Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[sfrench/cifs-2.6.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <linux/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT      (5*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120                                 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148                                   const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156                             dma_addr_t buf)
157 {
158         u32 lstatus;
159
160         bdp->bufPtr = cpu_to_be32(buf);
161
162         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164                 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166         gfar_wmb();
167
168         bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173         struct gfar_private *priv = netdev_priv(ndev);
174         struct gfar __iomem *regs = priv->gfargrp[0].regs;
175         struct gfar_priv_tx_q *tx_queue = NULL;
176         struct gfar_priv_rx_q *rx_queue = NULL;
177         struct txbd8 *txbdp;
178         u32 __iomem *rfbptr;
179         int i, j;
180
181         for (i = 0; i < priv->num_tx_queues; i++) {
182                 tx_queue = priv->tx_queue[i];
183                 /* Initialize some variables in our dev structure */
184                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186                 tx_queue->cur_tx = tx_queue->tx_bd_base;
187                 tx_queue->skb_curtx = 0;
188                 tx_queue->skb_dirtytx = 0;
189
190                 /* Initialize Transmit Descriptor Ring */
191                 txbdp = tx_queue->tx_bd_base;
192                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193                         txbdp->lstatus = 0;
194                         txbdp->bufPtr = 0;
195                         txbdp++;
196                 }
197
198                 /* Set the last descriptor in the ring to indicate wrap */
199                 txbdp--;
200                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201                                             TXBD_WRAP);
202         }
203
204         rfbptr = &regs->rfbptr0;
205         for (i = 0; i < priv->num_rx_queues; i++) {
206                 rx_queue = priv->rx_queue[i];
207
208                 rx_queue->next_to_clean = 0;
209                 rx_queue->next_to_use = 0;
210                 rx_queue->next_to_alloc = 0;
211
212                 /* make sure next_to_clean != next_to_use after this
213                  * by leaving at least 1 unused descriptor
214                  */
215                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217                 rx_queue->rfbptr = rfbptr;
218                 rfbptr += 2;
219         }
220 }
221
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224         void *vaddr;
225         dma_addr_t addr;
226         int i, j;
227         struct gfar_private *priv = netdev_priv(ndev);
228         struct device *dev = priv->dev;
229         struct gfar_priv_tx_q *tx_queue = NULL;
230         struct gfar_priv_rx_q *rx_queue = NULL;
231
232         priv->total_tx_ring_size = 0;
233         for (i = 0; i < priv->num_tx_queues; i++)
234                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236         priv->total_rx_ring_size = 0;
237         for (i = 0; i < priv->num_rx_queues; i++)
238                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240         /* Allocate memory for the buffer descriptors */
241         vaddr = dma_alloc_coherent(dev,
242                                    (priv->total_tx_ring_size *
243                                     sizeof(struct txbd8)) +
244                                    (priv->total_rx_ring_size *
245                                     sizeof(struct rxbd8)),
246                                    &addr, GFP_KERNEL);
247         if (!vaddr)
248                 return -ENOMEM;
249
250         for (i = 0; i < priv->num_tx_queues; i++) {
251                 tx_queue = priv->tx_queue[i];
252                 tx_queue->tx_bd_base = vaddr;
253                 tx_queue->tx_bd_dma_base = addr;
254                 tx_queue->dev = ndev;
255                 /* enet DMA only understands physical addresses */
256                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258         }
259
260         /* Start the rx descriptor ring where the tx ring leaves off */
261         for (i = 0; i < priv->num_rx_queues; i++) {
262                 rx_queue = priv->rx_queue[i];
263                 rx_queue->rx_bd_base = vaddr;
264                 rx_queue->rx_bd_dma_base = addr;
265                 rx_queue->ndev = ndev;
266                 rx_queue->dev = dev;
267                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269         }
270
271         /* Setup the skbuff rings */
272         for (i = 0; i < priv->num_tx_queues; i++) {
273                 tx_queue = priv->tx_queue[i];
274                 tx_queue->tx_skbuff =
275                         kmalloc_array(tx_queue->tx_ring_size,
276                                       sizeof(*tx_queue->tx_skbuff),
277                                       GFP_KERNEL);
278                 if (!tx_queue->tx_skbuff)
279                         goto cleanup;
280
281                 for (j = 0; j < tx_queue->tx_ring_size; j++)
282                         tx_queue->tx_skbuff[j] = NULL;
283         }
284
285         for (i = 0; i < priv->num_rx_queues; i++) {
286                 rx_queue = priv->rx_queue[i];
287                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288                                             sizeof(*rx_queue->rx_buff),
289                                             GFP_KERNEL);
290                 if (!rx_queue->rx_buff)
291                         goto cleanup;
292         }
293
294         gfar_init_bds(ndev);
295
296         return 0;
297
298 cleanup:
299         free_skb_resources(priv);
300         return -ENOMEM;
301 }
302
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305         struct gfar __iomem *regs = priv->gfargrp[0].regs;
306         u32 __iomem *baddr;
307         int i;
308
309         baddr = &regs->tbase0;
310         for (i = 0; i < priv->num_tx_queues; i++) {
311                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312                 baddr += 2;
313         }
314
315         baddr = &regs->rbase0;
316         for (i = 0; i < priv->num_rx_queues; i++) {
317                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318                 baddr += 2;
319         }
320 }
321
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324         struct gfar __iomem *regs = priv->gfargrp[0].regs;
325         u32 __iomem *baddr;
326         int i;
327
328         baddr = &regs->rqprm0;
329         for (i = 0; i < priv->num_rx_queues; i++) {
330                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332                 baddr++;
333         }
334 }
335
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338         /* set this when rx hw offload (TOE) functions are being used */
339         priv->uses_rxfcb = 0;
340
341         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342                 priv->uses_rxfcb = 1;
343
344         if (priv->hwts_rx_en || priv->rx_filer_enable)
345                 priv->uses_rxfcb = 1;
346 }
347
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350         struct gfar __iomem *regs = priv->gfargrp[0].regs;
351         u32 rctrl = 0;
352
353         if (priv->rx_filer_enable) {
354                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355                 /* Program the RIR0 reg with the required distribution */
356                 if (priv->poll_mode == GFAR_SQ_POLLING)
357                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358                 else /* GFAR_MQ_POLLING */
359                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360         }
361
362         /* Restore PROMISC mode */
363         if (priv->ndev->flags & IFF_PROMISC)
364                 rctrl |= RCTRL_PROM;
365
366         if (priv->ndev->features & NETIF_F_RXCSUM)
367                 rctrl |= RCTRL_CHECKSUMMING;
368
369         if (priv->extended_hash)
370                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372         if (priv->padding) {
373                 rctrl &= ~RCTRL_PAL_MASK;
374                 rctrl |= RCTRL_PADDING(priv->padding);
375         }
376
377         /* Enable HW time stamping if requested from user space */
378         if (priv->hwts_rx_en)
379                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384         /* Clear the LFC bit */
385         gfar_write(&regs->rctrl, rctrl);
386         /* Init flow control threshold values */
387         gfar_init_rqprm(priv);
388         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389         rctrl |= RCTRL_LFC;
390
391         /* Init rctrl based on our settings */
392         gfar_write(&regs->rctrl, rctrl);
393 }
394
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397         struct gfar __iomem *regs = priv->gfargrp[0].regs;
398         u32 tctrl = 0;
399
400         if (priv->ndev->features & NETIF_F_IP_CSUM)
401                 tctrl |= TCTRL_INIT_CSUM;
402
403         if (priv->prio_sched_en)
404                 tctrl |= TCTRL_TXSCHED_PRIO;
405         else {
406                 tctrl |= TCTRL_TXSCHED_WRRS;
407                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409         }
410
411         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412                 tctrl |= TCTRL_VLINS;
413
414         gfar_write(&regs->tctrl, tctrl);
415 }
416
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418                                unsigned long tx_mask, unsigned long rx_mask)
419 {
420         struct gfar __iomem *regs = priv->gfargrp[0].regs;
421         u32 __iomem *baddr;
422
423         if (priv->mode == MQ_MG_MODE) {
424                 int i = 0;
425
426                 baddr = &regs->txic0;
427                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428                         gfar_write(baddr + i, 0);
429                         if (likely(priv->tx_queue[i]->txcoalescing))
430                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431                 }
432
433                 baddr = &regs->rxic0;
434                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435                         gfar_write(baddr + i, 0);
436                         if (likely(priv->rx_queue[i]->rxcoalescing))
437                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438                 }
439         } else {
440                 /* Backward compatible case -- even if we enable
441                  * multiple queues, there's only single reg to program
442                  */
443                 gfar_write(&regs->txic, 0);
444                 if (likely(priv->tx_queue[0]->txcoalescing))
445                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446
447                 gfar_write(&regs->rxic, 0);
448                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450         }
451 }
452
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455         gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460         struct gfar_private *priv = netdev_priv(dev);
461         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462         unsigned long tx_packets = 0, tx_bytes = 0;
463         int i;
464
465         for (i = 0; i < priv->num_rx_queues; i++) {
466                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469         }
470
471         dev->stats.rx_packets = rx_packets;
472         dev->stats.rx_bytes   = rx_bytes;
473         dev->stats.rx_dropped = rx_dropped;
474
475         for (i = 0; i < priv->num_tx_queues; i++) {
476                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478         }
479
480         dev->stats.tx_bytes   = tx_bytes;
481         dev->stats.tx_packets = tx_packets;
482
483         return &dev->stats;
484 }
485
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488         eth_mac_addr(dev, p);
489
490         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492         return 0;
493 }
494
495 static const struct net_device_ops gfar_netdev_ops = {
496         .ndo_open = gfar_enet_open,
497         .ndo_start_xmit = gfar_start_xmit,
498         .ndo_stop = gfar_close,
499         .ndo_change_mtu = gfar_change_mtu,
500         .ndo_set_features = gfar_set_features,
501         .ndo_set_rx_mode = gfar_set_multi,
502         .ndo_tx_timeout = gfar_timeout,
503         .ndo_do_ioctl = gfar_ioctl,
504         .ndo_get_stats = gfar_get_stats,
505         .ndo_set_mac_address = gfar_set_mac_addr,
506         .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508         .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514         int i;
515         for (i = 0; i < priv->num_grps; i++) {
516                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517                 /* Clear IEVENT */
518                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519
520                 /* Initialize IMASK */
521                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522         }
523 }
524
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527         int i;
528         for (i = 0; i < priv->num_grps; i++) {
529                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530                 /* Unmask the interrupts we look for */
531                 gfar_write(&regs->imask, IMASK_DEFAULT);
532         }
533 }
534
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537         int i;
538
539         for (i = 0; i < priv->num_tx_queues; i++) {
540                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541                                             GFP_KERNEL);
542                 if (!priv->tx_queue[i])
543                         return -ENOMEM;
544
545                 priv->tx_queue[i]->tx_skbuff = NULL;
546                 priv->tx_queue[i]->qindex = i;
547                 priv->tx_queue[i]->dev = priv->ndev;
548                 spin_lock_init(&(priv->tx_queue[i]->txlock));
549         }
550         return 0;
551 }
552
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555         int i;
556
557         for (i = 0; i < priv->num_rx_queues; i++) {
558                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559                                             GFP_KERNEL);
560                 if (!priv->rx_queue[i])
561                         return -ENOMEM;
562
563                 priv->rx_queue[i]->qindex = i;
564                 priv->rx_queue[i]->ndev = priv->ndev;
565         }
566         return 0;
567 }
568
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571         int i;
572
573         for (i = 0; i < priv->num_tx_queues; i++)
574                 kfree(priv->tx_queue[i]);
575 }
576
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579         int i;
580
581         for (i = 0; i < priv->num_rx_queues; i++)
582                 kfree(priv->rx_queue[i]);
583 }
584
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587         int i;
588
589         for (i = 0; i < MAXGROUPS; i++)
590                 if (priv->gfargrp[i].regs)
591                         iounmap(priv->gfargrp[i].regs);
592 }
593
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596         int i, j;
597
598         for (i = 0; i < priv->num_grps; i++)
599                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600                         kfree(priv->gfargrp[i].irqinfo[j]);
601                         priv->gfargrp[i].irqinfo[j] = NULL;
602                 }
603
604         free_netdev(priv->ndev);
605 }
606
607 static void disable_napi(struct gfar_private *priv)
608 {
609         int i;
610
611         for (i = 0; i < priv->num_grps; i++) {
612                 napi_disable(&priv->gfargrp[i].napi_rx);
613                 napi_disable(&priv->gfargrp[i].napi_tx);
614         }
615 }
616
617 static void enable_napi(struct gfar_private *priv)
618 {
619         int i;
620
621         for (i = 0; i < priv->num_grps; i++) {
622                 napi_enable(&priv->gfargrp[i].napi_rx);
623                 napi_enable(&priv->gfargrp[i].napi_tx);
624         }
625 }
626
627 static int gfar_parse_group(struct device_node *np,
628                             struct gfar_private *priv, const char *model)
629 {
630         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631         int i;
632
633         for (i = 0; i < GFAR_NUM_IRQS; i++) {
634                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635                                           GFP_KERNEL);
636                 if (!grp->irqinfo[i])
637                         return -ENOMEM;
638         }
639
640         grp->regs = of_iomap(np, 0);
641         if (!grp->regs)
642                 return -ENOMEM;
643
644         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646         /* If we aren't the FEC we have multiple interrupts */
647         if (model && strcasecmp(model, "FEC")) {
648                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650                 if (!gfar_irq(grp, TX)->irq ||
651                     !gfar_irq(grp, RX)->irq ||
652                     !gfar_irq(grp, ER)->irq)
653                         return -EINVAL;
654         }
655
656         grp->priv = priv;
657         spin_lock_init(&grp->grplock);
658         if (priv->mode == MQ_MG_MODE) {
659                 u32 rxq_mask, txq_mask;
660                 int ret;
661
662                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666                 if (!ret) {
667                         grp->rx_bit_map = rxq_mask ?
668                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669                 }
670
671                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672                 if (!ret) {
673                         grp->tx_bit_map = txq_mask ?
674                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675                 }
676
677                 if (priv->poll_mode == GFAR_SQ_POLLING) {
678                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681                 }
682         } else {
683                 grp->rx_bit_map = 0xFF;
684                 grp->tx_bit_map = 0xFF;
685         }
686
687         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688          * right to left, so we need to revert the 8 bits to get the q index
689          */
690         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694          * also assign queues to groups
695          */
696         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697                 if (!grp->rx_queue)
698                         grp->rx_queue = priv->rx_queue[i];
699                 grp->num_rx_queues++;
700                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702                 priv->rx_queue[i]->grp = grp;
703         }
704
705         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706                 if (!grp->tx_queue)
707                         grp->tx_queue = priv->tx_queue[i];
708                 grp->num_tx_queues++;
709                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710                 priv->tqueue |= (TQUEUE_EN0 >> i);
711                 priv->tx_queue[i]->grp = grp;
712         }
713
714         priv->num_grps++;
715
716         return 0;
717 }
718
719 static int gfar_of_group_count(struct device_node *np)
720 {
721         struct device_node *child;
722         int num = 0;
723
724         for_each_available_child_of_node(np, child)
725                 if (!of_node_cmp(child->name, "queue-group"))
726                         num++;
727
728         return num;
729 }
730
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733         const char *model;
734         const char *ctype;
735         const void *mac_addr;
736         int err = 0, i;
737         struct net_device *dev = NULL;
738         struct gfar_private *priv = NULL;
739         struct device_node *np = ofdev->dev.of_node;
740         struct device_node *child = NULL;
741         u32 stash_len = 0;
742         u32 stash_idx = 0;
743         unsigned int num_tx_qs, num_rx_qs;
744         unsigned short mode, poll_mode;
745
746         if (!np)
747                 return -ENODEV;
748
749         if (of_device_is_compatible(np, "fsl,etsec2")) {
750                 mode = MQ_MG_MODE;
751                 poll_mode = GFAR_SQ_POLLING;
752         } else {
753                 mode = SQ_SG_MODE;
754                 poll_mode = GFAR_SQ_POLLING;
755         }
756
757         if (mode == SQ_SG_MODE) {
758                 num_tx_qs = 1;
759                 num_rx_qs = 1;
760         } else { /* MQ_MG_MODE */
761                 /* get the actual number of supported groups */
762                 unsigned int num_grps = gfar_of_group_count(np);
763
764                 if (num_grps == 0 || num_grps > MAXGROUPS) {
765                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766                                 num_grps);
767                         pr_err("Cannot do alloc_etherdev, aborting\n");
768                         return -EINVAL;
769                 }
770
771                 if (poll_mode == GFAR_SQ_POLLING) {
772                         num_tx_qs = num_grps; /* one txq per int group */
773                         num_rx_qs = num_grps; /* one rxq per int group */
774                 } else { /* GFAR_MQ_POLLING */
775                         u32 tx_queues, rx_queues;
776                         int ret;
777
778                         /* parse the num of HW tx and rx queues */
779                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
780                                                    &tx_queues);
781                         num_tx_qs = ret ? 1 : tx_queues;
782
783                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
784                                                    &rx_queues);
785                         num_rx_qs = ret ? 1 : rx_queues;
786                 }
787         }
788
789         if (num_tx_qs > MAX_TX_QS) {
790                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791                        num_tx_qs, MAX_TX_QS);
792                 pr_err("Cannot do alloc_etherdev, aborting\n");
793                 return -EINVAL;
794         }
795
796         if (num_rx_qs > MAX_RX_QS) {
797                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798                        num_rx_qs, MAX_RX_QS);
799                 pr_err("Cannot do alloc_etherdev, aborting\n");
800                 return -EINVAL;
801         }
802
803         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804         dev = *pdev;
805         if (NULL == dev)
806                 return -ENOMEM;
807
808         priv = netdev_priv(dev);
809         priv->ndev = dev;
810
811         priv->mode = mode;
812         priv->poll_mode = poll_mode;
813
814         priv->num_tx_queues = num_tx_qs;
815         netif_set_real_num_rx_queues(dev, num_rx_qs);
816         priv->num_rx_queues = num_rx_qs;
817
818         err = gfar_alloc_tx_queues(priv);
819         if (err)
820                 goto tx_alloc_failed;
821
822         err = gfar_alloc_rx_queues(priv);
823         if (err)
824                 goto rx_alloc_failed;
825
826         err = of_property_read_string(np, "model", &model);
827         if (err) {
828                 pr_err("Device model property missing, aborting\n");
829                 goto rx_alloc_failed;
830         }
831
832         /* Init Rx queue filer rule set linked list */
833         INIT_LIST_HEAD(&priv->rx_list.list);
834         priv->rx_list.count = 0;
835         mutex_init(&priv->rx_queue_access);
836
837         for (i = 0; i < MAXGROUPS; i++)
838                 priv->gfargrp[i].regs = NULL;
839
840         /* Parse and initialize group specific information */
841         if (priv->mode == MQ_MG_MODE) {
842                 for_each_available_child_of_node(np, child) {
843                         if (of_node_cmp(child->name, "queue-group"))
844                                 continue;
845
846                         err = gfar_parse_group(child, priv, model);
847                         if (err)
848                                 goto err_grp_init;
849                 }
850         } else { /* SQ_SG_MODE */
851                 err = gfar_parse_group(np, priv, model);
852                 if (err)
853                         goto err_grp_init;
854         }
855
856         if (of_property_read_bool(np, "bd-stash")) {
857                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858                 priv->bd_stash_en = 1;
859         }
860
861         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862
863         if (err == 0)
864                 priv->rx_stash_size = stash_len;
865
866         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867
868         if (err == 0)
869                 priv->rx_stash_index = stash_idx;
870
871         if (stash_len || stash_idx)
872                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873
874         mac_addr = of_get_mac_address(np);
875
876         if (mac_addr)
877                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878
879         if (model && !strcasecmp(model, "TSEC"))
880                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881                                      FSL_GIANFAR_DEV_HAS_COALESCE |
882                                      FSL_GIANFAR_DEV_HAS_RMON |
883                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884
885         if (model && !strcasecmp(model, "eTSEC"))
886                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887                                      FSL_GIANFAR_DEV_HAS_COALESCE |
888                                      FSL_GIANFAR_DEV_HAS_RMON |
889                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890                                      FSL_GIANFAR_DEV_HAS_CSUM |
891                                      FSL_GIANFAR_DEV_HAS_VLAN |
892                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894                                      FSL_GIANFAR_DEV_HAS_TIMER |
895                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
896
897         err = of_property_read_string(np, "phy-connection-type", &ctype);
898
899         /* We only care about rgmii-id.  The rest are autodetected */
900         if (err == 0 && !strcmp(ctype, "rgmii-id"))
901                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
902         else
903                 priv->interface = PHY_INTERFACE_MODE_MII;
904
905         if (of_find_property(np, "fsl,magic-packet", NULL))
906                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
907
908         if (of_get_property(np, "fsl,wake-on-filer", NULL))
909                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
910
911         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
912
913         /* In the case of a fixed PHY, the DT node associated
914          * to the PHY is the Ethernet MAC DT node.
915          */
916         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
917                 err = of_phy_register_fixed_link(np);
918                 if (err)
919                         goto err_grp_init;
920
921                 priv->phy_node = of_node_get(np);
922         }
923
924         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
925         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
926
927         return 0;
928
929 err_grp_init:
930         unmap_group_regs(priv);
931 rx_alloc_failed:
932         gfar_free_rx_queues(priv);
933 tx_alloc_failed:
934         gfar_free_tx_queues(priv);
935         free_gfar_dev(priv);
936         return err;
937 }
938
939 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
940 {
941         struct hwtstamp_config config;
942         struct gfar_private *priv = netdev_priv(netdev);
943
944         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
945                 return -EFAULT;
946
947         /* reserved for future extensions */
948         if (config.flags)
949                 return -EINVAL;
950
951         switch (config.tx_type) {
952         case HWTSTAMP_TX_OFF:
953                 priv->hwts_tx_en = 0;
954                 break;
955         case HWTSTAMP_TX_ON:
956                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
957                         return -ERANGE;
958                 priv->hwts_tx_en = 1;
959                 break;
960         default:
961                 return -ERANGE;
962         }
963
964         switch (config.rx_filter) {
965         case HWTSTAMP_FILTER_NONE:
966                 if (priv->hwts_rx_en) {
967                         priv->hwts_rx_en = 0;
968                         reset_gfar(netdev);
969                 }
970                 break;
971         default:
972                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
973                         return -ERANGE;
974                 if (!priv->hwts_rx_en) {
975                         priv->hwts_rx_en = 1;
976                         reset_gfar(netdev);
977                 }
978                 config.rx_filter = HWTSTAMP_FILTER_ALL;
979                 break;
980         }
981
982         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
983                 -EFAULT : 0;
984 }
985
986 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
987 {
988         struct hwtstamp_config config;
989         struct gfar_private *priv = netdev_priv(netdev);
990
991         config.flags = 0;
992         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
993         config.rx_filter = (priv->hwts_rx_en ?
994                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
995
996         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
997                 -EFAULT : 0;
998 }
999
1000 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001 {
1002         struct phy_device *phydev = dev->phydev;
1003
1004         if (!netif_running(dev))
1005                 return -EINVAL;
1006
1007         if (cmd == SIOCSHWTSTAMP)
1008                 return gfar_hwtstamp_set(dev, rq);
1009         if (cmd == SIOCGHWTSTAMP)
1010                 return gfar_hwtstamp_get(dev, rq);
1011
1012         if (!phydev)
1013                 return -ENODEV;
1014
1015         return phy_mii_ioctl(phydev, rq, cmd);
1016 }
1017
1018 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019                                    u32 class)
1020 {
1021         u32 rqfpr = FPR_FILER_MASK;
1022         u32 rqfcr = 0x0;
1023
1024         rqfar--;
1025         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026         priv->ftp_rqfpr[rqfar] = rqfpr;
1027         priv->ftp_rqfcr[rqfar] = rqfcr;
1028         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030         rqfar--;
1031         rqfcr = RQFCR_CMP_NOMATCH;
1032         priv->ftp_rqfpr[rqfar] = rqfpr;
1033         priv->ftp_rqfcr[rqfar] = rqfcr;
1034         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036         rqfar--;
1037         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038         rqfpr = class;
1039         priv->ftp_rqfcr[rqfar] = rqfcr;
1040         priv->ftp_rqfpr[rqfar] = rqfpr;
1041         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043         rqfar--;
1044         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045         rqfpr = class;
1046         priv->ftp_rqfcr[rqfar] = rqfcr;
1047         priv->ftp_rqfpr[rqfar] = rqfpr;
1048         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050         return rqfar;
1051 }
1052
1053 static void gfar_init_filer_table(struct gfar_private *priv)
1054 {
1055         int i = 0x0;
1056         u32 rqfar = MAX_FILER_IDX;
1057         u32 rqfcr = 0x0;
1058         u32 rqfpr = FPR_FILER_MASK;
1059
1060         /* Default rule */
1061         rqfcr = RQFCR_CMP_MATCH;
1062         priv->ftp_rqfcr[rqfar] = rqfcr;
1063         priv->ftp_rqfpr[rqfar] = rqfpr;
1064         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073         /* cur_filer_idx indicated the first non-masked rule */
1074         priv->cur_filer_idx = rqfar;
1075
1076         /* Rest are masked rules */
1077         rqfcr = RQFCR_CMP_NOMATCH;
1078         for (i = 0; i < rqfar; i++) {
1079                 priv->ftp_rqfcr[i] = rqfcr;
1080                 priv->ftp_rqfpr[i] = rqfpr;
1081                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1082         }
1083 }
1084
1085 #ifdef CONFIG_PPC
1086 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087 {
1088         unsigned int pvr = mfspr(SPRN_PVR);
1089         unsigned int svr = mfspr(SPRN_SVR);
1090         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091         unsigned int rev = svr & 0xffff;
1092
1093         /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096                 priv->errata |= GFAR_ERRATA_74;
1097
1098         /* MPC8313 and MPC837x all rev */
1099         if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101                 priv->errata |= GFAR_ERRATA_76;
1102
1103         /* MPC8313 Rev < 2.0 */
1104         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105                 priv->errata |= GFAR_ERRATA_12;
1106 }
1107
1108 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109 {
1110         unsigned int svr = mfspr(SPRN_SVR);
1111
1112         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113                 priv->errata |= GFAR_ERRATA_12;
1114         /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117             ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119 }
1120 #endif
1121
1122 static void gfar_detect_errata(struct gfar_private *priv)
1123 {
1124         struct device *dev = &priv->ofdev->dev;
1125
1126         /* no plans to fix */
1127         priv->errata |= GFAR_ERRATA_A002;
1128
1129 #ifdef CONFIG_PPC
1130         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131                 __gfar_detect_errata_85xx(priv);
1132         else /* non-mpc85xx parts, i.e. e300 core based */
1133                 __gfar_detect_errata_83xx(priv);
1134 #endif
1135
1136         if (priv->errata)
1137                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138                          priv->errata);
1139 }
1140
1141 void gfar_mac_reset(struct gfar_private *priv)
1142 {
1143         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144         u32 tempval;
1145
1146         /* Reset MAC layer */
1147         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149         /* We need to delay at least 3 TX clocks */
1150         udelay(3);
1151
1152         /* the soft reset bit is not self-resetting, so we need to
1153          * clear it before resuming normal operation
1154          */
1155         gfar_write(&regs->maccfg1, 0);
1156
1157         udelay(3);
1158
1159         gfar_rx_offload_en(priv);
1160
1161         /* Initialize the max receive frame/buffer lengths */
1162         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165         /* Initialize the Minimum Frame Length Register */
1166         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168         /* Initialize MACCFG2. */
1169         tempval = MACCFG2_INIT_SETTINGS;
1170
1171         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173          * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174          */
1175         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178         gfar_write(&regs->maccfg2, tempval);
1179
1180         /* Clear mac addr hash registers */
1181         gfar_write(&regs->igaddr0, 0);
1182         gfar_write(&regs->igaddr1, 0);
1183         gfar_write(&regs->igaddr2, 0);
1184         gfar_write(&regs->igaddr3, 0);
1185         gfar_write(&regs->igaddr4, 0);
1186         gfar_write(&regs->igaddr5, 0);
1187         gfar_write(&regs->igaddr6, 0);
1188         gfar_write(&regs->igaddr7, 0);
1189
1190         gfar_write(&regs->gaddr0, 0);
1191         gfar_write(&regs->gaddr1, 0);
1192         gfar_write(&regs->gaddr2, 0);
1193         gfar_write(&regs->gaddr3, 0);
1194         gfar_write(&regs->gaddr4, 0);
1195         gfar_write(&regs->gaddr5, 0);
1196         gfar_write(&regs->gaddr6, 0);
1197         gfar_write(&regs->gaddr7, 0);
1198
1199         if (priv->extended_hash)
1200                 gfar_clear_exact_match(priv->ndev);
1201
1202         gfar_mac_rx_config(priv);
1203
1204         gfar_mac_tx_config(priv);
1205
1206         gfar_set_mac_address(priv->ndev);
1207
1208         gfar_set_multi(priv->ndev);
1209
1210         /* clear ievent and imask before configuring coalescing */
1211         gfar_ints_disable(priv);
1212
1213         /* Configure the coalescing support */
1214         gfar_configure_coalescing_all(priv);
1215 }
1216
1217 static void gfar_hw_init(struct gfar_private *priv)
1218 {
1219         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220         u32 attrs;
1221
1222         /* Stop the DMA engine now, in case it was running before
1223          * (The firmware could have used it, and left it running).
1224          */
1225         gfar_halt(priv);
1226
1227         gfar_mac_reset(priv);
1228
1229         /* Zero out the rmon mib registers if it has them */
1230         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233                 /* Mask off the CAM interrupts */
1234                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1235                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1236         }
1237
1238         /* Initialize ECNTRL */
1239         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241         /* Set the extraction length and index */
1242         attrs = ATTRELI_EL(priv->rx_stash_size) |
1243                 ATTRELI_EI(priv->rx_stash_index);
1244
1245         gfar_write(&regs->attreli, attrs);
1246
1247         /* Start with defaults, and add stashing
1248          * depending on driver parameters
1249          */
1250         attrs = ATTR_INIT_SETTINGS;
1251
1252         if (priv->bd_stash_en)
1253                 attrs |= ATTR_BDSTASH;
1254
1255         if (priv->rx_stash_size != 0)
1256                 attrs |= ATTR_BUFSTASH;
1257
1258         gfar_write(&regs->attr, attrs);
1259
1260         /* FIFO configs */
1261         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265         /* Program the interrupt steering regs, only for MG devices */
1266         if (priv->num_grps > 1)
1267                 gfar_write_isrg(priv);
1268 }
1269
1270 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271 {
1272         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275                 priv->extended_hash = 1;
1276                 priv->hash_width = 9;
1277
1278                 priv->hash_regs[0] = &regs->igaddr0;
1279                 priv->hash_regs[1] = &regs->igaddr1;
1280                 priv->hash_regs[2] = &regs->igaddr2;
1281                 priv->hash_regs[3] = &regs->igaddr3;
1282                 priv->hash_regs[4] = &regs->igaddr4;
1283                 priv->hash_regs[5] = &regs->igaddr5;
1284                 priv->hash_regs[6] = &regs->igaddr6;
1285                 priv->hash_regs[7] = &regs->igaddr7;
1286                 priv->hash_regs[8] = &regs->gaddr0;
1287                 priv->hash_regs[9] = &regs->gaddr1;
1288                 priv->hash_regs[10] = &regs->gaddr2;
1289                 priv->hash_regs[11] = &regs->gaddr3;
1290                 priv->hash_regs[12] = &regs->gaddr4;
1291                 priv->hash_regs[13] = &regs->gaddr5;
1292                 priv->hash_regs[14] = &regs->gaddr6;
1293                 priv->hash_regs[15] = &regs->gaddr7;
1294
1295         } else {
1296                 priv->extended_hash = 0;
1297                 priv->hash_width = 8;
1298
1299                 priv->hash_regs[0] = &regs->gaddr0;
1300                 priv->hash_regs[1] = &regs->gaddr1;
1301                 priv->hash_regs[2] = &regs->gaddr2;
1302                 priv->hash_regs[3] = &regs->gaddr3;
1303                 priv->hash_regs[4] = &regs->gaddr4;
1304                 priv->hash_regs[5] = &regs->gaddr5;
1305                 priv->hash_regs[6] = &regs->gaddr6;
1306                 priv->hash_regs[7] = &regs->gaddr7;
1307         }
1308 }
1309
1310 /* Set up the ethernet device structure, private data,
1311  * and anything else we need before we start
1312  */
1313 static int gfar_probe(struct platform_device *ofdev)
1314 {
1315         struct device_node *np = ofdev->dev.of_node;
1316         struct net_device *dev = NULL;
1317         struct gfar_private *priv = NULL;
1318         int err = 0, i;
1319
1320         err = gfar_of_init(ofdev, &dev);
1321
1322         if (err)
1323                 return err;
1324
1325         priv = netdev_priv(dev);
1326         priv->ndev = dev;
1327         priv->ofdev = ofdev;
1328         priv->dev = &ofdev->dev;
1329         SET_NETDEV_DEV(dev, &ofdev->dev);
1330
1331         INIT_WORK(&priv->reset_task, gfar_reset_task);
1332
1333         platform_set_drvdata(ofdev, priv);
1334
1335         gfar_detect_errata(priv);
1336
1337         /* Set the dev->base_addr to the gfar reg region */
1338         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1339
1340         /* Fill in the dev structure */
1341         dev->watchdog_timeo = TX_TIMEOUT;
1342         /* MTU range: 50 - 9586 */
1343         dev->mtu = 1500;
1344         dev->min_mtu = 50;
1345         dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1346         dev->netdev_ops = &gfar_netdev_ops;
1347         dev->ethtool_ops = &gfar_ethtool_ops;
1348
1349         /* Register for napi ...We are registering NAPI for each grp */
1350         for (i = 0; i < priv->num_grps; i++) {
1351                 if (priv->poll_mode == GFAR_SQ_POLLING) {
1352                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1354                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355                                        gfar_poll_tx_sq, 2);
1356                 } else {
1357                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1358                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
1359                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1360                                        gfar_poll_tx, 2);
1361                 }
1362         }
1363
1364         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1365                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1366                                    NETIF_F_RXCSUM;
1367                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1368                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1369         }
1370
1371         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1372                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1373                                     NETIF_F_HW_VLAN_CTAG_RX;
1374                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1375         }
1376
1377         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1378
1379         gfar_init_addr_hash_table(priv);
1380
1381         /* Insert receive time stamps into padding alignment bytes, and
1382          * plus 2 bytes padding to ensure the cpu alignment.
1383          */
1384         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1385                 priv->padding = 8 + DEFAULT_PADDING;
1386
1387         if (dev->features & NETIF_F_IP_CSUM ||
1388             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1389                 dev->needed_headroom = GMAC_FCB_LEN;
1390
1391         /* Initializing some of the rx/tx queue level parameters */
1392         for (i = 0; i < priv->num_tx_queues; i++) {
1393                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1394                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1395                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1396                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1397         }
1398
1399         for (i = 0; i < priv->num_rx_queues; i++) {
1400                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1401                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1402                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1403         }
1404
1405         /* Always enable rx filer if available */
1406         priv->rx_filer_enable =
1407             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1408         /* Enable most messages by default */
1409         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1410         /* use pritority h/w tx queue scheduling for single queue devices */
1411         if (priv->num_tx_queues == 1)
1412                 priv->prio_sched_en = 1;
1413
1414         set_bit(GFAR_DOWN, &priv->state);
1415
1416         gfar_hw_init(priv);
1417
1418         /* Carrier starts down, phylib will bring it up */
1419         netif_carrier_off(dev);
1420
1421         err = register_netdev(dev);
1422
1423         if (err) {
1424                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1425                 goto register_fail;
1426         }
1427
1428         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1429                 priv->wol_supported |= GFAR_WOL_MAGIC;
1430
1431         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1432             priv->rx_filer_enable)
1433                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1434
1435         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1436
1437         /* fill out IRQ number and name fields */
1438         for (i = 0; i < priv->num_grps; i++) {
1439                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1440                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1441                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1442                                 dev->name, "_g", '0' + i, "_tx");
1443                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1444                                 dev->name, "_g", '0' + i, "_rx");
1445                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1446                                 dev->name, "_g", '0' + i, "_er");
1447                 } else
1448                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1449         }
1450
1451         /* Initialize the filer table */
1452         gfar_init_filer_table(priv);
1453
1454         /* Print out the device info */
1455         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1456
1457         /* Even more device info helps when determining which kernel
1458          * provided which set of benchmarks.
1459          */
1460         netdev_info(dev, "Running with NAPI enabled\n");
1461         for (i = 0; i < priv->num_rx_queues; i++)
1462                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1463                             i, priv->rx_queue[i]->rx_ring_size);
1464         for (i = 0; i < priv->num_tx_queues; i++)
1465                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1466                             i, priv->tx_queue[i]->tx_ring_size);
1467
1468         return 0;
1469
1470 register_fail:
1471         if (of_phy_is_fixed_link(np))
1472                 of_phy_deregister_fixed_link(np);
1473         unmap_group_regs(priv);
1474         gfar_free_rx_queues(priv);
1475         gfar_free_tx_queues(priv);
1476         of_node_put(priv->phy_node);
1477         of_node_put(priv->tbi_node);
1478         free_gfar_dev(priv);
1479         return err;
1480 }
1481
1482 static int gfar_remove(struct platform_device *ofdev)
1483 {
1484         struct gfar_private *priv = platform_get_drvdata(ofdev);
1485         struct device_node *np = ofdev->dev.of_node;
1486
1487         of_node_put(priv->phy_node);
1488         of_node_put(priv->tbi_node);
1489
1490         unregister_netdev(priv->ndev);
1491
1492         if (of_phy_is_fixed_link(np))
1493                 of_phy_deregister_fixed_link(np);
1494
1495         unmap_group_regs(priv);
1496         gfar_free_rx_queues(priv);
1497         gfar_free_tx_queues(priv);
1498         free_gfar_dev(priv);
1499
1500         return 0;
1501 }
1502
1503 #ifdef CONFIG_PM
1504
1505 static void __gfar_filer_disable(struct gfar_private *priv)
1506 {
1507         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1508         u32 temp;
1509
1510         temp = gfar_read(&regs->rctrl);
1511         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1512         gfar_write(&regs->rctrl, temp);
1513 }
1514
1515 static void __gfar_filer_enable(struct gfar_private *priv)
1516 {
1517         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1518         u32 temp;
1519
1520         temp = gfar_read(&regs->rctrl);
1521         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1522         gfar_write(&regs->rctrl, temp);
1523 }
1524
1525 /* Filer rules implementing wol capabilities */
1526 static void gfar_filer_config_wol(struct gfar_private *priv)
1527 {
1528         unsigned int i;
1529         u32 rqfcr;
1530
1531         __gfar_filer_disable(priv);
1532
1533         /* clear the filer table, reject any packet by default */
1534         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1535         for (i = 0; i <= MAX_FILER_IDX; i++)
1536                 gfar_write_filer(priv, i, rqfcr, 0);
1537
1538         i = 0;
1539         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1540                 /* unicast packet, accept it */
1541                 struct net_device *ndev = priv->ndev;
1542                 /* get the default rx queue index */
1543                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1544                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1545                                     (ndev->dev_addr[1] << 8) |
1546                                      ndev->dev_addr[2];
1547
1548                 rqfcr = (qindex << 10) | RQFCR_AND |
1549                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1550
1551                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1552
1553                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1554                                 (ndev->dev_addr[4] << 8) |
1555                                  ndev->dev_addr[5];
1556                 rqfcr = (qindex << 10) | RQFCR_GPI |
1557                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1558                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1559         }
1560
1561         __gfar_filer_enable(priv);
1562 }
1563
1564 static void gfar_filer_restore_table(struct gfar_private *priv)
1565 {
1566         u32 rqfcr, rqfpr;
1567         unsigned int i;
1568
1569         __gfar_filer_disable(priv);
1570
1571         for (i = 0; i <= MAX_FILER_IDX; i++) {
1572                 rqfcr = priv->ftp_rqfcr[i];
1573                 rqfpr = priv->ftp_rqfpr[i];
1574                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1575         }
1576
1577         __gfar_filer_enable(priv);
1578 }
1579
1580 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1581 static void gfar_start_wol_filer(struct gfar_private *priv)
1582 {
1583         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1584         u32 tempval;
1585         int i = 0;
1586
1587         /* Enable Rx hw queues */
1588         gfar_write(&regs->rqueue, priv->rqueue);
1589
1590         /* Initialize DMACTRL to have WWR and WOP */
1591         tempval = gfar_read(&regs->dmactrl);
1592         tempval |= DMACTRL_INIT_SETTINGS;
1593         gfar_write(&regs->dmactrl, tempval);
1594
1595         /* Make sure we aren't stopped */
1596         tempval = gfar_read(&regs->dmactrl);
1597         tempval &= ~DMACTRL_GRS;
1598         gfar_write(&regs->dmactrl, tempval);
1599
1600         for (i = 0; i < priv->num_grps; i++) {
1601                 regs = priv->gfargrp[i].regs;
1602                 /* Clear RHLT, so that the DMA starts polling now */
1603                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1604                 /* enable the Filer General Purpose Interrupt */
1605                 gfar_write(&regs->imask, IMASK_FGPI);
1606         }
1607
1608         /* Enable Rx DMA */
1609         tempval = gfar_read(&regs->maccfg1);
1610         tempval |= MACCFG1_RX_EN;
1611         gfar_write(&regs->maccfg1, tempval);
1612 }
1613
1614 static int gfar_suspend(struct device *dev)
1615 {
1616         struct gfar_private *priv = dev_get_drvdata(dev);
1617         struct net_device *ndev = priv->ndev;
1618         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1619         u32 tempval;
1620         u16 wol = priv->wol_opts;
1621
1622         if (!netif_running(ndev))
1623                 return 0;
1624
1625         disable_napi(priv);
1626         netif_tx_lock(ndev);
1627         netif_device_detach(ndev);
1628         netif_tx_unlock(ndev);
1629
1630         gfar_halt(priv);
1631
1632         if (wol & GFAR_WOL_MAGIC) {
1633                 /* Enable interrupt on Magic Packet */
1634                 gfar_write(&regs->imask, IMASK_MAG);
1635
1636                 /* Enable Magic Packet mode */
1637                 tempval = gfar_read(&regs->maccfg2);
1638                 tempval |= MACCFG2_MPEN;
1639                 gfar_write(&regs->maccfg2, tempval);
1640
1641                 /* re-enable the Rx block */
1642                 tempval = gfar_read(&regs->maccfg1);
1643                 tempval |= MACCFG1_RX_EN;
1644                 gfar_write(&regs->maccfg1, tempval);
1645
1646         } else if (wol & GFAR_WOL_FILER_UCAST) {
1647                 gfar_filer_config_wol(priv);
1648                 gfar_start_wol_filer(priv);
1649
1650         } else {
1651                 phy_stop(ndev->phydev);
1652         }
1653
1654         return 0;
1655 }
1656
1657 static int gfar_resume(struct device *dev)
1658 {
1659         struct gfar_private *priv = dev_get_drvdata(dev);
1660         struct net_device *ndev = priv->ndev;
1661         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1662         u32 tempval;
1663         u16 wol = priv->wol_opts;
1664
1665         if (!netif_running(ndev))
1666                 return 0;
1667
1668         if (wol & GFAR_WOL_MAGIC) {
1669                 /* Disable Magic Packet mode */
1670                 tempval = gfar_read(&regs->maccfg2);
1671                 tempval &= ~MACCFG2_MPEN;
1672                 gfar_write(&regs->maccfg2, tempval);
1673
1674         } else if (wol & GFAR_WOL_FILER_UCAST) {
1675                 /* need to stop rx only, tx is already down */
1676                 gfar_halt(priv);
1677                 gfar_filer_restore_table(priv);
1678
1679         } else {
1680                 phy_start(ndev->phydev);
1681         }
1682
1683         gfar_start(priv);
1684
1685         netif_device_attach(ndev);
1686         enable_napi(priv);
1687
1688         return 0;
1689 }
1690
1691 static int gfar_restore(struct device *dev)
1692 {
1693         struct gfar_private *priv = dev_get_drvdata(dev);
1694         struct net_device *ndev = priv->ndev;
1695
1696         if (!netif_running(ndev)) {
1697                 netif_device_attach(ndev);
1698
1699                 return 0;
1700         }
1701
1702         gfar_init_bds(ndev);
1703
1704         gfar_mac_reset(priv);
1705
1706         gfar_init_tx_rx_base(priv);
1707
1708         gfar_start(priv);
1709
1710         priv->oldlink = 0;
1711         priv->oldspeed = 0;
1712         priv->oldduplex = -1;
1713
1714         if (ndev->phydev)
1715                 phy_start(ndev->phydev);
1716
1717         netif_device_attach(ndev);
1718         enable_napi(priv);
1719
1720         return 0;
1721 }
1722
1723 static const struct dev_pm_ops gfar_pm_ops = {
1724         .suspend = gfar_suspend,
1725         .resume = gfar_resume,
1726         .freeze = gfar_suspend,
1727         .thaw = gfar_resume,
1728         .restore = gfar_restore,
1729 };
1730
1731 #define GFAR_PM_OPS (&gfar_pm_ops)
1732
1733 #else
1734
1735 #define GFAR_PM_OPS NULL
1736
1737 #endif
1738
1739 /* Reads the controller's registers to determine what interface
1740  * connects it to the PHY.
1741  */
1742 static phy_interface_t gfar_get_interface(struct net_device *dev)
1743 {
1744         struct gfar_private *priv = netdev_priv(dev);
1745         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1746         u32 ecntrl;
1747
1748         ecntrl = gfar_read(&regs->ecntrl);
1749
1750         if (ecntrl & ECNTRL_SGMII_MODE)
1751                 return PHY_INTERFACE_MODE_SGMII;
1752
1753         if (ecntrl & ECNTRL_TBI_MODE) {
1754                 if (ecntrl & ECNTRL_REDUCED_MODE)
1755                         return PHY_INTERFACE_MODE_RTBI;
1756                 else
1757                         return PHY_INTERFACE_MODE_TBI;
1758         }
1759
1760         if (ecntrl & ECNTRL_REDUCED_MODE) {
1761                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1762                         return PHY_INTERFACE_MODE_RMII;
1763                 }
1764                 else {
1765                         phy_interface_t interface = priv->interface;
1766
1767                         /* This isn't autodetected right now, so it must
1768                          * be set by the device tree or platform code.
1769                          */
1770                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1771                                 return PHY_INTERFACE_MODE_RGMII_ID;
1772
1773                         return PHY_INTERFACE_MODE_RGMII;
1774                 }
1775         }
1776
1777         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1778                 return PHY_INTERFACE_MODE_GMII;
1779
1780         return PHY_INTERFACE_MODE_MII;
1781 }
1782
1783
1784 /* Initializes driver's PHY state, and attaches to the PHY.
1785  * Returns 0 on success.
1786  */
1787 static int init_phy(struct net_device *dev)
1788 {
1789         struct gfar_private *priv = netdev_priv(dev);
1790         uint gigabit_support =
1791                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1792                 GFAR_SUPPORTED_GBIT : 0;
1793         phy_interface_t interface;
1794         struct phy_device *phydev;
1795         struct ethtool_eee edata;
1796
1797         priv->oldlink = 0;
1798         priv->oldspeed = 0;
1799         priv->oldduplex = -1;
1800
1801         interface = gfar_get_interface(dev);
1802
1803         phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1804                                 interface);
1805         if (!phydev) {
1806                 dev_err(&dev->dev, "could not attach to PHY\n");
1807                 return -ENODEV;
1808         }
1809
1810         if (interface == PHY_INTERFACE_MODE_SGMII)
1811                 gfar_configure_serdes(dev);
1812
1813         /* Remove any features not supported by the controller */
1814         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1815         phydev->advertising = phydev->supported;
1816
1817         /* Add support for flow control, but don't advertise it by default */
1818         phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1819
1820         /* disable EEE autoneg, EEE not supported by eTSEC */
1821         memset(&edata, 0, sizeof(struct ethtool_eee));
1822         phy_ethtool_set_eee(phydev, &edata);
1823
1824         return 0;
1825 }
1826
1827 /* Initialize TBI PHY interface for communicating with the
1828  * SERDES lynx PHY on the chip.  We communicate with this PHY
1829  * through the MDIO bus on each controller, treating it as a
1830  * "normal" PHY at the address found in the TBIPA register.  We assume
1831  * that the TBIPA register is valid.  Either the MDIO bus code will set
1832  * it to a value that doesn't conflict with other PHYs on the bus, or the
1833  * value doesn't matter, as there are no other PHYs on the bus.
1834  */
1835 static void gfar_configure_serdes(struct net_device *dev)
1836 {
1837         struct gfar_private *priv = netdev_priv(dev);
1838         struct phy_device *tbiphy;
1839
1840         if (!priv->tbi_node) {
1841                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1842                                     "device tree specify a tbi-handle\n");
1843                 return;
1844         }
1845
1846         tbiphy = of_phy_find_device(priv->tbi_node);
1847         if (!tbiphy) {
1848                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1849                 return;
1850         }
1851
1852         /* If the link is already up, we must already be ok, and don't need to
1853          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1854          * everything for us?  Resetting it takes the link down and requires
1855          * several seconds for it to come back.
1856          */
1857         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1858                 put_device(&tbiphy->mdio.dev);
1859                 return;
1860         }
1861
1862         /* Single clk mode, mii mode off(for serdes communication) */
1863         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1864
1865         phy_write(tbiphy, MII_ADVERTISE,
1866                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1867                   ADVERTISE_1000XPSE_ASYM);
1868
1869         phy_write(tbiphy, MII_BMCR,
1870                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1871                   BMCR_SPEED1000);
1872
1873         put_device(&tbiphy->mdio.dev);
1874 }
1875
1876 static int __gfar_is_rx_idle(struct gfar_private *priv)
1877 {
1878         u32 res;
1879
1880         /* Normaly TSEC should not hang on GRS commands, so we should
1881          * actually wait for IEVENT_GRSC flag.
1882          */
1883         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1884                 return 0;
1885
1886         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1887          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1888          * and the Rx can be safely reset.
1889          */
1890         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1891         res &= 0x7f807f80;
1892         if ((res & 0xffff) == (res >> 16))
1893                 return 1;
1894
1895         return 0;
1896 }
1897
1898 /* Halt the receive and transmit queues */
1899 static void gfar_halt_nodisable(struct gfar_private *priv)
1900 {
1901         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1902         u32 tempval;
1903         unsigned int timeout;
1904         int stopped;
1905
1906         gfar_ints_disable(priv);
1907
1908         if (gfar_is_dma_stopped(priv))
1909                 return;
1910
1911         /* Stop the DMA, and wait for it to stop */
1912         tempval = gfar_read(&regs->dmactrl);
1913         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1914         gfar_write(&regs->dmactrl, tempval);
1915
1916 retry:
1917         timeout = 1000;
1918         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1919                 cpu_relax();
1920                 timeout--;
1921         }
1922
1923         if (!timeout)
1924                 stopped = gfar_is_dma_stopped(priv);
1925
1926         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1927             !__gfar_is_rx_idle(priv))
1928                 goto retry;
1929 }
1930
1931 /* Halt the receive and transmit queues */
1932 void gfar_halt(struct gfar_private *priv)
1933 {
1934         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1935         u32 tempval;
1936
1937         /* Dissable the Rx/Tx hw queues */
1938         gfar_write(&regs->rqueue, 0);
1939         gfar_write(&regs->tqueue, 0);
1940
1941         mdelay(10);
1942
1943         gfar_halt_nodisable(priv);
1944
1945         /* Disable Rx/Tx DMA */
1946         tempval = gfar_read(&regs->maccfg1);
1947         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1948         gfar_write(&regs->maccfg1, tempval);
1949 }
1950
1951 void stop_gfar(struct net_device *dev)
1952 {
1953         struct gfar_private *priv = netdev_priv(dev);
1954
1955         netif_tx_stop_all_queues(dev);
1956
1957         smp_mb__before_atomic();
1958         set_bit(GFAR_DOWN, &priv->state);
1959         smp_mb__after_atomic();
1960
1961         disable_napi(priv);
1962
1963         /* disable ints and gracefully shut down Rx/Tx DMA */
1964         gfar_halt(priv);
1965
1966         phy_stop(dev->phydev);
1967
1968         free_skb_resources(priv);
1969 }
1970
1971 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1972 {
1973         struct txbd8 *txbdp;
1974         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1975         int i, j;
1976
1977         txbdp = tx_queue->tx_bd_base;
1978
1979         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1980                 if (!tx_queue->tx_skbuff[i])
1981                         continue;
1982
1983                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1984                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1985                 txbdp->lstatus = 0;
1986                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1987                      j++) {
1988                         txbdp++;
1989                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1990                                        be16_to_cpu(txbdp->length),
1991                                        DMA_TO_DEVICE);
1992                 }
1993                 txbdp++;
1994                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1995                 tx_queue->tx_skbuff[i] = NULL;
1996         }
1997         kfree(tx_queue->tx_skbuff);
1998         tx_queue->tx_skbuff = NULL;
1999 }
2000
2001 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2002 {
2003         int i;
2004
2005         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2006
2007         if (rx_queue->skb)
2008                 dev_kfree_skb(rx_queue->skb);
2009
2010         for (i = 0; i < rx_queue->rx_ring_size; i++) {
2011                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2012
2013                 rxbdp->lstatus = 0;
2014                 rxbdp->bufPtr = 0;
2015                 rxbdp++;
2016
2017                 if (!rxb->page)
2018                         continue;
2019
2020                 dma_unmap_page(rx_queue->dev, rxb->dma,
2021                                PAGE_SIZE, DMA_FROM_DEVICE);
2022                 __free_page(rxb->page);
2023
2024                 rxb->page = NULL;
2025         }
2026
2027         kfree(rx_queue->rx_buff);
2028         rx_queue->rx_buff = NULL;
2029 }
2030
2031 /* If there are any tx skbs or rx skbs still around, free them.
2032  * Then free tx_skbuff and rx_skbuff
2033  */
2034 static void free_skb_resources(struct gfar_private *priv)
2035 {
2036         struct gfar_priv_tx_q *tx_queue = NULL;
2037         struct gfar_priv_rx_q *rx_queue = NULL;
2038         int i;
2039
2040         /* Go through all the buffer descriptors and free their data buffers */
2041         for (i = 0; i < priv->num_tx_queues; i++) {
2042                 struct netdev_queue *txq;
2043
2044                 tx_queue = priv->tx_queue[i];
2045                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2046                 if (tx_queue->tx_skbuff)
2047                         free_skb_tx_queue(tx_queue);
2048                 netdev_tx_reset_queue(txq);
2049         }
2050
2051         for (i = 0; i < priv->num_rx_queues; i++) {
2052                 rx_queue = priv->rx_queue[i];
2053                 if (rx_queue->rx_buff)
2054                         free_skb_rx_queue(rx_queue);
2055         }
2056
2057         dma_free_coherent(priv->dev,
2058                           sizeof(struct txbd8) * priv->total_tx_ring_size +
2059                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
2060                           priv->tx_queue[0]->tx_bd_base,
2061                           priv->tx_queue[0]->tx_bd_dma_base);
2062 }
2063
2064 void gfar_start(struct gfar_private *priv)
2065 {
2066         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2067         u32 tempval;
2068         int i = 0;
2069
2070         /* Enable Rx/Tx hw queues */
2071         gfar_write(&regs->rqueue, priv->rqueue);
2072         gfar_write(&regs->tqueue, priv->tqueue);
2073
2074         /* Initialize DMACTRL to have WWR and WOP */
2075         tempval = gfar_read(&regs->dmactrl);
2076         tempval |= DMACTRL_INIT_SETTINGS;
2077         gfar_write(&regs->dmactrl, tempval);
2078
2079         /* Make sure we aren't stopped */
2080         tempval = gfar_read(&regs->dmactrl);
2081         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2082         gfar_write(&regs->dmactrl, tempval);
2083
2084         for (i = 0; i < priv->num_grps; i++) {
2085                 regs = priv->gfargrp[i].regs;
2086                 /* Clear THLT/RHLT, so that the DMA starts polling now */
2087                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2088                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2089         }
2090
2091         /* Enable Rx/Tx DMA */
2092         tempval = gfar_read(&regs->maccfg1);
2093         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2094         gfar_write(&regs->maccfg1, tempval);
2095
2096         gfar_ints_enable(priv);
2097
2098         netif_trans_update(priv->ndev); /* prevent tx timeout */
2099 }
2100
2101 static void free_grp_irqs(struct gfar_priv_grp *grp)
2102 {
2103         free_irq(gfar_irq(grp, TX)->irq, grp);
2104         free_irq(gfar_irq(grp, RX)->irq, grp);
2105         free_irq(gfar_irq(grp, ER)->irq, grp);
2106 }
2107
2108 static int register_grp_irqs(struct gfar_priv_grp *grp)
2109 {
2110         struct gfar_private *priv = grp->priv;
2111         struct net_device *dev = priv->ndev;
2112         int err;
2113
2114         /* If the device has multiple interrupts, register for
2115          * them.  Otherwise, only register for the one
2116          */
2117         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2118                 /* Install our interrupt handlers for Error,
2119                  * Transmit, and Receive
2120                  */
2121                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2122                                   gfar_irq(grp, ER)->name, grp);
2123                 if (err < 0) {
2124                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2125                                   gfar_irq(grp, ER)->irq);
2126
2127                         goto err_irq_fail;
2128                 }
2129                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2130
2131                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2132                                   gfar_irq(grp, TX)->name, grp);
2133                 if (err < 0) {
2134                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2135                                   gfar_irq(grp, TX)->irq);
2136                         goto tx_irq_fail;
2137                 }
2138                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2139                                   gfar_irq(grp, RX)->name, grp);
2140                 if (err < 0) {
2141                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2142                                   gfar_irq(grp, RX)->irq);
2143                         goto rx_irq_fail;
2144                 }
2145                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2146
2147         } else {
2148                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2149                                   gfar_irq(grp, TX)->name, grp);
2150                 if (err < 0) {
2151                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2152                                   gfar_irq(grp, TX)->irq);
2153                         goto err_irq_fail;
2154                 }
2155                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2156         }
2157
2158         return 0;
2159
2160 rx_irq_fail:
2161         free_irq(gfar_irq(grp, TX)->irq, grp);
2162 tx_irq_fail:
2163         free_irq(gfar_irq(grp, ER)->irq, grp);
2164 err_irq_fail:
2165         return err;
2166
2167 }
2168
2169 static void gfar_free_irq(struct gfar_private *priv)
2170 {
2171         int i;
2172
2173         /* Free the IRQs */
2174         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2175                 for (i = 0; i < priv->num_grps; i++)
2176                         free_grp_irqs(&priv->gfargrp[i]);
2177         } else {
2178                 for (i = 0; i < priv->num_grps; i++)
2179                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2180                                  &priv->gfargrp[i]);
2181         }
2182 }
2183
2184 static int gfar_request_irq(struct gfar_private *priv)
2185 {
2186         int err, i, j;
2187
2188         for (i = 0; i < priv->num_grps; i++) {
2189                 err = register_grp_irqs(&priv->gfargrp[i]);
2190                 if (err) {
2191                         for (j = 0; j < i; j++)
2192                                 free_grp_irqs(&priv->gfargrp[j]);
2193                         return err;
2194                 }
2195         }
2196
2197         return 0;
2198 }
2199
2200 /* Bring the controller up and running */
2201 int startup_gfar(struct net_device *ndev)
2202 {
2203         struct gfar_private *priv = netdev_priv(ndev);
2204         int err;
2205
2206         gfar_mac_reset(priv);
2207
2208         err = gfar_alloc_skb_resources(ndev);
2209         if (err)
2210                 return err;
2211
2212         gfar_init_tx_rx_base(priv);
2213
2214         smp_mb__before_atomic();
2215         clear_bit(GFAR_DOWN, &priv->state);
2216         smp_mb__after_atomic();
2217
2218         /* Start Rx/Tx DMA and enable the interrupts */
2219         gfar_start(priv);
2220
2221         /* force link state update after mac reset */
2222         priv->oldlink = 0;
2223         priv->oldspeed = 0;
2224         priv->oldduplex = -1;
2225
2226         phy_start(ndev->phydev);
2227
2228         enable_napi(priv);
2229
2230         netif_tx_wake_all_queues(ndev);
2231
2232         return 0;
2233 }
2234
2235 /* Called when something needs to use the ethernet device
2236  * Returns 0 for success.
2237  */
2238 static int gfar_enet_open(struct net_device *dev)
2239 {
2240         struct gfar_private *priv = netdev_priv(dev);
2241         int err;
2242
2243         err = init_phy(dev);
2244         if (err)
2245                 return err;
2246
2247         err = gfar_request_irq(priv);
2248         if (err)
2249                 return err;
2250
2251         err = startup_gfar(dev);
2252         if (err)
2253                 return err;
2254
2255         return err;
2256 }
2257
2258 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2259 {
2260         struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2261
2262         memset(fcb, 0, GMAC_FCB_LEN);
2263
2264         return fcb;
2265 }
2266
2267 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2268                                     int fcb_length)
2269 {
2270         /* If we're here, it's a IP packet with a TCP or UDP
2271          * payload.  We set it to checksum, using a pseudo-header
2272          * we provide
2273          */
2274         u8 flags = TXFCB_DEFAULT;
2275
2276         /* Tell the controller what the protocol is
2277          * And provide the already calculated phcs
2278          */
2279         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2280                 flags |= TXFCB_UDP;
2281                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2282         } else
2283                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2284
2285         /* l3os is the distance between the start of the
2286          * frame (skb->data) and the start of the IP hdr.
2287          * l4os is the distance between the start of the
2288          * l3 hdr and the l4 hdr
2289          */
2290         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2291         fcb->l4os = skb_network_header_len(skb);
2292
2293         fcb->flags = flags;
2294 }
2295
2296 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2297 {
2298         fcb->flags |= TXFCB_VLN;
2299         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2300 }
2301
2302 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2303                                       struct txbd8 *base, int ring_size)
2304 {
2305         struct txbd8 *new_bd = bdp + stride;
2306
2307         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2308 }
2309
2310 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2311                                       int ring_size)
2312 {
2313         return skip_txbd(bdp, 1, base, ring_size);
2314 }
2315
2316 /* eTSEC12: csum generation not supported for some fcb offsets */
2317 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2318                                        unsigned long fcb_addr)
2319 {
2320         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2321                (fcb_addr % 0x20) > 0x18);
2322 }
2323
2324 /* eTSEC76: csum generation for frames larger than 2500 may
2325  * cause excess delays before start of transmission
2326  */
2327 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2328                                        unsigned int len)
2329 {
2330         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2331                (len > 2500));
2332 }
2333
2334 /* This is called by the kernel when a frame is ready for transmission.
2335  * It is pointed to by the dev->hard_start_xmit function pointer
2336  */
2337 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2338 {
2339         struct gfar_private *priv = netdev_priv(dev);
2340         struct gfar_priv_tx_q *tx_queue = NULL;
2341         struct netdev_queue *txq;
2342         struct gfar __iomem *regs = NULL;
2343         struct txfcb *fcb = NULL;
2344         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2345         u32 lstatus;
2346         skb_frag_t *frag;
2347         int i, rq = 0;
2348         int do_tstamp, do_csum, do_vlan;
2349         u32 bufaddr;
2350         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2351
2352         rq = skb->queue_mapping;
2353         tx_queue = priv->tx_queue[rq];
2354         txq = netdev_get_tx_queue(dev, rq);
2355         base = tx_queue->tx_bd_base;
2356         regs = tx_queue->grp->regs;
2357
2358         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2359         do_vlan = skb_vlan_tag_present(skb);
2360         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2361                     priv->hwts_tx_en;
2362
2363         if (do_csum || do_vlan)
2364                 fcb_len = GMAC_FCB_LEN;
2365
2366         /* check if time stamp should be generated */
2367         if (unlikely(do_tstamp))
2368                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2369
2370         /* make space for additional header when fcb is needed */
2371         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2372                 struct sk_buff *skb_new;
2373
2374                 skb_new = skb_realloc_headroom(skb, fcb_len);
2375                 if (!skb_new) {
2376                         dev->stats.tx_errors++;
2377                         dev_kfree_skb_any(skb);
2378                         return NETDEV_TX_OK;
2379                 }
2380
2381                 if (skb->sk)
2382                         skb_set_owner_w(skb_new, skb->sk);
2383                 dev_consume_skb_any(skb);
2384                 skb = skb_new;
2385         }
2386
2387         /* total number of fragments in the SKB */
2388         nr_frags = skb_shinfo(skb)->nr_frags;
2389
2390         /* calculate the required number of TxBDs for this skb */
2391         if (unlikely(do_tstamp))
2392                 nr_txbds = nr_frags + 2;
2393         else
2394                 nr_txbds = nr_frags + 1;
2395
2396         /* check if there is space to queue this packet */
2397         if (nr_txbds > tx_queue->num_txbdfree) {
2398                 /* no space, stop the queue */
2399                 netif_tx_stop_queue(txq);
2400                 dev->stats.tx_fifo_errors++;
2401                 return NETDEV_TX_BUSY;
2402         }
2403
2404         /* Update transmit stats */
2405         bytes_sent = skb->len;
2406         tx_queue->stats.tx_bytes += bytes_sent;
2407         /* keep Tx bytes on wire for BQL accounting */
2408         GFAR_CB(skb)->bytes_sent = bytes_sent;
2409         tx_queue->stats.tx_packets++;
2410
2411         txbdp = txbdp_start = tx_queue->cur_tx;
2412         lstatus = be32_to_cpu(txbdp->lstatus);
2413
2414         /* Add TxPAL between FCB and frame if required */
2415         if (unlikely(do_tstamp)) {
2416                 skb_push(skb, GMAC_TXPAL_LEN);
2417                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2418         }
2419
2420         /* Add TxFCB if required */
2421         if (fcb_len) {
2422                 fcb = gfar_add_fcb(skb);
2423                 lstatus |= BD_LFLAG(TXBD_TOE);
2424         }
2425
2426         /* Set up checksumming */
2427         if (do_csum) {
2428                 gfar_tx_checksum(skb, fcb, fcb_len);
2429
2430                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2431                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2432                         __skb_pull(skb, GMAC_FCB_LEN);
2433                         skb_checksum_help(skb);
2434                         if (do_vlan || do_tstamp) {
2435                                 /* put back a new fcb for vlan/tstamp TOE */
2436                                 fcb = gfar_add_fcb(skb);
2437                         } else {
2438                                 /* Tx TOE not used */
2439                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2440                                 fcb = NULL;
2441                         }
2442                 }
2443         }
2444
2445         if (do_vlan)
2446                 gfar_tx_vlan(skb, fcb);
2447
2448         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2449                                  DMA_TO_DEVICE);
2450         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2451                 goto dma_map_err;
2452
2453         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2454
2455         /* Time stamp insertion requires one additional TxBD */
2456         if (unlikely(do_tstamp))
2457                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2458                                                  tx_queue->tx_ring_size);
2459
2460         if (likely(!nr_frags)) {
2461                 if (likely(!do_tstamp))
2462                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2463         } else {
2464                 u32 lstatus_start = lstatus;
2465
2466                 /* Place the fragment addresses and lengths into the TxBDs */
2467                 frag = &skb_shinfo(skb)->frags[0];
2468                 for (i = 0; i < nr_frags; i++, frag++) {
2469                         unsigned int size;
2470
2471                         /* Point at the next BD, wrapping as needed */
2472                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2473
2474                         size = skb_frag_size(frag);
2475
2476                         lstatus = be32_to_cpu(txbdp->lstatus) | size |
2477                                   BD_LFLAG(TXBD_READY);
2478
2479                         /* Handle the last BD specially */
2480                         if (i == nr_frags - 1)
2481                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2482
2483                         bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2484                                                    size, DMA_TO_DEVICE);
2485                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2486                                 goto dma_map_err;
2487
2488                         /* set the TxBD length and buffer pointer */
2489                         txbdp->bufPtr = cpu_to_be32(bufaddr);
2490                         txbdp->lstatus = cpu_to_be32(lstatus);
2491                 }
2492
2493                 lstatus = lstatus_start;
2494         }
2495
2496         /* If time stamping is requested one additional TxBD must be set up. The
2497          * first TxBD points to the FCB and must have a data length of
2498          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2499          * the full frame length.
2500          */
2501         if (unlikely(do_tstamp)) {
2502                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2503
2504                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2505                 bufaddr += fcb_len;
2506
2507                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2508                               (skb_headlen(skb) - fcb_len);
2509                 if (!nr_frags)
2510                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2511
2512                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2513                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2514                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2515
2516                 /* Setup tx hardware time stamping */
2517                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2518                 fcb->ptp = 1;
2519         } else {
2520                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2521         }
2522
2523         netdev_tx_sent_queue(txq, bytes_sent);
2524
2525         gfar_wmb();
2526
2527         txbdp_start->lstatus = cpu_to_be32(lstatus);
2528
2529         gfar_wmb(); /* force lstatus write before tx_skbuff */
2530
2531         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2532
2533         /* Update the current skb pointer to the next entry we will use
2534          * (wrapping if necessary)
2535          */
2536         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2537                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2538
2539         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2540
2541         /* We can work in parallel with gfar_clean_tx_ring(), except
2542          * when modifying num_txbdfree. Note that we didn't grab the lock
2543          * when we were reading the num_txbdfree and checking for available
2544          * space, that's because outside of this function it can only grow.
2545          */
2546         spin_lock_bh(&tx_queue->txlock);
2547         /* reduce TxBD free count */
2548         tx_queue->num_txbdfree -= (nr_txbds);
2549         spin_unlock_bh(&tx_queue->txlock);
2550
2551         /* If the next BD still needs to be cleaned up, then the bds
2552          * are full.  We need to tell the kernel to stop sending us stuff.
2553          */
2554         if (!tx_queue->num_txbdfree) {
2555                 netif_tx_stop_queue(txq);
2556
2557                 dev->stats.tx_fifo_errors++;
2558         }
2559
2560         /* Tell the DMA to go go go */
2561         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2562
2563         return NETDEV_TX_OK;
2564
2565 dma_map_err:
2566         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2567         if (do_tstamp)
2568                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2569         for (i = 0; i < nr_frags; i++) {
2570                 lstatus = be32_to_cpu(txbdp->lstatus);
2571                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2572                         break;
2573
2574                 lstatus &= ~BD_LFLAG(TXBD_READY);
2575                 txbdp->lstatus = cpu_to_be32(lstatus);
2576                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2577                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2578                                DMA_TO_DEVICE);
2579                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2580         }
2581         gfar_wmb();
2582         dev_kfree_skb_any(skb);
2583         return NETDEV_TX_OK;
2584 }
2585
2586 /* Stops the kernel queue, and halts the controller */
2587 static int gfar_close(struct net_device *dev)
2588 {
2589         struct gfar_private *priv = netdev_priv(dev);
2590
2591         cancel_work_sync(&priv->reset_task);
2592         stop_gfar(dev);
2593
2594         /* Disconnect from the PHY */
2595         phy_disconnect(dev->phydev);
2596
2597         gfar_free_irq(priv);
2598
2599         return 0;
2600 }
2601
2602 /* Changes the mac address if the controller is not running. */
2603 static int gfar_set_mac_address(struct net_device *dev)
2604 {
2605         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2606
2607         return 0;
2608 }
2609
2610 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2611 {
2612         struct gfar_private *priv = netdev_priv(dev);
2613
2614         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2615                 cpu_relax();
2616
2617         if (dev->flags & IFF_UP)
2618                 stop_gfar(dev);
2619
2620         dev->mtu = new_mtu;
2621
2622         if (dev->flags & IFF_UP)
2623                 startup_gfar(dev);
2624
2625         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2626
2627         return 0;
2628 }
2629
2630 void reset_gfar(struct net_device *ndev)
2631 {
2632         struct gfar_private *priv = netdev_priv(ndev);
2633
2634         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2635                 cpu_relax();
2636
2637         stop_gfar(ndev);
2638         startup_gfar(ndev);
2639
2640         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2641 }
2642
2643 /* gfar_reset_task gets scheduled when a packet has not been
2644  * transmitted after a set amount of time.
2645  * For now, assume that clearing out all the structures, and
2646  * starting over will fix the problem.
2647  */
2648 static void gfar_reset_task(struct work_struct *work)
2649 {
2650         struct gfar_private *priv = container_of(work, struct gfar_private,
2651                                                  reset_task);
2652         reset_gfar(priv->ndev);
2653 }
2654
2655 static void gfar_timeout(struct net_device *dev)
2656 {
2657         struct gfar_private *priv = netdev_priv(dev);
2658
2659         dev->stats.tx_errors++;
2660         schedule_work(&priv->reset_task);
2661 }
2662
2663 /* Interrupt Handler for Transmit complete */
2664 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2665 {
2666         struct net_device *dev = tx_queue->dev;
2667         struct netdev_queue *txq;
2668         struct gfar_private *priv = netdev_priv(dev);
2669         struct txbd8 *bdp, *next = NULL;
2670         struct txbd8 *lbdp = NULL;
2671         struct txbd8 *base = tx_queue->tx_bd_base;
2672         struct sk_buff *skb;
2673         int skb_dirtytx;
2674         int tx_ring_size = tx_queue->tx_ring_size;
2675         int frags = 0, nr_txbds = 0;
2676         int i;
2677         int howmany = 0;
2678         int tqi = tx_queue->qindex;
2679         unsigned int bytes_sent = 0;
2680         u32 lstatus;
2681         size_t buflen;
2682
2683         txq = netdev_get_tx_queue(dev, tqi);
2684         bdp = tx_queue->dirty_tx;
2685         skb_dirtytx = tx_queue->skb_dirtytx;
2686
2687         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2688
2689                 frags = skb_shinfo(skb)->nr_frags;
2690
2691                 /* When time stamping, one additional TxBD must be freed.
2692                  * Also, we need to dma_unmap_single() the TxPAL.
2693                  */
2694                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2695                         nr_txbds = frags + 2;
2696                 else
2697                         nr_txbds = frags + 1;
2698
2699                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2700
2701                 lstatus = be32_to_cpu(lbdp->lstatus);
2702
2703                 /* Only clean completed frames */
2704                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2705                     (lstatus & BD_LENGTH_MASK))
2706                         break;
2707
2708                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2709                         next = next_txbd(bdp, base, tx_ring_size);
2710                         buflen = be16_to_cpu(next->length) +
2711                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2712                 } else
2713                         buflen = be16_to_cpu(bdp->length);
2714
2715                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2716                                  buflen, DMA_TO_DEVICE);
2717
2718                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2719                         struct skb_shared_hwtstamps shhwtstamps;
2720                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2721                                           ~0x7UL);
2722
2723                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2724                         shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2725                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2726                         skb_tstamp_tx(skb, &shhwtstamps);
2727                         gfar_clear_txbd_status(bdp);
2728                         bdp = next;
2729                 }
2730
2731                 gfar_clear_txbd_status(bdp);
2732                 bdp = next_txbd(bdp, base, tx_ring_size);
2733
2734                 for (i = 0; i < frags; i++) {
2735                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2736                                        be16_to_cpu(bdp->length),
2737                                        DMA_TO_DEVICE);
2738                         gfar_clear_txbd_status(bdp);
2739                         bdp = next_txbd(bdp, base, tx_ring_size);
2740                 }
2741
2742                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2743
2744                 dev_kfree_skb_any(skb);
2745
2746                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2747
2748                 skb_dirtytx = (skb_dirtytx + 1) &
2749                               TX_RING_MOD_MASK(tx_ring_size);
2750
2751                 howmany++;
2752                 spin_lock(&tx_queue->txlock);
2753                 tx_queue->num_txbdfree += nr_txbds;
2754                 spin_unlock(&tx_queue->txlock);
2755         }
2756
2757         /* If we freed a buffer, we can restart transmission, if necessary */
2758         if (tx_queue->num_txbdfree &&
2759             netif_tx_queue_stopped(txq) &&
2760             !(test_bit(GFAR_DOWN, &priv->state)))
2761                 netif_wake_subqueue(priv->ndev, tqi);
2762
2763         /* Update dirty indicators */
2764         tx_queue->skb_dirtytx = skb_dirtytx;
2765         tx_queue->dirty_tx = bdp;
2766
2767         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2768 }
2769
2770 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2771 {
2772         struct page *page;
2773         dma_addr_t addr;
2774
2775         page = dev_alloc_page();
2776         if (unlikely(!page))
2777                 return false;
2778
2779         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2780         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2781                 __free_page(page);
2782
2783                 return false;
2784         }
2785
2786         rxb->dma = addr;
2787         rxb->page = page;
2788         rxb->page_offset = 0;
2789
2790         return true;
2791 }
2792
2793 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2794 {
2795         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2796         struct gfar_extra_stats *estats = &priv->extra_stats;
2797
2798         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2799         atomic64_inc(&estats->rx_alloc_err);
2800 }
2801
2802 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2803                                 int alloc_cnt)
2804 {
2805         struct rxbd8 *bdp;
2806         struct gfar_rx_buff *rxb;
2807         int i;
2808
2809         i = rx_queue->next_to_use;
2810         bdp = &rx_queue->rx_bd_base[i];
2811         rxb = &rx_queue->rx_buff[i];
2812
2813         while (alloc_cnt--) {
2814                 /* try reuse page */
2815                 if (unlikely(!rxb->page)) {
2816                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2817                                 gfar_rx_alloc_err(rx_queue);
2818                                 break;
2819                         }
2820                 }
2821
2822                 /* Setup the new RxBD */
2823                 gfar_init_rxbdp(rx_queue, bdp,
2824                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2825
2826                 /* Update to the next pointer */
2827                 bdp++;
2828                 rxb++;
2829
2830                 if (unlikely(++i == rx_queue->rx_ring_size)) {
2831                         i = 0;
2832                         bdp = rx_queue->rx_bd_base;
2833                         rxb = rx_queue->rx_buff;
2834                 }
2835         }
2836
2837         rx_queue->next_to_use = i;
2838         rx_queue->next_to_alloc = i;
2839 }
2840
2841 static void count_errors(u32 lstatus, struct net_device *ndev)
2842 {
2843         struct gfar_private *priv = netdev_priv(ndev);
2844         struct net_device_stats *stats = &ndev->stats;
2845         struct gfar_extra_stats *estats = &priv->extra_stats;
2846
2847         /* If the packet was truncated, none of the other errors matter */
2848         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2849                 stats->rx_length_errors++;
2850
2851                 atomic64_inc(&estats->rx_trunc);
2852
2853                 return;
2854         }
2855         /* Count the errors, if there were any */
2856         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2857                 stats->rx_length_errors++;
2858
2859                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2860                         atomic64_inc(&estats->rx_large);
2861                 else
2862                         atomic64_inc(&estats->rx_short);
2863         }
2864         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2865                 stats->rx_frame_errors++;
2866                 atomic64_inc(&estats->rx_nonoctet);
2867         }
2868         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2869                 atomic64_inc(&estats->rx_crcerr);
2870                 stats->rx_crc_errors++;
2871         }
2872         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2873                 atomic64_inc(&estats->rx_overrun);
2874                 stats->rx_over_errors++;
2875         }
2876 }
2877
2878 irqreturn_t gfar_receive(int irq, void *grp_id)
2879 {
2880         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2881         unsigned long flags;
2882         u32 imask, ievent;
2883
2884         ievent = gfar_read(&grp->regs->ievent);
2885
2886         if (unlikely(ievent & IEVENT_FGPI)) {
2887                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2888                 return IRQ_HANDLED;
2889         }
2890
2891         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2892                 spin_lock_irqsave(&grp->grplock, flags);
2893                 imask = gfar_read(&grp->regs->imask);
2894                 imask &= IMASK_RX_DISABLED;
2895                 gfar_write(&grp->regs->imask, imask);
2896                 spin_unlock_irqrestore(&grp->grplock, flags);
2897                 __napi_schedule(&grp->napi_rx);
2898         } else {
2899                 /* Clear IEVENT, so interrupts aren't called again
2900                  * because of the packets that have already arrived.
2901                  */
2902                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2903         }
2904
2905         return IRQ_HANDLED;
2906 }
2907
2908 /* Interrupt Handler for Transmit complete */
2909 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2910 {
2911         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2912         unsigned long flags;
2913         u32 imask;
2914
2915         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2916                 spin_lock_irqsave(&grp->grplock, flags);
2917                 imask = gfar_read(&grp->regs->imask);
2918                 imask &= IMASK_TX_DISABLED;
2919                 gfar_write(&grp->regs->imask, imask);
2920                 spin_unlock_irqrestore(&grp->grplock, flags);
2921                 __napi_schedule(&grp->napi_tx);
2922         } else {
2923                 /* Clear IEVENT, so interrupts aren't called again
2924                  * because of the packets that have already arrived.
2925                  */
2926                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2927         }
2928
2929         return IRQ_HANDLED;
2930 }
2931
2932 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2933                              struct sk_buff *skb, bool first)
2934 {
2935         unsigned int size = lstatus & BD_LENGTH_MASK;
2936         struct page *page = rxb->page;
2937         bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
2938
2939         /* Remove the FCS from the packet length */
2940         if (last)
2941                 size -= ETH_FCS_LEN;
2942
2943         if (likely(first)) {
2944                 skb_put(skb, size);
2945         } else {
2946                 /* the last fragments' length contains the full frame length */
2947                 if (last)
2948                         size -= skb->len;
2949
2950                 /* in case the last fragment consisted only of the FCS */
2951                 if (size > 0)
2952                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2953                                         rxb->page_offset + RXBUF_ALIGNMENT,
2954                                         size, GFAR_RXB_TRUESIZE);
2955         }
2956
2957         /* try reuse page */
2958         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2959                 return false;
2960
2961         /* change offset to the other half */
2962         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2963
2964         page_ref_inc(page);
2965
2966         return true;
2967 }
2968
2969 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2970                                struct gfar_rx_buff *old_rxb)
2971 {
2972         struct gfar_rx_buff *new_rxb;
2973         u16 nta = rxq->next_to_alloc;
2974
2975         new_rxb = &rxq->rx_buff[nta];
2976
2977         /* find next buf that can reuse a page */
2978         nta++;
2979         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2980
2981         /* copy page reference */
2982         *new_rxb = *old_rxb;
2983
2984         /* sync for use by the device */
2985         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2986                                          old_rxb->page_offset,
2987                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2988 }
2989
2990 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2991                                             u32 lstatus, struct sk_buff *skb)
2992 {
2993         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2994         struct page *page = rxb->page;
2995         bool first = false;
2996
2997         if (likely(!skb)) {
2998                 void *buff_addr = page_address(page) + rxb->page_offset;
2999
3000                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
3001                 if (unlikely(!skb)) {
3002                         gfar_rx_alloc_err(rx_queue);
3003                         return NULL;
3004                 }
3005                 skb_reserve(skb, RXBUF_ALIGNMENT);
3006                 first = true;
3007         }
3008
3009         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3010                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3011
3012         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3013                 /* reuse the free half of the page */
3014                 gfar_reuse_rx_page(rx_queue, rxb);
3015         } else {
3016                 /* page cannot be reused, unmap it */
3017                 dma_unmap_page(rx_queue->dev, rxb->dma,
3018                                PAGE_SIZE, DMA_FROM_DEVICE);
3019         }
3020
3021         /* clear rxb content */
3022         rxb->page = NULL;
3023
3024         return skb;
3025 }
3026
3027 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3028 {
3029         /* If valid headers were found, and valid sums
3030          * were verified, then we tell the kernel that no
3031          * checksumming is necessary.  Otherwise, it is [FIXME]
3032          */
3033         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3034             (RXFCB_CIP | RXFCB_CTU))
3035                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3036         else
3037                 skb_checksum_none_assert(skb);
3038 }
3039
3040 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3041 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3042 {
3043         struct gfar_private *priv = netdev_priv(ndev);
3044         struct rxfcb *fcb = NULL;
3045
3046         /* fcb is at the beginning if exists */
3047         fcb = (struct rxfcb *)skb->data;
3048
3049         /* Remove the FCB from the skb
3050          * Remove the padded bytes, if there are any
3051          */
3052         if (priv->uses_rxfcb)
3053                 skb_pull(skb, GMAC_FCB_LEN);
3054
3055         /* Get receive timestamp from the skb */
3056         if (priv->hwts_rx_en) {
3057                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3058                 u64 *ns = (u64 *) skb->data;
3059
3060                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3061                 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3062         }
3063
3064         if (priv->padding)
3065                 skb_pull(skb, priv->padding);
3066
3067         if (ndev->features & NETIF_F_RXCSUM)
3068                 gfar_rx_checksum(skb, fcb);
3069
3070         /* Tell the skb what kind of packet this is */
3071         skb->protocol = eth_type_trans(skb, ndev);
3072
3073         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3074          * Even if vlan rx accel is disabled, on some chips
3075          * RXFCB_VLN is pseudo randomly set.
3076          */
3077         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3078             be16_to_cpu(fcb->flags) & RXFCB_VLN)
3079                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3080                                        be16_to_cpu(fcb->vlctl));
3081 }
3082
3083 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3084  * until the budget/quota has been reached. Returns the number
3085  * of frames handled
3086  */
3087 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3088 {
3089         struct net_device *ndev = rx_queue->ndev;
3090         struct gfar_private *priv = netdev_priv(ndev);
3091         struct rxbd8 *bdp;
3092         int i, howmany = 0;
3093         struct sk_buff *skb = rx_queue->skb;
3094         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3095         unsigned int total_bytes = 0, total_pkts = 0;
3096
3097         /* Get the first full descriptor */
3098         i = rx_queue->next_to_clean;
3099
3100         while (rx_work_limit--) {
3101                 u32 lstatus;
3102
3103                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3104                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3105                         cleaned_cnt = 0;
3106                 }
3107
3108                 bdp = &rx_queue->rx_bd_base[i];
3109                 lstatus = be32_to_cpu(bdp->lstatus);
3110                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3111                         break;
3112
3113                 /* order rx buffer descriptor reads */
3114                 rmb();
3115
3116                 /* fetch next to clean buffer from the ring */
3117                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3118                 if (unlikely(!skb))
3119                         break;
3120
3121                 cleaned_cnt++;
3122                 howmany++;
3123
3124                 if (unlikely(++i == rx_queue->rx_ring_size))
3125                         i = 0;
3126
3127                 rx_queue->next_to_clean = i;
3128
3129                 /* fetch next buffer if not the last in frame */
3130                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3131                         continue;
3132
3133                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3134                         count_errors(lstatus, ndev);
3135
3136                         /* discard faulty buffer */
3137                         dev_kfree_skb(skb);
3138                         skb = NULL;
3139                         rx_queue->stats.rx_dropped++;
3140                         continue;
3141                 }
3142
3143                 /* Increment the number of packets */
3144                 total_pkts++;
3145                 total_bytes += skb->len;
3146
3147                 skb_record_rx_queue(skb, rx_queue->qindex);
3148
3149                 gfar_process_frame(ndev, skb);
3150
3151                 /* Send the packet up the stack */
3152                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3153
3154                 skb = NULL;
3155         }
3156
3157         /* Store incomplete frames for completion */
3158         rx_queue->skb = skb;
3159
3160         rx_queue->stats.rx_packets += total_pkts;
3161         rx_queue->stats.rx_bytes += total_bytes;
3162
3163         if (cleaned_cnt)
3164                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3165
3166         /* Update Last Free RxBD pointer for LFC */
3167         if (unlikely(priv->tx_actual_en)) {
3168                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3169
3170                 gfar_write(rx_queue->rfbptr, bdp_dma);
3171         }
3172
3173         return howmany;
3174 }
3175
3176 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3177 {
3178         struct gfar_priv_grp *gfargrp =
3179                 container_of(napi, struct gfar_priv_grp, napi_rx);
3180         struct gfar __iomem *regs = gfargrp->regs;
3181         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3182         int work_done = 0;
3183
3184         /* Clear IEVENT, so interrupts aren't called again
3185          * because of the packets that have already arrived
3186          */
3187         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3188
3189         work_done = gfar_clean_rx_ring(rx_queue, budget);
3190
3191         if (work_done < budget) {
3192                 u32 imask;
3193                 napi_complete_done(napi, work_done);
3194                 /* Clear the halt bit in RSTAT */
3195                 gfar_write(&regs->rstat, gfargrp->rstat);
3196
3197                 spin_lock_irq(&gfargrp->grplock);
3198                 imask = gfar_read(&regs->imask);
3199                 imask |= IMASK_RX_DEFAULT;
3200                 gfar_write(&regs->imask, imask);
3201                 spin_unlock_irq(&gfargrp->grplock);
3202         }
3203
3204         return work_done;
3205 }
3206
3207 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3208 {
3209         struct gfar_priv_grp *gfargrp =
3210                 container_of(napi, struct gfar_priv_grp, napi_tx);
3211         struct gfar __iomem *regs = gfargrp->regs;
3212         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3213         u32 imask;
3214
3215         /* Clear IEVENT, so interrupts aren't called again
3216          * because of the packets that have already arrived
3217          */
3218         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3219
3220         /* run Tx cleanup to completion */
3221         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3222                 gfar_clean_tx_ring(tx_queue);
3223
3224         napi_complete(napi);
3225
3226         spin_lock_irq(&gfargrp->grplock);
3227         imask = gfar_read(&regs->imask);
3228         imask |= IMASK_TX_DEFAULT;
3229         gfar_write(&regs->imask, imask);
3230         spin_unlock_irq(&gfargrp->grplock);
3231
3232         return 0;
3233 }
3234
3235 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3236 {
3237         struct gfar_priv_grp *gfargrp =
3238                 container_of(napi, struct gfar_priv_grp, napi_rx);
3239         struct gfar_private *priv = gfargrp->priv;
3240         struct gfar __iomem *regs = gfargrp->regs;
3241         struct gfar_priv_rx_q *rx_queue = NULL;
3242         int work_done = 0, work_done_per_q = 0;
3243         int i, budget_per_q = 0;
3244         unsigned long rstat_rxf;
3245         int num_act_queues;
3246
3247         /* Clear IEVENT, so interrupts aren't called again
3248          * because of the packets that have already arrived
3249          */
3250         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3251
3252         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3253
3254         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3255         if (num_act_queues)
3256                 budget_per_q = budget/num_act_queues;
3257
3258         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3259                 /* skip queue if not active */
3260                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3261                         continue;
3262
3263                 rx_queue = priv->rx_queue[i];
3264                 work_done_per_q =
3265                         gfar_clean_rx_ring(rx_queue, budget_per_q);
3266                 work_done += work_done_per_q;
3267
3268                 /* finished processing this queue */
3269                 if (work_done_per_q < budget_per_q) {
3270                         /* clear active queue hw indication */
3271                         gfar_write(&regs->rstat,
3272                                    RSTAT_CLEAR_RXF0 >> i);
3273                         num_act_queues--;
3274
3275                         if (!num_act_queues)
3276                                 break;
3277                 }
3278         }
3279
3280         if (!num_act_queues) {
3281                 u32 imask;
3282                 napi_complete_done(napi, work_done);
3283
3284                 /* Clear the halt bit in RSTAT */
3285                 gfar_write(&regs->rstat, gfargrp->rstat);
3286
3287                 spin_lock_irq(&gfargrp->grplock);
3288                 imask = gfar_read(&regs->imask);
3289                 imask |= IMASK_RX_DEFAULT;
3290                 gfar_write(&regs->imask, imask);
3291                 spin_unlock_irq(&gfargrp->grplock);
3292         }
3293
3294         return work_done;
3295 }
3296
3297 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3298 {
3299         struct gfar_priv_grp *gfargrp =
3300                 container_of(napi, struct gfar_priv_grp, napi_tx);
3301         struct gfar_private *priv = gfargrp->priv;
3302         struct gfar __iomem *regs = gfargrp->regs;
3303         struct gfar_priv_tx_q *tx_queue = NULL;
3304         int has_tx_work = 0;
3305         int i;
3306
3307         /* Clear IEVENT, so interrupts aren't called again
3308          * because of the packets that have already arrived
3309          */
3310         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3311
3312         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3313                 tx_queue = priv->tx_queue[i];
3314                 /* run Tx cleanup to completion */
3315                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3316                         gfar_clean_tx_ring(tx_queue);
3317                         has_tx_work = 1;
3318                 }
3319         }
3320
3321         if (!has_tx_work) {
3322                 u32 imask;
3323                 napi_complete(napi);
3324
3325                 spin_lock_irq(&gfargrp->grplock);
3326                 imask = gfar_read(&regs->imask);
3327                 imask |= IMASK_TX_DEFAULT;
3328                 gfar_write(&regs->imask, imask);
3329                 spin_unlock_irq(&gfargrp->grplock);
3330         }
3331
3332         return 0;
3333 }
3334
3335
3336 #ifdef CONFIG_NET_POLL_CONTROLLER
3337 /* Polling 'interrupt' - used by things like netconsole to send skbs
3338  * without having to re-enable interrupts. It's not called while
3339  * the interrupt routine is executing.
3340  */
3341 static void gfar_netpoll(struct net_device *dev)
3342 {
3343         struct gfar_private *priv = netdev_priv(dev);
3344         int i;
3345
3346         /* If the device has multiple interrupts, run tx/rx */
3347         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3348                 for (i = 0; i < priv->num_grps; i++) {
3349                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3350
3351                         disable_irq(gfar_irq(grp, TX)->irq);
3352                         disable_irq(gfar_irq(grp, RX)->irq);
3353                         disable_irq(gfar_irq(grp, ER)->irq);
3354                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3355                         enable_irq(gfar_irq(grp, ER)->irq);
3356                         enable_irq(gfar_irq(grp, RX)->irq);
3357                         enable_irq(gfar_irq(grp, TX)->irq);
3358                 }
3359         } else {
3360                 for (i = 0; i < priv->num_grps; i++) {
3361                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3362
3363                         disable_irq(gfar_irq(grp, TX)->irq);
3364                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3365                         enable_irq(gfar_irq(grp, TX)->irq);
3366                 }
3367         }
3368 }
3369 #endif
3370
3371 /* The interrupt handler for devices with one interrupt */
3372 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3373 {
3374         struct gfar_priv_grp *gfargrp = grp_id;
3375
3376         /* Save ievent for future reference */
3377         u32 events = gfar_read(&gfargrp->regs->ievent);
3378
3379         /* Check for reception */
3380         if (events & IEVENT_RX_MASK)
3381                 gfar_receive(irq, grp_id);
3382
3383         /* Check for transmit completion */
3384         if (events & IEVENT_TX_MASK)
3385                 gfar_transmit(irq, grp_id);
3386
3387         /* Check for errors */
3388         if (events & IEVENT_ERR_MASK)
3389                 gfar_error(irq, grp_id);
3390
3391         return IRQ_HANDLED;
3392 }
3393
3394 /* Called every time the controller might need to be made
3395  * aware of new link state.  The PHY code conveys this
3396  * information through variables in the phydev structure, and this
3397  * function converts those variables into the appropriate
3398  * register values, and can bring down the device if needed.
3399  */
3400 static void adjust_link(struct net_device *dev)
3401 {
3402         struct gfar_private *priv = netdev_priv(dev);
3403         struct phy_device *phydev = dev->phydev;
3404
3405         if (unlikely(phydev->link != priv->oldlink ||
3406                      (phydev->link && (phydev->duplex != priv->oldduplex ||
3407                                        phydev->speed != priv->oldspeed))))
3408                 gfar_update_link_state(priv);
3409 }
3410
3411 /* Update the hash table based on the current list of multicast
3412  * addresses we subscribe to.  Also, change the promiscuity of
3413  * the device based on the flags (this function is called
3414  * whenever dev->flags is changed
3415  */
3416 static void gfar_set_multi(struct net_device *dev)
3417 {
3418         struct netdev_hw_addr *ha;
3419         struct gfar_private *priv = netdev_priv(dev);
3420         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3421         u32 tempval;
3422
3423         if (dev->flags & IFF_PROMISC) {
3424                 /* Set RCTRL to PROM */
3425                 tempval = gfar_read(&regs->rctrl);
3426                 tempval |= RCTRL_PROM;
3427                 gfar_write(&regs->rctrl, tempval);
3428         } else {
3429                 /* Set RCTRL to not PROM */
3430                 tempval = gfar_read(&regs->rctrl);
3431                 tempval &= ~(RCTRL_PROM);
3432                 gfar_write(&regs->rctrl, tempval);
3433         }
3434
3435         if (dev->flags & IFF_ALLMULTI) {
3436                 /* Set the hash to rx all multicast frames */
3437                 gfar_write(&regs->igaddr0, 0xffffffff);
3438                 gfar_write(&regs->igaddr1, 0xffffffff);
3439                 gfar_write(&regs->igaddr2, 0xffffffff);
3440                 gfar_write(&regs->igaddr3, 0xffffffff);
3441                 gfar_write(&regs->igaddr4, 0xffffffff);
3442                 gfar_write(&regs->igaddr5, 0xffffffff);
3443                 gfar_write(&regs->igaddr6, 0xffffffff);
3444                 gfar_write(&regs->igaddr7, 0xffffffff);
3445                 gfar_write(&regs->gaddr0, 0xffffffff);
3446                 gfar_write(&regs->gaddr1, 0xffffffff);
3447                 gfar_write(&regs->gaddr2, 0xffffffff);
3448                 gfar_write(&regs->gaddr3, 0xffffffff);
3449                 gfar_write(&regs->gaddr4, 0xffffffff);
3450                 gfar_write(&regs->gaddr5, 0xffffffff);
3451                 gfar_write(&regs->gaddr6, 0xffffffff);
3452                 gfar_write(&regs->gaddr7, 0xffffffff);
3453         } else {
3454                 int em_num;
3455                 int idx;
3456
3457                 /* zero out the hash */
3458                 gfar_write(&regs->igaddr0, 0x0);
3459                 gfar_write(&regs->igaddr1, 0x0);
3460                 gfar_write(&regs->igaddr2, 0x0);
3461                 gfar_write(&regs->igaddr3, 0x0);
3462                 gfar_write(&regs->igaddr4, 0x0);
3463                 gfar_write(&regs->igaddr5, 0x0);
3464                 gfar_write(&regs->igaddr6, 0x0);
3465                 gfar_write(&regs->igaddr7, 0x0);
3466                 gfar_write(&regs->gaddr0, 0x0);
3467                 gfar_write(&regs->gaddr1, 0x0);
3468                 gfar_write(&regs->gaddr2, 0x0);
3469                 gfar_write(&regs->gaddr3, 0x0);
3470                 gfar_write(&regs->gaddr4, 0x0);
3471                 gfar_write(&regs->gaddr5, 0x0);
3472                 gfar_write(&regs->gaddr6, 0x0);
3473                 gfar_write(&regs->gaddr7, 0x0);
3474
3475                 /* If we have extended hash tables, we need to
3476                  * clear the exact match registers to prepare for
3477                  * setting them
3478                  */
3479                 if (priv->extended_hash) {
3480                         em_num = GFAR_EM_NUM + 1;
3481                         gfar_clear_exact_match(dev);
3482                         idx = 1;
3483                 } else {
3484                         idx = 0;
3485                         em_num = 0;
3486                 }
3487
3488                 if (netdev_mc_empty(dev))
3489                         return;
3490
3491                 /* Parse the list, and set the appropriate bits */
3492                 netdev_for_each_mc_addr(ha, dev) {
3493                         if (idx < em_num) {
3494                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3495                                 idx++;
3496                         } else
3497                                 gfar_set_hash_for_addr(dev, ha->addr);
3498                 }
3499         }
3500 }
3501
3502
3503 /* Clears each of the exact match registers to zero, so they
3504  * don't interfere with normal reception
3505  */
3506 static void gfar_clear_exact_match(struct net_device *dev)
3507 {
3508         int idx;
3509         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3510
3511         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3512                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3513 }
3514
3515 /* Set the appropriate hash bit for the given addr */
3516 /* The algorithm works like so:
3517  * 1) Take the Destination Address (ie the multicast address), and
3518  * do a CRC on it (little endian), and reverse the bits of the
3519  * result.
3520  * 2) Use the 8 most significant bits as a hash into a 256-entry
3521  * table.  The table is controlled through 8 32-bit registers:
3522  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3523  * gaddr7.  This means that the 3 most significant bits in the
3524  * hash index which gaddr register to use, and the 5 other bits
3525  * indicate which bit (assuming an IBM numbering scheme, which
3526  * for PowerPC (tm) is usually the case) in the register holds
3527  * the entry.
3528  */
3529 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3530 {
3531         u32 tempval;
3532         struct gfar_private *priv = netdev_priv(dev);
3533         u32 result = ether_crc(ETH_ALEN, addr);
3534         int width = priv->hash_width;
3535         u8 whichbit = (result >> (32 - width)) & 0x1f;
3536         u8 whichreg = result >> (32 - width + 5);
3537         u32 value = (1 << (31-whichbit));
3538
3539         tempval = gfar_read(priv->hash_regs[whichreg]);
3540         tempval |= value;
3541         gfar_write(priv->hash_regs[whichreg], tempval);
3542 }
3543
3544
3545 /* There are multiple MAC Address register pairs on some controllers
3546  * This function sets the numth pair to a given address
3547  */
3548 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3549                                   const u8 *addr)
3550 {
3551         struct gfar_private *priv = netdev_priv(dev);
3552         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3553         u32 tempval;
3554         u32 __iomem *macptr = &regs->macstnaddr1;
3555
3556         macptr += num*2;
3557
3558         /* For a station address of 0x12345678ABCD in transmission
3559          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3560          * MACnADDR2 is set to 0x34120000.
3561          */
3562         tempval = (addr[5] << 24) | (addr[4] << 16) |
3563                   (addr[3] << 8)  |  addr[2];
3564
3565         gfar_write(macptr, tempval);
3566
3567         tempval = (addr[1] << 24) | (addr[0] << 16);
3568
3569         gfar_write(macptr+1, tempval);
3570 }
3571
3572 /* GFAR error interrupt handler */
3573 static irqreturn_t gfar_error(int irq, void *grp_id)
3574 {
3575         struct gfar_priv_grp *gfargrp = grp_id;
3576         struct gfar __iomem *regs = gfargrp->regs;
3577         struct gfar_private *priv= gfargrp->priv;
3578         struct net_device *dev = priv->ndev;
3579
3580         /* Save ievent for future reference */
3581         u32 events = gfar_read(&regs->ievent);
3582
3583         /* Clear IEVENT */
3584         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3585
3586         /* Magic Packet is not an error. */
3587         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3588             (events & IEVENT_MAG))
3589                 events &= ~IEVENT_MAG;
3590
3591         /* Hmm... */
3592         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3593                 netdev_dbg(dev,
3594                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3595                            events, gfar_read(&regs->imask));
3596
3597         /* Update the error counters */
3598         if (events & IEVENT_TXE) {
3599                 dev->stats.tx_errors++;
3600
3601                 if (events & IEVENT_LC)
3602                         dev->stats.tx_window_errors++;
3603                 if (events & IEVENT_CRL)
3604                         dev->stats.tx_aborted_errors++;
3605                 if (events & IEVENT_XFUN) {
3606                         netif_dbg(priv, tx_err, dev,
3607                                   "TX FIFO underrun, packet dropped\n");
3608                         dev->stats.tx_dropped++;
3609                         atomic64_inc(&priv->extra_stats.tx_underrun);
3610
3611                         schedule_work(&priv->reset_task);
3612                 }
3613                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3614         }
3615         if (events & IEVENT_BSY) {
3616                 dev->stats.rx_over_errors++;
3617                 atomic64_inc(&priv->extra_stats.rx_bsy);
3618
3619                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3620                           gfar_read(&regs->rstat));
3621         }
3622         if (events & IEVENT_BABR) {
3623                 dev->stats.rx_errors++;
3624                 atomic64_inc(&priv->extra_stats.rx_babr);
3625
3626                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3627         }
3628         if (events & IEVENT_EBERR) {
3629                 atomic64_inc(&priv->extra_stats.eberr);
3630                 netif_dbg(priv, rx_err, dev, "bus error\n");
3631         }
3632         if (events & IEVENT_RXC)
3633                 netif_dbg(priv, rx_status, dev, "control frame\n");
3634
3635         if (events & IEVENT_BABT) {
3636                 atomic64_inc(&priv->extra_stats.tx_babt);
3637                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3638         }
3639         return IRQ_HANDLED;
3640 }
3641
3642 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3643 {
3644         struct net_device *ndev = priv->ndev;
3645         struct phy_device *phydev = ndev->phydev;
3646         u32 val = 0;
3647
3648         if (!phydev->duplex)
3649                 return val;
3650
3651         if (!priv->pause_aneg_en) {
3652                 if (priv->tx_pause_en)
3653                         val |= MACCFG1_TX_FLOW;
3654                 if (priv->rx_pause_en)
3655                         val |= MACCFG1_RX_FLOW;
3656         } else {
3657                 u16 lcl_adv, rmt_adv;
3658                 u8 flowctrl;
3659                 /* get link partner capabilities */
3660                 rmt_adv = 0;
3661                 if (phydev->pause)
3662                         rmt_adv = LPA_PAUSE_CAP;
3663                 if (phydev->asym_pause)
3664                         rmt_adv |= LPA_PAUSE_ASYM;
3665
3666                 lcl_adv = 0;
3667                 if (phydev->advertising & ADVERTISED_Pause)
3668                         lcl_adv |= ADVERTISE_PAUSE_CAP;
3669                 if (phydev->advertising & ADVERTISED_Asym_Pause)
3670                         lcl_adv |= ADVERTISE_PAUSE_ASYM;
3671
3672                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3673                 if (flowctrl & FLOW_CTRL_TX)
3674                         val |= MACCFG1_TX_FLOW;
3675                 if (flowctrl & FLOW_CTRL_RX)
3676                         val |= MACCFG1_RX_FLOW;
3677         }
3678
3679         return val;
3680 }
3681
3682 static noinline void gfar_update_link_state(struct gfar_private *priv)
3683 {
3684         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3685         struct net_device *ndev = priv->ndev;
3686         struct phy_device *phydev = ndev->phydev;
3687         struct gfar_priv_rx_q *rx_queue = NULL;
3688         int i;
3689
3690         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3691                 return;
3692
3693         if (phydev->link) {
3694                 u32 tempval1 = gfar_read(&regs->maccfg1);
3695                 u32 tempval = gfar_read(&regs->maccfg2);
3696                 u32 ecntrl = gfar_read(&regs->ecntrl);
3697                 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3698
3699                 if (phydev->duplex != priv->oldduplex) {
3700                         if (!(phydev->duplex))
3701                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3702                         else
3703                                 tempval |= MACCFG2_FULL_DUPLEX;
3704
3705                         priv->oldduplex = phydev->duplex;
3706                 }
3707
3708                 if (phydev->speed != priv->oldspeed) {
3709                         switch (phydev->speed) {
3710                         case 1000:
3711                                 tempval =
3712                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3713
3714                                 ecntrl &= ~(ECNTRL_R100);
3715                                 break;
3716                         case 100:
3717                         case 10:
3718                                 tempval =
3719                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3720
3721                                 /* Reduced mode distinguishes
3722                                  * between 10 and 100
3723                                  */
3724                                 if (phydev->speed == SPEED_100)
3725                                         ecntrl |= ECNTRL_R100;
3726                                 else
3727                                         ecntrl &= ~(ECNTRL_R100);
3728                                 break;
3729                         default:
3730                                 netif_warn(priv, link, priv->ndev,
3731                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3732                                            phydev->speed);
3733                                 break;
3734                         }
3735
3736                         priv->oldspeed = phydev->speed;
3737                 }
3738
3739                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3740                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3741
3742                 /* Turn last free buffer recording on */
3743                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3744                         for (i = 0; i < priv->num_rx_queues; i++) {
3745                                 u32 bdp_dma;
3746
3747                                 rx_queue = priv->rx_queue[i];
3748                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3749                                 gfar_write(rx_queue->rfbptr, bdp_dma);
3750                         }
3751
3752                         priv->tx_actual_en = 1;
3753                 }
3754
3755                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3756                         priv->tx_actual_en = 0;
3757
3758                 gfar_write(&regs->maccfg1, tempval1);
3759                 gfar_write(&regs->maccfg2, tempval);
3760                 gfar_write(&regs->ecntrl, ecntrl);
3761
3762                 if (!priv->oldlink)
3763                         priv->oldlink = 1;
3764
3765         } else if (priv->oldlink) {
3766                 priv->oldlink = 0;
3767                 priv->oldspeed = 0;
3768                 priv->oldduplex = -1;
3769         }
3770
3771         if (netif_msg_link(priv))
3772                 phy_print_status(phydev);
3773 }
3774
3775 static const struct of_device_id gfar_match[] =
3776 {
3777         {
3778                 .type = "network",
3779                 .compatible = "gianfar",
3780         },
3781         {
3782                 .compatible = "fsl,etsec2",
3783         },
3784         {},
3785 };
3786 MODULE_DEVICE_TABLE(of, gfar_match);
3787
3788 /* Structure for a device driver */
3789 static struct platform_driver gfar_driver = {
3790         .driver = {
3791                 .name = "fsl-gianfar",
3792                 .pm = GFAR_PM_OPS,
3793                 .of_match_table = gfar_match,
3794         },
3795         .probe = gfar_probe,
3796         .remove = gfar_remove,
3797 };
3798
3799 module_platform_driver(gfar_driver);