Merge branches 'intel_pstate', 'pm-cpufreq' and 'pm-cpufreq-sched'
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2  * Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2006 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  *
22  ******************************************************************************/
23
24 /* ethtool support for e1000 */
25
26 #include "e1000.h"
27 #include <linux/jiffies.h>
28 #include <linux/uaccess.h>
29
30 enum {NETDEV_STATS, E1000_STATS};
31
32 struct e1000_stats {
33         char stat_string[ETH_GSTRING_LEN];
34         int type;
35         int sizeof_stat;
36         int stat_offset;
37 };
38
39 #define E1000_STAT(m)           E1000_STATS, \
40                                 sizeof(((struct e1000_adapter *)0)->m), \
41                                 offsetof(struct e1000_adapter, m)
42 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
43                                 sizeof(((struct net_device *)0)->m), \
44                                 offsetof(struct net_device, m)
45
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorcl) },
50         { "tx_bytes", E1000_STAT(stats.gotcl) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(stats.rxerrc) },
56         { "tx_errors", E1000_STAT(stats.txerrc) },
57         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
61         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
90         { "tx_smbus", E1000_STAT(stats.mgptc) },
91         { "rx_smbus", E1000_STAT(stats.mgprc) },
92         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
93 };
94
95 #define E1000_QUEUE_STATS_LEN 0
96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99         "Register test  (offline)", "Eeprom test    (offline)",
100         "Interrupt test (offline)", "Loopback test  (offline)",
101         "Link test   (on/offline)"
102 };
103
104 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
105
106 static int e1000_get_link_ksettings(struct net_device *netdev,
107                                     struct ethtool_link_ksettings *cmd)
108 {
109         struct e1000_adapter *adapter = netdev_priv(netdev);
110         struct e1000_hw *hw = &adapter->hw;
111         u32 supported, advertising;
112
113         if (hw->media_type == e1000_media_type_copper) {
114                 supported = (SUPPORTED_10baseT_Half |
115                              SUPPORTED_10baseT_Full |
116                              SUPPORTED_100baseT_Half |
117                              SUPPORTED_100baseT_Full |
118                              SUPPORTED_1000baseT_Full|
119                              SUPPORTED_Autoneg |
120                              SUPPORTED_TP);
121                 advertising = ADVERTISED_TP;
122
123                 if (hw->autoneg == 1) {
124                         advertising |= ADVERTISED_Autoneg;
125                         /* the e1000 autoneg seems to match ethtool nicely */
126                         advertising |= hw->autoneg_advertised;
127                 }
128
129                 cmd->base.port = PORT_TP;
130                 cmd->base.phy_address = hw->phy_addr;
131         } else {
132                 supported   = (SUPPORTED_1000baseT_Full |
133                                SUPPORTED_FIBRE |
134                                SUPPORTED_Autoneg);
135
136                 advertising = (ADVERTISED_1000baseT_Full |
137                                ADVERTISED_FIBRE |
138                                ADVERTISED_Autoneg);
139
140                 cmd->base.port = PORT_FIBRE;
141         }
142
143         if (er32(STATUS) & E1000_STATUS_LU) {
144                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
145                                            &adapter->link_duplex);
146                 cmd->base.speed = adapter->link_speed;
147
148                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
149                  * and HALF_DUPLEX != DUPLEX_HALF
150                  */
151                 if (adapter->link_duplex == FULL_DUPLEX)
152                         cmd->base.duplex = DUPLEX_FULL;
153                 else
154                         cmd->base.duplex = DUPLEX_HALF;
155         } else {
156                 cmd->base.speed = SPEED_UNKNOWN;
157                 cmd->base.duplex = DUPLEX_UNKNOWN;
158         }
159
160         cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
161                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
162
163         /* MDI-X => 1; MDI => 0 */
164         if ((hw->media_type == e1000_media_type_copper) &&
165             netif_carrier_ok(netdev))
166                 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
167                                      ETH_TP_MDI_X : ETH_TP_MDI);
168         else
169                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
170
171         if (hw->mdix == AUTO_ALL_MODES)
172                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
173         else
174                 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
175
176         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
177                                                 supported);
178         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
179                                                 advertising);
180
181         return 0;
182 }
183
184 static int e1000_set_link_ksettings(struct net_device *netdev,
185                                     const struct ethtool_link_ksettings *cmd)
186 {
187         struct e1000_adapter *adapter = netdev_priv(netdev);
188         struct e1000_hw *hw = &adapter->hw;
189         u32 advertising;
190
191         ethtool_convert_link_mode_to_legacy_u32(&advertising,
192                                                 cmd->link_modes.advertising);
193
194         /* MDI setting is only allowed when autoneg enabled because
195          * some hardware doesn't allow MDI setting when speed or
196          * duplex is forced.
197          */
198         if (cmd->base.eth_tp_mdix_ctrl) {
199                 if (hw->media_type != e1000_media_type_copper)
200                         return -EOPNOTSUPP;
201
202                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
203                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
204                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
205                         return -EINVAL;
206                 }
207         }
208
209         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
210                 msleep(1);
211
212         if (cmd->base.autoneg == AUTONEG_ENABLE) {
213                 hw->autoneg = 1;
214                 if (hw->media_type == e1000_media_type_fiber)
215                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
216                                                  ADVERTISED_FIBRE |
217                                                  ADVERTISED_Autoneg;
218                 else
219                         hw->autoneg_advertised = advertising |
220                                                  ADVERTISED_TP |
221                                                  ADVERTISED_Autoneg;
222         } else {
223                 u32 speed = cmd->base.speed;
224                 /* calling this overrides forced MDI setting */
225                 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
226                         clear_bit(__E1000_RESETTING, &adapter->flags);
227                         return -EINVAL;
228                 }
229         }
230
231         /* MDI-X => 2; MDI => 1; Auto => 3 */
232         if (cmd->base.eth_tp_mdix_ctrl) {
233                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
234                         hw->mdix = AUTO_ALL_MODES;
235                 else
236                         hw->mdix = cmd->base.eth_tp_mdix_ctrl;
237         }
238
239         /* reset the link */
240
241         if (netif_running(adapter->netdev)) {
242                 e1000_down(adapter);
243                 e1000_up(adapter);
244         } else {
245                 e1000_reset(adapter);
246         }
247         clear_bit(__E1000_RESETTING, &adapter->flags);
248         return 0;
249 }
250
251 static u32 e1000_get_link(struct net_device *netdev)
252 {
253         struct e1000_adapter *adapter = netdev_priv(netdev);
254
255         /* If the link is not reported up to netdev, interrupts are disabled,
256          * and so the physical link state may have changed since we last
257          * looked. Set get_link_status to make sure that the true link
258          * state is interrogated, rather than pulling a cached and possibly
259          * stale link state from the driver.
260          */
261         if (!netif_carrier_ok(netdev))
262                 adapter->hw.get_link_status = 1;
263
264         return e1000_has_link(adapter);
265 }
266
267 static void e1000_get_pauseparam(struct net_device *netdev,
268                                  struct ethtool_pauseparam *pause)
269 {
270         struct e1000_adapter *adapter = netdev_priv(netdev);
271         struct e1000_hw *hw = &adapter->hw;
272
273         pause->autoneg =
274                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
275
276         if (hw->fc == E1000_FC_RX_PAUSE) {
277                 pause->rx_pause = 1;
278         } else if (hw->fc == E1000_FC_TX_PAUSE) {
279                 pause->tx_pause = 1;
280         } else if (hw->fc == E1000_FC_FULL) {
281                 pause->rx_pause = 1;
282                 pause->tx_pause = 1;
283         }
284 }
285
286 static int e1000_set_pauseparam(struct net_device *netdev,
287                                 struct ethtool_pauseparam *pause)
288 {
289         struct e1000_adapter *adapter = netdev_priv(netdev);
290         struct e1000_hw *hw = &adapter->hw;
291         int retval = 0;
292
293         adapter->fc_autoneg = pause->autoneg;
294
295         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
296                 msleep(1);
297
298         if (pause->rx_pause && pause->tx_pause)
299                 hw->fc = E1000_FC_FULL;
300         else if (pause->rx_pause && !pause->tx_pause)
301                 hw->fc = E1000_FC_RX_PAUSE;
302         else if (!pause->rx_pause && pause->tx_pause)
303                 hw->fc = E1000_FC_TX_PAUSE;
304         else if (!pause->rx_pause && !pause->tx_pause)
305                 hw->fc = E1000_FC_NONE;
306
307         hw->original_fc = hw->fc;
308
309         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
310                 if (netif_running(adapter->netdev)) {
311                         e1000_down(adapter);
312                         e1000_up(adapter);
313                 } else {
314                         e1000_reset(adapter);
315                 }
316         } else
317                 retval = ((hw->media_type == e1000_media_type_fiber) ?
318                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
319
320         clear_bit(__E1000_RESETTING, &adapter->flags);
321         return retval;
322 }
323
324 static u32 e1000_get_msglevel(struct net_device *netdev)
325 {
326         struct e1000_adapter *adapter = netdev_priv(netdev);
327
328         return adapter->msg_enable;
329 }
330
331 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
332 {
333         struct e1000_adapter *adapter = netdev_priv(netdev);
334
335         adapter->msg_enable = data;
336 }
337
338 static int e1000_get_regs_len(struct net_device *netdev)
339 {
340 #define E1000_REGS_LEN 32
341         return E1000_REGS_LEN * sizeof(u32);
342 }
343
344 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
345                            void *p)
346 {
347         struct e1000_adapter *adapter = netdev_priv(netdev);
348         struct e1000_hw *hw = &adapter->hw;
349         u32 *regs_buff = p;
350         u16 phy_data;
351
352         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
353
354         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
355
356         regs_buff[0]  = er32(CTRL);
357         regs_buff[1]  = er32(STATUS);
358
359         regs_buff[2]  = er32(RCTL);
360         regs_buff[3]  = er32(RDLEN);
361         regs_buff[4]  = er32(RDH);
362         regs_buff[5]  = er32(RDT);
363         regs_buff[6]  = er32(RDTR);
364
365         regs_buff[7]  = er32(TCTL);
366         regs_buff[8]  = er32(TDLEN);
367         regs_buff[9]  = er32(TDH);
368         regs_buff[10] = er32(TDT);
369         regs_buff[11] = er32(TIDV);
370
371         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
372         if (hw->phy_type == e1000_phy_igp) {
373                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374                                     IGP01E1000_PHY_AGC_A);
375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377                 regs_buff[13] = (u32)phy_data; /* cable length */
378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379                                     IGP01E1000_PHY_AGC_B);
380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382                 regs_buff[14] = (u32)phy_data; /* cable length */
383                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384                                     IGP01E1000_PHY_AGC_C);
385                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
386                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387                 regs_buff[15] = (u32)phy_data; /* cable length */
388                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389                                     IGP01E1000_PHY_AGC_D);
390                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
391                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392                 regs_buff[16] = (u32)phy_data; /* cable length */
393                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
394                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
395                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
396                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397                 regs_buff[18] = (u32)phy_data; /* cable polarity */
398                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399                                     IGP01E1000_PHY_PCS_INIT_REG);
400                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
401                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402                 regs_buff[19] = (u32)phy_data; /* cable polarity */
403                 regs_buff[20] = 0; /* polarity correction enabled (always) */
404                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
405                 regs_buff[23] = regs_buff[18]; /* mdix mode */
406                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407         } else {
408                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
409                 regs_buff[13] = (u32)phy_data; /* cable length */
410                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
411                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
414                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
415                 regs_buff[18] = regs_buff[13]; /* cable polarity */
416                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
417                 regs_buff[20] = regs_buff[17]; /* polarity correction */
418                 /* phy receive errors */
419                 regs_buff[22] = adapter->phy_stats.receive_errors;
420                 regs_buff[23] = regs_buff[13]; /* mdix mode */
421         }
422         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
423         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
424         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
425         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
426         if (hw->mac_type >= e1000_82540 &&
427             hw->media_type == e1000_media_type_copper) {
428                 regs_buff[26] = er32(MANC);
429         }
430 }
431
432 static int e1000_get_eeprom_len(struct net_device *netdev)
433 {
434         struct e1000_adapter *adapter = netdev_priv(netdev);
435         struct e1000_hw *hw = &adapter->hw;
436
437         return hw->eeprom.word_size * 2;
438 }
439
440 static int e1000_get_eeprom(struct net_device *netdev,
441                             struct ethtool_eeprom *eeprom, u8 *bytes)
442 {
443         struct e1000_adapter *adapter = netdev_priv(netdev);
444         struct e1000_hw *hw = &adapter->hw;
445         u16 *eeprom_buff;
446         int first_word, last_word;
447         int ret_val = 0;
448         u16 i;
449
450         if (eeprom->len == 0)
451                 return -EINVAL;
452
453         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
454
455         first_word = eeprom->offset >> 1;
456         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
457
458         eeprom_buff = kmalloc(sizeof(u16) *
459                         (last_word - first_word + 1), GFP_KERNEL);
460         if (!eeprom_buff)
461                 return -ENOMEM;
462
463         if (hw->eeprom.type == e1000_eeprom_spi)
464                 ret_val = e1000_read_eeprom(hw, first_word,
465                                             last_word - first_word + 1,
466                                             eeprom_buff);
467         else {
468                 for (i = 0; i < last_word - first_word + 1; i++) {
469                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
470                                                     &eeprom_buff[i]);
471                         if (ret_val)
472                                 break;
473                 }
474         }
475
476         /* Device's eeprom is always little-endian, word addressable */
477         for (i = 0; i < last_word - first_word + 1; i++)
478                 le16_to_cpus(&eeprom_buff[i]);
479
480         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
481                eeprom->len);
482         kfree(eeprom_buff);
483
484         return ret_val;
485 }
486
487 static int e1000_set_eeprom(struct net_device *netdev,
488                             struct ethtool_eeprom *eeprom, u8 *bytes)
489 {
490         struct e1000_adapter *adapter = netdev_priv(netdev);
491         struct e1000_hw *hw = &adapter->hw;
492         u16 *eeprom_buff;
493         void *ptr;
494         int max_len, first_word, last_word, ret_val = 0;
495         u16 i;
496
497         if (eeprom->len == 0)
498                 return -EOPNOTSUPP;
499
500         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
501                 return -EFAULT;
502
503         max_len = hw->eeprom.word_size * 2;
504
505         first_word = eeprom->offset >> 1;
506         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
507         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
508         if (!eeprom_buff)
509                 return -ENOMEM;
510
511         ptr = (void *)eeprom_buff;
512
513         if (eeprom->offset & 1) {
514                 /* need read/modify/write of first changed EEPROM word
515                  * only the second byte of the word is being modified
516                  */
517                 ret_val = e1000_read_eeprom(hw, first_word, 1,
518                                             &eeprom_buff[0]);
519                 ptr++;
520         }
521         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
522                 /* need read/modify/write of last changed EEPROM word
523                  * only the first byte of the word is being modified
524                  */
525                 ret_val = e1000_read_eeprom(hw, last_word, 1,
526                                             &eeprom_buff[last_word - first_word]);
527         }
528
529         /* Device's eeprom is always little-endian, word addressable */
530         for (i = 0; i < last_word - first_word + 1; i++)
531                 le16_to_cpus(&eeprom_buff[i]);
532
533         memcpy(ptr, bytes, eeprom->len);
534
535         for (i = 0; i < last_word - first_word + 1; i++)
536                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
537
538         ret_val = e1000_write_eeprom(hw, first_word,
539                                      last_word - first_word + 1, eeprom_buff);
540
541         /* Update the checksum over the first part of the EEPROM if needed */
542         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
543                 e1000_update_eeprom_checksum(hw);
544
545         kfree(eeprom_buff);
546         return ret_val;
547 }
548
549 static void e1000_get_drvinfo(struct net_device *netdev,
550                               struct ethtool_drvinfo *drvinfo)
551 {
552         struct e1000_adapter *adapter = netdev_priv(netdev);
553
554         strlcpy(drvinfo->driver,  e1000_driver_name,
555                 sizeof(drvinfo->driver));
556         strlcpy(drvinfo->version, e1000_driver_version,
557                 sizeof(drvinfo->version));
558
559         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
560                 sizeof(drvinfo->bus_info));
561 }
562
563 static void e1000_get_ringparam(struct net_device *netdev,
564                                 struct ethtool_ringparam *ring)
565 {
566         struct e1000_adapter *adapter = netdev_priv(netdev);
567         struct e1000_hw *hw = &adapter->hw;
568         e1000_mac_type mac_type = hw->mac_type;
569         struct e1000_tx_ring *txdr = adapter->tx_ring;
570         struct e1000_rx_ring *rxdr = adapter->rx_ring;
571
572         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
573                 E1000_MAX_82544_RXD;
574         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
575                 E1000_MAX_82544_TXD;
576         ring->rx_pending = rxdr->count;
577         ring->tx_pending = txdr->count;
578 }
579
580 static int e1000_set_ringparam(struct net_device *netdev,
581                                struct ethtool_ringparam *ring)
582 {
583         struct e1000_adapter *adapter = netdev_priv(netdev);
584         struct e1000_hw *hw = &adapter->hw;
585         e1000_mac_type mac_type = hw->mac_type;
586         struct e1000_tx_ring *txdr, *tx_old;
587         struct e1000_rx_ring *rxdr, *rx_old;
588         int i, err;
589
590         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
591                 return -EINVAL;
592
593         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
594                 msleep(1);
595
596         if (netif_running(adapter->netdev))
597                 e1000_down(adapter);
598
599         tx_old = adapter->tx_ring;
600         rx_old = adapter->rx_ring;
601
602         err = -ENOMEM;
603         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
604                        GFP_KERNEL);
605         if (!txdr)
606                 goto err_alloc_tx;
607
608         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
609                        GFP_KERNEL);
610         if (!rxdr)
611                 goto err_alloc_rx;
612
613         adapter->tx_ring = txdr;
614         adapter->rx_ring = rxdr;
615
616         rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
617         rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
618                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
619         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
620         txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
621         txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
622                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
623         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
624
625         for (i = 0; i < adapter->num_tx_queues; i++)
626                 txdr[i].count = txdr->count;
627         for (i = 0; i < adapter->num_rx_queues; i++)
628                 rxdr[i].count = rxdr->count;
629
630         if (netif_running(adapter->netdev)) {
631                 /* Try to get new resources before deleting old */
632                 err = e1000_setup_all_rx_resources(adapter);
633                 if (err)
634                         goto err_setup_rx;
635                 err = e1000_setup_all_tx_resources(adapter);
636                 if (err)
637                         goto err_setup_tx;
638
639                 /* save the new, restore the old in order to free it,
640                  * then restore the new back again
641                  */
642
643                 adapter->rx_ring = rx_old;
644                 adapter->tx_ring = tx_old;
645                 e1000_free_all_rx_resources(adapter);
646                 e1000_free_all_tx_resources(adapter);
647                 kfree(tx_old);
648                 kfree(rx_old);
649                 adapter->rx_ring = rxdr;
650                 adapter->tx_ring = txdr;
651                 err = e1000_up(adapter);
652                 if (err)
653                         goto err_setup;
654         }
655
656         clear_bit(__E1000_RESETTING, &adapter->flags);
657         return 0;
658 err_setup_tx:
659         e1000_free_all_rx_resources(adapter);
660 err_setup_rx:
661         adapter->rx_ring = rx_old;
662         adapter->tx_ring = tx_old;
663         kfree(rxdr);
664 err_alloc_rx:
665         kfree(txdr);
666 err_alloc_tx:
667         e1000_up(adapter);
668 err_setup:
669         clear_bit(__E1000_RESETTING, &adapter->flags);
670         return err;
671 }
672
673 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
674                              u32 mask, u32 write)
675 {
676         struct e1000_hw *hw = &adapter->hw;
677         static const u32 test[] = {
678                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
679         };
680         u8 __iomem *address = hw->hw_addr + reg;
681         u32 read;
682         int i;
683
684         for (i = 0; i < ARRAY_SIZE(test); i++) {
685                 writel(write & test[i], address);
686                 read = readl(address);
687                 if (read != (write & test[i] & mask)) {
688                         e_err(drv, "pattern test reg %04X failed: "
689                               "got 0x%08X expected 0x%08X\n",
690                               reg, read, (write & test[i] & mask));
691                         *data = reg;
692                         return true;
693                 }
694         }
695         return false;
696 }
697
698 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
699                               u32 mask, u32 write)
700 {
701         struct e1000_hw *hw = &adapter->hw;
702         u8 __iomem *address = hw->hw_addr + reg;
703         u32 read;
704
705         writel(write & mask, address);
706         read = readl(address);
707         if ((read & mask) != (write & mask)) {
708                 e_err(drv, "set/check reg %04X test failed: "
709                       "got 0x%08X expected 0x%08X\n",
710                       reg, (read & mask), (write & mask));
711                 *data = reg;
712                 return true;
713         }
714         return false;
715 }
716
717 #define REG_PATTERN_TEST(reg, mask, write)                           \
718         do {                                                         \
719                 if (reg_pattern_test(adapter, data,                  \
720                              (hw->mac_type >= e1000_82543)   \
721                              ? E1000_##reg : E1000_82542_##reg,      \
722                              mask, write))                           \
723                         return 1;                                    \
724         } while (0)
725
726 #define REG_SET_AND_CHECK(reg, mask, write)                          \
727         do {                                                         \
728                 if (reg_set_and_check(adapter, data,                 \
729                               (hw->mac_type >= e1000_82543)  \
730                               ? E1000_##reg : E1000_82542_##reg,     \
731                               mask, write))                          \
732                         return 1;                                    \
733         } while (0)
734
735 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
736 {
737         u32 value, before, after;
738         u32 i, toggle;
739         struct e1000_hw *hw = &adapter->hw;
740
741         /* The status register is Read Only, so a write should fail.
742          * Some bits that get toggled are ignored.
743          */
744
745         /* there are several bits on newer hardware that are r/w */
746         toggle = 0xFFFFF833;
747
748         before = er32(STATUS);
749         value = (er32(STATUS) & toggle);
750         ew32(STATUS, toggle);
751         after = er32(STATUS) & toggle;
752         if (value != after) {
753                 e_err(drv, "failed STATUS register test got: "
754                       "0x%08X expected: 0x%08X\n", after, value);
755                 *data = 1;
756                 return 1;
757         }
758         /* restore previous status */
759         ew32(STATUS, before);
760
761         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
762         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
763         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
764         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
765
766         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
767         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
768         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
769         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
770         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
771         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
772         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
773         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
774         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
775         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
776
777         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
778
779         before = 0x06DFB3FE;
780         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
781         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
782
783         if (hw->mac_type >= e1000_82543) {
784                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
785                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
786                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
787                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
788                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
789                 value = E1000_RAR_ENTRIES;
790                 for (i = 0; i < value; i++) {
791                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
792                                          0x8003FFFF, 0xFFFFFFFF);
793                 }
794         } else {
795                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
796                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
797                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
798                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
799         }
800
801         value = E1000_MC_TBL_SIZE;
802         for (i = 0; i < value; i++)
803                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
804
805         *data = 0;
806         return 0;
807 }
808
809 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
810 {
811         struct e1000_hw *hw = &adapter->hw;
812         u16 temp;
813         u16 checksum = 0;
814         u16 i;
815
816         *data = 0;
817         /* Read and add up the contents of the EEPROM */
818         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
819                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
820                         *data = 1;
821                         break;
822                 }
823                 checksum += temp;
824         }
825
826         /* If Checksum is not Correct return error else test passed */
827         if ((checksum != (u16)EEPROM_SUM) && !(*data))
828                 *data = 2;
829
830         return *data;
831 }
832
833 static irqreturn_t e1000_test_intr(int irq, void *data)
834 {
835         struct net_device *netdev = (struct net_device *)data;
836         struct e1000_adapter *adapter = netdev_priv(netdev);
837         struct e1000_hw *hw = &adapter->hw;
838
839         adapter->test_icr |= er32(ICR);
840
841         return IRQ_HANDLED;
842 }
843
844 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
845 {
846         struct net_device *netdev = adapter->netdev;
847         u32 mask, i = 0;
848         bool shared_int = true;
849         u32 irq = adapter->pdev->irq;
850         struct e1000_hw *hw = &adapter->hw;
851
852         *data = 0;
853
854         /* NOTE: we don't test MSI interrupts here, yet
855          * Hook up test interrupt handler just for this test
856          */
857         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
858                          netdev))
859                 shared_int = false;
860         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
861                              netdev->name, netdev)) {
862                 *data = 1;
863                 return -1;
864         }
865         e_info(hw, "testing %s interrupt\n", (shared_int ?
866                "shared" : "unshared"));
867
868         /* Disable all the interrupts */
869         ew32(IMC, 0xFFFFFFFF);
870         E1000_WRITE_FLUSH();
871         msleep(10);
872
873         /* Test each interrupt */
874         for (; i < 10; i++) {
875                 /* Interrupt to test */
876                 mask = 1 << i;
877
878                 if (!shared_int) {
879                         /* Disable the interrupt to be reported in
880                          * the cause register and then force the same
881                          * interrupt and see if one gets posted.  If
882                          * an interrupt was posted to the bus, the
883                          * test failed.
884                          */
885                         adapter->test_icr = 0;
886                         ew32(IMC, mask);
887                         ew32(ICS, mask);
888                         E1000_WRITE_FLUSH();
889                         msleep(10);
890
891                         if (adapter->test_icr & mask) {
892                                 *data = 3;
893                                 break;
894                         }
895                 }
896
897                 /* Enable the interrupt to be reported in
898                  * the cause register and then force the same
899                  * interrupt and see if one gets posted.  If
900                  * an interrupt was not posted to the bus, the
901                  * test failed.
902                  */
903                 adapter->test_icr = 0;
904                 ew32(IMS, mask);
905                 ew32(ICS, mask);
906                 E1000_WRITE_FLUSH();
907                 msleep(10);
908
909                 if (!(adapter->test_icr & mask)) {
910                         *data = 4;
911                         break;
912                 }
913
914                 if (!shared_int) {
915                         /* Disable the other interrupts to be reported in
916                          * the cause register and then force the other
917                          * interrupts and see if any get posted.  If
918                          * an interrupt was posted to the bus, the
919                          * test failed.
920                          */
921                         adapter->test_icr = 0;
922                         ew32(IMC, ~mask & 0x00007FFF);
923                         ew32(ICS, ~mask & 0x00007FFF);
924                         E1000_WRITE_FLUSH();
925                         msleep(10);
926
927                         if (adapter->test_icr) {
928                                 *data = 5;
929                                 break;
930                         }
931                 }
932         }
933
934         /* Disable all the interrupts */
935         ew32(IMC, 0xFFFFFFFF);
936         E1000_WRITE_FLUSH();
937         msleep(10);
938
939         /* Unhook test interrupt handler */
940         free_irq(irq, netdev);
941
942         return *data;
943 }
944
945 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
946 {
947         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
948         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
949         struct pci_dev *pdev = adapter->pdev;
950         int i;
951
952         if (txdr->desc && txdr->buffer_info) {
953                 for (i = 0; i < txdr->count; i++) {
954                         if (txdr->buffer_info[i].dma)
955                                 dma_unmap_single(&pdev->dev,
956                                                  txdr->buffer_info[i].dma,
957                                                  txdr->buffer_info[i].length,
958                                                  DMA_TO_DEVICE);
959                         if (txdr->buffer_info[i].skb)
960                                 dev_kfree_skb(txdr->buffer_info[i].skb);
961                 }
962         }
963
964         if (rxdr->desc && rxdr->buffer_info) {
965                 for (i = 0; i < rxdr->count; i++) {
966                         if (rxdr->buffer_info[i].dma)
967                                 dma_unmap_single(&pdev->dev,
968                                                  rxdr->buffer_info[i].dma,
969                                                  E1000_RXBUFFER_2048,
970                                                  DMA_FROM_DEVICE);
971                         kfree(rxdr->buffer_info[i].rxbuf.data);
972                 }
973         }
974
975         if (txdr->desc) {
976                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
977                                   txdr->dma);
978                 txdr->desc = NULL;
979         }
980         if (rxdr->desc) {
981                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
982                                   rxdr->dma);
983                 rxdr->desc = NULL;
984         }
985
986         kfree(txdr->buffer_info);
987         txdr->buffer_info = NULL;
988         kfree(rxdr->buffer_info);
989         rxdr->buffer_info = NULL;
990 }
991
992 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
993 {
994         struct e1000_hw *hw = &adapter->hw;
995         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
996         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
997         struct pci_dev *pdev = adapter->pdev;
998         u32 rctl;
999         int i, ret_val;
1000
1001         /* Setup Tx descriptor ring and Tx buffers */
1002
1003         if (!txdr->count)
1004                 txdr->count = E1000_DEFAULT_TXD;
1005
1006         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1007                                     GFP_KERNEL);
1008         if (!txdr->buffer_info) {
1009                 ret_val = 1;
1010                 goto err_nomem;
1011         }
1012
1013         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1014         txdr->size = ALIGN(txdr->size, 4096);
1015         txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1016                                          GFP_KERNEL);
1017         if (!txdr->desc) {
1018                 ret_val = 2;
1019                 goto err_nomem;
1020         }
1021         txdr->next_to_use = txdr->next_to_clean = 0;
1022
1023         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1024         ew32(TDBAH, ((u64)txdr->dma >> 32));
1025         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1026         ew32(TDH, 0);
1027         ew32(TDT, 0);
1028         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1029              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1030              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1031
1032         for (i = 0; i < txdr->count; i++) {
1033                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1034                 struct sk_buff *skb;
1035                 unsigned int size = 1024;
1036
1037                 skb = alloc_skb(size, GFP_KERNEL);
1038                 if (!skb) {
1039                         ret_val = 3;
1040                         goto err_nomem;
1041                 }
1042                 skb_put(skb, size);
1043                 txdr->buffer_info[i].skb = skb;
1044                 txdr->buffer_info[i].length = skb->len;
1045                 txdr->buffer_info[i].dma =
1046                         dma_map_single(&pdev->dev, skb->data, skb->len,
1047                                        DMA_TO_DEVICE);
1048                 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1049                         ret_val = 4;
1050                         goto err_nomem;
1051                 }
1052                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1053                 tx_desc->lower.data = cpu_to_le32(skb->len);
1054                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1055                                                    E1000_TXD_CMD_IFCS |
1056                                                    E1000_TXD_CMD_RPS);
1057                 tx_desc->upper.data = 0;
1058         }
1059
1060         /* Setup Rx descriptor ring and Rx buffers */
1061
1062         if (!rxdr->count)
1063                 rxdr->count = E1000_DEFAULT_RXD;
1064
1065         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1066                                     GFP_KERNEL);
1067         if (!rxdr->buffer_info) {
1068                 ret_val = 5;
1069                 goto err_nomem;
1070         }
1071
1072         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1073         rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1074                                          GFP_KERNEL);
1075         if (!rxdr->desc) {
1076                 ret_val = 6;
1077                 goto err_nomem;
1078         }
1079         rxdr->next_to_use = rxdr->next_to_clean = 0;
1080
1081         rctl = er32(RCTL);
1082         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1083         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1084         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1085         ew32(RDLEN, rxdr->size);
1086         ew32(RDH, 0);
1087         ew32(RDT, 0);
1088         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1089                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1090                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1091         ew32(RCTL, rctl);
1092
1093         for (i = 0; i < rxdr->count; i++) {
1094                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1095                 u8 *buf;
1096
1097                 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1098                               GFP_KERNEL);
1099                 if (!buf) {
1100                         ret_val = 7;
1101                         goto err_nomem;
1102                 }
1103                 rxdr->buffer_info[i].rxbuf.data = buf;
1104
1105                 rxdr->buffer_info[i].dma =
1106                         dma_map_single(&pdev->dev,
1107                                        buf + NET_SKB_PAD + NET_IP_ALIGN,
1108                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1109                 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1110                         ret_val = 8;
1111                         goto err_nomem;
1112                 }
1113                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1114         }
1115
1116         return 0;
1117
1118 err_nomem:
1119         e1000_free_desc_rings(adapter);
1120         return ret_val;
1121 }
1122
1123 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1124 {
1125         struct e1000_hw *hw = &adapter->hw;
1126
1127         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1128         e1000_write_phy_reg(hw, 29, 0x001F);
1129         e1000_write_phy_reg(hw, 30, 0x8FFC);
1130         e1000_write_phy_reg(hw, 29, 0x001A);
1131         e1000_write_phy_reg(hw, 30, 0x8FF0);
1132 }
1133
1134 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1135 {
1136         struct e1000_hw *hw = &adapter->hw;
1137         u16 phy_reg;
1138
1139         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1140          * Extended PHY Specific Control Register to 25MHz clock.  This
1141          * value defaults back to a 2.5MHz clock when the PHY is reset.
1142          */
1143         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1144         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1145         e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1146
1147         /* In addition, because of the s/w reset above, we need to enable
1148          * CRS on TX.  This must be set for both full and half duplex
1149          * operation.
1150          */
1151         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1152         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1153         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1154 }
1155
1156 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1157 {
1158         struct e1000_hw *hw = &adapter->hw;
1159         u32 ctrl_reg;
1160         u16 phy_reg;
1161
1162         /* Setup the Device Control Register for PHY loopback test. */
1163
1164         ctrl_reg = er32(CTRL);
1165         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1166                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1167                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1168                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1169                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1170
1171         ew32(CTRL, ctrl_reg);
1172
1173         /* Read the PHY Specific Control Register (0x10) */
1174         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1175
1176         /* Clear Auto-Crossover bits in PHY Specific Control Register
1177          * (bits 6:5).
1178          */
1179         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1180         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1181
1182         /* Perform software reset on the PHY */
1183         e1000_phy_reset(hw);
1184
1185         /* Have to setup TX_CLK and TX_CRS after software reset */
1186         e1000_phy_reset_clk_and_crs(adapter);
1187
1188         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1189
1190         /* Wait for reset to complete. */
1191         udelay(500);
1192
1193         /* Have to setup TX_CLK and TX_CRS after software reset */
1194         e1000_phy_reset_clk_and_crs(adapter);
1195
1196         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1197         e1000_phy_disable_receiver(adapter);
1198
1199         /* Set the loopback bit in the PHY control register. */
1200         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1201         phy_reg |= MII_CR_LOOPBACK;
1202         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1203
1204         /* Setup TX_CLK and TX_CRS one more time. */
1205         e1000_phy_reset_clk_and_crs(adapter);
1206
1207         /* Check Phy Configuration */
1208         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1209         if (phy_reg != 0x4100)
1210                 return 9;
1211
1212         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1213         if (phy_reg != 0x0070)
1214                 return 10;
1215
1216         e1000_read_phy_reg(hw, 29, &phy_reg);
1217         if (phy_reg != 0x001A)
1218                 return 11;
1219
1220         return 0;
1221 }
1222
1223 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1224 {
1225         struct e1000_hw *hw = &adapter->hw;
1226         u32 ctrl_reg = 0;
1227         u32 stat_reg = 0;
1228
1229         hw->autoneg = false;
1230
1231         if (hw->phy_type == e1000_phy_m88) {
1232                 /* Auto-MDI/MDIX Off */
1233                 e1000_write_phy_reg(hw,
1234                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1235                 /* reset to update Auto-MDI/MDIX */
1236                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1237                 /* autoneg off */
1238                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1239         }
1240
1241         ctrl_reg = er32(CTRL);
1242
1243         /* force 1000, set loopback */
1244         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1245
1246         /* Now set up the MAC to the same speed/duplex as the PHY. */
1247         ctrl_reg = er32(CTRL);
1248         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1249         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1250                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1251                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1252                         E1000_CTRL_FD); /* Force Duplex to FULL */
1253
1254         if (hw->media_type == e1000_media_type_copper &&
1255             hw->phy_type == e1000_phy_m88)
1256                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1257         else {
1258                 /* Set the ILOS bit on the fiber Nic is half
1259                  * duplex link is detected.
1260                  */
1261                 stat_reg = er32(STATUS);
1262                 if ((stat_reg & E1000_STATUS_FD) == 0)
1263                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1264         }
1265
1266         ew32(CTRL, ctrl_reg);
1267
1268         /* Disable the receiver on the PHY so when a cable is plugged in, the
1269          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1270          */
1271         if (hw->phy_type == e1000_phy_m88)
1272                 e1000_phy_disable_receiver(adapter);
1273
1274         udelay(500);
1275
1276         return 0;
1277 }
1278
1279 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1280 {
1281         struct e1000_hw *hw = &adapter->hw;
1282         u16 phy_reg = 0;
1283         u16 count = 0;
1284
1285         switch (hw->mac_type) {
1286         case e1000_82543:
1287                 if (hw->media_type == e1000_media_type_copper) {
1288                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1289                          * Some PHY registers get corrupted at random, so
1290                          * attempt this 10 times.
1291                          */
1292                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1293                                count++ < 10);
1294                         if (count < 11)
1295                                 return 0;
1296                 }
1297                 break;
1298
1299         case e1000_82544:
1300         case e1000_82540:
1301         case e1000_82545:
1302         case e1000_82545_rev_3:
1303         case e1000_82546:
1304         case e1000_82546_rev_3:
1305         case e1000_82541:
1306         case e1000_82541_rev_2:
1307         case e1000_82547:
1308         case e1000_82547_rev_2:
1309                 return e1000_integrated_phy_loopback(adapter);
1310         default:
1311                 /* Default PHY loopback work is to read the MII
1312                  * control register and assert bit 14 (loopback mode).
1313                  */
1314                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1315                 phy_reg |= MII_CR_LOOPBACK;
1316                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1317                 return 0;
1318         }
1319
1320         return 8;
1321 }
1322
1323 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1324 {
1325         struct e1000_hw *hw = &adapter->hw;
1326         u32 rctl;
1327
1328         if (hw->media_type == e1000_media_type_fiber ||
1329             hw->media_type == e1000_media_type_internal_serdes) {
1330                 switch (hw->mac_type) {
1331                 case e1000_82545:
1332                 case e1000_82546:
1333                 case e1000_82545_rev_3:
1334                 case e1000_82546_rev_3:
1335                         return e1000_set_phy_loopback(adapter);
1336                 default:
1337                         rctl = er32(RCTL);
1338                         rctl |= E1000_RCTL_LBM_TCVR;
1339                         ew32(RCTL, rctl);
1340                         return 0;
1341                 }
1342         } else if (hw->media_type == e1000_media_type_copper) {
1343                 return e1000_set_phy_loopback(adapter);
1344         }
1345
1346         return 7;
1347 }
1348
1349 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1350 {
1351         struct e1000_hw *hw = &adapter->hw;
1352         u32 rctl;
1353         u16 phy_reg;
1354
1355         rctl = er32(RCTL);
1356         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1357         ew32(RCTL, rctl);
1358
1359         switch (hw->mac_type) {
1360         case e1000_82545:
1361         case e1000_82546:
1362         case e1000_82545_rev_3:
1363         case e1000_82546_rev_3:
1364         default:
1365                 hw->autoneg = true;
1366                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1367                 if (phy_reg & MII_CR_LOOPBACK) {
1368                         phy_reg &= ~MII_CR_LOOPBACK;
1369                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1370                         e1000_phy_reset(hw);
1371                 }
1372                 break;
1373         }
1374 }
1375
1376 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1377                                       unsigned int frame_size)
1378 {
1379         memset(skb->data, 0xFF, frame_size);
1380         frame_size &= ~1;
1381         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1382         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1383         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1384 }
1385
1386 static int e1000_check_lbtest_frame(const unsigned char *data,
1387                                     unsigned int frame_size)
1388 {
1389         frame_size &= ~1;
1390         if (*(data + 3) == 0xFF) {
1391                 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1392                     (*(data + frame_size / 2 + 12) == 0xAF)) {
1393                         return 0;
1394                 }
1395         }
1396         return 13;
1397 }
1398
1399 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1400 {
1401         struct e1000_hw *hw = &adapter->hw;
1402         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1403         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1404         struct pci_dev *pdev = adapter->pdev;
1405         int i, j, k, l, lc, good_cnt, ret_val = 0;
1406         unsigned long time;
1407
1408         ew32(RDT, rxdr->count - 1);
1409
1410         /* Calculate the loop count based on the largest descriptor ring
1411          * The idea is to wrap the largest ring a number of times using 64
1412          * send/receive pairs during each loop
1413          */
1414
1415         if (rxdr->count <= txdr->count)
1416                 lc = ((txdr->count / 64) * 2) + 1;
1417         else
1418                 lc = ((rxdr->count / 64) * 2) + 1;
1419
1420         k = l = 0;
1421         for (j = 0; j <= lc; j++) { /* loop count loop */
1422                 for (i = 0; i < 64; i++) { /* send the packets */
1423                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1424                                                   1024);
1425                         dma_sync_single_for_device(&pdev->dev,
1426                                                    txdr->buffer_info[k].dma,
1427                                                    txdr->buffer_info[k].length,
1428                                                    DMA_TO_DEVICE);
1429                         if (unlikely(++k == txdr->count))
1430                                 k = 0;
1431                 }
1432                 ew32(TDT, k);
1433                 E1000_WRITE_FLUSH();
1434                 msleep(200);
1435                 time = jiffies; /* set the start time for the receive */
1436                 good_cnt = 0;
1437                 do { /* receive the sent packets */
1438                         dma_sync_single_for_cpu(&pdev->dev,
1439                                                 rxdr->buffer_info[l].dma,
1440                                                 E1000_RXBUFFER_2048,
1441                                                 DMA_FROM_DEVICE);
1442
1443                         ret_val = e1000_check_lbtest_frame(
1444                                         rxdr->buffer_info[l].rxbuf.data +
1445                                         NET_SKB_PAD + NET_IP_ALIGN,
1446                                         1024);
1447                         if (!ret_val)
1448                                 good_cnt++;
1449                         if (unlikely(++l == rxdr->count))
1450                                 l = 0;
1451                         /* time + 20 msecs (200 msecs on 2.4) is more than
1452                          * enough time to complete the receives, if it's
1453                          * exceeded, break and error off
1454                          */
1455                 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1456
1457                 if (good_cnt != 64) {
1458                         ret_val = 13; /* ret_val is the same as mis-compare */
1459                         break;
1460                 }
1461                 if (time_after_eq(jiffies, time + 2)) {
1462                         ret_val = 14; /* error code for time out error */
1463                         break;
1464                 }
1465         } /* end loop count loop */
1466         return ret_val;
1467 }
1468
1469 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1470 {
1471         *data = e1000_setup_desc_rings(adapter);
1472         if (*data)
1473                 goto out;
1474         *data = e1000_setup_loopback_test(adapter);
1475         if (*data)
1476                 goto err_loopback;
1477         *data = e1000_run_loopback_test(adapter);
1478         e1000_loopback_cleanup(adapter);
1479
1480 err_loopback:
1481         e1000_free_desc_rings(adapter);
1482 out:
1483         return *data;
1484 }
1485
1486 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1487 {
1488         struct e1000_hw *hw = &adapter->hw;
1489         *data = 0;
1490         if (hw->media_type == e1000_media_type_internal_serdes) {
1491                 int i = 0;
1492
1493                 hw->serdes_has_link = false;
1494
1495                 /* On some blade server designs, link establishment
1496                  * could take as long as 2-3 minutes
1497                  */
1498                 do {
1499                         e1000_check_for_link(hw);
1500                         if (hw->serdes_has_link)
1501                                 return *data;
1502                         msleep(20);
1503                 } while (i++ < 3750);
1504
1505                 *data = 1;
1506         } else {
1507                 e1000_check_for_link(hw);
1508                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1509                         msleep(4000);
1510
1511                 if (!(er32(STATUS) & E1000_STATUS_LU))
1512                         *data = 1;
1513         }
1514         return *data;
1515 }
1516
1517 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1518 {
1519         switch (sset) {
1520         case ETH_SS_TEST:
1521                 return E1000_TEST_LEN;
1522         case ETH_SS_STATS:
1523                 return E1000_STATS_LEN;
1524         default:
1525                 return -EOPNOTSUPP;
1526         }
1527 }
1528
1529 static void e1000_diag_test(struct net_device *netdev,
1530                             struct ethtool_test *eth_test, u64 *data)
1531 {
1532         struct e1000_adapter *adapter = netdev_priv(netdev);
1533         struct e1000_hw *hw = &adapter->hw;
1534         bool if_running = netif_running(netdev);
1535
1536         set_bit(__E1000_TESTING, &adapter->flags);
1537         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1538                 /* Offline tests */
1539
1540                 /* save speed, duplex, autoneg settings */
1541                 u16 autoneg_advertised = hw->autoneg_advertised;
1542                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1543                 u8 autoneg = hw->autoneg;
1544
1545                 e_info(hw, "offline testing starting\n");
1546
1547                 /* Link test performed before hardware reset so autoneg doesn't
1548                  * interfere with test result
1549                  */
1550                 if (e1000_link_test(adapter, &data[4]))
1551                         eth_test->flags |= ETH_TEST_FL_FAILED;
1552
1553                 if (if_running)
1554                         /* indicate we're in test mode */
1555                         e1000_close(netdev);
1556                 else
1557                         e1000_reset(adapter);
1558
1559                 if (e1000_reg_test(adapter, &data[0]))
1560                         eth_test->flags |= ETH_TEST_FL_FAILED;
1561
1562                 e1000_reset(adapter);
1563                 if (e1000_eeprom_test(adapter, &data[1]))
1564                         eth_test->flags |= ETH_TEST_FL_FAILED;
1565
1566                 e1000_reset(adapter);
1567                 if (e1000_intr_test(adapter, &data[2]))
1568                         eth_test->flags |= ETH_TEST_FL_FAILED;
1569
1570                 e1000_reset(adapter);
1571                 /* make sure the phy is powered up */
1572                 e1000_power_up_phy(adapter);
1573                 if (e1000_loopback_test(adapter, &data[3]))
1574                         eth_test->flags |= ETH_TEST_FL_FAILED;
1575
1576                 /* restore speed, duplex, autoneg settings */
1577                 hw->autoneg_advertised = autoneg_advertised;
1578                 hw->forced_speed_duplex = forced_speed_duplex;
1579                 hw->autoneg = autoneg;
1580
1581                 e1000_reset(adapter);
1582                 clear_bit(__E1000_TESTING, &adapter->flags);
1583                 if (if_running)
1584                         e1000_open(netdev);
1585         } else {
1586                 e_info(hw, "online testing starting\n");
1587                 /* Online tests */
1588                 if (e1000_link_test(adapter, &data[4]))
1589                         eth_test->flags |= ETH_TEST_FL_FAILED;
1590
1591                 /* Online tests aren't run; pass by default */
1592                 data[0] = 0;
1593                 data[1] = 0;
1594                 data[2] = 0;
1595                 data[3] = 0;
1596
1597                 clear_bit(__E1000_TESTING, &adapter->flags);
1598         }
1599         msleep_interruptible(4 * 1000);
1600 }
1601
1602 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1603                                struct ethtool_wolinfo *wol)
1604 {
1605         struct e1000_hw *hw = &adapter->hw;
1606         int retval = 1; /* fail by default */
1607
1608         switch (hw->device_id) {
1609         case E1000_DEV_ID_82542:
1610         case E1000_DEV_ID_82543GC_FIBER:
1611         case E1000_DEV_ID_82543GC_COPPER:
1612         case E1000_DEV_ID_82544EI_FIBER:
1613         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1614         case E1000_DEV_ID_82545EM_FIBER:
1615         case E1000_DEV_ID_82545EM_COPPER:
1616         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1617         case E1000_DEV_ID_82546GB_PCIE:
1618                 /* these don't support WoL at all */
1619                 wol->supported = 0;
1620                 break;
1621         case E1000_DEV_ID_82546EB_FIBER:
1622         case E1000_DEV_ID_82546GB_FIBER:
1623                 /* Wake events not supported on port B */
1624                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1625                         wol->supported = 0;
1626                         break;
1627                 }
1628                 /* return success for non excluded adapter ports */
1629                 retval = 0;
1630                 break;
1631         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1632                 /* quad port adapters only support WoL on port A */
1633                 if (!adapter->quad_port_a) {
1634                         wol->supported = 0;
1635                         break;
1636                 }
1637                 /* return success for non excluded adapter ports */
1638                 retval = 0;
1639                 break;
1640         default:
1641                 /* dual port cards only support WoL on port A from now on
1642                  * unless it was enabled in the eeprom for port B
1643                  * so exclude FUNC_1 ports from having WoL enabled
1644                  */
1645                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1646                     !adapter->eeprom_wol) {
1647                         wol->supported = 0;
1648                         break;
1649                 }
1650
1651                 retval = 0;
1652         }
1653
1654         return retval;
1655 }
1656
1657 static void e1000_get_wol(struct net_device *netdev,
1658                           struct ethtool_wolinfo *wol)
1659 {
1660         struct e1000_adapter *adapter = netdev_priv(netdev);
1661         struct e1000_hw *hw = &adapter->hw;
1662
1663         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1664         wol->wolopts = 0;
1665
1666         /* this function will set ->supported = 0 and return 1 if wol is not
1667          * supported by this hardware
1668          */
1669         if (e1000_wol_exclusion(adapter, wol) ||
1670             !device_can_wakeup(&adapter->pdev->dev))
1671                 return;
1672
1673         /* apply any specific unsupported masks here */
1674         switch (hw->device_id) {
1675         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1676                 /* KSP3 does not support UCAST wake-ups */
1677                 wol->supported &= ~WAKE_UCAST;
1678
1679                 if (adapter->wol & E1000_WUFC_EX)
1680                         e_err(drv, "Interface does not support directed "
1681                               "(unicast) frame wake-up packets\n");
1682                 break;
1683         default:
1684                 break;
1685         }
1686
1687         if (adapter->wol & E1000_WUFC_EX)
1688                 wol->wolopts |= WAKE_UCAST;
1689         if (adapter->wol & E1000_WUFC_MC)
1690                 wol->wolopts |= WAKE_MCAST;
1691         if (adapter->wol & E1000_WUFC_BC)
1692                 wol->wolopts |= WAKE_BCAST;
1693         if (adapter->wol & E1000_WUFC_MAG)
1694                 wol->wolopts |= WAKE_MAGIC;
1695 }
1696
1697 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1698 {
1699         struct e1000_adapter *adapter = netdev_priv(netdev);
1700         struct e1000_hw *hw = &adapter->hw;
1701
1702         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1703                 return -EOPNOTSUPP;
1704
1705         if (e1000_wol_exclusion(adapter, wol) ||
1706             !device_can_wakeup(&adapter->pdev->dev))
1707                 return wol->wolopts ? -EOPNOTSUPP : 0;
1708
1709         switch (hw->device_id) {
1710         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1711                 if (wol->wolopts & WAKE_UCAST) {
1712                         e_err(drv, "Interface does not support directed "
1713                               "(unicast) frame wake-up packets\n");
1714                         return -EOPNOTSUPP;
1715                 }
1716                 break;
1717         default:
1718                 break;
1719         }
1720
1721         /* these settings will always override what we currently have */
1722         adapter->wol = 0;
1723
1724         if (wol->wolopts & WAKE_UCAST)
1725                 adapter->wol |= E1000_WUFC_EX;
1726         if (wol->wolopts & WAKE_MCAST)
1727                 adapter->wol |= E1000_WUFC_MC;
1728         if (wol->wolopts & WAKE_BCAST)
1729                 adapter->wol |= E1000_WUFC_BC;
1730         if (wol->wolopts & WAKE_MAGIC)
1731                 adapter->wol |= E1000_WUFC_MAG;
1732
1733         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1734
1735         return 0;
1736 }
1737
1738 static int e1000_set_phys_id(struct net_device *netdev,
1739                              enum ethtool_phys_id_state state)
1740 {
1741         struct e1000_adapter *adapter = netdev_priv(netdev);
1742         struct e1000_hw *hw = &adapter->hw;
1743
1744         switch (state) {
1745         case ETHTOOL_ID_ACTIVE:
1746                 e1000_setup_led(hw);
1747                 return 2;
1748
1749         case ETHTOOL_ID_ON:
1750                 e1000_led_on(hw);
1751                 break;
1752
1753         case ETHTOOL_ID_OFF:
1754                 e1000_led_off(hw);
1755                 break;
1756
1757         case ETHTOOL_ID_INACTIVE:
1758                 e1000_cleanup_led(hw);
1759         }
1760
1761         return 0;
1762 }
1763
1764 static int e1000_get_coalesce(struct net_device *netdev,
1765                               struct ethtool_coalesce *ec)
1766 {
1767         struct e1000_adapter *adapter = netdev_priv(netdev);
1768
1769         if (adapter->hw.mac_type < e1000_82545)
1770                 return -EOPNOTSUPP;
1771
1772         if (adapter->itr_setting <= 4)
1773                 ec->rx_coalesce_usecs = adapter->itr_setting;
1774         else
1775                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1776
1777         return 0;
1778 }
1779
1780 static int e1000_set_coalesce(struct net_device *netdev,
1781                               struct ethtool_coalesce *ec)
1782 {
1783         struct e1000_adapter *adapter = netdev_priv(netdev);
1784         struct e1000_hw *hw = &adapter->hw;
1785
1786         if (hw->mac_type < e1000_82545)
1787                 return -EOPNOTSUPP;
1788
1789         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1790             ((ec->rx_coalesce_usecs > 4) &&
1791              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1792             (ec->rx_coalesce_usecs == 2))
1793                 return -EINVAL;
1794
1795         if (ec->rx_coalesce_usecs == 4) {
1796                 adapter->itr = adapter->itr_setting = 4;
1797         } else if (ec->rx_coalesce_usecs <= 3) {
1798                 adapter->itr = 20000;
1799                 adapter->itr_setting = ec->rx_coalesce_usecs;
1800         } else {
1801                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1802                 adapter->itr_setting = adapter->itr & ~3;
1803         }
1804
1805         if (adapter->itr_setting != 0)
1806                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1807         else
1808                 ew32(ITR, 0);
1809
1810         return 0;
1811 }
1812
1813 static int e1000_nway_reset(struct net_device *netdev)
1814 {
1815         struct e1000_adapter *adapter = netdev_priv(netdev);
1816
1817         if (netif_running(netdev))
1818                 e1000_reinit_locked(adapter);
1819         return 0;
1820 }
1821
1822 static void e1000_get_ethtool_stats(struct net_device *netdev,
1823                                     struct ethtool_stats *stats, u64 *data)
1824 {
1825         struct e1000_adapter *adapter = netdev_priv(netdev);
1826         int i;
1827         char *p = NULL;
1828         const struct e1000_stats *stat = e1000_gstrings_stats;
1829
1830         e1000_update_stats(adapter);
1831         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1832                 switch (stat->type) {
1833                 case NETDEV_STATS:
1834                         p = (char *)netdev + stat->stat_offset;
1835                         break;
1836                 case E1000_STATS:
1837                         p = (char *)adapter + stat->stat_offset;
1838                         break;
1839                 default:
1840                         WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1841                                   stat->type, i);
1842                         break;
1843                 }
1844
1845                 if (stat->sizeof_stat == sizeof(u64))
1846                         data[i] = *(u64 *)p;
1847                 else
1848                         data[i] = *(u32 *)p;
1849
1850                 stat++;
1851         }
1852 /* BUG_ON(i != E1000_STATS_LEN); */
1853 }
1854
1855 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856                               u8 *data)
1857 {
1858         u8 *p = data;
1859         int i;
1860
1861         switch (stringset) {
1862         case ETH_SS_TEST:
1863                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1864                 break;
1865         case ETH_SS_STATS:
1866                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1867                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1868                                ETH_GSTRING_LEN);
1869                         p += ETH_GSTRING_LEN;
1870                 }
1871                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1872                 break;
1873         }
1874 }
1875
1876 static const struct ethtool_ops e1000_ethtool_ops = {
1877         .get_drvinfo            = e1000_get_drvinfo,
1878         .get_regs_len           = e1000_get_regs_len,
1879         .get_regs               = e1000_get_regs,
1880         .get_wol                = e1000_get_wol,
1881         .set_wol                = e1000_set_wol,
1882         .get_msglevel           = e1000_get_msglevel,
1883         .set_msglevel           = e1000_set_msglevel,
1884         .nway_reset             = e1000_nway_reset,
1885         .get_link               = e1000_get_link,
1886         .get_eeprom_len         = e1000_get_eeprom_len,
1887         .get_eeprom             = e1000_get_eeprom,
1888         .set_eeprom             = e1000_set_eeprom,
1889         .get_ringparam          = e1000_get_ringparam,
1890         .set_ringparam          = e1000_set_ringparam,
1891         .get_pauseparam         = e1000_get_pauseparam,
1892         .set_pauseparam         = e1000_set_pauseparam,
1893         .self_test              = e1000_diag_test,
1894         .get_strings            = e1000_get_strings,
1895         .set_phys_id            = e1000_set_phys_id,
1896         .get_ethtool_stats      = e1000_get_ethtool_stats,
1897         .get_sset_count         = e1000_get_sset_count,
1898         .get_coalesce           = e1000_get_coalesce,
1899         .set_coalesce           = e1000_set_coalesce,
1900         .get_ts_info            = ethtool_op_get_ts_info,
1901         .get_link_ksettings     = e1000_get_link_ksettings,
1902         .set_link_ksettings     = e1000_set_link_ksettings,
1903 };
1904
1905 void e1000_set_ethtool_ops(struct net_device *netdev)
1906 {
1907         netdev->ethtool_ops = &e1000_ethtool_ops;
1908 }