Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[sfrench/cifs-2.6.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                            struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                               int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143                                   const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151                             dma_addr_t buf)
152 {
153         u32 lstatus;
154
155         bdp->bufPtr = buf;
156
157         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159                 lstatus |= BD_LFLAG(RXBD_WRAP);
160
161         eieio();
162
163         bdp->lstatus = lstatus;
164 }
165
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168         struct gfar_private *priv = netdev_priv(ndev);
169         struct gfar_priv_tx_q *tx_queue = NULL;
170         struct gfar_priv_rx_q *rx_queue = NULL;
171         struct txbd8 *txbdp;
172         struct rxbd8 *rxbdp;
173         int i, j;
174
175         for (i = 0; i < priv->num_tx_queues; i++) {
176                 tx_queue = priv->tx_queue[i];
177                 /* Initialize some variables in our dev structure */
178                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180                 tx_queue->cur_tx = tx_queue->tx_bd_base;
181                 tx_queue->skb_curtx = 0;
182                 tx_queue->skb_dirtytx = 0;
183
184                 /* Initialize Transmit Descriptor Ring */
185                 txbdp = tx_queue->tx_bd_base;
186                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187                         txbdp->lstatus = 0;
188                         txbdp->bufPtr = 0;
189                         txbdp++;
190                 }
191
192                 /* Set the last descriptor in the ring to indicate wrap */
193                 txbdp--;
194                 txbdp->status |= TXBD_WRAP;
195         }
196
197         for (i = 0; i < priv->num_rx_queues; i++) {
198                 rx_queue = priv->rx_queue[i];
199                 rx_queue->cur_rx = rx_queue->rx_bd_base;
200                 rx_queue->skb_currx = 0;
201                 rxbdp = rx_queue->rx_bd_base;
202
203                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
204                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
205
206                         if (skb) {
207                                 gfar_init_rxbdp(rx_queue, rxbdp,
208                                                 rxbdp->bufPtr);
209                         } else {
210                                 skb = gfar_new_skb(ndev);
211                                 if (!skb) {
212                                         netdev_err(ndev, "Can't allocate RX buffers\n");
213                                         goto err_rxalloc_fail;
214                                 }
215                                 rx_queue->rx_skbuff[j] = skb;
216
217                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
218                         }
219
220                         rxbdp++;
221                 }
222
223         }
224
225         return 0;
226
227 err_rxalloc_fail:
228         free_skb_resources(priv);
229         return -ENOMEM;
230 }
231
232 static int gfar_alloc_skb_resources(struct net_device *ndev)
233 {
234         void *vaddr;
235         dma_addr_t addr;
236         int i, j, k;
237         struct gfar_private *priv = netdev_priv(ndev);
238         struct device *dev = &priv->ofdev->dev;
239         struct gfar_priv_tx_q *tx_queue = NULL;
240         struct gfar_priv_rx_q *rx_queue = NULL;
241
242         priv->total_tx_ring_size = 0;
243         for (i = 0; i < priv->num_tx_queues; i++)
244                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
245
246         priv->total_rx_ring_size = 0;
247         for (i = 0; i < priv->num_rx_queues; i++)
248                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
249
250         /* Allocate memory for the buffer descriptors */
251         vaddr = dma_alloc_coherent(dev,
252                         sizeof(struct txbd8) * priv->total_tx_ring_size +
253                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
254                         &addr, GFP_KERNEL);
255         if (!vaddr) {
256                 netif_err(priv, ifup, ndev,
257                           "Could not allocate buffer descriptors!\n");
258                 return -ENOMEM;
259         }
260
261         for (i = 0; i < priv->num_tx_queues; i++) {
262                 tx_queue = priv->tx_queue[i];
263                 tx_queue->tx_bd_base = vaddr;
264                 tx_queue->tx_bd_dma_base = addr;
265                 tx_queue->dev = ndev;
266                 /* enet DMA only understands physical addresses */
267                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
268                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
269         }
270
271         /* Start the rx descriptor ring where the tx ring leaves off */
272         for (i = 0; i < priv->num_rx_queues; i++) {
273                 rx_queue = priv->rx_queue[i];
274                 rx_queue->rx_bd_base = vaddr;
275                 rx_queue->rx_bd_dma_base = addr;
276                 rx_queue->dev = ndev;
277                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
278                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
279         }
280
281         /* Setup the skbuff rings */
282         for (i = 0; i < priv->num_tx_queues; i++) {
283                 tx_queue = priv->tx_queue[i];
284                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
285                                               tx_queue->tx_ring_size,
286                                               GFP_KERNEL);
287                 if (!tx_queue->tx_skbuff) {
288                         netif_err(priv, ifup, ndev,
289                                   "Could not allocate tx_skbuff\n");
290                         goto cleanup;
291                 }
292
293                 for (k = 0; k < tx_queue->tx_ring_size; k++)
294                         tx_queue->tx_skbuff[k] = NULL;
295         }
296
297         for (i = 0; i < priv->num_rx_queues; i++) {
298                 rx_queue = priv->rx_queue[i];
299                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
300                                               rx_queue->rx_ring_size,
301                                               GFP_KERNEL);
302
303                 if (!rx_queue->rx_skbuff) {
304                         netif_err(priv, ifup, ndev,
305                                   "Could not allocate rx_skbuff\n");
306                         goto cleanup;
307                 }
308
309                 for (j = 0; j < rx_queue->rx_ring_size; j++)
310                         rx_queue->rx_skbuff[j] = NULL;
311         }
312
313         if (gfar_init_bds(ndev))
314                 goto cleanup;
315
316         return 0;
317
318 cleanup:
319         free_skb_resources(priv);
320         return -ENOMEM;
321 }
322
323 static void gfar_init_tx_rx_base(struct gfar_private *priv)
324 {
325         struct gfar __iomem *regs = priv->gfargrp[0].regs;
326         u32 __iomem *baddr;
327         int i;
328
329         baddr = &regs->tbase0;
330         for (i = 0; i < priv->num_tx_queues; i++) {
331                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
332                 baddr += 2;
333         }
334
335         baddr = &regs->rbase0;
336         for (i = 0; i < priv->num_rx_queues; i++) {
337                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
338                 baddr += 2;
339         }
340 }
341
342 static void gfar_init_mac(struct net_device *ndev)
343 {
344         struct gfar_private *priv = netdev_priv(ndev);
345         struct gfar __iomem *regs = priv->gfargrp[0].regs;
346         u32 rctrl = 0;
347         u32 tctrl = 0;
348         u32 attrs = 0;
349
350         /* write the tx/rx base registers */
351         gfar_init_tx_rx_base(priv);
352
353         /* Configure the coalescing support */
354         gfar_configure_coalescing(priv, 0xFF, 0xFF);
355
356         if (priv->rx_filer_enable) {
357                 rctrl |= RCTRL_FILREN;
358                 /* Program the RIR0 reg with the required distribution */
359                 gfar_write(&regs->rir0, DEFAULT_RIR0);
360         }
361
362         if (ndev->features & NETIF_F_RXCSUM)
363                 rctrl |= RCTRL_CHECKSUMMING;
364
365         if (priv->extended_hash) {
366                 rctrl |= RCTRL_EXTHASH;
367
368                 gfar_clear_exact_match(ndev);
369                 rctrl |= RCTRL_EMEN;
370         }
371
372         if (priv->padding) {
373                 rctrl &= ~RCTRL_PAL_MASK;
374                 rctrl |= RCTRL_PADDING(priv->padding);
375         }
376
377         /* Insert receive time stamps into padding alignment bytes */
378         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379                 rctrl &= ~RCTRL_PAL_MASK;
380                 rctrl |= RCTRL_PADDING(8);
381                 priv->padding = 8;
382         }
383
384         /* Enable HW time stamping if requested from user space */
385         if (priv->hwts_rx_en)
386                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387
388         if (ndev->features & NETIF_F_HW_VLAN_RX)
389                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
390
391         /* Init rctrl based on our settings */
392         gfar_write(&regs->rctrl, rctrl);
393
394         if (ndev->features & NETIF_F_IP_CSUM)
395                 tctrl |= TCTRL_INIT_CSUM;
396
397         if (priv->prio_sched_en)
398                 tctrl |= TCTRL_TXSCHED_PRIO;
399         else {
400                 tctrl |= TCTRL_TXSCHED_WRRS;
401                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
402                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
403         }
404
405         gfar_write(&regs->tctrl, tctrl);
406
407         /* Set the extraction length and index */
408         attrs = ATTRELI_EL(priv->rx_stash_size) |
409                 ATTRELI_EI(priv->rx_stash_index);
410
411         gfar_write(&regs->attreli, attrs);
412
413         /* Start with defaults, and add stashing or locking
414          * depending on the approprate variables
415          */
416         attrs = ATTR_INIT_SETTINGS;
417
418         if (priv->bd_stash_en)
419                 attrs |= ATTR_BDSTASH;
420
421         if (priv->rx_stash_size != 0)
422                 attrs |= ATTR_BUFSTASH;
423
424         gfar_write(&regs->attr, attrs);
425
426         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
427         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
428         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
429 }
430
431 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
432 {
433         struct gfar_private *priv = netdev_priv(dev);
434         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
435         unsigned long tx_packets = 0, tx_bytes = 0;
436         int i;
437
438         for (i = 0; i < priv->num_rx_queues; i++) {
439                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
440                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
441                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
442         }
443
444         dev->stats.rx_packets = rx_packets;
445         dev->stats.rx_bytes   = rx_bytes;
446         dev->stats.rx_dropped = rx_dropped;
447
448         for (i = 0; i < priv->num_tx_queues; i++) {
449                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
450                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
451         }
452
453         dev->stats.tx_bytes   = tx_bytes;
454         dev->stats.tx_packets = tx_packets;
455
456         return &dev->stats;
457 }
458
459 static const struct net_device_ops gfar_netdev_ops = {
460         .ndo_open = gfar_enet_open,
461         .ndo_start_xmit = gfar_start_xmit,
462         .ndo_stop = gfar_close,
463         .ndo_change_mtu = gfar_change_mtu,
464         .ndo_set_features = gfar_set_features,
465         .ndo_set_rx_mode = gfar_set_multi,
466         .ndo_tx_timeout = gfar_timeout,
467         .ndo_do_ioctl = gfar_ioctl,
468         .ndo_get_stats = gfar_get_stats,
469         .ndo_set_mac_address = eth_mac_addr,
470         .ndo_validate_addr = eth_validate_addr,
471 #ifdef CONFIG_NET_POLL_CONTROLLER
472         .ndo_poll_controller = gfar_netpoll,
473 #endif
474 };
475
476 void lock_rx_qs(struct gfar_private *priv)
477 {
478         int i;
479
480         for (i = 0; i < priv->num_rx_queues; i++)
481                 spin_lock(&priv->rx_queue[i]->rxlock);
482 }
483
484 void lock_tx_qs(struct gfar_private *priv)
485 {
486         int i;
487
488         for (i = 0; i < priv->num_tx_queues; i++)
489                 spin_lock(&priv->tx_queue[i]->txlock);
490 }
491
492 void unlock_rx_qs(struct gfar_private *priv)
493 {
494         int i;
495
496         for (i = 0; i < priv->num_rx_queues; i++)
497                 spin_unlock(&priv->rx_queue[i]->rxlock);
498 }
499
500 void unlock_tx_qs(struct gfar_private *priv)
501 {
502         int i;
503
504         for (i = 0; i < priv->num_tx_queues; i++)
505                 spin_unlock(&priv->tx_queue[i]->txlock);
506 }
507
508 static bool gfar_is_vlan_on(struct gfar_private *priv)
509 {
510         return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
511                (priv->ndev->features & NETIF_F_HW_VLAN_TX);
512 }
513
514 /* Returns 1 if incoming frames use an FCB */
515 static inline int gfar_uses_fcb(struct gfar_private *priv)
516 {
517         return gfar_is_vlan_on(priv) ||
518                (priv->ndev->features & NETIF_F_RXCSUM) ||
519                (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
520 }
521
522 static void free_tx_pointers(struct gfar_private *priv)
523 {
524         int i;
525
526         for (i = 0; i < priv->num_tx_queues; i++)
527                 kfree(priv->tx_queue[i]);
528 }
529
530 static void free_rx_pointers(struct gfar_private *priv)
531 {
532         int i;
533
534         for (i = 0; i < priv->num_rx_queues; i++)
535                 kfree(priv->rx_queue[i]);
536 }
537
538 static void unmap_group_regs(struct gfar_private *priv)
539 {
540         int i;
541
542         for (i = 0; i < MAXGROUPS; i++)
543                 if (priv->gfargrp[i].regs)
544                         iounmap(priv->gfargrp[i].regs);
545 }
546
547 static void disable_napi(struct gfar_private *priv)
548 {
549         int i;
550
551         for (i = 0; i < priv->num_grps; i++)
552                 napi_disable(&priv->gfargrp[i].napi);
553 }
554
555 static void enable_napi(struct gfar_private *priv)
556 {
557         int i;
558
559         for (i = 0; i < priv->num_grps; i++)
560                 napi_enable(&priv->gfargrp[i].napi);
561 }
562
563 static int gfar_parse_group(struct device_node *np,
564                             struct gfar_private *priv, const char *model)
565 {
566         u32 *queue_mask;
567
568         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
569         if (!priv->gfargrp[priv->num_grps].regs)
570                 return -ENOMEM;
571
572         priv->gfargrp[priv->num_grps].interruptTransmit =
573                         irq_of_parse_and_map(np, 0);
574
575         /* If we aren't the FEC we have multiple interrupts */
576         if (model && strcasecmp(model, "FEC")) {
577                 priv->gfargrp[priv->num_grps].interruptReceive =
578                         irq_of_parse_and_map(np, 1);
579                 priv->gfargrp[priv->num_grps].interruptError =
580                         irq_of_parse_and_map(np,2);
581                 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
582                     priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
583                     priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
584                         return -EINVAL;
585         }
586
587         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
588         priv->gfargrp[priv->num_grps].priv = priv;
589         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
590         if (priv->mode == MQ_MG_MODE) {
591                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
592                 priv->gfargrp[priv->num_grps].rx_bit_map = queue_mask ?
593                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
594                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
595                 priv->gfargrp[priv->num_grps].tx_bit_map = queue_mask ?
596                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
597         } else {
598                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
599                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
600         }
601         priv->num_grps++;
602
603         return 0;
604 }
605
606 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
607 {
608         const char *model;
609         const char *ctype;
610         const void *mac_addr;
611         int err = 0, i;
612         struct net_device *dev = NULL;
613         struct gfar_private *priv = NULL;
614         struct device_node *np = ofdev->dev.of_node;
615         struct device_node *child = NULL;
616         const u32 *stash;
617         const u32 *stash_len;
618         const u32 *stash_idx;
619         unsigned int num_tx_qs, num_rx_qs;
620         u32 *tx_queues, *rx_queues;
621
622         if (!np || !of_device_is_available(np))
623                 return -ENODEV;
624
625         /* parse the num of tx and rx queues */
626         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
627         num_tx_qs = tx_queues ? *tx_queues : 1;
628
629         if (num_tx_qs > MAX_TX_QS) {
630                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
631                        num_tx_qs, MAX_TX_QS);
632                 pr_err("Cannot do alloc_etherdev, aborting\n");
633                 return -EINVAL;
634         }
635
636         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
637         num_rx_qs = rx_queues ? *rx_queues : 1;
638
639         if (num_rx_qs > MAX_RX_QS) {
640                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
641                        num_rx_qs, MAX_RX_QS);
642                 pr_err("Cannot do alloc_etherdev, aborting\n");
643                 return -EINVAL;
644         }
645
646         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
647         dev = *pdev;
648         if (NULL == dev)
649                 return -ENOMEM;
650
651         priv = netdev_priv(dev);
652         priv->node = ofdev->dev.of_node;
653         priv->ndev = dev;
654
655         priv->num_tx_queues = num_tx_qs;
656         netif_set_real_num_rx_queues(dev, num_rx_qs);
657         priv->num_rx_queues = num_rx_qs;
658         priv->num_grps = 0x0;
659
660         /* Init Rx queue filer rule set linked list */
661         INIT_LIST_HEAD(&priv->rx_list.list);
662         priv->rx_list.count = 0;
663         mutex_init(&priv->rx_queue_access);
664
665         model = of_get_property(np, "model", NULL);
666
667         for (i = 0; i < MAXGROUPS; i++)
668                 priv->gfargrp[i].regs = NULL;
669
670         /* Parse and initialize group specific information */
671         if (of_device_is_compatible(np, "fsl,etsec2")) {
672                 priv->mode = MQ_MG_MODE;
673                 for_each_child_of_node(np, child) {
674                         err = gfar_parse_group(child, priv, model);
675                         if (err)
676                                 goto err_grp_init;
677                 }
678         } else {
679                 priv->mode = SQ_SG_MODE;
680                 err = gfar_parse_group(np, priv, model);
681                 if (err)
682                         goto err_grp_init;
683         }
684
685         for (i = 0; i < priv->num_tx_queues; i++)
686                priv->tx_queue[i] = NULL;
687         for (i = 0; i < priv->num_rx_queues; i++)
688                 priv->rx_queue[i] = NULL;
689
690         for (i = 0; i < priv->num_tx_queues; i++) {
691                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
692                                             GFP_KERNEL);
693                 if (!priv->tx_queue[i]) {
694                         err = -ENOMEM;
695                         goto tx_alloc_failed;
696                 }
697                 priv->tx_queue[i]->tx_skbuff = NULL;
698                 priv->tx_queue[i]->qindex = i;
699                 priv->tx_queue[i]->dev = dev;
700                 spin_lock_init(&(priv->tx_queue[i]->txlock));
701         }
702
703         for (i = 0; i < priv->num_rx_queues; i++) {
704                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
705                                             GFP_KERNEL);
706                 if (!priv->rx_queue[i]) {
707                         err = -ENOMEM;
708                         goto rx_alloc_failed;
709                 }
710                 priv->rx_queue[i]->rx_skbuff = NULL;
711                 priv->rx_queue[i]->qindex = i;
712                 priv->rx_queue[i]->dev = dev;
713                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
714         }
715
716
717         stash = of_get_property(np, "bd-stash", NULL);
718
719         if (stash) {
720                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
721                 priv->bd_stash_en = 1;
722         }
723
724         stash_len = of_get_property(np, "rx-stash-len", NULL);
725
726         if (stash_len)
727                 priv->rx_stash_size = *stash_len;
728
729         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
730
731         if (stash_idx)
732                 priv->rx_stash_index = *stash_idx;
733
734         if (stash_len || stash_idx)
735                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
736
737         mac_addr = of_get_mac_address(np);
738
739         if (mac_addr)
740                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
741
742         if (model && !strcasecmp(model, "TSEC"))
743                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
744                                      FSL_GIANFAR_DEV_HAS_COALESCE |
745                                      FSL_GIANFAR_DEV_HAS_RMON |
746                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
747
748         if (model && !strcasecmp(model, "eTSEC"))
749                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
750                                      FSL_GIANFAR_DEV_HAS_COALESCE |
751                                      FSL_GIANFAR_DEV_HAS_RMON |
752                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
753                                      FSL_GIANFAR_DEV_HAS_PADDING |
754                                      FSL_GIANFAR_DEV_HAS_CSUM |
755                                      FSL_GIANFAR_DEV_HAS_VLAN |
756                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
757                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
758                                      FSL_GIANFAR_DEV_HAS_TIMER;
759
760         ctype = of_get_property(np, "phy-connection-type", NULL);
761
762         /* We only care about rgmii-id.  The rest are autodetected */
763         if (ctype && !strcmp(ctype, "rgmii-id"))
764                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
765         else
766                 priv->interface = PHY_INTERFACE_MODE_MII;
767
768         if (of_get_property(np, "fsl,magic-packet", NULL))
769                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
770
771         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
772
773         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
774         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
775
776         return 0;
777
778 rx_alloc_failed:
779         free_rx_pointers(priv);
780 tx_alloc_failed:
781         free_tx_pointers(priv);
782 err_grp_init:
783         unmap_group_regs(priv);
784         free_netdev(dev);
785         return err;
786 }
787
788 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
789                                struct ifreq *ifr, int cmd)
790 {
791         struct hwtstamp_config config;
792         struct gfar_private *priv = netdev_priv(netdev);
793
794         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
795                 return -EFAULT;
796
797         /* reserved for future extensions */
798         if (config.flags)
799                 return -EINVAL;
800
801         switch (config.tx_type) {
802         case HWTSTAMP_TX_OFF:
803                 priv->hwts_tx_en = 0;
804                 break;
805         case HWTSTAMP_TX_ON:
806                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
807                         return -ERANGE;
808                 priv->hwts_tx_en = 1;
809                 break;
810         default:
811                 return -ERANGE;
812         }
813
814         switch (config.rx_filter) {
815         case HWTSTAMP_FILTER_NONE:
816                 if (priv->hwts_rx_en) {
817                         stop_gfar(netdev);
818                         priv->hwts_rx_en = 0;
819                         startup_gfar(netdev);
820                 }
821                 break;
822         default:
823                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
824                         return -ERANGE;
825                 if (!priv->hwts_rx_en) {
826                         stop_gfar(netdev);
827                         priv->hwts_rx_en = 1;
828                         startup_gfar(netdev);
829                 }
830                 config.rx_filter = HWTSTAMP_FILTER_ALL;
831                 break;
832         }
833
834         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
835                 -EFAULT : 0;
836 }
837
838 /* Ioctl MII Interface */
839 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
840 {
841         struct gfar_private *priv = netdev_priv(dev);
842
843         if (!netif_running(dev))
844                 return -EINVAL;
845
846         if (cmd == SIOCSHWTSTAMP)
847                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
848
849         if (!priv->phydev)
850                 return -ENODEV;
851
852         return phy_mii_ioctl(priv->phydev, rq, cmd);
853 }
854
855 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
856 {
857         unsigned int new_bit_map = 0x0;
858         int mask = 0x1 << (max_qs - 1), i;
859
860         for (i = 0; i < max_qs; i++) {
861                 if (bit_map & mask)
862                         new_bit_map = new_bit_map + (1 << i);
863                 mask = mask >> 0x1;
864         }
865         return new_bit_map;
866 }
867
868 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
869                                    u32 class)
870 {
871         u32 rqfpr = FPR_FILER_MASK;
872         u32 rqfcr = 0x0;
873
874         rqfar--;
875         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
876         priv->ftp_rqfpr[rqfar] = rqfpr;
877         priv->ftp_rqfcr[rqfar] = rqfcr;
878         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
879
880         rqfar--;
881         rqfcr = RQFCR_CMP_NOMATCH;
882         priv->ftp_rqfpr[rqfar] = rqfpr;
883         priv->ftp_rqfcr[rqfar] = rqfcr;
884         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
885
886         rqfar--;
887         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
888         rqfpr = class;
889         priv->ftp_rqfcr[rqfar] = rqfcr;
890         priv->ftp_rqfpr[rqfar] = rqfpr;
891         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892
893         rqfar--;
894         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
895         rqfpr = class;
896         priv->ftp_rqfcr[rqfar] = rqfcr;
897         priv->ftp_rqfpr[rqfar] = rqfpr;
898         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900         return rqfar;
901 }
902
903 static void gfar_init_filer_table(struct gfar_private *priv)
904 {
905         int i = 0x0;
906         u32 rqfar = MAX_FILER_IDX;
907         u32 rqfcr = 0x0;
908         u32 rqfpr = FPR_FILER_MASK;
909
910         /* Default rule */
911         rqfcr = RQFCR_CMP_MATCH;
912         priv->ftp_rqfcr[rqfar] = rqfcr;
913         priv->ftp_rqfpr[rqfar] = rqfpr;
914         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
915
916         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
917         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
918         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
919         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
920         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
921         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
922
923         /* cur_filer_idx indicated the first non-masked rule */
924         priv->cur_filer_idx = rqfar;
925
926         /* Rest are masked rules */
927         rqfcr = RQFCR_CMP_NOMATCH;
928         for (i = 0; i < rqfar; i++) {
929                 priv->ftp_rqfcr[i] = rqfcr;
930                 priv->ftp_rqfpr[i] = rqfpr;
931                 gfar_write_filer(priv, i, rqfcr, rqfpr);
932         }
933 }
934
935 static void gfar_detect_errata(struct gfar_private *priv)
936 {
937         struct device *dev = &priv->ofdev->dev;
938         unsigned int pvr = mfspr(SPRN_PVR);
939         unsigned int svr = mfspr(SPRN_SVR);
940         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
941         unsigned int rev = svr & 0xffff;
942
943         /* MPC8313 Rev 2.0 and higher; All MPC837x */
944         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
945             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
946                 priv->errata |= GFAR_ERRATA_74;
947
948         /* MPC8313 and MPC837x all rev */
949         if ((pvr == 0x80850010 && mod == 0x80b0) ||
950             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
951                 priv->errata |= GFAR_ERRATA_76;
952
953         /* MPC8313 and MPC837x all rev */
954         if ((pvr == 0x80850010 && mod == 0x80b0) ||
955             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
956                 priv->errata |= GFAR_ERRATA_A002;
957
958         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
959         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
960             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
961                 priv->errata |= GFAR_ERRATA_12;
962
963         if (priv->errata)
964                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
965                          priv->errata);
966 }
967
968 /* Set up the ethernet device structure, private data,
969  * and anything else we need before we start
970  */
971 static int gfar_probe(struct platform_device *ofdev)
972 {
973         u32 tempval;
974         struct net_device *dev = NULL;
975         struct gfar_private *priv = NULL;
976         struct gfar __iomem *regs = NULL;
977         int err = 0, i, grp_idx = 0;
978         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
979         u32 isrg = 0;
980         u32 __iomem *baddr;
981
982         err = gfar_of_init(ofdev, &dev);
983
984         if (err)
985                 return err;
986
987         priv = netdev_priv(dev);
988         priv->ndev = dev;
989         priv->ofdev = ofdev;
990         priv->node = ofdev->dev.of_node;
991         SET_NETDEV_DEV(dev, &ofdev->dev);
992
993         spin_lock_init(&priv->bflock);
994         INIT_WORK(&priv->reset_task, gfar_reset_task);
995
996         dev_set_drvdata(&ofdev->dev, priv);
997         regs = priv->gfargrp[0].regs;
998
999         gfar_detect_errata(priv);
1000
1001         /* Stop the DMA engine now, in case it was running before
1002          * (The firmware could have used it, and left it running).
1003          */
1004         gfar_halt(dev);
1005
1006         /* Reset MAC layer */
1007         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1008
1009         /* We need to delay at least 3 TX clocks */
1010         udelay(2);
1011
1012         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1013         gfar_write(&regs->maccfg1, tempval);
1014
1015         /* Initialize MACCFG2. */
1016         tempval = MACCFG2_INIT_SETTINGS;
1017         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1018                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1019         gfar_write(&regs->maccfg2, tempval);
1020
1021         /* Initialize ECNTRL */
1022         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1023
1024         /* Set the dev->base_addr to the gfar reg region */
1025         dev->base_addr = (unsigned long) regs;
1026
1027         SET_NETDEV_DEV(dev, &ofdev->dev);
1028
1029         /* Fill in the dev structure */
1030         dev->watchdog_timeo = TX_TIMEOUT;
1031         dev->mtu = 1500;
1032         dev->netdev_ops = &gfar_netdev_ops;
1033         dev->ethtool_ops = &gfar_ethtool_ops;
1034
1035         /* Register for napi ...We are registering NAPI for each grp */
1036         for (i = 0; i < priv->num_grps; i++)
1037                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1038                                GFAR_DEV_WEIGHT);
1039
1040         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1041                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1042                                    NETIF_F_RXCSUM;
1043                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1044                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1045         }
1046
1047         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1048                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1049                 dev->features |= NETIF_F_HW_VLAN_RX;
1050         }
1051
1052         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1053                 priv->extended_hash = 1;
1054                 priv->hash_width = 9;
1055
1056                 priv->hash_regs[0] = &regs->igaddr0;
1057                 priv->hash_regs[1] = &regs->igaddr1;
1058                 priv->hash_regs[2] = &regs->igaddr2;
1059                 priv->hash_regs[3] = &regs->igaddr3;
1060                 priv->hash_regs[4] = &regs->igaddr4;
1061                 priv->hash_regs[5] = &regs->igaddr5;
1062                 priv->hash_regs[6] = &regs->igaddr6;
1063                 priv->hash_regs[7] = &regs->igaddr7;
1064                 priv->hash_regs[8] = &regs->gaddr0;
1065                 priv->hash_regs[9] = &regs->gaddr1;
1066                 priv->hash_regs[10] = &regs->gaddr2;
1067                 priv->hash_regs[11] = &regs->gaddr3;
1068                 priv->hash_regs[12] = &regs->gaddr4;
1069                 priv->hash_regs[13] = &regs->gaddr5;
1070                 priv->hash_regs[14] = &regs->gaddr6;
1071                 priv->hash_regs[15] = &regs->gaddr7;
1072
1073         } else {
1074                 priv->extended_hash = 0;
1075                 priv->hash_width = 8;
1076
1077                 priv->hash_regs[0] = &regs->gaddr0;
1078                 priv->hash_regs[1] = &regs->gaddr1;
1079                 priv->hash_regs[2] = &regs->gaddr2;
1080                 priv->hash_regs[3] = &regs->gaddr3;
1081                 priv->hash_regs[4] = &regs->gaddr4;
1082                 priv->hash_regs[5] = &regs->gaddr5;
1083                 priv->hash_regs[6] = &regs->gaddr6;
1084                 priv->hash_regs[7] = &regs->gaddr7;
1085         }
1086
1087         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1088                 priv->padding = DEFAULT_PADDING;
1089         else
1090                 priv->padding = 0;
1091
1092         if (dev->features & NETIF_F_IP_CSUM ||
1093             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1094                 dev->needed_headroom = GMAC_FCB_LEN;
1095
1096         /* Program the isrg regs only if number of grps > 1 */
1097         if (priv->num_grps > 1) {
1098                 baddr = &regs->isrg0;
1099                 for (i = 0; i < priv->num_grps; i++) {
1100                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1101                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1102                         gfar_write(baddr, isrg);
1103                         baddr++;
1104                         isrg = 0x0;
1105                 }
1106         }
1107
1108         /* Need to reverse the bit maps as  bit_map's MSB is q0
1109          * but, for_each_set_bit parses from right to left, which
1110          * basically reverses the queue numbers
1111          */
1112         for (i = 0; i< priv->num_grps; i++) {
1113                 priv->gfargrp[i].tx_bit_map =
1114                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1115                 priv->gfargrp[i].rx_bit_map =
1116                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1117         }
1118
1119         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1120          * also assign queues to groups
1121          */
1122         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1123                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1124
1125                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1126                                  priv->num_rx_queues) {
1127                         priv->gfargrp[grp_idx].num_rx_queues++;
1128                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1129                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1130                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1131                 }
1132                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1133
1134                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1135                                  priv->num_tx_queues) {
1136                         priv->gfargrp[grp_idx].num_tx_queues++;
1137                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1138                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1139                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1140                 }
1141                 priv->gfargrp[grp_idx].rstat = rstat;
1142                 priv->gfargrp[grp_idx].tstat = tstat;
1143                 rstat = tstat =0;
1144         }
1145
1146         gfar_write(&regs->rqueue, rqueue);
1147         gfar_write(&regs->tqueue, tqueue);
1148
1149         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1150
1151         /* Initializing some of the rx/tx queue level parameters */
1152         for (i = 0; i < priv->num_tx_queues; i++) {
1153                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1154                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1155                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1156                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1157         }
1158
1159         for (i = 0; i < priv->num_rx_queues; i++) {
1160                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1161                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1162                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1163         }
1164
1165         /* always enable rx filer */
1166         priv->rx_filer_enable = 1;
1167         /* Enable most messages by default */
1168         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1169         /* use pritority h/w tx queue scheduling for single queue devices */
1170         if (priv->num_tx_queues == 1)
1171                 priv->prio_sched_en = 1;
1172
1173         /* Carrier starts down, phylib will bring it up */
1174         netif_carrier_off(dev);
1175
1176         err = register_netdev(dev);
1177
1178         if (err) {
1179                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1180                 goto register_fail;
1181         }
1182
1183         device_init_wakeup(&dev->dev,
1184                            priv->device_flags &
1185                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1186
1187         /* fill out IRQ number and name fields */
1188         for (i = 0; i < priv->num_grps; i++) {
1189                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1190                         sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1191                                 dev->name, "_g", '0' + i, "_tx");
1192                         sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1193                                 dev->name, "_g", '0' + i, "_rx");
1194                         sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1195                                 dev->name, "_g", '0' + i, "_er");
1196                 } else
1197                         strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1198         }
1199
1200         /* Initialize the filer table */
1201         gfar_init_filer_table(priv);
1202
1203         /* Create all the sysfs files */
1204         gfar_init_sysfs(dev);
1205
1206         /* Print out the device info */
1207         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1208
1209         /* Even more device info helps when determining which kernel
1210          * provided which set of benchmarks.
1211          */
1212         netdev_info(dev, "Running with NAPI enabled\n");
1213         for (i = 0; i < priv->num_rx_queues; i++)
1214                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1215                             i, priv->rx_queue[i]->rx_ring_size);
1216         for (i = 0; i < priv->num_tx_queues; i++)
1217                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1218                             i, priv->tx_queue[i]->tx_ring_size);
1219
1220         return 0;
1221
1222 register_fail:
1223         unmap_group_regs(priv);
1224         free_tx_pointers(priv);
1225         free_rx_pointers(priv);
1226         if (priv->phy_node)
1227                 of_node_put(priv->phy_node);
1228         if (priv->tbi_node)
1229                 of_node_put(priv->tbi_node);
1230         free_netdev(dev);
1231         return err;
1232 }
1233
1234 static int gfar_remove(struct platform_device *ofdev)
1235 {
1236         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1237
1238         if (priv->phy_node)
1239                 of_node_put(priv->phy_node);
1240         if (priv->tbi_node)
1241                 of_node_put(priv->tbi_node);
1242
1243         dev_set_drvdata(&ofdev->dev, NULL);
1244
1245         unregister_netdev(priv->ndev);
1246         unmap_group_regs(priv);
1247         free_netdev(priv->ndev);
1248
1249         return 0;
1250 }
1251
1252 #ifdef CONFIG_PM
1253
1254 static int gfar_suspend(struct device *dev)
1255 {
1256         struct gfar_private *priv = dev_get_drvdata(dev);
1257         struct net_device *ndev = priv->ndev;
1258         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1259         unsigned long flags;
1260         u32 tempval;
1261
1262         int magic_packet = priv->wol_en &&
1263                            (priv->device_flags &
1264                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1265
1266         netif_device_detach(ndev);
1267
1268         if (netif_running(ndev)) {
1269
1270                 local_irq_save(flags);
1271                 lock_tx_qs(priv);
1272                 lock_rx_qs(priv);
1273
1274                 gfar_halt_nodisable(ndev);
1275
1276                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1277                 tempval = gfar_read(&regs->maccfg1);
1278
1279                 tempval &= ~MACCFG1_TX_EN;
1280
1281                 if (!magic_packet)
1282                         tempval &= ~MACCFG1_RX_EN;
1283
1284                 gfar_write(&regs->maccfg1, tempval);
1285
1286                 unlock_rx_qs(priv);
1287                 unlock_tx_qs(priv);
1288                 local_irq_restore(flags);
1289
1290                 disable_napi(priv);
1291
1292                 if (magic_packet) {
1293                         /* Enable interrupt on Magic Packet */
1294                         gfar_write(&regs->imask, IMASK_MAG);
1295
1296                         /* Enable Magic Packet mode */
1297                         tempval = gfar_read(&regs->maccfg2);
1298                         tempval |= MACCFG2_MPEN;
1299                         gfar_write(&regs->maccfg2, tempval);
1300                 } else {
1301                         phy_stop(priv->phydev);
1302                 }
1303         }
1304
1305         return 0;
1306 }
1307
1308 static int gfar_resume(struct device *dev)
1309 {
1310         struct gfar_private *priv = dev_get_drvdata(dev);
1311         struct net_device *ndev = priv->ndev;
1312         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1313         unsigned long flags;
1314         u32 tempval;
1315         int magic_packet = priv->wol_en &&
1316                            (priv->device_flags &
1317                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1318
1319         if (!netif_running(ndev)) {
1320                 netif_device_attach(ndev);
1321                 return 0;
1322         }
1323
1324         if (!magic_packet && priv->phydev)
1325                 phy_start(priv->phydev);
1326
1327         /* Disable Magic Packet mode, in case something
1328          * else woke us up.
1329          */
1330         local_irq_save(flags);
1331         lock_tx_qs(priv);
1332         lock_rx_qs(priv);
1333
1334         tempval = gfar_read(&regs->maccfg2);
1335         tempval &= ~MACCFG2_MPEN;
1336         gfar_write(&regs->maccfg2, tempval);
1337
1338         gfar_start(ndev);
1339
1340         unlock_rx_qs(priv);
1341         unlock_tx_qs(priv);
1342         local_irq_restore(flags);
1343
1344         netif_device_attach(ndev);
1345
1346         enable_napi(priv);
1347
1348         return 0;
1349 }
1350
1351 static int gfar_restore(struct device *dev)
1352 {
1353         struct gfar_private *priv = dev_get_drvdata(dev);
1354         struct net_device *ndev = priv->ndev;
1355
1356         if (!netif_running(ndev)) {
1357                 netif_device_attach(ndev);
1358
1359                 return 0;
1360         }
1361
1362         gfar_init_bds(ndev);
1363         init_registers(ndev);
1364         gfar_set_mac_address(ndev);
1365         gfar_init_mac(ndev);
1366         gfar_start(ndev);
1367
1368         priv->oldlink = 0;
1369         priv->oldspeed = 0;
1370         priv->oldduplex = -1;
1371
1372         if (priv->phydev)
1373                 phy_start(priv->phydev);
1374
1375         netif_device_attach(ndev);
1376         enable_napi(priv);
1377
1378         return 0;
1379 }
1380
1381 static struct dev_pm_ops gfar_pm_ops = {
1382         .suspend = gfar_suspend,
1383         .resume = gfar_resume,
1384         .freeze = gfar_suspend,
1385         .thaw = gfar_resume,
1386         .restore = gfar_restore,
1387 };
1388
1389 #define GFAR_PM_OPS (&gfar_pm_ops)
1390
1391 #else
1392
1393 #define GFAR_PM_OPS NULL
1394
1395 #endif
1396
1397 /* Reads the controller's registers to determine what interface
1398  * connects it to the PHY.
1399  */
1400 static phy_interface_t gfar_get_interface(struct net_device *dev)
1401 {
1402         struct gfar_private *priv = netdev_priv(dev);
1403         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1404         u32 ecntrl;
1405
1406         ecntrl = gfar_read(&regs->ecntrl);
1407
1408         if (ecntrl & ECNTRL_SGMII_MODE)
1409                 return PHY_INTERFACE_MODE_SGMII;
1410
1411         if (ecntrl & ECNTRL_TBI_MODE) {
1412                 if (ecntrl & ECNTRL_REDUCED_MODE)
1413                         return PHY_INTERFACE_MODE_RTBI;
1414                 else
1415                         return PHY_INTERFACE_MODE_TBI;
1416         }
1417
1418         if (ecntrl & ECNTRL_REDUCED_MODE) {
1419                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1420                         return PHY_INTERFACE_MODE_RMII;
1421                 }
1422                 else {
1423                         phy_interface_t interface = priv->interface;
1424
1425                         /* This isn't autodetected right now, so it must
1426                          * be set by the device tree or platform code.
1427                          */
1428                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1429                                 return PHY_INTERFACE_MODE_RGMII_ID;
1430
1431                         return PHY_INTERFACE_MODE_RGMII;
1432                 }
1433         }
1434
1435         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1436                 return PHY_INTERFACE_MODE_GMII;
1437
1438         return PHY_INTERFACE_MODE_MII;
1439 }
1440
1441
1442 /* Initializes driver's PHY state, and attaches to the PHY.
1443  * Returns 0 on success.
1444  */
1445 static int init_phy(struct net_device *dev)
1446 {
1447         struct gfar_private *priv = netdev_priv(dev);
1448         uint gigabit_support =
1449                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1450                 SUPPORTED_1000baseT_Full : 0;
1451         phy_interface_t interface;
1452
1453         priv->oldlink = 0;
1454         priv->oldspeed = 0;
1455         priv->oldduplex = -1;
1456
1457         interface = gfar_get_interface(dev);
1458
1459         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1460                                       interface);
1461         if (!priv->phydev)
1462                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1463                                                          interface);
1464         if (!priv->phydev) {
1465                 dev_err(&dev->dev, "could not attach to PHY\n");
1466                 return -ENODEV;
1467         }
1468
1469         if (interface == PHY_INTERFACE_MODE_SGMII)
1470                 gfar_configure_serdes(dev);
1471
1472         /* Remove any features not supported by the controller */
1473         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1474         priv->phydev->advertising = priv->phydev->supported;
1475
1476         return 0;
1477 }
1478
1479 /* Initialize TBI PHY interface for communicating with the
1480  * SERDES lynx PHY on the chip.  We communicate with this PHY
1481  * through the MDIO bus on each controller, treating it as a
1482  * "normal" PHY at the address found in the TBIPA register.  We assume
1483  * that the TBIPA register is valid.  Either the MDIO bus code will set
1484  * it to a value that doesn't conflict with other PHYs on the bus, or the
1485  * value doesn't matter, as there are no other PHYs on the bus.
1486  */
1487 static void gfar_configure_serdes(struct net_device *dev)
1488 {
1489         struct gfar_private *priv = netdev_priv(dev);
1490         struct phy_device *tbiphy;
1491
1492         if (!priv->tbi_node) {
1493                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1494                                     "device tree specify a tbi-handle\n");
1495                 return;
1496         }
1497
1498         tbiphy = of_phy_find_device(priv->tbi_node);
1499         if (!tbiphy) {
1500                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1501                 return;
1502         }
1503
1504         /* If the link is already up, we must already be ok, and don't need to
1505          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1506          * everything for us?  Resetting it takes the link down and requires
1507          * several seconds for it to come back.
1508          */
1509         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1510                 return;
1511
1512         /* Single clk mode, mii mode off(for serdes communication) */
1513         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1514
1515         phy_write(tbiphy, MII_ADVERTISE,
1516                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1517                   ADVERTISE_1000XPSE_ASYM);
1518
1519         phy_write(tbiphy, MII_BMCR,
1520                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1521                   BMCR_SPEED1000);
1522 }
1523
1524 static void init_registers(struct net_device *dev)
1525 {
1526         struct gfar_private *priv = netdev_priv(dev);
1527         struct gfar __iomem *regs = NULL;
1528         int i;
1529
1530         for (i = 0; i < priv->num_grps; i++) {
1531                 regs = priv->gfargrp[i].regs;
1532                 /* Clear IEVENT */
1533                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1534
1535                 /* Initialize IMASK */
1536                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1537         }
1538
1539         regs = priv->gfargrp[0].regs;
1540         /* Init hash registers to zero */
1541         gfar_write(&regs->igaddr0, 0);
1542         gfar_write(&regs->igaddr1, 0);
1543         gfar_write(&regs->igaddr2, 0);
1544         gfar_write(&regs->igaddr3, 0);
1545         gfar_write(&regs->igaddr4, 0);
1546         gfar_write(&regs->igaddr5, 0);
1547         gfar_write(&regs->igaddr6, 0);
1548         gfar_write(&regs->igaddr7, 0);
1549
1550         gfar_write(&regs->gaddr0, 0);
1551         gfar_write(&regs->gaddr1, 0);
1552         gfar_write(&regs->gaddr2, 0);
1553         gfar_write(&regs->gaddr3, 0);
1554         gfar_write(&regs->gaddr4, 0);
1555         gfar_write(&regs->gaddr5, 0);
1556         gfar_write(&regs->gaddr6, 0);
1557         gfar_write(&regs->gaddr7, 0);
1558
1559         /* Zero out the rmon mib registers if it has them */
1560         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1561                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1562
1563                 /* Mask off the CAM interrupts */
1564                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1565                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1566         }
1567
1568         /* Initialize the max receive buffer length */
1569         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1570
1571         /* Initialize the Minimum Frame Length Register */
1572         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1573 }
1574
1575 static int __gfar_is_rx_idle(struct gfar_private *priv)
1576 {
1577         u32 res;
1578
1579         /* Normaly TSEC should not hang on GRS commands, so we should
1580          * actually wait for IEVENT_GRSC flag.
1581          */
1582         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1583                 return 0;
1584
1585         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1586          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1587          * and the Rx can be safely reset.
1588          */
1589         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1590         res &= 0x7f807f80;
1591         if ((res & 0xffff) == (res >> 16))
1592                 return 1;
1593
1594         return 0;
1595 }
1596
1597 /* Halt the receive and transmit queues */
1598 static void gfar_halt_nodisable(struct net_device *dev)
1599 {
1600         struct gfar_private *priv = netdev_priv(dev);
1601         struct gfar __iomem *regs = NULL;
1602         u32 tempval;
1603         int i;
1604
1605         for (i = 0; i < priv->num_grps; i++) {
1606                 regs = priv->gfargrp[i].regs;
1607                 /* Mask all interrupts */
1608                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1609
1610                 /* Clear all interrupts */
1611                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1612         }
1613
1614         regs = priv->gfargrp[0].regs;
1615         /* Stop the DMA, and wait for it to stop */
1616         tempval = gfar_read(&regs->dmactrl);
1617         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1618             (DMACTRL_GRS | DMACTRL_GTS)) {
1619                 int ret;
1620
1621                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1622                 gfar_write(&regs->dmactrl, tempval);
1623
1624                 do {
1625                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1626                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1627                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1628                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1629                                 ret = __gfar_is_rx_idle(priv);
1630                 } while (!ret);
1631         }
1632 }
1633
1634 /* Halt the receive and transmit queues */
1635 void gfar_halt(struct net_device *dev)
1636 {
1637         struct gfar_private *priv = netdev_priv(dev);
1638         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1639         u32 tempval;
1640
1641         gfar_halt_nodisable(dev);
1642
1643         /* Disable Rx and Tx */
1644         tempval = gfar_read(&regs->maccfg1);
1645         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1646         gfar_write(&regs->maccfg1, tempval);
1647 }
1648
1649 static void free_grp_irqs(struct gfar_priv_grp *grp)
1650 {
1651         free_irq(grp->interruptError, grp);
1652         free_irq(grp->interruptTransmit, grp);
1653         free_irq(grp->interruptReceive, grp);
1654 }
1655
1656 void stop_gfar(struct net_device *dev)
1657 {
1658         struct gfar_private *priv = netdev_priv(dev);
1659         unsigned long flags;
1660         int i;
1661
1662         phy_stop(priv->phydev);
1663
1664
1665         /* Lock it down */
1666         local_irq_save(flags);
1667         lock_tx_qs(priv);
1668         lock_rx_qs(priv);
1669
1670         gfar_halt(dev);
1671
1672         unlock_rx_qs(priv);
1673         unlock_tx_qs(priv);
1674         local_irq_restore(flags);
1675
1676         /* Free the IRQs */
1677         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1678                 for (i = 0; i < priv->num_grps; i++)
1679                         free_grp_irqs(&priv->gfargrp[i]);
1680         } else {
1681                 for (i = 0; i < priv->num_grps; i++)
1682                         free_irq(priv->gfargrp[i].interruptTransmit,
1683                                  &priv->gfargrp[i]);
1684         }
1685
1686         free_skb_resources(priv);
1687 }
1688
1689 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1690 {
1691         struct txbd8 *txbdp;
1692         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1693         int i, j;
1694
1695         txbdp = tx_queue->tx_bd_base;
1696
1697         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1698                 if (!tx_queue->tx_skbuff[i])
1699                         continue;
1700
1701                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1702                                  txbdp->length, DMA_TO_DEVICE);
1703                 txbdp->lstatus = 0;
1704                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1705                      j++) {
1706                         txbdp++;
1707                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1708                                        txbdp->length, DMA_TO_DEVICE);
1709                 }
1710                 txbdp++;
1711                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1712                 tx_queue->tx_skbuff[i] = NULL;
1713         }
1714         kfree(tx_queue->tx_skbuff);
1715 }
1716
1717 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1718 {
1719         struct rxbd8 *rxbdp;
1720         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1721         int i;
1722
1723         rxbdp = rx_queue->rx_bd_base;
1724
1725         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1726                 if (rx_queue->rx_skbuff[i]) {
1727                         dma_unmap_single(&priv->ofdev->dev,
1728                                          rxbdp->bufPtr, priv->rx_buffer_size,
1729                                          DMA_FROM_DEVICE);
1730                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1731                         rx_queue->rx_skbuff[i] = NULL;
1732                 }
1733                 rxbdp->lstatus = 0;
1734                 rxbdp->bufPtr = 0;
1735                 rxbdp++;
1736         }
1737         kfree(rx_queue->rx_skbuff);
1738 }
1739
1740 /* If there are any tx skbs or rx skbs still around, free them.
1741  * Then free tx_skbuff and rx_skbuff
1742  */
1743 static void free_skb_resources(struct gfar_private *priv)
1744 {
1745         struct gfar_priv_tx_q *tx_queue = NULL;
1746         struct gfar_priv_rx_q *rx_queue = NULL;
1747         int i;
1748
1749         /* Go through all the buffer descriptors and free their data buffers */
1750         for (i = 0; i < priv->num_tx_queues; i++) {
1751                 struct netdev_queue *txq;
1752
1753                 tx_queue = priv->tx_queue[i];
1754                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1755                 if (tx_queue->tx_skbuff)
1756                         free_skb_tx_queue(tx_queue);
1757                 netdev_tx_reset_queue(txq);
1758         }
1759
1760         for (i = 0; i < priv->num_rx_queues; i++) {
1761                 rx_queue = priv->rx_queue[i];
1762                 if (rx_queue->rx_skbuff)
1763                         free_skb_rx_queue(rx_queue);
1764         }
1765
1766         dma_free_coherent(&priv->ofdev->dev,
1767                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1768                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1769                           priv->tx_queue[0]->tx_bd_base,
1770                           priv->tx_queue[0]->tx_bd_dma_base);
1771 }
1772
1773 void gfar_start(struct net_device *dev)
1774 {
1775         struct gfar_private *priv = netdev_priv(dev);
1776         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1777         u32 tempval;
1778         int i = 0;
1779
1780         /* Enable Rx and Tx in MACCFG1 */
1781         tempval = gfar_read(&regs->maccfg1);
1782         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1783         gfar_write(&regs->maccfg1, tempval);
1784
1785         /* Initialize DMACTRL to have WWR and WOP */
1786         tempval = gfar_read(&regs->dmactrl);
1787         tempval |= DMACTRL_INIT_SETTINGS;
1788         gfar_write(&regs->dmactrl, tempval);
1789
1790         /* Make sure we aren't stopped */
1791         tempval = gfar_read(&regs->dmactrl);
1792         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1793         gfar_write(&regs->dmactrl, tempval);
1794
1795         for (i = 0; i < priv->num_grps; i++) {
1796                 regs = priv->gfargrp[i].regs;
1797                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1798                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1799                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1800                 /* Unmask the interrupts we look for */
1801                 gfar_write(&regs->imask, IMASK_DEFAULT);
1802         }
1803
1804         dev->trans_start = jiffies; /* prevent tx timeout */
1805 }
1806
1807 void gfar_configure_coalescing(struct gfar_private *priv,
1808                                unsigned long tx_mask, unsigned long rx_mask)
1809 {
1810         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1811         u32 __iomem *baddr;
1812         int i = 0;
1813
1814         /* Backward compatible case ---- even if we enable
1815          * multiple queues, there's only single reg to program
1816          */
1817         gfar_write(&regs->txic, 0);
1818         if (likely(priv->tx_queue[0]->txcoalescing))
1819                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1820
1821         gfar_write(&regs->rxic, 0);
1822         if (unlikely(priv->rx_queue[0]->rxcoalescing))
1823                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1824
1825         if (priv->mode == MQ_MG_MODE) {
1826                 baddr = &regs->txic0;
1827                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1828                         gfar_write(baddr + i, 0);
1829                         if (likely(priv->tx_queue[i]->txcoalescing))
1830                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1831                 }
1832
1833                 baddr = &regs->rxic0;
1834                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1835                         gfar_write(baddr + i, 0);
1836                         if (likely(priv->rx_queue[i]->rxcoalescing))
1837                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1838                 }
1839         }
1840 }
1841
1842 static int register_grp_irqs(struct gfar_priv_grp *grp)
1843 {
1844         struct gfar_private *priv = grp->priv;
1845         struct net_device *dev = priv->ndev;
1846         int err;
1847
1848         /* If the device has multiple interrupts, register for
1849          * them.  Otherwise, only register for the one
1850          */
1851         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1852                 /* Install our interrupt handlers for Error,
1853                  * Transmit, and Receive
1854                  */
1855                 if ((err = request_irq(grp->interruptError, gfar_error,
1856                                        0, grp->int_name_er, grp)) < 0) {
1857                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1858                                   grp->interruptError);
1859
1860                         goto err_irq_fail;
1861                 }
1862
1863                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1864                                        0, grp->int_name_tx, grp)) < 0) {
1865                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1866                                   grp->interruptTransmit);
1867                         goto tx_irq_fail;
1868                 }
1869
1870                 if ((err = request_irq(grp->interruptReceive, gfar_receive,
1871                                        0, grp->int_name_rx, grp)) < 0) {
1872                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1873                                   grp->interruptReceive);
1874                         goto rx_irq_fail;
1875                 }
1876         } else {
1877                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt,
1878                                        0, grp->int_name_tx, grp)) < 0) {
1879                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1880                                   grp->interruptTransmit);
1881                         goto err_irq_fail;
1882                 }
1883         }
1884
1885         return 0;
1886
1887 rx_irq_fail:
1888         free_irq(grp->interruptTransmit, grp);
1889 tx_irq_fail:
1890         free_irq(grp->interruptError, grp);
1891 err_irq_fail:
1892         return err;
1893
1894 }
1895
1896 /* Bring the controller up and running */
1897 int startup_gfar(struct net_device *ndev)
1898 {
1899         struct gfar_private *priv = netdev_priv(ndev);
1900         struct gfar __iomem *regs = NULL;
1901         int err, i, j;
1902
1903         for (i = 0; i < priv->num_grps; i++) {
1904                 regs= priv->gfargrp[i].regs;
1905                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1906         }
1907
1908         regs= priv->gfargrp[0].regs;
1909         err = gfar_alloc_skb_resources(ndev);
1910         if (err)
1911                 return err;
1912
1913         gfar_init_mac(ndev);
1914
1915         for (i = 0; i < priv->num_grps; i++) {
1916                 err = register_grp_irqs(&priv->gfargrp[i]);
1917                 if (err) {
1918                         for (j = 0; j < i; j++)
1919                                 free_grp_irqs(&priv->gfargrp[j]);
1920                         goto irq_fail;
1921                 }
1922         }
1923
1924         /* Start the controller */
1925         gfar_start(ndev);
1926
1927         phy_start(priv->phydev);
1928
1929         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1930
1931         return 0;
1932
1933 irq_fail:
1934         free_skb_resources(priv);
1935         return err;
1936 }
1937
1938 /* Called when something needs to use the ethernet device
1939  * Returns 0 for success.
1940  */
1941 static int gfar_enet_open(struct net_device *dev)
1942 {
1943         struct gfar_private *priv = netdev_priv(dev);
1944         int err;
1945
1946         enable_napi(priv);
1947
1948         /* Initialize a bunch of registers */
1949         init_registers(dev);
1950
1951         gfar_set_mac_address(dev);
1952
1953         err = init_phy(dev);
1954
1955         if (err) {
1956                 disable_napi(priv);
1957                 return err;
1958         }
1959
1960         err = startup_gfar(dev);
1961         if (err) {
1962                 disable_napi(priv);
1963                 return err;
1964         }
1965
1966         netif_tx_start_all_queues(dev);
1967
1968         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1969
1970         return err;
1971 }
1972
1973 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1974 {
1975         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1976
1977         memset(fcb, 0, GMAC_FCB_LEN);
1978
1979         return fcb;
1980 }
1981
1982 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1983                                     int fcb_length)
1984 {
1985         /* If we're here, it's a IP packet with a TCP or UDP
1986          * payload.  We set it to checksum, using a pseudo-header
1987          * we provide
1988          */
1989         u8 flags = TXFCB_DEFAULT;
1990
1991         /* Tell the controller what the protocol is
1992          * And provide the already calculated phcs
1993          */
1994         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1995                 flags |= TXFCB_UDP;
1996                 fcb->phcs = udp_hdr(skb)->check;
1997         } else
1998                 fcb->phcs = tcp_hdr(skb)->check;
1999
2000         /* l3os is the distance between the start of the
2001          * frame (skb->data) and the start of the IP hdr.
2002          * l4os is the distance between the start of the
2003          * l3 hdr and the l4 hdr
2004          */
2005         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2006         fcb->l4os = skb_network_header_len(skb);
2007
2008         fcb->flags = flags;
2009 }
2010
2011 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2012 {
2013         fcb->flags |= TXFCB_VLN;
2014         fcb->vlctl = vlan_tx_tag_get(skb);
2015 }
2016
2017 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2018                                       struct txbd8 *base, int ring_size)
2019 {
2020         struct txbd8 *new_bd = bdp + stride;
2021
2022         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2023 }
2024
2025 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2026                                       int ring_size)
2027 {
2028         return skip_txbd(bdp, 1, base, ring_size);
2029 }
2030
2031 /* This is called by the kernel when a frame is ready for transmission.
2032  * It is pointed to by the dev->hard_start_xmit function pointer
2033  */
2034 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2035 {
2036         struct gfar_private *priv = netdev_priv(dev);
2037         struct gfar_priv_tx_q *tx_queue = NULL;
2038         struct netdev_queue *txq;
2039         struct gfar __iomem *regs = NULL;
2040         struct txfcb *fcb = NULL;
2041         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2042         u32 lstatus;
2043         int i, rq = 0, do_tstamp = 0;
2044         u32 bufaddr;
2045         unsigned long flags;
2046         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2047
2048         /* TOE=1 frames larger than 2500 bytes may see excess delays
2049          * before start of transmission.
2050          */
2051         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2052                      skb->ip_summed == CHECKSUM_PARTIAL &&
2053                      skb->len > 2500)) {
2054                 int ret;
2055
2056                 ret = skb_checksum_help(skb);
2057                 if (ret)
2058                         return ret;
2059         }
2060
2061         rq = skb->queue_mapping;
2062         tx_queue = priv->tx_queue[rq];
2063         txq = netdev_get_tx_queue(dev, rq);
2064         base = tx_queue->tx_bd_base;
2065         regs = tx_queue->grp->regs;
2066
2067         /* check if time stamp should be generated */
2068         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2069                      priv->hwts_tx_en)) {
2070                 do_tstamp = 1;
2071                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2072         }
2073
2074         /* make space for additional header when fcb is needed */
2075         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2076              vlan_tx_tag_present(skb) ||
2077              unlikely(do_tstamp)) &&
2078             (skb_headroom(skb) < fcb_length)) {
2079                 struct sk_buff *skb_new;
2080
2081                 skb_new = skb_realloc_headroom(skb, fcb_length);
2082                 if (!skb_new) {
2083                         dev->stats.tx_errors++;
2084                         kfree_skb(skb);
2085                         return NETDEV_TX_OK;
2086                 }
2087
2088                 if (skb->sk)
2089                         skb_set_owner_w(skb_new, skb->sk);
2090                 consume_skb(skb);
2091                 skb = skb_new;
2092         }
2093
2094         /* total number of fragments in the SKB */
2095         nr_frags = skb_shinfo(skb)->nr_frags;
2096
2097         /* calculate the required number of TxBDs for this skb */
2098         if (unlikely(do_tstamp))
2099                 nr_txbds = nr_frags + 2;
2100         else
2101                 nr_txbds = nr_frags + 1;
2102
2103         /* check if there is space to queue this packet */
2104         if (nr_txbds > tx_queue->num_txbdfree) {
2105                 /* no space, stop the queue */
2106                 netif_tx_stop_queue(txq);
2107                 dev->stats.tx_fifo_errors++;
2108                 return NETDEV_TX_BUSY;
2109         }
2110
2111         /* Update transmit stats */
2112         tx_queue->stats.tx_bytes += skb->len;
2113         tx_queue->stats.tx_packets++;
2114
2115         txbdp = txbdp_start = tx_queue->cur_tx;
2116         lstatus = txbdp->lstatus;
2117
2118         /* Time stamp insertion requires one additional TxBD */
2119         if (unlikely(do_tstamp))
2120                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2121                                                  tx_queue->tx_ring_size);
2122
2123         if (nr_frags == 0) {
2124                 if (unlikely(do_tstamp))
2125                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2126                                                           TXBD_INTERRUPT);
2127                 else
2128                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2129         } else {
2130                 /* Place the fragment addresses and lengths into the TxBDs */
2131                 for (i = 0; i < nr_frags; i++) {
2132                         /* Point at the next BD, wrapping as needed */
2133                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2134
2135                         length = skb_shinfo(skb)->frags[i].size;
2136
2137                         lstatus = txbdp->lstatus | length |
2138                                   BD_LFLAG(TXBD_READY);
2139
2140                         /* Handle the last BD specially */
2141                         if (i == nr_frags - 1)
2142                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2143
2144                         bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2145                                                    &skb_shinfo(skb)->frags[i],
2146                                                    0,
2147                                                    length,
2148                                                    DMA_TO_DEVICE);
2149
2150                         /* set the TxBD length and buffer pointer */
2151                         txbdp->bufPtr = bufaddr;
2152                         txbdp->lstatus = lstatus;
2153                 }
2154
2155                 lstatus = txbdp_start->lstatus;
2156         }
2157
2158         /* Add TxPAL between FCB and frame if required */
2159         if (unlikely(do_tstamp)) {
2160                 skb_push(skb, GMAC_TXPAL_LEN);
2161                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2162         }
2163
2164         /* Set up checksumming */
2165         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2166                 fcb = gfar_add_fcb(skb);
2167                 /* as specified by errata */
2168                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2169                              ((unsigned long)fcb % 0x20) > 0x18)) {
2170                         __skb_pull(skb, GMAC_FCB_LEN);
2171                         skb_checksum_help(skb);
2172                 } else {
2173                         lstatus |= BD_LFLAG(TXBD_TOE);
2174                         gfar_tx_checksum(skb, fcb, fcb_length);
2175                 }
2176         }
2177
2178         if (vlan_tx_tag_present(skb)) {
2179                 if (unlikely(NULL == fcb)) {
2180                         fcb = gfar_add_fcb(skb);
2181                         lstatus |= BD_LFLAG(TXBD_TOE);
2182                 }
2183
2184                 gfar_tx_vlan(skb, fcb);
2185         }
2186
2187         /* Setup tx hardware time stamping if requested */
2188         if (unlikely(do_tstamp)) {
2189                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2190                 if (fcb == NULL)
2191                         fcb = gfar_add_fcb(skb);
2192                 fcb->ptp = 1;
2193                 lstatus |= BD_LFLAG(TXBD_TOE);
2194         }
2195
2196         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2197                                              skb_headlen(skb), DMA_TO_DEVICE);
2198
2199         /* If time stamping is requested one additional TxBD must be set up. The
2200          * first TxBD points to the FCB and must have a data length of
2201          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2202          * the full frame length.
2203          */
2204         if (unlikely(do_tstamp)) {
2205                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2206                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2207                                          (skb_headlen(skb) - fcb_length);
2208                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2209         } else {
2210                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2211         }
2212
2213         netdev_tx_sent_queue(txq, skb->len);
2214
2215         /* We can work in parallel with gfar_clean_tx_ring(), except
2216          * when modifying num_txbdfree. Note that we didn't grab the lock
2217          * when we were reading the num_txbdfree and checking for available
2218          * space, that's because outside of this function it can only grow,
2219          * and once we've got needed space, it cannot suddenly disappear.
2220          *
2221          * The lock also protects us from gfar_error(), which can modify
2222          * regs->tstat and thus retrigger the transfers, which is why we
2223          * also must grab the lock before setting ready bit for the first
2224          * to be transmitted BD.
2225          */
2226         spin_lock_irqsave(&tx_queue->txlock, flags);
2227
2228         /* The powerpc-specific eieio() is used, as wmb() has too strong
2229          * semantics (it requires synchronization between cacheable and
2230          * uncacheable mappings, which eieio doesn't provide and which we
2231          * don't need), thus requiring a more expensive sync instruction.  At
2232          * some point, the set of architecture-independent barrier functions
2233          * should be expanded to include weaker barriers.
2234          */
2235         eieio();
2236
2237         txbdp_start->lstatus = lstatus;
2238
2239         eieio(); /* force lstatus write before tx_skbuff */
2240
2241         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2242
2243         /* Update the current skb pointer to the next entry we will use
2244          * (wrapping if necessary)
2245          */
2246         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2247                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2248
2249         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2250
2251         /* reduce TxBD free count */
2252         tx_queue->num_txbdfree -= (nr_txbds);
2253
2254         /* If the next BD still needs to be cleaned up, then the bds
2255          * are full.  We need to tell the kernel to stop sending us stuff.
2256          */
2257         if (!tx_queue->num_txbdfree) {
2258                 netif_tx_stop_queue(txq);
2259
2260                 dev->stats.tx_fifo_errors++;
2261         }
2262
2263         /* Tell the DMA to go go go */
2264         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2265
2266         /* Unlock priv */
2267         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2268
2269         return NETDEV_TX_OK;
2270 }
2271
2272 /* Stops the kernel queue, and halts the controller */
2273 static int gfar_close(struct net_device *dev)
2274 {
2275         struct gfar_private *priv = netdev_priv(dev);
2276
2277         disable_napi(priv);
2278
2279         cancel_work_sync(&priv->reset_task);
2280         stop_gfar(dev);
2281
2282         /* Disconnect from the PHY */
2283         phy_disconnect(priv->phydev);
2284         priv->phydev = NULL;
2285
2286         netif_tx_stop_all_queues(dev);
2287
2288         return 0;
2289 }
2290
2291 /* Changes the mac address if the controller is not running. */
2292 static int gfar_set_mac_address(struct net_device *dev)
2293 {
2294         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2295
2296         return 0;
2297 }
2298
2299 /* Check if rx parser should be activated */
2300 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2301 {
2302         struct gfar __iomem *regs;
2303         u32 tempval;
2304
2305         regs = priv->gfargrp[0].regs;
2306
2307         tempval = gfar_read(&regs->rctrl);
2308         /* If parse is no longer required, then disable parser */
2309         if (tempval & RCTRL_REQ_PARSER)
2310                 tempval |= RCTRL_PRSDEP_INIT;
2311         else
2312                 tempval &= ~RCTRL_PRSDEP_INIT;
2313         gfar_write(&regs->rctrl, tempval);
2314 }
2315
2316 /* Enables and disables VLAN insertion/extraction */
2317 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2318 {
2319         struct gfar_private *priv = netdev_priv(dev);
2320         struct gfar __iomem *regs = NULL;
2321         unsigned long flags;
2322         u32 tempval;
2323
2324         regs = priv->gfargrp[0].regs;
2325         local_irq_save(flags);
2326         lock_rx_qs(priv);
2327
2328         if (features & NETIF_F_HW_VLAN_TX) {
2329                 /* Enable VLAN tag insertion */
2330                 tempval = gfar_read(&regs->tctrl);
2331                 tempval |= TCTRL_VLINS;
2332                 gfar_write(&regs->tctrl, tempval);
2333         } else {
2334                 /* Disable VLAN tag insertion */
2335                 tempval = gfar_read(&regs->tctrl);
2336                 tempval &= ~TCTRL_VLINS;
2337                 gfar_write(&regs->tctrl, tempval);
2338         }
2339
2340         if (features & NETIF_F_HW_VLAN_RX) {
2341                 /* Enable VLAN tag extraction */
2342                 tempval = gfar_read(&regs->rctrl);
2343                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2344                 gfar_write(&regs->rctrl, tempval);
2345         } else {
2346                 /* Disable VLAN tag extraction */
2347                 tempval = gfar_read(&regs->rctrl);
2348                 tempval &= ~RCTRL_VLEX;
2349                 gfar_write(&regs->rctrl, tempval);
2350
2351                 gfar_check_rx_parser_mode(priv);
2352         }
2353
2354         gfar_change_mtu(dev, dev->mtu);
2355
2356         unlock_rx_qs(priv);
2357         local_irq_restore(flags);
2358 }
2359
2360 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2361 {
2362         int tempsize, tempval;
2363         struct gfar_private *priv = netdev_priv(dev);
2364         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2365         int oldsize = priv->rx_buffer_size;
2366         int frame_size = new_mtu + ETH_HLEN;
2367
2368         if (gfar_is_vlan_on(priv))
2369                 frame_size += VLAN_HLEN;
2370
2371         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2372                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2373                 return -EINVAL;
2374         }
2375
2376         if (gfar_uses_fcb(priv))
2377                 frame_size += GMAC_FCB_LEN;
2378
2379         frame_size += priv->padding;
2380
2381         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2382                    INCREMENTAL_BUFFER_SIZE;
2383
2384         /* Only stop and start the controller if it isn't already
2385          * stopped, and we changed something
2386          */
2387         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2388                 stop_gfar(dev);
2389
2390         priv->rx_buffer_size = tempsize;
2391
2392         dev->mtu = new_mtu;
2393
2394         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2395         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2396
2397         /* If the mtu is larger than the max size for standard
2398          * ethernet frames (ie, a jumbo frame), then set maccfg2
2399          * to allow huge frames, and to check the length
2400          */
2401         tempval = gfar_read(&regs->maccfg2);
2402
2403         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2404             gfar_has_errata(priv, GFAR_ERRATA_74))
2405                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2406         else
2407                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2408
2409         gfar_write(&regs->maccfg2, tempval);
2410
2411         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2412                 startup_gfar(dev);
2413
2414         return 0;
2415 }
2416
2417 /* gfar_reset_task gets scheduled when a packet has not been
2418  * transmitted after a set amount of time.
2419  * For now, assume that clearing out all the structures, and
2420  * starting over will fix the problem.
2421  */
2422 static void gfar_reset_task(struct work_struct *work)
2423 {
2424         struct gfar_private *priv = container_of(work, struct gfar_private,
2425                                                  reset_task);
2426         struct net_device *dev = priv->ndev;
2427
2428         if (dev->flags & IFF_UP) {
2429                 netif_tx_stop_all_queues(dev);
2430                 stop_gfar(dev);
2431                 startup_gfar(dev);
2432                 netif_tx_start_all_queues(dev);
2433         }
2434
2435         netif_tx_schedule_all(dev);
2436 }
2437
2438 static void gfar_timeout(struct net_device *dev)
2439 {
2440         struct gfar_private *priv = netdev_priv(dev);
2441
2442         dev->stats.tx_errors++;
2443         schedule_work(&priv->reset_task);
2444 }
2445
2446 static void gfar_align_skb(struct sk_buff *skb)
2447 {
2448         /* We need the data buffer to be aligned properly.  We will reserve
2449          * as many bytes as needed to align the data properly
2450          */
2451         skb_reserve(skb, RXBUF_ALIGNMENT -
2452                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2453 }
2454
2455 /* Interrupt Handler for Transmit complete */
2456 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2457 {
2458         struct net_device *dev = tx_queue->dev;
2459         struct netdev_queue *txq;
2460         struct gfar_private *priv = netdev_priv(dev);
2461         struct gfar_priv_rx_q *rx_queue = NULL;
2462         struct txbd8 *bdp, *next = NULL;
2463         struct txbd8 *lbdp = NULL;
2464         struct txbd8 *base = tx_queue->tx_bd_base;
2465         struct sk_buff *skb;
2466         int skb_dirtytx;
2467         int tx_ring_size = tx_queue->tx_ring_size;
2468         int frags = 0, nr_txbds = 0;
2469         int i;
2470         int howmany = 0;
2471         int tqi = tx_queue->qindex;
2472         unsigned int bytes_sent = 0;
2473         u32 lstatus;
2474         size_t buflen;
2475
2476         rx_queue = priv->rx_queue[tqi];
2477         txq = netdev_get_tx_queue(dev, tqi);
2478         bdp = tx_queue->dirty_tx;
2479         skb_dirtytx = tx_queue->skb_dirtytx;
2480
2481         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2482                 unsigned long flags;
2483
2484                 frags = skb_shinfo(skb)->nr_frags;
2485
2486                 /* When time stamping, one additional TxBD must be freed.
2487                  * Also, we need to dma_unmap_single() the TxPAL.
2488                  */
2489                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2490                         nr_txbds = frags + 2;
2491                 else
2492                         nr_txbds = frags + 1;
2493
2494                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2495
2496                 lstatus = lbdp->lstatus;
2497
2498                 /* Only clean completed frames */
2499                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2500                     (lstatus & BD_LENGTH_MASK))
2501                         break;
2502
2503                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2504                         next = next_txbd(bdp, base, tx_ring_size);
2505                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2506                 } else
2507                         buflen = bdp->length;
2508
2509                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2510                                  buflen, DMA_TO_DEVICE);
2511
2512                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2513                         struct skb_shared_hwtstamps shhwtstamps;
2514                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2515
2516                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2517                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2518                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2519                         skb_tstamp_tx(skb, &shhwtstamps);
2520                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2521                         bdp = next;
2522                 }
2523
2524                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2525                 bdp = next_txbd(bdp, base, tx_ring_size);
2526
2527                 for (i = 0; i < frags; i++) {
2528                         dma_unmap_page(&priv->ofdev->dev, bdp->bufPtr,
2529                                        bdp->length, DMA_TO_DEVICE);
2530                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2531                         bdp = next_txbd(bdp, base, tx_ring_size);
2532                 }
2533
2534                 bytes_sent += skb->len;
2535
2536                 dev_kfree_skb_any(skb);
2537
2538                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2539
2540                 skb_dirtytx = (skb_dirtytx + 1) &
2541                               TX_RING_MOD_MASK(tx_ring_size);
2542
2543                 howmany++;
2544                 spin_lock_irqsave(&tx_queue->txlock, flags);
2545                 tx_queue->num_txbdfree += nr_txbds;
2546                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2547         }
2548
2549         /* If we freed a buffer, we can restart transmission, if necessary */
2550         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2551                 netif_wake_subqueue(dev, tqi);
2552
2553         /* Update dirty indicators */
2554         tx_queue->skb_dirtytx = skb_dirtytx;
2555         tx_queue->dirty_tx = bdp;
2556
2557         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2558
2559         return howmany;
2560 }
2561
2562 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2563 {
2564         unsigned long flags;
2565
2566         spin_lock_irqsave(&gfargrp->grplock, flags);
2567         if (napi_schedule_prep(&gfargrp->napi)) {
2568                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2569                 __napi_schedule(&gfargrp->napi);
2570         } else {
2571                 /* Clear IEVENT, so interrupts aren't called again
2572                  * because of the packets that have already arrived.
2573                  */
2574                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2575         }
2576         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2577
2578 }
2579
2580 /* Interrupt Handler for Transmit complete */
2581 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2582 {
2583         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2584         return IRQ_HANDLED;
2585 }
2586
2587 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2588                            struct sk_buff *skb)
2589 {
2590         struct net_device *dev = rx_queue->dev;
2591         struct gfar_private *priv = netdev_priv(dev);
2592         dma_addr_t buf;
2593
2594         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2595                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2596         gfar_init_rxbdp(rx_queue, bdp, buf);
2597 }
2598
2599 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2600 {
2601         struct gfar_private *priv = netdev_priv(dev);
2602         struct sk_buff *skb;
2603
2604         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2605         if (!skb)
2606                 return NULL;
2607
2608         gfar_align_skb(skb);
2609
2610         return skb;
2611 }
2612
2613 struct sk_buff *gfar_new_skb(struct net_device *dev)
2614 {
2615         return gfar_alloc_skb(dev);
2616 }
2617
2618 static inline void count_errors(unsigned short status, struct net_device *dev)
2619 {
2620         struct gfar_private *priv = netdev_priv(dev);
2621         struct net_device_stats *stats = &dev->stats;
2622         struct gfar_extra_stats *estats = &priv->extra_stats;
2623
2624         /* If the packet was truncated, none of the other errors matter */
2625         if (status & RXBD_TRUNCATED) {
2626                 stats->rx_length_errors++;
2627
2628                 estats->rx_trunc++;
2629
2630                 return;
2631         }
2632         /* Count the errors, if there were any */
2633         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2634                 stats->rx_length_errors++;
2635
2636                 if (status & RXBD_LARGE)
2637                         estats->rx_large++;
2638                 else
2639                         estats->rx_short++;
2640         }
2641         if (status & RXBD_NONOCTET) {
2642                 stats->rx_frame_errors++;
2643                 estats->rx_nonoctet++;
2644         }
2645         if (status & RXBD_CRCERR) {
2646                 estats->rx_crcerr++;
2647                 stats->rx_crc_errors++;
2648         }
2649         if (status & RXBD_OVERRUN) {
2650                 estats->rx_overrun++;
2651                 stats->rx_crc_errors++;
2652         }
2653 }
2654
2655 irqreturn_t gfar_receive(int irq, void *grp_id)
2656 {
2657         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2658         return IRQ_HANDLED;
2659 }
2660
2661 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2662 {
2663         /* If valid headers were found, and valid sums
2664          * were verified, then we tell the kernel that no
2665          * checksumming is necessary.  Otherwise, it is [FIXME]
2666          */
2667         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2668                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2669         else
2670                 skb_checksum_none_assert(skb);
2671 }
2672
2673
2674 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2675 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2676                               int amount_pull, struct napi_struct *napi)
2677 {
2678         struct gfar_private *priv = netdev_priv(dev);
2679         struct rxfcb *fcb = NULL;
2680
2681         gro_result_t ret;
2682
2683         /* fcb is at the beginning if exists */
2684         fcb = (struct rxfcb *)skb->data;
2685
2686         /* Remove the FCB from the skb
2687          * Remove the padded bytes, if there are any
2688          */
2689         if (amount_pull) {
2690                 skb_record_rx_queue(skb, fcb->rq);
2691                 skb_pull(skb, amount_pull);
2692         }
2693
2694         /* Get receive timestamp from the skb */
2695         if (priv->hwts_rx_en) {
2696                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2697                 u64 *ns = (u64 *) skb->data;
2698
2699                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2700                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2701         }
2702
2703         if (priv->padding)
2704                 skb_pull(skb, priv->padding);
2705
2706         if (dev->features & NETIF_F_RXCSUM)
2707                 gfar_rx_checksum(skb, fcb);
2708
2709         /* Tell the skb what kind of packet this is */
2710         skb->protocol = eth_type_trans(skb, dev);
2711
2712         /* There's need to check for NETIF_F_HW_VLAN_RX here.
2713          * Even if vlan rx accel is disabled, on some chips
2714          * RXFCB_VLN is pseudo randomly set.
2715          */
2716         if (dev->features & NETIF_F_HW_VLAN_RX &&
2717             fcb->flags & RXFCB_VLN)
2718                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2719
2720         /* Send the packet up the stack */
2721         ret = napi_gro_receive(napi, skb);
2722
2723         if (GRO_DROP == ret)
2724                 priv->extra_stats.kernel_dropped++;
2725
2726         return 0;
2727 }
2728
2729 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2730  * until the budget/quota has been reached. Returns the number
2731  * of frames handled
2732  */
2733 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2734 {
2735         struct net_device *dev = rx_queue->dev;
2736         struct rxbd8 *bdp, *base;
2737         struct sk_buff *skb;
2738         int pkt_len;
2739         int amount_pull;
2740         int howmany = 0;
2741         struct gfar_private *priv = netdev_priv(dev);
2742
2743         /* Get the first full descriptor */
2744         bdp = rx_queue->cur_rx;
2745         base = rx_queue->rx_bd_base;
2746
2747         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2748
2749         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2750                 struct sk_buff *newskb;
2751
2752                 rmb();
2753
2754                 /* Add another skb for the future */
2755                 newskb = gfar_new_skb(dev);
2756
2757                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2758
2759                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2760                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2761
2762                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2763                              bdp->length > priv->rx_buffer_size))
2764                         bdp->status = RXBD_LARGE;
2765
2766                 /* We drop the frame if we failed to allocate a new buffer */
2767                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2768                              bdp->status & RXBD_ERR)) {
2769                         count_errors(bdp->status, dev);
2770
2771                         if (unlikely(!newskb))
2772                                 newskb = skb;
2773                         else if (skb)
2774                                 dev_kfree_skb(skb);
2775                 } else {
2776                         /* Increment the number of packets */
2777                         rx_queue->stats.rx_packets++;
2778                         howmany++;
2779
2780                         if (likely(skb)) {
2781                                 pkt_len = bdp->length - ETH_FCS_LEN;
2782                                 /* Remove the FCS from the packet length */
2783                                 skb_put(skb, pkt_len);
2784                                 rx_queue->stats.rx_bytes += pkt_len;
2785                                 skb_record_rx_queue(skb, rx_queue->qindex);
2786                                 gfar_process_frame(dev, skb, amount_pull,
2787                                                    &rx_queue->grp->napi);
2788
2789                         } else {
2790                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2791                                 rx_queue->stats.rx_dropped++;
2792                                 priv->extra_stats.rx_skbmissing++;
2793                         }
2794
2795                 }
2796
2797                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2798
2799                 /* Setup the new bdp */
2800                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2801
2802                 /* Update to the next pointer */
2803                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2804
2805                 /* update to point at the next skb */
2806                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2807                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2808         }
2809
2810         /* Update the current rxbd pointer to be the next one */
2811         rx_queue->cur_rx = bdp;
2812
2813         return howmany;
2814 }
2815
2816 static int gfar_poll(struct napi_struct *napi, int budget)
2817 {
2818         struct gfar_priv_grp *gfargrp =
2819                 container_of(napi, struct gfar_priv_grp, napi);
2820         struct gfar_private *priv = gfargrp->priv;
2821         struct gfar __iomem *regs = gfargrp->regs;
2822         struct gfar_priv_tx_q *tx_queue = NULL;
2823         struct gfar_priv_rx_q *rx_queue = NULL;
2824         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2825         int tx_cleaned = 0, i, left_over_budget = budget;
2826         unsigned long serviced_queues = 0;
2827         int num_queues = 0;
2828
2829         num_queues = gfargrp->num_rx_queues;
2830         budget_per_queue = budget/num_queues;
2831
2832         /* Clear IEVENT, so interrupts aren't called again
2833          * because of the packets that have already arrived
2834          */
2835         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2836
2837         while (num_queues && left_over_budget) {
2838                 budget_per_queue = left_over_budget/num_queues;
2839                 left_over_budget = 0;
2840
2841                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2842                         if (test_bit(i, &serviced_queues))
2843                                 continue;
2844                         rx_queue = priv->rx_queue[i];
2845                         tx_queue = priv->tx_queue[rx_queue->qindex];
2846
2847                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2848                         rx_cleaned_per_queue =
2849                                 gfar_clean_rx_ring(rx_queue, budget_per_queue);
2850                         rx_cleaned += rx_cleaned_per_queue;
2851                         if (rx_cleaned_per_queue < budget_per_queue) {
2852                                 left_over_budget = left_over_budget +
2853                                         (budget_per_queue -
2854                                          rx_cleaned_per_queue);
2855                                 set_bit(i, &serviced_queues);
2856                                 num_queues--;
2857                         }
2858                 }
2859         }
2860
2861         if (tx_cleaned)
2862                 return budget;
2863
2864         if (rx_cleaned < budget) {
2865                 napi_complete(napi);
2866
2867                 /* Clear the halt bit in RSTAT */
2868                 gfar_write(&regs->rstat, gfargrp->rstat);
2869
2870                 gfar_write(&regs->imask, IMASK_DEFAULT);
2871
2872                 /* If we are coalescing interrupts, update the timer
2873                  * Otherwise, clear it
2874                  */
2875                 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2876                                           gfargrp->tx_bit_map);
2877         }
2878
2879         return rx_cleaned;
2880 }
2881
2882 #ifdef CONFIG_NET_POLL_CONTROLLER
2883 /* Polling 'interrupt' - used by things like netconsole to send skbs
2884  * without having to re-enable interrupts. It's not called while
2885  * the interrupt routine is executing.
2886  */
2887 static void gfar_netpoll(struct net_device *dev)
2888 {
2889         struct gfar_private *priv = netdev_priv(dev);
2890         int i;
2891
2892         /* If the device has multiple interrupts, run tx/rx */
2893         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2894                 for (i = 0; i < priv->num_grps; i++) {
2895                         disable_irq(priv->gfargrp[i].interruptTransmit);
2896                         disable_irq(priv->gfargrp[i].interruptReceive);
2897                         disable_irq(priv->gfargrp[i].interruptError);
2898                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2899                                        &priv->gfargrp[i]);
2900                         enable_irq(priv->gfargrp[i].interruptError);
2901                         enable_irq(priv->gfargrp[i].interruptReceive);
2902                         enable_irq(priv->gfargrp[i].interruptTransmit);
2903                 }
2904         } else {
2905                 for (i = 0; i < priv->num_grps; i++) {
2906                         disable_irq(priv->gfargrp[i].interruptTransmit);
2907                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2908                                        &priv->gfargrp[i]);
2909                         enable_irq(priv->gfargrp[i].interruptTransmit);
2910                 }
2911         }
2912 }
2913 #endif
2914
2915 /* The interrupt handler for devices with one interrupt */
2916 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2917 {
2918         struct gfar_priv_grp *gfargrp = grp_id;
2919
2920         /* Save ievent for future reference */
2921         u32 events = gfar_read(&gfargrp->regs->ievent);
2922
2923         /* Check for reception */
2924         if (events & IEVENT_RX_MASK)
2925                 gfar_receive(irq, grp_id);
2926
2927         /* Check for transmit completion */
2928         if (events & IEVENT_TX_MASK)
2929                 gfar_transmit(irq, grp_id);
2930
2931         /* Check for errors */
2932         if (events & IEVENT_ERR_MASK)
2933                 gfar_error(irq, grp_id);
2934
2935         return IRQ_HANDLED;
2936 }
2937
2938 /* Called every time the controller might need to be made
2939  * aware of new link state.  The PHY code conveys this
2940  * information through variables in the phydev structure, and this
2941  * function converts those variables into the appropriate
2942  * register values, and can bring down the device if needed.
2943  */
2944 static void adjust_link(struct net_device *dev)
2945 {
2946         struct gfar_private *priv = netdev_priv(dev);
2947         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2948         unsigned long flags;
2949         struct phy_device *phydev = priv->phydev;
2950         int new_state = 0;
2951
2952         local_irq_save(flags);
2953         lock_tx_qs(priv);
2954
2955         if (phydev->link) {
2956                 u32 tempval = gfar_read(&regs->maccfg2);
2957                 u32 ecntrl = gfar_read(&regs->ecntrl);
2958
2959                 /* Now we make sure that we can be in full duplex mode.
2960                  * If not, we operate in half-duplex mode.
2961                  */
2962                 if (phydev->duplex != priv->oldduplex) {
2963                         new_state = 1;
2964                         if (!(phydev->duplex))
2965                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2966                         else
2967                                 tempval |= MACCFG2_FULL_DUPLEX;
2968
2969                         priv->oldduplex = phydev->duplex;
2970                 }
2971
2972                 if (phydev->speed != priv->oldspeed) {
2973                         new_state = 1;
2974                         switch (phydev->speed) {
2975                         case 1000:
2976                                 tempval =
2977                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2978
2979                                 ecntrl &= ~(ECNTRL_R100);
2980                                 break;
2981                         case 100:
2982                         case 10:
2983                                 tempval =
2984                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2985
2986                                 /* Reduced mode distinguishes
2987                                  * between 10 and 100
2988                                  */
2989                                 if (phydev->speed == SPEED_100)
2990                                         ecntrl |= ECNTRL_R100;
2991                                 else
2992                                         ecntrl &= ~(ECNTRL_R100);
2993                                 break;
2994                         default:
2995                                 netif_warn(priv, link, dev,
2996                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
2997                                            phydev->speed);
2998                                 break;
2999                         }
3000
3001                         priv->oldspeed = phydev->speed;
3002                 }
3003
3004                 gfar_write(&regs->maccfg2, tempval);
3005                 gfar_write(&regs->ecntrl, ecntrl);
3006
3007                 if (!priv->oldlink) {
3008                         new_state = 1;
3009                         priv->oldlink = 1;
3010                 }
3011         } else if (priv->oldlink) {
3012                 new_state = 1;
3013                 priv->oldlink = 0;
3014                 priv->oldspeed = 0;
3015                 priv->oldduplex = -1;
3016         }
3017
3018         if (new_state && netif_msg_link(priv))
3019                 phy_print_status(phydev);
3020         unlock_tx_qs(priv);
3021         local_irq_restore(flags);
3022 }
3023
3024 /* Update the hash table based on the current list of multicast
3025  * addresses we subscribe to.  Also, change the promiscuity of
3026  * the device based on the flags (this function is called
3027  * whenever dev->flags is changed
3028  */
3029 static void gfar_set_multi(struct net_device *dev)
3030 {
3031         struct netdev_hw_addr *ha;
3032         struct gfar_private *priv = netdev_priv(dev);
3033         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3034         u32 tempval;
3035
3036         if (dev->flags & IFF_PROMISC) {
3037                 /* Set RCTRL to PROM */
3038                 tempval = gfar_read(&regs->rctrl);
3039                 tempval |= RCTRL_PROM;
3040                 gfar_write(&regs->rctrl, tempval);
3041         } else {
3042                 /* Set RCTRL to not PROM */
3043                 tempval = gfar_read(&regs->rctrl);
3044                 tempval &= ~(RCTRL_PROM);
3045                 gfar_write(&regs->rctrl, tempval);
3046         }
3047
3048         if (dev->flags & IFF_ALLMULTI) {
3049                 /* Set the hash to rx all multicast frames */
3050                 gfar_write(&regs->igaddr0, 0xffffffff);
3051                 gfar_write(&regs->igaddr1, 0xffffffff);
3052                 gfar_write(&regs->igaddr2, 0xffffffff);
3053                 gfar_write(&regs->igaddr3, 0xffffffff);
3054                 gfar_write(&regs->igaddr4, 0xffffffff);
3055                 gfar_write(&regs->igaddr5, 0xffffffff);
3056                 gfar_write(&regs->igaddr6, 0xffffffff);
3057                 gfar_write(&regs->igaddr7, 0xffffffff);
3058                 gfar_write(&regs->gaddr0, 0xffffffff);
3059                 gfar_write(&regs->gaddr1, 0xffffffff);
3060                 gfar_write(&regs->gaddr2, 0xffffffff);
3061                 gfar_write(&regs->gaddr3, 0xffffffff);
3062                 gfar_write(&regs->gaddr4, 0xffffffff);
3063                 gfar_write(&regs->gaddr5, 0xffffffff);
3064                 gfar_write(&regs->gaddr6, 0xffffffff);
3065                 gfar_write(&regs->gaddr7, 0xffffffff);
3066         } else {
3067                 int em_num;
3068                 int idx;
3069
3070                 /* zero out the hash */
3071                 gfar_write(&regs->igaddr0, 0x0);
3072                 gfar_write(&regs->igaddr1, 0x0);
3073                 gfar_write(&regs->igaddr2, 0x0);
3074                 gfar_write(&regs->igaddr3, 0x0);
3075                 gfar_write(&regs->igaddr4, 0x0);
3076                 gfar_write(&regs->igaddr5, 0x0);
3077                 gfar_write(&regs->igaddr6, 0x0);
3078                 gfar_write(&regs->igaddr7, 0x0);
3079                 gfar_write(&regs->gaddr0, 0x0);
3080                 gfar_write(&regs->gaddr1, 0x0);
3081                 gfar_write(&regs->gaddr2, 0x0);
3082                 gfar_write(&regs->gaddr3, 0x0);
3083                 gfar_write(&regs->gaddr4, 0x0);
3084                 gfar_write(&regs->gaddr5, 0x0);
3085                 gfar_write(&regs->gaddr6, 0x0);
3086                 gfar_write(&regs->gaddr7, 0x0);
3087
3088                 /* If we have extended hash tables, we need to
3089                  * clear the exact match registers to prepare for
3090                  * setting them
3091                  */
3092                 if (priv->extended_hash) {
3093                         em_num = GFAR_EM_NUM + 1;
3094                         gfar_clear_exact_match(dev);
3095                         idx = 1;
3096                 } else {
3097                         idx = 0;
3098                         em_num = 0;
3099                 }
3100
3101                 if (netdev_mc_empty(dev))
3102                         return;
3103
3104                 /* Parse the list, and set the appropriate bits */
3105                 netdev_for_each_mc_addr(ha, dev) {
3106                         if (idx < em_num) {
3107                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3108                                 idx++;
3109                         } else
3110                                 gfar_set_hash_for_addr(dev, ha->addr);
3111                 }
3112         }
3113 }
3114
3115
3116 /* Clears each of the exact match registers to zero, so they
3117  * don't interfere with normal reception
3118  */
3119 static void gfar_clear_exact_match(struct net_device *dev)
3120 {
3121         int idx;
3122         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3123
3124         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3125                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3126 }
3127
3128 /* Set the appropriate hash bit for the given addr */
3129 /* The algorithm works like so:
3130  * 1) Take the Destination Address (ie the multicast address), and
3131  * do a CRC on it (little endian), and reverse the bits of the
3132  * result.
3133  * 2) Use the 8 most significant bits as a hash into a 256-entry
3134  * table.  The table is controlled through 8 32-bit registers:
3135  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3136  * gaddr7.  This means that the 3 most significant bits in the
3137  * hash index which gaddr register to use, and the 5 other bits
3138  * indicate which bit (assuming an IBM numbering scheme, which
3139  * for PowerPC (tm) is usually the case) in the register holds
3140  * the entry.
3141  */
3142 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3143 {
3144         u32 tempval;
3145         struct gfar_private *priv = netdev_priv(dev);
3146         u32 result = ether_crc(ETH_ALEN, addr);
3147         int width = priv->hash_width;
3148         u8 whichbit = (result >> (32 - width)) & 0x1f;
3149         u8 whichreg = result >> (32 - width + 5);
3150         u32 value = (1 << (31-whichbit));
3151
3152         tempval = gfar_read(priv->hash_regs[whichreg]);
3153         tempval |= value;
3154         gfar_write(priv->hash_regs[whichreg], tempval);
3155 }
3156
3157
3158 /* There are multiple MAC Address register pairs on some controllers
3159  * This function sets the numth pair to a given address
3160  */
3161 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3162                                   const u8 *addr)
3163 {
3164         struct gfar_private *priv = netdev_priv(dev);
3165         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3166         int idx;
3167         char tmpbuf[ETH_ALEN];
3168         u32 tempval;
3169         u32 __iomem *macptr = &regs->macstnaddr1;
3170
3171         macptr += num*2;
3172
3173         /* Now copy it into the mac registers backwards, cuz
3174          * little endian is silly
3175          */
3176         for (idx = 0; idx < ETH_ALEN; idx++)
3177                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3178
3179         gfar_write(macptr, *((u32 *) (tmpbuf)));
3180
3181         tempval = *((u32 *) (tmpbuf + 4));
3182
3183         gfar_write(macptr+1, tempval);
3184 }
3185
3186 /* GFAR error interrupt handler */
3187 static irqreturn_t gfar_error(int irq, void *grp_id)
3188 {
3189         struct gfar_priv_grp *gfargrp = grp_id;
3190         struct gfar __iomem *regs = gfargrp->regs;
3191         struct gfar_private *priv= gfargrp->priv;
3192         struct net_device *dev = priv->ndev;
3193
3194         /* Save ievent for future reference */
3195         u32 events = gfar_read(&regs->ievent);
3196
3197         /* Clear IEVENT */
3198         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3199
3200         /* Magic Packet is not an error. */
3201         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3202             (events & IEVENT_MAG))
3203                 events &= ~IEVENT_MAG;
3204
3205         /* Hmm... */
3206         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3207                 netdev_dbg(dev,
3208                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3209                            events, gfar_read(&regs->imask));
3210
3211         /* Update the error counters */
3212         if (events & IEVENT_TXE) {
3213                 dev->stats.tx_errors++;
3214
3215                 if (events & IEVENT_LC)
3216                         dev->stats.tx_window_errors++;
3217                 if (events & IEVENT_CRL)
3218                         dev->stats.tx_aborted_errors++;
3219                 if (events & IEVENT_XFUN) {
3220                         unsigned long flags;
3221
3222                         netif_dbg(priv, tx_err, dev,
3223                                   "TX FIFO underrun, packet dropped\n");
3224                         dev->stats.tx_dropped++;
3225                         priv->extra_stats.tx_underrun++;
3226
3227                         local_irq_save(flags);
3228                         lock_tx_qs(priv);
3229
3230                         /* Reactivate the Tx Queues */
3231                         gfar_write(&regs->tstat, gfargrp->tstat);
3232
3233                         unlock_tx_qs(priv);
3234                         local_irq_restore(flags);
3235                 }
3236                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3237         }
3238         if (events & IEVENT_BSY) {
3239                 dev->stats.rx_errors++;
3240                 priv->extra_stats.rx_bsy++;
3241
3242                 gfar_receive(irq, grp_id);
3243
3244                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3245                           gfar_read(&regs->rstat));
3246         }
3247         if (events & IEVENT_BABR) {
3248                 dev->stats.rx_errors++;
3249                 priv->extra_stats.rx_babr++;
3250
3251                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3252         }
3253         if (events & IEVENT_EBERR) {
3254                 priv->extra_stats.eberr++;
3255                 netif_dbg(priv, rx_err, dev, "bus error\n");
3256         }
3257         if (events & IEVENT_RXC)
3258                 netif_dbg(priv, rx_status, dev, "control frame\n");
3259
3260         if (events & IEVENT_BABT) {
3261                 priv->extra_stats.tx_babt++;
3262                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3263         }
3264         return IRQ_HANDLED;
3265 }
3266
3267 static struct of_device_id gfar_match[] =
3268 {
3269         {
3270                 .type = "network",
3271                 .compatible = "gianfar",
3272         },
3273         {
3274                 .compatible = "fsl,etsec2",
3275         },
3276         {},
3277 };
3278 MODULE_DEVICE_TABLE(of, gfar_match);
3279
3280 /* Structure for a device driver */
3281 static struct platform_driver gfar_driver = {
3282         .driver = {
3283                 .name = "fsl-gianfar",
3284                 .owner = THIS_MODULE,
3285                 .pm = GFAR_PM_OPS,
3286                 .of_match_table = gfar_match,
3287         },
3288         .probe = gfar_probe,
3289         .remove = gfar_remove,
3290 };
3291
3292 module_platform_driver(gfar_driver);