Merge tag 'sh-for-4.9' of git://git.libc.org/linux-sh
[sfrench/cifs-2.6.git] / drivers / net / ethernet / freescale / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61                  "Freescale bitmapped debugging message enable value");
62
63 #define RX_RING_SIZE    32
64 #define TX_RING_SIZE    64
65
66 #ifdef CONFIG_NET_POLL_CONTROLLER
67 static void fs_enet_netpoll(struct net_device *dev);
68 #endif
69
70 static void fs_set_multicast_list(struct net_device *dev)
71 {
72         struct fs_enet_private *fep = netdev_priv(dev);
73
74         (*fep->ops->set_multicast_list)(dev);
75 }
76
77 static void skb_align(struct sk_buff *skb, int align)
78 {
79         int off = ((unsigned long)skb->data) & (align - 1);
80
81         if (off)
82                 skb_reserve(skb, align - off);
83 }
84
85 /* NAPI function */
86 static int fs_enet_napi(struct napi_struct *napi, int budget)
87 {
88         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
89         struct net_device *dev = fep->ndev;
90         const struct fs_platform_info *fpi = fep->fpi;
91         cbd_t __iomem *bdp;
92         struct sk_buff *skb, *skbn;
93         int received = 0;
94         u16 pkt_len, sc;
95         int curidx;
96         int dirtyidx, do_wake, do_restart;
97         int tx_left = TX_RING_SIZE;
98
99         spin_lock(&fep->tx_lock);
100         bdp = fep->dirty_tx;
101
102         /* clear status bits for napi*/
103         (*fep->ops->napi_clear_event)(dev);
104
105         do_wake = do_restart = 0;
106         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
107                 dirtyidx = bdp - fep->tx_bd_base;
108
109                 if (fep->tx_free == fep->tx_ring)
110                         break;
111
112                 skb = fep->tx_skbuff[dirtyidx];
113
114                 /*
115                  * Check for errors.
116                  */
117                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
118                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
119
120                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
121                                 fep->stats.tx_heartbeat_errors++;
122                         if (sc & BD_ENET_TX_LC) /* Late collision */
123                                 fep->stats.tx_window_errors++;
124                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
125                                 fep->stats.tx_aborted_errors++;
126                         if (sc & BD_ENET_TX_UN) /* Underrun */
127                                 fep->stats.tx_fifo_errors++;
128                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
129                                 fep->stats.tx_carrier_errors++;
130
131                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
132                                 fep->stats.tx_errors++;
133                                 do_restart = 1;
134                         }
135                 } else
136                         fep->stats.tx_packets++;
137
138                 if (sc & BD_ENET_TX_READY) {
139                         dev_warn(fep->dev,
140                                  "HEY! Enet xmit interrupt and TX_READY.\n");
141                 }
142
143                 /*
144                  * Deferred means some collisions occurred during transmit,
145                  * but we eventually sent the packet OK.
146                  */
147                 if (sc & BD_ENET_TX_DEF)
148                         fep->stats.collisions++;
149
150                 /* unmap */
151                 if (fep->mapped_as_page[dirtyidx])
152                         dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
153                                        CBDR_DATLEN(bdp), DMA_TO_DEVICE);
154                 else
155                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
156                                          CBDR_DATLEN(bdp), DMA_TO_DEVICE);
157
158                 /*
159                  * Free the sk buffer associated with this last transmit.
160                  */
161                 if (skb) {
162                         dev_kfree_skb(skb);
163                         fep->tx_skbuff[dirtyidx] = NULL;
164                 }
165
166                 /*
167                  * Update pointer to next buffer descriptor to be transmitted.
168                  */
169                 if ((sc & BD_ENET_TX_WRAP) == 0)
170                         bdp++;
171                 else
172                         bdp = fep->tx_bd_base;
173
174                 /*
175                  * Since we have freed up a buffer, the ring is no longer
176                  * full.
177                  */
178                 if (++fep->tx_free == MAX_SKB_FRAGS)
179                         do_wake = 1;
180                 tx_left--;
181         }
182
183         fep->dirty_tx = bdp;
184
185         if (do_restart)
186                 (*fep->ops->tx_restart)(dev);
187
188         spin_unlock(&fep->tx_lock);
189
190         if (do_wake)
191                 netif_wake_queue(dev);
192
193         /*
194          * First, grab all of the stats for the incoming packet.
195          * These get messed up if we get called due to a busy condition.
196          */
197         bdp = fep->cur_rx;
198
199         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
200                received < budget) {
201                 curidx = bdp - fep->rx_bd_base;
202
203                 /*
204                  * Since we have allocated space to hold a complete frame,
205                  * the last indicator should be set.
206                  */
207                 if ((sc & BD_ENET_RX_LAST) == 0)
208                         dev_warn(fep->dev, "rcv is not +last\n");
209
210                 /*
211                  * Check for errors.
212                  */
213                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
214                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
215                         fep->stats.rx_errors++;
216                         /* Frame too long or too short. */
217                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
218                                 fep->stats.rx_length_errors++;
219                         /* Frame alignment */
220                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
221                                 fep->stats.rx_frame_errors++;
222                         /* CRC Error */
223                         if (sc & BD_ENET_RX_CR)
224                                 fep->stats.rx_crc_errors++;
225                         /* FIFO overrun */
226                         if (sc & BD_ENET_RX_OV)
227                                 fep->stats.rx_crc_errors++;
228
229                         skbn = fep->rx_skbuff[curidx];
230                 } else {
231                         skb = fep->rx_skbuff[curidx];
232
233                         /*
234                          * Process the incoming frame.
235                          */
236                         fep->stats.rx_packets++;
237                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
238                         fep->stats.rx_bytes += pkt_len + 4;
239
240                         if (pkt_len <= fpi->rx_copybreak) {
241                                 /* +2 to make IP header L1 cache aligned */
242                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
243                                 if (skbn != NULL) {
244                                         skb_reserve(skbn, 2);   /* align IP header */
245                                         skb_copy_from_linear_data(skb,
246                                                       skbn->data, pkt_len);
247                                         swap(skb, skbn);
248                                         dma_sync_single_for_cpu(fep->dev,
249                                                 CBDR_BUFADDR(bdp),
250                                                 L1_CACHE_ALIGN(pkt_len),
251                                                 DMA_FROM_DEVICE);
252                                 }
253                         } else {
254                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
255
256                                 if (skbn) {
257                                         dma_addr_t dma;
258
259                                         skb_align(skbn, ENET_RX_ALIGN);
260
261                                         dma_unmap_single(fep->dev,
262                                                 CBDR_BUFADDR(bdp),
263                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
264                                                 DMA_FROM_DEVICE);
265
266                                         dma = dma_map_single(fep->dev,
267                                                 skbn->data,
268                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
269                                                 DMA_FROM_DEVICE);
270                                         CBDW_BUFADDR(bdp, dma);
271                                 }
272                         }
273
274                         if (skbn != NULL) {
275                                 skb_put(skb, pkt_len);  /* Make room */
276                                 skb->protocol = eth_type_trans(skb, dev);
277                                 received++;
278                                 netif_receive_skb(skb);
279                         } else {
280                                 fep->stats.rx_dropped++;
281                                 skbn = skb;
282                         }
283                 }
284
285                 fep->rx_skbuff[curidx] = skbn;
286                 CBDW_DATLEN(bdp, 0);
287                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
288
289                 /*
290                  * Update BD pointer to next entry.
291                  */
292                 if ((sc & BD_ENET_RX_WRAP) == 0)
293                         bdp++;
294                 else
295                         bdp = fep->rx_bd_base;
296
297                 (*fep->ops->rx_bd_done)(dev);
298         }
299
300         fep->cur_rx = bdp;
301
302         if (received < budget && tx_left) {
303                 /* done */
304                 napi_complete(napi);
305                 (*fep->ops->napi_enable)(dev);
306
307                 return received;
308         }
309
310         return budget;
311 }
312
313 /*
314  * The interrupt handler.
315  * This is called from the MPC core interrupt.
316  */
317 static irqreturn_t
318 fs_enet_interrupt(int irq, void *dev_id)
319 {
320         struct net_device *dev = dev_id;
321         struct fs_enet_private *fep;
322         const struct fs_platform_info *fpi;
323         u32 int_events;
324         u32 int_clr_events;
325         int nr, napi_ok;
326         int handled;
327
328         fep = netdev_priv(dev);
329         fpi = fep->fpi;
330
331         nr = 0;
332         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
333                 nr++;
334
335                 int_clr_events = int_events;
336                 int_clr_events &= ~fep->ev_napi;
337
338                 (*fep->ops->clear_int_events)(dev, int_clr_events);
339
340                 if (int_events & fep->ev_err)
341                         (*fep->ops->ev_error)(dev, int_events);
342
343                 if (int_events & fep->ev) {
344                         napi_ok = napi_schedule_prep(&fep->napi);
345
346                         (*fep->ops->napi_disable)(dev);
347                         (*fep->ops->clear_int_events)(dev, fep->ev_napi);
348
349                         /* NOTE: it is possible for FCCs in NAPI mode    */
350                         /* to submit a spurious interrupt while in poll  */
351                         if (napi_ok)
352                                 __napi_schedule(&fep->napi);
353                 }
354
355         }
356
357         handled = nr > 0;
358         return IRQ_RETVAL(handled);
359 }
360
361 void fs_init_bds(struct net_device *dev)
362 {
363         struct fs_enet_private *fep = netdev_priv(dev);
364         cbd_t __iomem *bdp;
365         struct sk_buff *skb;
366         int i;
367
368         fs_cleanup_bds(dev);
369
370         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
371         fep->tx_free = fep->tx_ring;
372         fep->cur_rx = fep->rx_bd_base;
373
374         /*
375          * Initialize the receive buffer descriptors.
376          */
377         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
378                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
379                 if (skb == NULL)
380                         break;
381
382                 skb_align(skb, ENET_RX_ALIGN);
383                 fep->rx_skbuff[i] = skb;
384                 CBDW_BUFADDR(bdp,
385                         dma_map_single(fep->dev, skb->data,
386                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
387                                 DMA_FROM_DEVICE));
388                 CBDW_DATLEN(bdp, 0);    /* zero */
389                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
390                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
391         }
392         /*
393          * if we failed, fillup remainder
394          */
395         for (; i < fep->rx_ring; i++, bdp++) {
396                 fep->rx_skbuff[i] = NULL;
397                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
398         }
399
400         /*
401          * ...and the same for transmit.
402          */
403         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
404                 fep->tx_skbuff[i] = NULL;
405                 CBDW_BUFADDR(bdp, 0);
406                 CBDW_DATLEN(bdp, 0);
407                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
408         }
409 }
410
411 void fs_cleanup_bds(struct net_device *dev)
412 {
413         struct fs_enet_private *fep = netdev_priv(dev);
414         struct sk_buff *skb;
415         cbd_t __iomem *bdp;
416         int i;
417
418         /*
419          * Reset SKB transmit buffers.
420          */
421         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
422                 if ((skb = fep->tx_skbuff[i]) == NULL)
423                         continue;
424
425                 /* unmap */
426                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
427                                 skb->len, DMA_TO_DEVICE);
428
429                 fep->tx_skbuff[i] = NULL;
430                 dev_kfree_skb(skb);
431         }
432
433         /*
434          * Reset SKB receive buffers
435          */
436         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
437                 if ((skb = fep->rx_skbuff[i]) == NULL)
438                         continue;
439
440                 /* unmap */
441                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
442                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
443                         DMA_FROM_DEVICE);
444
445                 fep->rx_skbuff[i] = NULL;
446
447                 dev_kfree_skb(skb);
448         }
449 }
450
451 /**********************************************************************************/
452
453 #ifdef CONFIG_FS_ENET_MPC5121_FEC
454 /*
455  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
456  */
457 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
458                                                struct sk_buff *skb)
459 {
460         struct sk_buff *new_skb;
461
462         if (skb_linearize(skb))
463                 return NULL;
464
465         /* Alloc new skb */
466         new_skb = netdev_alloc_skb(dev, skb->len + 4);
467         if (!new_skb)
468                 return NULL;
469
470         /* Make sure new skb is properly aligned */
471         skb_align(new_skb, 4);
472
473         /* Copy data to new skb ... */
474         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
475         skb_put(new_skb, skb->len);
476
477         /* ... and free an old one */
478         dev_kfree_skb_any(skb);
479
480         return new_skb;
481 }
482 #endif
483
484 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
485 {
486         struct fs_enet_private *fep = netdev_priv(dev);
487         cbd_t __iomem *bdp;
488         int curidx;
489         u16 sc;
490         int nr_frags;
491         skb_frag_t *frag;
492         int len;
493 #ifdef CONFIG_FS_ENET_MPC5121_FEC
494         int is_aligned = 1;
495         int i;
496
497         if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
498                 is_aligned = 0;
499         } else {
500                 nr_frags = skb_shinfo(skb)->nr_frags;
501                 frag = skb_shinfo(skb)->frags;
502                 for (i = 0; i < nr_frags; i++, frag++) {
503                         if (!IS_ALIGNED(frag->page_offset, 4)) {
504                                 is_aligned = 0;
505                                 break;
506                         }
507                 }
508         }
509
510         if (!is_aligned) {
511                 skb = tx_skb_align_workaround(dev, skb);
512                 if (!skb) {
513                         /*
514                          * We have lost packet due to memory allocation error
515                          * in tx_skb_align_workaround(). Hopefully original
516                          * skb is still valid, so try transmit it later.
517                          */
518                         return NETDEV_TX_BUSY;
519                 }
520         }
521 #endif
522
523         spin_lock(&fep->tx_lock);
524
525         /*
526          * Fill in a Tx ring entry
527          */
528         bdp = fep->cur_tx;
529
530         nr_frags = skb_shinfo(skb)->nr_frags;
531         if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
532                 netif_stop_queue(dev);
533                 spin_unlock(&fep->tx_lock);
534
535                 /*
536                  * Ooops.  All transmit buffers are full.  Bail out.
537                  * This should not happen, since the tx queue should be stopped.
538                  */
539                 dev_warn(fep->dev, "tx queue full!.\n");
540                 return NETDEV_TX_BUSY;
541         }
542
543         curidx = bdp - fep->tx_bd_base;
544
545         len = skb->len;
546         fep->stats.tx_bytes += len;
547         if (nr_frags)
548                 len -= skb->data_len;
549         fep->tx_free -= nr_frags + 1;
550         /*
551          * Push the data cache so the CPM does not get stale memory data.
552          */
553         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
554                                 skb->data, len, DMA_TO_DEVICE));
555         CBDW_DATLEN(bdp, len);
556
557         fep->mapped_as_page[curidx] = 0;
558         frag = skb_shinfo(skb)->frags;
559         while (nr_frags) {
560                 CBDC_SC(bdp,
561                         BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
562                         BD_ENET_TX_TC);
563                 CBDS_SC(bdp, BD_ENET_TX_READY);
564
565                 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
566                         bdp++, curidx++;
567                 else
568                         bdp = fep->tx_bd_base, curidx = 0;
569
570                 len = skb_frag_size(frag);
571                 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
572                                                    DMA_TO_DEVICE));
573                 CBDW_DATLEN(bdp, len);
574
575                 fep->tx_skbuff[curidx] = NULL;
576                 fep->mapped_as_page[curidx] = 1;
577
578                 frag++;
579                 nr_frags--;
580         }
581
582         /* Trigger transmission start */
583         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
584              BD_ENET_TX_LAST | BD_ENET_TX_TC;
585
586         /* note that while FEC does not have this bit
587          * it marks it as available for software use
588          * yay for hw reuse :) */
589         if (skb->len <= 60)
590                 sc |= BD_ENET_TX_PAD;
591         CBDC_SC(bdp, BD_ENET_TX_STATS);
592         CBDS_SC(bdp, sc);
593
594         /* Save skb pointer. */
595         fep->tx_skbuff[curidx] = skb;
596
597         /* If this was the last BD in the ring, start at the beginning again. */
598         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
599                 bdp++;
600         else
601                 bdp = fep->tx_bd_base;
602         fep->cur_tx = bdp;
603
604         if (fep->tx_free < MAX_SKB_FRAGS)
605                 netif_stop_queue(dev);
606
607         skb_tx_timestamp(skb);
608
609         (*fep->ops->tx_kickstart)(dev);
610
611         spin_unlock(&fep->tx_lock);
612
613         return NETDEV_TX_OK;
614 }
615
616 static void fs_timeout(struct net_device *dev)
617 {
618         struct fs_enet_private *fep = netdev_priv(dev);
619         unsigned long flags;
620         int wake = 0;
621
622         fep->stats.tx_errors++;
623
624         spin_lock_irqsave(&fep->lock, flags);
625
626         if (dev->flags & IFF_UP) {
627                 phy_stop(dev->phydev);
628                 (*fep->ops->stop)(dev);
629                 (*fep->ops->restart)(dev);
630                 phy_start(dev->phydev);
631         }
632
633         phy_start(dev->phydev);
634         wake = fep->tx_free >= MAX_SKB_FRAGS &&
635                !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
636         spin_unlock_irqrestore(&fep->lock, flags);
637
638         if (wake)
639                 netif_wake_queue(dev);
640 }
641
642 /*-----------------------------------------------------------------------------
643  *  generic link-change handler - should be sufficient for most cases
644  *-----------------------------------------------------------------------------*/
645 static void generic_adjust_link(struct  net_device *dev)
646 {
647         struct fs_enet_private *fep = netdev_priv(dev);
648         struct phy_device *phydev = dev->phydev;
649         int new_state = 0;
650
651         if (phydev->link) {
652                 /* adjust to duplex mode */
653                 if (phydev->duplex != fep->oldduplex) {
654                         new_state = 1;
655                         fep->oldduplex = phydev->duplex;
656                 }
657
658                 if (phydev->speed != fep->oldspeed) {
659                         new_state = 1;
660                         fep->oldspeed = phydev->speed;
661                 }
662
663                 if (!fep->oldlink) {
664                         new_state = 1;
665                         fep->oldlink = 1;
666                 }
667
668                 if (new_state)
669                         fep->ops->restart(dev);
670         } else if (fep->oldlink) {
671                 new_state = 1;
672                 fep->oldlink = 0;
673                 fep->oldspeed = 0;
674                 fep->oldduplex = -1;
675         }
676
677         if (new_state && netif_msg_link(fep))
678                 phy_print_status(phydev);
679 }
680
681
682 static void fs_adjust_link(struct net_device *dev)
683 {
684         struct fs_enet_private *fep = netdev_priv(dev);
685         unsigned long flags;
686
687         spin_lock_irqsave(&fep->lock, flags);
688
689         if(fep->ops->adjust_link)
690                 fep->ops->adjust_link(dev);
691         else
692                 generic_adjust_link(dev);
693
694         spin_unlock_irqrestore(&fep->lock, flags);
695 }
696
697 static int fs_init_phy(struct net_device *dev)
698 {
699         struct fs_enet_private *fep = netdev_priv(dev);
700         struct phy_device *phydev;
701         phy_interface_t iface;
702
703         fep->oldlink = 0;
704         fep->oldspeed = 0;
705         fep->oldduplex = -1;
706
707         iface = fep->fpi->use_rmii ?
708                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
709
710         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
711                                 iface);
712         if (!phydev) {
713                 dev_err(&dev->dev, "Could not attach to PHY\n");
714                 return -ENODEV;
715         }
716
717         return 0;
718 }
719
720 static int fs_enet_open(struct net_device *dev)
721 {
722         struct fs_enet_private *fep = netdev_priv(dev);
723         int r;
724         int err;
725
726         /* to initialize the fep->cur_rx,... */
727         /* not doing this, will cause a crash in fs_enet_napi */
728         fs_init_bds(fep->ndev);
729
730         napi_enable(&fep->napi);
731
732         /* Install our interrupt handler. */
733         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
734                         "fs_enet-mac", dev);
735         if (r != 0) {
736                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
737                 napi_disable(&fep->napi);
738                 return -EINVAL;
739         }
740
741         err = fs_init_phy(dev);
742         if (err) {
743                 free_irq(fep->interrupt, dev);
744                 napi_disable(&fep->napi);
745                 return err;
746         }
747         phy_start(dev->phydev);
748
749         netif_start_queue(dev);
750
751         return 0;
752 }
753
754 static int fs_enet_close(struct net_device *dev)
755 {
756         struct fs_enet_private *fep = netdev_priv(dev);
757         unsigned long flags;
758
759         netif_stop_queue(dev);
760         netif_carrier_off(dev);
761         napi_disable(&fep->napi);
762         phy_stop(dev->phydev);
763
764         spin_lock_irqsave(&fep->lock, flags);
765         spin_lock(&fep->tx_lock);
766         (*fep->ops->stop)(dev);
767         spin_unlock(&fep->tx_lock);
768         spin_unlock_irqrestore(&fep->lock, flags);
769
770         /* release any irqs */
771         phy_disconnect(dev->phydev);
772         free_irq(fep->interrupt, dev);
773
774         return 0;
775 }
776
777 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
778 {
779         struct fs_enet_private *fep = netdev_priv(dev);
780         return &fep->stats;
781 }
782
783 /*************************************************************************/
784
785 static void fs_get_drvinfo(struct net_device *dev,
786                             struct ethtool_drvinfo *info)
787 {
788         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
789         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
790 }
791
792 static int fs_get_regs_len(struct net_device *dev)
793 {
794         struct fs_enet_private *fep = netdev_priv(dev);
795
796         return (*fep->ops->get_regs_len)(dev);
797 }
798
799 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
800                          void *p)
801 {
802         struct fs_enet_private *fep = netdev_priv(dev);
803         unsigned long flags;
804         int r, len;
805
806         len = regs->len;
807
808         spin_lock_irqsave(&fep->lock, flags);
809         r = (*fep->ops->get_regs)(dev, p, &len);
810         spin_unlock_irqrestore(&fep->lock, flags);
811
812         if (r == 0)
813                 regs->version = 0;
814 }
815
816 static int fs_nway_reset(struct net_device *dev)
817 {
818         return 0;
819 }
820
821 static u32 fs_get_msglevel(struct net_device *dev)
822 {
823         struct fs_enet_private *fep = netdev_priv(dev);
824         return fep->msg_enable;
825 }
826
827 static void fs_set_msglevel(struct net_device *dev, u32 value)
828 {
829         struct fs_enet_private *fep = netdev_priv(dev);
830         fep->msg_enable = value;
831 }
832
833 static int fs_get_tunable(struct net_device *dev,
834                           const struct ethtool_tunable *tuna, void *data)
835 {
836         struct fs_enet_private *fep = netdev_priv(dev);
837         struct fs_platform_info *fpi = fep->fpi;
838         int ret = 0;
839
840         switch (tuna->id) {
841         case ETHTOOL_RX_COPYBREAK:
842                 *(u32 *)data = fpi->rx_copybreak;
843                 break;
844         default:
845                 ret = -EINVAL;
846                 break;
847         }
848
849         return ret;
850 }
851
852 static int fs_set_tunable(struct net_device *dev,
853                           const struct ethtool_tunable *tuna, const void *data)
854 {
855         struct fs_enet_private *fep = netdev_priv(dev);
856         struct fs_platform_info *fpi = fep->fpi;
857         int ret = 0;
858
859         switch (tuna->id) {
860         case ETHTOOL_RX_COPYBREAK:
861                 fpi->rx_copybreak = *(u32 *)data;
862                 break;
863         default:
864                 ret = -EINVAL;
865                 break;
866         }
867
868         return ret;
869 }
870
871 static const struct ethtool_ops fs_ethtool_ops = {
872         .get_drvinfo = fs_get_drvinfo,
873         .get_regs_len = fs_get_regs_len,
874         .nway_reset = fs_nway_reset,
875         .get_link = ethtool_op_get_link,
876         .get_msglevel = fs_get_msglevel,
877         .set_msglevel = fs_set_msglevel,
878         .get_regs = fs_get_regs,
879         .get_ts_info = ethtool_op_get_ts_info,
880         .get_link_ksettings = phy_ethtool_get_link_ksettings,
881         .set_link_ksettings = phy_ethtool_set_link_ksettings,
882         .get_tunable = fs_get_tunable,
883         .set_tunable = fs_set_tunable,
884 };
885
886 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
887 {
888         if (!netif_running(dev))
889                 return -EINVAL;
890
891         return phy_mii_ioctl(dev->phydev, rq, cmd);
892 }
893
894 extern int fs_mii_connect(struct net_device *dev);
895 extern void fs_mii_disconnect(struct net_device *dev);
896
897 /**************************************************************************************/
898
899 #ifdef CONFIG_FS_ENET_HAS_FEC
900 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
901 #else
902 #define IS_FEC(match) 0
903 #endif
904
905 static const struct net_device_ops fs_enet_netdev_ops = {
906         .ndo_open               = fs_enet_open,
907         .ndo_stop               = fs_enet_close,
908         .ndo_get_stats          = fs_enet_get_stats,
909         .ndo_start_xmit         = fs_enet_start_xmit,
910         .ndo_tx_timeout         = fs_timeout,
911         .ndo_set_rx_mode        = fs_set_multicast_list,
912         .ndo_do_ioctl           = fs_ioctl,
913         .ndo_validate_addr      = eth_validate_addr,
914         .ndo_set_mac_address    = eth_mac_addr,
915         .ndo_change_mtu         = eth_change_mtu,
916 #ifdef CONFIG_NET_POLL_CONTROLLER
917         .ndo_poll_controller    = fs_enet_netpoll,
918 #endif
919 };
920
921 static const struct of_device_id fs_enet_match[];
922 static int fs_enet_probe(struct platform_device *ofdev)
923 {
924         const struct of_device_id *match;
925         struct net_device *ndev;
926         struct fs_enet_private *fep;
927         struct fs_platform_info *fpi;
928         const u32 *data;
929         struct clk *clk;
930         int err;
931         const u8 *mac_addr;
932         const char *phy_connection_type;
933         int privsize, len, ret = -ENODEV;
934
935         match = of_match_device(fs_enet_match, &ofdev->dev);
936         if (!match)
937                 return -EINVAL;
938
939         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
940         if (!fpi)
941                 return -ENOMEM;
942
943         if (!IS_FEC(match)) {
944                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
945                 if (!data || len != 4)
946                         goto out_free_fpi;
947
948                 fpi->cp_command = *data;
949         }
950
951         fpi->rx_ring = RX_RING_SIZE;
952         fpi->tx_ring = TX_RING_SIZE;
953         fpi->rx_copybreak = 240;
954         fpi->napi_weight = 17;
955         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
956         if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
957                 err = of_phy_register_fixed_link(ofdev->dev.of_node);
958                 if (err)
959                         goto out_free_fpi;
960
961                 /* In the case of a fixed PHY, the DT node associated
962                  * to the PHY is the Ethernet MAC DT node.
963                  */
964                 fpi->phy_node = of_node_get(ofdev->dev.of_node);
965         }
966
967         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
968                 phy_connection_type = of_get_property(ofdev->dev.of_node,
969                                                 "phy-connection-type", NULL);
970                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
971                         fpi->use_rmii = 1;
972         }
973
974         /* make clock lookup non-fatal (the driver is shared among platforms),
975          * but require enable to succeed when a clock was specified/found,
976          * keep a reference to the clock upon successful acquisition
977          */
978         clk = devm_clk_get(&ofdev->dev, "per");
979         if (!IS_ERR(clk)) {
980                 err = clk_prepare_enable(clk);
981                 if (err) {
982                         ret = err;
983                         goto out_free_fpi;
984                 }
985                 fpi->clk_per = clk;
986         }
987
988         privsize = sizeof(*fep) +
989                    sizeof(struct sk_buff **) *
990                      (fpi->rx_ring + fpi->tx_ring) +
991                    sizeof(char) * fpi->tx_ring;
992
993         ndev = alloc_etherdev(privsize);
994         if (!ndev) {
995                 ret = -ENOMEM;
996                 goto out_put;
997         }
998
999         SET_NETDEV_DEV(ndev, &ofdev->dev);
1000         platform_set_drvdata(ofdev, ndev);
1001
1002         fep = netdev_priv(ndev);
1003         fep->dev = &ofdev->dev;
1004         fep->ndev = ndev;
1005         fep->fpi = fpi;
1006         fep->ops = match->data;
1007
1008         ret = fep->ops->setup_data(ndev);
1009         if (ret)
1010                 goto out_free_dev;
1011
1012         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1013         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1014         fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1015                                        fpi->tx_ring);
1016
1017         spin_lock_init(&fep->lock);
1018         spin_lock_init(&fep->tx_lock);
1019
1020         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1021         if (mac_addr)
1022                 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1023
1024         ret = fep->ops->allocate_bd(ndev);
1025         if (ret)
1026                 goto out_cleanup_data;
1027
1028         fep->rx_bd_base = fep->ring_base;
1029         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1030
1031         fep->tx_ring = fpi->tx_ring;
1032         fep->rx_ring = fpi->rx_ring;
1033
1034         ndev->netdev_ops = &fs_enet_netdev_ops;
1035         ndev->watchdog_timeo = 2 * HZ;
1036         netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1037
1038         ndev->ethtool_ops = &fs_ethtool_ops;
1039
1040         init_timer(&fep->phy_timer_list);
1041
1042         netif_carrier_off(ndev);
1043
1044         ndev->features |= NETIF_F_SG;
1045
1046         ret = register_netdev(ndev);
1047         if (ret)
1048                 goto out_free_bd;
1049
1050         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1051
1052         return 0;
1053
1054 out_free_bd:
1055         fep->ops->free_bd(ndev);
1056 out_cleanup_data:
1057         fep->ops->cleanup_data(ndev);
1058 out_free_dev:
1059         free_netdev(ndev);
1060 out_put:
1061         of_node_put(fpi->phy_node);
1062         if (fpi->clk_per)
1063                 clk_disable_unprepare(fpi->clk_per);
1064 out_free_fpi:
1065         kfree(fpi);
1066         return ret;
1067 }
1068
1069 static int fs_enet_remove(struct platform_device *ofdev)
1070 {
1071         struct net_device *ndev = platform_get_drvdata(ofdev);
1072         struct fs_enet_private *fep = netdev_priv(ndev);
1073
1074         unregister_netdev(ndev);
1075
1076         fep->ops->free_bd(ndev);
1077         fep->ops->cleanup_data(ndev);
1078         dev_set_drvdata(fep->dev, NULL);
1079         of_node_put(fep->fpi->phy_node);
1080         if (fep->fpi->clk_per)
1081                 clk_disable_unprepare(fep->fpi->clk_per);
1082         free_netdev(ndev);
1083         return 0;
1084 }
1085
1086 static const struct of_device_id fs_enet_match[] = {
1087 #ifdef CONFIG_FS_ENET_HAS_SCC
1088         {
1089                 .compatible = "fsl,cpm1-scc-enet",
1090                 .data = (void *)&fs_scc_ops,
1091         },
1092         {
1093                 .compatible = "fsl,cpm2-scc-enet",
1094                 .data = (void *)&fs_scc_ops,
1095         },
1096 #endif
1097 #ifdef CONFIG_FS_ENET_HAS_FCC
1098         {
1099                 .compatible = "fsl,cpm2-fcc-enet",
1100                 .data = (void *)&fs_fcc_ops,
1101         },
1102 #endif
1103 #ifdef CONFIG_FS_ENET_HAS_FEC
1104 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1105         {
1106                 .compatible = "fsl,mpc5121-fec",
1107                 .data = (void *)&fs_fec_ops,
1108         },
1109         {
1110                 .compatible = "fsl,mpc5125-fec",
1111                 .data = (void *)&fs_fec_ops,
1112         },
1113 #else
1114         {
1115                 .compatible = "fsl,pq1-fec-enet",
1116                 .data = (void *)&fs_fec_ops,
1117         },
1118 #endif
1119 #endif
1120         {}
1121 };
1122 MODULE_DEVICE_TABLE(of, fs_enet_match);
1123
1124 static struct platform_driver fs_enet_driver = {
1125         .driver = {
1126                 .name = "fs_enet",
1127                 .of_match_table = fs_enet_match,
1128         },
1129         .probe = fs_enet_probe,
1130         .remove = fs_enet_remove,
1131 };
1132
1133 #ifdef CONFIG_NET_POLL_CONTROLLER
1134 static void fs_enet_netpoll(struct net_device *dev)
1135 {
1136        disable_irq(dev->irq);
1137        fs_enet_interrupt(dev->irq, dev);
1138        enable_irq(dev->irq);
1139 }
1140 #endif
1141
1142 module_platform_driver(fs_enet_driver);