Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 #include <net/udp_tunnel.h>
69
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_ptp.h"
87 #include "cxgb4_cudbg.h"
88
89 char cxgb4_driver_name[] = KBUILD_MODNAME;
90
91 #ifdef DRV_VERSION
92 #undef DRV_VERSION
93 #endif
94 #define DRV_VERSION "2.0.0-ko"
95 const char cxgb4_driver_version[] = DRV_VERSION;
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101
102 /* Macros needed to support the PCI Device ID Table ...
103  */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105         static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111  * called for both.
112  */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116                 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119                 { 0, } \
120         }
121
122 #include "t4_pci_id_tbl.h"
123
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_VERSION(DRV_VERSION);
139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
140 MODULE_FIRMWARE(FW4_FNAME);
141 MODULE_FIRMWARE(FW5_FNAME);
142 MODULE_FIRMWARE(FW6_FNAME);
143
144 /*
145  * The driver uses the best interrupt scheme available on a platform in the
146  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
147  * of these schemes the driver may consider as follows:
148  *
149  * msi = 2: choose from among all three options
150  * msi = 1: only consider MSI and INTx interrupts
151  * msi = 0: force INTx interrupts
152  */
153 static int msi = 2;
154
155 module_param(msi, int, 0644);
156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
157
158 /*
159  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
160  * offset by 2 bytes in order to have the IP headers line up on 4-byte
161  * boundaries.  This is a requirement for many architectures which will throw
162  * a machine check fault if an attempt is made to access one of the 4-byte IP
163  * header fields on a non-4-byte boundary.  And it's a major performance issue
164  * even on some architectures which allow it like some implementations of the
165  * x86 ISA.  However, some architectures don't mind this and for some very
166  * edge-case performance sensitive applications (like forwarding large volumes
167  * of small packets), setting this DMA offset to 0 will decrease the number of
168  * PCI-E Bus transfers enough to measurably affect performance.
169  */
170 static int rx_dma_offset = 2;
171
172 /* TX Queue select used to determine what algorithm to use for selecting TX
173  * queue. Select between the kernel provided function (select_queue=0) or user
174  * cxgb_select_queue function (select_queue=1)
175  *
176  * Default: select_queue=0
177  */
178 static int select_queue;
179 module_param(select_queue, int, 0644);
180 MODULE_PARM_DESC(select_queue,
181                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
182
183 static struct dentry *cxgb4_debugfs_root;
184
185 LIST_HEAD(adapter_list);
186 DEFINE_MUTEX(uld_mutex);
187
188 static void link_report(struct net_device *dev)
189 {
190         if (!netif_carrier_ok(dev))
191                 netdev_info(dev, "link down\n");
192         else {
193                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
194
195                 const char *s;
196                 const struct port_info *p = netdev_priv(dev);
197
198                 switch (p->link_cfg.speed) {
199                 case 100:
200                         s = "100Mbps";
201                         break;
202                 case 1000:
203                         s = "1Gbps";
204                         break;
205                 case 10000:
206                         s = "10Gbps";
207                         break;
208                 case 25000:
209                         s = "25Gbps";
210                         break;
211                 case 40000:
212                         s = "40Gbps";
213                         break;
214                 case 50000:
215                         s = "50Gbps";
216                         break;
217                 case 100000:
218                         s = "100Gbps";
219                         break;
220                 default:
221                         pr_info("%s: unsupported speed: %d\n",
222                                 dev->name, p->link_cfg.speed);
223                         return;
224                 }
225
226                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
227                             fc[p->link_cfg.fc]);
228         }
229 }
230
231 #ifdef CONFIG_CHELSIO_T4_DCB
232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
234 {
235         struct port_info *pi = netdev_priv(dev);
236         struct adapter *adap = pi->adapter;
237         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
238         int i;
239
240         /* We use a simple mapping of Port TX Queue Index to DCB
241          * Priority when we're enabling DCB.
242          */
243         for (i = 0; i < pi->nqsets; i++, txq++) {
244                 u32 name, value;
245                 int err;
246
247                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
248                         FW_PARAMS_PARAM_X_V(
249                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
250                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
251                 value = enable ? i : 0xffffffff;
252
253                 /* Since we can be called while atomic (from "interrupt
254                  * level") we need to issue the Set Parameters Commannd
255                  * without sleeping (timeout < 0).
256                  */
257                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
258                                             &name, &value,
259                                             -FW_CMD_MAX_TIMEOUT);
260
261                 if (err)
262                         dev_err(adap->pdev_dev,
263                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
264                                 enable ? "set" : "unset", pi->port_id, i, -err);
265                 else
266                         txq->dcb_prio = enable ? value : 0;
267         }
268 }
269
270 int cxgb4_dcb_enabled(const struct net_device *dev)
271 {
272         struct port_info *pi = netdev_priv(dev);
273
274         if (!pi->dcb.enabled)
275                 return 0;
276
277         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
278                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
279 }
280 #endif /* CONFIG_CHELSIO_T4_DCB */
281
282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
283 {
284         struct net_device *dev = adapter->port[port_id];
285
286         /* Skip changes from disabled ports. */
287         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
288                 if (link_stat)
289                         netif_carrier_on(dev);
290                 else {
291 #ifdef CONFIG_CHELSIO_T4_DCB
292                         if (cxgb4_dcb_enabled(dev)) {
293                                 cxgb4_dcb_reset(dev);
294                                 dcb_tx_queue_prio_enable(dev, false);
295                         }
296 #endif /* CONFIG_CHELSIO_T4_DCB */
297                         netif_carrier_off(dev);
298                 }
299
300                 link_report(dev);
301         }
302 }
303
304 void t4_os_portmod_changed(struct adapter *adap, int port_id)
305 {
306         static const char *mod_str[] = {
307                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
308         };
309
310         struct net_device *dev = adap->port[port_id];
311         struct port_info *pi = netdev_priv(dev);
312
313         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
314                 netdev_info(dev, "port module unplugged\n");
315         else if (pi->mod_type < ARRAY_SIZE(mod_str))
316                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
317         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
318                 netdev_info(dev, "%s: unsupported port module inserted\n",
319                             dev->name);
320         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
321                 netdev_info(dev, "%s: unknown port module inserted\n",
322                             dev->name);
323         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
324                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
325         else
326                 netdev_info(dev, "%s: unknown module type %d inserted\n",
327                             dev->name, pi->mod_type);
328
329         /* If the interface is running, then we'll need any "sticky" Link
330          * Parameters redone with a new Transceiver Module.
331          */
332         pi->link_cfg.redo_l1cfg = netif_running(dev);
333 }
334
335 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
336 module_param(dbfifo_int_thresh, int, 0644);
337 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
338
339 /*
340  * usecs to sleep while draining the dbfifo
341  */
342 static int dbfifo_drain_delay = 1000;
343 module_param(dbfifo_drain_delay, int, 0644);
344 MODULE_PARM_DESC(dbfifo_drain_delay,
345                  "usecs to sleep while draining the dbfifo");
346
347 static inline int cxgb4_set_addr_hash(struct port_info *pi)
348 {
349         struct adapter *adap = pi->adapter;
350         u64 vec = 0;
351         bool ucast = false;
352         struct hash_mac_addr *entry;
353
354         /* Calculate the hash vector for the updated list and program it */
355         list_for_each_entry(entry, &adap->mac_hlist, list) {
356                 ucast |= is_unicast_ether_addr(entry->addr);
357                 vec |= (1ULL << hash_mac_addr(entry->addr));
358         }
359         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
360                                 vec, false);
361 }
362
363 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
364 {
365         struct port_info *pi = netdev_priv(netdev);
366         struct adapter *adap = pi->adapter;
367         int ret;
368         u64 mhash = 0;
369         u64 uhash = 0;
370         bool free = false;
371         bool ucast = is_unicast_ether_addr(mac_addr);
372         const u8 *maclist[1] = {mac_addr};
373         struct hash_mac_addr *new_entry;
374
375         ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
376                                 NULL, ucast ? &uhash : &mhash, false);
377         if (ret < 0)
378                 goto out;
379         /* if hash != 0, then add the addr to hash addr list
380          * so on the end we will calculate the hash for the
381          * list and program it
382          */
383         if (uhash || mhash) {
384                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
385                 if (!new_entry)
386                         return -ENOMEM;
387                 ether_addr_copy(new_entry->addr, mac_addr);
388                 list_add_tail(&new_entry->list, &adap->mac_hlist);
389                 ret = cxgb4_set_addr_hash(pi);
390         }
391 out:
392         return ret < 0 ? ret : 0;
393 }
394
395 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
396 {
397         struct port_info *pi = netdev_priv(netdev);
398         struct adapter *adap = pi->adapter;
399         int ret;
400         const u8 *maclist[1] = {mac_addr};
401         struct hash_mac_addr *entry, *tmp;
402
403         /* If the MAC address to be removed is in the hash addr
404          * list, delete it from the list and update hash vector
405          */
406         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
407                 if (ether_addr_equal(entry->addr, mac_addr)) {
408                         list_del(&entry->list);
409                         kfree(entry);
410                         return cxgb4_set_addr_hash(pi);
411                 }
412         }
413
414         ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
415         return ret < 0 ? -EINVAL : 0;
416 }
417
418 /*
419  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
420  * If @mtu is -1 it is left unchanged.
421  */
422 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
423 {
424         struct port_info *pi = netdev_priv(dev);
425         struct adapter *adapter = pi->adapter;
426
427         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
428         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
429
430         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
431                              (dev->flags & IFF_PROMISC) ? 1 : 0,
432                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
433                              sleep_ok);
434 }
435
436 /**
437  *      link_start - enable a port
438  *      @dev: the port to enable
439  *
440  *      Performs the MAC and PHY actions needed to enable a port.
441  */
442 static int link_start(struct net_device *dev)
443 {
444         int ret;
445         struct port_info *pi = netdev_priv(dev);
446         unsigned int mb = pi->adapter->pf;
447
448         /*
449          * We do not set address filters and promiscuity here, the stack does
450          * that step explicitly.
451          */
452         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
453                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
454         if (ret == 0) {
455                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
456                                     pi->xact_addr_filt, dev->dev_addr, true,
457                                     true);
458                 if (ret >= 0) {
459                         pi->xact_addr_filt = ret;
460                         ret = 0;
461                 }
462         }
463         if (ret == 0)
464                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
465                                     &pi->link_cfg);
466         if (ret == 0) {
467                 local_bh_disable();
468                 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
469                                           true, CXGB4_DCB_ENABLED);
470                 local_bh_enable();
471         }
472
473         return ret;
474 }
475
476 #ifdef CONFIG_CHELSIO_T4_DCB
477 /* Handle a Data Center Bridging update message from the firmware. */
478 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
479 {
480         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
481         struct net_device *dev = adap->port[adap->chan_map[port]];
482         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
483         int new_dcb_enabled;
484
485         cxgb4_dcb_handle_fw_update(adap, pcmd);
486         new_dcb_enabled = cxgb4_dcb_enabled(dev);
487
488         /* If the DCB has become enabled or disabled on the port then we're
489          * going to need to set up/tear down DCB Priority parameters for the
490          * TX Queues associated with the port.
491          */
492         if (new_dcb_enabled != old_dcb_enabled)
493                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
494 }
495 #endif /* CONFIG_CHELSIO_T4_DCB */
496
497 /* Response queue handler for the FW event queue.
498  */
499 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
500                           const struct pkt_gl *gl)
501 {
502         u8 opcode = ((const struct rss_header *)rsp)->opcode;
503
504         rsp++;                                          /* skip RSS header */
505
506         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
507          */
508         if (unlikely(opcode == CPL_FW4_MSG &&
509            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
510                 rsp++;
511                 opcode = ((const struct rss_header *)rsp)->opcode;
512                 rsp++;
513                 if (opcode != CPL_SGE_EGR_UPDATE) {
514                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
515                                 , opcode);
516                         goto out;
517                 }
518         }
519
520         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
521                 const struct cpl_sge_egr_update *p = (void *)rsp;
522                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
523                 struct sge_txq *txq;
524
525                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
526                 txq->restarts++;
527                 if (txq->q_type == CXGB4_TXQ_ETH) {
528                         struct sge_eth_txq *eq;
529
530                         eq = container_of(txq, struct sge_eth_txq, q);
531                         netif_tx_wake_queue(eq->txq);
532                 } else {
533                         struct sge_uld_txq *oq;
534
535                         oq = container_of(txq, struct sge_uld_txq, q);
536                         tasklet_schedule(&oq->qresume_tsk);
537                 }
538         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
539                 const struct cpl_fw6_msg *p = (void *)rsp;
540
541 #ifdef CONFIG_CHELSIO_T4_DCB
542                 const struct fw_port_cmd *pcmd = (const void *)p->data;
543                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
544                 unsigned int action =
545                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
546
547                 if (cmd == FW_PORT_CMD &&
548                     (action == FW_PORT_ACTION_GET_PORT_INFO ||
549                      action == FW_PORT_ACTION_GET_PORT_INFO32)) {
550                         int port = FW_PORT_CMD_PORTID_G(
551                                         be32_to_cpu(pcmd->op_to_portid));
552                         struct net_device *dev;
553                         int dcbxdis, state_input;
554
555                         dev = q->adap->port[q->adap->chan_map[port]];
556                         dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
557                           ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
558                           : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
559                                & FW_PORT_CMD_DCBXDIS32_F));
560                         state_input = (dcbxdis
561                                        ? CXGB4_DCB_INPUT_FW_DISABLED
562                                        : CXGB4_DCB_INPUT_FW_ENABLED);
563
564                         cxgb4_dcb_state_fsm(dev, state_input);
565                 }
566
567                 if (cmd == FW_PORT_CMD &&
568                     action == FW_PORT_ACTION_L2_DCB_CFG)
569                         dcb_rpl(q->adap, pcmd);
570                 else
571 #endif
572                         if (p->type == 0)
573                                 t4_handle_fw_rpl(q->adap, p->data);
574         } else if (opcode == CPL_L2T_WRITE_RPL) {
575                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
576
577                 do_l2t_write_rpl(q->adap, p);
578         } else if (opcode == CPL_SMT_WRITE_RPL) {
579                 const struct cpl_smt_write_rpl *p = (void *)rsp;
580
581                 do_smt_write_rpl(q->adap, p);
582         } else if (opcode == CPL_SET_TCB_RPL) {
583                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
584
585                 filter_rpl(q->adap, p);
586         } else if (opcode == CPL_ACT_OPEN_RPL) {
587                 const struct cpl_act_open_rpl *p = (void *)rsp;
588
589                 hash_filter_rpl(q->adap, p);
590         } else if (opcode == CPL_ABORT_RPL_RSS) {
591                 const struct cpl_abort_rpl_rss *p = (void *)rsp;
592
593                 hash_del_filter_rpl(q->adap, p);
594         } else if (opcode == CPL_SRQ_TABLE_RPL) {
595                 const struct cpl_srq_table_rpl *p = (void *)rsp;
596
597                 do_srq_table_rpl(q->adap, p);
598         } else
599                 dev_err(q->adap->pdev_dev,
600                         "unexpected CPL %#x on FW event queue\n", opcode);
601 out:
602         return 0;
603 }
604
605 static void disable_msi(struct adapter *adapter)
606 {
607         if (adapter->flags & USING_MSIX) {
608                 pci_disable_msix(adapter->pdev);
609                 adapter->flags &= ~USING_MSIX;
610         } else if (adapter->flags & USING_MSI) {
611                 pci_disable_msi(adapter->pdev);
612                 adapter->flags &= ~USING_MSI;
613         }
614 }
615
616 /*
617  * Interrupt handler for non-data events used with MSI-X.
618  */
619 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
620 {
621         struct adapter *adap = cookie;
622         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
623
624         if (v & PFSW_F) {
625                 adap->swintr = 1;
626                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
627         }
628         if (adap->flags & MASTER_PF)
629                 t4_slow_intr_handler(adap);
630         return IRQ_HANDLED;
631 }
632
633 /*
634  * Name the MSI-X interrupts.
635  */
636 static void name_msix_vecs(struct adapter *adap)
637 {
638         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
639
640         /* non-data interrupts */
641         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
642
643         /* FW events */
644         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
645                  adap->port[0]->name);
646
647         /* Ethernet queues */
648         for_each_port(adap, j) {
649                 struct net_device *d = adap->port[j];
650                 const struct port_info *pi = netdev_priv(d);
651
652                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
653                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
654                                  d->name, i);
655         }
656 }
657
658 static int request_msix_queue_irqs(struct adapter *adap)
659 {
660         struct sge *s = &adap->sge;
661         int err, ethqidx;
662         int msi_index = 2;
663
664         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
665                           adap->msix_info[1].desc, &s->fw_evtq);
666         if (err)
667                 return err;
668
669         for_each_ethrxq(s, ethqidx) {
670                 err = request_irq(adap->msix_info[msi_index].vec,
671                                   t4_sge_intr_msix, 0,
672                                   adap->msix_info[msi_index].desc,
673                                   &s->ethrxq[ethqidx].rspq);
674                 if (err)
675                         goto unwind;
676                 msi_index++;
677         }
678         return 0;
679
680 unwind:
681         while (--ethqidx >= 0)
682                 free_irq(adap->msix_info[--msi_index].vec,
683                          &s->ethrxq[ethqidx].rspq);
684         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
685         return err;
686 }
687
688 static void free_msix_queue_irqs(struct adapter *adap)
689 {
690         int i, msi_index = 2;
691         struct sge *s = &adap->sge;
692
693         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
694         for_each_ethrxq(s, i)
695                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
696 }
697
698 /**
699  *      cxgb4_write_rss - write the RSS table for a given port
700  *      @pi: the port
701  *      @queues: array of queue indices for RSS
702  *
703  *      Sets up the portion of the HW RSS table for the port's VI to distribute
704  *      packets to the Rx queues in @queues.
705  *      Should never be called before setting up sge eth rx queues
706  */
707 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
708 {
709         u16 *rss;
710         int i, err;
711         struct adapter *adapter = pi->adapter;
712         const struct sge_eth_rxq *rxq;
713
714         rxq = &adapter->sge.ethrxq[pi->first_qset];
715         rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
716         if (!rss)
717                 return -ENOMEM;
718
719         /* map the queue indices to queue ids */
720         for (i = 0; i < pi->rss_size; i++, queues++)
721                 rss[i] = rxq[*queues].rspq.abs_id;
722
723         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
724                                   pi->rss_size, rss, pi->rss_size);
725         /* If Tunnel All Lookup isn't specified in the global RSS
726          * Configuration, then we need to specify a default Ingress
727          * Queue for any ingress packets which aren't hashed.  We'll
728          * use our first ingress queue ...
729          */
730         if (!err)
731                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
732                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
733                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
734                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
735                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
736                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
737                                        rss[0]);
738         kfree(rss);
739         return err;
740 }
741
742 /**
743  *      setup_rss - configure RSS
744  *      @adap: the adapter
745  *
746  *      Sets up RSS for each port.
747  */
748 static int setup_rss(struct adapter *adap)
749 {
750         int i, j, err;
751
752         for_each_port(adap, i) {
753                 const struct port_info *pi = adap2pinfo(adap, i);
754
755                 /* Fill default values with equal distribution */
756                 for (j = 0; j < pi->rss_size; j++)
757                         pi->rss[j] = j % pi->nqsets;
758
759                 err = cxgb4_write_rss(pi, pi->rss);
760                 if (err)
761                         return err;
762         }
763         return 0;
764 }
765
766 /*
767  * Return the channel of the ingress queue with the given qid.
768  */
769 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
770 {
771         qid -= p->ingr_start;
772         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
773 }
774
775 /*
776  * Wait until all NAPI handlers are descheduled.
777  */
778 static void quiesce_rx(struct adapter *adap)
779 {
780         int i;
781
782         for (i = 0; i < adap->sge.ingr_sz; i++) {
783                 struct sge_rspq *q = adap->sge.ingr_map[i];
784
785                 if (q && q->handler)
786                         napi_disable(&q->napi);
787         }
788 }
789
790 /* Disable interrupt and napi handler */
791 static void disable_interrupts(struct adapter *adap)
792 {
793         if (adap->flags & FULL_INIT_DONE) {
794                 t4_intr_disable(adap);
795                 if (adap->flags & USING_MSIX) {
796                         free_msix_queue_irqs(adap);
797                         free_irq(adap->msix_info[0].vec, adap);
798                 } else {
799                         free_irq(adap->pdev->irq, adap);
800                 }
801                 quiesce_rx(adap);
802         }
803 }
804
805 /*
806  * Enable NAPI scheduling and interrupt generation for all Rx queues.
807  */
808 static void enable_rx(struct adapter *adap)
809 {
810         int i;
811
812         for (i = 0; i < adap->sge.ingr_sz; i++) {
813                 struct sge_rspq *q = adap->sge.ingr_map[i];
814
815                 if (!q)
816                         continue;
817                 if (q->handler)
818                         napi_enable(&q->napi);
819
820                 /* 0-increment GTS to start the timer and enable interrupts */
821                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
822                              SEINTARM_V(q->intr_params) |
823                              INGRESSQID_V(q->cntxt_id));
824         }
825 }
826
827
828 static int setup_fw_sge_queues(struct adapter *adap)
829 {
830         struct sge *s = &adap->sge;
831         int err = 0;
832
833         bitmap_zero(s->starving_fl, s->egr_sz);
834         bitmap_zero(s->txq_maperr, s->egr_sz);
835
836         if (adap->flags & USING_MSIX)
837                 adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
838         else {
839                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
840                                        NULL, NULL, NULL, -1);
841                 if (err)
842                         return err;
843                 adap->msi_idx = -((int)s->intrq.abs_id + 1);
844         }
845
846         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
847                                adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
848         return err;
849 }
850
851 /**
852  *      setup_sge_queues - configure SGE Tx/Rx/response queues
853  *      @adap: the adapter
854  *
855  *      Determines how many sets of SGE queues to use and initializes them.
856  *      We support multiple queue sets per port if we have MSI-X, otherwise
857  *      just one queue set per port.
858  */
859 static int setup_sge_queues(struct adapter *adap)
860 {
861         int err, i, j;
862         struct sge *s = &adap->sge;
863         struct sge_uld_rxq_info *rxq_info = NULL;
864         unsigned int cmplqid = 0;
865
866         if (is_uld(adap))
867                 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
868
869         for_each_port(adap, i) {
870                 struct net_device *dev = adap->port[i];
871                 struct port_info *pi = netdev_priv(dev);
872                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
873                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
874
875                 for (j = 0; j < pi->nqsets; j++, q++) {
876                         if (adap->msi_idx > 0)
877                                 adap->msi_idx++;
878                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
879                                                adap->msi_idx, &q->fl,
880                                                t4_ethrx_handler,
881                                                NULL,
882                                                t4_get_tp_ch_map(adap,
883                                                                 pi->tx_chan));
884                         if (err)
885                                 goto freeout;
886                         q->rspq.idx = j;
887                         memset(&q->stats, 0, sizeof(q->stats));
888                 }
889                 for (j = 0; j < pi->nqsets; j++, t++) {
890                         err = t4_sge_alloc_eth_txq(adap, t, dev,
891                                         netdev_get_tx_queue(dev, j),
892                                         s->fw_evtq.cntxt_id);
893                         if (err)
894                                 goto freeout;
895                 }
896         }
897
898         for_each_port(adap, i) {
899                 /* Note that cmplqid below is 0 if we don't
900                  * have RDMA queues, and that's the right value.
901                  */
902                 if (rxq_info)
903                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
904
905                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
906                                             s->fw_evtq.cntxt_id, cmplqid);
907                 if (err)
908                         goto freeout;
909         }
910
911         if (!is_t4(adap->params.chip)) {
912                 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
913                                            netdev_get_tx_queue(adap->port[0], 0)
914                                            , s->fw_evtq.cntxt_id);
915                 if (err)
916                         goto freeout;
917         }
918
919         t4_write_reg(adap, is_t4(adap->params.chip) ?
920                                 MPS_TRC_RSS_CONTROL_A :
921                                 MPS_T5_TRC_RSS_CONTROL_A,
922                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
923                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
924         return 0;
925 freeout:
926         dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
927         t4_free_sge_resources(adap);
928         return err;
929 }
930
931 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
932                              struct net_device *sb_dev,
933                              select_queue_fallback_t fallback)
934 {
935         int txq;
936
937 #ifdef CONFIG_CHELSIO_T4_DCB
938         /* If a Data Center Bridging has been successfully negotiated on this
939          * link then we'll use the skb's priority to map it to a TX Queue.
940          * The skb's priority is determined via the VLAN Tag Priority Code
941          * Point field.
942          */
943         if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
944                 u16 vlan_tci;
945                 int err;
946
947                 err = vlan_get_tag(skb, &vlan_tci);
948                 if (unlikely(err)) {
949                         if (net_ratelimit())
950                                 netdev_warn(dev,
951                                             "TX Packet without VLAN Tag on DCB Link\n");
952                         txq = 0;
953                 } else {
954                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
955 #ifdef CONFIG_CHELSIO_T4_FCOE
956                         if (skb->protocol == htons(ETH_P_FCOE))
957                                 txq = skb->priority & 0x7;
958 #endif /* CONFIG_CHELSIO_T4_FCOE */
959                 }
960                 return txq;
961         }
962 #endif /* CONFIG_CHELSIO_T4_DCB */
963
964         if (select_queue) {
965                 txq = (skb_rx_queue_recorded(skb)
966                         ? skb_get_rx_queue(skb)
967                         : smp_processor_id());
968
969                 while (unlikely(txq >= dev->real_num_tx_queues))
970                         txq -= dev->real_num_tx_queues;
971
972                 return txq;
973         }
974
975         return fallback(dev, skb, NULL) % dev->real_num_tx_queues;
976 }
977
978 static int closest_timer(const struct sge *s, int time)
979 {
980         int i, delta, match = 0, min_delta = INT_MAX;
981
982         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
983                 delta = time - s->timer_val[i];
984                 if (delta < 0)
985                         delta = -delta;
986                 if (delta < min_delta) {
987                         min_delta = delta;
988                         match = i;
989                 }
990         }
991         return match;
992 }
993
994 static int closest_thres(const struct sge *s, int thres)
995 {
996         int i, delta, match = 0, min_delta = INT_MAX;
997
998         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
999                 delta = thres - s->counter_val[i];
1000                 if (delta < 0)
1001                         delta = -delta;
1002                 if (delta < min_delta) {
1003                         min_delta = delta;
1004                         match = i;
1005                 }
1006         }
1007         return match;
1008 }
1009
1010 /**
1011  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1012  *      @q: the Rx queue
1013  *      @us: the hold-off time in us, or 0 to disable timer
1014  *      @cnt: the hold-off packet count, or 0 to disable counter
1015  *
1016  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1017  *      one of the two needs to be enabled for the queue to generate interrupts.
1018  */
1019 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1020                                unsigned int us, unsigned int cnt)
1021 {
1022         struct adapter *adap = q->adap;
1023
1024         if ((us | cnt) == 0)
1025                 cnt = 1;
1026
1027         if (cnt) {
1028                 int err;
1029                 u32 v, new_idx;
1030
1031                 new_idx = closest_thres(&adap->sge, cnt);
1032                 if (q->desc && q->pktcnt_idx != new_idx) {
1033                         /* the queue has already been created, update it */
1034                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1035                             FW_PARAMS_PARAM_X_V(
1036                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1037                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1038                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1039                                             &v, &new_idx);
1040                         if (err)
1041                                 return err;
1042                 }
1043                 q->pktcnt_idx = new_idx;
1044         }
1045
1046         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1047         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1048         return 0;
1049 }
1050
1051 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1052 {
1053         const struct port_info *pi = netdev_priv(dev);
1054         netdev_features_t changed = dev->features ^ features;
1055         int err;
1056
1057         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1058                 return 0;
1059
1060         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1061                             -1, -1, -1,
1062                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1063         if (unlikely(err))
1064                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1065         return err;
1066 }
1067
1068 static int setup_debugfs(struct adapter *adap)
1069 {
1070         if (IS_ERR_OR_NULL(adap->debugfs_root))
1071                 return -1;
1072
1073 #ifdef CONFIG_DEBUG_FS
1074         t4_setup_debugfs(adap);
1075 #endif
1076         return 0;
1077 }
1078
1079 /*
1080  * upper-layer driver support
1081  */
1082
1083 /*
1084  * Allocate an active-open TID and set it to the supplied value.
1085  */
1086 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1087 {
1088         int atid = -1;
1089
1090         spin_lock_bh(&t->atid_lock);
1091         if (t->afree) {
1092                 union aopen_entry *p = t->afree;
1093
1094                 atid = (p - t->atid_tab) + t->atid_base;
1095                 t->afree = p->next;
1096                 p->data = data;
1097                 t->atids_in_use++;
1098         }
1099         spin_unlock_bh(&t->atid_lock);
1100         return atid;
1101 }
1102 EXPORT_SYMBOL(cxgb4_alloc_atid);
1103
1104 /*
1105  * Release an active-open TID.
1106  */
1107 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1108 {
1109         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1110
1111         spin_lock_bh(&t->atid_lock);
1112         p->next = t->afree;
1113         t->afree = p;
1114         t->atids_in_use--;
1115         spin_unlock_bh(&t->atid_lock);
1116 }
1117 EXPORT_SYMBOL(cxgb4_free_atid);
1118
1119 /*
1120  * Allocate a server TID and set it to the supplied value.
1121  */
1122 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1123 {
1124         int stid;
1125
1126         spin_lock_bh(&t->stid_lock);
1127         if (family == PF_INET) {
1128                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1129                 if (stid < t->nstids)
1130                         __set_bit(stid, t->stid_bmap);
1131                 else
1132                         stid = -1;
1133         } else {
1134                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1135                 if (stid < 0)
1136                         stid = -1;
1137         }
1138         if (stid >= 0) {
1139                 t->stid_tab[stid].data = data;
1140                 stid += t->stid_base;
1141                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1142                  * This is equivalent to 4 TIDs. With CLIP enabled it
1143                  * needs 2 TIDs.
1144                  */
1145                 if (family == PF_INET6) {
1146                         t->stids_in_use += 2;
1147                         t->v6_stids_in_use += 2;
1148                 } else {
1149                         t->stids_in_use++;
1150                 }
1151         }
1152         spin_unlock_bh(&t->stid_lock);
1153         return stid;
1154 }
1155 EXPORT_SYMBOL(cxgb4_alloc_stid);
1156
1157 /* Allocate a server filter TID and set it to the supplied value.
1158  */
1159 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1160 {
1161         int stid;
1162
1163         spin_lock_bh(&t->stid_lock);
1164         if (family == PF_INET) {
1165                 stid = find_next_zero_bit(t->stid_bmap,
1166                                 t->nstids + t->nsftids, t->nstids);
1167                 if (stid < (t->nstids + t->nsftids))
1168                         __set_bit(stid, t->stid_bmap);
1169                 else
1170                         stid = -1;
1171         } else {
1172                 stid = -1;
1173         }
1174         if (stid >= 0) {
1175                 t->stid_tab[stid].data = data;
1176                 stid -= t->nstids;
1177                 stid += t->sftid_base;
1178                 t->sftids_in_use++;
1179         }
1180         spin_unlock_bh(&t->stid_lock);
1181         return stid;
1182 }
1183 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1184
1185 /* Release a server TID.
1186  */
1187 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1188 {
1189         /* Is it a server filter TID? */
1190         if (t->nsftids && (stid >= t->sftid_base)) {
1191                 stid -= t->sftid_base;
1192                 stid += t->nstids;
1193         } else {
1194                 stid -= t->stid_base;
1195         }
1196
1197         spin_lock_bh(&t->stid_lock);
1198         if (family == PF_INET)
1199                 __clear_bit(stid, t->stid_bmap);
1200         else
1201                 bitmap_release_region(t->stid_bmap, stid, 1);
1202         t->stid_tab[stid].data = NULL;
1203         if (stid < t->nstids) {
1204                 if (family == PF_INET6) {
1205                         t->stids_in_use -= 2;
1206                         t->v6_stids_in_use -= 2;
1207                 } else {
1208                         t->stids_in_use--;
1209                 }
1210         } else {
1211                 t->sftids_in_use--;
1212         }
1213
1214         spin_unlock_bh(&t->stid_lock);
1215 }
1216 EXPORT_SYMBOL(cxgb4_free_stid);
1217
1218 /*
1219  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1220  */
1221 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1222                            unsigned int tid)
1223 {
1224         struct cpl_tid_release *req;
1225
1226         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1227         req = __skb_put(skb, sizeof(*req));
1228         INIT_TP_WR(req, tid);
1229         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1230 }
1231
1232 /*
1233  * Queue a TID release request and if necessary schedule a work queue to
1234  * process it.
1235  */
1236 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1237                                     unsigned int tid)
1238 {
1239         void **p = &t->tid_tab[tid];
1240         struct adapter *adap = container_of(t, struct adapter, tids);
1241
1242         spin_lock_bh(&adap->tid_release_lock);
1243         *p = adap->tid_release_head;
1244         /* Low 2 bits encode the Tx channel number */
1245         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1246         if (!adap->tid_release_task_busy) {
1247                 adap->tid_release_task_busy = true;
1248                 queue_work(adap->workq, &adap->tid_release_task);
1249         }
1250         spin_unlock_bh(&adap->tid_release_lock);
1251 }
1252
1253 /*
1254  * Process the list of pending TID release requests.
1255  */
1256 static void process_tid_release_list(struct work_struct *work)
1257 {
1258         struct sk_buff *skb;
1259         struct adapter *adap;
1260
1261         adap = container_of(work, struct adapter, tid_release_task);
1262
1263         spin_lock_bh(&adap->tid_release_lock);
1264         while (adap->tid_release_head) {
1265                 void **p = adap->tid_release_head;
1266                 unsigned int chan = (uintptr_t)p & 3;
1267                 p = (void *)p - chan;
1268
1269                 adap->tid_release_head = *p;
1270                 *p = NULL;
1271                 spin_unlock_bh(&adap->tid_release_lock);
1272
1273                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1274                                          GFP_KERNEL)))
1275                         schedule_timeout_uninterruptible(1);
1276
1277                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1278                 t4_ofld_send(adap, skb);
1279                 spin_lock_bh(&adap->tid_release_lock);
1280         }
1281         adap->tid_release_task_busy = false;
1282         spin_unlock_bh(&adap->tid_release_lock);
1283 }
1284
1285 /*
1286  * Release a TID and inform HW.  If we are unable to allocate the release
1287  * message we defer to a work queue.
1288  */
1289 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1290                       unsigned short family)
1291 {
1292         struct sk_buff *skb;
1293         struct adapter *adap = container_of(t, struct adapter, tids);
1294
1295         WARN_ON(tid >= t->ntids);
1296
1297         if (t->tid_tab[tid]) {
1298                 t->tid_tab[tid] = NULL;
1299                 atomic_dec(&t->conns_in_use);
1300                 if (t->hash_base && (tid >= t->hash_base)) {
1301                         if (family == AF_INET6)
1302                                 atomic_sub(2, &t->hash_tids_in_use);
1303                         else
1304                                 atomic_dec(&t->hash_tids_in_use);
1305                 } else {
1306                         if (family == AF_INET6)
1307                                 atomic_sub(2, &t->tids_in_use);
1308                         else
1309                                 atomic_dec(&t->tids_in_use);
1310                 }
1311         }
1312
1313         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1314         if (likely(skb)) {
1315                 mk_tid_release(skb, chan, tid);
1316                 t4_ofld_send(adap, skb);
1317         } else
1318                 cxgb4_queue_tid_release(t, chan, tid);
1319 }
1320 EXPORT_SYMBOL(cxgb4_remove_tid);
1321
1322 /*
1323  * Allocate and initialize the TID tables.  Returns 0 on success.
1324  */
1325 static int tid_init(struct tid_info *t)
1326 {
1327         struct adapter *adap = container_of(t, struct adapter, tids);
1328         unsigned int max_ftids = t->nftids + t->nsftids;
1329         unsigned int natids = t->natids;
1330         unsigned int stid_bmap_size;
1331         unsigned int ftid_bmap_size;
1332         size_t size;
1333
1334         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1335         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1336         size = t->ntids * sizeof(*t->tid_tab) +
1337                natids * sizeof(*t->atid_tab) +
1338                t->nstids * sizeof(*t->stid_tab) +
1339                t->nsftids * sizeof(*t->stid_tab) +
1340                stid_bmap_size * sizeof(long) +
1341                max_ftids * sizeof(*t->ftid_tab) +
1342                ftid_bmap_size * sizeof(long);
1343
1344         t->tid_tab = kvzalloc(size, GFP_KERNEL);
1345         if (!t->tid_tab)
1346                 return -ENOMEM;
1347
1348         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1349         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1350         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1351         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1352         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1353         spin_lock_init(&t->stid_lock);
1354         spin_lock_init(&t->atid_lock);
1355         spin_lock_init(&t->ftid_lock);
1356
1357         t->stids_in_use = 0;
1358         t->v6_stids_in_use = 0;
1359         t->sftids_in_use = 0;
1360         t->afree = NULL;
1361         t->atids_in_use = 0;
1362         atomic_set(&t->tids_in_use, 0);
1363         atomic_set(&t->conns_in_use, 0);
1364         atomic_set(&t->hash_tids_in_use, 0);
1365
1366         /* Setup the free list for atid_tab and clear the stid bitmap. */
1367         if (natids) {
1368                 while (--natids)
1369                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1370                 t->afree = t->atid_tab;
1371         }
1372
1373         if (is_offload(adap)) {
1374                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1375                 /* Reserve stid 0 for T4/T5 adapters */
1376                 if (!t->stid_base &&
1377                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1378                         __set_bit(0, t->stid_bmap);
1379         }
1380
1381         bitmap_zero(t->ftid_bmap, t->nftids);
1382         return 0;
1383 }
1384
1385 /**
1386  *      cxgb4_create_server - create an IP server
1387  *      @dev: the device
1388  *      @stid: the server TID
1389  *      @sip: local IP address to bind server to
1390  *      @sport: the server's TCP port
1391  *      @queue: queue to direct messages from this server to
1392  *
1393  *      Create an IP server for the given port and address.
1394  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1395  */
1396 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1397                         __be32 sip, __be16 sport, __be16 vlan,
1398                         unsigned int queue)
1399 {
1400         unsigned int chan;
1401         struct sk_buff *skb;
1402         struct adapter *adap;
1403         struct cpl_pass_open_req *req;
1404         int ret;
1405
1406         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1407         if (!skb)
1408                 return -ENOMEM;
1409
1410         adap = netdev2adap(dev);
1411         req = __skb_put(skb, sizeof(*req));
1412         INIT_TP_WR(req, 0);
1413         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1414         req->local_port = sport;
1415         req->peer_port = htons(0);
1416         req->local_ip = sip;
1417         req->peer_ip = htonl(0);
1418         chan = rxq_to_chan(&adap->sge, queue);
1419         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1420         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1421                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1422         ret = t4_mgmt_tx(adap, skb);
1423         return net_xmit_eval(ret);
1424 }
1425 EXPORT_SYMBOL(cxgb4_create_server);
1426
1427 /*      cxgb4_create_server6 - create an IPv6 server
1428  *      @dev: the device
1429  *      @stid: the server TID
1430  *      @sip: local IPv6 address to bind server to
1431  *      @sport: the server's TCP port
1432  *      @queue: queue to direct messages from this server to
1433  *
1434  *      Create an IPv6 server for the given port and address.
1435  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1436  */
1437 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1438                          const struct in6_addr *sip, __be16 sport,
1439                          unsigned int queue)
1440 {
1441         unsigned int chan;
1442         struct sk_buff *skb;
1443         struct adapter *adap;
1444         struct cpl_pass_open_req6 *req;
1445         int ret;
1446
1447         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1448         if (!skb)
1449                 return -ENOMEM;
1450
1451         adap = netdev2adap(dev);
1452         req = __skb_put(skb, sizeof(*req));
1453         INIT_TP_WR(req, 0);
1454         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1455         req->local_port = sport;
1456         req->peer_port = htons(0);
1457         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1458         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1459         req->peer_ip_hi = cpu_to_be64(0);
1460         req->peer_ip_lo = cpu_to_be64(0);
1461         chan = rxq_to_chan(&adap->sge, queue);
1462         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1463         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1464                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1465         ret = t4_mgmt_tx(adap, skb);
1466         return net_xmit_eval(ret);
1467 }
1468 EXPORT_SYMBOL(cxgb4_create_server6);
1469
1470 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1471                         unsigned int queue, bool ipv6)
1472 {
1473         struct sk_buff *skb;
1474         struct adapter *adap;
1475         struct cpl_close_listsvr_req *req;
1476         int ret;
1477
1478         adap = netdev2adap(dev);
1479
1480         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1481         if (!skb)
1482                 return -ENOMEM;
1483
1484         req = __skb_put(skb, sizeof(*req));
1485         INIT_TP_WR(req, 0);
1486         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1487         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1488                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1489         ret = t4_mgmt_tx(adap, skb);
1490         return net_xmit_eval(ret);
1491 }
1492 EXPORT_SYMBOL(cxgb4_remove_server);
1493
1494 /**
1495  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1496  *      @mtus: the HW MTU table
1497  *      @mtu: the target MTU
1498  *      @idx: index of selected entry in the MTU table
1499  *
1500  *      Returns the index and the value in the HW MTU table that is closest to
1501  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1502  *      table, in which case that smallest available value is selected.
1503  */
1504 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1505                             unsigned int *idx)
1506 {
1507         unsigned int i = 0;
1508
1509         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1510                 ++i;
1511         if (idx)
1512                 *idx = i;
1513         return mtus[i];
1514 }
1515 EXPORT_SYMBOL(cxgb4_best_mtu);
1516
1517 /**
1518  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1519  *     @mtus: the HW MTU table
1520  *     @header_size: Header Size
1521  *     @data_size_max: maximum Data Segment Size
1522  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1523  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1524  *
1525  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1526  *     MTU Table based solely on a Maximum MTU parameter, we break that
1527  *     parameter up into a Header Size and Maximum Data Segment Size, and
1528  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1529  *     the Hardware MTU Table which will result in a Data Segment Size with
1530  *     the requested alignment _and_ that MTU isn't "too far" from the
1531  *     closest MTU, then we'll return that rather than the closest MTU.
1532  */
1533 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1534                                     unsigned short header_size,
1535                                     unsigned short data_size_max,
1536                                     unsigned short data_size_align,
1537                                     unsigned int *mtu_idxp)
1538 {
1539         unsigned short max_mtu = header_size + data_size_max;
1540         unsigned short data_size_align_mask = data_size_align - 1;
1541         int mtu_idx, aligned_mtu_idx;
1542
1543         /* Scan the MTU Table till we find an MTU which is larger than our
1544          * Maximum MTU or we reach the end of the table.  Along the way,
1545          * record the last MTU found, if any, which will result in a Data
1546          * Segment Length matching the requested alignment.
1547          */
1548         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1549                 unsigned short data_size = mtus[mtu_idx] - header_size;
1550
1551                 /* If this MTU minus the Header Size would result in a
1552                  * Data Segment Size of the desired alignment, remember it.
1553                  */
1554                 if ((data_size & data_size_align_mask) == 0)
1555                         aligned_mtu_idx = mtu_idx;
1556
1557                 /* If we're not at the end of the Hardware MTU Table and the
1558                  * next element is larger than our Maximum MTU, drop out of
1559                  * the loop.
1560                  */
1561                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1562                         break;
1563         }
1564
1565         /* If we fell out of the loop because we ran to the end of the table,
1566          * then we just have to use the last [largest] entry.
1567          */
1568         if (mtu_idx == NMTUS)
1569                 mtu_idx--;
1570
1571         /* If we found an MTU which resulted in the requested Data Segment
1572          * Length alignment and that's "not far" from the largest MTU which is
1573          * less than or equal to the maximum MTU, then use that.
1574          */
1575         if (aligned_mtu_idx >= 0 &&
1576             mtu_idx - aligned_mtu_idx <= 1)
1577                 mtu_idx = aligned_mtu_idx;
1578
1579         /* If the caller has passed in an MTU Index pointer, pass the
1580          * MTU Index back.  Return the MTU value.
1581          */
1582         if (mtu_idxp)
1583                 *mtu_idxp = mtu_idx;
1584         return mtus[mtu_idx];
1585 }
1586 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1587
1588 /**
1589  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1590  *      @chip: chip type
1591  *      @viid: VI id of the given port
1592  *
1593  *      Return the SMT index for this VI.
1594  */
1595 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1596 {
1597         /* In T4/T5, SMT contains 256 SMAC entries organized in
1598          * 128 rows of 2 entries each.
1599          * In T6, SMT contains 256 SMAC entries in 256 rows.
1600          * TODO: The below code needs to be updated when we add support
1601          * for 256 VFs.
1602          */
1603         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1604                 return ((viid & 0x7f) << 1);
1605         else
1606                 return (viid & 0x7f);
1607 }
1608 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1609
1610 /**
1611  *      cxgb4_port_chan - get the HW channel of a port
1612  *      @dev: the net device for the port
1613  *
1614  *      Return the HW Tx channel of the given port.
1615  */
1616 unsigned int cxgb4_port_chan(const struct net_device *dev)
1617 {
1618         return netdev2pinfo(dev)->tx_chan;
1619 }
1620 EXPORT_SYMBOL(cxgb4_port_chan);
1621
1622 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1623 {
1624         struct adapter *adap = netdev2adap(dev);
1625         u32 v1, v2, lp_count, hp_count;
1626
1627         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1628         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1629         if (is_t4(adap->params.chip)) {
1630                 lp_count = LP_COUNT_G(v1);
1631                 hp_count = HP_COUNT_G(v1);
1632         } else {
1633                 lp_count = LP_COUNT_T5_G(v1);
1634                 hp_count = HP_COUNT_T5_G(v2);
1635         }
1636         return lpfifo ? lp_count : hp_count;
1637 }
1638 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1639
1640 /**
1641  *      cxgb4_port_viid - get the VI id of a port
1642  *      @dev: the net device for the port
1643  *
1644  *      Return the VI id of the given port.
1645  */
1646 unsigned int cxgb4_port_viid(const struct net_device *dev)
1647 {
1648         return netdev2pinfo(dev)->viid;
1649 }
1650 EXPORT_SYMBOL(cxgb4_port_viid);
1651
1652 /**
1653  *      cxgb4_port_idx - get the index of a port
1654  *      @dev: the net device for the port
1655  *
1656  *      Return the index of the given port.
1657  */
1658 unsigned int cxgb4_port_idx(const struct net_device *dev)
1659 {
1660         return netdev2pinfo(dev)->port_id;
1661 }
1662 EXPORT_SYMBOL(cxgb4_port_idx);
1663
1664 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1665                          struct tp_tcp_stats *v6)
1666 {
1667         struct adapter *adap = pci_get_drvdata(pdev);
1668
1669         spin_lock(&adap->stats_lock);
1670         t4_tp_get_tcp_stats(adap, v4, v6, false);
1671         spin_unlock(&adap->stats_lock);
1672 }
1673 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1674
1675 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1676                       const unsigned int *pgsz_order)
1677 {
1678         struct adapter *adap = netdev2adap(dev);
1679
1680         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1681         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1682                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1683                      HPZ3_V(pgsz_order[3]));
1684 }
1685 EXPORT_SYMBOL(cxgb4_iscsi_init);
1686
1687 int cxgb4_flush_eq_cache(struct net_device *dev)
1688 {
1689         struct adapter *adap = netdev2adap(dev);
1690
1691         return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1692 }
1693 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1694
1695 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1696 {
1697         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1698         __be64 indices;
1699         int ret;
1700
1701         spin_lock(&adap->win0_lock);
1702         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1703                            sizeof(indices), (__be32 *)&indices,
1704                            T4_MEMORY_READ);
1705         spin_unlock(&adap->win0_lock);
1706         if (!ret) {
1707                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1708                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1709         }
1710         return ret;
1711 }
1712
1713 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1714                         u16 size)
1715 {
1716         struct adapter *adap = netdev2adap(dev);
1717         u16 hw_pidx, hw_cidx;
1718         int ret;
1719
1720         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1721         if (ret)
1722                 goto out;
1723
1724         if (pidx != hw_pidx) {
1725                 u16 delta;
1726                 u32 val;
1727
1728                 if (pidx >= hw_pidx)
1729                         delta = pidx - hw_pidx;
1730                 else
1731                         delta = size - hw_pidx + pidx;
1732
1733                 if (is_t4(adap->params.chip))
1734                         val = PIDX_V(delta);
1735                 else
1736                         val = PIDX_T5_V(delta);
1737                 wmb();
1738                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1739                              QID_V(qid) | val);
1740         }
1741 out:
1742         return ret;
1743 }
1744 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1745
1746 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1747 {
1748         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1749         u32 edc0_end, edc1_end, mc0_end, mc1_end;
1750         u32 offset, memtype, memaddr;
1751         struct adapter *adap;
1752         u32 hma_size = 0;
1753         int ret;
1754
1755         adap = netdev2adap(dev);
1756
1757         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1758
1759         /* Figure out where the offset lands in the Memory Type/Address scheme.
1760          * This code assumes that the memory is laid out starting at offset 0
1761          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1762          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1763          * MC0, and some have both MC0 and MC1.
1764          */
1765         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1766         edc0_size = EDRAM0_SIZE_G(size) << 20;
1767         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1768         edc1_size = EDRAM1_SIZE_G(size) << 20;
1769         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1770         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1771
1772         if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1773                 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1774                 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1775         }
1776         edc0_end = edc0_size;
1777         edc1_end = edc0_end + edc1_size;
1778         mc0_end = edc1_end + mc0_size;
1779
1780         if (offset < edc0_end) {
1781                 memtype = MEM_EDC0;
1782                 memaddr = offset;
1783         } else if (offset < edc1_end) {
1784                 memtype = MEM_EDC1;
1785                 memaddr = offset - edc0_end;
1786         } else {
1787                 if (hma_size && (offset < (edc1_end + hma_size))) {
1788                         memtype = MEM_HMA;
1789                         memaddr = offset - edc1_end;
1790                 } else if (offset < mc0_end) {
1791                         memtype = MEM_MC0;
1792                         memaddr = offset - edc1_end;
1793                 } else if (is_t5(adap->params.chip)) {
1794                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1795                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1796                         mc1_end = mc0_end + mc1_size;
1797                         if (offset < mc1_end) {
1798                                 memtype = MEM_MC1;
1799                                 memaddr = offset - mc0_end;
1800                         } else {
1801                                 /* offset beyond the end of any memory */
1802                                 goto err;
1803                         }
1804                 } else {
1805                         /* T4/T6 only has a single memory channel */
1806                         goto err;
1807                 }
1808         }
1809
1810         spin_lock(&adap->win0_lock);
1811         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1812         spin_unlock(&adap->win0_lock);
1813         return ret;
1814
1815 err:
1816         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1817                 stag, offset);
1818         return -EINVAL;
1819 }
1820 EXPORT_SYMBOL(cxgb4_read_tpte);
1821
1822 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1823 {
1824         u32 hi, lo;
1825         struct adapter *adap;
1826
1827         adap = netdev2adap(dev);
1828         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1829         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1830
1831         return ((u64)hi << 32) | (u64)lo;
1832 }
1833 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1834
1835 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1836                          unsigned int qid,
1837                          enum cxgb4_bar2_qtype qtype,
1838                          int user,
1839                          u64 *pbar2_qoffset,
1840                          unsigned int *pbar2_qid)
1841 {
1842         return t4_bar2_sge_qregs(netdev2adap(dev),
1843                                  qid,
1844                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
1845                                   ? T4_BAR2_QTYPE_EGRESS
1846                                   : T4_BAR2_QTYPE_INGRESS),
1847                                  user,
1848                                  pbar2_qoffset,
1849                                  pbar2_qid);
1850 }
1851 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1852
1853 static struct pci_driver cxgb4_driver;
1854
1855 static void check_neigh_update(struct neighbour *neigh)
1856 {
1857         const struct device *parent;
1858         const struct net_device *netdev = neigh->dev;
1859
1860         if (is_vlan_dev(netdev))
1861                 netdev = vlan_dev_real_dev(netdev);
1862         parent = netdev->dev.parent;
1863         if (parent && parent->driver == &cxgb4_driver.driver)
1864                 t4_l2t_update(dev_get_drvdata(parent), neigh);
1865 }
1866
1867 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1868                        void *data)
1869 {
1870         switch (event) {
1871         case NETEVENT_NEIGH_UPDATE:
1872                 check_neigh_update(data);
1873                 break;
1874         case NETEVENT_REDIRECT:
1875         default:
1876                 break;
1877         }
1878         return 0;
1879 }
1880
1881 static bool netevent_registered;
1882 static struct notifier_block cxgb4_netevent_nb = {
1883         .notifier_call = netevent_cb
1884 };
1885
1886 static void drain_db_fifo(struct adapter *adap, int usecs)
1887 {
1888         u32 v1, v2, lp_count, hp_count;
1889
1890         do {
1891                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1892                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1893                 if (is_t4(adap->params.chip)) {
1894                         lp_count = LP_COUNT_G(v1);
1895                         hp_count = HP_COUNT_G(v1);
1896                 } else {
1897                         lp_count = LP_COUNT_T5_G(v1);
1898                         hp_count = HP_COUNT_T5_G(v2);
1899                 }
1900
1901                 if (lp_count == 0 && hp_count == 0)
1902                         break;
1903                 set_current_state(TASK_UNINTERRUPTIBLE);
1904                 schedule_timeout(usecs_to_jiffies(usecs));
1905         } while (1);
1906 }
1907
1908 static void disable_txq_db(struct sge_txq *q)
1909 {
1910         unsigned long flags;
1911
1912         spin_lock_irqsave(&q->db_lock, flags);
1913         q->db_disabled = 1;
1914         spin_unlock_irqrestore(&q->db_lock, flags);
1915 }
1916
1917 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1918 {
1919         spin_lock_irq(&q->db_lock);
1920         if (q->db_pidx_inc) {
1921                 /* Make sure that all writes to the TX descriptors
1922                  * are committed before we tell HW about them.
1923                  */
1924                 wmb();
1925                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1926                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1927                 q->db_pidx_inc = 0;
1928         }
1929         q->db_disabled = 0;
1930         spin_unlock_irq(&q->db_lock);
1931 }
1932
1933 static void disable_dbs(struct adapter *adap)
1934 {
1935         int i;
1936
1937         for_each_ethrxq(&adap->sge, i)
1938                 disable_txq_db(&adap->sge.ethtxq[i].q);
1939         if (is_offload(adap)) {
1940                 struct sge_uld_txq_info *txq_info =
1941                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1942
1943                 if (txq_info) {
1944                         for_each_ofldtxq(&adap->sge, i) {
1945                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1946
1947                                 disable_txq_db(&txq->q);
1948                         }
1949                 }
1950         }
1951         for_each_port(adap, i)
1952                 disable_txq_db(&adap->sge.ctrlq[i].q);
1953 }
1954
1955 static void enable_dbs(struct adapter *adap)
1956 {
1957         int i;
1958
1959         for_each_ethrxq(&adap->sge, i)
1960                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1961         if (is_offload(adap)) {
1962                 struct sge_uld_txq_info *txq_info =
1963                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1964
1965                 if (txq_info) {
1966                         for_each_ofldtxq(&adap->sge, i) {
1967                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1968
1969                                 enable_txq_db(adap, &txq->q);
1970                         }
1971                 }
1972         }
1973         for_each_port(adap, i)
1974                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1975 }
1976
1977 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1978 {
1979         enum cxgb4_uld type = CXGB4_ULD_RDMA;
1980
1981         if (adap->uld && adap->uld[type].handle)
1982                 adap->uld[type].control(adap->uld[type].handle, cmd);
1983 }
1984
1985 static void process_db_full(struct work_struct *work)
1986 {
1987         struct adapter *adap;
1988
1989         adap = container_of(work, struct adapter, db_full_task);
1990
1991         drain_db_fifo(adap, dbfifo_drain_delay);
1992         enable_dbs(adap);
1993         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1994         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1995                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1996                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1997                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1998         else
1999                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2000                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2001 }
2002
2003 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2004 {
2005         u16 hw_pidx, hw_cidx;
2006         int ret;
2007
2008         spin_lock_irq(&q->db_lock);
2009         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2010         if (ret)
2011                 goto out;
2012         if (q->db_pidx != hw_pidx) {
2013                 u16 delta;
2014                 u32 val;
2015
2016                 if (q->db_pidx >= hw_pidx)
2017                         delta = q->db_pidx - hw_pidx;
2018                 else
2019                         delta = q->size - hw_pidx + q->db_pidx;
2020
2021                 if (is_t4(adap->params.chip))
2022                         val = PIDX_V(delta);
2023                 else
2024                         val = PIDX_T5_V(delta);
2025                 wmb();
2026                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2027                              QID_V(q->cntxt_id) | val);
2028         }
2029 out:
2030         q->db_disabled = 0;
2031         q->db_pidx_inc = 0;
2032         spin_unlock_irq(&q->db_lock);
2033         if (ret)
2034                 CH_WARN(adap, "DB drop recovery failed.\n");
2035 }
2036
2037 static void recover_all_queues(struct adapter *adap)
2038 {
2039         int i;
2040
2041         for_each_ethrxq(&adap->sge, i)
2042                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2043         if (is_offload(adap)) {
2044                 struct sge_uld_txq_info *txq_info =
2045                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2046                 if (txq_info) {
2047                         for_each_ofldtxq(&adap->sge, i) {
2048                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2049
2050                                 sync_txq_pidx(adap, &txq->q);
2051                         }
2052                 }
2053         }
2054         for_each_port(adap, i)
2055                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2056 }
2057
2058 static void process_db_drop(struct work_struct *work)
2059 {
2060         struct adapter *adap;
2061
2062         adap = container_of(work, struct adapter, db_drop_task);
2063
2064         if (is_t4(adap->params.chip)) {
2065                 drain_db_fifo(adap, dbfifo_drain_delay);
2066                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2067                 drain_db_fifo(adap, dbfifo_drain_delay);
2068                 recover_all_queues(adap);
2069                 drain_db_fifo(adap, dbfifo_drain_delay);
2070                 enable_dbs(adap);
2071                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2072         } else if (is_t5(adap->params.chip)) {
2073                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2074                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2075                 u16 pidx_inc = dropped_db & 0x1fff;
2076                 u64 bar2_qoffset;
2077                 unsigned int bar2_qid;
2078                 int ret;
2079
2080                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2081                                         0, &bar2_qoffset, &bar2_qid);
2082                 if (ret)
2083                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2084                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2085                 else
2086                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2087                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2088
2089                 /* Re-enable BAR2 WC */
2090                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2091         }
2092
2093         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2094                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2095 }
2096
2097 void t4_db_full(struct adapter *adap)
2098 {
2099         if (is_t4(adap->params.chip)) {
2100                 disable_dbs(adap);
2101                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2102                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2103                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2104                 queue_work(adap->workq, &adap->db_full_task);
2105         }
2106 }
2107
2108 void t4_db_dropped(struct adapter *adap)
2109 {
2110         if (is_t4(adap->params.chip)) {
2111                 disable_dbs(adap);
2112                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2113         }
2114         queue_work(adap->workq, &adap->db_drop_task);
2115 }
2116
2117 void t4_register_netevent_notifier(void)
2118 {
2119         if (!netevent_registered) {
2120                 register_netevent_notifier(&cxgb4_netevent_nb);
2121                 netevent_registered = true;
2122         }
2123 }
2124
2125 static void detach_ulds(struct adapter *adap)
2126 {
2127         unsigned int i;
2128
2129         mutex_lock(&uld_mutex);
2130         list_del(&adap->list_node);
2131
2132         for (i = 0; i < CXGB4_ULD_MAX; i++)
2133                 if (adap->uld && adap->uld[i].handle)
2134                         adap->uld[i].state_change(adap->uld[i].handle,
2135                                              CXGB4_STATE_DETACH);
2136
2137         if (netevent_registered && list_empty(&adapter_list)) {
2138                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2139                 netevent_registered = false;
2140         }
2141         mutex_unlock(&uld_mutex);
2142 }
2143
2144 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2145 {
2146         unsigned int i;
2147
2148         mutex_lock(&uld_mutex);
2149         for (i = 0; i < CXGB4_ULD_MAX; i++)
2150                 if (adap->uld && adap->uld[i].handle)
2151                         adap->uld[i].state_change(adap->uld[i].handle,
2152                                                   new_state);
2153         mutex_unlock(&uld_mutex);
2154 }
2155
2156 #if IS_ENABLED(CONFIG_IPV6)
2157 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2158                                    unsigned long event, void *data)
2159 {
2160         struct inet6_ifaddr *ifa = data;
2161         struct net_device *event_dev = ifa->idev->dev;
2162         const struct device *parent = NULL;
2163 #if IS_ENABLED(CONFIG_BONDING)
2164         struct adapter *adap;
2165 #endif
2166         if (is_vlan_dev(event_dev))
2167                 event_dev = vlan_dev_real_dev(event_dev);
2168 #if IS_ENABLED(CONFIG_BONDING)
2169         if (event_dev->flags & IFF_MASTER) {
2170                 list_for_each_entry(adap, &adapter_list, list_node) {
2171                         switch (event) {
2172                         case NETDEV_UP:
2173                                 cxgb4_clip_get(adap->port[0],
2174                                                (const u32 *)ifa, 1);
2175                                 break;
2176                         case NETDEV_DOWN:
2177                                 cxgb4_clip_release(adap->port[0],
2178                                                    (const u32 *)ifa, 1);
2179                                 break;
2180                         default:
2181                                 break;
2182                         }
2183                 }
2184                 return NOTIFY_OK;
2185         }
2186 #endif
2187
2188         if (event_dev)
2189                 parent = event_dev->dev.parent;
2190
2191         if (parent && parent->driver == &cxgb4_driver.driver) {
2192                 switch (event) {
2193                 case NETDEV_UP:
2194                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2195                         break;
2196                 case NETDEV_DOWN:
2197                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2198                         break;
2199                 default:
2200                         break;
2201                 }
2202         }
2203         return NOTIFY_OK;
2204 }
2205
2206 static bool inet6addr_registered;
2207 static struct notifier_block cxgb4_inet6addr_notifier = {
2208         .notifier_call = cxgb4_inet6addr_handler
2209 };
2210
2211 static void update_clip(const struct adapter *adap)
2212 {
2213         int i;
2214         struct net_device *dev;
2215         int ret;
2216
2217         rcu_read_lock();
2218
2219         for (i = 0; i < MAX_NPORTS; i++) {
2220                 dev = adap->port[i];
2221                 ret = 0;
2222
2223                 if (dev)
2224                         ret = cxgb4_update_root_dev_clip(dev);
2225
2226                 if (ret < 0)
2227                         break;
2228         }
2229         rcu_read_unlock();
2230 }
2231 #endif /* IS_ENABLED(CONFIG_IPV6) */
2232
2233 /**
2234  *      cxgb_up - enable the adapter
2235  *      @adap: adapter being enabled
2236  *
2237  *      Called when the first port is enabled, this function performs the
2238  *      actions necessary to make an adapter operational, such as completing
2239  *      the initialization of HW modules, and enabling interrupts.
2240  *
2241  *      Must be called with the rtnl lock held.
2242  */
2243 static int cxgb_up(struct adapter *adap)
2244 {
2245         int err;
2246
2247         mutex_lock(&uld_mutex);
2248         err = setup_sge_queues(adap);
2249         if (err)
2250                 goto rel_lock;
2251         err = setup_rss(adap);
2252         if (err)
2253                 goto freeq;
2254
2255         if (adap->flags & USING_MSIX) {
2256                 name_msix_vecs(adap);
2257                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2258                                   adap->msix_info[0].desc, adap);
2259                 if (err)
2260                         goto irq_err;
2261                 err = request_msix_queue_irqs(adap);
2262                 if (err) {
2263                         free_irq(adap->msix_info[0].vec, adap);
2264                         goto irq_err;
2265                 }
2266         } else {
2267                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2268                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2269                                   adap->port[0]->name, adap);
2270                 if (err)
2271                         goto irq_err;
2272         }
2273
2274         enable_rx(adap);
2275         t4_sge_start(adap);
2276         t4_intr_enable(adap);
2277         adap->flags |= FULL_INIT_DONE;
2278         mutex_unlock(&uld_mutex);
2279
2280         notify_ulds(adap, CXGB4_STATE_UP);
2281 #if IS_ENABLED(CONFIG_IPV6)
2282         update_clip(adap);
2283 #endif
2284         /* Initialize hash mac addr list*/
2285         INIT_LIST_HEAD(&adap->mac_hlist);
2286         return err;
2287
2288  irq_err:
2289         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2290  freeq:
2291         t4_free_sge_resources(adap);
2292  rel_lock:
2293         mutex_unlock(&uld_mutex);
2294         return err;
2295 }
2296
2297 static void cxgb_down(struct adapter *adapter)
2298 {
2299         cancel_work_sync(&adapter->tid_release_task);
2300         cancel_work_sync(&adapter->db_full_task);
2301         cancel_work_sync(&adapter->db_drop_task);
2302         adapter->tid_release_task_busy = false;
2303         adapter->tid_release_head = NULL;
2304
2305         t4_sge_stop(adapter);
2306         t4_free_sge_resources(adapter);
2307         adapter->flags &= ~FULL_INIT_DONE;
2308 }
2309
2310 /*
2311  * net_device operations
2312  */
2313 static int cxgb_open(struct net_device *dev)
2314 {
2315         int err;
2316         struct port_info *pi = netdev_priv(dev);
2317         struct adapter *adapter = pi->adapter;
2318
2319         netif_carrier_off(dev);
2320
2321         if (!(adapter->flags & FULL_INIT_DONE)) {
2322                 err = cxgb_up(adapter);
2323                 if (err < 0)
2324                         return err;
2325         }
2326
2327         /* It's possible that the basic port information could have
2328          * changed since we first read it.
2329          */
2330         err = t4_update_port_info(pi);
2331         if (err < 0)
2332                 return err;
2333
2334         err = link_start(dev);
2335         if (!err)
2336                 netif_tx_start_all_queues(dev);
2337         return err;
2338 }
2339
2340 static int cxgb_close(struct net_device *dev)
2341 {
2342         struct port_info *pi = netdev_priv(dev);
2343         struct adapter *adapter = pi->adapter;
2344         int ret;
2345
2346         netif_tx_stop_all_queues(dev);
2347         netif_carrier_off(dev);
2348         ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2349                                   false, false, false);
2350 #ifdef CONFIG_CHELSIO_T4_DCB
2351         cxgb4_dcb_reset(dev);
2352         dcb_tx_queue_prio_enable(dev, false);
2353 #endif
2354         return ret;
2355 }
2356
2357 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2358                 __be32 sip, __be16 sport, __be16 vlan,
2359                 unsigned int queue, unsigned char port, unsigned char mask)
2360 {
2361         int ret;
2362         struct filter_entry *f;
2363         struct adapter *adap;
2364         int i;
2365         u8 *val;
2366
2367         adap = netdev2adap(dev);
2368
2369         /* Adjust stid to correct filter index */
2370         stid -= adap->tids.sftid_base;
2371         stid += adap->tids.nftids;
2372
2373         /* Check to make sure the filter requested is writable ...
2374          */
2375         f = &adap->tids.ftid_tab[stid];
2376         ret = writable_filter(f);
2377         if (ret)
2378                 return ret;
2379
2380         /* Clear out any old resources being used by the filter before
2381          * we start constructing the new filter.
2382          */
2383         if (f->valid)
2384                 clear_filter(adap, f);
2385
2386         /* Clear out filter specifications */
2387         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2388         f->fs.val.lport = cpu_to_be16(sport);
2389         f->fs.mask.lport  = ~0;
2390         val = (u8 *)&sip;
2391         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2392                 for (i = 0; i < 4; i++) {
2393                         f->fs.val.lip[i] = val[i];
2394                         f->fs.mask.lip[i] = ~0;
2395                 }
2396                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2397                         f->fs.val.iport = port;
2398                         f->fs.mask.iport = mask;
2399                 }
2400         }
2401
2402         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2403                 f->fs.val.proto = IPPROTO_TCP;
2404                 f->fs.mask.proto = ~0;
2405         }
2406
2407         f->fs.dirsteer = 1;
2408         f->fs.iq = queue;
2409         /* Mark filter as locked */
2410         f->locked = 1;
2411         f->fs.rpttid = 1;
2412
2413         /* Save the actual tid. We need this to get the corresponding
2414          * filter entry structure in filter_rpl.
2415          */
2416         f->tid = stid + adap->tids.ftid_base;
2417         ret = set_filter_wr(adap, stid);
2418         if (ret) {
2419                 clear_filter(adap, f);
2420                 return ret;
2421         }
2422
2423         return 0;
2424 }
2425 EXPORT_SYMBOL(cxgb4_create_server_filter);
2426
2427 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2428                 unsigned int queue, bool ipv6)
2429 {
2430         struct filter_entry *f;
2431         struct adapter *adap;
2432
2433         adap = netdev2adap(dev);
2434
2435         /* Adjust stid to correct filter index */
2436         stid -= adap->tids.sftid_base;
2437         stid += adap->tids.nftids;
2438
2439         f = &adap->tids.ftid_tab[stid];
2440         /* Unlock the filter */
2441         f->locked = 0;
2442
2443         return delete_filter(adap, stid);
2444 }
2445 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2446
2447 static void cxgb_get_stats(struct net_device *dev,
2448                            struct rtnl_link_stats64 *ns)
2449 {
2450         struct port_stats stats;
2451         struct port_info *p = netdev_priv(dev);
2452         struct adapter *adapter = p->adapter;
2453
2454         /* Block retrieving statistics during EEH error
2455          * recovery. Otherwise, the recovery might fail
2456          * and the PCI device will be removed permanently
2457          */
2458         spin_lock(&adapter->stats_lock);
2459         if (!netif_device_present(dev)) {
2460                 spin_unlock(&adapter->stats_lock);
2461                 return;
2462         }
2463         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2464                                  &p->stats_base);
2465         spin_unlock(&adapter->stats_lock);
2466
2467         ns->tx_bytes   = stats.tx_octets;
2468         ns->tx_packets = stats.tx_frames;
2469         ns->rx_bytes   = stats.rx_octets;
2470         ns->rx_packets = stats.rx_frames;
2471         ns->multicast  = stats.rx_mcast_frames;
2472
2473         /* detailed rx_errors */
2474         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2475                                stats.rx_runt;
2476         ns->rx_over_errors   = 0;
2477         ns->rx_crc_errors    = stats.rx_fcs_err;
2478         ns->rx_frame_errors  = stats.rx_symbol_err;
2479         ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2480                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2481                                stats.rx_trunc0 + stats.rx_trunc1 +
2482                                stats.rx_trunc2 + stats.rx_trunc3;
2483         ns->rx_missed_errors = 0;
2484
2485         /* detailed tx_errors */
2486         ns->tx_aborted_errors   = 0;
2487         ns->tx_carrier_errors   = 0;
2488         ns->tx_fifo_errors      = 0;
2489         ns->tx_heartbeat_errors = 0;
2490         ns->tx_window_errors    = 0;
2491
2492         ns->tx_errors = stats.tx_error_frames;
2493         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2494                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2495 }
2496
2497 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2498 {
2499         unsigned int mbox;
2500         int ret = 0, prtad, devad;
2501         struct port_info *pi = netdev_priv(dev);
2502         struct adapter *adapter = pi->adapter;
2503         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2504
2505         switch (cmd) {
2506         case SIOCGMIIPHY:
2507                 if (pi->mdio_addr < 0)
2508                         return -EOPNOTSUPP;
2509                 data->phy_id = pi->mdio_addr;
2510                 break;
2511         case SIOCGMIIREG:
2512         case SIOCSMIIREG:
2513                 if (mdio_phy_id_is_c45(data->phy_id)) {
2514                         prtad = mdio_phy_id_prtad(data->phy_id);
2515                         devad = mdio_phy_id_devad(data->phy_id);
2516                 } else if (data->phy_id < 32) {
2517                         prtad = data->phy_id;
2518                         devad = 0;
2519                         data->reg_num &= 0x1f;
2520                 } else
2521                         return -EINVAL;
2522
2523                 mbox = pi->adapter->pf;
2524                 if (cmd == SIOCGMIIREG)
2525                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2526                                          data->reg_num, &data->val_out);
2527                 else
2528                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2529                                          data->reg_num, data->val_in);
2530                 break;
2531         case SIOCGHWTSTAMP:
2532                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2533                                     sizeof(pi->tstamp_config)) ?
2534                         -EFAULT : 0;
2535         case SIOCSHWTSTAMP:
2536                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2537                                    sizeof(pi->tstamp_config)))
2538                         return -EFAULT;
2539
2540                 if (!is_t4(adapter->params.chip)) {
2541                         switch (pi->tstamp_config.tx_type) {
2542                         case HWTSTAMP_TX_OFF:
2543                         case HWTSTAMP_TX_ON:
2544                                 break;
2545                         default:
2546                                 return -ERANGE;
2547                         }
2548
2549                         switch (pi->tstamp_config.rx_filter) {
2550                         case HWTSTAMP_FILTER_NONE:
2551                                 pi->rxtstamp = false;
2552                                 break;
2553                         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2554                         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2555                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2556                                                          PTP_TS_L4);
2557                                 break;
2558                         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2559                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2560                                                          PTP_TS_L2_L4);
2561                                 break;
2562                         case HWTSTAMP_FILTER_ALL:
2563                         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2564                         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2565                         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2566                         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2567                                 pi->rxtstamp = true;
2568                                 break;
2569                         default:
2570                                 pi->tstamp_config.rx_filter =
2571                                         HWTSTAMP_FILTER_NONE;
2572                                 return -ERANGE;
2573                         }
2574
2575                         if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2576                             (pi->tstamp_config.rx_filter ==
2577                                 HWTSTAMP_FILTER_NONE)) {
2578                                 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2579                                         pi->ptp_enable = false;
2580                         }
2581
2582                         if (pi->tstamp_config.rx_filter !=
2583                                 HWTSTAMP_FILTER_NONE) {
2584                                 if (cxgb4_ptp_redirect_rx_packet(adapter,
2585                                                                  pi) >= 0)
2586                                         pi->ptp_enable = true;
2587                         }
2588                 } else {
2589                         /* For T4 Adapters */
2590                         switch (pi->tstamp_config.rx_filter) {
2591                         case HWTSTAMP_FILTER_NONE:
2592                         pi->rxtstamp = false;
2593                         break;
2594                         case HWTSTAMP_FILTER_ALL:
2595                         pi->rxtstamp = true;
2596                         break;
2597                         default:
2598                         pi->tstamp_config.rx_filter =
2599                         HWTSTAMP_FILTER_NONE;
2600                         return -ERANGE;
2601                         }
2602                 }
2603                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2604                                     sizeof(pi->tstamp_config)) ?
2605                         -EFAULT : 0;
2606         default:
2607                 return -EOPNOTSUPP;
2608         }
2609         return ret;
2610 }
2611
2612 static void cxgb_set_rxmode(struct net_device *dev)
2613 {
2614         /* unfortunately we can't return errors to the stack */
2615         set_rxmode(dev, -1, false);
2616 }
2617
2618 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2619 {
2620         int ret;
2621         struct port_info *pi = netdev_priv(dev);
2622
2623         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2624                             -1, -1, -1, true);
2625         if (!ret)
2626                 dev->mtu = new_mtu;
2627         return ret;
2628 }
2629
2630 #ifdef CONFIG_PCI_IOV
2631 static int cxgb4_mgmt_open(struct net_device *dev)
2632 {
2633         /* Turn carrier off since we don't have to transmit anything on this
2634          * interface.
2635          */
2636         netif_carrier_off(dev);
2637         return 0;
2638 }
2639
2640 /* Fill MAC address that will be assigned by the FW */
2641 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2642 {
2643         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2644         unsigned int i, vf, nvfs;
2645         u16 a, b;
2646         int err;
2647         u8 *na;
2648
2649         adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2650                                                             PCI_CAP_ID_VPD);
2651         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2652         if (err)
2653                 return;
2654
2655         na = adap->params.vpd.na;
2656         for (i = 0; i < ETH_ALEN; i++)
2657                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2658                               hex2val(na[2 * i + 1]));
2659
2660         a = (hw_addr[0] << 8) | hw_addr[1];
2661         b = (hw_addr[1] << 8) | hw_addr[2];
2662         a ^= b;
2663         a |= 0x0200;    /* locally assigned Ethernet MAC address */
2664         a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2665         macaddr[0] = a >> 8;
2666         macaddr[1] = a & 0xff;
2667
2668         for (i = 2; i < 5; i++)
2669                 macaddr[i] = hw_addr[i + 1];
2670
2671         for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2672                 vf < nvfs; vf++) {
2673                 macaddr[5] = adap->pf * 16 + vf;
2674                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2675         }
2676 }
2677
2678 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2679 {
2680         struct port_info *pi = netdev_priv(dev);
2681         struct adapter *adap = pi->adapter;
2682         int ret;
2683
2684         /* verify MAC addr is valid */
2685         if (!is_valid_ether_addr(mac)) {
2686                 dev_err(pi->adapter->pdev_dev,
2687                         "Invalid Ethernet address %pM for VF %d\n",
2688                         mac, vf);
2689                 return -EINVAL;
2690         }
2691
2692         dev_info(pi->adapter->pdev_dev,
2693                  "Setting MAC %pM on VF %d\n", mac, vf);
2694         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2695         if (!ret)
2696                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2697         return ret;
2698 }
2699
2700 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2701                                     int vf, struct ifla_vf_info *ivi)
2702 {
2703         struct port_info *pi = netdev_priv(dev);
2704         struct adapter *adap = pi->adapter;
2705         struct vf_info *vfinfo;
2706
2707         if (vf >= adap->num_vfs)
2708                 return -EINVAL;
2709         vfinfo = &adap->vfinfo[vf];
2710
2711         ivi->vf = vf;
2712         ivi->max_tx_rate = vfinfo->tx_rate;
2713         ivi->min_tx_rate = 0;
2714         ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2715         ivi->vlan = vfinfo->vlan;
2716         return 0;
2717 }
2718
2719 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2720                                        struct netdev_phys_item_id *ppid)
2721 {
2722         struct port_info *pi = netdev_priv(dev);
2723         unsigned int phy_port_id;
2724
2725         phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2726         ppid->id_len = sizeof(phy_port_id);
2727         memcpy(ppid->id, &phy_port_id, ppid->id_len);
2728         return 0;
2729 }
2730
2731 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2732                                   int min_tx_rate, int max_tx_rate)
2733 {
2734         struct port_info *pi = netdev_priv(dev);
2735         struct adapter *adap = pi->adapter;
2736         unsigned int link_ok, speed, mtu;
2737         u32 fw_pfvf, fw_class;
2738         int class_id = vf;
2739         int ret;
2740         u16 pktsize;
2741
2742         if (vf >= adap->num_vfs)
2743                 return -EINVAL;
2744
2745         if (min_tx_rate) {
2746                 dev_err(adap->pdev_dev,
2747                         "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2748                         min_tx_rate, vf);
2749                 return -EINVAL;
2750         }
2751
2752         ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2753         if (ret != FW_SUCCESS) {
2754                 dev_err(adap->pdev_dev,
2755                         "Failed to get link information for VF %d\n", vf);
2756                 return -EINVAL;
2757         }
2758
2759         if (!link_ok) {
2760                 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2761                 return -EINVAL;
2762         }
2763
2764         if (max_tx_rate > speed) {
2765                 dev_err(adap->pdev_dev,
2766                         "Max tx rate %d for VF %d can't be > link-speed %u",
2767                         max_tx_rate, vf, speed);
2768                 return -EINVAL;
2769         }
2770
2771         pktsize = mtu;
2772         /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2773         pktsize = pktsize - sizeof(struct ethhdr) - 4;
2774         /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2775         pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2776         /* configure Traffic Class for rate-limiting */
2777         ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2778                               SCHED_CLASS_LEVEL_CL_RL,
2779                               SCHED_CLASS_MODE_CLASS,
2780                               SCHED_CLASS_RATEUNIT_BITS,
2781                               SCHED_CLASS_RATEMODE_ABS,
2782                               pi->tx_chan, class_id, 0,
2783                               max_tx_rate * 1000, 0, pktsize);
2784         if (ret) {
2785                 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2786                         ret);
2787                 return -EINVAL;
2788         }
2789         dev_info(adap->pdev_dev,
2790                  "Class %d with MSS %u configured with rate %u\n",
2791                  class_id, pktsize, max_tx_rate);
2792
2793         /* bind VF to configured Traffic Class */
2794         fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2795                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2796         fw_class = class_id;
2797         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2798                             &fw_class);
2799         if (ret) {
2800                 dev_err(adap->pdev_dev,
2801                         "Err %d in binding VF %d to Traffic Class %d\n",
2802                         ret, vf, class_id);
2803                 return -EINVAL;
2804         }
2805         dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2806                  adap->pf, vf, class_id);
2807         adap->vfinfo[vf].tx_rate = max_tx_rate;
2808         return 0;
2809 }
2810
2811 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2812                                   u16 vlan, u8 qos, __be16 vlan_proto)
2813 {
2814         struct port_info *pi = netdev_priv(dev);
2815         struct adapter *adap = pi->adapter;
2816         int ret;
2817
2818         if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2819                 return -EINVAL;
2820
2821         if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2822                 return -EPROTONOSUPPORT;
2823
2824         ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2825         if (!ret) {
2826                 adap->vfinfo[vf].vlan = vlan;
2827                 return 0;
2828         }
2829
2830         dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2831                 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2832         return ret;
2833 }
2834 #endif /* CONFIG_PCI_IOV */
2835
2836 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2837 {
2838         int ret;
2839         struct sockaddr *addr = p;
2840         struct port_info *pi = netdev_priv(dev);
2841
2842         if (!is_valid_ether_addr(addr->sa_data))
2843                 return -EADDRNOTAVAIL;
2844
2845         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2846                             pi->xact_addr_filt, addr->sa_data, true, true);
2847         if (ret < 0)
2848                 return ret;
2849
2850         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2851         pi->xact_addr_filt = ret;
2852         return 0;
2853 }
2854
2855 #ifdef CONFIG_NET_POLL_CONTROLLER
2856 static void cxgb_netpoll(struct net_device *dev)
2857 {
2858         struct port_info *pi = netdev_priv(dev);
2859         struct adapter *adap = pi->adapter;
2860
2861         if (adap->flags & USING_MSIX) {
2862                 int i;
2863                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2864
2865                 for (i = pi->nqsets; i; i--, rx++)
2866                         t4_sge_intr_msix(0, &rx->rspq);
2867         } else
2868                 t4_intr_handler(adap)(0, adap);
2869 }
2870 #endif
2871
2872 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2873 {
2874         struct port_info *pi = netdev_priv(dev);
2875         struct adapter *adap = pi->adapter;
2876         struct sched_class *e;
2877         struct ch_sched_params p;
2878         struct ch_sched_queue qe;
2879         u32 req_rate;
2880         int err = 0;
2881
2882         if (!can_sched(dev))
2883                 return -ENOTSUPP;
2884
2885         if (index < 0 || index > pi->nqsets - 1)
2886                 return -EINVAL;
2887
2888         if (!(adap->flags & FULL_INIT_DONE)) {
2889                 dev_err(adap->pdev_dev,
2890                         "Failed to rate limit on queue %d. Link Down?\n",
2891                         index);
2892                 return -EINVAL;
2893         }
2894
2895         /* Convert from Mbps to Kbps */
2896         req_rate = rate * 1000;
2897
2898         /* Max rate is 100 Gbps */
2899         if (req_rate > SCHED_MAX_RATE_KBPS) {
2900                 dev_err(adap->pdev_dev,
2901                         "Invalid rate %u Mbps, Max rate is %u Mbps\n",
2902                         rate, SCHED_MAX_RATE_KBPS / 1000);
2903                 return -ERANGE;
2904         }
2905
2906         /* First unbind the queue from any existing class */
2907         memset(&qe, 0, sizeof(qe));
2908         qe.queue = index;
2909         qe.class = SCHED_CLS_NONE;
2910
2911         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2912         if (err) {
2913                 dev_err(adap->pdev_dev,
2914                         "Unbinding Queue %d on port %d fail. Err: %d\n",
2915                         index, pi->port_id, err);
2916                 return err;
2917         }
2918
2919         /* Queue already unbound */
2920         if (!req_rate)
2921                 return 0;
2922
2923         /* Fetch any available unused or matching scheduling class */
2924         memset(&p, 0, sizeof(p));
2925         p.type = SCHED_CLASS_TYPE_PACKET;
2926         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2927         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2928         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2929         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2930         p.u.params.channel  = pi->tx_chan;
2931         p.u.params.class    = SCHED_CLS_NONE;
2932         p.u.params.minrate  = 0;
2933         p.u.params.maxrate  = req_rate;
2934         p.u.params.weight   = 0;
2935         p.u.params.pktsize  = dev->mtu;
2936
2937         e = cxgb4_sched_class_alloc(dev, &p);
2938         if (!e)
2939                 return -ENOMEM;
2940
2941         /* Bind the queue to a scheduling class */
2942         memset(&qe, 0, sizeof(qe));
2943         qe.queue = index;
2944         qe.class = e->idx;
2945
2946         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2947         if (err)
2948                 dev_err(adap->pdev_dev,
2949                         "Queue rate limiting failed. Err: %d\n", err);
2950         return err;
2951 }
2952
2953 static int cxgb_setup_tc_flower(struct net_device *dev,
2954                                 struct tc_cls_flower_offload *cls_flower)
2955 {
2956         switch (cls_flower->command) {
2957         case TC_CLSFLOWER_REPLACE:
2958                 return cxgb4_tc_flower_replace(dev, cls_flower);
2959         case TC_CLSFLOWER_DESTROY:
2960                 return cxgb4_tc_flower_destroy(dev, cls_flower);
2961         case TC_CLSFLOWER_STATS:
2962                 return cxgb4_tc_flower_stats(dev, cls_flower);
2963         default:
2964                 return -EOPNOTSUPP;
2965         }
2966 }
2967
2968 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2969                                  struct tc_cls_u32_offload *cls_u32)
2970 {
2971         switch (cls_u32->command) {
2972         case TC_CLSU32_NEW_KNODE:
2973         case TC_CLSU32_REPLACE_KNODE:
2974                 return cxgb4_config_knode(dev, cls_u32);
2975         case TC_CLSU32_DELETE_KNODE:
2976                 return cxgb4_delete_knode(dev, cls_u32);
2977         default:
2978                 return -EOPNOTSUPP;
2979         }
2980 }
2981
2982 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2983                                   void *cb_priv)
2984 {
2985         struct net_device *dev = cb_priv;
2986         struct port_info *pi = netdev2pinfo(dev);
2987         struct adapter *adap = netdev2adap(dev);
2988
2989         if (!(adap->flags & FULL_INIT_DONE)) {
2990                 dev_err(adap->pdev_dev,
2991                         "Failed to setup tc on port %d. Link Down?\n",
2992                         pi->port_id);
2993                 return -EINVAL;
2994         }
2995
2996         if (!tc_cls_can_offload_and_chain0(dev, type_data))
2997                 return -EOPNOTSUPP;
2998
2999         switch (type) {
3000         case TC_SETUP_CLSU32:
3001                 return cxgb_setup_tc_cls_u32(dev, type_data);
3002         case TC_SETUP_CLSFLOWER:
3003                 return cxgb_setup_tc_flower(dev, type_data);
3004         default:
3005                 return -EOPNOTSUPP;
3006         }
3007 }
3008
3009 static int cxgb_setup_tc_block(struct net_device *dev,
3010                                struct tc_block_offload *f)
3011 {
3012         struct port_info *pi = netdev2pinfo(dev);
3013
3014         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3015                 return -EOPNOTSUPP;
3016
3017         switch (f->command) {
3018         case TC_BLOCK_BIND:
3019                 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
3020                                              pi, dev, f->extack);
3021         case TC_BLOCK_UNBIND:
3022                 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
3023                 return 0;
3024         default:
3025                 return -EOPNOTSUPP;
3026         }
3027 }
3028
3029 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3030                          void *type_data)
3031 {
3032         switch (type) {
3033         case TC_SETUP_BLOCK:
3034                 return cxgb_setup_tc_block(dev, type_data);
3035         default:
3036                 return -EOPNOTSUPP;
3037         }
3038 }
3039
3040 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3041                                 struct udp_tunnel_info *ti)
3042 {
3043         struct port_info *pi = netdev_priv(netdev);
3044         struct adapter *adapter = pi->adapter;
3045         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3046         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3047         int ret = 0, i;
3048
3049         if (chip_ver < CHELSIO_T6)
3050                 return;
3051
3052         switch (ti->type) {
3053         case UDP_TUNNEL_TYPE_VXLAN:
3054                 if (!adapter->vxlan_port_cnt ||
3055                     adapter->vxlan_port != ti->port)
3056                         return; /* Invalid VxLAN destination port */
3057
3058                 adapter->vxlan_port_cnt--;
3059                 if (adapter->vxlan_port_cnt)
3060                         return;
3061
3062                 adapter->vxlan_port = 0;
3063                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3064                 break;
3065         case UDP_TUNNEL_TYPE_GENEVE:
3066                 if (!adapter->geneve_port_cnt ||
3067                     adapter->geneve_port != ti->port)
3068                         return; /* Invalid GENEVE destination port */
3069
3070                 adapter->geneve_port_cnt--;
3071                 if (adapter->geneve_port_cnt)
3072                         return;
3073
3074                 adapter->geneve_port = 0;
3075                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3076                 break;
3077         default:
3078                 return;
3079         }
3080
3081         /* Matchall mac entries can be deleted only after all tunnel ports
3082          * are brought down or removed.
3083          */
3084         if (!adapter->rawf_cnt)
3085                 return;
3086         for_each_port(adapter, i) {
3087                 pi = adap2pinfo(adapter, i);
3088                 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3089                                            match_all_mac, match_all_mac,
3090                                            adapter->rawf_start +
3091                                             pi->port_id,
3092                                            1, pi->port_id, false);
3093                 if (ret < 0) {
3094                         netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3095                                     i);
3096                         return;
3097                 }
3098                 atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3099                            pi->port_id].refcnt);
3100         }
3101 }
3102
3103 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3104                                 struct udp_tunnel_info *ti)
3105 {
3106         struct port_info *pi = netdev_priv(netdev);
3107         struct adapter *adapter = pi->adapter;
3108         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3109         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3110         int i, ret;
3111
3112         if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3113                 return;
3114
3115         switch (ti->type) {
3116         case UDP_TUNNEL_TYPE_VXLAN:
3117                 /* Callback for adding vxlan port can be called with the same
3118                  * port for both IPv4 and IPv6. We should not disable the
3119                  * offloading when the same port for both protocols is added
3120                  * and later one of them is removed.
3121                  */
3122                 if (adapter->vxlan_port_cnt &&
3123                     adapter->vxlan_port == ti->port) {
3124                         adapter->vxlan_port_cnt++;
3125                         return;
3126                 }
3127
3128                 /* We will support only one VxLAN port */
3129                 if (adapter->vxlan_port_cnt) {
3130                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3131                                     be16_to_cpu(adapter->vxlan_port),
3132                                     be16_to_cpu(ti->port));
3133                         return;
3134                 }
3135
3136                 adapter->vxlan_port = ti->port;
3137                 adapter->vxlan_port_cnt = 1;
3138
3139                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3140                              VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3141                 break;
3142         case UDP_TUNNEL_TYPE_GENEVE:
3143                 if (adapter->geneve_port_cnt &&
3144                     adapter->geneve_port == ti->port) {
3145                         adapter->geneve_port_cnt++;
3146                         return;
3147                 }
3148
3149                 /* We will support only one GENEVE port */
3150                 if (adapter->geneve_port_cnt) {
3151                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3152                                     be16_to_cpu(adapter->geneve_port),
3153                                     be16_to_cpu(ti->port));
3154                         return;
3155                 }
3156
3157                 adapter->geneve_port = ti->port;
3158                 adapter->geneve_port_cnt = 1;
3159
3160                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3161                              GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3162                 break;
3163         default:
3164                 return;
3165         }
3166
3167         /* Create a 'match all' mac filter entry for inner mac,
3168          * if raw mac interface is supported. Once the linux kernel provides
3169          * driver entry points for adding/deleting the inner mac addresses,
3170          * we will remove this 'match all' entry and fallback to adding
3171          * exact match filters.
3172          */
3173         for_each_port(adapter, i) {
3174                 pi = adap2pinfo(adapter, i);
3175
3176                 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3177                                             match_all_mac,
3178                                             match_all_mac,
3179                                             adapter->rawf_start +
3180                                             pi->port_id,
3181                                             1, pi->port_id, false);
3182                 if (ret < 0) {
3183                         netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3184                                     be16_to_cpu(ti->port));
3185                         cxgb_del_udp_tunnel(netdev, ti);
3186                         return;
3187                 }
3188                 atomic_inc(&adapter->mps_encap[ret].refcnt);
3189         }
3190 }
3191
3192 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3193                                              struct net_device *dev,
3194                                              netdev_features_t features)
3195 {
3196         struct port_info *pi = netdev_priv(dev);
3197         struct adapter *adapter = pi->adapter;
3198
3199         if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3200                 return features;
3201
3202         /* Check if hw supports offload for this packet */
3203         if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3204                 return features;
3205
3206         /* Offload is not supported for this encapsulated packet */
3207         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3208 }
3209
3210 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3211                                            netdev_features_t features)
3212 {
3213         /* Disable GRO, if RX_CSUM is disabled */
3214         if (!(features & NETIF_F_RXCSUM))
3215                 features &= ~NETIF_F_GRO;
3216
3217         return features;
3218 }
3219
3220 static const struct net_device_ops cxgb4_netdev_ops = {
3221         .ndo_open             = cxgb_open,
3222         .ndo_stop             = cxgb_close,
3223         .ndo_start_xmit       = t4_start_xmit,
3224         .ndo_select_queue     = cxgb_select_queue,
3225         .ndo_get_stats64      = cxgb_get_stats,
3226         .ndo_set_rx_mode      = cxgb_set_rxmode,
3227         .ndo_set_mac_address  = cxgb_set_mac_addr,
3228         .ndo_set_features     = cxgb_set_features,
3229         .ndo_validate_addr    = eth_validate_addr,
3230         .ndo_do_ioctl         = cxgb_ioctl,
3231         .ndo_change_mtu       = cxgb_change_mtu,
3232 #ifdef CONFIG_NET_POLL_CONTROLLER
3233         .ndo_poll_controller  = cxgb_netpoll,
3234 #endif
3235 #ifdef CONFIG_CHELSIO_T4_FCOE
3236         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3237         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3238 #endif /* CONFIG_CHELSIO_T4_FCOE */
3239         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3240         .ndo_setup_tc         = cxgb_setup_tc,
3241         .ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3242         .ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3243         .ndo_features_check   = cxgb_features_check,
3244         .ndo_fix_features     = cxgb_fix_features,
3245 };
3246
3247 #ifdef CONFIG_PCI_IOV
3248 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3249         .ndo_open             = cxgb4_mgmt_open,
3250         .ndo_set_vf_mac       = cxgb4_mgmt_set_vf_mac,
3251         .ndo_get_vf_config    = cxgb4_mgmt_get_vf_config,
3252         .ndo_set_vf_rate      = cxgb4_mgmt_set_vf_rate,
3253         .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3254         .ndo_set_vf_vlan      = cxgb4_mgmt_set_vf_vlan,
3255 };
3256 #endif
3257
3258 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3259                                    struct ethtool_drvinfo *info)
3260 {
3261         struct adapter *adapter = netdev2adap(dev);
3262
3263         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3264         strlcpy(info->version, cxgb4_driver_version,
3265                 sizeof(info->version));
3266         strlcpy(info->bus_info, pci_name(adapter->pdev),
3267                 sizeof(info->bus_info));
3268 }
3269
3270 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3271         .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3272 };
3273
3274 static void notify_fatal_err(struct work_struct *work)
3275 {
3276         struct adapter *adap;
3277
3278         adap = container_of(work, struct adapter, fatal_err_notify_task);
3279         notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3280 }
3281
3282 void t4_fatal_err(struct adapter *adap)
3283 {
3284         int port;
3285
3286         if (pci_channel_offline(adap->pdev))
3287                 return;
3288
3289         /* Disable the SGE since ULDs are going to free resources that
3290          * could be exposed to the adapter.  RDMA MWs for example...
3291          */
3292         t4_shutdown_adapter(adap);
3293         for_each_port(adap, port) {
3294                 struct net_device *dev = adap->port[port];
3295
3296                 /* If we get here in very early initialization the network
3297                  * devices may not have been set up yet.
3298                  */
3299                 if (!dev)
3300                         continue;
3301
3302                 netif_tx_stop_all_queues(dev);
3303                 netif_carrier_off(dev);
3304         }
3305         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3306         queue_work(adap->workq, &adap->fatal_err_notify_task);
3307 }
3308
3309 static void setup_memwin(struct adapter *adap)
3310 {
3311         u32 nic_win_base = t4_get_util_window(adap);
3312
3313         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3314 }
3315
3316 static void setup_memwin_rdma(struct adapter *adap)
3317 {
3318         if (adap->vres.ocq.size) {
3319                 u32 start;
3320                 unsigned int sz_kb;
3321
3322                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3323                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3324                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3325                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3326                 t4_write_reg(adap,
3327                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3328                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3329                 t4_write_reg(adap,
3330                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3331                              adap->vres.ocq.start);
3332                 t4_read_reg(adap,
3333                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3334         }
3335 }
3336
3337 /* HMA Definitions */
3338
3339 /* The maximum number of address that can be send in a single FW cmd */
3340 #define HMA_MAX_ADDR_IN_CMD     5
3341
3342 #define HMA_PAGE_SIZE           PAGE_SIZE
3343
3344 #define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3345
3346 #define HMA_PAGE_ORDER                                  \
3347         ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3348         ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3349
3350 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3351  * configuration(in units of MB).
3352  */
3353 #define HMA_MIN_TOTAL_SIZE      1
3354 #define HMA_MAX_TOTAL_SIZE                              \
3355         (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3356           HMA_MAX_NO_FW_ADDRESS) >> 20)
3357
3358 static void adap_free_hma_mem(struct adapter *adapter)
3359 {
3360         struct scatterlist *iter;
3361         struct page *page;
3362         int i;
3363
3364         if (!adapter->hma.sgt)
3365                 return;
3366
3367         if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3368                 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3369                              adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3370                 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3371         }
3372
3373         for_each_sg(adapter->hma.sgt->sgl, iter,
3374                     adapter->hma.sgt->orig_nents, i) {
3375                 page = sg_page(iter);
3376                 if (page)
3377                         __free_pages(page, HMA_PAGE_ORDER);
3378         }
3379
3380         kfree(adapter->hma.phy_addr);
3381         sg_free_table(adapter->hma.sgt);
3382         kfree(adapter->hma.sgt);
3383         adapter->hma.sgt = NULL;
3384 }
3385
3386 static int adap_config_hma(struct adapter *adapter)
3387 {
3388         struct scatterlist *sgl, *iter;
3389         struct sg_table *sgt;
3390         struct page *newpage;
3391         unsigned int i, j, k;
3392         u32 param, hma_size;
3393         unsigned int ncmds;
3394         size_t page_size;
3395         u32 page_order;
3396         int node, ret;
3397
3398         /* HMA is supported only for T6+ cards.
3399          * Avoid initializing HMA in kdump kernels.
3400          */
3401         if (is_kdump_kernel() ||
3402             CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3403                 return 0;
3404
3405         /* Get the HMA region size required by fw */
3406         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3407                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3408         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3409                               1, &param, &hma_size);
3410         /* An error means card has its own memory or HMA is not supported by
3411          * the firmware. Return without any errors.
3412          */
3413         if (ret || !hma_size)
3414                 return 0;
3415
3416         if (hma_size < HMA_MIN_TOTAL_SIZE ||
3417             hma_size > HMA_MAX_TOTAL_SIZE) {
3418                 dev_err(adapter->pdev_dev,
3419                         "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3420                         hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3421                 return -EINVAL;
3422         }
3423
3424         page_size = HMA_PAGE_SIZE;
3425         page_order = HMA_PAGE_ORDER;
3426         adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3427         if (unlikely(!adapter->hma.sgt)) {
3428                 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3429                 return -ENOMEM;
3430         }
3431         sgt = adapter->hma.sgt;
3432         /* FW returned value will be in MB's
3433          */
3434         sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3435         if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3436                 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3437                 kfree(adapter->hma.sgt);
3438                 adapter->hma.sgt = NULL;
3439                 return -ENOMEM;
3440         }
3441
3442         sgl = adapter->hma.sgt->sgl;
3443         node = dev_to_node(adapter->pdev_dev);
3444         for_each_sg(sgl, iter, sgt->orig_nents, i) {
3445                 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3446                                            __GFP_ZERO, page_order);
3447                 if (!newpage) {
3448                         dev_err(adapter->pdev_dev,
3449                                 "Not enough memory for HMA page allocation\n");
3450                         ret = -ENOMEM;
3451                         goto free_hma;
3452                 }
3453                 sg_set_page(iter, newpage, page_size << page_order, 0);
3454         }
3455
3456         sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3457                                 DMA_BIDIRECTIONAL);
3458         if (!sgt->nents) {
3459                 dev_err(adapter->pdev_dev,
3460                         "Not enough memory for HMA DMA mapping");
3461                 ret = -ENOMEM;
3462                 goto free_hma;
3463         }
3464         adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3465
3466         adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3467                                         GFP_KERNEL);
3468         if (unlikely(!adapter->hma.phy_addr))
3469                 goto free_hma;
3470
3471         for_each_sg(sgl, iter, sgt->nents, i) {
3472                 newpage = sg_page(iter);
3473                 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3474         }
3475
3476         ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3477         /* Pass on the addresses to firmware */
3478         for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3479                 struct fw_hma_cmd hma_cmd;
3480                 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3481                 u8 soc = 0, eoc = 0;
3482                 u8 hma_mode = 1; /* Presently we support only Page table mode */
3483
3484                 soc = (i == 0) ? 1 : 0;
3485                 eoc = (i == ncmds - 1) ? 1 : 0;
3486
3487                 /* For last cmd, set naddr corresponding to remaining
3488                  * addresses
3489                  */
3490                 if (i == ncmds - 1) {
3491                         naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3492                         naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3493                 }
3494                 memset(&hma_cmd, 0, sizeof(hma_cmd));
3495                 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3496                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3497                 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3498
3499                 hma_cmd.mode_to_pcie_params =
3500                         htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3501                               FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3502
3503                 /* HMA cmd size specified in MB's */
3504                 hma_cmd.naddr_size =
3505                         htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3506                               FW_HMA_CMD_NADDR_V(naddr));
3507
3508                 /* Total Page size specified in units of 4K */
3509                 hma_cmd.addr_size_pkd =
3510                         htonl(FW_HMA_CMD_ADDR_SIZE_V
3511                                 ((page_size << page_order) >> 12));
3512
3513                 /* Fill the 5 addresses */
3514                 for (j = 0; j < naddr; j++) {
3515                         hma_cmd.phy_address[j] =
3516                                 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3517                 }
3518                 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3519                                  sizeof(hma_cmd), &hma_cmd);
3520                 if (ret) {
3521                         dev_err(adapter->pdev_dev,
3522                                 "HMA FW command failed with err %d\n", ret);
3523                         goto free_hma;
3524                 }
3525         }
3526
3527         if (!ret)
3528                 dev_info(adapter->pdev_dev,
3529                          "Reserved %uMB host memory for HMA\n", hma_size);
3530         return ret;
3531
3532 free_hma:
3533         adap_free_hma_mem(adapter);
3534         return ret;
3535 }
3536
3537 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3538 {
3539         u32 v;
3540         int ret;
3541
3542         /* Now that we've successfully configured and initialized the adapter
3543          * can ask the Firmware what resources it has provisioned for us.
3544          */
3545         ret = t4_get_pfres(adap);
3546         if (ret) {
3547                 dev_err(adap->pdev_dev,
3548                         "Unable to retrieve resource provisioning information\n");
3549                 return ret;
3550         }
3551
3552         /* get device capabilities */
3553         memset(c, 0, sizeof(*c));
3554         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3555                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3556         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3557         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3558         if (ret < 0)
3559                 return ret;
3560
3561         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3562                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3563         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3564         if (ret < 0)
3565                 return ret;
3566
3567         ret = t4_config_glbl_rss(adap, adap->pf,
3568                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3569                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3570                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3571         if (ret < 0)
3572                 return ret;
3573
3574         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3575                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3576                           FW_CMD_CAP_PF);
3577         if (ret < 0)
3578                 return ret;
3579
3580         t4_sge_init(adap);
3581
3582         /* tweak some settings */
3583         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3584         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3585         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3586         v = t4_read_reg(adap, TP_PIO_DATA_A);
3587         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3588
3589         /* first 4 Tx modulation queues point to consecutive Tx channels */
3590         adap->params.tp.tx_modq_map = 0xE4;
3591         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3592                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3593
3594         /* associate each Tx modulation queue with consecutive Tx channels */
3595         v = 0x84218421;
3596         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3597                           &v, 1, TP_TX_SCHED_HDR_A);
3598         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3599                           &v, 1, TP_TX_SCHED_FIFO_A);
3600         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3601                           &v, 1, TP_TX_SCHED_PCMD_A);
3602
3603 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3604         if (is_offload(adap)) {
3605                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3606                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3607                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3608                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3609                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3610                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3611                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3612                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3613                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3614                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3615         }
3616
3617         /* get basic stuff going */
3618         return t4_early_init(adap, adap->pf);
3619 }
3620
3621 /*
3622  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3623  */
3624 #define MAX_ATIDS 8192U
3625
3626 /*
3627  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3628  *
3629  * If the firmware we're dealing with has Configuration File support, then
3630  * we use that to perform all configuration
3631  */
3632
3633 /*
3634  * Tweak configuration based on module parameters, etc.  Most of these have
3635  * defaults assigned to them by Firmware Configuration Files (if we're using
3636  * them) but need to be explicitly set if we're using hard-coded
3637  * initialization.  But even in the case of using Firmware Configuration
3638  * Files, we'd like to expose the ability to change these via module
3639  * parameters so these are essentially common tweaks/settings for
3640  * Configuration Files and hard-coded initialization ...
3641  */
3642 static int adap_init0_tweaks(struct adapter *adapter)
3643 {
3644         /*
3645          * Fix up various Host-Dependent Parameters like Page Size, Cache
3646          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3647          * 64B Cache Line Size ...
3648          */
3649         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3650
3651         /*
3652          * Process module parameters which affect early initialization.
3653          */
3654         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3655                 dev_err(&adapter->pdev->dev,
3656                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3657                         rx_dma_offset);
3658                 rx_dma_offset = 2;
3659         }
3660         t4_set_reg_field(adapter, SGE_CONTROL_A,
3661                          PKTSHIFT_V(PKTSHIFT_M),
3662                          PKTSHIFT_V(rx_dma_offset));
3663
3664         /*
3665          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3666          * adds the pseudo header itself.
3667          */
3668         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3669                                CSUM_HAS_PSEUDO_HDR_F, 0);
3670
3671         return 0;
3672 }
3673
3674 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3675  * unto themselves and they contain their own firmware to perform their
3676  * tasks ...
3677  */
3678 static int phy_aq1202_version(const u8 *phy_fw_data,
3679                               size_t phy_fw_size)
3680 {
3681         int offset;
3682
3683         /* At offset 0x8 you're looking for the primary image's
3684          * starting offset which is 3 Bytes wide
3685          *
3686          * At offset 0xa of the primary image, you look for the offset
3687          * of the DRAM segment which is 3 Bytes wide.
3688          *
3689          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3690          * wide
3691          */
3692         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3693         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3694         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3695
3696         offset = le24(phy_fw_data + 0x8) << 12;
3697         offset = le24(phy_fw_data + offset + 0xa);
3698         return be16(phy_fw_data + offset + 0x27e);
3699
3700         #undef be16
3701         #undef le16
3702         #undef le24
3703 }
3704
3705 static struct info_10gbt_phy_fw {
3706         unsigned int phy_fw_id;         /* PCI Device ID */
3707         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3708         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3709         int phy_flash;                  /* Has FLASH for PHY Firmware */
3710 } phy_info_array[] = {
3711         {
3712                 PHY_AQ1202_DEVICEID,
3713                 PHY_AQ1202_FIRMWARE,
3714                 phy_aq1202_version,
3715                 1,
3716         },
3717         {
3718                 PHY_BCM84834_DEVICEID,
3719                 PHY_BCM84834_FIRMWARE,
3720                 NULL,
3721                 0,
3722         },
3723         { 0, NULL, NULL },
3724 };
3725
3726 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3727 {
3728         int i;
3729
3730         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3731                 if (phy_info_array[i].phy_fw_id == devid)
3732                         return &phy_info_array[i];
3733         }
3734         return NULL;
3735 }
3736
3737 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3738  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3739  * we return a negative error number.  If we transfer new firmware we return 1
3740  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3741  */
3742 static int adap_init0_phy(struct adapter *adap)
3743 {
3744         const struct firmware *phyf;
3745         int ret;
3746         struct info_10gbt_phy_fw *phy_info;
3747
3748         /* Use the device ID to determine which PHY file to flash.
3749          */
3750         phy_info = find_phy_info(adap->pdev->device);
3751         if (!phy_info) {
3752                 dev_warn(adap->pdev_dev,
3753                          "No PHY Firmware file found for this PHY\n");
3754                 return -EOPNOTSUPP;
3755         }
3756
3757         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3758          * use that. The adapter firmware provides us with a memory buffer
3759          * where we can load a PHY firmware file from the host if we want to
3760          * override the PHY firmware File in flash.
3761          */
3762         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3763                                       adap->pdev_dev);
3764         if (ret < 0) {
3765                 /* For adapters without FLASH attached to PHY for their
3766                  * firmware, it's obviously a fatal error if we can't get the
3767                  * firmware to the adapter.  For adapters with PHY firmware
3768                  * FLASH storage, it's worth a warning if we can't find the
3769                  * PHY Firmware but we'll neuter the error ...
3770                  */
3771                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3772                         "/lib/firmware/%s, error %d\n",
3773                         phy_info->phy_fw_file, -ret);
3774                 if (phy_info->phy_flash) {
3775                         int cur_phy_fw_ver = 0;
3776
3777                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3778                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3779                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3780                         ret = 0;
3781                 }
3782
3783                 return ret;
3784         }
3785
3786         /* Load PHY Firmware onto adapter.
3787          */
3788         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3789                              phy_info->phy_fw_version,
3790                              (u8 *)phyf->data, phyf->size);
3791         if (ret < 0)
3792                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3793                         -ret);
3794         else if (ret > 0) {
3795                 int new_phy_fw_ver = 0;
3796
3797                 if (phy_info->phy_fw_version)
3798                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3799                                                                   phyf->size);
3800                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3801                          "Firmware /lib/firmware/%s, version %#x\n",
3802                          phy_info->phy_fw_file, new_phy_fw_ver);
3803         }
3804
3805         release_firmware(phyf);
3806
3807         return ret;
3808 }
3809
3810 /*
3811  * Attempt to initialize the adapter via a Firmware Configuration File.
3812  */
3813 static int adap_init0_config(struct adapter *adapter, int reset)
3814 {
3815         struct fw_caps_config_cmd caps_cmd;
3816         const struct firmware *cf;
3817         unsigned long mtype = 0, maddr = 0;
3818         u32 finiver, finicsum, cfcsum;
3819         int ret;
3820         int config_issued = 0;
3821         char *fw_config_file, fw_config_file_path[256];
3822         char *config_name = NULL;
3823
3824         /*
3825          * Reset device if necessary.
3826          */
3827         if (reset) {
3828                 ret = t4_fw_reset(adapter, adapter->mbox,
3829                                   PIORSTMODE_F | PIORST_F);
3830                 if (ret < 0)
3831                         goto bye;
3832         }
3833
3834         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3835          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3836          * to be performed after any global adapter RESET above since some
3837          * PHYs only have local RAM copies of the PHY firmware.
3838          */
3839         if (is_10gbt_device(adapter->pdev->device)) {
3840                 ret = adap_init0_phy(adapter);
3841                 if (ret < 0)
3842                         goto bye;
3843         }
3844         /*
3845          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3846          * then use that.  Otherwise, use the configuration file stored
3847          * in the adapter flash ...
3848          */
3849         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3850         case CHELSIO_T4:
3851                 fw_config_file = FW4_CFNAME;
3852                 break;
3853         case CHELSIO_T5:
3854                 fw_config_file = FW5_CFNAME;
3855                 break;
3856         case CHELSIO_T6:
3857                 fw_config_file = FW6_CFNAME;
3858                 break;
3859         default:
3860                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3861                        adapter->pdev->device);
3862                 ret = -EINVAL;
3863                 goto bye;
3864         }
3865
3866         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3867         if (ret < 0) {
3868                 config_name = "On FLASH";
3869                 mtype = FW_MEMTYPE_CF_FLASH;
3870                 maddr = t4_flash_cfg_addr(adapter);
3871         } else {
3872                 u32 params[7], val[7];
3873
3874                 sprintf(fw_config_file_path,
3875                         "/lib/firmware/%s", fw_config_file);
3876                 config_name = fw_config_file_path;
3877
3878                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3879                         ret = -ENOMEM;
3880                 else {
3881                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3882                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3883                         ret = t4_query_params(adapter, adapter->mbox,
3884                                               adapter->pf, 0, 1, params, val);
3885                         if (ret == 0) {
3886                                 /*
3887                                  * For t4_memory_rw() below addresses and
3888                                  * sizes have to be in terms of multiples of 4
3889                                  * bytes.  So, if the Configuration File isn't
3890                                  * a multiple of 4 bytes in length we'll have
3891                                  * to write that out separately since we can't
3892                                  * guarantee that the bytes following the
3893                                  * residual byte in the buffer returned by
3894                                  * request_firmware() are zeroed out ...
3895                                  */
3896                                 size_t resid = cf->size & 0x3;
3897                                 size_t size = cf->size & ~0x3;
3898                                 __be32 *data = (__be32 *)cf->data;
3899
3900                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3901                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3902
3903                                 spin_lock(&adapter->win0_lock);
3904                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3905                                                    size, data, T4_MEMORY_WRITE);
3906                                 if (ret == 0 && resid != 0) {
3907                                         union {
3908                                                 __be32 word;
3909                                                 char buf[4];
3910                                         } last;
3911                                         int i;
3912
3913                                         last.word = data[size >> 2];
3914                                         for (i = resid; i < 4; i++)
3915                                                 last.buf[i] = 0;
3916                                         ret = t4_memory_rw(adapter, 0, mtype,
3917                                                            maddr + size,
3918                                                            4, &last.word,
3919                                                            T4_MEMORY_WRITE);
3920                                 }
3921                                 spin_unlock(&adapter->win0_lock);
3922                         }
3923                 }
3924
3925                 release_firmware(cf);
3926                 if (ret)
3927                         goto bye;
3928         }
3929
3930         /*
3931          * Issue a Capability Configuration command to the firmware to get it
3932          * to parse the Configuration File.  We don't use t4_fw_config_file()
3933          * because we want the ability to modify various features after we've
3934          * processed the configuration file ...
3935          */
3936         memset(&caps_cmd, 0, sizeof(caps_cmd));
3937         caps_cmd.op_to_write =
3938                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3939                       FW_CMD_REQUEST_F |
3940                       FW_CMD_READ_F);
3941         caps_cmd.cfvalid_to_len16 =
3942                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3943                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3944                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3945                       FW_LEN16(caps_cmd));
3946         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3947                          &caps_cmd);
3948
3949         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3950          * Configuration File in FLASH), our last gasp effort is to use the
3951          * Firmware Configuration File which is embedded in the firmware.  A
3952          * very few early versions of the firmware didn't have one embedded
3953          * but we can ignore those.
3954          */
3955         if (ret == -ENOENT) {
3956                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3957                 caps_cmd.op_to_write =
3958                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3959                                         FW_CMD_REQUEST_F |
3960                                         FW_CMD_READ_F);
3961                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3962                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3963                                 sizeof(caps_cmd), &caps_cmd);
3964                 config_name = "Firmware Default";
3965         }
3966
3967         config_issued = 1;
3968         if (ret < 0)
3969                 goto bye;
3970
3971         finiver = ntohl(caps_cmd.finiver);
3972         finicsum = ntohl(caps_cmd.finicsum);
3973         cfcsum = ntohl(caps_cmd.cfcsum);
3974         if (finicsum != cfcsum)
3975                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3976                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3977                          finicsum, cfcsum);
3978
3979         /*
3980          * And now tell the firmware to use the configuration we just loaded.
3981          */
3982         caps_cmd.op_to_write =
3983                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3984                       FW_CMD_REQUEST_F |
3985                       FW_CMD_WRITE_F);
3986         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3987         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3988                          NULL);
3989         if (ret < 0)
3990                 goto bye;
3991
3992         /*
3993          * Tweak configuration based on system architecture, module
3994          * parameters, etc.
3995          */
3996         ret = adap_init0_tweaks(adapter);
3997         if (ret < 0)
3998                 goto bye;
3999
4000         /* We will proceed even if HMA init fails. */
4001         ret = adap_config_hma(adapter);
4002         if (ret)
4003                 dev_err(adapter->pdev_dev,
4004                         "HMA configuration failed with error %d\n", ret);
4005
4006         /*
4007          * And finally tell the firmware to initialize itself using the
4008          * parameters from the Configuration File.
4009          */
4010         ret = t4_fw_initialize(adapter, adapter->mbox);
4011         if (ret < 0)
4012                 goto bye;
4013
4014         /* Emit Firmware Configuration File information and return
4015          * successfully.
4016          */
4017         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4018                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4019                  config_name, finiver, cfcsum);
4020         return 0;
4021
4022         /*
4023          * Something bad happened.  Return the error ...  (If the "error"
4024          * is that there's no Configuration File on the adapter we don't
4025          * want to issue a warning since this is fairly common.)
4026          */
4027 bye:
4028         if (config_issued && ret != -ENOENT)
4029                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4030                          config_name, -ret);
4031         return ret;
4032 }
4033
4034 static struct fw_info fw_info_array[] = {
4035         {
4036                 .chip = CHELSIO_T4,
4037                 .fs_name = FW4_CFNAME,
4038                 .fw_mod_name = FW4_FNAME,
4039                 .fw_hdr = {
4040                         .chip = FW_HDR_CHIP_T4,
4041                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4042                         .intfver_nic = FW_INTFVER(T4, NIC),
4043                         .intfver_vnic = FW_INTFVER(T4, VNIC),
4044                         .intfver_ri = FW_INTFVER(T4, RI),
4045                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4046                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
4047                 },
4048         }, {
4049                 .chip = CHELSIO_T5,
4050                 .fs_name = FW5_CFNAME,
4051                 .fw_mod_name = FW5_FNAME,
4052                 .fw_hdr = {
4053                         .chip = FW_HDR_CHIP_T5,
4054                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4055                         .intfver_nic = FW_INTFVER(T5, NIC),
4056                         .intfver_vnic = FW_INTFVER(T5, VNIC),
4057                         .intfver_ri = FW_INTFVER(T5, RI),
4058                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4059                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
4060                 },
4061         }, {
4062                 .chip = CHELSIO_T6,
4063                 .fs_name = FW6_CFNAME,
4064                 .fw_mod_name = FW6_FNAME,
4065                 .fw_hdr = {
4066                         .chip = FW_HDR_CHIP_T6,
4067                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4068                         .intfver_nic = FW_INTFVER(T6, NIC),
4069                         .intfver_vnic = FW_INTFVER(T6, VNIC),
4070                         .intfver_ofld = FW_INTFVER(T6, OFLD),
4071                         .intfver_ri = FW_INTFVER(T6, RI),
4072                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4073                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4074                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4075                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
4076                 },
4077         }
4078
4079 };
4080
4081 static struct fw_info *find_fw_info(int chip)
4082 {
4083         int i;
4084
4085         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4086                 if (fw_info_array[i].chip == chip)
4087                         return &fw_info_array[i];
4088         }
4089         return NULL;
4090 }
4091
4092 /*
4093  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4094  */
4095 static int adap_init0(struct adapter *adap)
4096 {
4097         int ret;
4098         u32 v, port_vec;
4099         enum dev_state state;
4100         u32 params[7], val[7];
4101         struct fw_caps_config_cmd caps_cmd;
4102         int reset = 1;
4103
4104         /* Grab Firmware Device Log parameters as early as possible so we have
4105          * access to it for debugging, etc.
4106          */
4107         ret = t4_init_devlog_params(adap);
4108         if (ret < 0)
4109                 return ret;
4110
4111         /* Contact FW, advertising Master capability */
4112         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4113                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4114         if (ret < 0) {
4115                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4116                         ret);
4117                 return ret;
4118         }
4119         if (ret == adap->mbox)
4120                 adap->flags |= MASTER_PF;
4121
4122         /*
4123          * If we're the Master PF Driver and the device is uninitialized,
4124          * then let's consider upgrading the firmware ...  (We always want
4125          * to check the firmware version number in order to A. get it for
4126          * later reporting and B. to warn if the currently loaded firmware
4127          * is excessively mismatched relative to the driver.)
4128          */
4129
4130         t4_get_version_info(adap);
4131         ret = t4_check_fw_version(adap);
4132         /* If firmware is too old (not supported by driver) force an update. */
4133         if (ret)
4134                 state = DEV_STATE_UNINIT;
4135         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4136                 struct fw_info *fw_info;
4137                 struct fw_hdr *card_fw;
4138                 const struct firmware *fw;
4139                 const u8 *fw_data = NULL;
4140                 unsigned int fw_size = 0;
4141
4142                 /* This is the firmware whose headers the driver was compiled
4143                  * against
4144                  */
4145                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4146                 if (fw_info == NULL) {
4147                         dev_err(adap->pdev_dev,
4148                                 "unable to get firmware info for chip %d.\n",
4149                                 CHELSIO_CHIP_VERSION(adap->params.chip));
4150                         return -EINVAL;
4151                 }
4152
4153                 /* allocate memory to read the header of the firmware on the
4154                  * card
4155                  */
4156                 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4157                 if (!card_fw) {
4158                         ret = -ENOMEM;
4159                         goto bye;
4160                 }
4161
4162                 /* Get FW from from /lib/firmware/ */
4163                 ret = request_firmware(&fw, fw_info->fw_mod_name,
4164                                        adap->pdev_dev);
4165                 if (ret < 0) {
4166                         dev_err(adap->pdev_dev,
4167                                 "unable to load firmware image %s, error %d\n",
4168                                 fw_info->fw_mod_name, ret);
4169                 } else {
4170                         fw_data = fw->data;
4171                         fw_size = fw->size;
4172                 }
4173
4174                 /* upgrade FW logic */
4175                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4176                                  state, &reset);
4177
4178                 /* Cleaning up */
4179                 release_firmware(fw);
4180                 kvfree(card_fw);
4181
4182                 if (ret < 0)
4183                         goto bye;
4184         }
4185
4186         /* If the firmware is initialized already, emit a simply note to that
4187          * effect. Otherwise, it's time to try initializing the adapter.
4188          */
4189         if (state == DEV_STATE_INIT) {
4190                 ret = adap_config_hma(adap);
4191                 if (ret)
4192                         dev_err(adap->pdev_dev,
4193                                 "HMA configuration failed with error %d\n",
4194                                 ret);
4195                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4196                          "Adapter already initialized\n",
4197                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4198         } else {
4199                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4200                          "Initializing adapter\n");
4201
4202                 /* Find out whether we're dealing with a version of the
4203                  * firmware which has configuration file support.
4204                  */
4205                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4206                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4207                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4208                                       params, val);
4209
4210                 /* If the firmware doesn't support Configuration Files,
4211                  * return an error.
4212                  */
4213                 if (ret < 0) {
4214                         dev_err(adap->pdev_dev, "firmware doesn't support "
4215                                 "Firmware Configuration Files\n");
4216                         goto bye;
4217                 }
4218
4219                 /* The firmware provides us with a memory buffer where we can
4220                  * load a Configuration File from the host if we want to
4221                  * override the Configuration File in flash.
4222                  */
4223                 ret = adap_init0_config(adap, reset);
4224                 if (ret == -ENOENT) {
4225                         dev_err(adap->pdev_dev, "no Configuration File "
4226                                 "present on adapter.\n");
4227                         goto bye;
4228                 }
4229                 if (ret < 0) {
4230                         dev_err(adap->pdev_dev, "could not initialize "
4231                                 "adapter, error %d\n", -ret);
4232                         goto bye;
4233                 }
4234         }
4235
4236         /* Now that we've successfully configured and initialized the adapter
4237          * (or found it already initialized), we can ask the Firmware what
4238          * resources it has provisioned for us.
4239          */
4240         ret = t4_get_pfres(adap);
4241         if (ret) {
4242                 dev_err(adap->pdev_dev,
4243                         "Unable to retrieve resource provisioning information\n");
4244                 goto bye;
4245         }
4246
4247         /* Grab VPD parameters.  This should be done after we establish a
4248          * connection to the firmware since some of the VPD parameters
4249          * (notably the Core Clock frequency) are retrieved via requests to
4250          * the firmware.  On the other hand, we need these fairly early on
4251          * so we do this right after getting ahold of the firmware.
4252          *
4253          * We need to do this after initializing the adapter because someone
4254          * could have FLASHed a new VPD which won't be read by the firmware
4255          * until we do the RESET ...
4256          */
4257         ret = t4_get_vpd_params(adap, &adap->params.vpd);
4258         if (ret < 0)
4259                 goto bye;
4260
4261         /* Find out what ports are available to us.  Note that we need to do
4262          * this before calling adap_init0_no_config() since it needs nports
4263          * and portvec ...
4264          */
4265         v =
4266             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4267             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4268         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4269         if (ret < 0)
4270                 goto bye;
4271
4272         adap->params.nports = hweight32(port_vec);
4273         adap->params.portvec = port_vec;
4274
4275         /* Give the SGE code a chance to pull in anything that it needs ...
4276          * Note that this must be called after we retrieve our VPD parameters
4277          * in order to know how to convert core ticks to seconds, etc.
4278          */
4279         ret = t4_sge_init(adap);
4280         if (ret < 0)
4281                 goto bye;
4282
4283         if (is_bypass_device(adap->pdev->device))
4284                 adap->params.bypass = 1;
4285
4286         /*
4287          * Grab some of our basic fundamental operating parameters.
4288          */
4289 #define FW_PARAM_DEV(param) \
4290         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4291         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4292
4293 #define FW_PARAM_PFVF(param) \
4294         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4295         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4296         FW_PARAMS_PARAM_Y_V(0) | \
4297         FW_PARAMS_PARAM_Z_V(0)
4298
4299         params[0] = FW_PARAM_PFVF(EQ_START);
4300         params[1] = FW_PARAM_PFVF(L2T_START);
4301         params[2] = FW_PARAM_PFVF(L2T_END);
4302         params[3] = FW_PARAM_PFVF(FILTER_START);
4303         params[4] = FW_PARAM_PFVF(FILTER_END);
4304         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4305         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4306         if (ret < 0)
4307                 goto bye;
4308         adap->sge.egr_start = val[0];
4309         adap->l2t_start = val[1];
4310         adap->l2t_end = val[2];
4311         adap->tids.ftid_base = val[3];
4312         adap->tids.nftids = val[4] - val[3] + 1;
4313         adap->sge.ingr_start = val[5];
4314
4315         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4316                 /* Read the raw mps entries. In T6, the last 2 tcam entries
4317                  * are reserved for raw mac addresses (rawf = 2, one per port).
4318                  */
4319                 params[0] = FW_PARAM_PFVF(RAWF_START);
4320                 params[1] = FW_PARAM_PFVF(RAWF_END);
4321                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4322                                       params, val);
4323                 if (ret == 0) {
4324                         adap->rawf_start = val[0];
4325                         adap->rawf_cnt = val[1] - val[0] + 1;
4326                 }
4327         }
4328
4329         /* qids (ingress/egress) returned from firmware can be anywhere
4330          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4331          * Hence driver needs to allocate memory for this range to
4332          * store the queue info. Get the highest IQFLINT/EQ index returned
4333          * in FW_EQ_*_CMD.alloc command.
4334          */
4335         params[0] = FW_PARAM_PFVF(EQ_END);
4336         params[1] = FW_PARAM_PFVF(IQFLINT_END);
4337         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4338         if (ret < 0)
4339                 goto bye;
4340         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4341         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4342
4343         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4344                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
4345         if (!adap->sge.egr_map) {
4346                 ret = -ENOMEM;
4347                 goto bye;
4348         }
4349
4350         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4351                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4352         if (!adap->sge.ingr_map) {
4353                 ret = -ENOMEM;
4354                 goto bye;
4355         }
4356
4357         /* Allocate the memory for the vaious egress queue bitmaps
4358          * ie starving_fl, txq_maperr and blocked_fl.
4359          */
4360         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4361                                         sizeof(long), GFP_KERNEL);
4362         if (!adap->sge.starving_fl) {
4363                 ret = -ENOMEM;
4364                 goto bye;
4365         }
4366
4367         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4368                                        sizeof(long), GFP_KERNEL);
4369         if (!adap->sge.txq_maperr) {
4370                 ret = -ENOMEM;
4371                 goto bye;
4372         }
4373
4374 #ifdef CONFIG_DEBUG_FS
4375         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4376                                        sizeof(long), GFP_KERNEL);
4377         if (!adap->sge.blocked_fl) {
4378                 ret = -ENOMEM;
4379                 goto bye;
4380         }
4381 #endif
4382
4383         params[0] = FW_PARAM_PFVF(CLIP_START);
4384         params[1] = FW_PARAM_PFVF(CLIP_END);
4385         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4386         if (ret < 0)
4387                 goto bye;
4388         adap->clipt_start = val[0];
4389         adap->clipt_end = val[1];
4390
4391         /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4392          * Classes supported by the hardware/firmware so we hard code it here
4393          * for now.
4394          */
4395         adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4396
4397         /* query params related to active filter region */
4398         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4399         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4400         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4401         /* If Active filter size is set we enable establishing
4402          * offload connection through firmware work request
4403          */
4404         if ((val[0] != val[1]) && (ret >= 0)) {
4405                 adap->flags |= FW_OFLD_CONN;
4406                 adap->tids.aftid_base = val[0];
4407                 adap->tids.aftid_end = val[1];
4408         }
4409
4410         /* If we're running on newer firmware, let it know that we're
4411          * prepared to deal with encapsulated CPL messages.  Older
4412          * firmware won't understand this and we'll just get
4413          * unencapsulated messages ...
4414          */
4415         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4416         val[0] = 1;
4417         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4418
4419         /*
4420          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4421          * capability.  Earlier versions of the firmware didn't have the
4422          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4423          * permission to use ULPTX MEMWRITE DSGL.
4424          */
4425         if (is_t4(adap->params.chip)) {
4426                 adap->params.ulptx_memwrite_dsgl = false;
4427         } else {
4428                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4429                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4430                                       1, params, val);
4431                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4432         }
4433
4434         /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4435         params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4436         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4437                               1, params, val);
4438         adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4439
4440         /* See if FW supports FW_FILTER2 work request */
4441         if (is_t4(adap->params.chip)) {
4442                 adap->params.filter2_wr_support = 0;
4443         } else {
4444                 params[0] = FW_PARAM_DEV(FILTER2_WR);
4445                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4446                                       1, params, val);
4447                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4448         }
4449
4450         /*
4451          * Get device capabilities so we can determine what resources we need
4452          * to manage.
4453          */
4454         memset(&caps_cmd, 0, sizeof(caps_cmd));
4455         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4456                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
4457         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4458         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4459                          &caps_cmd);
4460         if (ret < 0)
4461                 goto bye;
4462
4463         if (caps_cmd.ofldcaps ||
4464             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4465                 /* query offload-related parameters */
4466                 params[0] = FW_PARAM_DEV(NTID);
4467                 params[1] = FW_PARAM_PFVF(SERVER_START);
4468                 params[2] = FW_PARAM_PFVF(SERVER_END);
4469                 params[3] = FW_PARAM_PFVF(TDDP_START);
4470                 params[4] = FW_PARAM_PFVF(TDDP_END);
4471                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4472                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4473                                       params, val);
4474                 if (ret < 0)
4475                         goto bye;
4476                 adap->tids.ntids = val[0];
4477                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4478                 adap->tids.stid_base = val[1];
4479                 adap->tids.nstids = val[2] - val[1] + 1;
4480                 /*
4481                  * Setup server filter region. Divide the available filter
4482                  * region into two parts. Regular filters get 1/3rd and server
4483                  * filters get 2/3rd part. This is only enabled if workarond
4484                  * path is enabled.
4485                  * 1. For regular filters.
4486                  * 2. Server filter: This are special filters which are used
4487                  * to redirect SYN packets to offload queue.
4488                  */
4489                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4490                         adap->tids.sftid_base = adap->tids.ftid_base +
4491                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4492                         adap->tids.nsftids = adap->tids.nftids -
4493                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4494                         adap->tids.nftids = adap->tids.sftid_base -
4495                                                 adap->tids.ftid_base;
4496                 }
4497                 adap->vres.ddp.start = val[3];
4498                 adap->vres.ddp.size = val[4] - val[3] + 1;
4499                 adap->params.ofldq_wr_cred = val[5];
4500
4501                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4502                         ret = init_hash_filter(adap);
4503                         if (ret < 0)
4504                                 goto bye;
4505                 } else {
4506                         adap->params.offload = 1;
4507                         adap->num_ofld_uld += 1;
4508                 }
4509         }
4510         if (caps_cmd.rdmacaps) {
4511                 params[0] = FW_PARAM_PFVF(STAG_START);
4512                 params[1] = FW_PARAM_PFVF(STAG_END);
4513                 params[2] = FW_PARAM_PFVF(RQ_START);
4514                 params[3] = FW_PARAM_PFVF(RQ_END);
4515                 params[4] = FW_PARAM_PFVF(PBL_START);
4516                 params[5] = FW_PARAM_PFVF(PBL_END);
4517                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4518                                       params, val);
4519                 if (ret < 0)
4520                         goto bye;
4521                 adap->vres.stag.start = val[0];
4522                 adap->vres.stag.size = val[1] - val[0] + 1;
4523                 adap->vres.rq.start = val[2];
4524                 adap->vres.rq.size = val[3] - val[2] + 1;
4525                 adap->vres.pbl.start = val[4];
4526                 adap->vres.pbl.size = val[5] - val[4] + 1;
4527
4528                 params[0] = FW_PARAM_PFVF(SRQ_START);
4529                 params[1] = FW_PARAM_PFVF(SRQ_END);
4530                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4531                                       params, val);
4532                 if (!ret) {
4533                         adap->vres.srq.start = val[0];
4534                         adap->vres.srq.size = val[1] - val[0] + 1;
4535                 }
4536                 if (adap->vres.srq.size) {
4537                         adap->srq = t4_init_srq(adap->vres.srq.size);
4538                         if (!adap->srq)
4539                                 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4540                 }
4541
4542                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4543                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4544                 params[2] = FW_PARAM_PFVF(CQ_START);
4545                 params[3] = FW_PARAM_PFVF(CQ_END);
4546                 params[4] = FW_PARAM_PFVF(OCQ_START);
4547                 params[5] = FW_PARAM_PFVF(OCQ_END);
4548                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4549                                       val);
4550                 if (ret < 0)
4551                         goto bye;
4552                 adap->vres.qp.start = val[0];
4553                 adap->vres.qp.size = val[1] - val[0] + 1;
4554                 adap->vres.cq.start = val[2];
4555                 adap->vres.cq.size = val[3] - val[2] + 1;
4556                 adap->vres.ocq.start = val[4];
4557                 adap->vres.ocq.size = val[5] - val[4] + 1;
4558
4559                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4560                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4561                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4562                                       val);
4563                 if (ret < 0) {
4564                         adap->params.max_ordird_qp = 8;
4565                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4566                         ret = 0;
4567                 } else {
4568                         adap->params.max_ordird_qp = val[0];
4569                         adap->params.max_ird_adapter = val[1];
4570                 }
4571                 dev_info(adap->pdev_dev,
4572                          "max_ordird_qp %d max_ird_adapter %d\n",
4573                          adap->params.max_ordird_qp,
4574                          adap->params.max_ird_adapter);
4575
4576                 /* Enable write_with_immediate if FW supports it */
4577                 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4578                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4579                                       val);
4580                 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4581
4582                 /* Enable write_cmpl if FW supports it */
4583                 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4584                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4585                                       val);
4586                 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4587                 adap->num_ofld_uld += 2;
4588         }
4589         if (caps_cmd.iscsicaps) {
4590                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4591                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4592                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4593                                       params, val);
4594                 if (ret < 0)
4595                         goto bye;
4596                 adap->vres.iscsi.start = val[0];
4597                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4598                 /* LIO target and cxgb4i initiaitor */
4599                 adap->num_ofld_uld += 2;
4600         }
4601         if (caps_cmd.cryptocaps) {
4602                 if (ntohs(caps_cmd.cryptocaps) &
4603                     FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4604                         params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4605                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4606                                               2, params, val);
4607                         if (ret < 0) {
4608                                 if (ret != -EINVAL)
4609                                         goto bye;
4610                         } else {
4611                                 adap->vres.ncrypto_fc = val[0];
4612                         }
4613                         adap->num_ofld_uld += 1;
4614                 }
4615                 if (ntohs(caps_cmd.cryptocaps) &
4616                     FW_CAPS_CONFIG_TLS_INLINE) {
4617                         params[0] = FW_PARAM_PFVF(TLS_START);
4618                         params[1] = FW_PARAM_PFVF(TLS_END);
4619                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4620                                               2, params, val);
4621                         if (ret < 0)
4622                                 goto bye;
4623                         adap->vres.key.start = val[0];
4624                         adap->vres.key.size = val[1] - val[0] + 1;
4625                         adap->num_uld += 1;
4626                 }
4627                 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4628         }
4629 #undef FW_PARAM_PFVF
4630 #undef FW_PARAM_DEV
4631
4632         /* The MTU/MSS Table is initialized by now, so load their values.  If
4633          * we're initializing the adapter, then we'll make any modifications
4634          * we want to the MTU/MSS Table and also initialize the congestion
4635          * parameters.
4636          */
4637         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4638         if (state != DEV_STATE_INIT) {
4639                 int i;
4640
4641                 /* The default MTU Table contains values 1492 and 1500.
4642                  * However, for TCP, it's better to have two values which are
4643                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4644                  * This allows us to have a TCP Data Payload which is a
4645                  * multiple of 8 regardless of what combination of TCP Options
4646                  * are in use (always a multiple of 4 bytes) which is
4647                  * important for performance reasons.  For instance, if no
4648                  * options are in use, then we have a 20-byte IP header and a
4649                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4650                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4651                  * which is not a multiple of 8.  So using an MSS of 1488 in
4652                  * this case results in a TCP Data Payload of 1448 bytes which
4653                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4654                  * Stamps have been negotiated, then an MTU of 1500 bytes
4655                  * results in a TCP Data Payload of 1448 bytes which, as
4656                  * above, is a multiple of 8 bytes ...
4657                  */
4658                 for (i = 0; i < NMTUS; i++)
4659                         if (adap->params.mtus[i] == 1492) {
4660                                 adap->params.mtus[i] = 1488;
4661                                 break;
4662                         }
4663
4664                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4665                              adap->params.b_wnd);
4666         }
4667         t4_init_sge_params(adap);
4668         adap->flags |= FW_OK;
4669         t4_init_tp_params(adap, true);
4670         return 0;
4671
4672         /*
4673          * Something bad happened.  If a command timed out or failed with EIO
4674          * FW does not operate within its spec or something catastrophic
4675          * happened to HW/FW, stop issuing commands.
4676          */
4677 bye:
4678         adap_free_hma_mem(adap);
4679         kfree(adap->sge.egr_map);
4680         kfree(adap->sge.ingr_map);
4681         kfree(adap->sge.starving_fl);
4682         kfree(adap->sge.txq_maperr);
4683 #ifdef CONFIG_DEBUG_FS
4684         kfree(adap->sge.blocked_fl);
4685 #endif
4686         if (ret != -ETIMEDOUT && ret != -EIO)
4687                 t4_fw_bye(adap, adap->mbox);
4688         return ret;
4689 }
4690
4691 /* EEH callbacks */
4692
4693 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4694                                          pci_channel_state_t state)
4695 {
4696         int i;
4697         struct adapter *adap = pci_get_drvdata(pdev);
4698
4699         if (!adap)
4700                 goto out;
4701
4702         rtnl_lock();
4703         adap->flags &= ~FW_OK;
4704         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4705         spin_lock(&adap->stats_lock);
4706         for_each_port(adap, i) {
4707                 struct net_device *dev = adap->port[i];
4708                 if (dev) {
4709                         netif_device_detach(dev);
4710                         netif_carrier_off(dev);
4711                 }
4712         }
4713         spin_unlock(&adap->stats_lock);
4714         disable_interrupts(adap);
4715         if (adap->flags & FULL_INIT_DONE)
4716                 cxgb_down(adap);
4717         rtnl_unlock();
4718         if ((adap->flags & DEV_ENABLED)) {
4719                 pci_disable_device(pdev);
4720                 adap->flags &= ~DEV_ENABLED;
4721         }
4722 out:    return state == pci_channel_io_perm_failure ?
4723                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4724 }
4725
4726 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4727 {
4728         int i, ret;
4729         struct fw_caps_config_cmd c;
4730         struct adapter *adap = pci_get_drvdata(pdev);
4731
4732         if (!adap) {
4733                 pci_restore_state(pdev);
4734                 pci_save_state(pdev);
4735                 return PCI_ERS_RESULT_RECOVERED;
4736         }
4737
4738         if (!(adap->flags & DEV_ENABLED)) {
4739                 if (pci_enable_device(pdev)) {
4740                         dev_err(&pdev->dev, "Cannot reenable PCI "
4741                                             "device after reset\n");
4742                         return PCI_ERS_RESULT_DISCONNECT;
4743                 }
4744                 adap->flags |= DEV_ENABLED;
4745         }
4746
4747         pci_set_master(pdev);
4748         pci_restore_state(pdev);
4749         pci_save_state(pdev);
4750         pci_cleanup_aer_uncorrect_error_status(pdev);
4751
4752         if (t4_wait_dev_ready(adap->regs) < 0)
4753                 return PCI_ERS_RESULT_DISCONNECT;
4754         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4755                 return PCI_ERS_RESULT_DISCONNECT;
4756         adap->flags |= FW_OK;
4757         if (adap_init1(adap, &c))
4758                 return PCI_ERS_RESULT_DISCONNECT;
4759
4760         for_each_port(adap, i) {
4761                 struct port_info *p = adap2pinfo(adap, i);
4762
4763                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4764                                   NULL, NULL);
4765                 if (ret < 0)
4766                         return PCI_ERS_RESULT_DISCONNECT;
4767                 p->viid = ret;
4768                 p->xact_addr_filt = -1;
4769         }
4770
4771         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4772                      adap->params.b_wnd);
4773         setup_memwin(adap);
4774         if (cxgb_up(adap))
4775                 return PCI_ERS_RESULT_DISCONNECT;
4776         return PCI_ERS_RESULT_RECOVERED;
4777 }
4778
4779 static void eeh_resume(struct pci_dev *pdev)
4780 {
4781         int i;
4782         struct adapter *adap = pci_get_drvdata(pdev);
4783
4784         if (!adap)
4785                 return;
4786
4787         rtnl_lock();
4788         for_each_port(adap, i) {
4789                 struct net_device *dev = adap->port[i];
4790                 if (dev) {
4791                         if (netif_running(dev)) {
4792                                 link_start(dev);
4793                                 cxgb_set_rxmode(dev);
4794                         }
4795                         netif_device_attach(dev);
4796                 }
4797         }
4798         rtnl_unlock();
4799 }
4800
4801 static const struct pci_error_handlers cxgb4_eeh = {
4802         .error_detected = eeh_err_detected,
4803         .slot_reset     = eeh_slot_reset,
4804         .resume         = eeh_resume,
4805 };
4806
4807 /* Return true if the Link Configuration supports "High Speeds" (those greater
4808  * than 1Gb/s).
4809  */
4810 static inline bool is_x_10g_port(const struct link_config *lc)
4811 {
4812         unsigned int speeds, high_speeds;
4813
4814         speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4815         high_speeds = speeds &
4816                         ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4817
4818         return high_speeds != 0;
4819 }
4820
4821 /*
4822  * Perform default configuration of DMA queues depending on the number and type
4823  * of ports we found and the number of available CPUs.  Most settings can be
4824  * modified by the admin prior to actual use.
4825  */
4826 static int cfg_queues(struct adapter *adap)
4827 {
4828         struct sge *s = &adap->sge;
4829         int i, n10g = 0, qidx = 0;
4830         int niqflint, neq, avail_eth_qsets;
4831         int max_eth_qsets = 32;
4832 #ifndef CONFIG_CHELSIO_T4_DCB
4833         int q10g = 0;
4834 #endif
4835
4836         /* Reduce memory usage in kdump environment, disable all offload.
4837          */
4838         if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4839                 adap->params.offload = 0;
4840                 adap->params.crypto = 0;
4841         }
4842
4843         /* Calculate the number of Ethernet Queue Sets available based on
4844          * resources provisioned for us.  We always have an Asynchronous
4845          * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
4846          * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
4847          * Ingress Queue.  Meanwhile, we need two Egress Queues for each
4848          * Queue Set: one for the Free List and one for the Ethernet TX Queue.
4849          *
4850          * Note that we should also take into account all of the various
4851          * Offload Queues.  But, in any situation where we're operating in
4852          * a Resource Constrained Provisioning environment, doing any Offload
4853          * at all is problematic ...
4854          */
4855         niqflint = adap->params.pfres.niqflint - 1;
4856         if (!(adap->flags & USING_MSIX))
4857                 niqflint--;
4858         neq = adap->params.pfres.neq / 2;
4859         avail_eth_qsets = min(niqflint, neq);
4860
4861         if (avail_eth_qsets > max_eth_qsets)
4862                 avail_eth_qsets = max_eth_qsets;
4863
4864         if (avail_eth_qsets < adap->params.nports) {
4865                 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
4866                         avail_eth_qsets, adap->params.nports);
4867                 return -ENOMEM;
4868         }
4869
4870         /* Count the number of 10Gb/s or better ports */
4871         for_each_port(adap, i)
4872                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4873
4874 #ifdef CONFIG_CHELSIO_T4_DCB
4875         /* For Data Center Bridging support we need to be able to support up
4876          * to 8 Traffic Priorities; each of which will be assigned to its
4877          * own TX Queue in order to prevent Head-Of-Line Blocking.
4878          */
4879         if (adap->params.nports * 8 > avail_eth_qsets) {
4880                 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
4881                         avail_eth_qsets, adap->params.nports * 8);
4882                 return -ENOMEM;
4883         }
4884
4885         for_each_port(adap, i) {
4886                 struct port_info *pi = adap2pinfo(adap, i);
4887
4888                 pi->first_qset = qidx;
4889                 pi->nqsets = is_kdump_kernel() ? 1 : 8;
4890                 qidx += pi->nqsets;
4891         }
4892 #else /* !CONFIG_CHELSIO_T4_DCB */
4893         /*
4894          * We default to 1 queue per non-10G port and up to # of cores queues
4895          * per 10G port.
4896          */
4897         if (n10g)
4898                 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
4899         if (q10g > netif_get_num_default_rss_queues())
4900                 q10g = netif_get_num_default_rss_queues();
4901
4902         if (is_kdump_kernel())
4903                 q10g = 1;
4904
4905         for_each_port(adap, i) {
4906                 struct port_info *pi = adap2pinfo(adap, i);
4907
4908                 pi->first_qset = qidx;
4909                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4910                 qidx += pi->nqsets;
4911         }
4912 #endif /* !CONFIG_CHELSIO_T4_DCB */
4913
4914         s->ethqsets = qidx;
4915         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4916
4917         if (is_uld(adap)) {
4918                 /*
4919                  * For offload we use 1 queue/channel if all ports are up to 1G,
4920                  * otherwise we divide all available queues amongst the channels
4921                  * capped by the number of available cores.
4922                  */
4923                 if (n10g) {
4924                         i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4925                         s->ofldqsets = roundup(i, adap->params.nports);
4926                 } else {
4927                         s->ofldqsets = adap->params.nports;
4928                 }
4929         }
4930
4931         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4932                 struct sge_eth_rxq *r = &s->ethrxq[i];
4933
4934                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4935                 r->fl.size = 72;
4936         }
4937
4938         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4939                 s->ethtxq[i].q.size = 1024;
4940
4941         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4942                 s->ctrlq[i].q.size = 512;
4943
4944         if (!is_t4(adap->params.chip))
4945                 s->ptptxq.q.size = 8;
4946
4947         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4948         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4949
4950         return 0;
4951 }
4952
4953 /*
4954  * Reduce the number of Ethernet queues across all ports to at most n.
4955  * n provides at least one queue per port.
4956  */
4957 static void reduce_ethqs(struct adapter *adap, int n)
4958 {
4959         int i;
4960         struct port_info *pi;
4961
4962         while (n < adap->sge.ethqsets)
4963                 for_each_port(adap, i) {
4964                         pi = adap2pinfo(adap, i);
4965                         if (pi->nqsets > 1) {
4966                                 pi->nqsets--;
4967                                 adap->sge.ethqsets--;
4968                                 if (adap->sge.ethqsets <= n)
4969                                         break;
4970                         }
4971                 }
4972
4973         n = 0;
4974         for_each_port(adap, i) {
4975                 pi = adap2pinfo(adap, i);
4976                 pi->first_qset = n;
4977                 n += pi->nqsets;
4978         }
4979 }
4980
4981 static int get_msix_info(struct adapter *adap)
4982 {
4983         struct uld_msix_info *msix_info;
4984         unsigned int max_ingq = 0;
4985
4986         if (is_offload(adap))
4987                 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4988         if (is_pci_uld(adap))
4989                 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4990
4991         if (!max_ingq)
4992                 goto out;
4993
4994         msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4995         if (!msix_info)
4996                 return -ENOMEM;
4997
4998         adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4999                                                  sizeof(long), GFP_KERNEL);
5000         if (!adap->msix_bmap_ulds.msix_bmap) {
5001                 kfree(msix_info);
5002                 return -ENOMEM;
5003         }
5004         spin_lock_init(&adap->msix_bmap_ulds.lock);
5005         adap->msix_info_ulds = msix_info;
5006 out:
5007         return 0;
5008 }
5009
5010 static void free_msix_info(struct adapter *adap)
5011 {
5012         if (!(adap->num_uld && adap->num_ofld_uld))
5013                 return;
5014
5015         kfree(adap->msix_info_ulds);
5016         kfree(adap->msix_bmap_ulds.msix_bmap);
5017 }
5018
5019 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5020 #define EXTRA_VECS 2
5021
5022 static int enable_msix(struct adapter *adap)
5023 {
5024         int ofld_need = 0, uld_need = 0;
5025         int i, j, want, need, allocated;
5026         struct sge *s = &adap->sge;
5027         unsigned int nchan = adap->params.nports;
5028         struct msix_entry *entries;
5029         int max_ingq = MAX_INGQ;
5030
5031         if (is_pci_uld(adap))
5032                 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5033         if (is_offload(adap))
5034                 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5035         entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5036                                 GFP_KERNEL);
5037         if (!entries)
5038                 return -ENOMEM;
5039
5040         /* map for msix */
5041         if (get_msix_info(adap)) {
5042                 adap->params.offload = 0;
5043                 adap->params.crypto = 0;
5044         }
5045
5046         for (i = 0; i < max_ingq + 1; ++i)
5047                 entries[i].entry = i;
5048
5049         want = s->max_ethqsets + EXTRA_VECS;
5050         if (is_offload(adap)) {
5051                 want += adap->num_ofld_uld * s->ofldqsets;
5052                 ofld_need = adap->num_ofld_uld * nchan;
5053         }
5054         if (is_pci_uld(adap)) {
5055                 want += adap->num_uld * s->ofldqsets;
5056                 uld_need = adap->num_uld * nchan;
5057         }
5058 #ifdef CONFIG_CHELSIO_T4_DCB
5059         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5060          * each port.
5061          */
5062         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5063 #else
5064         need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5065 #endif
5066         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5067         if (allocated < 0) {
5068                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5069                          " not using MSI-X\n");
5070                 kfree(entries);
5071                 return allocated;
5072         }
5073
5074         /* Distribute available vectors to the various queue groups.
5075          * Every group gets its minimum requirement and NIC gets top
5076          * priority for leftovers.
5077          */
5078         i = allocated - EXTRA_VECS - ofld_need - uld_need;
5079         if (i < s->max_ethqsets) {
5080                 s->max_ethqsets = i;
5081                 if (i < s->ethqsets)
5082                         reduce_ethqs(adap, i);
5083         }
5084         if (is_uld(adap)) {
5085                 if (allocated < want)
5086                         s->nqs_per_uld = nchan;
5087                 else
5088                         s->nqs_per_uld = s->ofldqsets;
5089         }
5090
5091         for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5092                 adap->msix_info[i].vec = entries[i].vector;
5093         if (is_uld(adap)) {
5094                 for (j = 0 ; i < allocated; ++i, j++) {
5095                         adap->msix_info_ulds[j].vec = entries[i].vector;
5096                         adap->msix_info_ulds[j].idx = i;
5097                 }
5098                 adap->msix_bmap_ulds.mapsize = j;
5099         }
5100         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5101                  "nic %d per uld %d\n",
5102                  allocated, s->max_ethqsets, s->nqs_per_uld);
5103
5104         kfree(entries);
5105         return 0;
5106 }
5107
5108 #undef EXTRA_VECS
5109
5110 static int init_rss(struct adapter *adap)
5111 {
5112         unsigned int i;
5113         int err;
5114
5115         err = t4_init_rss_mode(adap, adap->mbox);
5116         if (err)
5117                 return err;
5118
5119         for_each_port(adap, i) {
5120                 struct port_info *pi = adap2pinfo(adap, i);
5121
5122                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5123                 if (!pi->rss)
5124                         return -ENOMEM;
5125         }
5126         return 0;
5127 }
5128
5129 /* Dump basic information about the adapter */
5130 static void print_adapter_info(struct adapter *adapter)
5131 {
5132         /* Hardware/Firmware/etc. Version/Revision IDs */
5133         t4_dump_version_info(adapter);
5134
5135         /* Software/Hardware configuration */
5136         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5137                  is_offload(adapter) ? "R" : "",
5138                  ((adapter->flags & USING_MSIX) ? "MSI-X" :
5139                   (adapter->flags & USING_MSI) ? "MSI" : ""),
5140                  is_offload(adapter) ? "Offload" : "non-Offload");
5141 }
5142
5143 static void print_port_info(const struct net_device *dev)
5144 {
5145         char buf[80];
5146         char *bufp = buf;
5147         const struct port_info *pi = netdev_priv(dev);
5148         const struct adapter *adap = pi->adapter;
5149
5150         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5151                 bufp += sprintf(bufp, "100M/");
5152         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5153                 bufp += sprintf(bufp, "1G/");
5154         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5155                 bufp += sprintf(bufp, "10G/");
5156         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5157                 bufp += sprintf(bufp, "25G/");
5158         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5159                 bufp += sprintf(bufp, "40G/");
5160         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5161                 bufp += sprintf(bufp, "50G/");
5162         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5163                 bufp += sprintf(bufp, "100G/");
5164         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5165                 bufp += sprintf(bufp, "200G/");
5166         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5167                 bufp += sprintf(bufp, "400G/");
5168         if (bufp != buf)
5169                 --bufp;
5170         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5171
5172         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5173                     dev->name, adap->params.vpd.id, adap->name, buf);
5174 }
5175
5176 /*
5177  * Free the following resources:
5178  * - memory used for tables
5179  * - MSI/MSI-X
5180  * - net devices
5181  * - resources FW is holding for us
5182  */
5183 static void free_some_resources(struct adapter *adapter)
5184 {
5185         unsigned int i;
5186
5187         kvfree(adapter->mps_encap);
5188         kvfree(adapter->smt);
5189         kvfree(adapter->l2t);
5190         kvfree(adapter->srq);
5191         t4_cleanup_sched(adapter);
5192         kvfree(adapter->tids.tid_tab);
5193         cxgb4_cleanup_tc_flower(adapter);
5194         cxgb4_cleanup_tc_u32(adapter);
5195         kfree(adapter->sge.egr_map);
5196         kfree(adapter->sge.ingr_map);
5197         kfree(adapter->sge.starving_fl);
5198         kfree(adapter->sge.txq_maperr);
5199 #ifdef CONFIG_DEBUG_FS
5200         kfree(adapter->sge.blocked_fl);
5201 #endif
5202         disable_msi(adapter);
5203
5204         for_each_port(adapter, i)
5205                 if (adapter->port[i]) {
5206                         struct port_info *pi = adap2pinfo(adapter, i);
5207
5208                         if (pi->viid != 0)
5209                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5210                                            0, pi->viid);
5211                         kfree(adap2pinfo(adapter, i)->rss);
5212                         free_netdev(adapter->port[i]);
5213                 }
5214         if (adapter->flags & FW_OK)
5215                 t4_fw_bye(adapter, adapter->pf);
5216 }
5217
5218 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5219 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5220                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5221 #define SEGMENT_SIZE 128
5222
5223 static int t4_get_chip_type(struct adapter *adap, int ver)
5224 {
5225         u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5226
5227         switch (ver) {
5228         case CHELSIO_T4:
5229                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5230         case CHELSIO_T5:
5231                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5232         case CHELSIO_T6:
5233                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5234         default:
5235                 break;
5236         }
5237         return -EINVAL;
5238 }
5239
5240 #ifdef CONFIG_PCI_IOV
5241 static void cxgb4_mgmt_setup(struct net_device *dev)
5242 {
5243         dev->type = ARPHRD_NONE;
5244         dev->mtu = 0;
5245         dev->hard_header_len = 0;
5246         dev->addr_len = 0;
5247         dev->tx_queue_len = 0;
5248         dev->flags |= IFF_NOARP;
5249         dev->priv_flags |= IFF_NO_QUEUE;
5250
5251         /* Initialize the device structure. */
5252         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5253         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5254 }
5255
5256 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5257 {
5258         struct adapter *adap = pci_get_drvdata(pdev);
5259         int err = 0;
5260         int current_vfs = pci_num_vf(pdev);
5261         u32 pcie_fw;
5262
5263         pcie_fw = readl(adap->regs + PCIE_FW_A);
5264         /* Check if fw is initialized */
5265         if (!(pcie_fw & PCIE_FW_INIT_F)) {
5266                 dev_warn(&pdev->dev, "Device not initialized\n");
5267                 return -EOPNOTSUPP;
5268         }
5269
5270         /* If any of the VF's is already assigned to Guest OS, then
5271          * SRIOV for the same cannot be modified
5272          */
5273         if (current_vfs && pci_vfs_assigned(pdev)) {
5274                 dev_err(&pdev->dev,
5275                         "Cannot modify SR-IOV while VFs are assigned\n");
5276                 return current_vfs;
5277         }
5278         /* Note that the upper-level code ensures that we're never called with
5279          * a non-zero "num_vfs" when we already have VFs instantiated.  But
5280          * it never hurts to code defensively.
5281          */
5282         if (num_vfs != 0 && current_vfs != 0)
5283                 return -EBUSY;
5284
5285         /* Nothing to do for no change. */
5286         if (num_vfs == current_vfs)
5287                 return num_vfs;
5288
5289         /* Disable SRIOV when zero is passed. */
5290         if (!num_vfs) {
5291                 pci_disable_sriov(pdev);
5292                 /* free VF Management Interface */
5293                 unregister_netdev(adap->port[0]);
5294                 free_netdev(adap->port[0]);
5295                 adap->port[0] = NULL;
5296
5297                 /* free VF resources */
5298                 adap->num_vfs = 0;
5299                 kfree(adap->vfinfo);
5300                 adap->vfinfo = NULL;
5301                 return 0;
5302         }
5303
5304         if (!current_vfs) {
5305                 struct fw_pfvf_cmd port_cmd, port_rpl;
5306                 struct net_device *netdev;
5307                 unsigned int pmask, port;
5308                 struct pci_dev *pbridge;
5309                 struct port_info *pi;
5310                 char name[IFNAMSIZ];
5311                 u32 devcap2;
5312                 u16 flags;
5313                 int pos;
5314
5315                 /* If we want to instantiate Virtual Functions, then our
5316                  * parent bridge's PCI-E needs to support Alternative Routing
5317                  * ID (ARI) because our VFs will show up at function offset 8
5318                  * and above.
5319                  */
5320                 pbridge = pdev->bus->self;
5321                 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5322                 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5323                 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5324
5325                 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5326                     !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5327                         /* Our parent bridge does not support ARI so issue a
5328                          * warning and skip instantiating the VFs.  They
5329                          * won't be reachable.
5330                          */
5331                         dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5332                                  pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5333                                  PCI_FUNC(pbridge->devfn));
5334                         return -ENOTSUPP;
5335                 }
5336                 memset(&port_cmd, 0, sizeof(port_cmd));
5337                 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5338                                                  FW_CMD_REQUEST_F |
5339                                                  FW_CMD_READ_F |
5340                                                  FW_PFVF_CMD_PFN_V(adap->pf) |
5341                                                  FW_PFVF_CMD_VFN_V(0));
5342                 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5343                 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5344                                  &port_rpl);
5345                 if (err)
5346                         return err;
5347                 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5348                 port = ffs(pmask) - 1;
5349                 /* Allocate VF Management Interface. */
5350                 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5351                          adap->pf);
5352                 netdev = alloc_netdev(sizeof(struct port_info),
5353                                       name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5354                 if (!netdev)
5355                         return -ENOMEM;
5356
5357                 pi = netdev_priv(netdev);
5358                 pi->adapter = adap;
5359                 pi->lport = port;
5360                 pi->tx_chan = port;
5361                 SET_NETDEV_DEV(netdev, &pdev->dev);
5362
5363                 adap->port[0] = netdev;
5364                 pi->port_id = 0;
5365
5366                 err = register_netdev(adap->port[0]);
5367                 if (err) {
5368                         pr_info("Unable to register VF mgmt netdev %s\n", name);
5369                         free_netdev(adap->port[0]);
5370                         adap->port[0] = NULL;
5371                         return err;
5372                 }
5373                 /* Allocate and set up VF Information. */
5374                 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5375                                        sizeof(struct vf_info), GFP_KERNEL);
5376                 if (!adap->vfinfo) {
5377                         unregister_netdev(adap->port[0]);
5378                         free_netdev(adap->port[0]);
5379                         adap->port[0] = NULL;
5380                         return -ENOMEM;
5381                 }
5382                 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5383         }
5384         /* Instantiate the requested number of VFs. */
5385         err = pci_enable_sriov(pdev, num_vfs);
5386         if (err) {
5387                 pr_info("Unable to instantiate %d VFs\n", num_vfs);
5388                 if (!current_vfs) {
5389                         unregister_netdev(adap->port[0]);
5390                         free_netdev(adap->port[0]);
5391                         adap->port[0] = NULL;
5392                         kfree(adap->vfinfo);
5393                         adap->vfinfo = NULL;
5394                 }
5395                 return err;
5396         }
5397
5398         adap->num_vfs = num_vfs;
5399         return num_vfs;
5400 }
5401 #endif /* CONFIG_PCI_IOV */
5402
5403 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5404 {
5405         struct net_device *netdev;
5406         struct adapter *adapter;
5407         static int adap_idx = 1;
5408         int s_qpp, qpp, num_seg;
5409         struct port_info *pi;
5410         bool highdma = false;
5411         enum chip_type chip;
5412         void __iomem *regs;
5413         int func, chip_ver;
5414         u16 device_id;
5415         int i, err;
5416         u32 whoami;
5417
5418         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5419
5420         err = pci_request_regions(pdev, KBUILD_MODNAME);
5421         if (err) {
5422                 /* Just info, some other driver may have claimed the device. */
5423                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5424                 return err;
5425         }
5426
5427         err = pci_enable_device(pdev);
5428         if (err) {
5429                 dev_err(&pdev->dev, "cannot enable PCI device\n");
5430                 goto out_release_regions;
5431         }
5432
5433         regs = pci_ioremap_bar(pdev, 0);
5434         if (!regs) {
5435                 dev_err(&pdev->dev, "cannot map device registers\n");
5436                 err = -ENOMEM;
5437                 goto out_disable_device;
5438         }
5439
5440         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5441         if (!adapter) {
5442                 err = -ENOMEM;
5443                 goto out_unmap_bar0;
5444         }
5445
5446         adapter->regs = regs;
5447         err = t4_wait_dev_ready(regs);
5448         if (err < 0)
5449                 goto out_free_adapter;
5450
5451         /* We control everything through one PF */
5452         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5453         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5454         chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5455         if (chip < 0) {
5456                 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5457                 err = chip;
5458                 goto out_free_adapter;
5459         }
5460         chip_ver = CHELSIO_CHIP_VERSION(chip);
5461         func = chip_ver <= CHELSIO_T5 ?
5462                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5463
5464         adapter->pdev = pdev;
5465         adapter->pdev_dev = &pdev->dev;
5466         adapter->name = pci_name(pdev);
5467         adapter->mbox = func;
5468         adapter->pf = func;
5469         adapter->params.chip = chip;
5470         adapter->adap_idx = adap_idx;
5471         adapter->msg_enable = DFLT_MSG_ENABLE;
5472         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5473                                     (sizeof(struct mbox_cmd) *
5474                                      T4_OS_LOG_MBOX_CMDS),
5475                                     GFP_KERNEL);
5476         if (!adapter->mbox_log) {
5477                 err = -ENOMEM;
5478                 goto out_free_adapter;
5479         }
5480         spin_lock_init(&adapter->mbox_lock);
5481         INIT_LIST_HEAD(&adapter->mlist.list);
5482         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5483         pci_set_drvdata(pdev, adapter);
5484
5485         if (func != ent->driver_data) {
5486                 pci_disable_device(pdev);
5487                 pci_save_state(pdev);        /* to restore SR-IOV later */
5488                 return 0;
5489         }
5490
5491         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5492                 highdma = true;
5493                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5494                 if (err) {
5495                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5496                                 "coherent allocations\n");
5497                         goto out_free_adapter;
5498                 }
5499         } else {
5500                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5501                 if (err) {
5502                         dev_err(&pdev->dev, "no usable DMA configuration\n");
5503                         goto out_free_adapter;
5504                 }
5505         }
5506
5507         pci_enable_pcie_error_reporting(pdev);
5508         pci_set_master(pdev);
5509         pci_save_state(pdev);
5510         adap_idx++;
5511         adapter->workq = create_singlethread_workqueue("cxgb4");
5512         if (!adapter->workq) {
5513                 err = -ENOMEM;
5514                 goto out_free_adapter;
5515         }
5516
5517         /* PCI device has been enabled */
5518         adapter->flags |= DEV_ENABLED;
5519         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5520
5521         /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5522          * Ingress Packet Data to Free List Buffers in order to allow for
5523          * chipset performance optimizations between the Root Complex and
5524          * Memory Controllers.  (Messages to the associated Ingress Queue
5525          * notifying new Packet Placement in the Free Lists Buffers will be
5526          * send without the Relaxed Ordering Attribute thus guaranteeing that
5527          * all preceding PCIe Transaction Layer Packets will be processed
5528          * first.)  But some Root Complexes have various issues with Upstream
5529          * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5530          * The PCIe devices which under the Root Complexes will be cleared the
5531          * Relaxed Ordering bit in the configuration space, So we check our
5532          * PCIe configuration space to see if it's flagged with advice against
5533          * using Relaxed Ordering.
5534          */
5535         if (!pcie_relaxed_ordering_enabled(pdev))
5536                 adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5537
5538         spin_lock_init(&adapter->stats_lock);
5539         spin_lock_init(&adapter->tid_release_lock);
5540         spin_lock_init(&adapter->win0_lock);
5541
5542         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5543         INIT_WORK(&adapter->db_full_task, process_db_full);
5544         INIT_WORK(&adapter->db_drop_task, process_db_drop);
5545         INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5546
5547         err = t4_prep_adapter(adapter);
5548         if (err)
5549                 goto out_free_adapter;
5550
5551         if (is_kdump_kernel()) {
5552                 /* Collect hardware state and append to /proc/vmcore */
5553                 err = cxgb4_cudbg_vmcore_add_dump(adapter);
5554                 if (err) {
5555                         dev_warn(adapter->pdev_dev,
5556                                  "Fail collecting vmcore device dump, err: %d. Continuing\n",
5557                                  err);
5558                         err = 0;
5559                 }
5560         }
5561
5562         if (!is_t4(adapter->params.chip)) {
5563                 s_qpp = (QUEUESPERPAGEPF0_S +
5564                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5565                         adapter->pf);
5566                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5567                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5568                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5569
5570                 /* Each segment size is 128B. Write coalescing is enabled only
5571                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5572                  * queue is less no of segments that can be accommodated in
5573                  * a page size.
5574                  */
5575                 if (qpp > num_seg) {
5576                         dev_err(&pdev->dev,
5577                                 "Incorrect number of egress queues per page\n");
5578                         err = -EINVAL;
5579                         goto out_free_adapter;
5580                 }
5581                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5582                 pci_resource_len(pdev, 2));
5583                 if (!adapter->bar2) {
5584                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
5585                         err = -ENOMEM;
5586                         goto out_free_adapter;
5587                 }
5588         }
5589
5590         setup_memwin(adapter);
5591         err = adap_init0(adapter);
5592 #ifdef CONFIG_DEBUG_FS
5593         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5594 #endif
5595         setup_memwin_rdma(adapter);
5596         if (err)
5597                 goto out_unmap_bar;
5598
5599         /* configure SGE_STAT_CFG_A to read WC stats */
5600         if (!is_t4(adapter->params.chip))
5601                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5602                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5603                               T6_STATMODE_V(0)));
5604
5605         for_each_port(adapter, i) {
5606                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5607                                            MAX_ETH_QSETS);
5608                 if (!netdev) {
5609                         err = -ENOMEM;
5610                         goto out_free_dev;
5611                 }
5612
5613                 SET_NETDEV_DEV(netdev, &pdev->dev);
5614
5615                 adapter->port[i] = netdev;
5616                 pi = netdev_priv(netdev);
5617                 pi->adapter = adapter;
5618                 pi->xact_addr_filt = -1;
5619                 pi->port_id = i;
5620                 netdev->irq = pdev->irq;
5621
5622                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5623                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5624                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
5625                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5626                         NETIF_F_HW_TC;
5627
5628                 if (chip_ver > CHELSIO_T5) {
5629                         netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5630                                                    NETIF_F_IPV6_CSUM |
5631                                                    NETIF_F_RXCSUM |
5632                                                    NETIF_F_GSO_UDP_TUNNEL |
5633                                                    NETIF_F_TSO | NETIF_F_TSO6;
5634
5635                         netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5636                 }
5637
5638                 if (highdma)
5639                         netdev->hw_features |= NETIF_F_HIGHDMA;
5640                 netdev->features |= netdev->hw_features;
5641                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5642
5643                 netdev->priv_flags |= IFF_UNICAST_FLT;
5644
5645                 /* MTU range: 81 - 9600 */
5646                 netdev->min_mtu = 81;              /* accommodate SACK */
5647                 netdev->max_mtu = MAX_MTU;
5648
5649                 netdev->netdev_ops = &cxgb4_netdev_ops;
5650 #ifdef CONFIG_CHELSIO_T4_DCB
5651                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5652                 cxgb4_dcb_state_init(netdev);
5653                 cxgb4_dcb_version_init(netdev);
5654 #endif
5655                 cxgb4_set_ethtool_ops(netdev);
5656         }
5657
5658         cxgb4_init_ethtool_dump(adapter);
5659
5660         pci_set_drvdata(pdev, adapter);
5661
5662         if (adapter->flags & FW_OK) {
5663                 err = t4_port_init(adapter, func, func, 0);
5664                 if (err)
5665                         goto out_free_dev;
5666         } else if (adapter->params.nports == 1) {
5667                 /* If we don't have a connection to the firmware -- possibly
5668                  * because of an error -- grab the raw VPD parameters so we
5669                  * can set the proper MAC Address on the debug network
5670                  * interface that we've created.
5671                  */
5672                 u8 hw_addr[ETH_ALEN];
5673                 u8 *na = adapter->params.vpd.na;
5674
5675                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5676                 if (!err) {
5677                         for (i = 0; i < ETH_ALEN; i++)
5678                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5679                                               hex2val(na[2 * i + 1]));
5680                         t4_set_hw_addr(adapter, 0, hw_addr);
5681                 }
5682         }
5683
5684         if (!(adapter->flags & FW_OK))
5685                 goto fw_attach_fail;
5686
5687         /* Configure queues and allocate tables now, they can be needed as
5688          * soon as the first register_netdev completes.
5689          */
5690         err = cfg_queues(adapter);
5691         if (err)
5692                 goto out_free_dev;
5693
5694         adapter->smt = t4_init_smt();
5695         if (!adapter->smt) {
5696                 /* We tolerate a lack of SMT, giving up some functionality */
5697                 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5698         }
5699
5700         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5701         if (!adapter->l2t) {
5702                 /* We tolerate a lack of L2T, giving up some functionality */
5703                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5704                 adapter->params.offload = 0;
5705         }
5706
5707         adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size,
5708                                       sizeof(struct mps_encap_entry),
5709                                       GFP_KERNEL);
5710         if (!adapter->mps_encap)
5711                 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n");
5712
5713 #if IS_ENABLED(CONFIG_IPV6)
5714         if (chip_ver <= CHELSIO_T5 &&
5715             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5716                 /* CLIP functionality is not present in hardware,
5717                  * hence disable all offload features
5718                  */
5719                 dev_warn(&pdev->dev,
5720                          "CLIP not enabled in hardware, continuing\n");
5721                 adapter->params.offload = 0;
5722         } else {
5723                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5724                                                   adapter->clipt_end);
5725                 if (!adapter->clipt) {
5726                         /* We tolerate a lack of clip_table, giving up
5727                          * some functionality
5728                          */
5729                         dev_warn(&pdev->dev,
5730                                  "could not allocate Clip table, continuing\n");
5731                         adapter->params.offload = 0;
5732                 }
5733         }
5734 #endif
5735
5736         for_each_port(adapter, i) {
5737                 pi = adap2pinfo(adapter, i);
5738                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5739                 if (!pi->sched_tbl)
5740                         dev_warn(&pdev->dev,
5741                                  "could not activate scheduling on port %d\n",
5742                                  i);
5743         }
5744
5745         if (tid_init(&adapter->tids) < 0) {
5746                 dev_warn(&pdev->dev, "could not allocate TID table, "
5747                          "continuing\n");
5748                 adapter->params.offload = 0;
5749         } else {
5750                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5751                 if (!adapter->tc_u32)
5752                         dev_warn(&pdev->dev,
5753                                  "could not offload tc u32, continuing\n");
5754
5755                 if (cxgb4_init_tc_flower(adapter))
5756                         dev_warn(&pdev->dev,
5757                                  "could not offload tc flower, continuing\n");
5758         }
5759
5760         if (is_offload(adapter) || is_hashfilter(adapter)) {
5761                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5762                         u32 hash_base, hash_reg;
5763
5764                         if (chip_ver <= CHELSIO_T5) {
5765                                 hash_reg = LE_DB_TID_HASHBASE_A;
5766                                 hash_base = t4_read_reg(adapter, hash_reg);
5767                                 adapter->tids.hash_base = hash_base / 4;
5768                         } else {
5769                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5770                                 hash_base = t4_read_reg(adapter, hash_reg);
5771                                 adapter->tids.hash_base = hash_base;
5772                         }
5773                 }
5774         }
5775
5776         /* See what interrupts we'll be using */
5777         if (msi > 1 && enable_msix(adapter) == 0)
5778                 adapter->flags |= USING_MSIX;
5779         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5780                 adapter->flags |= USING_MSI;
5781                 if (msi > 1)
5782                         free_msix_info(adapter);
5783         }
5784
5785         /* check for PCI Express bandwidth capabiltites */
5786         pcie_print_link_status(pdev);
5787
5788         err = init_rss(adapter);
5789         if (err)
5790                 goto out_free_dev;
5791
5792         err = setup_fw_sge_queues(adapter);
5793         if (err) {
5794                 dev_err(adapter->pdev_dev,
5795                         "FW sge queue allocation failed, err %d", err);
5796                 goto out_free_dev;
5797         }
5798
5799 fw_attach_fail:
5800         /*
5801          * The card is now ready to go.  If any errors occur during device
5802          * registration we do not fail the whole card but rather proceed only
5803          * with the ports we manage to register successfully.  However we must
5804          * register at least one net device.
5805          */
5806         for_each_port(adapter, i) {
5807                 pi = adap2pinfo(adapter, i);
5808                 adapter->port[i]->dev_port = pi->lport;
5809                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5810                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5811
5812                 netif_carrier_off(adapter->port[i]);
5813
5814                 err = register_netdev(adapter->port[i]);
5815                 if (err)
5816                         break;
5817                 adapter->chan_map[pi->tx_chan] = i;
5818                 print_port_info(adapter->port[i]);
5819         }
5820         if (i == 0) {
5821                 dev_err(&pdev->dev, "could not register any net devices\n");
5822                 goto out_free_dev;
5823         }
5824         if (err) {
5825                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5826                 err = 0;
5827         }
5828
5829         if (cxgb4_debugfs_root) {
5830                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5831                                                            cxgb4_debugfs_root);
5832                 setup_debugfs(adapter);
5833         }
5834
5835         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5836         pdev->needs_freset = 1;
5837
5838         if (is_uld(adapter)) {
5839                 mutex_lock(&uld_mutex);
5840                 list_add_tail(&adapter->list_node, &adapter_list);
5841                 mutex_unlock(&uld_mutex);
5842         }
5843
5844         if (!is_t4(adapter->params.chip))
5845                 cxgb4_ptp_init(adapter);
5846
5847         print_adapter_info(adapter);
5848         return 0;
5849
5850  out_free_dev:
5851         t4_free_sge_resources(adapter);
5852         free_some_resources(adapter);
5853         if (adapter->flags & USING_MSIX)
5854                 free_msix_info(adapter);
5855         if (adapter->num_uld || adapter->num_ofld_uld)
5856                 t4_uld_mem_free(adapter);
5857  out_unmap_bar:
5858         if (!is_t4(adapter->params.chip))
5859                 iounmap(adapter->bar2);
5860  out_free_adapter:
5861         if (adapter->workq)
5862                 destroy_workqueue(adapter->workq);
5863
5864         kfree(adapter->mbox_log);
5865         kfree(adapter);
5866  out_unmap_bar0:
5867         iounmap(regs);
5868  out_disable_device:
5869         pci_disable_pcie_error_reporting(pdev);
5870         pci_disable_device(pdev);
5871  out_release_regions:
5872         pci_release_regions(pdev);
5873         return err;
5874 }
5875
5876 static void remove_one(struct pci_dev *pdev)
5877 {
5878         struct adapter *adapter = pci_get_drvdata(pdev);
5879
5880         if (!adapter) {
5881                 pci_release_regions(pdev);
5882                 return;
5883         }
5884
5885         adapter->flags |= SHUTTING_DOWN;
5886
5887         if (adapter->pf == 4) {
5888                 int i;
5889
5890                 /* Tear down per-adapter Work Queue first since it can contain
5891                  * references to our adapter data structure.
5892                  */
5893                 destroy_workqueue(adapter->workq);
5894
5895                 if (is_uld(adapter)) {
5896                         detach_ulds(adapter);
5897                         t4_uld_clean_up(adapter);
5898                 }
5899
5900                 adap_free_hma_mem(adapter);
5901
5902                 disable_interrupts(adapter);
5903
5904                 for_each_port(adapter, i)
5905                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5906                                 unregister_netdev(adapter->port[i]);
5907
5908                 debugfs_remove_recursive(adapter->debugfs_root);
5909
5910                 if (!is_t4(adapter->params.chip))
5911                         cxgb4_ptp_stop(adapter);
5912
5913                 /* If we allocated filters, free up state associated with any
5914                  * valid filters ...
5915                  */
5916                 clear_all_filters(adapter);
5917
5918                 if (adapter->flags & FULL_INIT_DONE)
5919                         cxgb_down(adapter);
5920
5921                 if (adapter->flags & USING_MSIX)
5922                         free_msix_info(adapter);
5923                 if (adapter->num_uld || adapter->num_ofld_uld)
5924                         t4_uld_mem_free(adapter);
5925                 free_some_resources(adapter);
5926 #if IS_ENABLED(CONFIG_IPV6)
5927                 t4_cleanup_clip_tbl(adapter);
5928 #endif
5929                 if (!is_t4(adapter->params.chip))
5930                         iounmap(adapter->bar2);
5931         }
5932 #ifdef CONFIG_PCI_IOV
5933         else {
5934                 cxgb4_iov_configure(adapter->pdev, 0);
5935         }
5936 #endif
5937         iounmap(adapter->regs);
5938         pci_disable_pcie_error_reporting(pdev);
5939         if ((adapter->flags & DEV_ENABLED)) {
5940                 pci_disable_device(pdev);
5941                 adapter->flags &= ~DEV_ENABLED;
5942         }
5943         pci_release_regions(pdev);
5944         kfree(adapter->mbox_log);
5945         synchronize_rcu();
5946         kfree(adapter);
5947 }
5948
5949 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5950  * delivery.  This is essentially a stripped down version of the PCI remove()
5951  * function where we do the minimal amount of work necessary to shutdown any
5952  * further activity.
5953  */
5954 static void shutdown_one(struct pci_dev *pdev)
5955 {
5956         struct adapter *adapter = pci_get_drvdata(pdev);
5957
5958         /* As with remove_one() above (see extended comment), we only want do
5959          * do cleanup on PCI Devices which went all the way through init_one()
5960          * ...
5961          */
5962         if (!adapter) {
5963                 pci_release_regions(pdev);
5964                 return;
5965         }
5966
5967         adapter->flags |= SHUTTING_DOWN;
5968
5969         if (adapter->pf == 4) {
5970                 int i;
5971
5972                 for_each_port(adapter, i)
5973                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5974                                 cxgb_close(adapter->port[i]);
5975
5976                 if (is_uld(adapter)) {
5977                         detach_ulds(adapter);
5978                         t4_uld_clean_up(adapter);
5979                 }
5980
5981                 disable_interrupts(adapter);
5982                 disable_msi(adapter);
5983
5984                 t4_sge_stop(adapter);
5985                 if (adapter->flags & FW_OK)
5986                         t4_fw_bye(adapter, adapter->mbox);
5987         }
5988 }
5989
5990 static struct pci_driver cxgb4_driver = {
5991         .name     = KBUILD_MODNAME,
5992         .id_table = cxgb4_pci_tbl,
5993         .probe    = init_one,
5994         .remove   = remove_one,
5995         .shutdown = shutdown_one,
5996 #ifdef CONFIG_PCI_IOV
5997         .sriov_configure = cxgb4_iov_configure,
5998 #endif
5999         .err_handler = &cxgb4_eeh,
6000 };
6001
6002 static int __init cxgb4_init_module(void)
6003 {
6004         int ret;
6005
6006         /* Debugfs support is optional, just warn if this fails */
6007         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6008         if (!cxgb4_debugfs_root)
6009                 pr_warn("could not create debugfs entry, continuing\n");
6010
6011         ret = pci_register_driver(&cxgb4_driver);
6012         if (ret < 0)
6013                 debugfs_remove(cxgb4_debugfs_root);
6014
6015 #if IS_ENABLED(CONFIG_IPV6)
6016         if (!inet6addr_registered) {
6017                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6018                 inet6addr_registered = true;
6019         }
6020 #endif
6021
6022         return ret;
6023 }
6024
6025 static void __exit cxgb4_cleanup_module(void)
6026 {
6027 #if IS_ENABLED(CONFIG_IPV6)
6028         if (inet6addr_registered) {
6029                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6030                 inet6addr_registered = false;
6031         }
6032 #endif
6033         pci_unregister_driver(&cxgb4_driver);
6034         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6035 }
6036
6037 module_init(cxgb4_init_module);
6038 module_exit(cxgb4_cleanup_module);