Merge tag 'armsoc-dt64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT        4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY       0
56
57 #define GENET_Q16_RX_BD_CNT     \
58         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT     \
60         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH           2048
63 #define SKB_ALIGNMENT           32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
73                                 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76                                              void __iomem *d, u32 value)
77 {
78         __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82                                             void __iomem *d)
83 {
84         return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88                                     void __iomem *d,
89                                     dma_addr_t addr)
90 {
91         __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93         /* Register writes to GISB bus can take couple hundred nanoseconds
94          * and are done for each packet, save these expensive writes unless
95          * the platform is explicitly configured for 64-bits/LPAE.
96          */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98         if (priv->hw_params->flags & GENET_HAS_40BITS)
99                 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105                                void __iomem *d, dma_addr_t addr, u32 val)
106 {
107         dmadesc_set_addr(priv, d, addr);
108         dmadesc_set_length_status(priv, d, val);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112                                           void __iomem *d)
113 {
114         dma_addr_t addr;
115
116         addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118         /* Register writes to GISB bus can take couple hundred nanoseconds
119          * and are done for each packet, save these expensive writes unless
120          * the platform is explicitly configured for 64-bits/LPAE.
121          */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123         if (priv->hw_params->flags & GENET_HAS_40BITS)
124                 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126         return addr;
127 }
128
129 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132                                 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136         if (GENET_IS_V1(priv))
137                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138         else
139                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144         if (GENET_IS_V1(priv))
145                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146         else
147                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156         if (GENET_IS_V1(priv))
157                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158         else
159                 return __raw_readl(priv->base +
160                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165         if (GENET_IS_V1(priv))
166                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167         else
168                 __raw_writel(val, priv->base +
169                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174         if (GENET_IS_V1(priv))
175                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176         else
177                 return __raw_readl(priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183         if (GENET_IS_V1(priv))
184                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185         else
186                 __raw_writel(val, priv->base +
187                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192         DMA_RING_CFG = 0,
193         DMA_CTRL,
194         DMA_STATUS,
195         DMA_SCB_BURST_SIZE,
196         DMA_ARB_CTRL,
197         DMA_PRIORITY_0,
198         DMA_PRIORITY_1,
199         DMA_PRIORITY_2,
200         DMA_INDEX2RING_0,
201         DMA_INDEX2RING_1,
202         DMA_INDEX2RING_2,
203         DMA_INDEX2RING_3,
204         DMA_INDEX2RING_4,
205         DMA_INDEX2RING_5,
206         DMA_INDEX2RING_6,
207         DMA_INDEX2RING_7,
208         DMA_RING0_TIMEOUT,
209         DMA_RING1_TIMEOUT,
210         DMA_RING2_TIMEOUT,
211         DMA_RING3_TIMEOUT,
212         DMA_RING4_TIMEOUT,
213         DMA_RING5_TIMEOUT,
214         DMA_RING6_TIMEOUT,
215         DMA_RING7_TIMEOUT,
216         DMA_RING8_TIMEOUT,
217         DMA_RING9_TIMEOUT,
218         DMA_RING10_TIMEOUT,
219         DMA_RING11_TIMEOUT,
220         DMA_RING12_TIMEOUT,
221         DMA_RING13_TIMEOUT,
222         DMA_RING14_TIMEOUT,
223         DMA_RING15_TIMEOUT,
224         DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228         [DMA_RING_CFG]          = 0x00,
229         [DMA_CTRL]              = 0x04,
230         [DMA_STATUS]            = 0x08,
231         [DMA_SCB_BURST_SIZE]    = 0x0C,
232         [DMA_ARB_CTRL]          = 0x2C,
233         [DMA_PRIORITY_0]        = 0x30,
234         [DMA_PRIORITY_1]        = 0x34,
235         [DMA_PRIORITY_2]        = 0x38,
236         [DMA_RING0_TIMEOUT]     = 0x2C,
237         [DMA_RING1_TIMEOUT]     = 0x30,
238         [DMA_RING2_TIMEOUT]     = 0x34,
239         [DMA_RING3_TIMEOUT]     = 0x38,
240         [DMA_RING4_TIMEOUT]     = 0x3c,
241         [DMA_RING5_TIMEOUT]     = 0x40,
242         [DMA_RING6_TIMEOUT]     = 0x44,
243         [DMA_RING7_TIMEOUT]     = 0x48,
244         [DMA_RING8_TIMEOUT]     = 0x4c,
245         [DMA_RING9_TIMEOUT]     = 0x50,
246         [DMA_RING10_TIMEOUT]    = 0x54,
247         [DMA_RING11_TIMEOUT]    = 0x58,
248         [DMA_RING12_TIMEOUT]    = 0x5c,
249         [DMA_RING13_TIMEOUT]    = 0x60,
250         [DMA_RING14_TIMEOUT]    = 0x64,
251         [DMA_RING15_TIMEOUT]    = 0x68,
252         [DMA_RING16_TIMEOUT]    = 0x6C,
253         [DMA_INDEX2RING_0]      = 0x70,
254         [DMA_INDEX2RING_1]      = 0x74,
255         [DMA_INDEX2RING_2]      = 0x78,
256         [DMA_INDEX2RING_3]      = 0x7C,
257         [DMA_INDEX2RING_4]      = 0x80,
258         [DMA_INDEX2RING_5]      = 0x84,
259         [DMA_INDEX2RING_6]      = 0x88,
260         [DMA_INDEX2RING_7]      = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264         [DMA_RING_CFG]          = 0x00,
265         [DMA_CTRL]              = 0x04,
266         [DMA_STATUS]            = 0x08,
267         [DMA_SCB_BURST_SIZE]    = 0x0C,
268         [DMA_ARB_CTRL]          = 0x30,
269         [DMA_PRIORITY_0]        = 0x34,
270         [DMA_PRIORITY_1]        = 0x38,
271         [DMA_PRIORITY_2]        = 0x3C,
272         [DMA_RING0_TIMEOUT]     = 0x2C,
273         [DMA_RING1_TIMEOUT]     = 0x30,
274         [DMA_RING2_TIMEOUT]     = 0x34,
275         [DMA_RING3_TIMEOUT]     = 0x38,
276         [DMA_RING4_TIMEOUT]     = 0x3c,
277         [DMA_RING5_TIMEOUT]     = 0x40,
278         [DMA_RING6_TIMEOUT]     = 0x44,
279         [DMA_RING7_TIMEOUT]     = 0x48,
280         [DMA_RING8_TIMEOUT]     = 0x4c,
281         [DMA_RING9_TIMEOUT]     = 0x50,
282         [DMA_RING10_TIMEOUT]    = 0x54,
283         [DMA_RING11_TIMEOUT]    = 0x58,
284         [DMA_RING12_TIMEOUT]    = 0x5c,
285         [DMA_RING13_TIMEOUT]    = 0x60,
286         [DMA_RING14_TIMEOUT]    = 0x64,
287         [DMA_RING15_TIMEOUT]    = 0x68,
288         [DMA_RING16_TIMEOUT]    = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292         [DMA_CTRL]              = 0x00,
293         [DMA_STATUS]            = 0x04,
294         [DMA_SCB_BURST_SIZE]    = 0x0C,
295         [DMA_ARB_CTRL]          = 0x30,
296         [DMA_PRIORITY_0]        = 0x34,
297         [DMA_PRIORITY_1]        = 0x38,
298         [DMA_PRIORITY_2]        = 0x3C,
299         [DMA_RING0_TIMEOUT]     = 0x2C,
300         [DMA_RING1_TIMEOUT]     = 0x30,
301         [DMA_RING2_TIMEOUT]     = 0x34,
302         [DMA_RING3_TIMEOUT]     = 0x38,
303         [DMA_RING4_TIMEOUT]     = 0x3c,
304         [DMA_RING5_TIMEOUT]     = 0x40,
305         [DMA_RING6_TIMEOUT]     = 0x44,
306         [DMA_RING7_TIMEOUT]     = 0x48,
307         [DMA_RING8_TIMEOUT]     = 0x4c,
308         [DMA_RING9_TIMEOUT]     = 0x50,
309         [DMA_RING10_TIMEOUT]    = 0x54,
310         [DMA_RING11_TIMEOUT]    = 0x58,
311         [DMA_RING12_TIMEOUT]    = 0x5c,
312         [DMA_RING13_TIMEOUT]    = 0x60,
313         [DMA_RING14_TIMEOUT]    = 0x64,
314         [DMA_RING15_TIMEOUT]    = 0x68,
315         [DMA_RING16_TIMEOUT]    = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323         return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327                                       enum dma_reg r)
328 {
329         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334                                         u32 val, enum dma_reg r)
335 {
336         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341                                       enum dma_reg r)
342 {
343         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348                                         u32 val, enum dma_reg r)
349 {
350         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359         TDMA_READ_PTR = 0,
360         RDMA_WRITE_PTR = TDMA_READ_PTR,
361         TDMA_READ_PTR_HI,
362         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363         TDMA_CONS_INDEX,
364         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365         TDMA_PROD_INDEX,
366         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367         DMA_RING_BUF_SIZE,
368         DMA_START_ADDR,
369         DMA_START_ADDR_HI,
370         DMA_END_ADDR,
371         DMA_END_ADDR_HI,
372         DMA_MBUF_DONE_THRESH,
373         TDMA_FLOW_PERIOD,
374         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375         TDMA_WRITE_PTR,
376         RDMA_READ_PTR = TDMA_WRITE_PTR,
377         TDMA_WRITE_PTR_HI,
378         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387         [TDMA_READ_PTR]                 = 0x00,
388         [TDMA_READ_PTR_HI]              = 0x04,
389         [TDMA_CONS_INDEX]               = 0x08,
390         [TDMA_PROD_INDEX]               = 0x0C,
391         [DMA_RING_BUF_SIZE]             = 0x10,
392         [DMA_START_ADDR]                = 0x14,
393         [DMA_START_ADDR_HI]             = 0x18,
394         [DMA_END_ADDR]                  = 0x1C,
395         [DMA_END_ADDR_HI]               = 0x20,
396         [DMA_MBUF_DONE_THRESH]          = 0x24,
397         [TDMA_FLOW_PERIOD]              = 0x28,
398         [TDMA_WRITE_PTR]                = 0x2C,
399         [TDMA_WRITE_PTR_HI]             = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_CONS_INDEX]               = 0x04,
405         [TDMA_PROD_INDEX]               = 0x08,
406         [DMA_RING_BUF_SIZE]             = 0x0C,
407         [DMA_START_ADDR]                = 0x10,
408         [DMA_END_ADDR]                  = 0x14,
409         [DMA_MBUF_DONE_THRESH]          = 0x18,
410         [TDMA_FLOW_PERIOD]              = 0x1C,
411         [TDMA_WRITE_PTR]                = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418                                            unsigned int ring,
419                                            enum dma_ring_reg r)
420 {
421         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422                         (DMA_RING_SIZE * ring) +
423                         genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427                                              unsigned int ring, u32 val,
428                                              enum dma_ring_reg r)
429 {
430         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431                         (DMA_RING_SIZE * ring) +
432                         genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436                                            unsigned int ring,
437                                            enum dma_ring_reg r)
438 {
439         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445                                              unsigned int ring, u32 val,
446                                              enum dma_ring_reg r)
447 {
448         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449                         (DMA_RING_SIZE * ring) +
450                         genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_get_settings(struct net_device *dev,
454                                  struct ethtool_cmd *cmd)
455 {
456         struct bcmgenet_priv *priv = netdev_priv(dev);
457
458         if (!netif_running(dev))
459                 return -EINVAL;
460
461         if (!priv->phydev)
462                 return -ENODEV;
463
464         return phy_ethtool_gset(priv->phydev, cmd);
465 }
466
467 static int bcmgenet_set_settings(struct net_device *dev,
468                                  struct ethtool_cmd *cmd)
469 {
470         struct bcmgenet_priv *priv = netdev_priv(dev);
471
472         if (!netif_running(dev))
473                 return -EINVAL;
474
475         if (!priv->phydev)
476                 return -ENODEV;
477
478         return phy_ethtool_sset(priv->phydev, cmd);
479 }
480
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482                                 netdev_features_t wanted)
483 {
484         struct bcmgenet_priv *priv = netdev_priv(dev);
485         u32 rbuf_chk_ctrl;
486         bool rx_csum_en;
487
488         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489
490         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491
492         /* enable rx checksumming */
493         if (rx_csum_en)
494                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495         else
496                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497         priv->desc_rxchk_en = rx_csum_en;
498
499         /* If UniMAC forwards CRC, we need to skip over it to get
500          * a valid CHK bit to be set in the per-packet status word
501         */
502         if (rx_csum_en && priv->crc_fwd_en)
503                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504         else
505                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506
507         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508
509         return 0;
510 }
511
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513                                 netdev_features_t wanted)
514 {
515         struct bcmgenet_priv *priv = netdev_priv(dev);
516         bool desc_64b_en;
517         u32 tbuf_ctrl, rbuf_ctrl;
518
519         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521
522         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523
524         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525         if (desc_64b_en) {
526                 tbuf_ctrl |= RBUF_64B_EN;
527                 rbuf_ctrl |= RBUF_64B_EN;
528         } else {
529                 tbuf_ctrl &= ~RBUF_64B_EN;
530                 rbuf_ctrl &= ~RBUF_64B_EN;
531         }
532         priv->desc_64b_en = desc_64b_en;
533
534         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536
537         return 0;
538 }
539
540 static int bcmgenet_set_features(struct net_device *dev,
541                                  netdev_features_t features)
542 {
543         netdev_features_t changed = features ^ dev->features;
544         netdev_features_t wanted = dev->wanted_features;
545         int ret = 0;
546
547         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548                 ret = bcmgenet_set_tx_csum(dev, wanted);
549         if (changed & (NETIF_F_RXCSUM))
550                 ret = bcmgenet_set_rx_csum(dev, wanted);
551
552         return ret;
553 }
554
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557         struct bcmgenet_priv *priv = netdev_priv(dev);
558
559         return priv->msg_enable;
560 }
561
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564         struct bcmgenet_priv *priv = netdev_priv(dev);
565
566         priv->msg_enable = level;
567 }
568
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570                                  struct ethtool_coalesce *ec)
571 {
572         struct bcmgenet_priv *priv = netdev_priv(dev);
573
574         ec->tx_max_coalesced_frames =
575                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576                                          DMA_MBUF_DONE_THRESH);
577         ec->rx_max_coalesced_frames =
578                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579                                          DMA_MBUF_DONE_THRESH);
580         ec->rx_coalesce_usecs =
581                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582
583         return 0;
584 }
585
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587                                  struct ethtool_coalesce *ec)
588 {
589         struct bcmgenet_priv *priv = netdev_priv(dev);
590         unsigned int i;
591         u32 reg;
592
593         /* Base system clock is 125Mhz, DMA timeout is this reference clock
594          * divided by 1024, which yields roughly 8.192us, our maximum value
595          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596          */
597         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598             ec->tx_max_coalesced_frames == 0 ||
599             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601                 return -EINVAL;
602
603         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604                 return -EINVAL;
605
606         /* GENET TDMA hardware does not support a configurable timeout, but will
607          * always generate an interrupt either after MBDONE packets have been
608          * transmitted, or when the ring is emtpy.
609          */
610         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612                 return -EOPNOTSUPP;
613
614         /* Program all TX queues with the same values, as there is no
615          * ethtool knob to do coalescing on a per-queue basis
616          */
617         for (i = 0; i < priv->hw_params->tx_queues; i++)
618                 bcmgenet_tdma_ring_writel(priv, i,
619                                           ec->tx_max_coalesced_frames,
620                                           DMA_MBUF_DONE_THRESH);
621         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
622                                   ec->tx_max_coalesced_frames,
623                                   DMA_MBUF_DONE_THRESH);
624
625         for (i = 0; i < priv->hw_params->rx_queues; i++) {
626                 bcmgenet_rdma_ring_writel(priv, i,
627                                           ec->rx_max_coalesced_frames,
628                                           DMA_MBUF_DONE_THRESH);
629
630                 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
631                 reg &= ~DMA_TIMEOUT_MASK;
632                 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
633                 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
634         }
635
636         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
637                                   ec->rx_max_coalesced_frames,
638                                   DMA_MBUF_DONE_THRESH);
639
640         reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
641         reg &= ~DMA_TIMEOUT_MASK;
642         reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
643         bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
644
645         return 0;
646 }
647
648 /* standard ethtool support functions. */
649 enum bcmgenet_stat_type {
650         BCMGENET_STAT_NETDEV = -1,
651         BCMGENET_STAT_MIB_RX,
652         BCMGENET_STAT_MIB_TX,
653         BCMGENET_STAT_RUNT,
654         BCMGENET_STAT_MISC,
655         BCMGENET_STAT_SOFT,
656 };
657
658 struct bcmgenet_stats {
659         char stat_string[ETH_GSTRING_LEN];
660         int stat_sizeof;
661         int stat_offset;
662         enum bcmgenet_stat_type type;
663         /* reg offset from UMAC base for misc counters */
664         u16 reg_offset;
665 };
666
667 #define STAT_NETDEV(m) { \
668         .stat_string = __stringify(m), \
669         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
670         .stat_offset = offsetof(struct net_device_stats, m), \
671         .type = BCMGENET_STAT_NETDEV, \
672 }
673
674 #define STAT_GENET_MIB(str, m, _type) { \
675         .stat_string = str, \
676         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
677         .stat_offset = offsetof(struct bcmgenet_priv, m), \
678         .type = _type, \
679 }
680
681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685
686 #define STAT_GENET_MISC(str, m, offset) { \
687         .stat_string = str, \
688         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
689         .stat_offset = offsetof(struct bcmgenet_priv, m), \
690         .type = BCMGENET_STAT_MISC, \
691         .reg_offset = offset, \
692 }
693
694
695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
696  * between the end of TX stats and the beginning of the RX RUNT
697  */
698 #define BCMGENET_STAT_OFFSET    0xc
699
700 /* Hardware counters must be kept in sync because the order/offset
701  * is important here (order in structure declaration = order in hardware)
702  */
703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
704         /* general stats */
705         STAT_NETDEV(rx_packets),
706         STAT_NETDEV(tx_packets),
707         STAT_NETDEV(rx_bytes),
708         STAT_NETDEV(tx_bytes),
709         STAT_NETDEV(rx_errors),
710         STAT_NETDEV(tx_errors),
711         STAT_NETDEV(rx_dropped),
712         STAT_NETDEV(tx_dropped),
713         STAT_NETDEV(multicast),
714         /* UniMAC RSV counters */
715         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
716         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
717         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
718         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
719         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
720         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
721         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
722         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
723         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
724         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
725         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
726         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
727         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
728         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
729         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
730         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
731         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
732         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
733         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
734         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
735         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
736         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
737         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
738         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
739         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
740         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
741         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
742         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
743         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
744         /* UniMAC TSV counters */
745         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
746         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
747         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
748         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
749         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
750         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
751         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
752         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
753         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
754         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
755         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
756         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
757         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
758         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
759         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
760         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
761         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
762         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
763         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
764         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
765         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
766         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
767         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
768         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
769         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
770         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
771         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
772         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
773         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
774         /* UniMAC RUNT counters */
775         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
776         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
777         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
778         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
779         /* Misc UniMAC counters */
780         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
781                         UMAC_RBUF_OVFL_CNT),
782         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
783         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
784         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
785         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
786         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
787 };
788
789 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
790
791 static void bcmgenet_get_drvinfo(struct net_device *dev,
792                                  struct ethtool_drvinfo *info)
793 {
794         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
795         strlcpy(info->version, "v2.0", sizeof(info->version));
796 }
797
798 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
799 {
800         switch (string_set) {
801         case ETH_SS_STATS:
802                 return BCMGENET_STATS_LEN;
803         default:
804                 return -EOPNOTSUPP;
805         }
806 }
807
808 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
809                                  u8 *data)
810 {
811         int i;
812
813         switch (stringset) {
814         case ETH_SS_STATS:
815                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
816                         memcpy(data + i * ETH_GSTRING_LEN,
817                                bcmgenet_gstrings_stats[i].stat_string,
818                                ETH_GSTRING_LEN);
819                 }
820                 break;
821         }
822 }
823
824 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
825 {
826         int i, j = 0;
827
828         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
829                 const struct bcmgenet_stats *s;
830                 u8 offset = 0;
831                 u32 val = 0;
832                 char *p;
833
834                 s = &bcmgenet_gstrings_stats[i];
835                 switch (s->type) {
836                 case BCMGENET_STAT_NETDEV:
837                 case BCMGENET_STAT_SOFT:
838                         continue;
839                 case BCMGENET_STAT_MIB_RX:
840                 case BCMGENET_STAT_MIB_TX:
841                 case BCMGENET_STAT_RUNT:
842                         if (s->type != BCMGENET_STAT_MIB_RX)
843                                 offset = BCMGENET_STAT_OFFSET;
844                         val = bcmgenet_umac_readl(priv,
845                                                   UMAC_MIB_START + j + offset);
846                         break;
847                 case BCMGENET_STAT_MISC:
848                         val = bcmgenet_umac_readl(priv, s->reg_offset);
849                         /* clear if overflowed */
850                         if (val == ~0)
851                                 bcmgenet_umac_writel(priv, 0, s->reg_offset);
852                         break;
853                 }
854
855                 j += s->stat_sizeof;
856                 p = (char *)priv + s->stat_offset;
857                 *(u32 *)p = val;
858         }
859 }
860
861 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
862                                        struct ethtool_stats *stats,
863                                        u64 *data)
864 {
865         struct bcmgenet_priv *priv = netdev_priv(dev);
866         int i;
867
868         if (netif_running(dev))
869                 bcmgenet_update_mib_counters(priv);
870
871         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
872                 const struct bcmgenet_stats *s;
873                 char *p;
874
875                 s = &bcmgenet_gstrings_stats[i];
876                 if (s->type == BCMGENET_STAT_NETDEV)
877                         p = (char *)&dev->stats;
878                 else
879                         p = (char *)priv;
880                 p += s->stat_offset;
881                 if (sizeof(unsigned long) != sizeof(u32) &&
882                     s->stat_sizeof == sizeof(unsigned long))
883                         data[i] = *(unsigned long *)p;
884                 else
885                         data[i] = *(u32 *)p;
886         }
887 }
888
889 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
890 {
891         struct bcmgenet_priv *priv = netdev_priv(dev);
892         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
893         u32 reg;
894
895         if (enable && !priv->clk_eee_enabled) {
896                 clk_prepare_enable(priv->clk_eee);
897                 priv->clk_eee_enabled = true;
898         }
899
900         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
901         if (enable)
902                 reg |= EEE_EN;
903         else
904                 reg &= ~EEE_EN;
905         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
906
907         /* Enable EEE and switch to a 27Mhz clock automatically */
908         reg = __raw_readl(priv->base + off);
909         if (enable)
910                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
911         else
912                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
913         __raw_writel(reg, priv->base + off);
914
915         /* Do the same for thing for RBUF */
916         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
917         if (enable)
918                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
919         else
920                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
921         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
922
923         if (!enable && priv->clk_eee_enabled) {
924                 clk_disable_unprepare(priv->clk_eee);
925                 priv->clk_eee_enabled = false;
926         }
927
928         priv->eee.eee_enabled = enable;
929         priv->eee.eee_active = enable;
930 }
931
932 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
933 {
934         struct bcmgenet_priv *priv = netdev_priv(dev);
935         struct ethtool_eee *p = &priv->eee;
936
937         if (GENET_IS_V1(priv))
938                 return -EOPNOTSUPP;
939
940         e->eee_enabled = p->eee_enabled;
941         e->eee_active = p->eee_active;
942         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
943
944         return phy_ethtool_get_eee(priv->phydev, e);
945 }
946
947 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
948 {
949         struct bcmgenet_priv *priv = netdev_priv(dev);
950         struct ethtool_eee *p = &priv->eee;
951         int ret = 0;
952
953         if (GENET_IS_V1(priv))
954                 return -EOPNOTSUPP;
955
956         p->eee_enabled = e->eee_enabled;
957
958         if (!p->eee_enabled) {
959                 bcmgenet_eee_enable_set(dev, false);
960         } else {
961                 ret = phy_init_eee(priv->phydev, 0);
962                 if (ret) {
963                         netif_err(priv, hw, dev, "EEE initialization failed\n");
964                         return ret;
965                 }
966
967                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
968                 bcmgenet_eee_enable_set(dev, true);
969         }
970
971         return phy_ethtool_set_eee(priv->phydev, e);
972 }
973
974 static int bcmgenet_nway_reset(struct net_device *dev)
975 {
976         struct bcmgenet_priv *priv = netdev_priv(dev);
977
978         return genphy_restart_aneg(priv->phydev);
979 }
980
981 /* standard ethtool support functions. */
982 static struct ethtool_ops bcmgenet_ethtool_ops = {
983         .get_strings            = bcmgenet_get_strings,
984         .get_sset_count         = bcmgenet_get_sset_count,
985         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
986         .get_settings           = bcmgenet_get_settings,
987         .set_settings           = bcmgenet_set_settings,
988         .get_drvinfo            = bcmgenet_get_drvinfo,
989         .get_link               = ethtool_op_get_link,
990         .get_msglevel           = bcmgenet_get_msglevel,
991         .set_msglevel           = bcmgenet_set_msglevel,
992         .get_wol                = bcmgenet_get_wol,
993         .set_wol                = bcmgenet_set_wol,
994         .get_eee                = bcmgenet_get_eee,
995         .set_eee                = bcmgenet_set_eee,
996         .nway_reset             = bcmgenet_nway_reset,
997         .get_coalesce           = bcmgenet_get_coalesce,
998         .set_coalesce           = bcmgenet_set_coalesce,
999 };
1000
1001 /* Power down the unimac, based on mode. */
1002 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1003                                 enum bcmgenet_power_mode mode)
1004 {
1005         int ret = 0;
1006         u32 reg;
1007
1008         switch (mode) {
1009         case GENET_POWER_CABLE_SENSE:
1010                 phy_detach(priv->phydev);
1011                 break;
1012
1013         case GENET_POWER_WOL_MAGIC:
1014                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1015                 break;
1016
1017         case GENET_POWER_PASSIVE:
1018                 /* Power down LED */
1019                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1020                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1021                         reg |= (EXT_PWR_DOWN_PHY |
1022                                 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1023                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1024
1025                         bcmgenet_phy_power_set(priv->dev, false);
1026                 }
1027                 break;
1028         default:
1029                 break;
1030         }
1031
1032         return 0;
1033 }
1034
1035 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1036                               enum bcmgenet_power_mode mode)
1037 {
1038         u32 reg;
1039
1040         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1041                 return;
1042
1043         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1044
1045         switch (mode) {
1046         case GENET_POWER_PASSIVE:
1047                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1048                                 EXT_PWR_DOWN_BIAS);
1049                 /* fallthrough */
1050         case GENET_POWER_CABLE_SENSE:
1051                 /* enable APD */
1052                 reg |= EXT_PWR_DN_EN_LD;
1053                 break;
1054         case GENET_POWER_WOL_MAGIC:
1055                 bcmgenet_wol_power_up_cfg(priv, mode);
1056                 return;
1057         default:
1058                 break;
1059         }
1060
1061         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1062         if (mode == GENET_POWER_PASSIVE) {
1063                 bcmgenet_phy_power_set(priv->dev, true);
1064                 bcmgenet_mii_reset(priv->dev);
1065         }
1066 }
1067
1068 /* ioctl handle special commands that are not present in ethtool. */
1069 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1070 {
1071         struct bcmgenet_priv *priv = netdev_priv(dev);
1072         int val = 0;
1073
1074         if (!netif_running(dev))
1075                 return -EINVAL;
1076
1077         switch (cmd) {
1078         case SIOCGMIIPHY:
1079         case SIOCGMIIREG:
1080         case SIOCSMIIREG:
1081                 if (!priv->phydev)
1082                         val = -ENODEV;
1083                 else
1084                         val = phy_mii_ioctl(priv->phydev, rq, cmd);
1085                 break;
1086
1087         default:
1088                 val = -EINVAL;
1089                 break;
1090         }
1091
1092         return val;
1093 }
1094
1095 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1096                                          struct bcmgenet_tx_ring *ring)
1097 {
1098         struct enet_cb *tx_cb_ptr;
1099
1100         tx_cb_ptr = ring->cbs;
1101         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1102
1103         /* Advancing local write pointer */
1104         if (ring->write_ptr == ring->end_ptr)
1105                 ring->write_ptr = ring->cb_ptr;
1106         else
1107                 ring->write_ptr++;
1108
1109         return tx_cb_ptr;
1110 }
1111
1112 /* Simple helper to free a control block's resources */
1113 static void bcmgenet_free_cb(struct enet_cb *cb)
1114 {
1115         dev_kfree_skb_any(cb->skb);
1116         cb->skb = NULL;
1117         dma_unmap_addr_set(cb, dma_addr, 0);
1118 }
1119
1120 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1121 {
1122         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1123                                  INTRL2_CPU_MASK_SET);
1124 }
1125
1126 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1127 {
1128         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1129                                  INTRL2_CPU_MASK_CLEAR);
1130 }
1131
1132 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1133 {
1134         bcmgenet_intrl2_1_writel(ring->priv,
1135                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1136                                  INTRL2_CPU_MASK_SET);
1137 }
1138
1139 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1140 {
1141         bcmgenet_intrl2_1_writel(ring->priv,
1142                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1143                                  INTRL2_CPU_MASK_CLEAR);
1144 }
1145
1146 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1147 {
1148         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1149                                  INTRL2_CPU_MASK_SET);
1150 }
1151
1152 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1153 {
1154         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1155                                  INTRL2_CPU_MASK_CLEAR);
1156 }
1157
1158 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1159 {
1160         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1161                                  INTRL2_CPU_MASK_CLEAR);
1162 }
1163
1164 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1165 {
1166         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1167                                  INTRL2_CPU_MASK_SET);
1168 }
1169
1170 /* Unlocked version of the reclaim routine */
1171 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1172                                           struct bcmgenet_tx_ring *ring)
1173 {
1174         struct bcmgenet_priv *priv = netdev_priv(dev);
1175         struct enet_cb *tx_cb_ptr;
1176         struct netdev_queue *txq;
1177         unsigned int pkts_compl = 0;
1178         unsigned int bytes_compl = 0;
1179         unsigned int c_index;
1180         unsigned int txbds_ready;
1181         unsigned int txbds_processed = 0;
1182
1183         /* Compute how many buffers are transmitted since last xmit call */
1184         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1185         c_index &= DMA_C_INDEX_MASK;
1186
1187         if (likely(c_index >= ring->c_index))
1188                 txbds_ready = c_index - ring->c_index;
1189         else
1190                 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1191
1192         netif_dbg(priv, tx_done, dev,
1193                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1194                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1195
1196         /* Reclaim transmitted buffers */
1197         while (txbds_processed < txbds_ready) {
1198                 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1199                 if (tx_cb_ptr->skb) {
1200                         pkts_compl++;
1201                         bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1202                         dma_unmap_single(&dev->dev,
1203                                          dma_unmap_addr(tx_cb_ptr, dma_addr),
1204                                          dma_unmap_len(tx_cb_ptr, dma_len),
1205                                          DMA_TO_DEVICE);
1206                         bcmgenet_free_cb(tx_cb_ptr);
1207                 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1208                         dma_unmap_page(&dev->dev,
1209                                        dma_unmap_addr(tx_cb_ptr, dma_addr),
1210                                        dma_unmap_len(tx_cb_ptr, dma_len),
1211                                        DMA_TO_DEVICE);
1212                         dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1213                 }
1214
1215                 txbds_processed++;
1216                 if (likely(ring->clean_ptr < ring->end_ptr))
1217                         ring->clean_ptr++;
1218                 else
1219                         ring->clean_ptr = ring->cb_ptr;
1220         }
1221
1222         ring->free_bds += txbds_processed;
1223         ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1224
1225         dev->stats.tx_packets += pkts_compl;
1226         dev->stats.tx_bytes += bytes_compl;
1227
1228         txq = netdev_get_tx_queue(dev, ring->queue);
1229         netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
1230
1231         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1232                 if (netif_tx_queue_stopped(txq))
1233                         netif_tx_wake_queue(txq);
1234         }
1235
1236         return pkts_compl;
1237 }
1238
1239 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1240                                 struct bcmgenet_tx_ring *ring)
1241 {
1242         unsigned int released;
1243         unsigned long flags;
1244
1245         spin_lock_irqsave(&ring->lock, flags);
1246         released = __bcmgenet_tx_reclaim(dev, ring);
1247         spin_unlock_irqrestore(&ring->lock, flags);
1248
1249         return released;
1250 }
1251
1252 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1253 {
1254         struct bcmgenet_tx_ring *ring =
1255                 container_of(napi, struct bcmgenet_tx_ring, napi);
1256         unsigned int work_done = 0;
1257
1258         work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1259
1260         if (work_done == 0) {
1261                 napi_complete(napi);
1262                 ring->int_enable(ring);
1263
1264                 return 0;
1265         }
1266
1267         return budget;
1268 }
1269
1270 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1271 {
1272         struct bcmgenet_priv *priv = netdev_priv(dev);
1273         int i;
1274
1275         if (netif_is_multiqueue(dev)) {
1276                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1277                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1278         }
1279
1280         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1281 }
1282
1283 /* Transmits a single SKB (either head of a fragment or a single SKB)
1284  * caller must hold priv->lock
1285  */
1286 static int bcmgenet_xmit_single(struct net_device *dev,
1287                                 struct sk_buff *skb,
1288                                 u16 dma_desc_flags,
1289                                 struct bcmgenet_tx_ring *ring)
1290 {
1291         struct bcmgenet_priv *priv = netdev_priv(dev);
1292         struct device *kdev = &priv->pdev->dev;
1293         struct enet_cb *tx_cb_ptr;
1294         unsigned int skb_len;
1295         dma_addr_t mapping;
1296         u32 length_status;
1297         int ret;
1298
1299         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1300
1301         if (unlikely(!tx_cb_ptr))
1302                 BUG();
1303
1304         tx_cb_ptr->skb = skb;
1305
1306         skb_len = skb_headlen(skb);
1307
1308         mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1309         ret = dma_mapping_error(kdev, mapping);
1310         if (ret) {
1311                 priv->mib.tx_dma_failed++;
1312                 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1313                 dev_kfree_skb(skb);
1314                 return ret;
1315         }
1316
1317         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1318         dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1319         length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1320                         (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1321                         DMA_TX_APPEND_CRC;
1322
1323         if (skb->ip_summed == CHECKSUM_PARTIAL)
1324                 length_status |= DMA_TX_DO_CSUM;
1325
1326         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1327
1328         return 0;
1329 }
1330
1331 /* Transmit a SKB fragment */
1332 static int bcmgenet_xmit_frag(struct net_device *dev,
1333                               skb_frag_t *frag,
1334                               u16 dma_desc_flags,
1335                               struct bcmgenet_tx_ring *ring)
1336 {
1337         struct bcmgenet_priv *priv = netdev_priv(dev);
1338         struct device *kdev = &priv->pdev->dev;
1339         struct enet_cb *tx_cb_ptr;
1340         unsigned int frag_size;
1341         dma_addr_t mapping;
1342         int ret;
1343
1344         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1345
1346         if (unlikely(!tx_cb_ptr))
1347                 BUG();
1348
1349         tx_cb_ptr->skb = NULL;
1350
1351         frag_size = skb_frag_size(frag);
1352
1353         mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1354         ret = dma_mapping_error(kdev, mapping);
1355         if (ret) {
1356                 priv->mib.tx_dma_failed++;
1357                 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1358                           __func__);
1359                 return ret;
1360         }
1361
1362         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1363         dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1364
1365         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1366                     (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1367                     (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1368
1369         return 0;
1370 }
1371
1372 /* Reallocate the SKB to put enough headroom in front of it and insert
1373  * the transmit checksum offsets in the descriptors
1374  */
1375 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1376                                             struct sk_buff *skb)
1377 {
1378         struct status_64 *status = NULL;
1379         struct sk_buff *new_skb;
1380         u16 offset;
1381         u8 ip_proto;
1382         u16 ip_ver;
1383         u32 tx_csum_info;
1384
1385         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1386                 /* If 64 byte status block enabled, must make sure skb has
1387                  * enough headroom for us to insert 64B status block.
1388                  */
1389                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1390                 dev_kfree_skb(skb);
1391                 if (!new_skb) {
1392                         dev->stats.tx_dropped++;
1393                         return NULL;
1394                 }
1395                 skb = new_skb;
1396         }
1397
1398         skb_push(skb, sizeof(*status));
1399         status = (struct status_64 *)skb->data;
1400
1401         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1402                 ip_ver = htons(skb->protocol);
1403                 switch (ip_ver) {
1404                 case ETH_P_IP:
1405                         ip_proto = ip_hdr(skb)->protocol;
1406                         break;
1407                 case ETH_P_IPV6:
1408                         ip_proto = ipv6_hdr(skb)->nexthdr;
1409                         break;
1410                 default:
1411                         return skb;
1412                 }
1413
1414                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1415                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1416                                 (offset + skb->csum_offset);
1417
1418                 /* Set the length valid bit for TCP and UDP and just set
1419                  * the special UDP flag for IPv4, else just set to 0.
1420                  */
1421                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1422                         tx_csum_info |= STATUS_TX_CSUM_LV;
1423                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1424                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1425                 } else {
1426                         tx_csum_info = 0;
1427                 }
1428
1429                 status->tx_csum_info = tx_csum_info;
1430         }
1431
1432         return skb;
1433 }
1434
1435 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1436 {
1437         struct bcmgenet_priv *priv = netdev_priv(dev);
1438         struct bcmgenet_tx_ring *ring = NULL;
1439         struct netdev_queue *txq;
1440         unsigned long flags = 0;
1441         int nr_frags, index;
1442         u16 dma_desc_flags;
1443         int ret;
1444         int i;
1445
1446         index = skb_get_queue_mapping(skb);
1447         /* Mapping strategy:
1448          * queue_mapping = 0, unclassified, packet xmited through ring16
1449          * queue_mapping = 1, goes to ring 0. (highest priority queue
1450          * queue_mapping = 2, goes to ring 1.
1451          * queue_mapping = 3, goes to ring 2.
1452          * queue_mapping = 4, goes to ring 3.
1453          */
1454         if (index == 0)
1455                 index = DESC_INDEX;
1456         else
1457                 index -= 1;
1458
1459         ring = &priv->tx_rings[index];
1460         txq = netdev_get_tx_queue(dev, ring->queue);
1461
1462         nr_frags = skb_shinfo(skb)->nr_frags;
1463
1464         spin_lock_irqsave(&ring->lock, flags);
1465         if (ring->free_bds <= (nr_frags + 1)) {
1466                 if (!netif_tx_queue_stopped(txq)) {
1467                         netif_tx_stop_queue(txq);
1468                         netdev_err(dev,
1469                                    "%s: tx ring %d full when queue %d awake\n",
1470                                    __func__, index, ring->queue);
1471                 }
1472                 ret = NETDEV_TX_BUSY;
1473                 goto out;
1474         }
1475
1476         if (skb_padto(skb, ETH_ZLEN)) {
1477                 ret = NETDEV_TX_OK;
1478                 goto out;
1479         }
1480
1481         /* Retain how many bytes will be sent on the wire, without TSB inserted
1482          * by transmit checksum offload
1483          */
1484         GENET_CB(skb)->bytes_sent = skb->len;
1485
1486         /* set the SKB transmit checksum */
1487         if (priv->desc_64b_en) {
1488                 skb = bcmgenet_put_tx_csum(dev, skb);
1489                 if (!skb) {
1490                         ret = NETDEV_TX_OK;
1491                         goto out;
1492                 }
1493         }
1494
1495         dma_desc_flags = DMA_SOP;
1496         if (nr_frags == 0)
1497                 dma_desc_flags |= DMA_EOP;
1498
1499         /* Transmit single SKB or head of fragment list */
1500         ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1501         if (ret) {
1502                 ret = NETDEV_TX_OK;
1503                 goto out;
1504         }
1505
1506         /* xmit fragment */
1507         for (i = 0; i < nr_frags; i++) {
1508                 ret = bcmgenet_xmit_frag(dev,
1509                                          &skb_shinfo(skb)->frags[i],
1510                                          (i == nr_frags - 1) ? DMA_EOP : 0,
1511                                          ring);
1512                 if (ret) {
1513                         ret = NETDEV_TX_OK;
1514                         goto out;
1515                 }
1516         }
1517
1518         skb_tx_timestamp(skb);
1519
1520         /* Decrement total BD count and advance our write pointer */
1521         ring->free_bds -= nr_frags + 1;
1522         ring->prod_index += nr_frags + 1;
1523         ring->prod_index &= DMA_P_INDEX_MASK;
1524
1525         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1526
1527         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1528                 netif_tx_stop_queue(txq);
1529
1530         if (!skb->xmit_more || netif_xmit_stopped(txq))
1531                 /* Packets are ready, update producer index */
1532                 bcmgenet_tdma_ring_writel(priv, ring->index,
1533                                           ring->prod_index, TDMA_PROD_INDEX);
1534 out:
1535         spin_unlock_irqrestore(&ring->lock, flags);
1536
1537         return ret;
1538 }
1539
1540 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1541                                           struct enet_cb *cb)
1542 {
1543         struct device *kdev = &priv->pdev->dev;
1544         struct sk_buff *skb;
1545         struct sk_buff *rx_skb;
1546         dma_addr_t mapping;
1547
1548         /* Allocate a new Rx skb */
1549         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1550         if (!skb) {
1551                 priv->mib.alloc_rx_buff_failed++;
1552                 netif_err(priv, rx_err, priv->dev,
1553                           "%s: Rx skb allocation failed\n", __func__);
1554                 return NULL;
1555         }
1556
1557         /* DMA-map the new Rx skb */
1558         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1559                                  DMA_FROM_DEVICE);
1560         if (dma_mapping_error(kdev, mapping)) {
1561                 priv->mib.rx_dma_failed++;
1562                 dev_kfree_skb_any(skb);
1563                 netif_err(priv, rx_err, priv->dev,
1564                           "%s: Rx skb DMA mapping failed\n", __func__);
1565                 return NULL;
1566         }
1567
1568         /* Grab the current Rx skb from the ring and DMA-unmap it */
1569         rx_skb = cb->skb;
1570         if (likely(rx_skb))
1571                 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1572                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1573
1574         /* Put the new Rx skb on the ring */
1575         cb->skb = skb;
1576         dma_unmap_addr_set(cb, dma_addr, mapping);
1577         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1578
1579         /* Return the current Rx skb to caller */
1580         return rx_skb;
1581 }
1582
1583 /* bcmgenet_desc_rx - descriptor based rx process.
1584  * this could be called from bottom half, or from NAPI polling method.
1585  */
1586 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1587                                      unsigned int budget)
1588 {
1589         struct bcmgenet_priv *priv = ring->priv;
1590         struct net_device *dev = priv->dev;
1591         struct enet_cb *cb;
1592         struct sk_buff *skb;
1593         u32 dma_length_status;
1594         unsigned long dma_flag;
1595         int len;
1596         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1597         unsigned int p_index;
1598         unsigned int discards;
1599         unsigned int chksum_ok = 0;
1600
1601         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1602
1603         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1604                    DMA_P_INDEX_DISCARD_CNT_MASK;
1605         if (discards > ring->old_discards) {
1606                 discards = discards - ring->old_discards;
1607                 dev->stats.rx_missed_errors += discards;
1608                 dev->stats.rx_errors += discards;
1609                 ring->old_discards += discards;
1610
1611                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1612                 if (ring->old_discards >= 0xC000) {
1613                         ring->old_discards = 0;
1614                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1615                                                   RDMA_PROD_INDEX);
1616                 }
1617         }
1618
1619         p_index &= DMA_P_INDEX_MASK;
1620
1621         if (likely(p_index >= ring->c_index))
1622                 rxpkttoprocess = p_index - ring->c_index;
1623         else
1624                 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1625                                  p_index;
1626
1627         netif_dbg(priv, rx_status, dev,
1628                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1629
1630         while ((rxpktprocessed < rxpkttoprocess) &&
1631                (rxpktprocessed < budget)) {
1632                 cb = &priv->rx_cbs[ring->read_ptr];
1633                 skb = bcmgenet_rx_refill(priv, cb);
1634
1635                 if (unlikely(!skb)) {
1636                         dev->stats.rx_dropped++;
1637                         goto next;
1638                 }
1639
1640                 if (!priv->desc_64b_en) {
1641                         dma_length_status =
1642                                 dmadesc_get_length_status(priv, cb->bd_addr);
1643                 } else {
1644                         struct status_64 *status;
1645
1646                         status = (struct status_64 *)skb->data;
1647                         dma_length_status = status->length_status;
1648                 }
1649
1650                 /* DMA flags and length are still valid no matter how
1651                  * we got the Receive Status Vector (64B RSB or register)
1652                  */
1653                 dma_flag = dma_length_status & 0xffff;
1654                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1655
1656                 netif_dbg(priv, rx_status, dev,
1657                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1658                           __func__, p_index, ring->c_index,
1659                           ring->read_ptr, dma_length_status);
1660
1661                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1662                         netif_err(priv, rx_status, dev,
1663                                   "dropping fragmented packet!\n");
1664                         dev->stats.rx_errors++;
1665                         dev_kfree_skb_any(skb);
1666                         goto next;
1667                 }
1668
1669                 /* report errors */
1670                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1671                                                 DMA_RX_OV |
1672                                                 DMA_RX_NO |
1673                                                 DMA_RX_LG |
1674                                                 DMA_RX_RXER))) {
1675                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1676                                   (unsigned int)dma_flag);
1677                         if (dma_flag & DMA_RX_CRC_ERROR)
1678                                 dev->stats.rx_crc_errors++;
1679                         if (dma_flag & DMA_RX_OV)
1680                                 dev->stats.rx_over_errors++;
1681                         if (dma_flag & DMA_RX_NO)
1682                                 dev->stats.rx_frame_errors++;
1683                         if (dma_flag & DMA_RX_LG)
1684                                 dev->stats.rx_length_errors++;
1685                         dev->stats.rx_errors++;
1686                         dev_kfree_skb_any(skb);
1687                         goto next;
1688                 } /* error packet */
1689
1690                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1691                              priv->desc_rxchk_en;
1692
1693                 skb_put(skb, len);
1694                 if (priv->desc_64b_en) {
1695                         skb_pull(skb, 64);
1696                         len -= 64;
1697                 }
1698
1699                 if (likely(chksum_ok))
1700                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1701
1702                 /* remove hardware 2bytes added for IP alignment */
1703                 skb_pull(skb, 2);
1704                 len -= 2;
1705
1706                 if (priv->crc_fwd_en) {
1707                         skb_trim(skb, len - ETH_FCS_LEN);
1708                         len -= ETH_FCS_LEN;
1709                 }
1710
1711                 /*Finish setting up the received SKB and send it to the kernel*/
1712                 skb->protocol = eth_type_trans(skb, priv->dev);
1713                 dev->stats.rx_packets++;
1714                 dev->stats.rx_bytes += len;
1715                 if (dma_flag & DMA_RX_MULT)
1716                         dev->stats.multicast++;
1717
1718                 /* Notify kernel */
1719                 napi_gro_receive(&ring->napi, skb);
1720                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1721
1722 next:
1723                 rxpktprocessed++;
1724                 if (likely(ring->read_ptr < ring->end_ptr))
1725                         ring->read_ptr++;
1726                 else
1727                         ring->read_ptr = ring->cb_ptr;
1728
1729                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1730                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1731         }
1732
1733         return rxpktprocessed;
1734 }
1735
1736 /* Rx NAPI polling method */
1737 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1738 {
1739         struct bcmgenet_rx_ring *ring = container_of(napi,
1740                         struct bcmgenet_rx_ring, napi);
1741         unsigned int work_done;
1742
1743         work_done = bcmgenet_desc_rx(ring, budget);
1744
1745         if (work_done < budget) {
1746                 napi_complete_done(napi, work_done);
1747                 ring->int_enable(ring);
1748         }
1749
1750         return work_done;
1751 }
1752
1753 /* Assign skb to RX DMA descriptor. */
1754 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1755                                      struct bcmgenet_rx_ring *ring)
1756 {
1757         struct enet_cb *cb;
1758         struct sk_buff *skb;
1759         int i;
1760
1761         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1762
1763         /* loop here for each buffer needing assign */
1764         for (i = 0; i < ring->size; i++) {
1765                 cb = ring->cbs + i;
1766                 skb = bcmgenet_rx_refill(priv, cb);
1767                 if (skb)
1768                         dev_kfree_skb_any(skb);
1769                 if (!cb->skb)
1770                         return -ENOMEM;
1771         }
1772
1773         return 0;
1774 }
1775
1776 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1777 {
1778         struct enet_cb *cb;
1779         int i;
1780
1781         for (i = 0; i < priv->num_rx_bds; i++) {
1782                 cb = &priv->rx_cbs[i];
1783
1784                 if (dma_unmap_addr(cb, dma_addr)) {
1785                         dma_unmap_single(&priv->dev->dev,
1786                                          dma_unmap_addr(cb, dma_addr),
1787                                          priv->rx_buf_len, DMA_FROM_DEVICE);
1788                         dma_unmap_addr_set(cb, dma_addr, 0);
1789                 }
1790
1791                 if (cb->skb)
1792                         bcmgenet_free_cb(cb);
1793         }
1794 }
1795
1796 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1797 {
1798         u32 reg;
1799
1800         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1801         if (enable)
1802                 reg |= mask;
1803         else
1804                 reg &= ~mask;
1805         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1806
1807         /* UniMAC stops on a packet boundary, wait for a full-size packet
1808          * to be processed
1809          */
1810         if (enable == 0)
1811                 usleep_range(1000, 2000);
1812 }
1813
1814 static int reset_umac(struct bcmgenet_priv *priv)
1815 {
1816         struct device *kdev = &priv->pdev->dev;
1817         unsigned int timeout = 0;
1818         u32 reg;
1819
1820         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1821         bcmgenet_rbuf_ctrl_set(priv, 0);
1822         udelay(10);
1823
1824         /* disable MAC while updating its registers */
1825         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1826
1827         /* issue soft reset, wait for it to complete */
1828         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1829         while (timeout++ < 1000) {
1830                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1831                 if (!(reg & CMD_SW_RESET))
1832                         return 0;
1833
1834                 udelay(1);
1835         }
1836
1837         if (timeout == 1000) {
1838                 dev_err(kdev,
1839                         "timeout waiting for MAC to come out of reset\n");
1840                 return -ETIMEDOUT;
1841         }
1842
1843         return 0;
1844 }
1845
1846 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1847 {
1848         /* Mask all interrupts.*/
1849         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1850         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1851         bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1852         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1853         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1854         bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1855 }
1856
1857 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1858 {
1859         u32 int0_enable = 0;
1860
1861         /* Monitor cable plug/unplugged event for internal PHY, external PHY
1862          * and MoCA PHY
1863          */
1864         if (priv->internal_phy) {
1865                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1866         } else if (priv->ext_phy) {
1867                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1868         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1869                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1870                         int0_enable |= UMAC_IRQ_LINK_EVENT;
1871         }
1872         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1873 }
1874
1875 static int init_umac(struct bcmgenet_priv *priv)
1876 {
1877         struct device *kdev = &priv->pdev->dev;
1878         int ret;
1879         u32 reg;
1880         u32 int0_enable = 0;
1881         u32 int1_enable = 0;
1882         int i;
1883
1884         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1885
1886         ret = reset_umac(priv);
1887         if (ret)
1888                 return ret;
1889
1890         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1891         /* clear tx/rx counter */
1892         bcmgenet_umac_writel(priv,
1893                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1894                              UMAC_MIB_CTRL);
1895         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1896
1897         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1898
1899         /* init rx registers, enable ip header optimization */
1900         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1901         reg |= RBUF_ALIGN_2B;
1902         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1903
1904         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1905                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1906
1907         bcmgenet_intr_disable(priv);
1908
1909         /* Enable Rx default queue 16 interrupts */
1910         int0_enable |= UMAC_IRQ_RXDMA_DONE;
1911
1912         /* Enable Tx default queue 16 interrupts */
1913         int0_enable |= UMAC_IRQ_TXDMA_DONE;
1914
1915         /* Configure backpressure vectors for MoCA */
1916         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1917                 reg = bcmgenet_bp_mc_get(priv);
1918                 reg |= BIT(priv->hw_params->bp_in_en_shift);
1919
1920                 /* bp_mask: back pressure mask */
1921                 if (netif_is_multiqueue(priv->dev))
1922                         reg |= priv->hw_params->bp_in_mask;
1923                 else
1924                         reg &= ~priv->hw_params->bp_in_mask;
1925                 bcmgenet_bp_mc_set(priv, reg);
1926         }
1927
1928         /* Enable MDIO interrupts on GENET v3+ */
1929         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1930                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1931
1932         /* Enable Rx priority queue interrupts */
1933         for (i = 0; i < priv->hw_params->rx_queues; ++i)
1934                 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1935
1936         /* Enable Tx priority queue interrupts */
1937         for (i = 0; i < priv->hw_params->tx_queues; ++i)
1938                 int1_enable |= (1 << i);
1939
1940         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1941         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1942
1943         /* Enable rx/tx engine.*/
1944         dev_dbg(kdev, "done init umac\n");
1945
1946         return 0;
1947 }
1948
1949 /* Initialize a Tx ring along with corresponding hardware registers */
1950 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1951                                   unsigned int index, unsigned int size,
1952                                   unsigned int start_ptr, unsigned int end_ptr)
1953 {
1954         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1955         u32 words_per_bd = WORDS_PER_BD(priv);
1956         u32 flow_period_val = 0;
1957
1958         spin_lock_init(&ring->lock);
1959         ring->priv = priv;
1960         ring->index = index;
1961         if (index == DESC_INDEX) {
1962                 ring->queue = 0;
1963                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1964                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1965         } else {
1966                 ring->queue = index + 1;
1967                 ring->int_enable = bcmgenet_tx_ring_int_enable;
1968                 ring->int_disable = bcmgenet_tx_ring_int_disable;
1969         }
1970         ring->cbs = priv->tx_cbs + start_ptr;
1971         ring->size = size;
1972         ring->clean_ptr = start_ptr;
1973         ring->c_index = 0;
1974         ring->free_bds = size;
1975         ring->write_ptr = start_ptr;
1976         ring->cb_ptr = start_ptr;
1977         ring->end_ptr = end_ptr - 1;
1978         ring->prod_index = 0;
1979
1980         /* Set flow period for ring != 16 */
1981         if (index != DESC_INDEX)
1982                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1983
1984         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1985         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1986         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1987         /* Disable rate control for now */
1988         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1989                                   TDMA_FLOW_PERIOD);
1990         bcmgenet_tdma_ring_writel(priv, index,
1991                                   ((size << DMA_RING_SIZE_SHIFT) |
1992                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1993
1994         /* Set start and end address, read and write pointers */
1995         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1996                                   DMA_START_ADDR);
1997         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1998                                   TDMA_READ_PTR);
1999         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2000                                   TDMA_WRITE_PTR);
2001         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2002                                   DMA_END_ADDR);
2003 }
2004
2005 /* Initialize a RDMA ring */
2006 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2007                                  unsigned int index, unsigned int size,
2008                                  unsigned int start_ptr, unsigned int end_ptr)
2009 {
2010         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2011         u32 words_per_bd = WORDS_PER_BD(priv);
2012         int ret;
2013
2014         ring->priv = priv;
2015         ring->index = index;
2016         if (index == DESC_INDEX) {
2017                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2018                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2019         } else {
2020                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2021                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2022         }
2023         ring->cbs = priv->rx_cbs + start_ptr;
2024         ring->size = size;
2025         ring->c_index = 0;
2026         ring->read_ptr = start_ptr;
2027         ring->cb_ptr = start_ptr;
2028         ring->end_ptr = end_ptr - 1;
2029
2030         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2031         if (ret)
2032                 return ret;
2033
2034         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2035         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2036         bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2037         bcmgenet_rdma_ring_writel(priv, index,
2038                                   ((size << DMA_RING_SIZE_SHIFT) |
2039                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2040         bcmgenet_rdma_ring_writel(priv, index,
2041                                   (DMA_FC_THRESH_LO <<
2042                                    DMA_XOFF_THRESHOLD_SHIFT) |
2043                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2044
2045         /* Set start and end address, read and write pointers */
2046         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2047                                   DMA_START_ADDR);
2048         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2049                                   RDMA_READ_PTR);
2050         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2051                                   RDMA_WRITE_PTR);
2052         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2053                                   DMA_END_ADDR);
2054
2055         return ret;
2056 }
2057
2058 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2059 {
2060         unsigned int i;
2061         struct bcmgenet_tx_ring *ring;
2062
2063         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2064                 ring = &priv->tx_rings[i];
2065                 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2066         }
2067
2068         ring = &priv->tx_rings[DESC_INDEX];
2069         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2070 }
2071
2072 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2073 {
2074         unsigned int i;
2075         struct bcmgenet_tx_ring *ring;
2076
2077         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2078                 ring = &priv->tx_rings[i];
2079                 napi_enable(&ring->napi);
2080         }
2081
2082         ring = &priv->tx_rings[DESC_INDEX];
2083         napi_enable(&ring->napi);
2084 }
2085
2086 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2087 {
2088         unsigned int i;
2089         struct bcmgenet_tx_ring *ring;
2090
2091         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2092                 ring = &priv->tx_rings[i];
2093                 napi_disable(&ring->napi);
2094         }
2095
2096         ring = &priv->tx_rings[DESC_INDEX];
2097         napi_disable(&ring->napi);
2098 }
2099
2100 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2101 {
2102         unsigned int i;
2103         struct bcmgenet_tx_ring *ring;
2104
2105         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2106                 ring = &priv->tx_rings[i];
2107                 netif_napi_del(&ring->napi);
2108         }
2109
2110         ring = &priv->tx_rings[DESC_INDEX];
2111         netif_napi_del(&ring->napi);
2112 }
2113
2114 /* Initialize Tx queues
2115  *
2116  * Queues 0-3 are priority-based, each one has 32 descriptors,
2117  * with queue 0 being the highest priority queue.
2118  *
2119  * Queue 16 is the default Tx queue with
2120  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2121  *
2122  * The transmit control block pool is then partitioned as follows:
2123  * - Tx queue 0 uses tx_cbs[0..31]
2124  * - Tx queue 1 uses tx_cbs[32..63]
2125  * - Tx queue 2 uses tx_cbs[64..95]
2126  * - Tx queue 3 uses tx_cbs[96..127]
2127  * - Tx queue 16 uses tx_cbs[128..255]
2128  */
2129 static void bcmgenet_init_tx_queues(struct net_device *dev)
2130 {
2131         struct bcmgenet_priv *priv = netdev_priv(dev);
2132         u32 i, dma_enable;
2133         u32 dma_ctrl, ring_cfg;
2134         u32 dma_priority[3] = {0, 0, 0};
2135
2136         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2137         dma_enable = dma_ctrl & DMA_EN;
2138         dma_ctrl &= ~DMA_EN;
2139         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2140
2141         dma_ctrl = 0;
2142         ring_cfg = 0;
2143
2144         /* Enable strict priority arbiter mode */
2145         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2146
2147         /* Initialize Tx priority queues */
2148         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2149                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2150                                       i * priv->hw_params->tx_bds_per_q,
2151                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2152                 ring_cfg |= (1 << i);
2153                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2154                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2155                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2156         }
2157
2158         /* Initialize Tx default queue 16 */
2159         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2160                               priv->hw_params->tx_queues *
2161                               priv->hw_params->tx_bds_per_q,
2162                               TOTAL_DESC);
2163         ring_cfg |= (1 << DESC_INDEX);
2164         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2165         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2166                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2167                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2168
2169         /* Set Tx queue priorities */
2170         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2171         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2172         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2173
2174         /* Initialize Tx NAPI */
2175         bcmgenet_init_tx_napi(priv);
2176
2177         /* Enable Tx queues */
2178         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2179
2180         /* Enable Tx DMA */
2181         if (dma_enable)
2182                 dma_ctrl |= DMA_EN;
2183         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2184 }
2185
2186 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2187 {
2188         unsigned int i;
2189         struct bcmgenet_rx_ring *ring;
2190
2191         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2192                 ring = &priv->rx_rings[i];
2193                 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2194         }
2195
2196         ring = &priv->rx_rings[DESC_INDEX];
2197         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2198 }
2199
2200 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2201 {
2202         unsigned int i;
2203         struct bcmgenet_rx_ring *ring;
2204
2205         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2206                 ring = &priv->rx_rings[i];
2207                 napi_enable(&ring->napi);
2208         }
2209
2210         ring = &priv->rx_rings[DESC_INDEX];
2211         napi_enable(&ring->napi);
2212 }
2213
2214 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2215 {
2216         unsigned int i;
2217         struct bcmgenet_rx_ring *ring;
2218
2219         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2220                 ring = &priv->rx_rings[i];
2221                 napi_disable(&ring->napi);
2222         }
2223
2224         ring = &priv->rx_rings[DESC_INDEX];
2225         napi_disable(&ring->napi);
2226 }
2227
2228 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2229 {
2230         unsigned int i;
2231         struct bcmgenet_rx_ring *ring;
2232
2233         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2234                 ring = &priv->rx_rings[i];
2235                 netif_napi_del(&ring->napi);
2236         }
2237
2238         ring = &priv->rx_rings[DESC_INDEX];
2239         netif_napi_del(&ring->napi);
2240 }
2241
2242 /* Initialize Rx queues
2243  *
2244  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2245  * used to direct traffic to these queues.
2246  *
2247  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2248  */
2249 static int bcmgenet_init_rx_queues(struct net_device *dev)
2250 {
2251         struct bcmgenet_priv *priv = netdev_priv(dev);
2252         u32 i;
2253         u32 dma_enable;
2254         u32 dma_ctrl;
2255         u32 ring_cfg;
2256         int ret;
2257
2258         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2259         dma_enable = dma_ctrl & DMA_EN;
2260         dma_ctrl &= ~DMA_EN;
2261         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2262
2263         dma_ctrl = 0;
2264         ring_cfg = 0;
2265
2266         /* Initialize Rx priority queues */
2267         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2268                 ret = bcmgenet_init_rx_ring(priv, i,
2269                                             priv->hw_params->rx_bds_per_q,
2270                                             i * priv->hw_params->rx_bds_per_q,
2271                                             (i + 1) *
2272                                             priv->hw_params->rx_bds_per_q);
2273                 if (ret)
2274                         return ret;
2275
2276                 ring_cfg |= (1 << i);
2277                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2278         }
2279
2280         /* Initialize Rx default queue 16 */
2281         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2282                                     priv->hw_params->rx_queues *
2283                                     priv->hw_params->rx_bds_per_q,
2284                                     TOTAL_DESC);
2285         if (ret)
2286                 return ret;
2287
2288         ring_cfg |= (1 << DESC_INDEX);
2289         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2290
2291         /* Initialize Rx NAPI */
2292         bcmgenet_init_rx_napi(priv);
2293
2294         /* Enable rings */
2295         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2296
2297         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2298         if (dma_enable)
2299                 dma_ctrl |= DMA_EN;
2300         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2301
2302         return 0;
2303 }
2304
2305 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2306 {
2307         int ret = 0;
2308         int timeout = 0;
2309         u32 reg;
2310         u32 dma_ctrl;
2311         int i;
2312
2313         /* Disable TDMA to stop add more frames in TX DMA */
2314         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2315         reg &= ~DMA_EN;
2316         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2317
2318         /* Check TDMA status register to confirm TDMA is disabled */
2319         while (timeout++ < DMA_TIMEOUT_VAL) {
2320                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2321                 if (reg & DMA_DISABLED)
2322                         break;
2323
2324                 udelay(1);
2325         }
2326
2327         if (timeout == DMA_TIMEOUT_VAL) {
2328                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2329                 ret = -ETIMEDOUT;
2330         }
2331
2332         /* Wait 10ms for packet drain in both tx and rx dma */
2333         usleep_range(10000, 20000);
2334
2335         /* Disable RDMA */
2336         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2337         reg &= ~DMA_EN;
2338         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2339
2340         timeout = 0;
2341         /* Check RDMA status register to confirm RDMA is disabled */
2342         while (timeout++ < DMA_TIMEOUT_VAL) {
2343                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2344                 if (reg & DMA_DISABLED)
2345                         break;
2346
2347                 udelay(1);
2348         }
2349
2350         if (timeout == DMA_TIMEOUT_VAL) {
2351                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2352                 ret = -ETIMEDOUT;
2353         }
2354
2355         dma_ctrl = 0;
2356         for (i = 0; i < priv->hw_params->rx_queues; i++)
2357                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2358         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2359         reg &= ~dma_ctrl;
2360         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2361
2362         dma_ctrl = 0;
2363         for (i = 0; i < priv->hw_params->tx_queues; i++)
2364                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2365         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2366         reg &= ~dma_ctrl;
2367         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2368
2369         return ret;
2370 }
2371
2372 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2373 {
2374         int i;
2375         struct netdev_queue *txq;
2376
2377         bcmgenet_fini_rx_napi(priv);
2378         bcmgenet_fini_tx_napi(priv);
2379
2380         /* disable DMA */
2381         bcmgenet_dma_teardown(priv);
2382
2383         for (i = 0; i < priv->num_tx_bds; i++) {
2384                 if (priv->tx_cbs[i].skb != NULL) {
2385                         dev_kfree_skb(priv->tx_cbs[i].skb);
2386                         priv->tx_cbs[i].skb = NULL;
2387                 }
2388         }
2389
2390         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2391                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2392                 netdev_tx_reset_queue(txq);
2393         }
2394
2395         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2396         netdev_tx_reset_queue(txq);
2397
2398         bcmgenet_free_rx_buffers(priv);
2399         kfree(priv->rx_cbs);
2400         kfree(priv->tx_cbs);
2401 }
2402
2403 /* init_edma: Initialize DMA control register */
2404 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2405 {
2406         int ret;
2407         unsigned int i;
2408         struct enet_cb *cb;
2409
2410         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2411
2412         /* Initialize common Rx ring structures */
2413         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2414         priv->num_rx_bds = TOTAL_DESC;
2415         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2416                                GFP_KERNEL);
2417         if (!priv->rx_cbs)
2418                 return -ENOMEM;
2419
2420         for (i = 0; i < priv->num_rx_bds; i++) {
2421                 cb = priv->rx_cbs + i;
2422                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2423         }
2424
2425         /* Initialize common TX ring structures */
2426         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2427         priv->num_tx_bds = TOTAL_DESC;
2428         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2429                                GFP_KERNEL);
2430         if (!priv->tx_cbs) {
2431                 kfree(priv->rx_cbs);
2432                 return -ENOMEM;
2433         }
2434
2435         for (i = 0; i < priv->num_tx_bds; i++) {
2436                 cb = priv->tx_cbs + i;
2437                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2438         }
2439
2440         /* Init rDma */
2441         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2442
2443         /* Initialize Rx queues */
2444         ret = bcmgenet_init_rx_queues(priv->dev);
2445         if (ret) {
2446                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2447                 bcmgenet_free_rx_buffers(priv);
2448                 kfree(priv->rx_cbs);
2449                 kfree(priv->tx_cbs);
2450                 return ret;
2451         }
2452
2453         /* Init tDma */
2454         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2455
2456         /* Initialize Tx queues */
2457         bcmgenet_init_tx_queues(priv->dev);
2458
2459         return 0;
2460 }
2461
2462 /* Interrupt bottom half */
2463 static void bcmgenet_irq_task(struct work_struct *work)
2464 {
2465         struct bcmgenet_priv *priv = container_of(
2466                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2467
2468         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2469
2470         if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2471                 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2472                 netif_dbg(priv, wol, priv->dev,
2473                           "magic packet detected, waking up\n");
2474                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2475         }
2476
2477         /* Link UP/DOWN event */
2478         if (priv->irq0_stat & UMAC_IRQ_LINK_EVENT) {
2479                 phy_mac_interrupt(priv->phydev,
2480                                   !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2481                 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2482         }
2483 }
2484
2485 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2486 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2487 {
2488         struct bcmgenet_priv *priv = dev_id;
2489         struct bcmgenet_rx_ring *rx_ring;
2490         struct bcmgenet_tx_ring *tx_ring;
2491         unsigned int index;
2492
2493         /* Save irq status for bottom-half processing. */
2494         priv->irq1_stat =
2495                 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2496                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2497
2498         /* clear interrupts */
2499         bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2500
2501         netif_dbg(priv, intr, priv->dev,
2502                   "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2503
2504         /* Check Rx priority queue interrupts */
2505         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2506                 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2507                         continue;
2508
2509                 rx_ring = &priv->rx_rings[index];
2510
2511                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2512                         rx_ring->int_disable(rx_ring);
2513                         __napi_schedule_irqoff(&rx_ring->napi);
2514                 }
2515         }
2516
2517         /* Check Tx priority queue interrupts */
2518         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2519                 if (!(priv->irq1_stat & BIT(index)))
2520                         continue;
2521
2522                 tx_ring = &priv->tx_rings[index];
2523
2524                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2525                         tx_ring->int_disable(tx_ring);
2526                         __napi_schedule_irqoff(&tx_ring->napi);
2527                 }
2528         }
2529
2530         return IRQ_HANDLED;
2531 }
2532
2533 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2534 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2535 {
2536         struct bcmgenet_priv *priv = dev_id;
2537         struct bcmgenet_rx_ring *rx_ring;
2538         struct bcmgenet_tx_ring *tx_ring;
2539
2540         /* Save irq status for bottom-half processing. */
2541         priv->irq0_stat =
2542                 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2543                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2544
2545         /* clear interrupts */
2546         bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2547
2548         netif_dbg(priv, intr, priv->dev,
2549                   "IRQ=0x%x\n", priv->irq0_stat);
2550
2551         if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2552                 rx_ring = &priv->rx_rings[DESC_INDEX];
2553
2554                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2555                         rx_ring->int_disable(rx_ring);
2556                         __napi_schedule_irqoff(&rx_ring->napi);
2557                 }
2558         }
2559
2560         if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2561                 tx_ring = &priv->tx_rings[DESC_INDEX];
2562
2563                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2564                         tx_ring->int_disable(tx_ring);
2565                         __napi_schedule_irqoff(&tx_ring->napi);
2566                 }
2567         }
2568
2569         if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2570                                 UMAC_IRQ_PHY_DET_F |
2571                                 UMAC_IRQ_LINK_EVENT |
2572                                 UMAC_IRQ_HFB_SM |
2573                                 UMAC_IRQ_HFB_MM |
2574                                 UMAC_IRQ_MPD_R)) {
2575                 /* all other interested interrupts handled in bottom half */
2576                 schedule_work(&priv->bcmgenet_irq_work);
2577         }
2578
2579         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2580             priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2581                 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2582                 wake_up(&priv->wq);
2583         }
2584
2585         return IRQ_HANDLED;
2586 }
2587
2588 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2589 {
2590         struct bcmgenet_priv *priv = dev_id;
2591
2592         pm_wakeup_event(&priv->pdev->dev, 0);
2593
2594         return IRQ_HANDLED;
2595 }
2596
2597 #ifdef CONFIG_NET_POLL_CONTROLLER
2598 static void bcmgenet_poll_controller(struct net_device *dev)
2599 {
2600         struct bcmgenet_priv *priv = netdev_priv(dev);
2601
2602         /* Invoke the main RX/TX interrupt handler */
2603         disable_irq(priv->irq0);
2604         bcmgenet_isr0(priv->irq0, priv);
2605         enable_irq(priv->irq0);
2606
2607         /* And the interrupt handler for RX/TX priority queues */
2608         disable_irq(priv->irq1);
2609         bcmgenet_isr1(priv->irq1, priv);
2610         enable_irq(priv->irq1);
2611 }
2612 #endif
2613
2614 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2615 {
2616         u32 reg;
2617
2618         reg = bcmgenet_rbuf_ctrl_get(priv);
2619         reg |= BIT(1);
2620         bcmgenet_rbuf_ctrl_set(priv, reg);
2621         udelay(10);
2622
2623         reg &= ~BIT(1);
2624         bcmgenet_rbuf_ctrl_set(priv, reg);
2625         udelay(10);
2626 }
2627
2628 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2629                                  unsigned char *addr)
2630 {
2631         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2632                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2633         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2634 }
2635
2636 /* Returns a reusable dma control register value */
2637 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2638 {
2639         u32 reg;
2640         u32 dma_ctrl;
2641
2642         /* disable DMA */
2643         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2644         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2645         reg &= ~dma_ctrl;
2646         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2647
2648         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2649         reg &= ~dma_ctrl;
2650         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2651
2652         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2653         udelay(10);
2654         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2655
2656         return dma_ctrl;
2657 }
2658
2659 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2660 {
2661         u32 reg;
2662
2663         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2664         reg |= dma_ctrl;
2665         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2666
2667         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2668         reg |= dma_ctrl;
2669         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2670 }
2671
2672 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2673                                            u32 f_index)
2674 {
2675         u32 offset;
2676         u32 reg;
2677
2678         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2679         reg = bcmgenet_hfb_reg_readl(priv, offset);
2680         return !!(reg & (1 << (f_index % 32)));
2681 }
2682
2683 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2684 {
2685         u32 offset;
2686         u32 reg;
2687
2688         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2689         reg = bcmgenet_hfb_reg_readl(priv, offset);
2690         reg |= (1 << (f_index % 32));
2691         bcmgenet_hfb_reg_writel(priv, reg, offset);
2692 }
2693
2694 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2695                                                      u32 f_index, u32 rx_queue)
2696 {
2697         u32 offset;
2698         u32 reg;
2699
2700         offset = f_index / 8;
2701         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2702         reg &= ~(0xF << (4 * (f_index % 8)));
2703         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2704         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2705 }
2706
2707 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2708                                            u32 f_index, u32 f_length)
2709 {
2710         u32 offset;
2711         u32 reg;
2712
2713         offset = HFB_FLT_LEN_V3PLUS +
2714                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2715                  sizeof(u32);
2716         reg = bcmgenet_hfb_reg_readl(priv, offset);
2717         reg &= ~(0xFF << (8 * (f_index % 4)));
2718         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2719         bcmgenet_hfb_reg_writel(priv, reg, offset);
2720 }
2721
2722 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2723 {
2724         u32 f_index;
2725
2726         for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2727                 if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2728                         return f_index;
2729
2730         return -ENOMEM;
2731 }
2732
2733 /* bcmgenet_hfb_add_filter
2734  *
2735  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2736  * desired Rx queue.
2737  *
2738  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2739  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2740  *
2741  * bits 31:20 - unused
2742  * bit  19    - nibble 0 match enable
2743  * bit  18    - nibble 1 match enable
2744  * bit  17    - nibble 2 match enable
2745  * bit  16    - nibble 3 match enable
2746  * bits 15:12 - nibble 0 data
2747  * bits 11:8  - nibble 1 data
2748  * bits 7:4   - nibble 2 data
2749  * bits 3:0   - nibble 3 data
2750  *
2751  * Example:
2752  * In order to match:
2753  * - Ethernet frame type = 0x0800 (IP)
2754  * - IP version field = 4
2755  * - IP protocol field = 0x11 (UDP)
2756  *
2757  * The following filter is needed:
2758  * u32 hfb_filter_ipv4_udp[] = {
2759  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2760  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2761  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2762  * };
2763  *
2764  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2765  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2766  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2767  */
2768 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2769                             u32 f_length, u32 rx_queue)
2770 {
2771         int f_index;
2772         u32 i;
2773
2774         f_index = bcmgenet_hfb_find_unused_filter(priv);
2775         if (f_index < 0)
2776                 return -ENOMEM;
2777
2778         if (f_length > priv->hw_params->hfb_filter_size)
2779                 return -EINVAL;
2780
2781         for (i = 0; i < f_length; i++)
2782                 bcmgenet_hfb_writel(priv, f_data[i],
2783                         (f_index * priv->hw_params->hfb_filter_size + i) *
2784                         sizeof(u32));
2785
2786         bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2787         bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2788         bcmgenet_hfb_enable_filter(priv, f_index);
2789         bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2790
2791         return 0;
2792 }
2793
2794 /* bcmgenet_hfb_clear
2795  *
2796  * Clear Hardware Filter Block and disable all filtering.
2797  */
2798 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2799 {
2800         u32 i;
2801
2802         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2803         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2804         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2805
2806         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2807                 bcmgenet_rdma_writel(priv, 0x0, i);
2808
2809         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2810                 bcmgenet_hfb_reg_writel(priv, 0x0,
2811                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2812
2813         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2814                         priv->hw_params->hfb_filter_size; i++)
2815                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2816 }
2817
2818 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2819 {
2820         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2821                 return;
2822
2823         bcmgenet_hfb_clear(priv);
2824 }
2825
2826 static void bcmgenet_netif_start(struct net_device *dev)
2827 {
2828         struct bcmgenet_priv *priv = netdev_priv(dev);
2829
2830         /* Start the network engine */
2831         bcmgenet_enable_rx_napi(priv);
2832         bcmgenet_enable_tx_napi(priv);
2833
2834         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2835
2836         netif_tx_start_all_queues(dev);
2837
2838         /* Monitor link interrupts now */
2839         bcmgenet_link_intr_enable(priv);
2840
2841         phy_start(priv->phydev);
2842 }
2843
2844 static int bcmgenet_open(struct net_device *dev)
2845 {
2846         struct bcmgenet_priv *priv = netdev_priv(dev);
2847         unsigned long dma_ctrl;
2848         u32 reg;
2849         int ret;
2850
2851         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2852
2853         /* Turn on the clock */
2854         clk_prepare_enable(priv->clk);
2855
2856         /* If this is an internal GPHY, power it back on now, before UniMAC is
2857          * brought out of reset as absolutely no UniMAC activity is allowed
2858          */
2859         if (priv->internal_phy)
2860                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2861
2862         /* take MAC out of reset */
2863         bcmgenet_umac_reset(priv);
2864
2865         ret = init_umac(priv);
2866         if (ret)
2867                 goto err_clk_disable;
2868
2869         /* disable ethernet MAC while updating its registers */
2870         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2871
2872         /* Make sure we reflect the value of CRC_CMD_FWD */
2873         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2874         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2875
2876         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2877
2878         if (priv->internal_phy) {
2879                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2880                 reg |= EXT_ENERGY_DET_MASK;
2881                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2882         }
2883
2884         /* Disable RX/TX DMA and flush TX queues */
2885         dma_ctrl = bcmgenet_dma_disable(priv);
2886
2887         /* Reinitialize TDMA and RDMA and SW housekeeping */
2888         ret = bcmgenet_init_dma(priv);
2889         if (ret) {
2890                 netdev_err(dev, "failed to initialize DMA\n");
2891                 goto err_clk_disable;
2892         }
2893
2894         /* Always enable ring 16 - descriptor ring */
2895         bcmgenet_enable_dma(priv, dma_ctrl);
2896
2897         /* HFB init */
2898         bcmgenet_hfb_init(priv);
2899
2900         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2901                           dev->name, priv);
2902         if (ret < 0) {
2903                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2904                 goto err_fini_dma;
2905         }
2906
2907         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2908                           dev->name, priv);
2909         if (ret < 0) {
2910                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2911                 goto err_irq0;
2912         }
2913
2914         ret = bcmgenet_mii_probe(dev);
2915         if (ret) {
2916                 netdev_err(dev, "failed to connect to PHY\n");
2917                 goto err_irq1;
2918         }
2919
2920         bcmgenet_netif_start(dev);
2921
2922         return 0;
2923
2924 err_irq1:
2925         free_irq(priv->irq1, priv);
2926 err_irq0:
2927         free_irq(priv->irq0, priv);
2928 err_fini_dma:
2929         bcmgenet_fini_dma(priv);
2930 err_clk_disable:
2931         clk_disable_unprepare(priv->clk);
2932         return ret;
2933 }
2934
2935 static void bcmgenet_netif_stop(struct net_device *dev)
2936 {
2937         struct bcmgenet_priv *priv = netdev_priv(dev);
2938
2939         netif_tx_stop_all_queues(dev);
2940         phy_stop(priv->phydev);
2941         bcmgenet_intr_disable(priv);
2942         bcmgenet_disable_rx_napi(priv);
2943         bcmgenet_disable_tx_napi(priv);
2944
2945         /* Wait for pending work items to complete. Since interrupts are
2946          * disabled no new work will be scheduled.
2947          */
2948         cancel_work_sync(&priv->bcmgenet_irq_work);
2949
2950         priv->old_link = -1;
2951         priv->old_speed = -1;
2952         priv->old_duplex = -1;
2953         priv->old_pause = -1;
2954 }
2955
2956 static int bcmgenet_close(struct net_device *dev)
2957 {
2958         struct bcmgenet_priv *priv = netdev_priv(dev);
2959         int ret;
2960
2961         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2962
2963         bcmgenet_netif_stop(dev);
2964
2965         /* Really kill the PHY state machine and disconnect from it */
2966         phy_disconnect(priv->phydev);
2967
2968         /* Disable MAC receive */
2969         umac_enable_set(priv, CMD_RX_EN, false);
2970
2971         ret = bcmgenet_dma_teardown(priv);
2972         if (ret)
2973                 return ret;
2974
2975         /* Disable MAC transmit. TX DMA disabled have to done before this */
2976         umac_enable_set(priv, CMD_TX_EN, false);
2977
2978         /* tx reclaim */
2979         bcmgenet_tx_reclaim_all(dev);
2980         bcmgenet_fini_dma(priv);
2981
2982         free_irq(priv->irq0, priv);
2983         free_irq(priv->irq1, priv);
2984
2985         if (priv->internal_phy)
2986                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2987
2988         clk_disable_unprepare(priv->clk);
2989
2990         return ret;
2991 }
2992
2993 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2994 {
2995         struct bcmgenet_priv *priv = ring->priv;
2996         u32 p_index, c_index, intsts, intmsk;
2997         struct netdev_queue *txq;
2998         unsigned int free_bds;
2999         unsigned long flags;
3000         bool txq_stopped;
3001
3002         if (!netif_msg_tx_err(priv))
3003                 return;
3004
3005         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3006
3007         spin_lock_irqsave(&ring->lock, flags);
3008         if (ring->index == DESC_INDEX) {
3009                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3010                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3011         } else {
3012                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3013                 intmsk = 1 << ring->index;
3014         }
3015         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3016         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3017         txq_stopped = netif_tx_queue_stopped(txq);
3018         free_bds = ring->free_bds;
3019         spin_unlock_irqrestore(&ring->lock, flags);
3020
3021         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3022                   "TX queue status: %s, interrupts: %s\n"
3023                   "(sw)free_bds: %d (sw)size: %d\n"
3024                   "(sw)p_index: %d (hw)p_index: %d\n"
3025                   "(sw)c_index: %d (hw)c_index: %d\n"
3026                   "(sw)clean_p: %d (sw)write_p: %d\n"
3027                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3028                   ring->index, ring->queue,
3029                   txq_stopped ? "stopped" : "active",
3030                   intsts & intmsk ? "enabled" : "disabled",
3031                   free_bds, ring->size,
3032                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3033                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3034                   ring->clean_ptr, ring->write_ptr,
3035                   ring->cb_ptr, ring->end_ptr);
3036 }
3037
3038 static void bcmgenet_timeout(struct net_device *dev)
3039 {
3040         struct bcmgenet_priv *priv = netdev_priv(dev);
3041         u32 int0_enable = 0;
3042         u32 int1_enable = 0;
3043         unsigned int q;
3044
3045         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3046
3047         for (q = 0; q < priv->hw_params->tx_queues; q++)
3048                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3049         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3050
3051         bcmgenet_tx_reclaim_all(dev);
3052
3053         for (q = 0; q < priv->hw_params->tx_queues; q++)
3054                 int1_enable |= (1 << q);
3055
3056         int0_enable = UMAC_IRQ_TXDMA_DONE;
3057
3058         /* Re-enable TX interrupts if disabled */
3059         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3060         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3061
3062         netif_trans_update(dev);
3063
3064         dev->stats.tx_errors++;
3065
3066         netif_tx_wake_all_queues(dev);
3067 }
3068
3069 #define MAX_MC_COUNT    16
3070
3071 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3072                                          unsigned char *addr,
3073                                          int *i,
3074                                          int *mc)
3075 {
3076         u32 reg;
3077
3078         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3079                              UMAC_MDF_ADDR + (*i * 4));
3080         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3081                              addr[4] << 8 | addr[5],
3082                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3083         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3084         reg |= (1 << (MAX_MC_COUNT - *mc));
3085         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3086         *i += 2;
3087         (*mc)++;
3088 }
3089
3090 static void bcmgenet_set_rx_mode(struct net_device *dev)
3091 {
3092         struct bcmgenet_priv *priv = netdev_priv(dev);
3093         struct netdev_hw_addr *ha;
3094         int i, mc;
3095         u32 reg;
3096
3097         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3098
3099         /* Promiscuous mode */
3100         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3101         if (dev->flags & IFF_PROMISC) {
3102                 reg |= CMD_PROMISC;
3103                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3104                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3105                 return;
3106         } else {
3107                 reg &= ~CMD_PROMISC;
3108                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3109         }
3110
3111         /* UniMac doesn't support ALLMULTI */
3112         if (dev->flags & IFF_ALLMULTI) {
3113                 netdev_warn(dev, "ALLMULTI is not supported\n");
3114                 return;
3115         }
3116
3117         /* update MDF filter */
3118         i = 0;
3119         mc = 0;
3120         /* Broadcast */
3121         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3122         /* my own address.*/
3123         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3124         /* Unicast list*/
3125         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3126                 return;
3127
3128         if (!netdev_uc_empty(dev))
3129                 netdev_for_each_uc_addr(ha, dev)
3130                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3131         /* Multicast */
3132         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3133                 return;
3134
3135         netdev_for_each_mc_addr(ha, dev)
3136                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3137 }
3138
3139 /* Set the hardware MAC address. */
3140 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3141 {
3142         struct sockaddr *addr = p;
3143
3144         /* Setting the MAC address at the hardware level is not possible
3145          * without disabling the UniMAC RX/TX enable bits.
3146          */
3147         if (netif_running(dev))
3148                 return -EBUSY;
3149
3150         ether_addr_copy(dev->dev_addr, addr->sa_data);
3151
3152         return 0;
3153 }
3154
3155 static const struct net_device_ops bcmgenet_netdev_ops = {
3156         .ndo_open               = bcmgenet_open,
3157         .ndo_stop               = bcmgenet_close,
3158         .ndo_start_xmit         = bcmgenet_xmit,
3159         .ndo_tx_timeout         = bcmgenet_timeout,
3160         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3161         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3162         .ndo_do_ioctl           = bcmgenet_ioctl,
3163         .ndo_set_features       = bcmgenet_set_features,
3164 #ifdef CONFIG_NET_POLL_CONTROLLER
3165         .ndo_poll_controller    = bcmgenet_poll_controller,
3166 #endif
3167 };
3168
3169 /* Array of GENET hardware parameters/characteristics */
3170 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3171         [GENET_V1] = {
3172                 .tx_queues = 0,
3173                 .tx_bds_per_q = 0,
3174                 .rx_queues = 0,
3175                 .rx_bds_per_q = 0,
3176                 .bp_in_en_shift = 16,
3177                 .bp_in_mask = 0xffff,
3178                 .hfb_filter_cnt = 16,
3179                 .qtag_mask = 0x1F,
3180                 .hfb_offset = 0x1000,
3181                 .rdma_offset = 0x2000,
3182                 .tdma_offset = 0x3000,
3183                 .words_per_bd = 2,
3184         },
3185         [GENET_V2] = {
3186                 .tx_queues = 4,
3187                 .tx_bds_per_q = 32,
3188                 .rx_queues = 0,
3189                 .rx_bds_per_q = 0,
3190                 .bp_in_en_shift = 16,
3191                 .bp_in_mask = 0xffff,
3192                 .hfb_filter_cnt = 16,
3193                 .qtag_mask = 0x1F,
3194                 .tbuf_offset = 0x0600,
3195                 .hfb_offset = 0x1000,
3196                 .hfb_reg_offset = 0x2000,
3197                 .rdma_offset = 0x3000,
3198                 .tdma_offset = 0x4000,
3199                 .words_per_bd = 2,
3200                 .flags = GENET_HAS_EXT,
3201         },
3202         [GENET_V3] = {
3203                 .tx_queues = 4,
3204                 .tx_bds_per_q = 32,
3205                 .rx_queues = 0,
3206                 .rx_bds_per_q = 0,
3207                 .bp_in_en_shift = 17,
3208                 .bp_in_mask = 0x1ffff,
3209                 .hfb_filter_cnt = 48,
3210                 .hfb_filter_size = 128,
3211                 .qtag_mask = 0x3F,
3212                 .tbuf_offset = 0x0600,
3213                 .hfb_offset = 0x8000,
3214                 .hfb_reg_offset = 0xfc00,
3215                 .rdma_offset = 0x10000,
3216                 .tdma_offset = 0x11000,
3217                 .words_per_bd = 2,
3218                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3219                          GENET_HAS_MOCA_LINK_DET,
3220         },
3221         [GENET_V4] = {
3222                 .tx_queues = 4,
3223                 .tx_bds_per_q = 32,
3224                 .rx_queues = 0,
3225                 .rx_bds_per_q = 0,
3226                 .bp_in_en_shift = 17,
3227                 .bp_in_mask = 0x1ffff,
3228                 .hfb_filter_cnt = 48,
3229                 .hfb_filter_size = 128,
3230                 .qtag_mask = 0x3F,
3231                 .tbuf_offset = 0x0600,
3232                 .hfb_offset = 0x8000,
3233                 .hfb_reg_offset = 0xfc00,
3234                 .rdma_offset = 0x2000,
3235                 .tdma_offset = 0x4000,
3236                 .words_per_bd = 3,
3237                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3238                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3239         },
3240 };
3241
3242 /* Infer hardware parameters from the detected GENET version */
3243 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3244 {
3245         struct bcmgenet_hw_params *params;
3246         u32 reg;
3247         u8 major;
3248         u16 gphy_rev;
3249
3250         if (GENET_IS_V4(priv)) {
3251                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3252                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3253                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3254                 priv->version = GENET_V4;
3255         } else if (GENET_IS_V3(priv)) {
3256                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3257                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3258                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3259                 priv->version = GENET_V3;
3260         } else if (GENET_IS_V2(priv)) {
3261                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3262                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3263                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3264                 priv->version = GENET_V2;
3265         } else if (GENET_IS_V1(priv)) {
3266                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3267                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3268                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3269                 priv->version = GENET_V1;
3270         }
3271
3272         /* enum genet_version starts at 1 */
3273         priv->hw_params = &bcmgenet_hw_params[priv->version];
3274         params = priv->hw_params;
3275
3276         /* Read GENET HW version */
3277         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3278         major = (reg >> 24 & 0x0f);
3279         if (major == 5)
3280                 major = 4;
3281         else if (major == 0)
3282                 major = 1;
3283         if (major != priv->version) {
3284                 dev_err(&priv->pdev->dev,
3285                         "GENET version mismatch, got: %d, configured for: %d\n",
3286                         major, priv->version);
3287         }
3288
3289         /* Print the GENET core version */
3290         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3291                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3292
3293         /* Store the integrated PHY revision for the MDIO probing function
3294          * to pass this information to the PHY driver. The PHY driver expects
3295          * to find the PHY major revision in bits 15:8 while the GENET register
3296          * stores that information in bits 7:0, account for that.
3297          *
3298          * On newer chips, starting with PHY revision G0, a new scheme is
3299          * deployed similar to the Starfighter 2 switch with GPHY major
3300          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3301          * is reserved as well as special value 0x01ff, we have a small
3302          * heuristic to check for the new GPHY revision and re-arrange things
3303          * so the GPHY driver is happy.
3304          */
3305         gphy_rev = reg & 0xffff;
3306
3307         /* This is the good old scheme, just GPHY major, no minor nor patch */
3308         if ((gphy_rev & 0xf0) != 0)
3309                 priv->gphy_rev = gphy_rev << 8;
3310
3311         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3312         else if ((gphy_rev & 0xff00) != 0)
3313                 priv->gphy_rev = gphy_rev;
3314
3315         /* This is reserved so should require special treatment */
3316         else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3317                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3318                 return;
3319         }
3320
3321 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3322         if (!(params->flags & GENET_HAS_40BITS))
3323                 pr_warn("GENET does not support 40-bits PA\n");
3324 #endif
3325
3326         pr_debug("Configuration for version: %d\n"
3327                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3328                 "BP << en: %2d, BP msk: 0x%05x\n"
3329                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3330                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3331                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3332                 "Words/BD: %d\n",
3333                 priv->version,
3334                 params->tx_queues, params->tx_bds_per_q,
3335                 params->rx_queues, params->rx_bds_per_q,
3336                 params->bp_in_en_shift, params->bp_in_mask,
3337                 params->hfb_filter_cnt, params->qtag_mask,
3338                 params->tbuf_offset, params->hfb_offset,
3339                 params->hfb_reg_offset,
3340                 params->rdma_offset, params->tdma_offset,
3341                 params->words_per_bd);
3342 }
3343
3344 static const struct of_device_id bcmgenet_match[] = {
3345         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3346         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3347         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3348         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3349         { },
3350 };
3351 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3352
3353 static int bcmgenet_probe(struct platform_device *pdev)
3354 {
3355         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3356         struct device_node *dn = pdev->dev.of_node;
3357         const struct of_device_id *of_id = NULL;
3358         struct bcmgenet_priv *priv;
3359         struct net_device *dev;
3360         const void *macaddr;
3361         struct resource *r;
3362         int err = -EIO;
3363
3364         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3365         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3366                                  GENET_MAX_MQ_CNT + 1);
3367         if (!dev) {
3368                 dev_err(&pdev->dev, "can't allocate net device\n");
3369                 return -ENOMEM;
3370         }
3371
3372         if (dn) {
3373                 of_id = of_match_node(bcmgenet_match, dn);
3374                 if (!of_id)
3375                         return -EINVAL;
3376         }
3377
3378         priv = netdev_priv(dev);
3379         priv->irq0 = platform_get_irq(pdev, 0);
3380         priv->irq1 = platform_get_irq(pdev, 1);
3381         priv->wol_irq = platform_get_irq(pdev, 2);
3382         if (!priv->irq0 || !priv->irq1) {
3383                 dev_err(&pdev->dev, "can't find IRQs\n");
3384                 err = -EINVAL;
3385                 goto err;
3386         }
3387
3388         if (dn) {
3389                 macaddr = of_get_mac_address(dn);
3390                 if (!macaddr) {
3391                         dev_err(&pdev->dev, "can't find MAC address\n");
3392                         err = -EINVAL;
3393                         goto err;
3394                 }
3395         } else {
3396                 macaddr = pd->mac_address;
3397         }
3398
3399         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3400         priv->base = devm_ioremap_resource(&pdev->dev, r);
3401         if (IS_ERR(priv->base)) {
3402                 err = PTR_ERR(priv->base);
3403                 goto err;
3404         }
3405
3406         SET_NETDEV_DEV(dev, &pdev->dev);
3407         dev_set_drvdata(&pdev->dev, dev);
3408         ether_addr_copy(dev->dev_addr, macaddr);
3409         dev->watchdog_timeo = 2 * HZ;
3410         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3411         dev->netdev_ops = &bcmgenet_netdev_ops;
3412
3413         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3414
3415         /* Set hardware features */
3416         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3417                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3418
3419         /* Request the WOL interrupt and advertise suspend if available */
3420         priv->wol_irq_disabled = true;
3421         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3422                                dev->name, priv);
3423         if (!err)
3424                 device_set_wakeup_capable(&pdev->dev, 1);
3425
3426         /* Set the needed headroom to account for any possible
3427          * features enabling/disabling at runtime
3428          */
3429         dev->needed_headroom += 64;
3430
3431         netdev_boot_setup_check(dev);
3432
3433         priv->dev = dev;
3434         priv->pdev = pdev;
3435         if (of_id)
3436                 priv->version = (enum bcmgenet_version)of_id->data;
3437         else
3438                 priv->version = pd->genet_version;
3439
3440         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3441         if (IS_ERR(priv->clk)) {
3442                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3443                 priv->clk = NULL;
3444         }
3445
3446         clk_prepare_enable(priv->clk);
3447
3448         bcmgenet_set_hw_params(priv);
3449
3450         /* Mii wait queue */
3451         init_waitqueue_head(&priv->wq);
3452         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3453         priv->rx_buf_len = RX_BUF_LENGTH;
3454         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3455
3456         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3457         if (IS_ERR(priv->clk_wol)) {
3458                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3459                 priv->clk_wol = NULL;
3460         }
3461
3462         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3463         if (IS_ERR(priv->clk_eee)) {
3464                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3465                 priv->clk_eee = NULL;
3466         }
3467
3468         err = reset_umac(priv);
3469         if (err)
3470                 goto err_clk_disable;
3471
3472         err = bcmgenet_mii_init(dev);
3473         if (err)
3474                 goto err_clk_disable;
3475
3476         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3477          * just the ring 16 descriptor based TX
3478          */
3479         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3480         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3481
3482         /* libphy will determine the link state */
3483         netif_carrier_off(dev);
3484
3485         /* Turn off the main clock, WOL clock is handled separately */
3486         clk_disable_unprepare(priv->clk);
3487
3488         err = register_netdev(dev);
3489         if (err)
3490                 goto err;
3491
3492         return err;
3493
3494 err_clk_disable:
3495         clk_disable_unprepare(priv->clk);
3496 err:
3497         free_netdev(dev);
3498         return err;
3499 }
3500
3501 static int bcmgenet_remove(struct platform_device *pdev)
3502 {
3503         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3504
3505         dev_set_drvdata(&pdev->dev, NULL);
3506         unregister_netdev(priv->dev);
3507         bcmgenet_mii_exit(priv->dev);
3508         free_netdev(priv->dev);
3509
3510         return 0;
3511 }
3512
3513 #ifdef CONFIG_PM_SLEEP
3514 static int bcmgenet_suspend(struct device *d)
3515 {
3516         struct net_device *dev = dev_get_drvdata(d);
3517         struct bcmgenet_priv *priv = netdev_priv(dev);
3518         int ret;
3519
3520         if (!netif_running(dev))
3521                 return 0;
3522
3523         bcmgenet_netif_stop(dev);
3524
3525         phy_suspend(priv->phydev);
3526
3527         netif_device_detach(dev);
3528
3529         /* Disable MAC receive */
3530         umac_enable_set(priv, CMD_RX_EN, false);
3531
3532         ret = bcmgenet_dma_teardown(priv);
3533         if (ret)
3534                 return ret;
3535
3536         /* Disable MAC transmit. TX DMA disabled have to done before this */
3537         umac_enable_set(priv, CMD_TX_EN, false);
3538
3539         /* tx reclaim */
3540         bcmgenet_tx_reclaim_all(dev);
3541         bcmgenet_fini_dma(priv);
3542
3543         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3544         if (device_may_wakeup(d) && priv->wolopts) {
3545                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3546                 clk_prepare_enable(priv->clk_wol);
3547         } else if (priv->internal_phy) {
3548                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3549         }
3550
3551         /* Turn off the clocks */
3552         clk_disable_unprepare(priv->clk);
3553
3554         return ret;
3555 }
3556
3557 static int bcmgenet_resume(struct device *d)
3558 {
3559         struct net_device *dev = dev_get_drvdata(d);
3560         struct bcmgenet_priv *priv = netdev_priv(dev);
3561         unsigned long dma_ctrl;
3562         int ret;
3563         u32 reg;
3564
3565         if (!netif_running(dev))
3566                 return 0;
3567
3568         /* Turn on the clock */
3569         ret = clk_prepare_enable(priv->clk);
3570         if (ret)
3571                 return ret;
3572
3573         /* If this is an internal GPHY, power it back on now, before UniMAC is
3574          * brought out of reset as absolutely no UniMAC activity is allowed
3575          */
3576         if (priv->internal_phy)
3577                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3578
3579         bcmgenet_umac_reset(priv);
3580
3581         ret = init_umac(priv);
3582         if (ret)
3583                 goto out_clk_disable;
3584
3585         /* From WOL-enabled suspend, switch to regular clock */
3586         if (priv->wolopts)
3587                 clk_disable_unprepare(priv->clk_wol);
3588
3589         phy_init_hw(priv->phydev);
3590         /* Speed settings must be restored */
3591         bcmgenet_mii_config(priv->dev);
3592
3593         /* disable ethernet MAC while updating its registers */
3594         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3595
3596         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3597
3598         if (priv->internal_phy) {
3599                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3600                 reg |= EXT_ENERGY_DET_MASK;
3601                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3602         }
3603
3604         if (priv->wolopts)
3605                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3606
3607         /* Disable RX/TX DMA and flush TX queues */
3608         dma_ctrl = bcmgenet_dma_disable(priv);
3609
3610         /* Reinitialize TDMA and RDMA and SW housekeeping */
3611         ret = bcmgenet_init_dma(priv);
3612         if (ret) {
3613                 netdev_err(dev, "failed to initialize DMA\n");
3614                 goto out_clk_disable;
3615         }
3616
3617         /* Always enable ring 16 - descriptor ring */
3618         bcmgenet_enable_dma(priv, dma_ctrl);
3619
3620         netif_device_attach(dev);
3621
3622         phy_resume(priv->phydev);
3623
3624         if (priv->eee.eee_enabled)
3625                 bcmgenet_eee_enable_set(dev, true);
3626
3627         bcmgenet_netif_start(dev);
3628
3629         return 0;
3630
3631 out_clk_disable:
3632         clk_disable_unprepare(priv->clk);
3633         return ret;
3634 }
3635 #endif /* CONFIG_PM_SLEEP */
3636
3637 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3638
3639 static struct platform_driver bcmgenet_driver = {
3640         .probe  = bcmgenet_probe,
3641         .remove = bcmgenet_remove,
3642         .driver = {
3643                 .name   = "bcmgenet",
3644                 .of_match_table = bcmgenet_match,
3645                 .pm     = &bcmgenet_pm_ops,
3646         },
3647 };
3648 module_platform_driver(bcmgenet_driver);
3649
3650 MODULE_AUTHOR("Broadcom Corporation");
3651 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3652 MODULE_ALIAS("platform:bcmgenet");
3653 MODULE_LICENSE("GPL");