigned int metasize = xdp->data - xdp->data_meta;
488         unsigned int datasize = xdp->data_end - xdp->data;
489         struct sk_buff *skb;
490
491         /* allocate a skb to store the frags */
492         skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
493                                xdp->data_end - xdp->data_hard_start,
494                                GFP_ATOMIC | __GFP_NOWARN);
495         if (unlikely(!skb))
496                 return NULL;
497
498         skb_reserve(skb, xdp->data - xdp->data_hard_start);
499         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
500         if (metasize)
501                 skb_metadata_set(skb, metasize);
502
503         i40e_reuse_rx_buffer_zc(rx_ring, bi);
504         return skb;
505 }
506
507 /**
508  * i40e_inc_ntc: Advance the next_to_clean index
509  * @rx_ring: Rx ring
510  **/
511 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
512 {
513         u32 ntc = rx_ring->next_to_clean + 1;
514
515         ntc = (ntc < rx_ring->count) ? ntc : 0;
516         rx_ring->next_to_clean = ntc;
517         prefetch(I40E_RX_DESC(rx_ring, ntc));
518 }
519
520 /**
521  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
522  * @rx_ring: Rx ring
523  * @budget: NAPI budget
524  *
525  * Returns amount of work completed
526  **/
527 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
528 {
529         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
530         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
531         unsigned int xdp_res, xdp_xmit = 0;
532         bool failure = false;
533         struct sk_buff *skb;
534         struct xdp_buff xdp;
535
536         xdp.rxq = &rx_ring->xdp_rxq;
537
538         while (likely(total_rx_packets < (unsigned int)budget)) {
539                 struct i40e_rx_buffer *bi;
540                 union i40e_rx_desc *rx_desc;
541                 unsigned int size;
542                 u64 qword;
543
544                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
545                         failure = failure ||
546                                   !i40e_alloc_rx_buffers_fast_zc(rx_ring,
547                                                                  cleaned_count);
548                         cleaned_count = 0;
549                 }
550
551                 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
552                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
553
554                 /* This memory barrier is needed to keep us from reading
555                  * any other fields out of the rx_desc until we have
556                  * verified the descriptor has been written back.
557                  */
558                 dma_rmb();
559
560                 bi = i40e_clean_programming_status(rx_ring, rx_desc,
561                                                    qword);
562                 if (unlikely(bi)) {
563                         i40e_reuse_rx_buffer_zc(rx_ring, bi);
564                         cleaned_count++;
565                         continue;
566                 }
567
568                 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
569                        I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
570                 if (!size)
571                         break;
572
573                 bi = i40e_get_rx_buffer_zc(rx_ring, size);
574                 xdp.data = bi->addr;
575                 xdp.data_meta = xdp.data;
576                 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
577                 xdp.data_end = xdp.data + size;
578                 xdp.handle = bi->handle;
579
580                 xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
581                 if (xdp_res) {
582                         if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
583                                 xdp_xmit |= xdp_res;
584                                 bi->addr = NULL;
585                         } else {
586                                 i40e_reuse_rx_buffer_zc(rx_ring, bi);
587                         }
588
589                         total_rx_bytes += size;
590                         total_rx_packets++;
591
592                         cleaned_count++;
593                         i40e_inc_ntc(rx_ring);
594                         continue;
595                 }
596
597                 /* XDP_PASS path */
598
599                 /* NB! We are not checking for errors using
600                  * i40e_test_staterr with
601                  * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
602                  * SBP is *not* set in PRT_SBPVSI (default not set).
603                  */
604                 skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
605                 if (!skb) {
606                         rx_ring->rx_stats.alloc_buff_failed++;
607                         break;
608                 }
609
610                 cleaned_count++;
611                 i40e_inc_ntc(rx_ring);
612
613                 if (eth_skb_pad(skb))
614                         continue;
615
616                 total_rx_bytes += skb->len;
617                 total_rx_packets++;
618
619                 i40e_process_skb_fields(rx_ring, rx_desc, skb);
620                 napi_gro_receive(&rx_ring->q_vector->napi, skb);
621         }
622
623         i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
624         i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
625         return failure ? budget : (int)total_rx_packets;
626 }
627
628 /**
629  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
630  * @xdp_ring: XDP Tx ring
631  * @budget: NAPI budget
632  *
633  * Returns true if the work is finished.
634  **/
635 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
636 {
637         struct i40e_tx_desc *tx_desc = NULL;
638         struct i40e_tx_buffer *tx_bi;
639         bool work_done = true;
640         dma_addr_t dma;
641         u32 len;
642
643         while (budget-- > 0) {
644                 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
645                         xdp_ring->tx_stats.tx_busy++;
646                         work_done = false;
647                         break;
648                 }
649
650                 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len))
651                         break;
652
653                 dma_sync_single_for_device(xdp_ring->dev, dma, len,
654                                            DMA_BIDIRECTIONAL);
655
656                 tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
657                 tx_bi->bytecount = len;
658
659                 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
660                 tx_desc->buffer_addr = cpu_to_le64(dma);
661                 tx_desc->cmd_type_offset_bsz =
662                         build_ctob(I40E_TX_DESC_CMD_ICRC
663                                    | I40E_TX_DESC_CMD_EOP,
664                                    0, len, 0);
665
666                 xdp_ring->next_to_use++;
667                 if (xdp_ring->next_to_use == xdp_ring->count)
668                         xdp_ring->next_to_use = 0;
669         }
670
671         if (tx_desc) {
672                 /* Request an interrupt for the last frame and bump tail ptr. */
673                 tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
674                                                  I40E_TXD_QW1_CMD_SHIFT);
675                 i40e_xdp_ring_update_tail(xdp_ring);
676
677                 xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
678         }
679
680         return !!budget && work_done;
681 }
682
683 /**
684  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
685  * @tx_ring: XDP Tx ring
686  * @tx_bi: Tx buffer info to clean
687  **/
688 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
689                                      struct i40e_tx_buffer *tx_bi)
690 {
691         xdp_return_frame(tx_bi->xdpf);
692         dma_unmap_single(tx_ring->dev,
693                          dma_unmap_addr(tx_bi, dma),
694                          dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
695         dma_unmap_len_set(tx_bi, len, 0);
696 }
697
698 /**
699  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
700  * @tx_ring: XDP Tx ring
701  * @tx_bi: Tx buffer info to clean
702  *
703  * Returns true if cleanup/tranmission is done.
704  **/
705 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
706                            struct i40e_ring *tx_ring, int napi_budget)
707 {
708         unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
709         u32 i, completed_frames, frames_ready, xsk_frames = 0;
710         struct xdp_umem *umem = tx_ring->xsk_umem;
711         u32 head_idx = i40e_get_head(tx_ring);
712         bool work_done = true, xmit_done;
713         struct i40e_tx_buffer *tx_bi;
714
715         if (head_idx < tx_ring->next_to_clean)
716                 head_idx += tx_ring->count;
717         frames_ready = head_idx - tx_ring->next_to_clean;
718
719         if (frames_ready == 0) {
720                 goto out_xmit;
721         } else if (frames_ready > budget) {
722                 completed_frames = budget;
723                 work_done = false;
724         } else {
725                 completed_frames = frames_ready;
726         }
727
728         ntc = tx_ring->next_to_clean;
729
730         for (i = 0; i < completed_frames; i++) {
731                 tx_bi = &tx_ring->tx_bi[ntc];
732
733                 if (tx_bi->xdpf)
734                         i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
735                 else
736                         xsk_frames++;
737
738                 tx_bi->xdpf = NULL;
739                 total_bytes += tx_bi->bytecount;
740
741                 if (++ntc >= tx_ring->count)
742                         ntc = 0;
743         }
744
745         tx_ring->next_to_clean += completed_frames;
746         if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
747                 tx_ring->next_to_clean -= tx_ring->count;
748
749         if (xsk_frames)
750                 xsk_umem_complete_tx(umem, xsk_frames);
751
752         i40e_arm_wb(tx_ring, vsi, budget);
753         i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
754
755 out_xmit:
756         xmit_done = i40e_xmit_zc(tx_ring, budget);
757
758         return work_done && xmit_done;
759 }
760
761 /**
762  * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit
763  * @dev: the netdevice
764  * @queue_id: queue id to wake up
765  *
766  * Returns <0 for errors, 0 otherwise.
767  **/
768 int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id)
769 {
770         struct i40e_netdev_priv *np = netdev_priv(dev);
771         struct i40e_vsi *vsi = np->vsi;
772         struct i40e_ring *ring;
773
774         if (test_bit(__I40E_VSI_DOWN, vsi->state))
775                 return -ENETDOWN;
776
777         if (!i40e_enabled_xdp_vsi(vsi))
778                 return -ENXIO;
779
780         if (queue_id >= vsi->num_queue_pairs)
781                 return -ENXIO;
782
783         if (!vsi->xdp_rings[queue_id]->xsk_umem)
784                 return -ENXIO;
785
786         ring = vsi->xdp_rings[queue_id];
787
788         /* The idea here is that if NAPI is running, mark a miss, so
789          * it will run again. If not, trigger an interrupt and
790          * schedule the NAPI from interrupt context. If NAPI would be
791          * scheduled here, the interrupt affinity would not be
792          * honored.
793          */
794         if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
795                 i40e_force_wb(vsi, ring->q_vector);
796
797         return 0;
798 }
799
800 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
801 {
802         u16 i;
803
804         for (i = 0; i < rx_ring->count; i++) {
805                 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
806
807                 if (!rx_bi->addr)
808                         continue;
809
810                 xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
811                 rx_bi->addr = NULL;
812         }
813 }
814
815 /**
816  * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
817  * @xdp_ring: XDP Tx ring
818  **/
819 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
820 {
821         u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
822         struct xdp_umem *umem = tx_ring->xsk_umem;
823         struct i40e_tx_buffer *tx_bi;
824         u32 xsk_frames = 0;
825
826         while (ntc != ntu) {
827                 tx_bi = &tx_ring->tx_bi[ntc];
828
829                 if (tx_bi->xdpf)
830                         i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
831                 else
832                         xsk_frames++;
833
834                 tx_bi->xdpf = NULL;
835
836                 ntc++;
837                 if (ntc >= tx_ring->count)
838                         ntc = 0;
839         }
840
841         if (xsk_frames)
842                 xsk_umem_complete_tx(umem, xsk_frames);
843 }
844
845 /**
846  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
847  * @vsi: vsi
848  *
849  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
850  **/
851 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
852 {
853         struct net_device *netdev = vsi->netdev;
854         int i;
855
856         for (i = 0; i < vsi->num_queue_pairs; i++) {
857                 if (xdp_get_umem_from_qid(netdev, i))
858                         return true;
859         }
860
861         return false;
862 }