Merge branches 'acpi-scan', 'acpi-tables', 'acpi-misc' and 'acpi-pm'
[sfrench/cifs-2.6.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define RCB_IRQ_NOT_INITED 0
33 #define RCB_IRQ_INITED 1
34 #define HNS_BUFFER_SIZE_2048 2048
35
36 #define BD_MAX_SEND_SIZE 8191
37 #define SKB_TMP_LEN(SKB) \
38         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
39
40 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
41                             int send_sz, dma_addr_t dma, int frag_end,
42                             int buf_num, enum hns_desc_type type, int mtu)
43 {
44         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
45         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
46         struct iphdr *iphdr;
47         struct ipv6hdr *ipv6hdr;
48         struct sk_buff *skb;
49         __be16 protocol;
50         u8 bn_pid = 0;
51         u8 rrcfv = 0;
52         u8 ip_offset = 0;
53         u8 tvsvsn = 0;
54         u16 mss = 0;
55         u8 l4_len = 0;
56         u16 paylen = 0;
57
58         desc_cb->priv = priv;
59         desc_cb->length = size;
60         desc_cb->dma = dma;
61         desc_cb->type = type;
62
63         desc->addr = cpu_to_le64(dma);
64         desc->tx.send_size = cpu_to_le16((u16)send_sz);
65
66         /* config bd buffer end */
67         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
68         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
69
70         /* fill port_id in the tx bd for sending management pkts */
71         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
72                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
73
74         if (type == DESC_TYPE_SKB) {
75                 skb = (struct sk_buff *)priv;
76
77                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
78                         skb_reset_mac_len(skb);
79                         protocol = skb->protocol;
80                         ip_offset = ETH_HLEN;
81
82                         if (protocol == htons(ETH_P_8021Q)) {
83                                 ip_offset += VLAN_HLEN;
84                                 protocol = vlan_get_protocol(skb);
85                                 skb->protocol = protocol;
86                         }
87
88                         if (skb->protocol == htons(ETH_P_IP)) {
89                                 iphdr = ip_hdr(skb);
90                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
91                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
92
93                                 /* check for tcp/udp header */
94                                 if (iphdr->protocol == IPPROTO_TCP &&
95                                     skb_is_gso(skb)) {
96                                         hnae_set_bit(tvsvsn,
97                                                      HNSV2_TXD_TSE_B, 1);
98                                         l4_len = tcp_hdrlen(skb);
99                                         mss = skb_shinfo(skb)->gso_size;
100                                         paylen = skb->len - SKB_TMP_LEN(skb);
101                                 }
102                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
103                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
104                                 ipv6hdr = ipv6_hdr(skb);
105                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
106
107                                 /* check for tcp/udp header */
108                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
109                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
110                                         hnae_set_bit(tvsvsn,
111                                                      HNSV2_TXD_TSE_B, 1);
112                                         l4_len = tcp_hdrlen(skb);
113                                         mss = skb_shinfo(skb)->gso_size;
114                                         paylen = skb->len - SKB_TMP_LEN(skb);
115                                 }
116                         }
117                         desc->tx.ip_offset = ip_offset;
118                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
119                         desc->tx.mss = cpu_to_le16(mss);
120                         desc->tx.l4_len = l4_len;
121                         desc->tx.paylen = cpu_to_le16(paylen);
122                 }
123         }
124
125         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
126
127         desc->tx.bn_pid = bn_pid;
128         desc->tx.ra_ri_cs_fe_vld = rrcfv;
129
130         ring_ptr_move_fw(ring, next_to_use);
131 }
132
133 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
134                          int size, dma_addr_t dma, int frag_end,
135                          int buf_num, enum hns_desc_type type, int mtu)
136 {
137         fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
138                         buf_num, type, mtu);
139 }
140
141 static const struct acpi_device_id hns_enet_acpi_match[] = {
142         { "HISI00C1", 0 },
143         { "HISI00C2", 0 },
144         { },
145 };
146 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
147
148 static void fill_desc(struct hnae_ring *ring, void *priv,
149                       int size, dma_addr_t dma, int frag_end,
150                       int buf_num, enum hns_desc_type type, int mtu)
151 {
152         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
153         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
154         struct sk_buff *skb;
155         __be16 protocol;
156         u32 ip_offset;
157         u32 asid_bufnum_pid = 0;
158         u32 flag_ipoffset = 0;
159
160         desc_cb->priv = priv;
161         desc_cb->length = size;
162         desc_cb->dma = dma;
163         desc_cb->type = type;
164
165         desc->addr = cpu_to_le64(dma);
166         desc->tx.send_size = cpu_to_le16((u16)size);
167
168         /*config bd buffer end */
169         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
170
171         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
172
173         if (type == DESC_TYPE_SKB) {
174                 skb = (struct sk_buff *)priv;
175
176                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
177                         protocol = skb->protocol;
178                         ip_offset = ETH_HLEN;
179
180                         /*if it is a SW VLAN check the next protocol*/
181                         if (protocol == htons(ETH_P_8021Q)) {
182                                 ip_offset += VLAN_HLEN;
183                                 protocol = vlan_get_protocol(skb);
184                                 skb->protocol = protocol;
185                         }
186
187                         if (skb->protocol == htons(ETH_P_IP)) {
188                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
189                                 /* check for tcp/udp header */
190                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191
192                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
193                                 /* ipv6 has not l3 cs, check for L4 header */
194                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
195                         }
196
197                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
198                 }
199         }
200
201         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
202
203         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
204         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
205
206         ring_ptr_move_fw(ring, next_to_use);
207 }
208
209 static void unfill_desc(struct hnae_ring *ring)
210 {
211         ring_ptr_move_bw(ring, next_to_use);
212 }
213
214 static int hns_nic_maybe_stop_tx(
215         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
216 {
217         struct sk_buff *skb = *out_skb;
218         struct sk_buff *new_skb = NULL;
219         int buf_num;
220
221         /* no. of segments (plus a header) */
222         buf_num = skb_shinfo(skb)->nr_frags + 1;
223
224         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
225                 if (ring_space(ring) < 1)
226                         return -EBUSY;
227
228                 new_skb = skb_copy(skb, GFP_ATOMIC);
229                 if (!new_skb)
230                         return -ENOMEM;
231
232                 dev_kfree_skb_any(skb);
233                 *out_skb = new_skb;
234                 buf_num = 1;
235         } else if (buf_num > ring_space(ring)) {
236                 return -EBUSY;
237         }
238
239         *bnum = buf_num;
240         return 0;
241 }
242
243 static int hns_nic_maybe_stop_tso(
244         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
245 {
246         int i;
247         int size;
248         int buf_num;
249         int frag_num;
250         struct sk_buff *skb = *out_skb;
251         struct sk_buff *new_skb = NULL;
252         struct skb_frag_struct *frag;
253
254         size = skb_headlen(skb);
255         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256
257         frag_num = skb_shinfo(skb)->nr_frags;
258         for (i = 0; i < frag_num; i++) {
259                 frag = &skb_shinfo(skb)->frags[i];
260                 size = skb_frag_size(frag);
261                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262         }
263
264         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
265                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
266                 if (ring_space(ring) < buf_num)
267                         return -EBUSY;
268                 /* manual split the send packet */
269                 new_skb = skb_copy(skb, GFP_ATOMIC);
270                 if (!new_skb)
271                         return -ENOMEM;
272                 dev_kfree_skb_any(skb);
273                 *out_skb = new_skb;
274
275         } else if (ring_space(ring) < buf_num) {
276                 return -EBUSY;
277         }
278
279         *bnum = buf_num;
280         return 0;
281 }
282
283 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
284                           int size, dma_addr_t dma, int frag_end,
285                           int buf_num, enum hns_desc_type type, int mtu)
286 {
287         int frag_buf_num;
288         int sizeoflast;
289         int k;
290
291         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
292         sizeoflast = size % BD_MAX_SEND_SIZE;
293         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
294
295         /* when the frag size is bigger than hardware, split this frag */
296         for (k = 0; k < frag_buf_num; k++)
297                 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
298                                 (k == frag_buf_num - 1) ?
299                                         sizeoflast : BD_MAX_SEND_SIZE,
300                                 dma + BD_MAX_SEND_SIZE * k,
301                                 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
302                                 buf_num,
303                                 (type == DESC_TYPE_SKB && !k) ?
304                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
305                                 mtu);
306 }
307
308 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
309                                 struct sk_buff *skb,
310                                 struct hns_nic_ring_data *ring_data)
311 {
312         struct hns_nic_priv *priv = netdev_priv(ndev);
313         struct hnae_ring *ring = ring_data->ring;
314         struct device *dev = ring_to_dev(ring);
315         struct netdev_queue *dev_queue;
316         struct skb_frag_struct *frag;
317         int buf_num;
318         int seg_num;
319         dma_addr_t dma;
320         int size, next_to_use;
321         int i;
322
323         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
324         case -EBUSY:
325                 ring->stats.tx_busy++;
326                 goto out_net_tx_busy;
327         case -ENOMEM:
328                 ring->stats.sw_err_cnt++;
329                 netdev_err(ndev, "no memory to xmit!\n");
330                 goto out_err_tx_ok;
331         default:
332                 break;
333         }
334
335         /* no. of segments (plus a header) */
336         seg_num = skb_shinfo(skb)->nr_frags + 1;
337         next_to_use = ring->next_to_use;
338
339         /* fill the first part */
340         size = skb_headlen(skb);
341         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
342         if (dma_mapping_error(dev, dma)) {
343                 netdev_err(ndev, "TX head DMA map failed\n");
344                 ring->stats.sw_err_cnt++;
345                 goto out_err_tx_ok;
346         }
347         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
348                             buf_num, DESC_TYPE_SKB, ndev->mtu);
349
350         /* fill the fragments */
351         for (i = 1; i < seg_num; i++) {
352                 frag = &skb_shinfo(skb)->frags[i - 1];
353                 size = skb_frag_size(frag);
354                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
355                 if (dma_mapping_error(dev, dma)) {
356                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
357                         ring->stats.sw_err_cnt++;
358                         goto out_map_frag_fail;
359                 }
360                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
361                                     seg_num - 1 == i ? 1 : 0, buf_num,
362                                     DESC_TYPE_PAGE, ndev->mtu);
363         }
364
365         /*complete translate all packets*/
366         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
367         netdev_tx_sent_queue(dev_queue, skb->len);
368
369         netif_trans_update(ndev);
370         ndev->stats.tx_bytes += skb->len;
371         ndev->stats.tx_packets++;
372
373         wmb(); /* commit all data before submit */
374         assert(skb->queue_mapping < priv->ae_handle->q_num);
375         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
376
377         return NETDEV_TX_OK;
378
379 out_map_frag_fail:
380
381         while (ring->next_to_use != next_to_use) {
382                 unfill_desc(ring);
383                 if (ring->next_to_use != next_to_use)
384                         dma_unmap_page(dev,
385                                        ring->desc_cb[ring->next_to_use].dma,
386                                        ring->desc_cb[ring->next_to_use].length,
387                                        DMA_TO_DEVICE);
388                 else
389                         dma_unmap_single(dev,
390                                          ring->desc_cb[next_to_use].dma,
391                                          ring->desc_cb[next_to_use].length,
392                                          DMA_TO_DEVICE);
393         }
394
395 out_err_tx_ok:
396
397         dev_kfree_skb_any(skb);
398         return NETDEV_TX_OK;
399
400 out_net_tx_busy:
401
402         netif_stop_subqueue(ndev, skb->queue_mapping);
403
404         /* Herbert's original patch had:
405          *  smp_mb__after_netif_stop_queue();
406          * but since that doesn't exist yet, just open code it.
407          */
408         smp_mb();
409         return NETDEV_TX_BUSY;
410 }
411
412 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
413                                struct hnae_ring *ring, int pull_len,
414                                struct hnae_desc_cb *desc_cb)
415 {
416         struct hnae_desc *desc;
417         u32 truesize;
418         int size;
419         int last_offset;
420         bool twobufs;
421
422         twobufs = ((PAGE_SIZE < 8192) &&
423                 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
424
425         desc = &ring->desc[ring->next_to_clean];
426         size = le16_to_cpu(desc->rx.size);
427
428         if (twobufs) {
429                 truesize = hnae_buf_size(ring);
430         } else {
431                 truesize = ALIGN(size, L1_CACHE_BYTES);
432                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
433         }
434
435         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
436                         size - pull_len, truesize);
437
438          /* avoid re-using remote pages,flag default unreuse */
439         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
440                 return;
441
442         if (twobufs) {
443                 /* if we are only owner of page we can reuse it */
444                 if (likely(page_count(desc_cb->priv) == 1)) {
445                         /* flip page offset to other buffer */
446                         desc_cb->page_offset ^= truesize;
447
448                         desc_cb->reuse_flag = 1;
449                         /* bump ref count on page before it is given*/
450                         get_page(desc_cb->priv);
451                 }
452                 return;
453         }
454
455         /* move offset up to the next cache line */
456         desc_cb->page_offset += truesize;
457
458         if (desc_cb->page_offset <= last_offset) {
459                 desc_cb->reuse_flag = 1;
460                 /* bump ref count on page before it is given*/
461                 get_page(desc_cb->priv);
462         }
463 }
464
465 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
466 {
467         *out_bnum = hnae_get_field(bnum_flag,
468                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
469 }
470
471 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
472 {
473         *out_bnum = hnae_get_field(bnum_flag,
474                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
475 }
476
477 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
478                                 struct sk_buff *skb, u32 flag)
479 {
480         struct net_device *netdev = ring_data->napi.dev;
481         u32 l3id;
482         u32 l4id;
483
484         /* check if RX checksum offload is enabled */
485         if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
486                 return;
487
488         /* In hardware, we only support checksum for the following protocols:
489          * 1) IPv4,
490          * 2) TCP(over IPv4 or IPv6),
491          * 3) UDP(over IPv4 or IPv6),
492          * 4) SCTP(over IPv4 or IPv6)
493          * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
494          * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
495          *
496          * Hardware limitation:
497          * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
498          * Error" bit (which usually can be used to indicate whether checksum
499          * was calculated by the hardware and if there was any error encountered
500          * during checksum calculation).
501          *
502          * Software workaround:
503          * We do get info within the RX descriptor about the kind of L3/L4
504          * protocol coming in the packet and the error status. These errors
505          * might not just be checksum errors but could be related to version,
506          * length of IPv4, UDP, TCP etc.
507          * Because there is no-way of knowing if it is a L3/L4 error due to bad
508          * checksum or any other L3/L4 error, we will not (cannot) convey
509          * checksum status for such cases to upper stack and will not maintain
510          * the RX L3/L4 checksum counters as well.
511          */
512
513         l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
514         l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
515
516         /*  check L3 protocol for which checksum is supported */
517         if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
518                 return;
519
520         /* check for any(not just checksum)flagged L3 protocol errors */
521         if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
522                 return;
523
524         /* we do not support checksum of fragmented packets */
525         if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
526                 return;
527
528         /*  check L4 protocol for which checksum is supported */
529         if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
530             (l4id != HNS_RX_FLAG_L4ID_UDP) &&
531             (l4id != HNS_RX_FLAG_L4ID_SCTP))
532                 return;
533
534         /* check for any(not just checksum)flagged L4 protocol errors */
535         if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
536                 return;
537
538         /* now, this has to be a packet with valid RX checksum */
539         skb->ip_summed = CHECKSUM_UNNECESSARY;
540 }
541
542 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
543                                struct sk_buff **out_skb, int *out_bnum)
544 {
545         struct hnae_ring *ring = ring_data->ring;
546         struct net_device *ndev = ring_data->napi.dev;
547         struct hns_nic_priv *priv = netdev_priv(ndev);
548         struct sk_buff *skb;
549         struct hnae_desc *desc;
550         struct hnae_desc_cb *desc_cb;
551         unsigned char *va;
552         int bnum, length, i;
553         int pull_len;
554         u32 bnum_flag;
555
556         desc = &ring->desc[ring->next_to_clean];
557         desc_cb = &ring->desc_cb[ring->next_to_clean];
558
559         prefetch(desc);
560
561         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
562
563         /* prefetch first cache line of first page */
564         prefetch(va);
565 #if L1_CACHE_BYTES < 128
566         prefetch(va + L1_CACHE_BYTES);
567 #endif
568
569         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
570                                         HNS_RX_HEAD_SIZE);
571         if (unlikely(!skb)) {
572                 netdev_err(ndev, "alloc rx skb fail\n");
573                 ring->stats.sw_err_cnt++;
574                 return -ENOMEM;
575         }
576
577         prefetchw(skb->data);
578         length = le16_to_cpu(desc->rx.pkt_len);
579         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
580         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
581         *out_bnum = bnum;
582
583         if (length <= HNS_RX_HEAD_SIZE) {
584                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
585
586                 /* we can reuse buffer as-is, just make sure it is local */
587                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
588                         desc_cb->reuse_flag = 1;
589                 else /* this page cannot be reused so discard it */
590                         put_page(desc_cb->priv);
591
592                 ring_ptr_move_fw(ring, next_to_clean);
593
594                 if (unlikely(bnum != 1)) { /* check err*/
595                         *out_bnum = 1;
596                         goto out_bnum_err;
597                 }
598         } else {
599                 ring->stats.seg_pkt_cnt++;
600
601                 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE);
602                 memcpy(__skb_put(skb, pull_len), va,
603                        ALIGN(pull_len, sizeof(long)));
604
605                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
606                 ring_ptr_move_fw(ring, next_to_clean);
607
608                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
609                         *out_bnum = 1;
610                         goto out_bnum_err;
611                 }
612                 for (i = 1; i < bnum; i++) {
613                         desc = &ring->desc[ring->next_to_clean];
614                         desc_cb = &ring->desc_cb[ring->next_to_clean];
615
616                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
617                         ring_ptr_move_fw(ring, next_to_clean);
618                 }
619         }
620
621         /* check except process, free skb and jump the desc */
622         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
623 out_bnum_err:
624                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
625                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
626                            bnum, ring->max_desc_num_per_pkt,
627                            length, (int)MAX_SKB_FRAGS,
628                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
629                 ring->stats.err_bd_num++;
630                 dev_kfree_skb_any(skb);
631                 return -EDOM;
632         }
633
634         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
635
636         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
637                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
638                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
639                 ring->stats.non_vld_descs++;
640                 dev_kfree_skb_any(skb);
641                 return -EINVAL;
642         }
643
644         if (unlikely((!desc->rx.pkt_len) ||
645                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
646                 ring->stats.err_pkt_len++;
647                 dev_kfree_skb_any(skb);
648                 return -EFAULT;
649         }
650
651         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
652                 ring->stats.l2_err++;
653                 dev_kfree_skb_any(skb);
654                 return -EFAULT;
655         }
656
657         ring->stats.rx_pkts++;
658         ring->stats.rx_bytes += skb->len;
659
660         /* indicate to upper stack if our hardware has already calculated
661          * the RX checksum
662          */
663         hns_nic_rx_checksum(ring_data, skb, bnum_flag);
664
665         return 0;
666 }
667
668 static void
669 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
670 {
671         int i, ret;
672         struct hnae_desc_cb res_cbs;
673         struct hnae_desc_cb *desc_cb;
674         struct hnae_ring *ring = ring_data->ring;
675         struct net_device *ndev = ring_data->napi.dev;
676
677         for (i = 0; i < cleand_count; i++) {
678                 desc_cb = &ring->desc_cb[ring->next_to_use];
679                 if (desc_cb->reuse_flag) {
680                         ring->stats.reuse_pg_cnt++;
681                         hnae_reuse_buffer(ring, ring->next_to_use);
682                 } else {
683                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
684                         if (ret) {
685                                 ring->stats.sw_err_cnt++;
686                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
687                                 break;
688                         }
689                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
690                 }
691
692                 ring_ptr_move_fw(ring, next_to_use);
693         }
694
695         wmb(); /* make all data has been write before submit */
696         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
697 }
698
699 /* return error number for error or number of desc left to take
700  */
701 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
702                               struct sk_buff *skb)
703 {
704         struct net_device *ndev = ring_data->napi.dev;
705
706         skb->protocol = eth_type_trans(skb, ndev);
707         (void)napi_gro_receive(&ring_data->napi, skb);
708 }
709
710 static int hns_desc_unused(struct hnae_ring *ring)
711 {
712         int ntc = ring->next_to_clean;
713         int ntu = ring->next_to_use;
714
715         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
716 }
717
718 #define HNS_LOWEST_LATENCY_RATE         27      /* 27 MB/s */
719 #define HNS_LOW_LATENCY_RATE                    80      /* 80 MB/s */
720
721 #define HNS_COAL_BDNUM                  3
722
723 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
724 {
725         bool coal_enable = ring->q->handle->coal_adapt_en;
726
727         if (coal_enable &&
728             ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
729                 return HNS_COAL_BDNUM;
730         else
731                 return 0;
732 }
733
734 static void hns_update_rx_rate(struct hnae_ring *ring)
735 {
736         bool coal_enable = ring->q->handle->coal_adapt_en;
737         u32 time_passed_ms;
738         u64 total_bytes;
739
740         if (!coal_enable ||
741             time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
742                 return;
743
744         /* ring->stats.rx_bytes overflowed */
745         if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
746                 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
747                 ring->coal_last_jiffies = jiffies;
748                 return;
749         }
750
751         total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
752         time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
753         do_div(total_bytes, time_passed_ms);
754         ring->coal_rx_rate = total_bytes >> 10;
755
756         ring->coal_last_rx_bytes = ring->stats.rx_bytes;
757         ring->coal_last_jiffies = jiffies;
758 }
759
760 /**
761  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
762  **/
763 static u32 smooth_alg(u32 new_param, u32 old_param)
764 {
765         u32 gap = (new_param > old_param) ? new_param - old_param
766                                           : old_param - new_param;
767
768         if (gap > 8)
769                 gap >>= 3;
770
771         if (new_param > old_param)
772                 return old_param + gap;
773         else
774                 return old_param - gap;
775 }
776
777 /**
778  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
779  * @ring_data: pointer to hns_nic_ring_data
780  **/
781 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
782 {
783         struct hnae_ring *ring = ring_data->ring;
784         struct hnae_handle *handle = ring->q->handle;
785         u32 new_coal_param, old_coal_param = ring->coal_param;
786
787         if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
788                 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
789         else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
790                 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
791         else
792                 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
793
794         if (new_coal_param == old_coal_param &&
795             new_coal_param == handle->coal_param)
796                 return;
797
798         new_coal_param = smooth_alg(new_coal_param, old_coal_param);
799         ring->coal_param = new_coal_param;
800
801         /**
802          * Because all ring in one port has one coalesce param, when one ring
803          * calculate its own coalesce param, it cannot write to hardware at
804          * once. There are three conditions as follows:
805          *       1. current ring's coalesce param is larger than the hardware.
806          *       2. or ring which adapt last time can change again.
807          *       3. timeout.
808          */
809         if (new_coal_param == handle->coal_param) {
810                 handle->coal_last_jiffies = jiffies;
811                 handle->coal_ring_idx = ring_data->queue_index;
812         } else if (new_coal_param > handle->coal_param ||
813                    handle->coal_ring_idx == ring_data->queue_index ||
814                    time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
815                 handle->dev->ops->set_coalesce_usecs(handle,
816                                         new_coal_param);
817                 handle->dev->ops->set_coalesce_frames(handle,
818                                         1, new_coal_param);
819                 handle->coal_param = new_coal_param;
820                 handle->coal_ring_idx = ring_data->queue_index;
821                 handle->coal_last_jiffies = jiffies;
822         }
823 }
824
825 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
826                                int budget, void *v)
827 {
828         struct hnae_ring *ring = ring_data->ring;
829         struct sk_buff *skb;
830         int num, bnum;
831 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
832         int recv_pkts, recv_bds, clean_count, err;
833         int unused_count = hns_desc_unused(ring);
834
835         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
836         rmb(); /* make sure num taken effect before the other data is touched */
837
838         recv_pkts = 0, recv_bds = 0, clean_count = 0;
839         num -= unused_count;
840
841         while (recv_pkts < budget && recv_bds < num) {
842                 /* reuse or realloc buffers */
843                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
844                         hns_nic_alloc_rx_buffers(ring_data,
845                                                  clean_count + unused_count);
846                         clean_count = 0;
847                         unused_count = hns_desc_unused(ring);
848                 }
849
850                 /* poll one pkt */
851                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
852                 if (unlikely(!skb)) /* this fault cannot be repaired */
853                         goto out;
854
855                 recv_bds += bnum;
856                 clean_count += bnum;
857                 if (unlikely(err)) {  /* do jump the err */
858                         recv_pkts++;
859                         continue;
860                 }
861
862                 /* do update ip stack process*/
863                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
864                                                         ring_data, skb);
865                 recv_pkts++;
866         }
867
868 out:
869         /* make all data has been write before submit */
870         if (clean_count + unused_count > 0)
871                 hns_nic_alloc_rx_buffers(ring_data,
872                                          clean_count + unused_count);
873
874         return recv_pkts;
875 }
876
877 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
878 {
879         struct hnae_ring *ring = ring_data->ring;
880         int num = 0;
881         bool rx_stopped;
882
883         hns_update_rx_rate(ring);
884
885         /* for hardware bug fixed */
886         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
887         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
888
889         if (num <= hns_coal_rx_bdnum(ring)) {
890                 if (ring->q->handle->coal_adapt_en)
891                         hns_nic_adpt_coalesce(ring_data);
892
893                 rx_stopped = true;
894         } else {
895                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
896                         ring_data->ring, 1);
897
898                 rx_stopped = false;
899         }
900
901         return rx_stopped;
902 }
903
904 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
905 {
906         struct hnae_ring *ring = ring_data->ring;
907         int num;
908
909         hns_update_rx_rate(ring);
910         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
911
912         if (num <= hns_coal_rx_bdnum(ring)) {
913                 if (ring->q->handle->coal_adapt_en)
914                         hns_nic_adpt_coalesce(ring_data);
915
916                 return true;
917         }
918
919         return false;
920 }
921
922 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
923                                             int *bytes, int *pkts)
924 {
925         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
926
927         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
928         (*bytes) += desc_cb->length;
929         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
930         hnae_free_buffer_detach(ring, ring->next_to_clean);
931
932         ring_ptr_move_fw(ring, next_to_clean);
933 }
934
935 static int is_valid_clean_head(struct hnae_ring *ring, int h)
936 {
937         int u = ring->next_to_use;
938         int c = ring->next_to_clean;
939
940         if (unlikely(h > ring->desc_num))
941                 return 0;
942
943         assert(u > 0 && u < ring->desc_num);
944         assert(c > 0 && c < ring->desc_num);
945         assert(u != c && h != c); /* must be checked before call this func */
946
947         return u > c ? (h > c && h <= u) : (h > c || h <= u);
948 }
949
950 /* netif_tx_lock will turn down the performance, set only when necessary */
951 #ifdef CONFIG_NET_POLL_CONTROLLER
952 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
953 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
954 #else
955 #define NETIF_TX_LOCK(ring)
956 #define NETIF_TX_UNLOCK(ring)
957 #endif
958
959 /* reclaim all desc in one budget
960  * return error or number of desc left
961  */
962 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
963                                int budget, void *v)
964 {
965         struct hnae_ring *ring = ring_data->ring;
966         struct net_device *ndev = ring_data->napi.dev;
967         struct netdev_queue *dev_queue;
968         struct hns_nic_priv *priv = netdev_priv(ndev);
969         int head;
970         int bytes, pkts;
971
972         NETIF_TX_LOCK(ring);
973
974         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
975         rmb(); /* make sure head is ready before touch any data */
976
977         if (is_ring_empty(ring) || head == ring->next_to_clean) {
978                 NETIF_TX_UNLOCK(ring);
979                 return 0; /* no data to poll */
980         }
981
982         if (!is_valid_clean_head(ring, head)) {
983                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
984                            ring->next_to_use, ring->next_to_clean);
985                 ring->stats.io_err_cnt++;
986                 NETIF_TX_UNLOCK(ring);
987                 return -EIO;
988         }
989
990         bytes = 0;
991         pkts = 0;
992         while (head != ring->next_to_clean) {
993                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
994                 /* issue prefetch for next Tx descriptor */
995                 prefetch(&ring->desc_cb[ring->next_to_clean]);
996         }
997         /* update tx ring statistics. */
998         ring->stats.tx_pkts += pkts;
999         ring->stats.tx_bytes += bytes;
1000
1001         NETIF_TX_UNLOCK(ring);
1002
1003         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1004         netdev_tx_completed_queue(dev_queue, pkts, bytes);
1005
1006         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1007                 netif_carrier_on(ndev);
1008
1009         if (unlikely(pkts && netif_carrier_ok(ndev) &&
1010                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1011                 /* Make sure that anybody stopping the queue after this
1012                  * sees the new next_to_clean.
1013                  */
1014                 smp_mb();
1015                 if (netif_tx_queue_stopped(dev_queue) &&
1016                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
1017                         netif_tx_wake_queue(dev_queue);
1018                         ring->stats.restart_queue++;
1019                 }
1020         }
1021         return 0;
1022 }
1023
1024 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1025 {
1026         struct hnae_ring *ring = ring_data->ring;
1027         int head;
1028
1029         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1030
1031         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1032
1033         if (head != ring->next_to_clean) {
1034                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1035                         ring_data->ring, 1);
1036
1037                 return false;
1038         } else {
1039                 return true;
1040         }
1041 }
1042
1043 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1044 {
1045         struct hnae_ring *ring = ring_data->ring;
1046         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1047
1048         if (head == ring->next_to_clean)
1049                 return true;
1050         else
1051                 return false;
1052 }
1053
1054 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1055 {
1056         struct hnae_ring *ring = ring_data->ring;
1057         struct net_device *ndev = ring_data->napi.dev;
1058         struct netdev_queue *dev_queue;
1059         int head;
1060         int bytes, pkts;
1061
1062         NETIF_TX_LOCK(ring);
1063
1064         head = ring->next_to_use; /* ntu :soft setted ring position*/
1065         bytes = 0;
1066         pkts = 0;
1067         while (head != ring->next_to_clean)
1068                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1069
1070         NETIF_TX_UNLOCK(ring);
1071
1072         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1073         netdev_tx_reset_queue(dev_queue);
1074 }
1075
1076 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1077 {
1078         int clean_complete = 0;
1079         struct hns_nic_ring_data *ring_data =
1080                 container_of(napi, struct hns_nic_ring_data, napi);
1081         struct hnae_ring *ring = ring_data->ring;
1082
1083 try_again:
1084         clean_complete += ring_data->poll_one(
1085                                 ring_data, budget - clean_complete,
1086                                 ring_data->ex_process);
1087
1088         if (clean_complete < budget) {
1089                 if (ring_data->fini_process(ring_data)) {
1090                         napi_complete(napi);
1091                         ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1092                 } else {
1093                         goto try_again;
1094                 }
1095         }
1096
1097         return clean_complete;
1098 }
1099
1100 static irqreturn_t hns_irq_handle(int irq, void *dev)
1101 {
1102         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1103
1104         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1105                 ring_data->ring, 1);
1106         napi_schedule(&ring_data->napi);
1107
1108         return IRQ_HANDLED;
1109 }
1110
1111 /**
1112  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1113  *@ndev: net device
1114  */
1115 static void hns_nic_adjust_link(struct net_device *ndev)
1116 {
1117         struct hns_nic_priv *priv = netdev_priv(ndev);
1118         struct hnae_handle *h = priv->ae_handle;
1119         int state = 1;
1120
1121         /* If there is no phy, do not need adjust link */
1122         if (ndev->phydev) {
1123                 /* When phy link down, do nothing */
1124                 if (ndev->phydev->link == 0)
1125                         return;
1126
1127                 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1128                                                   ndev->phydev->duplex)) {
1129                         /* because Hi161X chip don't support to change gmac
1130                          * speed and duplex with traffic. Delay 200ms to
1131                          * make sure there is no more data in chip FIFO.
1132                          */
1133                         netif_carrier_off(ndev);
1134                         msleep(200);
1135                         h->dev->ops->adjust_link(h, ndev->phydev->speed,
1136                                                  ndev->phydev->duplex);
1137                         netif_carrier_on(ndev);
1138                 }
1139         }
1140
1141         state = state && h->dev->ops->get_status(h);
1142
1143         if (state != priv->link) {
1144                 if (state) {
1145                         netif_carrier_on(ndev);
1146                         netif_tx_wake_all_queues(ndev);
1147                         netdev_info(ndev, "link up\n");
1148                 } else {
1149                         netif_carrier_off(ndev);
1150                         netdev_info(ndev, "link down\n");
1151                 }
1152                 priv->link = state;
1153         }
1154 }
1155
1156 /**
1157  *hns_nic_init_phy - init phy
1158  *@ndev: net device
1159  *@h: ae handle
1160  * Return 0 on success, negative on failure
1161  */
1162 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1163 {
1164         __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1165         struct phy_device *phy_dev = h->phy_dev;
1166         int ret;
1167
1168         if (!h->phy_dev)
1169                 return 0;
1170
1171         ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1172         linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1173         linkmode_copy(phy_dev->advertising, phy_dev->supported);
1174
1175         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1176                 phy_dev->autoneg = false;
1177
1178         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1179                 phy_dev->dev_flags = 0;
1180
1181                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1182                                          h->phy_if);
1183         } else {
1184                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1185         }
1186         if (unlikely(ret))
1187                 return -ENODEV;
1188
1189         return 0;
1190 }
1191
1192 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1193 {
1194         struct hns_nic_priv *priv = netdev_priv(netdev);
1195         struct hnae_handle *h = priv->ae_handle;
1196
1197         napi_enable(&priv->ring_data[idx].napi);
1198
1199         enable_irq(priv->ring_data[idx].ring->irq);
1200         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1201
1202         return 0;
1203 }
1204
1205 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1206 {
1207         struct hns_nic_priv *priv = netdev_priv(ndev);
1208         struct hnae_handle *h = priv->ae_handle;
1209         struct sockaddr *mac_addr = p;
1210         int ret;
1211
1212         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1213                 return -EADDRNOTAVAIL;
1214
1215         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1216         if (ret) {
1217                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1218                 return ret;
1219         }
1220
1221         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1222
1223         return 0;
1224 }
1225
1226 static void hns_nic_update_stats(struct net_device *netdev)
1227 {
1228         struct hns_nic_priv *priv = netdev_priv(netdev);
1229         struct hnae_handle *h = priv->ae_handle;
1230
1231         h->dev->ops->update_stats(h, &netdev->stats);
1232 }
1233
1234 /* set mac addr if it is configed. or leave it to the AE driver */
1235 static void hns_init_mac_addr(struct net_device *ndev)
1236 {
1237         struct hns_nic_priv *priv = netdev_priv(ndev);
1238
1239         if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1240                 eth_hw_addr_random(ndev);
1241                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1242                          ndev->dev_addr);
1243         }
1244 }
1245
1246 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1247 {
1248         struct hns_nic_priv *priv = netdev_priv(netdev);
1249         struct hnae_handle *h = priv->ae_handle;
1250
1251         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1252         disable_irq(priv->ring_data[idx].ring->irq);
1253
1254         napi_disable(&priv->ring_data[idx].napi);
1255 }
1256
1257 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1258                                       struct hnae_ring *ring, cpumask_t *mask)
1259 {
1260         int cpu;
1261
1262         /* Diffrent irq banlance between 16core and 32core.
1263          * The cpu mask set by ring index according to the ring flag
1264          * which indicate the ring is tx or rx.
1265          */
1266         if (q_num == num_possible_cpus()) {
1267                 if (is_tx_ring(ring))
1268                         cpu = ring_idx;
1269                 else
1270                         cpu = ring_idx - q_num;
1271         } else {
1272                 if (is_tx_ring(ring))
1273                         cpu = ring_idx * 2;
1274                 else
1275                         cpu = (ring_idx - q_num) * 2 + 1;
1276         }
1277
1278         cpumask_clear(mask);
1279         cpumask_set_cpu(cpu, mask);
1280
1281         return cpu;
1282 }
1283
1284 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1285 {
1286         int i;
1287
1288         for (i = 0; i < q_num * 2; i++) {
1289                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1290                         irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1291                                               NULL);
1292                         free_irq(priv->ring_data[i].ring->irq,
1293                                  &priv->ring_data[i]);
1294                         priv->ring_data[i].ring->irq_init_flag =
1295                                 RCB_IRQ_NOT_INITED;
1296                 }
1297         }
1298 }
1299
1300 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1301 {
1302         struct hnae_handle *h = priv->ae_handle;
1303         struct hns_nic_ring_data *rd;
1304         int i;
1305         int ret;
1306         int cpu;
1307
1308         for (i = 0; i < h->q_num * 2; i++) {
1309                 rd = &priv->ring_data[i];
1310
1311                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1312                         break;
1313
1314                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1315                          "%s-%s%d", priv->netdev->name,
1316                          (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1317
1318                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1319
1320                 ret = request_irq(rd->ring->irq,
1321                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1322                 if (ret) {
1323                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1324                                    rd->ring->irq);
1325                         goto out_free_irq;
1326                 }
1327                 disable_irq(rd->ring->irq);
1328
1329                 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1330                                                  rd->ring, &rd->mask);
1331
1332                 if (cpu_online(cpu))
1333                         irq_set_affinity_hint(rd->ring->irq,
1334                                               &rd->mask);
1335
1336                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1337         }
1338
1339         return 0;
1340
1341 out_free_irq:
1342         hns_nic_free_irq(h->q_num, priv);
1343         return ret;
1344 }
1345
1346 static int hns_nic_net_up(struct net_device *ndev)
1347 {
1348         struct hns_nic_priv *priv = netdev_priv(ndev);
1349         struct hnae_handle *h = priv->ae_handle;
1350         int i, j;
1351         int ret;
1352
1353         if (!test_bit(NIC_STATE_DOWN, &priv->state))
1354                 return 0;
1355
1356         ret = hns_nic_init_irq(priv);
1357         if (ret != 0) {
1358                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1359                 return ret;
1360         }
1361
1362         for (i = 0; i < h->q_num * 2; i++) {
1363                 ret = hns_nic_ring_open(ndev, i);
1364                 if (ret)
1365                         goto out_has_some_queues;
1366         }
1367
1368         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1369         if (ret)
1370                 goto out_set_mac_addr_err;
1371
1372         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1373         if (ret)
1374                 goto out_start_err;
1375
1376         if (ndev->phydev)
1377                 phy_start(ndev->phydev);
1378
1379         clear_bit(NIC_STATE_DOWN, &priv->state);
1380         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1381
1382         return 0;
1383
1384 out_start_err:
1385         netif_stop_queue(ndev);
1386 out_set_mac_addr_err:
1387 out_has_some_queues:
1388         for (j = i - 1; j >= 0; j--)
1389                 hns_nic_ring_close(ndev, j);
1390
1391         hns_nic_free_irq(h->q_num, priv);
1392         set_bit(NIC_STATE_DOWN, &priv->state);
1393
1394         return ret;
1395 }
1396
1397 static void hns_nic_net_down(struct net_device *ndev)
1398 {
1399         int i;
1400         struct hnae_ae_ops *ops;
1401         struct hns_nic_priv *priv = netdev_priv(ndev);
1402
1403         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1404                 return;
1405
1406         (void)del_timer_sync(&priv->service_timer);
1407         netif_tx_stop_all_queues(ndev);
1408         netif_carrier_off(ndev);
1409         netif_tx_disable(ndev);
1410         priv->link = 0;
1411
1412         if (ndev->phydev)
1413                 phy_stop(ndev->phydev);
1414
1415         ops = priv->ae_handle->dev->ops;
1416
1417         if (ops->stop)
1418                 ops->stop(priv->ae_handle);
1419
1420         netif_tx_stop_all_queues(ndev);
1421
1422         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1423                 hns_nic_ring_close(ndev, i);
1424                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1425
1426                 /* clean tx buffers*/
1427                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1428         }
1429 }
1430
1431 void hns_nic_net_reset(struct net_device *ndev)
1432 {
1433         struct hns_nic_priv *priv = netdev_priv(ndev);
1434         struct hnae_handle *handle = priv->ae_handle;
1435
1436         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1437                 usleep_range(1000, 2000);
1438
1439         (void)hnae_reinit_handle(handle);
1440
1441         clear_bit(NIC_STATE_RESETTING, &priv->state);
1442 }
1443
1444 void hns_nic_net_reinit(struct net_device *netdev)
1445 {
1446         struct hns_nic_priv *priv = netdev_priv(netdev);
1447         enum hnae_port_type type = priv->ae_handle->port_type;
1448
1449         netif_trans_update(priv->netdev);
1450         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1451                 usleep_range(1000, 2000);
1452
1453         hns_nic_net_down(netdev);
1454
1455         /* Only do hns_nic_net_reset in debug mode
1456          * because of hardware limitation.
1457          */
1458         if (type == HNAE_PORT_DEBUG)
1459                 hns_nic_net_reset(netdev);
1460
1461         (void)hns_nic_net_up(netdev);
1462         clear_bit(NIC_STATE_REINITING, &priv->state);
1463 }
1464
1465 static int hns_nic_net_open(struct net_device *ndev)
1466 {
1467         struct hns_nic_priv *priv = netdev_priv(ndev);
1468         struct hnae_handle *h = priv->ae_handle;
1469         int ret;
1470
1471         if (test_bit(NIC_STATE_TESTING, &priv->state))
1472                 return -EBUSY;
1473
1474         priv->link = 0;
1475         netif_carrier_off(ndev);
1476
1477         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1478         if (ret < 0) {
1479                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1480                            ret);
1481                 return ret;
1482         }
1483
1484         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1485         if (ret < 0) {
1486                 netdev_err(ndev,
1487                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1488                 return ret;
1489         }
1490
1491         ret = hns_nic_net_up(ndev);
1492         if (ret) {
1493                 netdev_err(ndev,
1494                            "hns net up fail, ret=%d!\n", ret);
1495                 return ret;
1496         }
1497
1498         return 0;
1499 }
1500
1501 static int hns_nic_net_stop(struct net_device *ndev)
1502 {
1503         hns_nic_net_down(ndev);
1504
1505         return 0;
1506 }
1507
1508 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1509 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1510 static void hns_nic_net_timeout(struct net_device *ndev)
1511 {
1512         struct hns_nic_priv *priv = netdev_priv(ndev);
1513
1514         if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1515                 ndev->watchdog_timeo *= 2;
1516                 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1517                             ndev->watchdog_timeo);
1518         } else {
1519                 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1520                 hns_tx_timeout_reset(priv);
1521         }
1522 }
1523
1524 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1525                             int cmd)
1526 {
1527         struct phy_device *phy_dev = netdev->phydev;
1528
1529         if (!netif_running(netdev))
1530                 return -EINVAL;
1531
1532         if (!phy_dev)
1533                 return -ENOTSUPP;
1534
1535         return phy_mii_ioctl(phy_dev, ifr, cmd);
1536 }
1537
1538 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1539                                     struct net_device *ndev)
1540 {
1541         struct hns_nic_priv *priv = netdev_priv(ndev);
1542
1543         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1544
1545         return hns_nic_net_xmit_hw(ndev, skb,
1546                                    &tx_ring_data(priv, skb->queue_mapping));
1547 }
1548
1549 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1550                                   struct sk_buff *skb)
1551 {
1552         dev_kfree_skb_any(skb);
1553 }
1554
1555 #define HNS_LB_TX_RING  0
1556 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1557 {
1558         struct sk_buff *skb;
1559         struct ethhdr *ethhdr;
1560         int frame_len;
1561
1562         /* allocate test skb */
1563         skb = alloc_skb(64, GFP_KERNEL);
1564         if (!skb)
1565                 return NULL;
1566
1567         skb_put(skb, 64);
1568         skb->dev = ndev;
1569         memset(skb->data, 0xFF, skb->len);
1570
1571         /* must be tcp/ip package */
1572         ethhdr = (struct ethhdr *)skb->data;
1573         ethhdr->h_proto = htons(ETH_P_IP);
1574
1575         frame_len = skb->len & (~1ul);
1576         memset(&skb->data[frame_len / 2], 0xAA,
1577                frame_len / 2 - 1);
1578
1579         skb->queue_mapping = HNS_LB_TX_RING;
1580
1581         return skb;
1582 }
1583
1584 static int hns_enable_serdes_lb(struct net_device *ndev)
1585 {
1586         struct hns_nic_priv *priv = netdev_priv(ndev);
1587         struct hnae_handle *h = priv->ae_handle;
1588         struct hnae_ae_ops *ops = h->dev->ops;
1589         int speed, duplex;
1590         int ret;
1591
1592         ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1593         if (ret)
1594                 return ret;
1595
1596         ret = ops->start ? ops->start(h) : 0;
1597         if (ret)
1598                 return ret;
1599
1600         /* link adjust duplex*/
1601         if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1602                 speed = 1000;
1603         else
1604                 speed = 10000;
1605         duplex = 1;
1606
1607         ops->adjust_link(h, speed, duplex);
1608
1609         /* wait h/w ready */
1610         mdelay(300);
1611
1612         return 0;
1613 }
1614
1615 static void hns_disable_serdes_lb(struct net_device *ndev)
1616 {
1617         struct hns_nic_priv *priv = netdev_priv(ndev);
1618         struct hnae_handle *h = priv->ae_handle;
1619         struct hnae_ae_ops *ops = h->dev->ops;
1620
1621         ops->stop(h);
1622         ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1623 }
1624
1625 /**
1626  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1627  *function as follows:
1628  *    1. if one rx ring has found the page_offset is not equal 0 between head
1629  *       and tail, it means that the chip fetched the wrong descs for the ring
1630  *       which buffer size is 4096.
1631  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1632  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1633  *       recieving all packages and it will fetch new descriptions.
1634  *    4. recover to the original state.
1635  *
1636  *@ndev: net device
1637  */
1638 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1639 {
1640         struct hns_nic_priv *priv = netdev_priv(ndev);
1641         struct hnae_handle *h = priv->ae_handle;
1642         struct hnae_ae_ops *ops = h->dev->ops;
1643         struct hns_nic_ring_data *rd;
1644         struct hnae_ring *ring;
1645         struct sk_buff *skb;
1646         u32 *org_indir;
1647         u32 *cur_indir;
1648         int indir_size;
1649         int head, tail;
1650         int fetch_num;
1651         int i, j;
1652         bool found;
1653         int retry_times;
1654         int ret = 0;
1655
1656         /* alloc indir memory */
1657         indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1658         org_indir = kzalloc(indir_size, GFP_KERNEL);
1659         if (!org_indir)
1660                 return -ENOMEM;
1661
1662         /* store the orginal indirection */
1663         ops->get_rss(h, org_indir, NULL, NULL);
1664
1665         cur_indir = kzalloc(indir_size, GFP_KERNEL);
1666         if (!cur_indir) {
1667                 ret = -ENOMEM;
1668                 goto cur_indir_alloc_err;
1669         }
1670
1671         /* set loopback */
1672         if (hns_enable_serdes_lb(ndev)) {
1673                 ret = -EINVAL;
1674                 goto enable_serdes_lb_err;
1675         }
1676
1677         /* foreach every rx ring to clear fetch desc */
1678         for (i = 0; i < h->q_num; i++) {
1679                 ring = &h->qs[i]->rx_ring;
1680                 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1681                 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1682                 found = false;
1683                 fetch_num = ring_dist(ring, head, tail);
1684
1685                 while (head != tail) {
1686                         if (ring->desc_cb[head].page_offset != 0) {
1687                                 found = true;
1688                                 break;
1689                         }
1690
1691                         head++;
1692                         if (head == ring->desc_num)
1693                                 head = 0;
1694                 }
1695
1696                 if (found) {
1697                         for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1698                                 cur_indir[j] = i;
1699                         ops->set_rss(h, cur_indir, NULL, 0);
1700
1701                         for (j = 0; j < fetch_num; j++) {
1702                                 /* alloc one skb and init */
1703                                 skb = hns_assemble_skb(ndev);
1704                                 if (!skb)
1705                                         goto out;
1706                                 rd = &tx_ring_data(priv, skb->queue_mapping);
1707                                 hns_nic_net_xmit_hw(ndev, skb, rd);
1708
1709                                 retry_times = 0;
1710                                 while (retry_times++ < 10) {
1711                                         mdelay(10);
1712                                         /* clean rx */
1713                                         rd = &rx_ring_data(priv, i);
1714                                         if (rd->poll_one(rd, fetch_num,
1715                                                          hns_nic_drop_rx_fetch))
1716                                                 break;
1717                                 }
1718
1719                                 retry_times = 0;
1720                                 while (retry_times++ < 10) {
1721                                         mdelay(10);
1722                                         /* clean tx ring 0 send package */
1723                                         rd = &tx_ring_data(priv,
1724                                                            HNS_LB_TX_RING);
1725                                         if (rd->poll_one(rd, fetch_num, NULL))
1726                                                 break;
1727                                 }
1728                         }
1729                 }
1730         }
1731
1732 out:
1733         /* restore everything */
1734         ops->set_rss(h, org_indir, NULL, 0);
1735         hns_disable_serdes_lb(ndev);
1736 enable_serdes_lb_err:
1737         kfree(cur_indir);
1738 cur_indir_alloc_err:
1739         kfree(org_indir);
1740
1741         return ret;
1742 }
1743
1744 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1745 {
1746         struct hns_nic_priv *priv = netdev_priv(ndev);
1747         struct hnae_handle *h = priv->ae_handle;
1748         bool if_running = netif_running(ndev);
1749         int ret;
1750
1751         /* MTU < 68 is an error and causes problems on some kernels */
1752         if (new_mtu < 68)
1753                 return -EINVAL;
1754
1755         /* MTU no change */
1756         if (new_mtu == ndev->mtu)
1757                 return 0;
1758
1759         if (!h->dev->ops->set_mtu)
1760                 return -ENOTSUPP;
1761
1762         if (if_running) {
1763                 (void)hns_nic_net_stop(ndev);
1764                 msleep(100);
1765         }
1766
1767         if (priv->enet_ver != AE_VERSION_1 &&
1768             ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1769             new_mtu > BD_SIZE_2048_MAX_MTU) {
1770                 /* update desc */
1771                 hnae_reinit_all_ring_desc(h);
1772
1773                 /* clear the package which the chip has fetched */
1774                 ret = hns_nic_clear_all_rx_fetch(ndev);
1775
1776                 /* the page offset must be consist with desc */
1777                 hnae_reinit_all_ring_page_off(h);
1778
1779                 if (ret) {
1780                         netdev_err(ndev, "clear the fetched desc fail\n");
1781                         goto out;
1782                 }
1783         }
1784
1785         ret = h->dev->ops->set_mtu(h, new_mtu);
1786         if (ret) {
1787                 netdev_err(ndev, "set mtu fail, return value %d\n",
1788                            ret);
1789                 goto out;
1790         }
1791
1792         /* finally, set new mtu to netdevice */
1793         ndev->mtu = new_mtu;
1794
1795 out:
1796         if (if_running) {
1797                 if (hns_nic_net_open(ndev)) {
1798                         netdev_err(ndev, "hns net open fail\n");
1799                         ret = -EINVAL;
1800                 }
1801         }
1802
1803         return ret;
1804 }
1805
1806 static int hns_nic_set_features(struct net_device *netdev,
1807                                 netdev_features_t features)
1808 {
1809         struct hns_nic_priv *priv = netdev_priv(netdev);
1810
1811         switch (priv->enet_ver) {
1812         case AE_VERSION_1:
1813                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1814                         netdev_info(netdev, "enet v1 do not support tso!\n");
1815                 break;
1816         default:
1817                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1818                         priv->ops.fill_desc = fill_tso_desc;
1819                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1820                         /* The chip only support 7*4096 */
1821                         netif_set_gso_max_size(netdev, 7 * 4096);
1822                 } else {
1823                         priv->ops.fill_desc = fill_v2_desc;
1824                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1825                 }
1826                 break;
1827         }
1828         netdev->features = features;
1829         return 0;
1830 }
1831
1832 static netdev_features_t hns_nic_fix_features(
1833                 struct net_device *netdev, netdev_features_t features)
1834 {
1835         struct hns_nic_priv *priv = netdev_priv(netdev);
1836
1837         switch (priv->enet_ver) {
1838         case AE_VERSION_1:
1839                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1840                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1841                 break;
1842         default:
1843                 break;
1844         }
1845         return features;
1846 }
1847
1848 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1849 {
1850         struct hns_nic_priv *priv = netdev_priv(netdev);
1851         struct hnae_handle *h = priv->ae_handle;
1852
1853         if (h->dev->ops->add_uc_addr)
1854                 return h->dev->ops->add_uc_addr(h, addr);
1855
1856         return 0;
1857 }
1858
1859 static int hns_nic_uc_unsync(struct net_device *netdev,
1860                              const unsigned char *addr)
1861 {
1862         struct hns_nic_priv *priv = netdev_priv(netdev);
1863         struct hnae_handle *h = priv->ae_handle;
1864
1865         if (h->dev->ops->rm_uc_addr)
1866                 return h->dev->ops->rm_uc_addr(h, addr);
1867
1868         return 0;
1869 }
1870
1871 /**
1872  * nic_set_multicast_list - set mutl mac address
1873  * @netdev: net device
1874  * @p: mac address
1875  *
1876  * return void
1877  */
1878 static void hns_set_multicast_list(struct net_device *ndev)
1879 {
1880         struct hns_nic_priv *priv = netdev_priv(ndev);
1881         struct hnae_handle *h = priv->ae_handle;
1882         struct netdev_hw_addr *ha = NULL;
1883
1884         if (!h) {
1885                 netdev_err(ndev, "hnae handle is null\n");
1886                 return;
1887         }
1888
1889         if (h->dev->ops->clr_mc_addr)
1890                 if (h->dev->ops->clr_mc_addr(h))
1891                         netdev_err(ndev, "clear multicast address fail\n");
1892
1893         if (h->dev->ops->set_mc_addr) {
1894                 netdev_for_each_mc_addr(ha, ndev)
1895                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1896                                 netdev_err(ndev, "set multicast fail\n");
1897         }
1898 }
1899
1900 static void hns_nic_set_rx_mode(struct net_device *ndev)
1901 {
1902         struct hns_nic_priv *priv = netdev_priv(ndev);
1903         struct hnae_handle *h = priv->ae_handle;
1904
1905         if (h->dev->ops->set_promisc_mode) {
1906                 if (ndev->flags & IFF_PROMISC)
1907                         h->dev->ops->set_promisc_mode(h, 1);
1908                 else
1909                         h->dev->ops->set_promisc_mode(h, 0);
1910         }
1911
1912         hns_set_multicast_list(ndev);
1913
1914         if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1915                 netdev_err(ndev, "sync uc address fail\n");
1916 }
1917
1918 static void hns_nic_get_stats64(struct net_device *ndev,
1919                                 struct rtnl_link_stats64 *stats)
1920 {
1921         int idx = 0;
1922         u64 tx_bytes = 0;
1923         u64 rx_bytes = 0;
1924         u64 tx_pkts = 0;
1925         u64 rx_pkts = 0;
1926         struct hns_nic_priv *priv = netdev_priv(ndev);
1927         struct hnae_handle *h = priv->ae_handle;
1928
1929         for (idx = 0; idx < h->q_num; idx++) {
1930                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1931                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1932                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1933                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1934         }
1935
1936         stats->tx_bytes = tx_bytes;
1937         stats->tx_packets = tx_pkts;
1938         stats->rx_bytes = rx_bytes;
1939         stats->rx_packets = rx_pkts;
1940
1941         stats->rx_errors = ndev->stats.rx_errors;
1942         stats->multicast = ndev->stats.multicast;
1943         stats->rx_length_errors = ndev->stats.rx_length_errors;
1944         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1945         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1946
1947         stats->tx_errors = ndev->stats.tx_errors;
1948         stats->rx_dropped = ndev->stats.rx_dropped;
1949         stats->tx_dropped = ndev->stats.tx_dropped;
1950         stats->collisions = ndev->stats.collisions;
1951         stats->rx_over_errors = ndev->stats.rx_over_errors;
1952         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1953         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1954         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1955         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1956         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1957         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1958         stats->tx_window_errors = ndev->stats.tx_window_errors;
1959         stats->rx_compressed = ndev->stats.rx_compressed;
1960         stats->tx_compressed = ndev->stats.tx_compressed;
1961 }
1962
1963 static u16
1964 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1965                      struct net_device *sb_dev,
1966                      select_queue_fallback_t fallback)
1967 {
1968         struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1969         struct hns_nic_priv *priv = netdev_priv(ndev);
1970
1971         /* fix hardware broadcast/multicast packets queue loopback */
1972         if (!AE_IS_VER1(priv->enet_ver) &&
1973             is_multicast_ether_addr(eth_hdr->h_dest))
1974                 return 0;
1975         else
1976                 return fallback(ndev, skb, NULL);
1977 }
1978
1979 static const struct net_device_ops hns_nic_netdev_ops = {
1980         .ndo_open = hns_nic_net_open,
1981         .ndo_stop = hns_nic_net_stop,
1982         .ndo_start_xmit = hns_nic_net_xmit,
1983         .ndo_tx_timeout = hns_nic_net_timeout,
1984         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1985         .ndo_change_mtu = hns_nic_change_mtu,
1986         .ndo_do_ioctl = hns_nic_do_ioctl,
1987         .ndo_set_features = hns_nic_set_features,
1988         .ndo_fix_features = hns_nic_fix_features,
1989         .ndo_get_stats64 = hns_nic_get_stats64,
1990         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1991         .ndo_select_queue = hns_nic_select_queue,
1992 };
1993
1994 static void hns_nic_update_link_status(struct net_device *netdev)
1995 {
1996         struct hns_nic_priv *priv = netdev_priv(netdev);
1997
1998         struct hnae_handle *h = priv->ae_handle;
1999
2000         if (h->phy_dev) {
2001                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2002                         return;
2003
2004                 (void)genphy_read_status(h->phy_dev);
2005         }
2006         hns_nic_adjust_link(netdev);
2007 }
2008
2009 /* for dumping key regs*/
2010 static void hns_nic_dump(struct hns_nic_priv *priv)
2011 {
2012         struct hnae_handle *h = priv->ae_handle;
2013         struct hnae_ae_ops *ops = h->dev->ops;
2014         u32 *data, reg_num, i;
2015
2016         if (ops->get_regs_len && ops->get_regs) {
2017                 reg_num = ops->get_regs_len(priv->ae_handle);
2018                 reg_num = (reg_num + 3ul) & ~3ul;
2019                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2020                 if (data) {
2021                         ops->get_regs(priv->ae_handle, data);
2022                         for (i = 0; i < reg_num; i += 4)
2023                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2024                                         i, data[i], data[i + 1],
2025                                         data[i + 2], data[i + 3]);
2026                         kfree(data);
2027                 }
2028         }
2029
2030         for (i = 0; i < h->q_num; i++) {
2031                 pr_info("tx_queue%d_next_to_clean:%d\n",
2032                         i, h->qs[i]->tx_ring.next_to_clean);
2033                 pr_info("tx_queue%d_next_to_use:%d\n",
2034                         i, h->qs[i]->tx_ring.next_to_use);
2035                 pr_info("rx_queue%d_next_to_clean:%d\n",
2036                         i, h->qs[i]->rx_ring.next_to_clean);
2037                 pr_info("rx_queue%d_next_to_use:%d\n",
2038                         i, h->qs[i]->rx_ring.next_to_use);
2039         }
2040 }
2041
2042 /* for resetting subtask */
2043 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2044 {
2045         enum hnae_port_type type = priv->ae_handle->port_type;
2046
2047         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2048                 return;
2049         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2050
2051         /* If we're already down, removing or resetting, just bail */
2052         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2053             test_bit(NIC_STATE_REMOVING, &priv->state) ||
2054             test_bit(NIC_STATE_RESETTING, &priv->state))
2055                 return;
2056
2057         hns_nic_dump(priv);
2058         netdev_info(priv->netdev, "try to reset %s port!\n",
2059                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2060
2061         rtnl_lock();
2062         /* put off any impending NetWatchDogTimeout */
2063         netif_trans_update(priv->netdev);
2064         hns_nic_net_reinit(priv->netdev);
2065
2066         rtnl_unlock();
2067 }
2068
2069 /* for doing service complete*/
2070 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2071 {
2072         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2073         /* make sure to commit the things */
2074         smp_mb__before_atomic();
2075         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2076 }
2077
2078 static void hns_nic_service_task(struct work_struct *work)
2079 {
2080         struct hns_nic_priv *priv
2081                 = container_of(work, struct hns_nic_priv, service_task);
2082         struct hnae_handle *h = priv->ae_handle;
2083
2084         hns_nic_reset_subtask(priv);
2085         hns_nic_update_link_status(priv->netdev);
2086         h->dev->ops->update_led_status(h);
2087         hns_nic_update_stats(priv->netdev);
2088
2089         hns_nic_service_event_complete(priv);
2090 }
2091
2092 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2093 {
2094         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2095             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2096             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2097                 (void)schedule_work(&priv->service_task);
2098 }
2099
2100 static void hns_nic_service_timer(struct timer_list *t)
2101 {
2102         struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2103
2104         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2105
2106         hns_nic_task_schedule(priv);
2107 }
2108
2109 /**
2110  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2111  * @priv: driver private struct
2112  **/
2113 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2114 {
2115         /* Do the reset outside of interrupt context */
2116         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2117                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2118                 netdev_warn(priv->netdev,
2119                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
2120                             priv->tx_timeout_count, priv->state);
2121                 priv->tx_timeout_count++;
2122                 hns_nic_task_schedule(priv);
2123         }
2124 }
2125
2126 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2127 {
2128         struct hnae_handle *h = priv->ae_handle;
2129         struct hns_nic_ring_data *rd;
2130         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2131         int i;
2132
2133         if (h->q_num > NIC_MAX_Q_PER_VF) {
2134                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2135                 return -EINVAL;
2136         }
2137
2138         priv->ring_data = kzalloc(array3_size(h->q_num,
2139                                               sizeof(*priv->ring_data), 2),
2140                                   GFP_KERNEL);
2141         if (!priv->ring_data)
2142                 return -ENOMEM;
2143
2144         for (i = 0; i < h->q_num; i++) {
2145                 rd = &priv->ring_data[i];
2146                 rd->queue_index = i;
2147                 rd->ring = &h->qs[i]->tx_ring;
2148                 rd->poll_one = hns_nic_tx_poll_one;
2149                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2150                         hns_nic_tx_fini_pro_v2;
2151
2152                 netif_napi_add(priv->netdev, &rd->napi,
2153                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2154                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2155         }
2156         for (i = h->q_num; i < h->q_num * 2; i++) {
2157                 rd = &priv->ring_data[i];
2158                 rd->queue_index = i - h->q_num;
2159                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2160                 rd->poll_one = hns_nic_rx_poll_one;
2161                 rd->ex_process = hns_nic_rx_up_pro;
2162                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2163                         hns_nic_rx_fini_pro_v2;
2164
2165                 netif_napi_add(priv->netdev, &rd->napi,
2166                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2167                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2168         }
2169
2170         return 0;
2171 }
2172
2173 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2174 {
2175         struct hnae_handle *h = priv->ae_handle;
2176         int i;
2177
2178         for (i = 0; i < h->q_num * 2; i++) {
2179                 netif_napi_del(&priv->ring_data[i].napi);
2180                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2181                         (void)irq_set_affinity_hint(
2182                                 priv->ring_data[i].ring->irq,
2183                                 NULL);
2184                         free_irq(priv->ring_data[i].ring->irq,
2185                                  &priv->ring_data[i]);
2186                 }
2187
2188                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2189         }
2190         kfree(priv->ring_data);
2191 }
2192
2193 static void hns_nic_set_priv_ops(struct net_device *netdev)
2194 {
2195         struct hns_nic_priv *priv = netdev_priv(netdev);
2196         struct hnae_handle *h = priv->ae_handle;
2197
2198         if (AE_IS_VER1(priv->enet_ver)) {
2199                 priv->ops.fill_desc = fill_desc;
2200                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2201                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2202         } else {
2203                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2204                 if ((netdev->features & NETIF_F_TSO) ||
2205                     (netdev->features & NETIF_F_TSO6)) {
2206                         priv->ops.fill_desc = fill_tso_desc;
2207                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2208                         /* This chip only support 7*4096 */
2209                         netif_set_gso_max_size(netdev, 7 * 4096);
2210                 } else {
2211                         priv->ops.fill_desc = fill_v2_desc;
2212                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2213                 }
2214                 /* enable tso when init
2215                  * control tso on/off through TSE bit in bd
2216                  */
2217                 h->dev->ops->set_tso_stats(h, 1);
2218         }
2219 }
2220
2221 static int hns_nic_try_get_ae(struct net_device *ndev)
2222 {
2223         struct hns_nic_priv *priv = netdev_priv(ndev);
2224         struct hnae_handle *h;
2225         int ret;
2226
2227         h = hnae_get_handle(&priv->netdev->dev,
2228                             priv->fwnode, priv->port_id, NULL);
2229         if (IS_ERR_OR_NULL(h)) {
2230                 ret = -ENODEV;
2231                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2232                 goto out;
2233         }
2234         priv->ae_handle = h;
2235
2236         ret = hns_nic_init_phy(ndev, h);
2237         if (ret) {
2238                 dev_err(priv->dev, "probe phy device fail!\n");
2239                 goto out_init_phy;
2240         }
2241
2242         ret = hns_nic_init_ring_data(priv);
2243         if (ret) {
2244                 ret = -ENOMEM;
2245                 goto out_init_ring_data;
2246         }
2247
2248         hns_nic_set_priv_ops(ndev);
2249
2250         ret = register_netdev(ndev);
2251         if (ret) {
2252                 dev_err(priv->dev, "probe register netdev fail!\n");
2253                 goto out_reg_ndev_fail;
2254         }
2255         return 0;
2256
2257 out_reg_ndev_fail:
2258         hns_nic_uninit_ring_data(priv);
2259         priv->ring_data = NULL;
2260 out_init_phy:
2261 out_init_ring_data:
2262         hnae_put_handle(priv->ae_handle);
2263         priv->ae_handle = NULL;
2264 out:
2265         return ret;
2266 }
2267
2268 static int hns_nic_notifier_action(struct notifier_block *nb,
2269                                    unsigned long action, void *data)
2270 {
2271         struct hns_nic_priv *priv =
2272                 container_of(nb, struct hns_nic_priv, notifier_block);
2273
2274         assert(action == HNAE_AE_REGISTER);
2275
2276         if (!hns_nic_try_get_ae(priv->netdev)) {
2277                 hnae_unregister_notifier(&priv->notifier_block);
2278                 priv->notifier_block.notifier_call = NULL;
2279         }
2280         return 0;
2281 }
2282
2283 static int hns_nic_dev_probe(struct platform_device *pdev)
2284 {
2285         struct device *dev = &pdev->dev;
2286         struct net_device *ndev;
2287         struct hns_nic_priv *priv;
2288         u32 port_id;
2289         int ret;
2290
2291         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2292         if (!ndev)
2293                 return -ENOMEM;
2294
2295         platform_set_drvdata(pdev, ndev);
2296
2297         priv = netdev_priv(ndev);
2298         priv->dev = dev;
2299         priv->netdev = ndev;
2300
2301         if (dev_of_node(dev)) {
2302                 struct device_node *ae_node;
2303
2304                 if (of_device_is_compatible(dev->of_node,
2305                                             "hisilicon,hns-nic-v1"))
2306                         priv->enet_ver = AE_VERSION_1;
2307                 else
2308                         priv->enet_ver = AE_VERSION_2;
2309
2310                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2311                 if (!ae_node) {
2312                         ret = -ENODEV;
2313                         dev_err(dev, "not find ae-handle\n");
2314                         goto out_read_prop_fail;
2315                 }
2316                 priv->fwnode = &ae_node->fwnode;
2317         } else if (is_acpi_node(dev->fwnode)) {
2318                 struct fwnode_reference_args args;
2319
2320                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2321                         priv->enet_ver = AE_VERSION_1;
2322                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2323                         priv->enet_ver = AE_VERSION_2;
2324                 else
2325                         return -ENXIO;
2326
2327                 /* try to find port-idx-in-ae first */
2328                 ret = acpi_node_get_property_reference(dev->fwnode,
2329                                                        "ae-handle", 0, &args);
2330                 if (ret) {
2331                         dev_err(dev, "not find ae-handle\n");
2332                         goto out_read_prop_fail;
2333                 }
2334                 if (!is_acpi_device_node(args.fwnode)) {
2335                         ret = -EINVAL;
2336                         goto out_read_prop_fail;
2337                 }
2338                 priv->fwnode = args.fwnode;
2339         } else {
2340                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2341                 return -ENXIO;
2342         }
2343
2344         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2345         if (ret) {
2346                 /* only for old code compatible */
2347                 ret = device_property_read_u32(dev, "port-id", &port_id);
2348                 if (ret)
2349                         goto out_read_prop_fail;
2350                 /* for old dts, we need to caculate the port offset */
2351                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2352                         : port_id - HNS_SRV_OFFSET;
2353         }
2354         priv->port_id = port_id;
2355
2356         hns_init_mac_addr(ndev);
2357
2358         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2359         ndev->priv_flags |= IFF_UNICAST_FLT;
2360         ndev->netdev_ops = &hns_nic_netdev_ops;
2361         hns_ethtool_set_ops(ndev);
2362
2363         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2364                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2365                 NETIF_F_GRO;
2366         ndev->vlan_features |=
2367                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2368         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2369
2370         /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2371         ndev->min_mtu = MAC_MIN_MTU;
2372         switch (priv->enet_ver) {
2373         case AE_VERSION_2:
2374                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2375                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2376                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2377                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2378                 ndev->max_mtu = MAC_MAX_MTU_V2 -
2379                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2380                 break;
2381         default:
2382                 ndev->max_mtu = MAC_MAX_MTU -
2383                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2384                 break;
2385         }
2386
2387         SET_NETDEV_DEV(ndev, dev);
2388
2389         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2390                 dev_dbg(dev, "set mask to 64bit\n");
2391         else
2392                 dev_err(dev, "set mask to 64bit fail!\n");
2393
2394         /* carrier off reporting is important to ethtool even BEFORE open */
2395         netif_carrier_off(ndev);
2396
2397         timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2398         INIT_WORK(&priv->service_task, hns_nic_service_task);
2399
2400         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2401         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2402         set_bit(NIC_STATE_DOWN, &priv->state);
2403
2404         if (hns_nic_try_get_ae(priv->netdev)) {
2405                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2406                 ret = hnae_register_notifier(&priv->notifier_block);
2407                 if (ret) {
2408                         dev_err(dev, "register notifier fail!\n");
2409                         goto out_notify_fail;
2410                 }
2411                 dev_dbg(dev, "has not handle, register notifier!\n");
2412         }
2413
2414         return 0;
2415
2416 out_notify_fail:
2417         (void)cancel_work_sync(&priv->service_task);
2418 out_read_prop_fail:
2419         /* safe for ACPI FW */
2420         of_node_put(to_of_node(priv->fwnode));
2421         free_netdev(ndev);
2422         return ret;
2423 }
2424
2425 static int hns_nic_dev_remove(struct platform_device *pdev)
2426 {
2427         struct net_device *ndev = platform_get_drvdata(pdev);
2428         struct hns_nic_priv *priv = netdev_priv(ndev);
2429
2430         if (ndev->reg_state != NETREG_UNINITIALIZED)
2431                 unregister_netdev(ndev);
2432
2433         if (priv->ring_data)
2434                 hns_nic_uninit_ring_data(priv);
2435         priv->ring_data = NULL;
2436
2437         if (ndev->phydev)
2438                 phy_disconnect(ndev->phydev);
2439
2440         if (!IS_ERR_OR_NULL(priv->ae_handle))
2441                 hnae_put_handle(priv->ae_handle);
2442         priv->ae_handle = NULL;
2443         if (priv->notifier_block.notifier_call)
2444                 hnae_unregister_notifier(&priv->notifier_block);
2445         priv->notifier_block.notifier_call = NULL;
2446
2447         set_bit(NIC_STATE_REMOVING, &priv->state);
2448         (void)cancel_work_sync(&priv->service_task);
2449
2450         /* safe for ACPI FW */
2451         of_node_put(to_of_node(priv->fwnode));
2452
2453         free_netdev(ndev);
2454         return 0;
2455 }
2456
2457 static const struct of_device_id hns_enet_of_match[] = {
2458         {.compatible = "hisilicon,hns-nic-v1",},
2459         {.compatible = "hisilicon,hns-nic-v2",},
2460         {},
2461 };
2462
2463 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2464
2465 static struct platform_driver hns_nic_dev_driver = {
2466         .driver = {
2467                 .name = "hns-nic",
2468                 .of_match_table = hns_enet_of_match,
2469                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2470         },
2471         .probe = hns_nic_dev_probe,
2472         .remove = hns_nic_dev_remove,
2473 };
2474
2475 module_platform_driver(hns_nic_dev_driver);
2476
2477 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2478 MODULE_AUTHOR("Hisilicon, Inc.");
2479 MODULE_LICENSE("GPL");
2480 MODULE_ALIAS("platform:hns-nic");