Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2017 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64
65 #define BNXT_TX_TIMEOUT         (5 * HZ)
66
67 static const char version[] =
68         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
69
70 MODULE_LICENSE("GPL");
71 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
72 MODULE_VERSION(DRV_MODULE_VERSION);
73
74 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
75 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
76 #define BNXT_RX_COPY_THRESH 256
77
78 #define BNXT_TX_PUSH_THRESH 164
79
80 enum board_idx {
81         BCM57301,
82         BCM57302,
83         BCM57304,
84         BCM57417_NPAR,
85         BCM58700,
86         BCM57311,
87         BCM57312,
88         BCM57402,
89         BCM57404,
90         BCM57406,
91         BCM57402_NPAR,
92         BCM57407,
93         BCM57412,
94         BCM57414,
95         BCM57416,
96         BCM57417,
97         BCM57412_NPAR,
98         BCM57314,
99         BCM57417_SFP,
100         BCM57416_SFP,
101         BCM57404_NPAR,
102         BCM57406_NPAR,
103         BCM57407_SFP,
104         BCM57407_NPAR,
105         BCM57414_NPAR,
106         BCM57416_NPAR,
107         BCM57452,
108         BCM57454,
109         BCM58802,
110         BCM58808,
111         NETXTREME_E_VF,
112         NETXTREME_C_VF,
113 };
114
115 /* indexed by enum above */
116 static const struct {
117         char *name;
118 } board_info[] = {
119         [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
120         [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
121         [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
122         [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
123         [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
124         [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
125         [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
126         [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
127         [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
128         [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
129         [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
130         [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
131         [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
132         [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
133         [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
134         [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
135         [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
136         [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
137         [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
138         [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
139         [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
140         [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
141         [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
142         [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
143         [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
144         [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
145         [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
146         [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
147         [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
148         [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
149         [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
150         [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
151 };
152
153 static const struct pci_device_id bnxt_pci_tbl[] = {
154         { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
155         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
156         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
157         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
158         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
159         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
160         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
161         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
162         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
163         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
164         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
165         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
166         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
167         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
168         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
169         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
170         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
171         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
172         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
173         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
174         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
175         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
176         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
177         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
178         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
179         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
180         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
181         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
182         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
183         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
184         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
185         { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
186         { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
187         { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
188 #ifdef CONFIG_BNXT_SRIOV
189         { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
190         { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
192         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
193         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
194         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
195         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
196         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
197 #endif
198         { 0 }
199 };
200
201 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
202
203 static const u16 bnxt_vf_req_snif[] = {
204         HWRM_FUNC_CFG,
205         HWRM_PORT_PHY_QCFG,
206         HWRM_CFA_L2_FILTER_ALLOC,
207 };
208
209 static const u16 bnxt_async_events_arr[] = {
210         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
211         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
212         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
213         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
214         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
215 };
216
217 static bool bnxt_vf_pciid(enum board_idx idx)
218 {
219         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
220 }
221
222 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
223 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
224 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
225
226 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
227                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
228
229 #define BNXT_CP_DB(db, raw_cons)                                        \
230                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
231
232 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
233                 writel(DB_CP_IRQ_DIS_FLAGS, db)
234
235 const u16 bnxt_lhint_arr[] = {
236         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
237         TX_BD_FLAGS_LHINT_512_TO_1023,
238         TX_BD_FLAGS_LHINT_1024_TO_2047,
239         TX_BD_FLAGS_LHINT_1024_TO_2047,
240         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
243         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
244         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
245         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
246         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
247         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
248         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
249         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
250         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
251         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
252         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
253         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
254         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
255 };
256
257 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
258 {
259         struct metadata_dst *md_dst = skb_metadata_dst(skb);
260
261         if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
262                 return 0;
263
264         return md_dst->u.port_info.port_id;
265 }
266
267 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
268 {
269         struct bnxt *bp = netdev_priv(dev);
270         struct tx_bd *txbd;
271         struct tx_bd_ext *txbd1;
272         struct netdev_queue *txq;
273         int i;
274         dma_addr_t mapping;
275         unsigned int length, pad = 0;
276         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
277         u16 prod, last_frag;
278         struct pci_dev *pdev = bp->pdev;
279         struct bnxt_tx_ring_info *txr;
280         struct bnxt_sw_tx_bd *tx_buf;
281
282         i = skb_get_queue_mapping(skb);
283         if (unlikely(i >= bp->tx_nr_rings)) {
284                 dev_kfree_skb_any(skb);
285                 return NETDEV_TX_OK;
286         }
287
288         txq = netdev_get_tx_queue(dev, i);
289         txr = &bp->tx_ring[bp->tx_ring_map[i]];
290         prod = txr->tx_prod;
291
292         free_size = bnxt_tx_avail(bp, txr);
293         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
294                 netif_tx_stop_queue(txq);
295                 return NETDEV_TX_BUSY;
296         }
297
298         length = skb->len;
299         len = skb_headlen(skb);
300         last_frag = skb_shinfo(skb)->nr_frags;
301
302         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
303
304         txbd->tx_bd_opaque = prod;
305
306         tx_buf = &txr->tx_buf_ring[prod];
307         tx_buf->skb = skb;
308         tx_buf->nr_frags = last_frag;
309
310         vlan_tag_flags = 0;
311         cfa_action = bnxt_xmit_get_cfa_action(skb);
312         if (skb_vlan_tag_present(skb)) {
313                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
314                                  skb_vlan_tag_get(skb);
315                 /* Currently supports 8021Q, 8021AD vlan offloads
316                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
317                  */
318                 if (skb->vlan_proto == htons(ETH_P_8021Q))
319                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
320         }
321
322         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
323                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
324                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
325                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
326                 void *pdata = tx_push_buf->data;
327                 u64 *end;
328                 int j, push_len;
329
330                 /* Set COAL_NOW to be ready quickly for the next push */
331                 tx_push->tx_bd_len_flags_type =
332                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
333                                         TX_BD_TYPE_LONG_TX_BD |
334                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
335                                         TX_BD_FLAGS_COAL_NOW |
336                                         TX_BD_FLAGS_PACKET_END |
337                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
338
339                 if (skb->ip_summed == CHECKSUM_PARTIAL)
340                         tx_push1->tx_bd_hsize_lflags =
341                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
342                 else
343                         tx_push1->tx_bd_hsize_lflags = 0;
344
345                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
346                 tx_push1->tx_bd_cfa_action =
347                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
348
349                 end = pdata + length;
350                 end = PTR_ALIGN(end, 8) - 1;
351                 *end = 0;
352
353                 skb_copy_from_linear_data(skb, pdata, len);
354                 pdata += len;
355                 for (j = 0; j < last_frag; j++) {
356                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
357                         void *fptr;
358
359                         fptr = skb_frag_address_safe(frag);
360                         if (!fptr)
361                                 goto normal_tx;
362
363                         memcpy(pdata, fptr, skb_frag_size(frag));
364                         pdata += skb_frag_size(frag);
365                 }
366
367                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
368                 txbd->tx_bd_haddr = txr->data_mapping;
369                 prod = NEXT_TX(prod);
370                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
371                 memcpy(txbd, tx_push1, sizeof(*txbd));
372                 prod = NEXT_TX(prod);
373                 tx_push->doorbell =
374                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
375                 txr->tx_prod = prod;
376
377                 tx_buf->is_push = 1;
378                 netdev_tx_sent_queue(txq, skb->len);
379                 wmb();  /* Sync is_push and byte queue before pushing data */
380
381                 push_len = (length + sizeof(*tx_push) + 7) / 8;
382                 if (push_len > 16) {
383                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
384                         __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
385                                          (push_len - 16) << 1);
386                 } else {
387                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
388                                          push_len);
389                 }
390
391                 goto tx_done;
392         }
393
394 normal_tx:
395         if (length < BNXT_MIN_PKT_SIZE) {
396                 pad = BNXT_MIN_PKT_SIZE - length;
397                 if (skb_pad(skb, pad)) {
398                         /* SKB already freed. */
399                         tx_buf->skb = NULL;
400                         return NETDEV_TX_OK;
401                 }
402                 length = BNXT_MIN_PKT_SIZE;
403         }
404
405         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
406
407         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
408                 dev_kfree_skb_any(skb);
409                 tx_buf->skb = NULL;
410                 return NETDEV_TX_OK;
411         }
412
413         dma_unmap_addr_set(tx_buf, mapping, mapping);
414         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
415                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
416
417         txbd->tx_bd_haddr = cpu_to_le64(mapping);
418
419         prod = NEXT_TX(prod);
420         txbd1 = (struct tx_bd_ext *)
421                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
422
423         txbd1->tx_bd_hsize_lflags = 0;
424         if (skb_is_gso(skb)) {
425                 u32 hdr_len;
426
427                 if (skb->encapsulation)
428                         hdr_len = skb_inner_network_offset(skb) +
429                                 skb_inner_network_header_len(skb) +
430                                 inner_tcp_hdrlen(skb);
431                 else
432                         hdr_len = skb_transport_offset(skb) +
433                                 tcp_hdrlen(skb);
434
435                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
436                                         TX_BD_FLAGS_T_IPID |
437                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
438                 length = skb_shinfo(skb)->gso_size;
439                 txbd1->tx_bd_mss = cpu_to_le32(length);
440                 length += hdr_len;
441         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
442                 txbd1->tx_bd_hsize_lflags =
443                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
444                 txbd1->tx_bd_mss = 0;
445         }
446
447         length >>= 9;
448         flags |= bnxt_lhint_arr[length];
449         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
450
451         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
452         txbd1->tx_bd_cfa_action =
453                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
454         for (i = 0; i < last_frag; i++) {
455                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
456
457                 prod = NEXT_TX(prod);
458                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
459
460                 len = skb_frag_size(frag);
461                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
462                                            DMA_TO_DEVICE);
463
464                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
465                         goto tx_dma_error;
466
467                 tx_buf = &txr->tx_buf_ring[prod];
468                 dma_unmap_addr_set(tx_buf, mapping, mapping);
469
470                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
471
472                 flags = len << TX_BD_LEN_SHIFT;
473                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
474         }
475
476         flags &= ~TX_BD_LEN;
477         txbd->tx_bd_len_flags_type =
478                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
479                             TX_BD_FLAGS_PACKET_END);
480
481         netdev_tx_sent_queue(txq, skb->len);
482
483         /* Sync BD data before updating doorbell */
484         wmb();
485
486         prod = NEXT_TX(prod);
487         txr->tx_prod = prod;
488
489         if (!skb->xmit_more || netif_xmit_stopped(txq))
490                 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
491
492 tx_done:
493
494         mmiowb();
495
496         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
497                 if (skb->xmit_more && !tx_buf->is_push)
498                         bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
499
500                 netif_tx_stop_queue(txq);
501
502                 /* netif_tx_stop_queue() must be done before checking
503                  * tx index in bnxt_tx_avail() below, because in
504                  * bnxt_tx_int(), we update tx index before checking for
505                  * netif_tx_queue_stopped().
506                  */
507                 smp_mb();
508                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
509                         netif_tx_wake_queue(txq);
510         }
511         return NETDEV_TX_OK;
512
513 tx_dma_error:
514         last_frag = i;
515
516         /* start back at beginning and unmap skb */
517         prod = txr->tx_prod;
518         tx_buf = &txr->tx_buf_ring[prod];
519         tx_buf->skb = NULL;
520         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
521                          skb_headlen(skb), PCI_DMA_TODEVICE);
522         prod = NEXT_TX(prod);
523
524         /* unmap remaining mapped pages */
525         for (i = 0; i < last_frag; i++) {
526                 prod = NEXT_TX(prod);
527                 tx_buf = &txr->tx_buf_ring[prod];
528                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
529                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
530                                PCI_DMA_TODEVICE);
531         }
532
533         dev_kfree_skb_any(skb);
534         return NETDEV_TX_OK;
535 }
536
537 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
538 {
539         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
540         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
541         u16 cons = txr->tx_cons;
542         struct pci_dev *pdev = bp->pdev;
543         int i;
544         unsigned int tx_bytes = 0;
545
546         for (i = 0; i < nr_pkts; i++) {
547                 struct bnxt_sw_tx_bd *tx_buf;
548                 struct sk_buff *skb;
549                 int j, last;
550
551                 tx_buf = &txr->tx_buf_ring[cons];
552                 cons = NEXT_TX(cons);
553                 skb = tx_buf->skb;
554                 tx_buf->skb = NULL;
555
556                 if (tx_buf->is_push) {
557                         tx_buf->is_push = 0;
558                         goto next_tx_int;
559                 }
560
561                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
562                                  skb_headlen(skb), PCI_DMA_TODEVICE);
563                 last = tx_buf->nr_frags;
564
565                 for (j = 0; j < last; j++) {
566                         cons = NEXT_TX(cons);
567                         tx_buf = &txr->tx_buf_ring[cons];
568                         dma_unmap_page(
569                                 &pdev->dev,
570                                 dma_unmap_addr(tx_buf, mapping),
571                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
572                                 PCI_DMA_TODEVICE);
573                 }
574
575 next_tx_int:
576                 cons = NEXT_TX(cons);
577
578                 tx_bytes += skb->len;
579                 dev_kfree_skb_any(skb);
580         }
581
582         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
583         txr->tx_cons = cons;
584
585         /* Need to make the tx_cons update visible to bnxt_start_xmit()
586          * before checking for netif_tx_queue_stopped().  Without the
587          * memory barrier, there is a small possibility that bnxt_start_xmit()
588          * will miss it and cause the queue to be stopped forever.
589          */
590         smp_mb();
591
592         if (unlikely(netif_tx_queue_stopped(txq)) &&
593             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
594                 __netif_tx_lock(txq, smp_processor_id());
595                 if (netif_tx_queue_stopped(txq) &&
596                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
597                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
598                         netif_tx_wake_queue(txq);
599                 __netif_tx_unlock(txq);
600         }
601 }
602
603 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
604                                          gfp_t gfp)
605 {
606         struct device *dev = &bp->pdev->dev;
607         struct page *page;
608
609         page = alloc_page(gfp);
610         if (!page)
611                 return NULL;
612
613         *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
614                                       DMA_ATTR_WEAK_ORDERING);
615         if (dma_mapping_error(dev, *mapping)) {
616                 __free_page(page);
617                 return NULL;
618         }
619         *mapping += bp->rx_dma_offset;
620         return page;
621 }
622
623 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
624                                        gfp_t gfp)
625 {
626         u8 *data;
627         struct pci_dev *pdev = bp->pdev;
628
629         data = kmalloc(bp->rx_buf_size, gfp);
630         if (!data)
631                 return NULL;
632
633         *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
634                                         bp->rx_buf_use_size, bp->rx_dir,
635                                         DMA_ATTR_WEAK_ORDERING);
636
637         if (dma_mapping_error(&pdev->dev, *mapping)) {
638                 kfree(data);
639                 data = NULL;
640         }
641         return data;
642 }
643
644 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
645                        u16 prod, gfp_t gfp)
646 {
647         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
648         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
649         dma_addr_t mapping;
650
651         if (BNXT_RX_PAGE_MODE(bp)) {
652                 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
653
654                 if (!page)
655                         return -ENOMEM;
656
657                 rx_buf->data = page;
658                 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
659         } else {
660                 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
661
662                 if (!data)
663                         return -ENOMEM;
664
665                 rx_buf->data = data;
666                 rx_buf->data_ptr = data + bp->rx_offset;
667         }
668         rx_buf->mapping = mapping;
669
670         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
671         return 0;
672 }
673
674 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
675 {
676         u16 prod = rxr->rx_prod;
677         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
678         struct rx_bd *cons_bd, *prod_bd;
679
680         prod_rx_buf = &rxr->rx_buf_ring[prod];
681         cons_rx_buf = &rxr->rx_buf_ring[cons];
682
683         prod_rx_buf->data = data;
684         prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
685
686         prod_rx_buf->mapping = cons_rx_buf->mapping;
687
688         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
689         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
690
691         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
692 }
693
694 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
695 {
696         u16 next, max = rxr->rx_agg_bmap_size;
697
698         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
699         if (next >= max)
700                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
701         return next;
702 }
703
704 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
705                                      struct bnxt_rx_ring_info *rxr,
706                                      u16 prod, gfp_t gfp)
707 {
708         struct rx_bd *rxbd =
709                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
710         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
711         struct pci_dev *pdev = bp->pdev;
712         struct page *page;
713         dma_addr_t mapping;
714         u16 sw_prod = rxr->rx_sw_agg_prod;
715         unsigned int offset = 0;
716
717         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
718                 page = rxr->rx_page;
719                 if (!page) {
720                         page = alloc_page(gfp);
721                         if (!page)
722                                 return -ENOMEM;
723                         rxr->rx_page = page;
724                         rxr->rx_page_offset = 0;
725                 }
726                 offset = rxr->rx_page_offset;
727                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
728                 if (rxr->rx_page_offset == PAGE_SIZE)
729                         rxr->rx_page = NULL;
730                 else
731                         get_page(page);
732         } else {
733                 page = alloc_page(gfp);
734                 if (!page)
735                         return -ENOMEM;
736         }
737
738         mapping = dma_map_page_attrs(&pdev->dev, page, offset,
739                                      BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
740                                      DMA_ATTR_WEAK_ORDERING);
741         if (dma_mapping_error(&pdev->dev, mapping)) {
742                 __free_page(page);
743                 return -EIO;
744         }
745
746         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
747                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
748
749         __set_bit(sw_prod, rxr->rx_agg_bmap);
750         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
751         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
752
753         rx_agg_buf->page = page;
754         rx_agg_buf->offset = offset;
755         rx_agg_buf->mapping = mapping;
756         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
757         rxbd->rx_bd_opaque = sw_prod;
758         return 0;
759 }
760
761 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
762                                    u32 agg_bufs)
763 {
764         struct bnxt *bp = bnapi->bp;
765         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
766         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
767         u16 prod = rxr->rx_agg_prod;
768         u16 sw_prod = rxr->rx_sw_agg_prod;
769         u32 i;
770
771         for (i = 0; i < agg_bufs; i++) {
772                 u16 cons;
773                 struct rx_agg_cmp *agg;
774                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
775                 struct rx_bd *prod_bd;
776                 struct page *page;
777
778                 agg = (struct rx_agg_cmp *)
779                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
780                 cons = agg->rx_agg_cmp_opaque;
781                 __clear_bit(cons, rxr->rx_agg_bmap);
782
783                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
784                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
785
786                 __set_bit(sw_prod, rxr->rx_agg_bmap);
787                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
788                 cons_rx_buf = &rxr->rx_agg_ring[cons];
789
790                 /* It is possible for sw_prod to be equal to cons, so
791                  * set cons_rx_buf->page to NULL first.
792                  */
793                 page = cons_rx_buf->page;
794                 cons_rx_buf->page = NULL;
795                 prod_rx_buf->page = page;
796                 prod_rx_buf->offset = cons_rx_buf->offset;
797
798                 prod_rx_buf->mapping = cons_rx_buf->mapping;
799
800                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
801
802                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
803                 prod_bd->rx_bd_opaque = sw_prod;
804
805                 prod = NEXT_RX_AGG(prod);
806                 sw_prod = NEXT_RX_AGG(sw_prod);
807                 cp_cons = NEXT_CMP(cp_cons);
808         }
809         rxr->rx_agg_prod = prod;
810         rxr->rx_sw_agg_prod = sw_prod;
811 }
812
813 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
814                                         struct bnxt_rx_ring_info *rxr,
815                                         u16 cons, void *data, u8 *data_ptr,
816                                         dma_addr_t dma_addr,
817                                         unsigned int offset_and_len)
818 {
819         unsigned int payload = offset_and_len >> 16;
820         unsigned int len = offset_and_len & 0xffff;
821         struct skb_frag_struct *frag;
822         struct page *page = data;
823         u16 prod = rxr->rx_prod;
824         struct sk_buff *skb;
825         int off, err;
826
827         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
828         if (unlikely(err)) {
829                 bnxt_reuse_rx_data(rxr, cons, data);
830                 return NULL;
831         }
832         dma_addr -= bp->rx_dma_offset;
833         dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
834                              DMA_ATTR_WEAK_ORDERING);
835
836         if (unlikely(!payload))
837                 payload = eth_get_headlen(data_ptr, len);
838
839         skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
840         if (!skb) {
841                 __free_page(page);
842                 return NULL;
843         }
844
845         off = (void *)data_ptr - page_address(page);
846         skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
847         memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
848                payload + NET_IP_ALIGN);
849
850         frag = &skb_shinfo(skb)->frags[0];
851         skb_frag_size_sub(frag, payload);
852         frag->page_offset += payload;
853         skb->data_len -= payload;
854         skb->tail += payload;
855
856         return skb;
857 }
858
859 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
860                                    struct bnxt_rx_ring_info *rxr, u16 cons,
861                                    void *data, u8 *data_ptr,
862                                    dma_addr_t dma_addr,
863                                    unsigned int offset_and_len)
864 {
865         u16 prod = rxr->rx_prod;
866         struct sk_buff *skb;
867         int err;
868
869         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
870         if (unlikely(err)) {
871                 bnxt_reuse_rx_data(rxr, cons, data);
872                 return NULL;
873         }
874
875         skb = build_skb(data, 0);
876         dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
877                                bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
878         if (!skb) {
879                 kfree(data);
880                 return NULL;
881         }
882
883         skb_reserve(skb, bp->rx_offset);
884         skb_put(skb, offset_and_len & 0xffff);
885         return skb;
886 }
887
888 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
889                                      struct sk_buff *skb, u16 cp_cons,
890                                      u32 agg_bufs)
891 {
892         struct pci_dev *pdev = bp->pdev;
893         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
894         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
895         u16 prod = rxr->rx_agg_prod;
896         u32 i;
897
898         for (i = 0; i < agg_bufs; i++) {
899                 u16 cons, frag_len;
900                 struct rx_agg_cmp *agg;
901                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
902                 struct page *page;
903                 dma_addr_t mapping;
904
905                 agg = (struct rx_agg_cmp *)
906                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
907                 cons = agg->rx_agg_cmp_opaque;
908                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
909                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
910
911                 cons_rx_buf = &rxr->rx_agg_ring[cons];
912                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
913                                    cons_rx_buf->offset, frag_len);
914                 __clear_bit(cons, rxr->rx_agg_bmap);
915
916                 /* It is possible for bnxt_alloc_rx_page() to allocate
917                  * a sw_prod index that equals the cons index, so we
918                  * need to clear the cons entry now.
919                  */
920                 mapping = cons_rx_buf->mapping;
921                 page = cons_rx_buf->page;
922                 cons_rx_buf->page = NULL;
923
924                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
925                         struct skb_shared_info *shinfo;
926                         unsigned int nr_frags;
927
928                         shinfo = skb_shinfo(skb);
929                         nr_frags = --shinfo->nr_frags;
930                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
931
932                         dev_kfree_skb(skb);
933
934                         cons_rx_buf->page = page;
935
936                         /* Update prod since possibly some pages have been
937                          * allocated already.
938                          */
939                         rxr->rx_agg_prod = prod;
940                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
941                         return NULL;
942                 }
943
944                 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
945                                      PCI_DMA_FROMDEVICE,
946                                      DMA_ATTR_WEAK_ORDERING);
947
948                 skb->data_len += frag_len;
949                 skb->len += frag_len;
950                 skb->truesize += PAGE_SIZE;
951
952                 prod = NEXT_RX_AGG(prod);
953                 cp_cons = NEXT_CMP(cp_cons);
954         }
955         rxr->rx_agg_prod = prod;
956         return skb;
957 }
958
959 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
960                                u8 agg_bufs, u32 *raw_cons)
961 {
962         u16 last;
963         struct rx_agg_cmp *agg;
964
965         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
966         last = RING_CMP(*raw_cons);
967         agg = (struct rx_agg_cmp *)
968                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
969         return RX_AGG_CMP_VALID(agg, *raw_cons);
970 }
971
972 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
973                                             unsigned int len,
974                                             dma_addr_t mapping)
975 {
976         struct bnxt *bp = bnapi->bp;
977         struct pci_dev *pdev = bp->pdev;
978         struct sk_buff *skb;
979
980         skb = napi_alloc_skb(&bnapi->napi, len);
981         if (!skb)
982                 return NULL;
983
984         dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
985                                 bp->rx_dir);
986
987         memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
988                len + NET_IP_ALIGN);
989
990         dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
991                                    bp->rx_dir);
992
993         skb_put(skb, len);
994         return skb;
995 }
996
997 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
998                            u32 *raw_cons, void *cmp)
999 {
1000         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1001         struct rx_cmp *rxcmp = cmp;
1002         u32 tmp_raw_cons = *raw_cons;
1003         u8 cmp_type, agg_bufs = 0;
1004
1005         cmp_type = RX_CMP_TYPE(rxcmp);
1006
1007         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1008                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1009                             RX_CMP_AGG_BUFS) >>
1010                            RX_CMP_AGG_BUFS_SHIFT;
1011         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1012                 struct rx_tpa_end_cmp *tpa_end = cmp;
1013
1014                 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1015                             RX_TPA_END_CMP_AGG_BUFS) >>
1016                            RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1017         }
1018
1019         if (agg_bufs) {
1020                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1021                         return -EBUSY;
1022         }
1023         *raw_cons = tmp_raw_cons;
1024         return 0;
1025 }
1026
1027 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1028 {
1029         if (!rxr->bnapi->in_reset) {
1030                 rxr->bnapi->in_reset = true;
1031                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1032                 schedule_work(&bp->sp_task);
1033         }
1034         rxr->rx_next_cons = 0xffff;
1035 }
1036
1037 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1038                            struct rx_tpa_start_cmp *tpa_start,
1039                            struct rx_tpa_start_cmp_ext *tpa_start1)
1040 {
1041         u8 agg_id = TPA_START_AGG_ID(tpa_start);
1042         u16 cons, prod;
1043         struct bnxt_tpa_info *tpa_info;
1044         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1045         struct rx_bd *prod_bd;
1046         dma_addr_t mapping;
1047
1048         cons = tpa_start->rx_tpa_start_cmp_opaque;
1049         prod = rxr->rx_prod;
1050         cons_rx_buf = &rxr->rx_buf_ring[cons];
1051         prod_rx_buf = &rxr->rx_buf_ring[prod];
1052         tpa_info = &rxr->rx_tpa[agg_id];
1053
1054         if (unlikely(cons != rxr->rx_next_cons)) {
1055                 bnxt_sched_reset(bp, rxr);
1056                 return;
1057         }
1058         /* Store cfa_code in tpa_info to use in tpa_end
1059          * completion processing.
1060          */
1061         tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1062         prod_rx_buf->data = tpa_info->data;
1063         prod_rx_buf->data_ptr = tpa_info->data_ptr;
1064
1065         mapping = tpa_info->mapping;
1066         prod_rx_buf->mapping = mapping;
1067
1068         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1069
1070         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1071
1072         tpa_info->data = cons_rx_buf->data;
1073         tpa_info->data_ptr = cons_rx_buf->data_ptr;
1074         cons_rx_buf->data = NULL;
1075         tpa_info->mapping = cons_rx_buf->mapping;
1076
1077         tpa_info->len =
1078                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1079                                 RX_TPA_START_CMP_LEN_SHIFT;
1080         if (likely(TPA_START_HASH_VALID(tpa_start))) {
1081                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1082
1083                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1084                 tpa_info->gso_type = SKB_GSO_TCPV4;
1085                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1086                 if (hash_type == 3)
1087                         tpa_info->gso_type = SKB_GSO_TCPV6;
1088                 tpa_info->rss_hash =
1089                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1090         } else {
1091                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1092                 tpa_info->gso_type = 0;
1093                 if (netif_msg_rx_err(bp))
1094                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
1095         }
1096         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1097         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1098         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1099
1100         rxr->rx_prod = NEXT_RX(prod);
1101         cons = NEXT_RX(cons);
1102         rxr->rx_next_cons = NEXT_RX(cons);
1103         cons_rx_buf = &rxr->rx_buf_ring[cons];
1104
1105         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1106         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1107         cons_rx_buf->data = NULL;
1108 }
1109
1110 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1111                            u16 cp_cons, u32 agg_bufs)
1112 {
1113         if (agg_bufs)
1114                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1115 }
1116
1117 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1118                                            int payload_off, int tcp_ts,
1119                                            struct sk_buff *skb)
1120 {
1121 #ifdef CONFIG_INET
1122         struct tcphdr *th;
1123         int len, nw_off;
1124         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1125         u32 hdr_info = tpa_info->hdr_info;
1126         bool loopback = false;
1127
1128         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1129         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1130         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1131
1132         /* If the packet is an internal loopback packet, the offsets will
1133          * have an extra 4 bytes.
1134          */
1135         if (inner_mac_off == 4) {
1136                 loopback = true;
1137         } else if (inner_mac_off > 4) {
1138                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1139                                             ETH_HLEN - 2));
1140
1141                 /* We only support inner iPv4/ipv6.  If we don't see the
1142                  * correct protocol ID, it must be a loopback packet where
1143                  * the offsets are off by 4.
1144                  */
1145                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1146                         loopback = true;
1147         }
1148         if (loopback) {
1149                 /* internal loopback packet, subtract all offsets by 4 */
1150                 inner_ip_off -= 4;
1151                 inner_mac_off -= 4;
1152                 outer_ip_off -= 4;
1153         }
1154
1155         nw_off = inner_ip_off - ETH_HLEN;
1156         skb_set_network_header(skb, nw_off);
1157         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1158                 struct ipv6hdr *iph = ipv6_hdr(skb);
1159
1160                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1161                 len = skb->len - skb_transport_offset(skb);
1162                 th = tcp_hdr(skb);
1163                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1164         } else {
1165                 struct iphdr *iph = ip_hdr(skb);
1166
1167                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1168                 len = skb->len - skb_transport_offset(skb);
1169                 th = tcp_hdr(skb);
1170                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1171         }
1172
1173         if (inner_mac_off) { /* tunnel */
1174                 struct udphdr *uh = NULL;
1175                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1176                                             ETH_HLEN - 2));
1177
1178                 if (proto == htons(ETH_P_IP)) {
1179                         struct iphdr *iph = (struct iphdr *)skb->data;
1180
1181                         if (iph->protocol == IPPROTO_UDP)
1182                                 uh = (struct udphdr *)(iph + 1);
1183                 } else {
1184                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1185
1186                         if (iph->nexthdr == IPPROTO_UDP)
1187                                 uh = (struct udphdr *)(iph + 1);
1188                 }
1189                 if (uh) {
1190                         if (uh->check)
1191                                 skb_shinfo(skb)->gso_type |=
1192                                         SKB_GSO_UDP_TUNNEL_CSUM;
1193                         else
1194                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1195                 }
1196         }
1197 #endif
1198         return skb;
1199 }
1200
1201 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1202 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1203
1204 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1205                                            int payload_off, int tcp_ts,
1206                                            struct sk_buff *skb)
1207 {
1208 #ifdef CONFIG_INET
1209         struct tcphdr *th;
1210         int len, nw_off, tcp_opt_len = 0;
1211
1212         if (tcp_ts)
1213                 tcp_opt_len = 12;
1214
1215         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1216                 struct iphdr *iph;
1217
1218                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1219                          ETH_HLEN;
1220                 skb_set_network_header(skb, nw_off);
1221                 iph = ip_hdr(skb);
1222                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1223                 len = skb->len - skb_transport_offset(skb);
1224                 th = tcp_hdr(skb);
1225                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1226         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1227                 struct ipv6hdr *iph;
1228
1229                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1230                          ETH_HLEN;
1231                 skb_set_network_header(skb, nw_off);
1232                 iph = ipv6_hdr(skb);
1233                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1234                 len = skb->len - skb_transport_offset(skb);
1235                 th = tcp_hdr(skb);
1236                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1237         } else {
1238                 dev_kfree_skb_any(skb);
1239                 return NULL;
1240         }
1241
1242         if (nw_off) { /* tunnel */
1243                 struct udphdr *uh = NULL;
1244
1245                 if (skb->protocol == htons(ETH_P_IP)) {
1246                         struct iphdr *iph = (struct iphdr *)skb->data;
1247
1248                         if (iph->protocol == IPPROTO_UDP)
1249                                 uh = (struct udphdr *)(iph + 1);
1250                 } else {
1251                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1252
1253                         if (iph->nexthdr == IPPROTO_UDP)
1254                                 uh = (struct udphdr *)(iph + 1);
1255                 }
1256                 if (uh) {
1257                         if (uh->check)
1258                                 skb_shinfo(skb)->gso_type |=
1259                                         SKB_GSO_UDP_TUNNEL_CSUM;
1260                         else
1261                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1262                 }
1263         }
1264 #endif
1265         return skb;
1266 }
1267
1268 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1269                                            struct bnxt_tpa_info *tpa_info,
1270                                            struct rx_tpa_end_cmp *tpa_end,
1271                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1272                                            struct sk_buff *skb)
1273 {
1274 #ifdef CONFIG_INET
1275         int payload_off;
1276         u16 segs;
1277
1278         segs = TPA_END_TPA_SEGS(tpa_end);
1279         if (segs == 1)
1280                 return skb;
1281
1282         NAPI_GRO_CB(skb)->count = segs;
1283         skb_shinfo(skb)->gso_size =
1284                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1285         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1286         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1287                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1288                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1289         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1290         if (likely(skb))
1291                 tcp_gro_complete(skb);
1292 #endif
1293         return skb;
1294 }
1295
1296 /* Given the cfa_code of a received packet determine which
1297  * netdev (vf-rep or PF) the packet is destined to.
1298  */
1299 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1300 {
1301         struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1302
1303         /* if vf-rep dev is NULL, the must belongs to the PF */
1304         return dev ? dev : bp->dev;
1305 }
1306
1307 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1308                                            struct bnxt_napi *bnapi,
1309                                            u32 *raw_cons,
1310                                            struct rx_tpa_end_cmp *tpa_end,
1311                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1312                                            u8 *event)
1313 {
1314         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1315         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1316         u8 agg_id = TPA_END_AGG_ID(tpa_end);
1317         u8 *data_ptr, agg_bufs;
1318         u16 cp_cons = RING_CMP(*raw_cons);
1319         unsigned int len;
1320         struct bnxt_tpa_info *tpa_info;
1321         dma_addr_t mapping;
1322         struct sk_buff *skb;
1323         void *data;
1324
1325         if (unlikely(bnapi->in_reset)) {
1326                 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1327
1328                 if (rc < 0)
1329                         return ERR_PTR(-EBUSY);
1330                 return NULL;
1331         }
1332
1333         tpa_info = &rxr->rx_tpa[agg_id];
1334         data = tpa_info->data;
1335         data_ptr = tpa_info->data_ptr;
1336         prefetch(data_ptr);
1337         len = tpa_info->len;
1338         mapping = tpa_info->mapping;
1339
1340         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1341                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1342
1343         if (agg_bufs) {
1344                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1345                         return ERR_PTR(-EBUSY);
1346
1347                 *event |= BNXT_AGG_EVENT;
1348                 cp_cons = NEXT_CMP(cp_cons);
1349         }
1350
1351         if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1352                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1353                 if (agg_bufs > MAX_SKB_FRAGS)
1354                         netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1355                                     agg_bufs, (int)MAX_SKB_FRAGS);
1356                 return NULL;
1357         }
1358
1359         if (len <= bp->rx_copy_thresh) {
1360                 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1361                 if (!skb) {
1362                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1363                         return NULL;
1364                 }
1365         } else {
1366                 u8 *new_data;
1367                 dma_addr_t new_mapping;
1368
1369                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1370                 if (!new_data) {
1371                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1372                         return NULL;
1373                 }
1374
1375                 tpa_info->data = new_data;
1376                 tpa_info->data_ptr = new_data + bp->rx_offset;
1377                 tpa_info->mapping = new_mapping;
1378
1379                 skb = build_skb(data, 0);
1380                 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1381                                        bp->rx_buf_use_size, bp->rx_dir,
1382                                        DMA_ATTR_WEAK_ORDERING);
1383
1384                 if (!skb) {
1385                         kfree(data);
1386                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1387                         return NULL;
1388                 }
1389                 skb_reserve(skb, bp->rx_offset);
1390                 skb_put(skb, len);
1391         }
1392
1393         if (agg_bufs) {
1394                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1395                 if (!skb) {
1396                         /* Page reuse already handled by bnxt_rx_pages(). */
1397                         return NULL;
1398                 }
1399         }
1400
1401         skb->protocol =
1402                 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1403
1404         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1405                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1406
1407         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1408             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1409                 u16 vlan_proto = tpa_info->metadata >>
1410                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1411                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1412
1413                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1414         }
1415
1416         skb_checksum_none_assert(skb);
1417         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1418                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1419                 skb->csum_level =
1420                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1421         }
1422
1423         if (TPA_END_GRO(tpa_end))
1424                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1425
1426         return skb;
1427 }
1428
1429 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1430                              struct sk_buff *skb)
1431 {
1432         if (skb->dev != bp->dev) {
1433                 /* this packet belongs to a vf-rep */
1434                 bnxt_vf_rep_rx(bp, skb);
1435                 return;
1436         }
1437         skb_record_rx_queue(skb, bnapi->index);
1438         napi_gro_receive(&bnapi->napi, skb);
1439 }
1440
1441 /* returns the following:
1442  * 1       - 1 packet successfully received
1443  * 0       - successful TPA_START, packet not completed yet
1444  * -EBUSY  - completion ring does not have all the agg buffers yet
1445  * -ENOMEM - packet aborted due to out of memory
1446  * -EIO    - packet aborted due to hw error indicated in BD
1447  */
1448 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1449                        u8 *event)
1450 {
1451         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1452         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1453         struct net_device *dev = bp->dev;
1454         struct rx_cmp *rxcmp;
1455         struct rx_cmp_ext *rxcmp1;
1456         u32 tmp_raw_cons = *raw_cons;
1457         u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1458         struct bnxt_sw_rx_bd *rx_buf;
1459         unsigned int len;
1460         u8 *data_ptr, agg_bufs, cmp_type;
1461         dma_addr_t dma_addr;
1462         struct sk_buff *skb;
1463         void *data;
1464         int rc = 0;
1465         u32 misc;
1466
1467         rxcmp = (struct rx_cmp *)
1468                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1469
1470         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1471         cp_cons = RING_CMP(tmp_raw_cons);
1472         rxcmp1 = (struct rx_cmp_ext *)
1473                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1474
1475         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1476                 return -EBUSY;
1477
1478         cmp_type = RX_CMP_TYPE(rxcmp);
1479
1480         prod = rxr->rx_prod;
1481
1482         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1483                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1484                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1485
1486                 *event |= BNXT_RX_EVENT;
1487                 goto next_rx_no_prod;
1488
1489         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1490                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1491                                    (struct rx_tpa_end_cmp *)rxcmp,
1492                                    (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1493
1494                 if (unlikely(IS_ERR(skb)))
1495                         return -EBUSY;
1496
1497                 rc = -ENOMEM;
1498                 if (likely(skb)) {
1499                         bnxt_deliver_skb(bp, bnapi, skb);
1500                         rc = 1;
1501                 }
1502                 *event |= BNXT_RX_EVENT;
1503                 goto next_rx_no_prod;
1504         }
1505
1506         cons = rxcmp->rx_cmp_opaque;
1507         rx_buf = &rxr->rx_buf_ring[cons];
1508         data = rx_buf->data;
1509         data_ptr = rx_buf->data_ptr;
1510         if (unlikely(cons != rxr->rx_next_cons)) {
1511                 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1512
1513                 bnxt_sched_reset(bp, rxr);
1514                 return rc1;
1515         }
1516         prefetch(data_ptr);
1517
1518         misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1519         agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1520
1521         if (agg_bufs) {
1522                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1523                         return -EBUSY;
1524
1525                 cp_cons = NEXT_CMP(cp_cons);
1526                 *event |= BNXT_AGG_EVENT;
1527         }
1528         *event |= BNXT_RX_EVENT;
1529
1530         rx_buf->data = NULL;
1531         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1532                 bnxt_reuse_rx_data(rxr, cons, data);
1533                 if (agg_bufs)
1534                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1535
1536                 rc = -EIO;
1537                 goto next_rx;
1538         }
1539
1540         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1541         dma_addr = rx_buf->mapping;
1542
1543         if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1544                 rc = 1;
1545                 goto next_rx;
1546         }
1547
1548         if (len <= bp->rx_copy_thresh) {
1549                 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1550                 bnxt_reuse_rx_data(rxr, cons, data);
1551                 if (!skb) {
1552                         rc = -ENOMEM;
1553                         goto next_rx;
1554                 }
1555         } else {
1556                 u32 payload;
1557
1558                 if (rx_buf->data_ptr == data_ptr)
1559                         payload = misc & RX_CMP_PAYLOAD_OFFSET;
1560                 else
1561                         payload = 0;
1562                 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1563                                       payload | len);
1564                 if (!skb) {
1565                         rc = -ENOMEM;
1566                         goto next_rx;
1567                 }
1568         }
1569
1570         if (agg_bufs) {
1571                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1572                 if (!skb) {
1573                         rc = -ENOMEM;
1574                         goto next_rx;
1575                 }
1576         }
1577
1578         if (RX_CMP_HASH_VALID(rxcmp)) {
1579                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1580                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1581
1582                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1583                 if (hash_type != 1 && hash_type != 3)
1584                         type = PKT_HASH_TYPE_L3;
1585                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1586         }
1587
1588         cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1589         skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1590
1591         if ((rxcmp1->rx_cmp_flags2 &
1592              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1593             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1594                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1595                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1596                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1597
1598                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1599         }
1600
1601         skb_checksum_none_assert(skb);
1602         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1603                 if (dev->features & NETIF_F_RXCSUM) {
1604                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1605                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1606                 }
1607         } else {
1608                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1609                         if (dev->features & NETIF_F_RXCSUM)
1610                                 cpr->rx_l4_csum_errors++;
1611                 }
1612         }
1613
1614         bnxt_deliver_skb(bp, bnapi, skb);
1615         rc = 1;
1616
1617 next_rx:
1618         rxr->rx_prod = NEXT_RX(prod);
1619         rxr->rx_next_cons = NEXT_RX(cons);
1620
1621 next_rx_no_prod:
1622         *raw_cons = tmp_raw_cons;
1623
1624         return rc;
1625 }
1626
1627 /* In netpoll mode, if we are using a combined completion ring, we need to
1628  * discard the rx packets and recycle the buffers.
1629  */
1630 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1631                                  u32 *raw_cons, u8 *event)
1632 {
1633         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1634         u32 tmp_raw_cons = *raw_cons;
1635         struct rx_cmp_ext *rxcmp1;
1636         struct rx_cmp *rxcmp;
1637         u16 cp_cons;
1638         u8 cmp_type;
1639
1640         cp_cons = RING_CMP(tmp_raw_cons);
1641         rxcmp = (struct rx_cmp *)
1642                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1643
1644         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1645         cp_cons = RING_CMP(tmp_raw_cons);
1646         rxcmp1 = (struct rx_cmp_ext *)
1647                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1648
1649         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1650                 return -EBUSY;
1651
1652         cmp_type = RX_CMP_TYPE(rxcmp);
1653         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1654                 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1655                         cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1656         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1657                 struct rx_tpa_end_cmp_ext *tpa_end1;
1658
1659                 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1660                 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1661                         cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1662         }
1663         return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1664 }
1665
1666 #define BNXT_GET_EVENT_PORT(data)       \
1667         ((data) &                       \
1668          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1669
1670 static int bnxt_async_event_process(struct bnxt *bp,
1671                                     struct hwrm_async_event_cmpl *cmpl)
1672 {
1673         u16 event_id = le16_to_cpu(cmpl->event_id);
1674
1675         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1676         switch (event_id) {
1677         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1678                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1679                 struct bnxt_link_info *link_info = &bp->link_info;
1680
1681                 if (BNXT_VF(bp))
1682                         goto async_event_process_exit;
1683                 if (data1 & 0x20000) {
1684                         u16 fw_speed = link_info->force_link_speed;
1685                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1686
1687                         netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1688                                     speed);
1689                 }
1690                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1691                 /* fall thru */
1692         }
1693         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1694                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1695                 break;
1696         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1697                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1698                 break;
1699         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1700                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1701                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1702
1703                 if (BNXT_VF(bp))
1704                         break;
1705
1706                 if (bp->pf.port_id != port_id)
1707                         break;
1708
1709                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1710                 break;
1711         }
1712         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1713                 if (BNXT_PF(bp))
1714                         goto async_event_process_exit;
1715                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1716                 break;
1717         default:
1718                 goto async_event_process_exit;
1719         }
1720         schedule_work(&bp->sp_task);
1721 async_event_process_exit:
1722         bnxt_ulp_async_events(bp, cmpl);
1723         return 0;
1724 }
1725
1726 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1727 {
1728         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1729         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1730         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1731                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1732
1733         switch (cmpl_type) {
1734         case CMPL_BASE_TYPE_HWRM_DONE:
1735                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1736                 if (seq_id == bp->hwrm_intr_seq_id)
1737                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1738                 else
1739                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1740                 break;
1741
1742         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1743                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1744
1745                 if ((vf_id < bp->pf.first_vf_id) ||
1746                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1747                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1748                                    vf_id);
1749                         return -EINVAL;
1750                 }
1751
1752                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1753                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1754                 schedule_work(&bp->sp_task);
1755                 break;
1756
1757         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1758                 bnxt_async_event_process(bp,
1759                                          (struct hwrm_async_event_cmpl *)txcmp);
1760
1761         default:
1762                 break;
1763         }
1764
1765         return 0;
1766 }
1767
1768 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1769 {
1770         struct bnxt_napi *bnapi = dev_instance;
1771         struct bnxt *bp = bnapi->bp;
1772         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1773         u32 cons = RING_CMP(cpr->cp_raw_cons);
1774
1775         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1776         napi_schedule(&bnapi->napi);
1777         return IRQ_HANDLED;
1778 }
1779
1780 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1781 {
1782         u32 raw_cons = cpr->cp_raw_cons;
1783         u16 cons = RING_CMP(raw_cons);
1784         struct tx_cmp *txcmp;
1785
1786         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1787
1788         return TX_CMP_VALID(txcmp, raw_cons);
1789 }
1790
1791 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1792 {
1793         struct bnxt_napi *bnapi = dev_instance;
1794         struct bnxt *bp = bnapi->bp;
1795         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1796         u32 cons = RING_CMP(cpr->cp_raw_cons);
1797         u32 int_status;
1798
1799         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1800
1801         if (!bnxt_has_work(bp, cpr)) {
1802                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1803                 /* return if erroneous interrupt */
1804                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1805                         return IRQ_NONE;
1806         }
1807
1808         /* disable ring IRQ */
1809         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1810
1811         /* Return here if interrupt is shared and is disabled. */
1812         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1813                 return IRQ_HANDLED;
1814
1815         napi_schedule(&bnapi->napi);
1816         return IRQ_HANDLED;
1817 }
1818
1819 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1820 {
1821         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1822         u32 raw_cons = cpr->cp_raw_cons;
1823         u32 cons;
1824         int tx_pkts = 0;
1825         int rx_pkts = 0;
1826         u8 event = 0;
1827         struct tx_cmp *txcmp;
1828
1829         while (1) {
1830                 int rc;
1831
1832                 cons = RING_CMP(raw_cons);
1833                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1834
1835                 if (!TX_CMP_VALID(txcmp, raw_cons))
1836                         break;
1837
1838                 /* The valid test of the entry must be done first before
1839                  * reading any further.
1840                  */
1841                 dma_rmb();
1842                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1843                         tx_pkts++;
1844                         /* return full budget so NAPI will complete. */
1845                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1846                                 rx_pkts = budget;
1847                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1848                         if (likely(budget))
1849                                 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1850                         else
1851                                 rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1852                                                            &event);
1853                         if (likely(rc >= 0))
1854                                 rx_pkts += rc;
1855                         /* Increment rx_pkts when rc is -ENOMEM to count towards
1856                          * the NAPI budget.  Otherwise, we may potentially loop
1857                          * here forever if we consistently cannot allocate
1858                          * buffers.
1859                          */
1860                         else if (rc == -ENOMEM)
1861                                 rx_pkts++;
1862                         else if (rc == -EBUSY)  /* partial completion */
1863                                 break;
1864                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1865                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1866                                     (TX_CMP_TYPE(txcmp) ==
1867                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1868                                     (TX_CMP_TYPE(txcmp) ==
1869                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1870                         bnxt_hwrm_handler(bp, txcmp);
1871                 }
1872                 raw_cons = NEXT_RAW_CMP(raw_cons);
1873
1874                 if (rx_pkts == budget)
1875                         break;
1876         }
1877
1878         if (event & BNXT_TX_EVENT) {
1879                 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1880                 void __iomem *db = txr->tx_doorbell;
1881                 u16 prod = txr->tx_prod;
1882
1883                 /* Sync BD data before updating doorbell */
1884                 wmb();
1885
1886                 bnxt_db_write(bp, db, DB_KEY_TX | prod);
1887         }
1888
1889         cpr->cp_raw_cons = raw_cons;
1890         /* ACK completion ring before freeing tx ring and producing new
1891          * buffers in rx/agg rings to prevent overflowing the completion
1892          * ring.
1893          */
1894         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1895
1896         if (tx_pkts)
1897                 bnapi->tx_int(bp, bnapi, tx_pkts);
1898
1899         if (event & BNXT_RX_EVENT) {
1900                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1901
1902                 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1903                 if (event & BNXT_AGG_EVENT)
1904                         bnxt_db_write(bp, rxr->rx_agg_doorbell,
1905                                       DB_KEY_RX | rxr->rx_agg_prod);
1906         }
1907         return rx_pkts;
1908 }
1909
1910 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1911 {
1912         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1913         struct bnxt *bp = bnapi->bp;
1914         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1915         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1916         struct tx_cmp *txcmp;
1917         struct rx_cmp_ext *rxcmp1;
1918         u32 cp_cons, tmp_raw_cons;
1919         u32 raw_cons = cpr->cp_raw_cons;
1920         u32 rx_pkts = 0;
1921         u8 event = 0;
1922
1923         while (1) {
1924                 int rc;
1925
1926                 cp_cons = RING_CMP(raw_cons);
1927                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1928
1929                 if (!TX_CMP_VALID(txcmp, raw_cons))
1930                         break;
1931
1932                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1933                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1934                         cp_cons = RING_CMP(tmp_raw_cons);
1935                         rxcmp1 = (struct rx_cmp_ext *)
1936                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1937
1938                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1939                                 break;
1940
1941                         /* force an error to recycle the buffer */
1942                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1943                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1944
1945                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1946                         if (likely(rc == -EIO))
1947                                 rx_pkts++;
1948                         else if (rc == -EBUSY)  /* partial completion */
1949                                 break;
1950                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1951                                     CMPL_BASE_TYPE_HWRM_DONE)) {
1952                         bnxt_hwrm_handler(bp, txcmp);
1953                 } else {
1954                         netdev_err(bp->dev,
1955                                    "Invalid completion received on special ring\n");
1956                 }
1957                 raw_cons = NEXT_RAW_CMP(raw_cons);
1958
1959                 if (rx_pkts == budget)
1960                         break;
1961         }
1962
1963         cpr->cp_raw_cons = raw_cons;
1964         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1965         bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1966
1967         if (event & BNXT_AGG_EVENT)
1968                 bnxt_db_write(bp, rxr->rx_agg_doorbell,
1969                               DB_KEY_RX | rxr->rx_agg_prod);
1970
1971         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1972                 napi_complete_done(napi, rx_pkts);
1973                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1974         }
1975         return rx_pkts;
1976 }
1977
1978 static int bnxt_poll(struct napi_struct *napi, int budget)
1979 {
1980         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1981         struct bnxt *bp = bnapi->bp;
1982         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1983         int work_done = 0;
1984
1985         while (1) {
1986                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1987
1988                 if (work_done >= budget)
1989                         break;
1990
1991                 if (!bnxt_has_work(bp, cpr)) {
1992                         if (napi_complete_done(napi, work_done))
1993                                 BNXT_CP_DB_REARM(cpr->cp_doorbell,
1994                                                  cpr->cp_raw_cons);
1995                         break;
1996                 }
1997         }
1998         mmiowb();
1999         return work_done;
2000 }
2001
2002 static void bnxt_free_tx_skbs(struct bnxt *bp)
2003 {
2004         int i, max_idx;
2005         struct pci_dev *pdev = bp->pdev;
2006
2007         if (!bp->tx_ring)
2008                 return;
2009
2010         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2011         for (i = 0; i < bp->tx_nr_rings; i++) {
2012                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2013                 int j;
2014
2015                 for (j = 0; j < max_idx;) {
2016                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2017                         struct sk_buff *skb = tx_buf->skb;
2018                         int k, last;
2019
2020                         if (!skb) {
2021                                 j++;
2022                                 continue;
2023                         }
2024
2025                         tx_buf->skb = NULL;
2026
2027                         if (tx_buf->is_push) {
2028                                 dev_kfree_skb(skb);
2029                                 j += 2;
2030                                 continue;
2031                         }
2032
2033                         dma_unmap_single(&pdev->dev,
2034                                          dma_unmap_addr(tx_buf, mapping),
2035                                          skb_headlen(skb),
2036                                          PCI_DMA_TODEVICE);
2037
2038                         last = tx_buf->nr_frags;
2039                         j += 2;
2040                         for (k = 0; k < last; k++, j++) {
2041                                 int ring_idx = j & bp->tx_ring_mask;
2042                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2043
2044                                 tx_buf = &txr->tx_buf_ring[ring_idx];
2045                                 dma_unmap_page(
2046                                         &pdev->dev,
2047                                         dma_unmap_addr(tx_buf, mapping),
2048                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
2049                         }
2050                         dev_kfree_skb(skb);
2051                 }
2052                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2053         }
2054 }
2055
2056 static void bnxt_free_rx_skbs(struct bnxt *bp)
2057 {
2058         int i, max_idx, max_agg_idx;
2059         struct pci_dev *pdev = bp->pdev;
2060
2061         if (!bp->rx_ring)
2062                 return;
2063
2064         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2065         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2066         for (i = 0; i < bp->rx_nr_rings; i++) {
2067                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2068                 int j;
2069
2070                 if (rxr->rx_tpa) {
2071                         for (j = 0; j < MAX_TPA; j++) {
2072                                 struct bnxt_tpa_info *tpa_info =
2073                                                         &rxr->rx_tpa[j];
2074                                 u8 *data = tpa_info->data;
2075
2076                                 if (!data)
2077                                         continue;
2078
2079                                 dma_unmap_single_attrs(&pdev->dev,
2080                                                        tpa_info->mapping,
2081                                                        bp->rx_buf_use_size,
2082                                                        bp->rx_dir,
2083                                                        DMA_ATTR_WEAK_ORDERING);
2084
2085                                 tpa_info->data = NULL;
2086
2087                                 kfree(data);
2088                         }
2089                 }
2090
2091                 for (j = 0; j < max_idx; j++) {
2092                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2093                         dma_addr_t mapping = rx_buf->mapping;
2094                         void *data = rx_buf->data;
2095
2096                         if (!data)
2097                                 continue;
2098
2099                         rx_buf->data = NULL;
2100
2101                         if (BNXT_RX_PAGE_MODE(bp)) {
2102                                 mapping -= bp->rx_dma_offset;
2103                                 dma_unmap_page_attrs(&pdev->dev, mapping,
2104                                                      PAGE_SIZE, bp->rx_dir,
2105                                                      DMA_ATTR_WEAK_ORDERING);
2106                                 __free_page(data);
2107                         } else {
2108                                 dma_unmap_single_attrs(&pdev->dev, mapping,
2109                                                        bp->rx_buf_use_size,
2110                                                        bp->rx_dir,
2111                                                        DMA_ATTR_WEAK_ORDERING);
2112                                 kfree(data);
2113                         }
2114                 }
2115
2116                 for (j = 0; j < max_agg_idx; j++) {
2117                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2118                                 &rxr->rx_agg_ring[j];
2119                         struct page *page = rx_agg_buf->page;
2120
2121                         if (!page)
2122                                 continue;
2123
2124                         dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2125                                              BNXT_RX_PAGE_SIZE,
2126                                              PCI_DMA_FROMDEVICE,
2127                                              DMA_ATTR_WEAK_ORDERING);
2128
2129                         rx_agg_buf->page = NULL;
2130                         __clear_bit(j, rxr->rx_agg_bmap);
2131
2132                         __free_page(page);
2133                 }
2134                 if (rxr->rx_page) {
2135                         __free_page(rxr->rx_page);
2136                         rxr->rx_page = NULL;
2137                 }
2138         }
2139 }
2140
2141 static void bnxt_free_skbs(struct bnxt *bp)
2142 {
2143         bnxt_free_tx_skbs(bp);
2144         bnxt_free_rx_skbs(bp);
2145 }
2146
2147 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2148 {
2149         struct pci_dev *pdev = bp->pdev;
2150         int i;
2151
2152         for (i = 0; i < ring->nr_pages; i++) {
2153                 if (!ring->pg_arr[i])
2154                         continue;
2155
2156                 dma_free_coherent(&pdev->dev, ring->page_size,
2157                                   ring->pg_arr[i], ring->dma_arr[i]);
2158
2159                 ring->pg_arr[i] = NULL;
2160         }
2161         if (ring->pg_tbl) {
2162                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2163                                   ring->pg_tbl, ring->pg_tbl_map);
2164                 ring->pg_tbl = NULL;
2165         }
2166         if (ring->vmem_size && *ring->vmem) {
2167                 vfree(*ring->vmem);
2168                 *ring->vmem = NULL;
2169         }
2170 }
2171
2172 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2173 {
2174         int i;
2175         struct pci_dev *pdev = bp->pdev;
2176
2177         if (ring->nr_pages > 1) {
2178                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2179                                                   ring->nr_pages * 8,
2180                                                   &ring->pg_tbl_map,
2181                                                   GFP_KERNEL);
2182                 if (!ring->pg_tbl)
2183                         return -ENOMEM;
2184         }
2185
2186         for (i = 0; i < ring->nr_pages; i++) {
2187                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2188                                                      ring->page_size,
2189                                                      &ring->dma_arr[i],
2190                                                      GFP_KERNEL);
2191                 if (!ring->pg_arr[i])
2192                         return -ENOMEM;
2193
2194                 if (ring->nr_pages > 1)
2195                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2196         }
2197
2198         if (ring->vmem_size) {
2199                 *ring->vmem = vzalloc(ring->vmem_size);
2200                 if (!(*ring->vmem))
2201                         return -ENOMEM;
2202         }
2203         return 0;
2204 }
2205
2206 static void bnxt_free_rx_rings(struct bnxt *bp)
2207 {
2208         int i;
2209
2210         if (!bp->rx_ring)
2211                 return;
2212
2213         for (i = 0; i < bp->rx_nr_rings; i++) {
2214                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2215                 struct bnxt_ring_struct *ring;
2216
2217                 if (rxr->xdp_prog)
2218                         bpf_prog_put(rxr->xdp_prog);
2219
2220                 kfree(rxr->rx_tpa);
2221                 rxr->rx_tpa = NULL;
2222
2223                 kfree(rxr->rx_agg_bmap);
2224                 rxr->rx_agg_bmap = NULL;
2225
2226                 ring = &rxr->rx_ring_struct;
2227                 bnxt_free_ring(bp, ring);
2228
2229                 ring = &rxr->rx_agg_ring_struct;
2230                 bnxt_free_ring(bp, ring);
2231         }
2232 }
2233
2234 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2235 {
2236         int i, rc, agg_rings = 0, tpa_rings = 0;
2237
2238         if (!bp->rx_ring)
2239                 return -ENOMEM;
2240
2241         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2242                 agg_rings = 1;
2243
2244         if (bp->flags & BNXT_FLAG_TPA)
2245                 tpa_rings = 1;
2246
2247         for (i = 0; i < bp->rx_nr_rings; i++) {
2248                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2249                 struct bnxt_ring_struct *ring;
2250
2251                 ring = &rxr->rx_ring_struct;
2252
2253                 rc = bnxt_alloc_ring(bp, ring);
2254                 if (rc)
2255                         return rc;
2256
2257                 if (agg_rings) {
2258                         u16 mem_size;
2259
2260                         ring = &rxr->rx_agg_ring_struct;
2261                         rc = bnxt_alloc_ring(bp, ring);
2262                         if (rc)
2263                                 return rc;
2264
2265                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2266                         mem_size = rxr->rx_agg_bmap_size / 8;
2267                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2268                         if (!rxr->rx_agg_bmap)
2269                                 return -ENOMEM;
2270
2271                         if (tpa_rings) {
2272                                 rxr->rx_tpa = kcalloc(MAX_TPA,
2273                                                 sizeof(struct bnxt_tpa_info),
2274                                                 GFP_KERNEL);
2275                                 if (!rxr->rx_tpa)
2276                                         return -ENOMEM;
2277                         }
2278                 }
2279         }
2280         return 0;
2281 }
2282
2283 static void bnxt_free_tx_rings(struct bnxt *bp)
2284 {
2285         int i;
2286         struct pci_dev *pdev = bp->pdev;
2287
2288         if (!bp->tx_ring)
2289                 return;
2290
2291         for (i = 0; i < bp->tx_nr_rings; i++) {
2292                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2293                 struct bnxt_ring_struct *ring;
2294
2295                 if (txr->tx_push) {
2296                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2297                                           txr->tx_push, txr->tx_push_mapping);
2298                         txr->tx_push = NULL;
2299                 }
2300
2301                 ring = &txr->tx_ring_struct;
2302
2303                 bnxt_free_ring(bp, ring);
2304         }
2305 }
2306
2307 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2308 {
2309         int i, j, rc;
2310         struct pci_dev *pdev = bp->pdev;
2311
2312         bp->tx_push_size = 0;
2313         if (bp->tx_push_thresh) {
2314                 int push_size;
2315
2316                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2317                                         bp->tx_push_thresh);
2318
2319                 if (push_size > 256) {
2320                         push_size = 0;
2321                         bp->tx_push_thresh = 0;
2322                 }
2323
2324                 bp->tx_push_size = push_size;
2325         }
2326
2327         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2328                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2329                 struct bnxt_ring_struct *ring;
2330
2331                 ring = &txr->tx_ring_struct;
2332
2333                 rc = bnxt_alloc_ring(bp, ring);
2334                 if (rc)
2335                         return rc;
2336
2337                 if (bp->tx_push_size) {
2338                         dma_addr_t mapping;
2339
2340                         /* One pre-allocated DMA buffer to backup
2341                          * TX push operation
2342                          */
2343                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2344                                                 bp->tx_push_size,
2345                                                 &txr->tx_push_mapping,
2346                                                 GFP_KERNEL);
2347
2348                         if (!txr->tx_push)
2349                                 return -ENOMEM;
2350
2351                         mapping = txr->tx_push_mapping +
2352                                 sizeof(struct tx_push_bd);
2353                         txr->data_mapping = cpu_to_le64(mapping);
2354
2355                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2356                 }
2357                 ring->queue_id = bp->q_info[j].queue_id;
2358                 if (i < bp->tx_nr_rings_xdp)
2359                         continue;
2360                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2361                         j++;
2362         }
2363         return 0;
2364 }
2365
2366 static void bnxt_free_cp_rings(struct bnxt *bp)
2367 {
2368         int i;
2369
2370         if (!bp->bnapi)
2371                 return;
2372
2373         for (i = 0; i < bp->cp_nr_rings; i++) {
2374                 struct bnxt_napi *bnapi = bp->bnapi[i];
2375                 struct bnxt_cp_ring_info *cpr;
2376                 struct bnxt_ring_struct *ring;
2377
2378                 if (!bnapi)
2379                         continue;
2380
2381                 cpr = &bnapi->cp_ring;
2382                 ring = &cpr->cp_ring_struct;
2383
2384                 bnxt_free_ring(bp, ring);
2385         }
2386 }
2387
2388 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2389 {
2390         int i, rc;
2391
2392         for (i = 0; i < bp->cp_nr_rings; i++) {
2393                 struct bnxt_napi *bnapi = bp->bnapi[i];
2394                 struct bnxt_cp_ring_info *cpr;
2395                 struct bnxt_ring_struct *ring;
2396
2397                 if (!bnapi)
2398                         continue;
2399
2400                 cpr = &bnapi->cp_ring;
2401                 ring = &cpr->cp_ring_struct;
2402
2403                 rc = bnxt_alloc_ring(bp, ring);
2404                 if (rc)
2405                         return rc;
2406         }
2407         return 0;
2408 }
2409
2410 static void bnxt_init_ring_struct(struct bnxt *bp)
2411 {
2412         int i;
2413
2414         for (i = 0; i < bp->cp_nr_rings; i++) {
2415                 struct bnxt_napi *bnapi = bp->bnapi[i];
2416                 struct bnxt_cp_ring_info *cpr;
2417                 struct bnxt_rx_ring_info *rxr;
2418                 struct bnxt_tx_ring_info *txr;
2419                 struct bnxt_ring_struct *ring;
2420
2421                 if (!bnapi)
2422                         continue;
2423
2424                 cpr = &bnapi->cp_ring;
2425                 ring = &cpr->cp_ring_struct;
2426                 ring->nr_pages = bp->cp_nr_pages;
2427                 ring->page_size = HW_CMPD_RING_SIZE;
2428                 ring->pg_arr = (void **)cpr->cp_desc_ring;
2429                 ring->dma_arr = cpr->cp_desc_mapping;
2430                 ring->vmem_size = 0;
2431
2432                 rxr = bnapi->rx_ring;
2433                 if (!rxr)
2434                         goto skip_rx;
2435
2436                 ring = &rxr->rx_ring_struct;
2437                 ring->nr_pages = bp->rx_nr_pages;
2438                 ring->page_size = HW_RXBD_RING_SIZE;
2439                 ring->pg_arr = (void **)rxr->rx_desc_ring;
2440                 ring->dma_arr = rxr->rx_desc_mapping;
2441                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2442                 ring->vmem = (void **)&rxr->rx_buf_ring;
2443
2444                 ring = &rxr->rx_agg_ring_struct;
2445                 ring->nr_pages = bp->rx_agg_nr_pages;
2446                 ring->page_size = HW_RXBD_RING_SIZE;
2447                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2448                 ring->dma_arr = rxr->rx_agg_desc_mapping;
2449                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2450                 ring->vmem = (void **)&rxr->rx_agg_ring;
2451
2452 skip_rx:
2453                 txr = bnapi->tx_ring;
2454                 if (!txr)
2455                         continue;
2456
2457                 ring = &txr->tx_ring_struct;
2458                 ring->nr_pages = bp->tx_nr_pages;
2459                 ring->page_size = HW_RXBD_RING_SIZE;
2460                 ring->pg_arr = (void **)txr->tx_desc_ring;
2461                 ring->dma_arr = txr->tx_desc_mapping;
2462                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2463                 ring->vmem = (void **)&txr->tx_buf_ring;
2464         }
2465 }
2466
2467 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2468 {
2469         int i;
2470         u32 prod;
2471         struct rx_bd **rx_buf_ring;
2472
2473         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2474         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2475                 int j;
2476                 struct rx_bd *rxbd;
2477
2478                 rxbd = rx_buf_ring[i];
2479                 if (!rxbd)
2480                         continue;
2481
2482                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2483                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2484                         rxbd->rx_bd_opaque = prod;
2485                 }
2486         }
2487 }
2488
2489 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2490 {
2491         struct net_device *dev = bp->dev;
2492         struct bnxt_rx_ring_info *rxr;
2493         struct bnxt_ring_struct *ring;
2494         u32 prod, type;
2495         int i;
2496
2497         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2498                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2499
2500         if (NET_IP_ALIGN == 2)
2501                 type |= RX_BD_FLAGS_SOP;
2502
2503         rxr = &bp->rx_ring[ring_nr];
2504         ring = &rxr->rx_ring_struct;
2505         bnxt_init_rxbd_pages(ring, type);
2506
2507         if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2508                 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2509                 if (IS_ERR(rxr->xdp_prog)) {
2510                         int rc = PTR_ERR(rxr->xdp_prog);
2511
2512                         rxr->xdp_prog = NULL;
2513                         return rc;
2514                 }
2515         }
2516         prod = rxr->rx_prod;
2517         for (i = 0; i < bp->rx_ring_size; i++) {
2518                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2519                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2520                                     ring_nr, i, bp->rx_ring_size);
2521                         break;
2522                 }
2523                 prod = NEXT_RX(prod);
2524         }
2525         rxr->rx_prod = prod;
2526         ring->fw_ring_id = INVALID_HW_RING_ID;
2527
2528         ring = &rxr->rx_agg_ring_struct;
2529         ring->fw_ring_id = INVALID_HW_RING_ID;
2530
2531         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2532                 return 0;
2533
2534         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2535                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2536
2537         bnxt_init_rxbd_pages(ring, type);
2538
2539         prod = rxr->rx_agg_prod;
2540         for (i = 0; i < bp->rx_agg_ring_size; i++) {
2541                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2542                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2543                                     ring_nr, i, bp->rx_ring_size);
2544                         break;
2545                 }
2546                 prod = NEXT_RX_AGG(prod);
2547         }
2548         rxr->rx_agg_prod = prod;
2549
2550         if (bp->flags & BNXT_FLAG_TPA) {
2551                 if (rxr->rx_tpa) {
2552                         u8 *data;
2553                         dma_addr_t mapping;
2554
2555                         for (i = 0; i < MAX_TPA; i++) {
2556                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2557                                                             GFP_KERNEL);
2558                                 if (!data)
2559                                         return -ENOMEM;
2560
2561                                 rxr->rx_tpa[i].data = data;
2562                                 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2563                                 rxr->rx_tpa[i].mapping = mapping;
2564                         }
2565                 } else {
2566                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2567                         return -ENOMEM;
2568                 }
2569         }
2570
2571         return 0;
2572 }
2573
2574 static void bnxt_init_cp_rings(struct bnxt *bp)
2575 {
2576         int i;
2577
2578         for (i = 0; i < bp->cp_nr_rings; i++) {
2579                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2580                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2581
2582                 ring->fw_ring_id = INVALID_HW_RING_ID;
2583         }
2584 }
2585
2586 static int bnxt_init_rx_rings(struct bnxt *bp)
2587 {
2588         int i, rc = 0;
2589
2590         if (BNXT_RX_PAGE_MODE(bp)) {
2591                 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2592                 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2593         } else {
2594                 bp->rx_offset = BNXT_RX_OFFSET;
2595                 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2596         }
2597
2598         for (i = 0; i < bp->rx_nr_rings; i++) {
2599                 rc = bnxt_init_one_rx_ring(bp, i);
2600                 if (rc)
2601                         break;
2602         }
2603
2604         return rc;
2605 }
2606
2607 static int bnxt_init_tx_rings(struct bnxt *bp)
2608 {
2609         u16 i;
2610
2611         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2612                                    MAX_SKB_FRAGS + 1);
2613
2614         for (i = 0; i < bp->tx_nr_rings; i++) {
2615                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2616                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2617
2618                 ring->fw_ring_id = INVALID_HW_RING_ID;
2619         }
2620
2621         return 0;
2622 }
2623
2624 static void bnxt_free_ring_grps(struct bnxt *bp)
2625 {
2626         kfree(bp->grp_info);
2627         bp->grp_info = NULL;
2628 }
2629
2630 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2631 {
2632         int i;
2633
2634         if (irq_re_init) {
2635                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2636                                        sizeof(struct bnxt_ring_grp_info),
2637                                        GFP_KERNEL);
2638                 if (!bp->grp_info)
2639                         return -ENOMEM;
2640         }
2641         for (i = 0; i < bp->cp_nr_rings; i++) {
2642                 if (irq_re_init)
2643                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2644                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2645                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2646                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2647                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2648         }
2649         return 0;
2650 }
2651
2652 static void bnxt_free_vnics(struct bnxt *bp)
2653 {
2654         kfree(bp->vnic_info);
2655         bp->vnic_info = NULL;
2656         bp->nr_vnics = 0;
2657 }
2658
2659 static int bnxt_alloc_vnics(struct bnxt *bp)
2660 {
2661         int num_vnics = 1;
2662
2663 #ifdef CONFIG_RFS_ACCEL
2664         if (bp->flags & BNXT_FLAG_RFS)
2665                 num_vnics += bp->rx_nr_rings;
2666 #endif
2667
2668         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2669                 num_vnics++;
2670
2671         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2672                                 GFP_KERNEL);
2673         if (!bp->vnic_info)
2674                 return -ENOMEM;
2675
2676         bp->nr_vnics = num_vnics;
2677         return 0;
2678 }
2679
2680 static void bnxt_init_vnics(struct bnxt *bp)
2681 {
2682         int i;
2683
2684         for (i = 0; i < bp->nr_vnics; i++) {
2685                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2686
2687                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2688                 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2689                 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2690                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2691
2692                 if (bp->vnic_info[i].rss_hash_key) {
2693                         if (i == 0)
2694                                 prandom_bytes(vnic->rss_hash_key,
2695                                               HW_HASH_KEY_SIZE);
2696                         else
2697                                 memcpy(vnic->rss_hash_key,
2698                                        bp->vnic_info[0].rss_hash_key,
2699                                        HW_HASH_KEY_SIZE);
2700                 }
2701         }
2702 }
2703
2704 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2705 {
2706         int pages;
2707
2708         pages = ring_size / desc_per_pg;
2709
2710         if (!pages)
2711                 return 1;
2712
2713         pages++;
2714
2715         while (pages & (pages - 1))
2716                 pages++;
2717
2718         return pages;
2719 }
2720
2721 void bnxt_set_tpa_flags(struct bnxt *bp)
2722 {
2723         bp->flags &= ~BNXT_FLAG_TPA;
2724         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2725                 return;
2726         if (bp->dev->features & NETIF_F_LRO)
2727                 bp->flags |= BNXT_FLAG_LRO;
2728         if (bp->dev->features & NETIF_F_GRO)
2729                 bp->flags |= BNXT_FLAG_GRO;
2730 }
2731
2732 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2733  * be set on entry.
2734  */
2735 void bnxt_set_ring_params(struct bnxt *bp)
2736 {
2737         u32 ring_size, rx_size, rx_space;
2738         u32 agg_factor = 0, agg_ring_size = 0;
2739
2740         /* 8 for CRC and VLAN */
2741         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2742
2743         rx_space = rx_size + NET_SKB_PAD +
2744                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2745
2746         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2747         ring_size = bp->rx_ring_size;
2748         bp->rx_agg_ring_size = 0;
2749         bp->rx_agg_nr_pages = 0;
2750
2751         if (bp->flags & BNXT_FLAG_TPA)
2752                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2753
2754         bp->flags &= ~BNXT_FLAG_JUMBO;
2755         if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2756                 u32 jumbo_factor;
2757
2758                 bp->flags |= BNXT_FLAG_JUMBO;
2759                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2760                 if (jumbo_factor > agg_factor)
2761                         agg_factor = jumbo_factor;
2762         }
2763         agg_ring_size = ring_size * agg_factor;
2764
2765         if (agg_ring_size) {
2766                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2767                                                         RX_DESC_CNT);
2768                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2769                         u32 tmp = agg_ring_size;
2770
2771                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2772                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2773                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2774                                     tmp, agg_ring_size);
2775                 }
2776                 bp->rx_agg_ring_size = agg_ring_size;
2777                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2778                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2779                 rx_space = rx_size + NET_SKB_PAD +
2780                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2781         }
2782
2783         bp->rx_buf_use_size = rx_size;
2784         bp->rx_buf_size = rx_space;
2785
2786         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2787         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2788
2789         ring_size = bp->tx_ring_size;
2790         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2791         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2792
2793         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2794         bp->cp_ring_size = ring_size;
2795
2796         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2797         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2798                 bp->cp_nr_pages = MAX_CP_PAGES;
2799                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2800                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2801                             ring_size, bp->cp_ring_size);
2802         }
2803         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2804         bp->cp_ring_mask = bp->cp_bit - 1;
2805 }
2806
2807 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2808 {
2809         if (page_mode) {
2810                 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2811                         return -EOPNOTSUPP;
2812                 bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
2813                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2814                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2815                 bp->dev->hw_features &= ~NETIF_F_LRO;
2816                 bp->dev->features &= ~NETIF_F_LRO;
2817                 bp->rx_dir = DMA_BIDIRECTIONAL;
2818                 bp->rx_skb_func = bnxt_rx_page_skb;
2819         } else {
2820                 bp->dev->max_mtu = BNXT_MAX_MTU;
2821                 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2822                 bp->rx_dir = DMA_FROM_DEVICE;
2823                 bp->rx_skb_func = bnxt_rx_skb;
2824         }
2825         return 0;
2826 }
2827
2828 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2829 {
2830         int i;
2831         struct bnxt_vnic_info *vnic;
2832         struct pci_dev *pdev = bp->pdev;
2833
2834         if (!bp->vnic_info)
2835                 return;
2836
2837         for (i = 0; i < bp->nr_vnics; i++) {
2838                 vnic = &bp->vnic_info[i];
2839
2840                 kfree(vnic->fw_grp_ids);
2841                 vnic->fw_grp_ids = NULL;
2842
2843                 kfree(vnic->uc_list);
2844                 vnic->uc_list = NULL;
2845
2846                 if (vnic->mc_list) {
2847                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2848                                           vnic->mc_list, vnic->mc_list_mapping);
2849                         vnic->mc_list = NULL;
2850                 }
2851
2852                 if (vnic->rss_table) {
2853                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2854                                           vnic->rss_table,
2855                                           vnic->rss_table_dma_addr);
2856                         vnic->rss_table = NULL;
2857                 }
2858
2859                 vnic->rss_hash_key = NULL;
2860                 vnic->flags = 0;
2861         }
2862 }
2863
2864 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2865 {
2866         int i, rc = 0, size;
2867         struct bnxt_vnic_info *vnic;
2868         struct pci_dev *pdev = bp->pdev;
2869         int max_rings;
2870
2871         for (i = 0; i < bp->nr_vnics; i++) {
2872                 vnic = &bp->vnic_info[i];
2873
2874                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2875                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2876
2877                         if (mem_size > 0) {
2878                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2879                                 if (!vnic->uc_list) {
2880                                         rc = -ENOMEM;
2881                                         goto out;
2882                                 }
2883                         }
2884                 }
2885
2886                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2887                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2888                         vnic->mc_list =
2889                                 dma_alloc_coherent(&pdev->dev,
2890                                                    vnic->mc_list_size,
2891                                                    &vnic->mc_list_mapping,
2892                                                    GFP_KERNEL);
2893                         if (!vnic->mc_list) {
2894                                 rc = -ENOMEM;
2895                                 goto out;
2896                         }
2897                 }
2898
2899                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2900                         max_rings = bp->rx_nr_rings;
2901                 else
2902                         max_rings = 1;
2903
2904                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2905                 if (!vnic->fw_grp_ids) {
2906                         rc = -ENOMEM;
2907                         goto out;
2908                 }
2909
2910                 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2911                     !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2912                         continue;
2913
2914                 /* Allocate rss table and hash key */
2915                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2916                                                      &vnic->rss_table_dma_addr,
2917                                                      GFP_KERNEL);
2918                 if (!vnic->rss_table) {
2919                         rc = -ENOMEM;
2920                         goto out;
2921                 }
2922
2923                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2924
2925                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2926                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2927         }
2928         return 0;
2929
2930 out:
2931         return rc;
2932 }
2933
2934 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2935 {
2936         struct pci_dev *pdev = bp->pdev;
2937
2938         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2939                           bp->hwrm_cmd_resp_dma_addr);
2940
2941         bp->hwrm_cmd_resp_addr = NULL;
2942         if (bp->hwrm_dbg_resp_addr) {
2943                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2944                                   bp->hwrm_dbg_resp_addr,
2945                                   bp->hwrm_dbg_resp_dma_addr);
2946
2947                 bp->hwrm_dbg_resp_addr = NULL;
2948         }
2949 }
2950
2951 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2952 {
2953         struct pci_dev *pdev = bp->pdev;
2954
2955         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2956                                                    &bp->hwrm_cmd_resp_dma_addr,
2957                                                    GFP_KERNEL);
2958         if (!bp->hwrm_cmd_resp_addr)
2959                 return -ENOMEM;
2960         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2961                                                     HWRM_DBG_REG_BUF_SIZE,
2962                                                     &bp->hwrm_dbg_resp_dma_addr,
2963                                                     GFP_KERNEL);
2964         if (!bp->hwrm_dbg_resp_addr)
2965                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2966
2967         return 0;
2968 }
2969
2970 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
2971 {
2972         if (bp->hwrm_short_cmd_req_addr) {
2973                 struct pci_dev *pdev = bp->pdev;
2974
2975                 dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
2976                                   bp->hwrm_short_cmd_req_addr,
2977                                   bp->hwrm_short_cmd_req_dma_addr);
2978                 bp->hwrm_short_cmd_req_addr = NULL;
2979         }
2980 }
2981
2982 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
2983 {
2984         struct pci_dev *pdev = bp->pdev;
2985
2986         bp->hwrm_short_cmd_req_addr =
2987                 dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
2988                                    &bp->hwrm_short_cmd_req_dma_addr,
2989                                    GFP_KERNEL);
2990         if (!bp->hwrm_short_cmd_req_addr)
2991                 return -ENOMEM;
2992
2993         return 0;
2994 }
2995
2996 static void bnxt_free_stats(struct bnxt *bp)
2997 {
2998         u32 size, i;
2999         struct pci_dev *pdev = bp->pdev;
3000
3001         if (bp->hw_rx_port_stats) {
3002                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3003                                   bp->hw_rx_port_stats,
3004                                   bp->hw_rx_port_stats_map);
3005                 bp->hw_rx_port_stats = NULL;
3006                 bp->flags &= ~BNXT_FLAG_PORT_STATS;
3007         }
3008
3009         if (!bp->bnapi)
3010                 return;
3011
3012         size = sizeof(struct ctx_hw_stats);
3013
3014         for (i = 0; i < bp->cp_nr_rings; i++) {
3015                 struct bnxt_napi *bnapi = bp->bnapi[i];
3016                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3017
3018                 if (cpr->hw_stats) {
3019                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3020                                           cpr->hw_stats_map);
3021                         cpr->hw_stats = NULL;
3022                 }
3023         }
3024 }
3025
3026 static int bnxt_alloc_stats(struct bnxt *bp)
3027 {
3028         u32 size, i;
3029         struct pci_dev *pdev = bp->pdev;
3030
3031         size = sizeof(struct ctx_hw_stats);
3032
3033         for (i = 0; i < bp->cp_nr_rings; i++) {
3034                 struct bnxt_napi *bnapi = bp->bnapi[i];
3035                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3036
3037                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3038                                                    &cpr->hw_stats_map,
3039                                                    GFP_KERNEL);
3040                 if (!cpr->hw_stats)
3041                         return -ENOMEM;
3042
3043                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3044         }
3045
3046         if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3047                 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3048                                          sizeof(struct tx_port_stats) + 1024;
3049
3050                 bp->hw_rx_port_stats =
3051                         dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3052                                            &bp->hw_rx_port_stats_map,
3053                                            GFP_KERNEL);
3054                 if (!bp->hw_rx_port_stats)
3055                         return -ENOMEM;
3056
3057                 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3058                                        512;
3059                 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3060                                            sizeof(struct rx_port_stats) + 512;
3061                 bp->flags |= BNXT_FLAG_PORT_STATS;
3062         }
3063         return 0;
3064 }
3065
3066 static void bnxt_clear_ring_indices(struct bnxt *bp)
3067 {
3068         int i;
3069
3070         if (!bp->bnapi)
3071                 return;
3072
3073         for (i = 0; i < bp->cp_nr_rings; i++) {
3074                 struct bnxt_napi *bnapi = bp->bnapi[i];
3075                 struct bnxt_cp_ring_info *cpr;
3076                 struct bnxt_rx_ring_info *rxr;
3077                 struct bnxt_tx_ring_info *txr;
3078
3079                 if (!bnapi)
3080                         continue;
3081
3082                 cpr = &bnapi->cp_ring;
3083                 cpr->cp_raw_cons = 0;
3084
3085                 txr = bnapi->tx_ring;
3086                 if (txr) {
3087                         txr->tx_prod = 0;
3088                         txr->tx_cons = 0;
3089                 }
3090
3091                 rxr = bnapi->rx_ring;
3092                 if (rxr) {
3093                         rxr->rx_prod = 0;
3094                         rxr->rx_agg_prod = 0;
3095                         rxr->rx_sw_agg_prod = 0;
3096                         rxr->rx_next_cons = 0;
3097                 }
3098         }
3099 }
3100
3101 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3102 {
3103 #ifdef CONFIG_RFS_ACCEL
3104         int i;
3105
3106         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
3107          * safe to delete the hash table.
3108          */
3109         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3110                 struct hlist_head *head;
3111                 struct hlist_node *tmp;
3112                 struct bnxt_ntuple_filter *fltr;
3113
3114                 head = &bp->ntp_fltr_hash_tbl[i];
3115                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3116                         hlist_del(&fltr->hash);
3117                         kfree(fltr);
3118                 }
3119         }
3120         if (irq_reinit) {
3121                 kfree(bp->ntp_fltr_bmap);
3122                 bp->ntp_fltr_bmap = NULL;
3123         }
3124         bp->ntp_fltr_count = 0;
3125 #endif
3126 }
3127
3128 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3129 {
3130 #ifdef CONFIG_RFS_ACCEL
3131         int i, rc = 0;
3132
3133         if (!(bp->flags & BNXT_FLAG_RFS))
3134                 return 0;
3135
3136         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3137                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3138
3139         bp->ntp_fltr_count = 0;
3140         bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3141                                     sizeof(long),
3142                                     GFP_KERNEL);
3143
3144         if (!bp->ntp_fltr_bmap)
3145                 rc = -ENOMEM;
3146
3147         return rc;
3148 #else
3149         return 0;
3150 #endif
3151 }
3152
3153 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3154 {
3155         bnxt_free_vnic_attributes(bp);
3156         bnxt_free_tx_rings(bp);
3157         bnxt_free_rx_rings(bp);
3158         bnxt_free_cp_rings(bp);
3159         bnxt_free_ntp_fltrs(bp, irq_re_init);
3160         if (irq_re_init) {
3161                 bnxt_free_stats(bp);
3162                 bnxt_free_ring_grps(bp);
3163                 bnxt_free_vnics(bp);
3164                 kfree(bp->tx_ring_map);
3165                 bp->tx_ring_map = NULL;
3166                 kfree(bp->tx_ring);
3167                 bp->tx_ring = NULL;
3168                 kfree(bp->rx_ring);
3169                 bp->rx_ring = NULL;
3170                 kfree(bp->bnapi);
3171                 bp->bnapi = NULL;
3172         } else {
3173                 bnxt_clear_ring_indices(bp);
3174         }
3175 }
3176
3177 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3178 {
3179         int i, j, rc, size, arr_size;
3180         void *bnapi;
3181
3182         if (irq_re_init) {
3183                 /* Allocate bnapi mem pointer array and mem block for
3184                  * all queues
3185                  */
3186                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3187                                 bp->cp_nr_rings);
3188                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3189                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3190                 if (!bnapi)
3191                         return -ENOMEM;
3192
3193                 bp->bnapi = bnapi;
3194                 bnapi += arr_size;
3195                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3196                         bp->bnapi[i] = bnapi;
3197                         bp->bnapi[i]->index = i;
3198                         bp->bnapi[i]->bp = bp;
3199                 }
3200
3201                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3202                                       sizeof(struct bnxt_rx_ring_info),
3203                                       GFP_KERNEL);
3204                 if (!bp->rx_ring)
3205                         return -ENOMEM;
3206
3207                 for (i = 0; i < bp->rx_nr_rings; i++) {
3208                         bp->rx_ring[i].bnapi = bp->bnapi[i];
3209                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3210                 }
3211
3212                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3213                                       sizeof(struct bnxt_tx_ring_info),
3214                                       GFP_KERNEL);
3215                 if (!bp->tx_ring)
3216                         return -ENOMEM;
3217
3218                 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3219                                           GFP_KERNEL);
3220
3221                 if (!bp->tx_ring_map)
3222                         return -ENOMEM;
3223
3224                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3225                         j = 0;
3226                 else
3227                         j = bp->rx_nr_rings;
3228
3229                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3230                         bp->tx_ring[i].bnapi = bp->bnapi[j];
3231                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3232                         bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3233                         if (i >= bp->tx_nr_rings_xdp) {
3234                                 bp->tx_ring[i].txq_index = i -
3235                                         bp->tx_nr_rings_xdp;
3236                                 bp->bnapi[j]->tx_int = bnxt_tx_int;
3237                         } else {
3238                                 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3239                                 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3240                         }
3241                 }
3242
3243                 rc = bnxt_alloc_stats(bp);
3244                 if (rc)
3245                         goto alloc_mem_err;
3246
3247                 rc = bnxt_alloc_ntp_fltrs(bp);
3248                 if (rc)
3249                         goto alloc_mem_err;
3250
3251                 rc = bnxt_alloc_vnics(bp);
3252                 if (rc)
3253                         goto alloc_mem_err;
3254         }
3255
3256         bnxt_init_ring_struct(bp);
3257
3258         rc = bnxt_alloc_rx_rings(bp);
3259         if (rc)
3260                 goto alloc_mem_err;
3261
3262         rc = bnxt_alloc_tx_rings(bp);
3263         if (rc)
3264                 goto alloc_mem_err;
3265
3266         rc = bnxt_alloc_cp_rings(bp);
3267         if (rc)
3268                 goto alloc_mem_err;
3269
3270         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3271                                   BNXT_VNIC_UCAST_FLAG;
3272         rc = bnxt_alloc_vnic_attributes(bp);
3273         if (rc)
3274                 goto alloc_mem_err;
3275         return 0;
3276
3277 alloc_mem_err:
3278         bnxt_free_mem(bp, true);
3279         return rc;
3280 }
3281
3282 static void bnxt_disable_int(struct bnxt *bp)
3283 {
3284         int i;
3285
3286         if (!bp->bnapi)
3287                 return;
3288
3289         for (i = 0; i < bp->cp_nr_rings; i++) {
3290                 struct bnxt_napi *bnapi = bp->bnapi[i];
3291                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3292                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3293
3294                 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3295                         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3296         }
3297 }
3298
3299 static void bnxt_disable_int_sync(struct bnxt *bp)
3300 {
3301         int i;
3302
3303         atomic_inc(&bp->intr_sem);
3304
3305         bnxt_disable_int(bp);
3306         for (i = 0; i < bp->cp_nr_rings; i++)
3307                 synchronize_irq(bp->irq_tbl[i].vector);
3308 }
3309
3310 static void bnxt_enable_int(struct bnxt *bp)
3311 {
3312         int i;
3313
3314         atomic_set(&bp->intr_sem, 0);
3315         for (i = 0; i < bp->cp_nr_rings; i++) {
3316                 struct bnxt_napi *bnapi = bp->bnapi[i];
3317                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3318
3319                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3320         }
3321 }
3322
3323 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3324                             u16 cmpl_ring, u16 target_id)
3325 {
3326         struct input *req = request;
3327
3328         req->req_type = cpu_to_le16(req_type);
3329         req->cmpl_ring = cpu_to_le16(cmpl_ring);
3330         req->target_id = cpu_to_le16(target_id);
3331         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3332 }
3333
3334 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3335                                  int timeout, bool silent)
3336 {
3337         int i, intr_process, rc, tmo_count;
3338         struct input *req = msg;
3339         u32 *data = msg;
3340         __le32 *resp_len, *valid;
3341         u16 cp_ring_id, len = 0;
3342         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3343         u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3344
3345         req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3346         memset(resp, 0, PAGE_SIZE);
3347         cp_ring_id = le16_to_cpu(req->cmpl_ring);
3348         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3349
3350         if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3351                 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3352                 struct hwrm_short_input short_input = {0};
3353
3354                 memcpy(short_cmd_req, req, msg_len);
3355                 memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3356                                                    msg_len);
3357
3358                 short_input.req_type = req->req_type;
3359                 short_input.signature =
3360                                 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3361                 short_input.size = cpu_to_le16(msg_len);
3362                 short_input.req_addr =
3363                         cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3364
3365                 data = (u32 *)&short_input;
3366                 msg_len = sizeof(short_input);
3367
3368                 /* Sync memory write before updating doorbell */
3369                 wmb();
3370
3371                 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3372         }
3373
3374         /* Write request msg to hwrm channel */
3375         __iowrite32_copy(bp->bar0, data, msg_len / 4);
3376
3377         for (i = msg_len; i < max_req_len; i += 4)
3378                 writel(0, bp->bar0 + i);
3379
3380         /* currently supports only one outstanding message */
3381         if (intr_process)
3382                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3383
3384         /* Ring channel doorbell */
3385         writel(1, bp->bar0 + 0x100);
3386
3387         if (!timeout)
3388                 timeout = DFLT_HWRM_CMD_TIMEOUT;
3389
3390         i = 0;
3391         tmo_count = timeout * 40;
3392         if (intr_process) {
3393                 /* Wait until hwrm response cmpl interrupt is processed */
3394                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3395                        i++ < tmo_count) {
3396                         usleep_range(25, 40);
3397                 }
3398
3399                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3400                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3401                                    le16_to_cpu(req->req_type));
3402                         return -1;
3403                 }
3404         } else {
3405                 /* Check if response len is updated */
3406                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3407                 for (i = 0; i < tmo_count; i++) {
3408                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3409                               HWRM_RESP_LEN_SFT;
3410                         if (len)
3411                                 break;
3412                         usleep_range(25, 40);
3413                 }
3414
3415                 if (i >= tmo_count) {
3416                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3417                                    timeout, le16_to_cpu(req->req_type),
3418                                    le16_to_cpu(req->seq_id), len);
3419                         return -1;
3420                 }
3421
3422                 /* Last word of resp contains valid bit */
3423                 valid = bp->hwrm_cmd_resp_addr + len - 4;
3424                 for (i = 0; i < 5; i++) {
3425                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3426                                 break;
3427                         udelay(1);
3428                 }
3429
3430                 if (i >= 5) {
3431                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3432                                    timeout, le16_to_cpu(req->req_type),
3433                                    le16_to_cpu(req->seq_id), len, *valid);
3434                         return -1;
3435                 }
3436         }
3437
3438         rc = le16_to_cpu(resp->error_code);
3439         if (rc && !silent)
3440                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3441                            le16_to_cpu(resp->req_type),
3442                            le16_to_cpu(resp->seq_id), rc);
3443         return rc;
3444 }
3445
3446 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3447 {
3448         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3449 }
3450
3451 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3452 {
3453         int rc;
3454
3455         mutex_lock(&bp->hwrm_cmd_lock);
3456         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3457         mutex_unlock(&bp->hwrm_cmd_lock);
3458         return rc;
3459 }
3460
3461 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3462                              int timeout)
3463 {
3464         int rc;
3465
3466         mutex_lock(&bp->hwrm_cmd_lock);
3467         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3468         mutex_unlock(&bp->hwrm_cmd_lock);
3469         return rc;
3470 }
3471
3472 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3473                                      int bmap_size)
3474 {
3475         struct hwrm_func_drv_rgtr_input req = {0};
3476         DECLARE_BITMAP(async_events_bmap, 256);
3477         u32 *events = (u32 *)async_events_bmap;
3478         int i;
3479
3480         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3481
3482         req.enables =
3483                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3484
3485         memset(async_events_bmap, 0, sizeof(async_events_bmap));
3486         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3487                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3488
3489         if (bmap && bmap_size) {
3490                 for (i = 0; i < bmap_size; i++) {
3491                         if (test_bit(i, bmap))
3492                                 __set_bit(i, async_events_bmap);
3493                 }
3494         }
3495
3496         for (i = 0; i < 8; i++)
3497                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3498
3499         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3500 }
3501
3502 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3503 {
3504         struct hwrm_func_drv_rgtr_input req = {0};
3505
3506         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3507
3508         req.enables =
3509                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3510                             FUNC_DRV_RGTR_REQ_ENABLES_VER);
3511
3512         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3513         req.ver_maj = DRV_VER_MAJ;
3514         req.ver_min = DRV_VER_MIN;
3515         req.ver_upd = DRV_VER_UPD;
3516
3517         if (BNXT_PF(bp)) {
3518                 u32 data[8];
3519                 int i;
3520
3521                 memset(data, 0, sizeof(data));
3522                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3523                         u16 cmd = bnxt_vf_req_snif[i];
3524                         unsigned int bit, idx;
3525
3526                         idx = cmd / 32;
3527                         bit = cmd % 32;
3528                         data[idx] |= 1 << bit;
3529                 }
3530
3531                 for (i = 0; i < 8; i++)
3532                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3533
3534                 req.enables |=
3535                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3536         }
3537
3538         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3539 }
3540
3541 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3542 {
3543         struct hwrm_func_drv_unrgtr_input req = {0};
3544
3545         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3546         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3547 }
3548
3549 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3550 {
3551         u32 rc = 0;
3552         struct hwrm_tunnel_dst_port_free_input req = {0};
3553
3554         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3555         req.tunnel_type = tunnel_type;
3556
3557         switch (tunnel_type) {
3558         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3559                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3560                 break;
3561         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3562                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3563                 break;
3564         default:
3565                 break;
3566         }
3567
3568         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3569         if (rc)
3570                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3571                            rc);
3572         return rc;
3573 }
3574
3575 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3576                                            u8 tunnel_type)
3577 {
3578         u32 rc = 0;
3579         struct hwrm_tunnel_dst_port_alloc_input req = {0};
3580         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3581
3582         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3583
3584         req.tunnel_type = tunnel_type;
3585         req.tunnel_dst_port_val = port;
3586
3587         mutex_lock(&bp->hwrm_cmd_lock);
3588         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3589         if (rc) {
3590                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3591                            rc);
3592                 goto err_out;
3593         }
3594
3595         switch (tunnel_type) {
3596         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3597                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3598                 break;
3599         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3600                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3601                 break;
3602         default:
3603                 break;
3604         }
3605
3606 err_out:
3607         mutex_unlock(&bp->hwrm_cmd_lock);
3608         return rc;
3609 }
3610
3611 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3612 {
3613         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3614         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3615
3616         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3617         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3618
3619         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3620         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3621         req.mask = cpu_to_le32(vnic->rx_mask);
3622         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3623 }
3624
3625 #ifdef CONFIG_RFS_ACCEL
3626 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3627                                             struct bnxt_ntuple_filter *fltr)
3628 {
3629         struct hwrm_cfa_ntuple_filter_free_input req = {0};
3630
3631         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3632         req.ntuple_filter_id = fltr->filter_id;
3633         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3634 }
3635
3636 #define BNXT_NTP_FLTR_FLAGS                                     \
3637         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
3638          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
3639          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
3640          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
3641          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
3642          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
3643          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
3644          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
3645          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
3646          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
3647          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
3648          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
3649          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
3650          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3651
3652 #define BNXT_NTP_TUNNEL_FLTR_FLAG                               \
3653                 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3654
3655 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3656                                              struct bnxt_ntuple_filter *fltr)
3657 {
3658         int rc = 0;
3659         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3660         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3661                 bp->hwrm_cmd_resp_addr;
3662         struct flow_keys *keys = &fltr->fkeys;
3663         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3664
3665         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3666         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3667
3668         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3669
3670         req.ethertype = htons(ETH_P_IP);
3671         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3672         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3673         req.ip_protocol = keys->basic.ip_proto;
3674
3675         if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3676                 int i;
3677
3678                 req.ethertype = htons(ETH_P_IPV6);
3679                 req.ip_addr_type =
3680                         CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3681                 *(struct in6_addr *)&req.src_ipaddr[0] =
3682                         keys->addrs.v6addrs.src;
3683                 *(struct in6_addr *)&req.dst_ipaddr[0] =
3684                         keys->addrs.v6addrs.dst;
3685                 for (i = 0; i < 4; i++) {
3686                         req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3687                         req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3688                 }
3689         } else {
3690                 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3691                 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3692                 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3693                 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3694         }
3695         if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3696                 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3697                 req.tunnel_type =
3698                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3699         }
3700
3701         req.src_port = keys->ports.src;
3702         req.src_port_mask = cpu_to_be16(0xffff);
3703         req.dst_port = keys->ports.dst;
3704         req.dst_port_mask = cpu_to_be16(0xffff);
3705
3706         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3707         mutex_lock(&bp->hwrm_cmd_lock);
3708         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3709         if (!rc)
3710                 fltr->filter_id = resp->ntuple_filter_id;
3711         mutex_unlock(&bp->hwrm_cmd_lock);
3712         return rc;
3713 }
3714 #endif
3715
3716 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3717                                      u8 *mac_addr)
3718 {
3719         u32 rc = 0;
3720         struct hwrm_cfa_l2_filter_alloc_input req = {0};
3721         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3722
3723         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3724         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3725         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3726                 req.flags |=
3727                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3728         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3729         req.enables =
3730                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3731                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3732                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3733         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3734         req.l2_addr_mask[0] = 0xff;
3735         req.l2_addr_mask[1] = 0xff;
3736         req.l2_addr_mask[2] = 0xff;
3737         req.l2_addr_mask[3] = 0xff;
3738         req.l2_addr_mask[4] = 0xff;
3739         req.l2_addr_mask[5] = 0xff;
3740
3741         mutex_lock(&bp->hwrm_cmd_lock);
3742         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3743         if (!rc)
3744                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3745                                                         resp->l2_filter_id;
3746         mutex_unlock(&bp->hwrm_cmd_lock);
3747         return rc;
3748 }
3749
3750 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3751 {
3752         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3753         int rc = 0;
3754
3755         /* Any associated ntuple filters will also be cleared by firmware. */
3756         mutex_lock(&bp->hwrm_cmd_lock);
3757         for (i = 0; i < num_of_vnics; i++) {
3758                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3759
3760                 for (j = 0; j < vnic->uc_filter_count; j++) {
3761                         struct hwrm_cfa_l2_filter_free_input req = {0};
3762
3763                         bnxt_hwrm_cmd_hdr_init(bp, &req,
3764                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
3765
3766                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
3767
3768                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3769                                                 HWRM_CMD_TIMEOUT);
3770                 }
3771                 vnic->uc_filter_count = 0;
3772         }
3773         mutex_unlock(&bp->hwrm_cmd_lock);
3774
3775         return rc;
3776 }
3777
3778 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3779 {
3780         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3781         struct hwrm_vnic_tpa_cfg_input req = {0};
3782
3783         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3784
3785         if (tpa_flags) {
3786                 u16 mss = bp->dev->mtu - 40;
3787                 u32 nsegs, n, segs = 0, flags;
3788
3789                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3790                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3791                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3792                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3793                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3794                 if (tpa_flags & BNXT_FLAG_GRO)
3795                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3796
3797                 req.flags = cpu_to_le32(flags);
3798
3799                 req.enables =
3800                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3801                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3802                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3803
3804                 /* Number of segs are log2 units, and first packet is not
3805                  * included as part of this units.
3806                  */
3807                 if (mss <= BNXT_RX_PAGE_SIZE) {
3808                         n = BNXT_RX_PAGE_SIZE / mss;
3809                         nsegs = (MAX_SKB_FRAGS - 1) * n;
3810                 } else {
3811                         n = mss / BNXT_RX_PAGE_SIZE;
3812                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
3813                                 n++;
3814                         nsegs = (MAX_SKB_FRAGS - n) / n;
3815                 }
3816
3817                 segs = ilog2(nsegs);
3818                 req.max_agg_segs = cpu_to_le16(segs);
3819                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3820
3821                 req.min_agg_len = cpu_to_le32(512);
3822         }
3823         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3824
3825         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3826 }
3827
3828 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3829 {
3830         u32 i, j, max_rings;
3831         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3832         struct hwrm_vnic_rss_cfg_input req = {0};
3833
3834         if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3835                 return 0;
3836
3837         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3838         if (set_rss) {
3839                 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3840                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3841                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3842                                 max_rings = bp->rx_nr_rings - 1;
3843                         else
3844                                 max_rings = bp->rx_nr_rings;
3845                 } else {
3846                         max_rings = 1;
3847                 }
3848
3849                 /* Fill the RSS indirection table with ring group ids */
3850                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3851                         if (j == max_rings)
3852                                 j = 0;
3853                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3854                 }
3855
3856                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3857                 req.hash_key_tbl_addr =
3858                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3859         }
3860         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3861         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3862 }
3863
3864 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3865 {
3866         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3867         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3868
3869         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3870         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3871                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3872                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3873         req.enables =
3874                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3875                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3876         /* thresholds not implemented in firmware yet */
3877         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3878         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3879         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3880         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3881 }
3882
3883 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3884                                         u16 ctx_idx)
3885 {
3886         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3887
3888         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3889         req.rss_cos_lb_ctx_id =
3890                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3891
3892         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3893         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3894 }
3895
3896 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3897 {
3898         int i, j;
3899
3900         for (i = 0; i < bp->nr_vnics; i++) {
3901                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3902
3903                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3904                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3905                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3906                 }
3907         }
3908         bp->rsscos_nr_ctxs = 0;
3909 }
3910
3911 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3912 {
3913         int rc;
3914         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3915         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3916                                                 bp->hwrm_cmd_resp_addr;
3917
3918         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3919                                -1);
3920
3921         mutex_lock(&bp->hwrm_cmd_lock);
3922         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3923         if (!rc)
3924                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3925                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3926         mutex_unlock(&bp->hwrm_cmd_lock);
3927
3928         return rc;
3929 }
3930
3931 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3932 {
3933         unsigned int ring = 0, grp_idx;
3934         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3935         struct hwrm_vnic_cfg_input req = {0};
3936         u16 def_vlan = 0;
3937
3938         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3939
3940         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3941         /* Only RSS support for now TBD: COS & LB */
3942         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3943                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3944                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3945                                            VNIC_CFG_REQ_ENABLES_MRU);
3946         } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3947                 req.rss_rule =
3948                         cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3949                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3950                                            VNIC_CFG_REQ_ENABLES_MRU);
3951                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3952         } else {
3953                 req.rss_rule = cpu_to_le16(0xffff);
3954         }
3955
3956         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3957             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3958                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3959                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3960         } else {
3961                 req.cos_rule = cpu_to_le16(0xffff);
3962         }
3963
3964         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3965                 ring = 0;
3966         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3967                 ring = vnic_id - 1;
3968         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3969                 ring = bp->rx_nr_rings - 1;
3970
3971         grp_idx = bp->rx_ring[ring].bnapi->index;
3972         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3973         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3974
3975         req.lb_rule = cpu_to_le16(0xffff);
3976         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3977                               VLAN_HLEN);
3978
3979 #ifdef CONFIG_BNXT_SRIOV
3980         if (BNXT_VF(bp))
3981                 def_vlan = bp->vf.vlan;
3982 #endif
3983         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3984                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3985         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
3986                 req.flags |=
3987                         cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
3988
3989         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3990 }
3991
3992 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3993 {
3994         u32 rc = 0;
3995
3996         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3997                 struct hwrm_vnic_free_input req = {0};
3998
3999                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4000                 req.vnic_id =
4001                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4002
4003                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4004                 if (rc)
4005                         return rc;
4006                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4007         }
4008         return rc;
4009 }
4010
4011 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4012 {
4013         u16 i;
4014
4015         for (i = 0; i < bp->nr_vnics; i++)
4016                 bnxt_hwrm_vnic_free_one(bp, i);
4017 }
4018
4019 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4020                                 unsigned int start_rx_ring_idx,
4021                                 unsigned int nr_rings)
4022 {
4023         int rc = 0;
4024         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4025         struct hwrm_vnic_alloc_input req = {0};
4026         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4027
4028         /* map ring groups to this vnic */
4029         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4030                 grp_idx = bp->rx_ring[i].bnapi->index;
4031                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4032                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4033                                    j, nr_rings);
4034                         break;
4035                 }
4036                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
4037                                         bp->grp_info[grp_idx].fw_grp_id;
4038         }
4039
4040         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4041         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4042         if (vnic_id == 0)
4043                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4044
4045         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4046
4047         mutex_lock(&bp->hwrm_cmd_lock);
4048         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4049         if (!rc)
4050                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4051         mutex_unlock(&bp->hwrm_cmd_lock);
4052         return rc;
4053 }
4054
4055 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4056 {
4057         struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4058         struct hwrm_vnic_qcaps_input req = {0};
4059         int rc;
4060
4061         if (bp->hwrm_spec_code < 0x10600)
4062                 return 0;
4063
4064         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4065         mutex_lock(&bp->hwrm_cmd_lock);
4066         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4067         if (!rc) {
4068                 if (resp->flags &
4069                     cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4070                         bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4071         }
4072         mutex_unlock(&bp->hwrm_cmd_lock);
4073         return rc;
4074 }
4075
4076 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4077 {
4078         u16 i;
4079         u32 rc = 0;
4080
4081         mutex_lock(&bp->hwrm_cmd_lock);
4082         for (i = 0; i < bp->rx_nr_rings; i++) {
4083                 struct hwrm_ring_grp_alloc_input req = {0};
4084                 struct hwrm_ring_grp_alloc_output *resp =
4085                                         bp->hwrm_cmd_resp_addr;
4086                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4087
4088                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4089
4090                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4091                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4092                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4093                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4094
4095                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4096                                         HWRM_CMD_TIMEOUT);
4097                 if (rc)
4098                         break;
4099
4100                 bp->grp_info[grp_idx].fw_grp_id =
4101                         le32_to_cpu(resp->ring_group_id);
4102         }
4103         mutex_unlock(&bp->hwrm_cmd_lock);
4104         return rc;
4105 }
4106
4107 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4108 {
4109         u16 i;
4110         u32 rc = 0;
4111         struct hwrm_ring_grp_free_input req = {0};
4112
4113         if (!bp->grp_info)
4114                 return 0;
4115
4116         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4117
4118         mutex_lock(&bp->hwrm_cmd_lock);
4119         for (i = 0; i < bp->cp_nr_rings; i++) {
4120                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4121                         continue;
4122                 req.ring_group_id =
4123                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
4124
4125                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4126                                         HWRM_CMD_TIMEOUT);
4127                 if (rc)
4128                         break;
4129                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4130         }
4131         mutex_unlock(&bp->hwrm_cmd_lock);
4132         return rc;
4133 }
4134
4135 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4136                                     struct bnxt_ring_struct *ring,
4137                                     u32 ring_type, u32 map_index,
4138                                     u32 stats_ctx_id)
4139 {
4140         int rc = 0, err = 0;
4141         struct hwrm_ring_alloc_input req = {0};
4142         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4143         u16 ring_id;
4144
4145         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4146
4147         req.enables = 0;
4148         if (ring->nr_pages > 1) {
4149                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4150                 /* Page size is in log2 units */
4151                 req.page_size = BNXT_PAGE_SHIFT;
4152                 req.page_tbl_depth = 1;
4153         } else {
4154                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4155         }
4156         req.fbo = 0;
4157         /* Association of ring index with doorbell index and MSIX number */
4158         req.logical_id = cpu_to_le16(map_index);
4159
4160         switch (ring_type) {
4161         case HWRM_RING_ALLOC_TX:
4162                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4163                 /* Association of transmit ring with completion ring */
4164                 req.cmpl_ring_id =
4165                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
4166                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4167                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4168                 req.queue_id = cpu_to_le16(ring->queue_id);
4169                 break;
4170         case HWRM_RING_ALLOC_RX:
4171                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4172                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4173                 break;
4174         case HWRM_RING_ALLOC_AGG:
4175                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4176                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4177                 break;
4178         case HWRM_RING_ALLOC_CMPL:
4179                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4180                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4181                 if (bp->flags & BNXT_FLAG_USING_MSIX)
4182                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4183                 break;
4184         default:
4185                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4186                            ring_type);
4187                 return -1;
4188         }
4189
4190         mutex_lock(&bp->hwrm_cmd_lock);
4191         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4192         err = le16_to_cpu(resp->error_code);
4193         ring_id = le16_to_cpu(resp->ring_id);
4194         mutex_unlock(&bp->hwrm_cmd_lock);
4195
4196         if (rc || err) {
4197                 switch (ring_type) {
4198                 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4199                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4200                                    rc, err);
4201                         return -1;
4202
4203                 case RING_FREE_REQ_RING_TYPE_RX:
4204                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4205                                    rc, err);
4206                         return -1;
4207
4208                 case RING_FREE_REQ_RING_TYPE_TX:
4209                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4210                                    rc, err);
4211                         return -1;
4212
4213                 default:
4214                         netdev_err(bp->dev, "Invalid ring\n");
4215                         return -1;
4216                 }
4217         }
4218         ring->fw_ring_id = ring_id;
4219         return rc;
4220 }
4221
4222 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4223 {
4224         int rc;
4225
4226         if (BNXT_PF(bp)) {
4227                 struct hwrm_func_cfg_input req = {0};
4228
4229                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4230                 req.fid = cpu_to_le16(0xffff);
4231                 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4232                 req.async_event_cr = cpu_to_le16(idx);
4233                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4234         } else {
4235                 struct hwrm_func_vf_cfg_input req = {0};
4236
4237                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4238                 req.enables =
4239                         cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4240                 req.async_event_cr = cpu_to_le16(idx);
4241                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4242         }
4243         return rc;
4244 }
4245
4246 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4247 {
4248         int i, rc = 0;
4249
4250         for (i = 0; i < bp->cp_nr_rings; i++) {
4251                 struct bnxt_napi *bnapi = bp->bnapi[i];
4252                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4253                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4254
4255                 cpr->cp_doorbell = bp->bar1 + i * 0x80;
4256                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4257                                               INVALID_STATS_CTX_ID);
4258                 if (rc)
4259                         goto err_out;
4260                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4261                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4262
4263                 if (!i) {
4264                         rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4265                         if (rc)
4266                                 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4267                 }
4268         }
4269
4270         for (i = 0; i < bp->tx_nr_rings; i++) {
4271                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4272                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4273                 u32 map_idx = txr->bnapi->index;
4274                 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4275
4276                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4277                                               map_idx, fw_stats_ctx);
4278                 if (rc)
4279                         goto err_out;
4280                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4281         }
4282
4283         for (i = 0; i < bp->rx_nr_rings; i++) {
4284                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4285                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4286                 u32 map_idx = rxr->bnapi->index;
4287
4288                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4289                                               map_idx, INVALID_STATS_CTX_ID);
4290                 if (rc)
4291                         goto err_out;
4292                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4293                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4294                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4295         }
4296
4297         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4298                 for (i = 0; i < bp->rx_nr_rings; i++) {
4299                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4300                         struct bnxt_ring_struct *ring =
4301                                                 &rxr->rx_agg_ring_struct;
4302                         u32 grp_idx = rxr->bnapi->index;
4303                         u32 map_idx = grp_idx + bp->rx_nr_rings;
4304
4305                         rc = hwrm_ring_alloc_send_msg(bp, ring,
4306                                                       HWRM_RING_ALLOC_AGG,
4307                                                       map_idx,
4308                                                       INVALID_STATS_CTX_ID);
4309                         if (rc)
4310                                 goto err_out;
4311
4312                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4313                         writel(DB_KEY_RX | rxr->rx_agg_prod,
4314                                rxr->rx_agg_doorbell);
4315                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4316                 }
4317         }
4318 err_out:
4319         return rc;
4320 }
4321
4322 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4323                                    struct bnxt_ring_struct *ring,
4324                                    u32 ring_type, int cmpl_ring_id)
4325 {
4326         int rc;
4327         struct hwrm_ring_free_input req = {0};
4328         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4329         u16 error_code;
4330
4331         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4332         req.ring_type = ring_type;
4333         req.ring_id = cpu_to_le16(ring->fw_ring_id);
4334
4335         mutex_lock(&bp->hwrm_cmd_lock);
4336         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4337         error_code = le16_to_cpu(resp->error_code);
4338         mutex_unlock(&bp->hwrm_cmd_lock);
4339
4340         if (rc || error_code) {
4341                 switch (ring_type) {
4342                 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4343                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4344                                    rc);
4345                         return rc;
4346                 case RING_FREE_REQ_RING_TYPE_RX:
4347                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4348                                    rc);
4349                         return rc;
4350                 case RING_FREE_REQ_RING_TYPE_TX:
4351                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4352                                    rc);
4353                         return rc;
4354                 default:
4355                         netdev_err(bp->dev, "Invalid ring\n");
4356                         return -1;
4357                 }
4358         }
4359         return 0;
4360 }
4361
4362 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4363 {
4364         int i;
4365
4366         if (!bp->bnapi)
4367                 return;
4368
4369         for (i = 0; i < bp->tx_nr_rings; i++) {
4370                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4371                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4372                 u32 grp_idx = txr->bnapi->index;
4373                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4374
4375                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4376                         hwrm_ring_free_send_msg(bp, ring,
4377                                                 RING_FREE_REQ_RING_TYPE_TX,
4378                                                 close_path ? cmpl_ring_id :
4379                                                 INVALID_HW_RING_ID);
4380                         ring->fw_ring_id = INVALID_HW_RING_ID;
4381                 }
4382         }
4383
4384         for (i = 0; i < bp->rx_nr_rings; i++) {
4385                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4386                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4387                 u32 grp_idx = rxr->bnapi->index;
4388                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4389
4390                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4391                         hwrm_ring_free_send_msg(bp, ring,
4392                                                 RING_FREE_REQ_RING_TYPE_RX,
4393                                                 close_path ? cmpl_ring_id :
4394                                                 INVALID_HW_RING_ID);
4395                         ring->fw_ring_id = INVALID_HW_RING_ID;
4396                         bp->grp_info[grp_idx].rx_fw_ring_id =
4397                                 INVALID_HW_RING_ID;
4398                 }
4399         }
4400
4401         for (i = 0; i < bp->rx_nr_rings; i++) {
4402                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4403                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4404                 u32 grp_idx = rxr->bnapi->index;
4405                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4406
4407                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4408                         hwrm_ring_free_send_msg(bp, ring,
4409                                                 RING_FREE_REQ_RING_TYPE_RX,
4410                                                 close_path ? cmpl_ring_id :
4411                                                 INVALID_HW_RING_ID);
4412                         ring->fw_ring_id = INVALID_HW_RING_ID;
4413                         bp->grp_info[grp_idx].agg_fw_ring_id =
4414                                 INVALID_HW_RING_ID;
4415                 }
4416         }
4417
4418         /* The completion rings are about to be freed.  After that the
4419          * IRQ doorbell will not work anymore.  So we need to disable
4420          * IRQ here.
4421          */
4422         bnxt_disable_int_sync(bp);
4423
4424         for (i = 0; i < bp->cp_nr_rings; i++) {
4425                 struct bnxt_napi *bnapi = bp->bnapi[i];
4426                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4427                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4428
4429                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4430                         hwrm_ring_free_send_msg(bp, ring,
4431                                                 RING_FREE_REQ_RING_TYPE_L2_CMPL,
4432                                                 INVALID_HW_RING_ID);
4433                         ring->fw_ring_id = INVALID_HW_RING_ID;
4434                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4435                 }
4436         }
4437 }
4438
4439 /* Caller must hold bp->hwrm_cmd_lock */
4440 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4441 {
4442         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4443         struct hwrm_func_qcfg_input req = {0};
4444         int rc;
4445
4446         if (bp->hwrm_spec_code < 0x10601)
4447                 return 0;
4448
4449         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4450         req.fid = cpu_to_le16(fid);
4451         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4452         if (!rc)
4453                 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4454
4455         return rc;
4456 }
4457
4458 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4459 {
4460         struct hwrm_func_cfg_input req = {0};
4461         int rc;
4462
4463         if (bp->hwrm_spec_code < 0x10601)
4464                 return 0;
4465
4466         if (BNXT_VF(bp))
4467                 return 0;
4468
4469         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4470         req.fid = cpu_to_le16(0xffff);
4471         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4472         req.num_tx_rings = cpu_to_le16(*tx_rings);
4473         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4474         if (rc)
4475                 return rc;
4476
4477         mutex_lock(&bp->hwrm_cmd_lock);
4478         rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4479         mutex_unlock(&bp->hwrm_cmd_lock);
4480         if (!rc)
4481                 bp->tx_reserved_rings = *tx_rings;
4482         return rc;
4483 }
4484
4485 static int bnxt_hwrm_check_tx_rings(struct bnxt *bp, int tx_rings)
4486 {
4487         struct hwrm_func_cfg_input req = {0};
4488         int rc;
4489
4490         if (bp->hwrm_spec_code < 0x10801)
4491                 return 0;
4492
4493         if (BNXT_VF(bp))
4494                 return 0;
4495
4496         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4497         req.fid = cpu_to_le16(0xffff);
4498         req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST);
4499         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4500         req.num_tx_rings = cpu_to_le16(tx_rings);
4501         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4502         if (rc)
4503                 return -ENOMEM;
4504         return 0;
4505 }
4506
4507 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
4508         u32 buf_tmrs, u16 flags,
4509         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4510 {
4511         req->flags = cpu_to_le16(flags);
4512         req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
4513         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
4514         req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
4515         req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
4516         /* Minimum time between 2 interrupts set to buf_tmr x 2 */
4517         req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
4518         req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
4519         req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
4520 }
4521
4522 int bnxt_hwrm_set_coal(struct bnxt *bp)
4523 {
4524         int i, rc = 0;
4525         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4526                                                            req_tx = {0}, *req;
4527         u16 max_buf, max_buf_irq;
4528         u16 buf_tmr, buf_tmr_irq;
4529         u32 flags;
4530
4531         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4532                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4533         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4534                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4535
4536         /* Each rx completion (2 records) should be DMAed immediately.
4537          * DMA 1/4 of the completion buffers at a time.
4538          */
4539         max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4540         /* max_buf must not be zero */
4541         max_buf = clamp_t(u16, max_buf, 1, 63);
4542         max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4543         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4544         /* buf timer set to 1/4 of interrupt timer */
4545         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4546         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4547         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4548
4549         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4550
4551         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
4552          * if coal_ticks is less than 25 us.
4553          */
4554         if (bp->rx_coal_ticks < 25)
4555                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4556
4557         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4558                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4559
4560         /* max_buf must not be zero */
4561         max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4562         max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4563         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4564         /* buf timer set to 1/4 of interrupt timer */
4565         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4566         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4567         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4568
4569         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4570         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4571                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4572
4573         mutex_lock(&bp->hwrm_cmd_lock);
4574         for (i = 0; i < bp->cp_nr_rings; i++) {
4575                 struct bnxt_napi *bnapi = bp->bnapi[i];
4576
4577                 req = &req_rx;
4578                 if (!bnapi->rx_ring)
4579                         req = &req_tx;
4580                 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4581
4582                 rc = _hwrm_send_message(bp, req, sizeof(*req),
4583                                         HWRM_CMD_TIMEOUT);
4584                 if (rc)
4585                         break;
4586         }
4587         mutex_unlock(&bp->hwrm_cmd_lock);
4588         return rc;
4589 }
4590
4591 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4592 {
4593         int rc = 0, i;
4594         struct hwrm_stat_ctx_free_input req = {0};
4595
4596         if (!bp->bnapi)
4597                 return 0;
4598
4599         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4600                 return 0;
4601
4602         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4603
4604         mutex_lock(&bp->hwrm_cmd_lock);
4605         for (i = 0; i < bp->cp_nr_rings; i++) {
4606                 struct bnxt_napi *bnapi = bp->bnapi[i];
4607                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4608
4609                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4610                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4611
4612                         rc = _hwrm_send_message(bp, &req, sizeof(req),
4613                                                 HWRM_CMD_TIMEOUT);
4614                         if (rc)
4615                                 break;
4616
4617                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4618                 }
4619         }
4620         mutex_unlock(&bp->hwrm_cmd_lock);
4621         return rc;
4622 }
4623
4624 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4625 {
4626         int rc = 0, i;
4627         struct hwrm_stat_ctx_alloc_input req = {0};
4628         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4629
4630         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4631                 return 0;
4632
4633         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4634
4635         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4636
4637         mutex_lock(&bp->hwrm_cmd_lock);
4638         for (i = 0; i < bp->cp_nr_rings; i++) {
4639                 struct bnxt_napi *bnapi = bp->bnapi[i];
4640                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4641
4642                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4643
4644                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4645                                         HWRM_CMD_TIMEOUT);
4646                 if (rc)
4647                         break;
4648
4649                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4650
4651                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4652         }
4653         mutex_unlock(&bp->hwrm_cmd_lock);
4654         return rc;
4655 }
4656
4657 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4658 {
4659         struct hwrm_func_qcfg_input req = {0};
4660         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4661         u16 flags;
4662         int rc;
4663
4664         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4665         req.fid = cpu_to_le16(0xffff);
4666         mutex_lock(&bp->hwrm_cmd_lock);
4667         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4668         if (rc)
4669                 goto func_qcfg_exit;
4670
4671 #ifdef CONFIG_BNXT_SRIOV
4672         if (BNXT_VF(bp)) {
4673                 struct bnxt_vf_info *vf = &bp->vf;
4674
4675                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4676         }
4677 #endif
4678         flags = le16_to_cpu(resp->flags);
4679         if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
4680                      FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
4681                 bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
4682                 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
4683                         bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
4684         }
4685         if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
4686                 bp->flags |= BNXT_FLAG_MULTI_HOST;
4687
4688         switch (resp->port_partition_type) {
4689         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4690         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4691         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4692                 bp->port_partition_type = resp->port_partition_type;
4693                 break;
4694         }
4695         if (bp->hwrm_spec_code < 0x10707 ||
4696             resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
4697                 bp->br_mode = BRIDGE_MODE_VEB;
4698         else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
4699                 bp->br_mode = BRIDGE_MODE_VEPA;
4700         else
4701                 bp->br_mode = BRIDGE_MODE_UNDEF;
4702
4703 func_qcfg_exit:
4704         mutex_unlock(&bp->hwrm_cmd_lock);
4705         return rc;
4706 }
4707
4708 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4709 {
4710         int rc = 0;
4711         struct hwrm_func_qcaps_input req = {0};
4712         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4713
4714         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4715         req.fid = cpu_to_le16(0xffff);
4716
4717         mutex_lock(&bp->hwrm_cmd_lock);
4718         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4719         if (rc)
4720                 goto hwrm_func_qcaps_exit;
4721
4722         if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4723                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4724         if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4725                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4726
4727         bp->tx_push_thresh = 0;
4728         if (resp->flags &
4729             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4730                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4731
4732         if (BNXT_PF(bp)) {
4733                 struct bnxt_pf_info *pf = &bp->pf;
4734
4735                 pf->fw_fid = le16_to_cpu(resp->fid);
4736                 pf->port_id = le16_to_cpu(resp->port_id);
4737                 bp->dev->dev_port = pf->port_id;
4738                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4739                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4740                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4741                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4742                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4743                 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4744                 if (!pf->max_hw_ring_grps)
4745                         pf->max_hw_ring_grps = pf->max_tx_rings;
4746                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4747                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
4748                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4749                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4750                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
4751                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4752                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4753                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4754                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4755                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4756                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4757                 if (resp->flags &
4758                     cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
4759                         bp->flags |= BNXT_FLAG_WOL_CAP;
4760         } else {
4761 #ifdef CONFIG_BNXT_SRIOV
4762                 struct bnxt_vf_info *vf = &bp->vf;
4763
4764                 vf->fw_fid = le16_to_cpu(resp->fid);
4765
4766                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4767                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4768                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4769                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4770                 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4771                 if (!vf->max_hw_ring_grps)
4772                         vf->max_hw_ring_grps = vf->max_tx_rings;
4773                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4774                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
4775                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4776
4777                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4778 #endif
4779         }
4780
4781 hwrm_func_qcaps_exit:
4782         mutex_unlock(&bp->hwrm_cmd_lock);
4783         return rc;
4784 }
4785
4786 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4787 {
4788         struct hwrm_func_reset_input req = {0};
4789
4790         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4791         req.enables = 0;
4792
4793         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4794 }
4795
4796 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4797 {
4798         int rc = 0;
4799         struct hwrm_queue_qportcfg_input req = {0};
4800         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4801         u8 i, *qptr;
4802
4803         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4804
4805         mutex_lock(&bp->hwrm_cmd_lock);
4806         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4807         if (rc)
4808                 goto qportcfg_exit;
4809
4810         if (!resp->max_configurable_queues) {
4811                 rc = -EINVAL;
4812                 goto qportcfg_exit;
4813         }
4814         bp->max_tc = resp->max_configurable_queues;
4815         bp->max_lltc = resp->max_configurable_lossless_queues;
4816         if (bp->max_tc > BNXT_MAX_QUEUE)
4817                 bp->max_tc = BNXT_MAX_QUEUE;
4818
4819         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4820                 bp->max_tc = 1;
4821
4822         if (bp->max_lltc > bp->max_tc)
4823                 bp->max_lltc = bp->max_tc;
4824
4825         qptr = &resp->queue_id0;
4826         for (i = 0; i < bp->max_tc; i++) {
4827                 bp->q_info[i].queue_id = *qptr++;
4828                 bp->q_info[i].queue_profile = *qptr++;
4829         }
4830
4831 qportcfg_exit:
4832         mutex_unlock(&bp->hwrm_cmd_lock);
4833         return rc;
4834 }
4835
4836 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4837 {
4838         int rc;
4839         struct hwrm_ver_get_input req = {0};
4840         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4841         u32 dev_caps_cfg;
4842
4843         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4844         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4845         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4846         req.hwrm_intf_min = HWRM_VERSION_MINOR;
4847         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4848         mutex_lock(&bp->hwrm_cmd_lock);
4849         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4850         if (rc)
4851                 goto hwrm_ver_get_exit;
4852
4853         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4854
4855         bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4856                              resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4857         if (resp->hwrm_intf_maj < 1) {
4858                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4859                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
4860                             resp->hwrm_intf_upd);
4861                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4862         }
4863         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4864                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4865                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4866
4867         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4868         if (!bp->hwrm_cmd_timeout)
4869                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4870
4871         if (resp->hwrm_intf_maj >= 1)
4872                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4873
4874         bp->chip_num = le16_to_cpu(resp->chip_num);
4875         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4876             !resp->chip_metal)
4877                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4878
4879         dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
4880         if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
4881             (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
4882                 bp->flags |= BNXT_FLAG_SHORT_CMD;
4883
4884 hwrm_ver_get_exit:
4885         mutex_unlock(&bp->hwrm_cmd_lock);
4886         return rc;
4887 }
4888
4889 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4890 {
4891 #if IS_ENABLED(CONFIG_RTC_LIB)
4892         struct hwrm_fw_set_time_input req = {0};
4893         struct rtc_time tm;
4894         struct timeval tv;
4895
4896         if (bp->hwrm_spec_code < 0x10400)
4897                 return -EOPNOTSUPP;
4898
4899         do_gettimeofday(&tv);
4900         rtc_time_to_tm(tv.tv_sec, &tm);
4901         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4902         req.year = cpu_to_le16(1900 + tm.tm_year);
4903         req.month = 1 + tm.tm_mon;
4904         req.day = tm.tm_mday;
4905         req.hour = tm.tm_hour;
4906         req.minute = tm.tm_min;
4907         req.second = tm.tm_sec;
4908         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4909 #else
4910         return -EOPNOTSUPP;
4911 #endif
4912 }
4913
4914 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4915 {
4916         int rc;
4917         struct bnxt_pf_info *pf = &bp->pf;
4918         struct hwrm_port_qstats_input req = {0};
4919
4920         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4921                 return 0;
4922
4923         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4924         req.port_id = cpu_to_le16(pf->port_id);
4925         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4926         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4927         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4928         return rc;
4929 }
4930
4931 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4932 {
4933         if (bp->vxlan_port_cnt) {
4934                 bnxt_hwrm_tunnel_dst_port_free(
4935                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4936         }
4937         bp->vxlan_port_cnt = 0;
4938         if (bp->nge_port_cnt) {
4939                 bnxt_hwrm_tunnel_dst_port_free(
4940                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4941         }
4942         bp->nge_port_cnt = 0;
4943 }
4944
4945 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4946 {
4947         int rc, i;
4948         u32 tpa_flags = 0;
4949
4950         if (set_tpa)
4951                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4952         for (i = 0; i < bp->nr_vnics; i++) {
4953                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4954                 if (rc) {
4955                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4956                                    i, rc);
4957                         return rc;
4958                 }
4959         }
4960         return 0;
4961 }
4962
4963 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4964 {
4965         int i;
4966
4967         for (i = 0; i < bp->nr_vnics; i++)
4968                 bnxt_hwrm_vnic_set_rss(bp, i, false);
4969 }
4970
4971 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4972                                     bool irq_re_init)
4973 {
4974         if (bp->vnic_info) {
4975                 bnxt_hwrm_clear_vnic_filter(bp);
4976                 /* clear all RSS setting before free vnic ctx */
4977                 bnxt_hwrm_clear_vnic_rss(bp);
4978                 bnxt_hwrm_vnic_ctx_free(bp);
4979                 /* before free the vnic, undo the vnic tpa settings */
4980                 if (bp->flags & BNXT_FLAG_TPA)
4981                         bnxt_set_tpa(bp, false);
4982                 bnxt_hwrm_vnic_free(bp);
4983         }
4984         bnxt_hwrm_ring_free(bp, close_path);
4985         bnxt_hwrm_ring_grp_free(bp);
4986         if (irq_re_init) {
4987                 bnxt_hwrm_stat_ctx_free(bp);
4988                 bnxt_hwrm_free_tunnel_ports(bp);
4989         }
4990 }
4991
4992 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
4993 {
4994         struct hwrm_func_cfg_input req = {0};
4995         int rc;
4996
4997         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4998         req.fid = cpu_to_le16(0xffff);
4999         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5000         if (br_mode == BRIDGE_MODE_VEB)
5001                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5002         else if (br_mode == BRIDGE_MODE_VEPA)
5003                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5004         else
5005                 return -EINVAL;
5006         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5007         if (rc)
5008                 rc = -EIO;
5009         return rc;
5010 }
5011
5012 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5013 {
5014         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5015         int rc;
5016
5017         if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5018                 goto skip_rss_ctx;
5019
5020         /* allocate context for vnic */
5021         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5022         if (rc) {
5023                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5024                            vnic_id, rc);
5025                 goto vnic_setup_err;
5026         }
5027         bp->rsscos_nr_ctxs++;
5028
5029         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5030                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5031                 if (rc) {
5032                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5033                                    vnic_id, rc);
5034                         goto vnic_setup_err;
5035                 }
5036                 bp->rsscos_nr_ctxs++;
5037         }
5038
5039 skip_rss_ctx:
5040         /* configure default vnic, ring grp */
5041         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5042         if (rc) {
5043                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5044                            vnic_id, rc);
5045                 goto vnic_setup_err;
5046         }
5047
5048         /* Enable RSS hashing on vnic */
5049         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5050         if (rc) {
5051                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5052                            vnic_id, rc);
5053                 goto vnic_setup_err;
5054         }
5055
5056         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5057                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5058                 if (rc) {
5059                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5060                                    vnic_id, rc);
5061                 }
5062         }
5063
5064 vnic_setup_err:
5065         return rc;
5066 }
5067
5068 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5069 {
5070 #ifdef CONFIG_RFS_ACCEL
5071         int i, rc = 0;
5072
5073         for (i = 0; i < bp->rx_nr_rings; i++) {
5074                 struct bnxt_vnic_info *vnic;
5075                 u16 vnic_id = i + 1;
5076                 u16 ring_id = i;
5077
5078                 if (vnic_id >= bp->nr_vnics)
5079                         break;
5080
5081                 vnic = &bp->vnic_info[vnic_id];
5082                 vnic->flags |= BNXT_VNIC_RFS_FLAG;
5083                 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5084                         vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5085                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5086                 if (rc) {
5087                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5088                                    vnic_id, rc);
5089                         break;
5090                 }
5091                 rc = bnxt_setup_vnic(bp, vnic_id);
5092                 if (rc)
5093                         break;
5094         }
5095         return rc;
5096 #else
5097         return 0;
5098 #endif
5099 }
5100
5101 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5102 static bool bnxt_promisc_ok(struct bnxt *bp)
5103 {
5104 #ifdef CONFIG_BNXT_SRIOV
5105         if (BNXT_VF(bp) && !bp->vf.vlan)
5106                 return false;
5107 #endif
5108         return true;
5109 }
5110
5111 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5112 {
5113         unsigned int rc = 0;
5114
5115         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5116         if (rc) {
5117                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5118                            rc);
5119                 return rc;
5120         }
5121
5122         rc = bnxt_hwrm_vnic_cfg(bp, 1);
5123         if (rc) {
5124                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5125                            rc);
5126                 return rc;
5127         }
5128         return rc;
5129 }
5130
5131 static int bnxt_cfg_rx_mode(struct bnxt *);
5132 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5133
5134 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5135 {
5136         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5137         int rc = 0;
5138         unsigned int rx_nr_rings = bp->rx_nr_rings;
5139
5140         if (irq_re_init) {
5141                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
5142                 if (rc) {
5143                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5144                                    rc);
5145                         goto err_out;
5146                 }
5147                 if (bp->tx_reserved_rings != bp->tx_nr_rings) {
5148                         int tx = bp->tx_nr_rings;
5149
5150                         if (bnxt_hwrm_reserve_tx_rings(bp, &tx) ||
5151                             tx < bp->tx_nr_rings) {
5152                                 rc = -ENOMEM;
5153                                 goto err_out;
5154                         }
5155                 }
5156         }
5157
5158         rc = bnxt_hwrm_ring_alloc(bp);
5159         if (rc) {
5160                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5161                 goto err_out;
5162         }
5163
5164         rc = bnxt_hwrm_ring_grp_alloc(bp);
5165         if (rc) {
5166                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5167                 goto err_out;
5168         }
5169
5170         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5171                 rx_nr_rings--;
5172
5173         /* default vnic 0 */
5174         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5175         if (rc) {
5176                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5177                 goto err_out;
5178         }
5179
5180         rc = bnxt_setup_vnic(bp, 0);
5181         if (rc)
5182                 goto err_out;
5183
5184         if (bp->flags & BNXT_FLAG_RFS) {
5185                 rc = bnxt_alloc_rfs_vnics(bp);
5186                 if (rc)
5187                         goto err_out;
5188         }
5189
5190         if (bp->flags & BNXT_FLAG_TPA) {
5191                 rc = bnxt_set_tpa(bp, true);
5192                 if (rc)
5193                         goto err_out;
5194         }
5195
5196         if (BNXT_VF(bp))
5197                 bnxt_update_vf_mac(bp);
5198
5199         /* Filter for default vnic 0 */
5200         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5201         if (rc) {
5202                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5203                 goto err_out;
5204         }
5205         vnic->uc_filter_count = 1;
5206
5207         vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5208
5209         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5210                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5211
5212         if (bp->dev->flags & IFF_ALLMULTI) {
5213                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5214                 vnic->mc_list_count = 0;
5215         } else {
5216                 u32 mask = 0;
5217
5218                 bnxt_mc_list_updated(bp, &mask);
5219                 vnic->rx_mask |= mask;
5220         }
5221
5222         rc = bnxt_cfg_rx_mode(bp);
5223         if (rc)
5224                 goto err_out;
5225
5226         rc = bnxt_hwrm_set_coal(bp);
5227         if (rc)
5228                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5229                                 rc);
5230
5231         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5232                 rc = bnxt_setup_nitroa0_vnic(bp);
5233                 if (rc)
5234                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5235                                    rc);
5236         }
5237
5238         if (BNXT_VF(bp)) {
5239                 bnxt_hwrm_func_qcfg(bp);
5240                 netdev_update_features(bp->dev);
5241         }
5242
5243         return 0;
5244
5245 err_out:
5246         bnxt_hwrm_resource_free(bp, 0, true);
5247
5248         return rc;
5249 }
5250
5251 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5252 {
5253         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5254         return 0;
5255 }
5256
5257 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5258 {
5259         bnxt_init_cp_rings(bp);
5260         bnxt_init_rx_rings(bp);
5261         bnxt_init_tx_rings(bp);
5262         bnxt_init_ring_grps(bp, irq_re_init);
5263         bnxt_init_vnics(bp);
5264
5265         return bnxt_init_chip(bp, irq_re_init);
5266 }
5267
5268 static int bnxt_set_real_num_queues(struct bnxt *bp)
5269 {
5270         int rc;
5271         struct net_device *dev = bp->dev;
5272
5273         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5274                                           bp->tx_nr_rings_xdp);
5275         if (rc)
5276                 return rc;
5277
5278         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5279         if (rc)
5280                 return rc;
5281
5282 #ifdef CONFIG_RFS_ACCEL
5283         if (bp->flags & BNXT_FLAG_RFS)
5284                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5285 #endif
5286
5287         return rc;
5288 }
5289
5290 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5291                            bool shared)
5292 {
5293         int _rx = *rx, _tx = *tx;
5294
5295         if (shared) {
5296                 *rx = min_t(int, _rx, max);
5297                 *tx = min_t(int, _tx, max);
5298         } else {
5299                 if (max < 2)
5300                         return -ENOMEM;
5301
5302                 while (_rx + _tx > max) {
5303                         if (_rx > _tx && _rx > 1)
5304                                 _rx--;
5305                         else if (_tx > 1)
5306                                 _tx--;
5307                 }
5308                 *rx = _rx;
5309                 *tx = _tx;
5310         }
5311         return 0;
5312 }
5313
5314 static void bnxt_setup_msix(struct bnxt *bp)
5315 {
5316         const int len = sizeof(bp->irq_tbl[0].name);
5317         struct net_device *dev = bp->dev;
5318         int tcs, i;
5319
5320         tcs = netdev_get_num_tc(dev);
5321         if (tcs > 1) {
5322                 int i, off, count;
5323
5324                 for (i = 0; i < tcs; i++) {
5325                         count = bp->tx_nr_rings_per_tc;
5326                         off = i * count;
5327                         netdev_set_tc_queue(dev, i, count, off);
5328                 }
5329         }
5330
5331         for (i = 0; i < bp->cp_nr_rings; i++) {
5332                 char *attr;
5333
5334                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5335                         attr = "TxRx";
5336                 else if (i < bp->rx_nr_rings)
5337                         attr = "rx";
5338                 else
5339                         attr = "tx";
5340
5341                 snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5342                          i);
5343                 bp->irq_tbl[i].handler = bnxt_msix;
5344         }
5345 }
5346
5347 static void bnxt_setup_inta(struct bnxt *bp)
5348 {
5349         const int len = sizeof(bp->irq_tbl[0].name);
5350
5351         if (netdev_get_num_tc(bp->dev))
5352                 netdev_reset_tc(bp->dev);
5353
5354         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5355                  0);
5356         bp->irq_tbl[0].handler = bnxt_inta;
5357 }
5358
5359 static int bnxt_setup_int_mode(struct bnxt *bp)
5360 {
5361         int rc;
5362
5363         if (bp->flags & BNXT_FLAG_USING_MSIX)
5364                 bnxt_setup_msix(bp);
5365         else
5366                 bnxt_setup_inta(bp);
5367
5368         rc = bnxt_set_real_num_queues(bp);
5369         return rc;
5370 }
5371
5372 #ifdef CONFIG_RFS_ACCEL
5373 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5374 {
5375 #if defined(CONFIG_BNXT_SRIOV)
5376         if (BNXT_VF(bp))
5377                 return bp->vf.max_rsscos_ctxs;
5378 #endif
5379         return bp->pf.max_rsscos_ctxs;
5380 }
5381
5382 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5383 {
5384 #if defined(CONFIG_BNXT_SRIOV)
5385         if (BNXT_VF(bp))
5386                 return bp->vf.max_vnics;
5387 #endif
5388         return bp->pf.max_vnics;
5389 }
5390 #endif
5391
5392 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5393 {
5394 #if defined(CONFIG_BNXT_SRIOV)
5395         if (BNXT_VF(bp))
5396                 return bp->vf.max_stat_ctxs;
5397 #endif
5398         return bp->pf.max_stat_ctxs;
5399 }
5400
5401 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5402 {
5403 #if defined(CONFIG_BNXT_SRIOV)
5404         if (BNXT_VF(bp))
5405                 bp->vf.max_stat_ctxs = max;
5406         else
5407 #endif
5408                 bp->pf.max_stat_ctxs = max;
5409 }
5410
5411 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5412 {
5413 #if defined(CONFIG_BNXT_SRIOV)
5414         if (BNXT_VF(bp))
5415                 return bp->vf.max_cp_rings;
5416 #endif
5417         return bp->pf.max_cp_rings;
5418 }
5419
5420 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5421 {
5422 #if defined(CONFIG_BNXT_SRIOV)
5423         if (BNXT_VF(bp))
5424                 bp->vf.max_cp_rings = max;
5425         else
5426 #endif
5427                 bp->pf.max_cp_rings = max;
5428 }
5429
5430 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5431 {
5432 #if defined(CONFIG_BNXT_SRIOV)
5433         if (BNXT_VF(bp))
5434                 return min_t(unsigned int, bp->vf.max_irqs,
5435                              bp->vf.max_cp_rings);
5436 #endif
5437         return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5438 }
5439
5440 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5441 {
5442 #if defined(CONFIG_BNXT_SRIOV)
5443         if (BNXT_VF(bp))
5444                 bp->vf.max_irqs = max_irqs;
5445         else
5446 #endif
5447                 bp->pf.max_irqs = max_irqs;
5448 }
5449
5450 static int bnxt_init_msix(struct bnxt *bp)
5451 {
5452         int i, total_vecs, rc = 0, min = 1;
5453         struct msix_entry *msix_ent;
5454
5455         total_vecs = bnxt_get_max_func_irqs(bp);
5456         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5457         if (!msix_ent)
5458                 return -ENOMEM;
5459
5460         for (i = 0; i < total_vecs; i++) {
5461                 msix_ent[i].entry = i;
5462                 msix_ent[i].vector = 0;
5463         }
5464
5465         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5466                 min = 2;
5467
5468         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5469         if (total_vecs < 0) {
5470                 rc = -ENODEV;
5471                 goto msix_setup_exit;
5472         }
5473
5474         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5475         if (bp->irq_tbl) {
5476                 for (i = 0; i < total_vecs; i++)
5477                         bp->irq_tbl[i].vector = msix_ent[i].vector;
5478
5479                 bp->total_irqs = total_vecs;
5480                 /* Trim rings based upon num of vectors allocated */
5481                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5482                                      total_vecs, min == 1);
5483                 if (rc)
5484                         goto msix_setup_exit;
5485
5486                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5487                 bp->cp_nr_rings = (min == 1) ?
5488                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5489                                   bp->tx_nr_rings + bp->rx_nr_rings;
5490
5491         } else {
5492                 rc = -ENOMEM;
5493                 goto msix_setup_exit;
5494         }
5495         bp->flags |= BNXT_FLAG_USING_MSIX;
5496         kfree(msix_ent);
5497         return 0;
5498
5499 msix_setup_exit:
5500         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5501         kfree(bp->irq_tbl);
5502         bp->irq_tbl = NULL;
5503         pci_disable_msix(bp->pdev);
5504         kfree(msix_ent);
5505         return rc;
5506 }
5507
5508 static int bnxt_init_inta(struct bnxt *bp)
5509 {
5510         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5511         if (!bp->irq_tbl)
5512                 return -ENOMEM;
5513
5514         bp->total_irqs = 1;
5515         bp->rx_nr_rings = 1;
5516         bp->tx_nr_rings = 1;
5517         bp->cp_nr_rings = 1;
5518         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5519         bp->flags |= BNXT_FLAG_SHARED_RINGS;
5520         bp->irq_tbl[0].vector = bp->pdev->irq;
5521         return 0;
5522 }
5523
5524 static int bnxt_init_int_mode(struct bnxt *bp)
5525 {
5526         int rc = 0;
5527
5528         if (bp->flags & BNXT_FLAG_MSIX_CAP)
5529                 rc = bnxt_init_msix(bp);
5530
5531         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5532                 /* fallback to INTA */
5533                 rc = bnxt_init_inta(bp);
5534         }
5535         return rc;
5536 }
5537
5538 static void bnxt_clear_int_mode(struct bnxt *bp)
5539 {
5540         if (bp->flags & BNXT_FLAG_USING_MSIX)
5541                 pci_disable_msix(bp->pdev);
5542
5543         kfree(bp->irq_tbl);
5544         bp->irq_tbl = NULL;
5545         bp->flags &= ~BNXT_FLAG_USING_MSIX;
5546 }
5547
5548 static void bnxt_free_irq(struct bnxt *bp)
5549 {
5550         struct bnxt_irq *irq;
5551         int i;
5552
5553 #ifdef CONFIG_RFS_ACCEL
5554         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5555         bp->dev->rx_cpu_rmap = NULL;
5556 #endif
5557         if (!bp->irq_tbl)
5558                 return;
5559
5560         for (i = 0; i < bp->cp_nr_rings; i++) {
5561                 irq = &bp->irq_tbl[i];
5562                 if (irq->requested) {
5563                         if (irq->have_cpumask) {
5564                                 irq_set_affinity_hint(irq->vector, NULL);
5565                                 free_cpumask_var(irq->cpu_mask);
5566                                 irq->have_cpumask = 0;
5567                         }
5568                         free_irq(irq->vector, bp->bnapi[i]);
5569                 }
5570
5571                 irq->requested = 0;
5572         }
5573 }
5574
5575 static int bnxt_request_irq(struct bnxt *bp)
5576 {
5577         int i, j, rc = 0;
5578         unsigned long flags = 0;
5579 #ifdef CONFIG_RFS_ACCEL
5580         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5581 #endif
5582
5583         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5584                 flags = IRQF_SHARED;
5585
5586         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5587                 struct bnxt_irq *irq = &bp->irq_tbl[i];
5588 #ifdef CONFIG_RFS_ACCEL
5589                 if (rmap && bp->bnapi[i]->rx_ring) {
5590                         rc = irq_cpu_rmap_add(rmap, irq->vector);
5591                         if (rc)
5592                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5593                                             j);
5594                         j++;
5595                 }
5596 #endif
5597                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5598                                  bp->bnapi[i]);
5599                 if (rc)
5600                         break;
5601
5602                 irq->requested = 1;
5603
5604                 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
5605                         int numa_node = dev_to_node(&bp->pdev->dev);
5606
5607                         irq->have_cpumask = 1;
5608                         cpumask_set_cpu(cpumask_local_spread(i, numa_node),
5609                                         irq->cpu_mask);
5610                         rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
5611                         if (rc) {
5612                                 netdev_warn(bp->dev,
5613                                             "Set affinity failed, IRQ = %d\n",
5614                                             irq->vector);
5615                                 break;
5616                         }
5617                 }
5618         }
5619         return rc;
5620 }
5621
5622 static void bnxt_del_napi(struct bnxt *bp)
5623 {
5624         int i;
5625
5626         if (!bp->bnapi)
5627                 return;
5628
5629         for (i = 0; i < bp->cp_nr_rings; i++) {
5630                 struct bnxt_napi *bnapi = bp->bnapi[i];
5631
5632                 napi_hash_del(&bnapi->napi);
5633                 netif_napi_del(&bnapi->napi);
5634         }
5635         /* We called napi_hash_del() before netif_napi_del(), we need
5636          * to respect an RCU grace period before freeing napi structures.
5637          */
5638         synchronize_net();
5639 }
5640
5641 static void bnxt_init_napi(struct bnxt *bp)
5642 {
5643         int i;
5644         unsigned int cp_nr_rings = bp->cp_nr_rings;
5645         struct bnxt_napi *bnapi;
5646
5647         if (bp->flags & BNXT_FLAG_USING_MSIX) {
5648                 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5649                         cp_nr_rings--;
5650                 for (i = 0; i < cp_nr_rings; i++) {
5651                         bnapi = bp->bnapi[i];
5652                         netif_napi_add(bp->dev, &bnapi->napi,
5653                                        bnxt_poll, 64);
5654                 }
5655                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5656                         bnapi = bp->bnapi[cp_nr_rings];
5657                         netif_napi_add(bp->dev, &bnapi->napi,
5658                                        bnxt_poll_nitroa0, 64);
5659                 }
5660         } else {
5661                 bnapi = bp->bnapi[0];
5662                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5663         }
5664 }
5665
5666 static void bnxt_disable_napi(struct bnxt *bp)
5667 {
5668         int i;
5669
5670         if (!bp->bnapi)
5671                 return;
5672
5673         for (i = 0; i < bp->cp_nr_rings; i++)
5674                 napi_disable(&bp->bnapi[i]->napi);
5675 }
5676
5677 static void bnxt_enable_napi(struct bnxt *bp)
5678 {
5679         int i;
5680
5681         for (i = 0; i < bp->cp_nr_rings; i++) {
5682                 bp->bnapi[i]->in_reset = false;
5683                 napi_enable(&bp->bnapi[i]->napi);
5684         }
5685 }
5686
5687 void bnxt_tx_disable(struct bnxt *bp)
5688 {
5689         int i;
5690         struct bnxt_tx_ring_info *txr;
5691
5692         if (bp->tx_ring) {
5693                 for (i = 0; i < bp->tx_nr_rings; i++) {
5694                         txr = &bp->tx_ring[i];
5695                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
5696                 }
5697         }
5698         /* Stop all TX queues */
5699         netif_tx_disable(bp->dev);
5700         netif_carrier_off(bp->dev);
5701 }
5702
5703 void bnxt_tx_enable(struct bnxt *bp)
5704 {
5705         int i;
5706         struct bnxt_tx_ring_info *txr;
5707
5708         for (i = 0; i < bp->tx_nr_rings; i++) {
5709                 txr = &bp->tx_ring[i];
5710                 txr->dev_state = 0;
5711         }
5712         netif_tx_wake_all_queues(bp->dev);
5713         if (bp->link_info.link_up)
5714                 netif_carrier_on(bp->dev);
5715 }
5716
5717 static void bnxt_report_link(struct bnxt *bp)
5718 {
5719         if (bp->link_info.link_up) {
5720                 const char *duplex;
5721                 const char *flow_ctrl;
5722                 u32 speed;
5723                 u16 fec;
5724
5725                 netif_carrier_on(bp->dev);
5726                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5727                         duplex = "full";
5728                 else
5729                         duplex = "half";
5730                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5731                         flow_ctrl = "ON - receive & transmit";
5732                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5733                         flow_ctrl = "ON - transmit";
5734                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5735                         flow_ctrl = "ON - receive";
5736                 else
5737                         flow_ctrl = "none";
5738                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5739                 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
5740                             speed, duplex, flow_ctrl);
5741                 if (bp->flags & BNXT_FLAG_EEE_CAP)
5742                         netdev_info(bp->dev, "EEE is %s\n",
5743                                     bp->eee.eee_active ? "active" :
5744                                                          "not active");
5745                 fec = bp->link_info.fec_cfg;
5746                 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5747                         netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5748                                     (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5749                                     (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5750                                      (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5751         } else {
5752                 netif_carrier_off(bp->dev);
5753                 netdev_err(bp->dev, "NIC Link is Down\n");
5754         }
5755 }
5756
5757 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5758 {
5759         int rc = 0;
5760         struct hwrm_port_phy_qcaps_input req = {0};
5761         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5762         struct bnxt_link_info *link_info = &bp->link_info;
5763
5764         if (bp->hwrm_spec_code < 0x10201)
5765                 return 0;
5766
5767         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5768
5769         mutex_lock(&bp->hwrm_cmd_lock);
5770         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5771         if (rc)
5772                 goto hwrm_phy_qcaps_exit;
5773
5774         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
5775                 struct ethtool_eee *eee = &bp->eee;
5776                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5777
5778                 bp->flags |= BNXT_FLAG_EEE_CAP;
5779                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5780                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5781                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5782                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5783                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5784         }
5785         if (resp->supported_speeds_auto_mode)
5786                 link_info->support_auto_speeds =
5787                         le16_to_cpu(resp->supported_speeds_auto_mode);
5788
5789         bp->port_count = resp->port_cnt;
5790
5791 hwrm_phy_qcaps_exit:
5792         mutex_unlock(&bp->hwrm_cmd_lock);
5793         return rc;
5794 }
5795
5796 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5797 {
5798         int rc = 0;
5799         struct bnxt_link_info *link_info = &bp->link_info;
5800         struct hwrm_port_phy_qcfg_input req = {0};
5801         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5802         u8 link_up = link_info->link_up;
5803         u16 diff;
5804
5805         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5806
5807         mutex_lock(&bp->hwrm_cmd_lock);
5808         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5809         if (rc) {
5810                 mutex_unlock(&bp->hwrm_cmd_lock);
5811                 return rc;
5812         }
5813
5814         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5815         link_info->phy_link_status = resp->link;
5816         link_info->duplex = resp->duplex_cfg;
5817         if (bp->hwrm_spec_code >= 0x10800)
5818                 link_info->duplex = resp->duplex_state;
5819         link_info->pause = resp->pause;
5820         link_info->auto_mode = resp->auto_mode;
5821         link_info->auto_pause_setting = resp->auto_pause;
5822         link_info->lp_pause = resp->link_partner_adv_pause;
5823         link_info->force_pause_setting = resp->force_pause;
5824         link_info->duplex_setting = resp->duplex_cfg;
5825         if (link_info->phy_link_status == BNXT_LINK_LINK)
5826                 link_info->link_speed = le16_to_cpu(resp->link_speed);
5827         else
5828                 link_info->link_speed = 0;
5829         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5830         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5831         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5832         link_info->lp_auto_link_speeds =
5833                 le16_to_cpu(resp->link_partner_adv_speeds);
5834         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5835         link_info->phy_ver[0] = resp->phy_maj;
5836         link_info->phy_ver[1] = resp->phy_min;
5837         link_info->phy_ver[2] = resp->phy_bld;
5838         link_info->media_type = resp->media_type;
5839         link_info->phy_type = resp->phy_type;
5840         link_info->transceiver = resp->xcvr_pkg_type;
5841         link_info->phy_addr = resp->eee_config_phy_addr &
5842                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5843         link_info->module_status = resp->module_status;
5844
5845         if (bp->flags & BNXT_FLAG_EEE_CAP) {
5846                 struct ethtool_eee *eee = &bp->eee;
5847                 u16 fw_speeds;
5848
5849                 eee->eee_active = 0;
5850                 if (resp->eee_config_phy_addr &
5851                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5852                         eee->eee_active = 1;
5853                         fw_speeds = le16_to_cpu(
5854                                 resp->link_partner_adv_eee_link_speed_mask);
5855                         eee->lp_advertised =
5856                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5857                 }
5858
5859                 /* Pull initial EEE config */
5860                 if (!chng_link_state) {
5861                         if (resp->eee_config_phy_addr &
5862                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5863                                 eee->eee_enabled = 1;
5864
5865                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5866                         eee->advertised =
5867                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5868
5869                         if (resp->eee_config_phy_addr &
5870                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5871                                 __le32 tmr;
5872
5873                                 eee->tx_lpi_enabled = 1;
5874                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5875                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
5876                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5877                         }
5878                 }
5879         }
5880
5881         link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5882         if (bp->hwrm_spec_code >= 0x10504)
5883                 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5884
5885         /* TODO: need to add more logic to report VF link */
5886         if (chng_link_state) {
5887                 if (link_info->phy_link_status == BNXT_LINK_LINK)
5888                         link_info->link_up = 1;
5889                 else
5890                         link_info->link_up = 0;
5891                 if (link_up != link_info->link_up)
5892                         bnxt_report_link(bp);
5893         } else {
5894                 /* alwasy link down if not require to update link state */
5895                 link_info->link_up = 0;
5896         }
5897         mutex_unlock(&bp->hwrm_cmd_lock);
5898
5899         diff = link_info->support_auto_speeds ^ link_info->advertising;
5900         if ((link_info->support_auto_speeds | diff) !=
5901             link_info->support_auto_speeds) {
5902                 /* An advertised speed is no longer supported, so we need to
5903                  * update the advertisement settings.  Caller holds RTNL
5904                  * so we can modify link settings.
5905                  */
5906                 link_info->advertising = link_info->support_auto_speeds;
5907                 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5908                         bnxt_hwrm_set_link_setting(bp, true, false);
5909         }
5910         return 0;
5911 }
5912
5913 static void bnxt_get_port_module_status(struct bnxt *bp)
5914 {
5915         struct bnxt_link_info *link_info = &bp->link_info;
5916         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5917         u8 module_status;
5918
5919         if (bnxt_update_link(bp, true))
5920                 return;
5921
5922         module_status = link_info->module_status;
5923         switch (module_status) {
5924         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5925         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5926         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5927                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5928                             bp->pf.port_id);
5929                 if (bp->hwrm_spec_code >= 0x10201) {
5930                         netdev_warn(bp->dev, "Module part number %s\n",
5931                                     resp->phy_vendor_partnumber);
5932                 }
5933                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5934                         netdev_warn(bp->dev, "TX is disabled\n");
5935                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5936                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5937         }
5938 }
5939
5940 static void
5941 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5942 {
5943         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5944                 if (bp->hwrm_spec_code >= 0x10201)
5945                         req->auto_pause =
5946                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5947                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5948                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5949                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5950                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5951                 req->enables |=
5952                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5953         } else {
5954                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5955                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5956                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5957                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5958                 req->enables |=
5959                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5960                 if (bp->hwrm_spec_code >= 0x10201) {
5961                         req->auto_pause = req->force_pause;
5962                         req->enables |= cpu_to_le32(
5963                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5964                 }
5965         }
5966 }
5967
5968 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5969                                       struct hwrm_port_phy_cfg_input *req)
5970 {
5971         u8 autoneg = bp->link_info.autoneg;
5972         u16 fw_link_speed = bp->link_info.req_link_speed;
5973         u16 advertising = bp->link_info.advertising;
5974
5975         if (autoneg & BNXT_AUTONEG_SPEED) {
5976                 req->auto_mode |=
5977                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5978
5979                 req->enables |= cpu_to_le32(
5980                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5981                 req->auto_link_speed_mask = cpu_to_le16(advertising);
5982
5983                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5984                 req->flags |=
5985                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5986         } else {
5987                 req->force_link_speed = cpu_to_le16(fw_link_speed);
5988                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5989         }
5990
5991         /* tell chimp that the setting takes effect immediately */
5992         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5993 }
5994
5995 int bnxt_hwrm_set_pause(struct bnxt *bp)
5996 {
5997         struct hwrm_port_phy_cfg_input req = {0};
5998         int rc;
5999
6000         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6001         bnxt_hwrm_set_pause_common(bp, &req);
6002
6003         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6004             bp->link_info.force_link_chng)
6005                 bnxt_hwrm_set_link_common(bp, &req);
6006
6007         mutex_lock(&bp->hwrm_cmd_lock);
6008         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6009         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6010                 /* since changing of pause setting doesn't trigger any link
6011                  * change event, the driver needs to update the current pause
6012                  * result upon successfully return of the phy_cfg command
6013                  */
6014                 bp->link_info.pause =
6015                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6016                 bp->link_info.auto_pause_setting = 0;
6017                 if (!bp->link_info.force_link_chng)
6018                         bnxt_report_link(bp);
6019         }
6020         bp->link_info.force_link_chng = false;
6021         mutex_unlock(&bp->hwrm_cmd_lock);
6022         return rc;
6023 }
6024
6025 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6026                               struct hwrm_port_phy_cfg_input *req)
6027 {
6028         struct ethtool_eee *eee = &bp->eee;
6029
6030         if (eee->eee_enabled) {
6031                 u16 eee_speeds;
6032                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6033
6034                 if (eee->tx_lpi_enabled)
6035                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6036                 else
6037                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6038
6039                 req->flags |= cpu_to_le32(flags);
6040                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6041                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6042                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6043         } else {
6044                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6045         }
6046 }
6047
6048 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6049 {
6050         struct hwrm_port_phy_cfg_input req = {0};
6051
6052         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6053         if (set_pause)
6054                 bnxt_hwrm_set_pause_common(bp, &req);
6055
6056         bnxt_hwrm_set_link_common(bp, &req);
6057
6058         if (set_eee)
6059                 bnxt_hwrm_set_eee(bp, &req);
6060         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6061 }
6062
6063 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6064 {
6065         struct hwrm_port_phy_cfg_input req = {0};
6066
6067         if (!BNXT_SINGLE_PF(bp))
6068                 return 0;
6069
6070         if (pci_num_vf(bp->pdev))
6071                 return 0;
6072
6073         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6074         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6075         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6076 }
6077
6078 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6079 {
6080         struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6081         struct hwrm_port_led_qcaps_input req = {0};
6082         struct bnxt_pf_info *pf = &bp->pf;
6083         int rc;
6084
6085         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6086                 return 0;
6087
6088         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6089         req.port_id = cpu_to_le16(pf->port_id);
6090         mutex_lock(&bp->hwrm_cmd_lock);
6091         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6092         if (rc) {
6093                 mutex_unlock(&bp->hwrm_cmd_lock);
6094                 return rc;
6095         }
6096         if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6097                 int i;
6098
6099                 bp->num_leds = resp->num_leds;
6100                 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6101                                                  bp->num_leds);
6102                 for (i = 0; i < bp->num_leds; i++) {
6103                         struct bnxt_led_info *led = &bp->leds[i];
6104                         __le16 caps = led->led_state_caps;
6105
6106                         if (!led->led_group_id ||
6107                             !BNXT_LED_ALT_BLINK_CAP(caps)) {
6108                                 bp->num_leds = 0;
6109                                 break;
6110                         }
6111                 }
6112         }
6113         mutex_unlock(&bp->hwrm_cmd_lock);
6114         return 0;
6115 }
6116
6117 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6118 {
6119         struct hwrm_wol_filter_alloc_input req = {0};
6120         struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6121         int rc;
6122
6123         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6124         req.port_id = cpu_to_le16(bp->pf.port_id);
6125         req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6126         req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6127         memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6128         mutex_lock(&bp->hwrm_cmd_lock);
6129         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6130         if (!rc)
6131                 bp->wol_filter_id = resp->wol_filter_id;
6132         mutex_unlock(&bp->hwrm_cmd_lock);
6133         return rc;
6134 }
6135
6136 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6137 {
6138         struct hwrm_wol_filter_free_input req = {0};
6139         int rc;
6140
6141         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6142         req.port_id = cpu_to_le16(bp->pf.port_id);
6143         req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6144         req.wol_filter_id = bp->wol_filter_id;
6145         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6146         return rc;
6147 }
6148
6149 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6150 {
6151         struct hwrm_wol_filter_qcfg_input req = {0};
6152         struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6153         u16 next_handle = 0;
6154         int rc;
6155
6156         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6157         req.port_id = cpu_to_le16(bp->pf.port_id);
6158         req.handle = cpu_to_le16(handle);
6159         mutex_lock(&bp->hwrm_cmd_lock);
6160         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6161         if (!rc) {
6162                 next_handle = le16_to_cpu(resp->next_handle);
6163                 if (next_handle != 0) {
6164                         if (resp->wol_type ==
6165                             WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6166                                 bp->wol = 1;
6167                                 bp->wol_filter_id = resp->wol_filter_id;
6168                         }
6169                 }
6170         }
6171         mutex_unlock(&bp->hwrm_cmd_lock);
6172         return next_handle;
6173 }
6174
6175 static void bnxt_get_wol_settings(struct bnxt *bp)
6176 {
6177         u16 handle = 0;
6178
6179         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6180                 return;
6181
6182         do {
6183                 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6184         } while (handle && handle != 0xffff);
6185 }
6186
6187 static bool bnxt_eee_config_ok(struct bnxt *bp)
6188 {
6189         struct ethtool_eee *eee = &bp->eee;
6190         struct bnxt_link_info *link_info = &bp->link_info;
6191
6192         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6193                 return true;
6194
6195         if (eee->eee_enabled) {
6196                 u32 advertising =
6197                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6198
6199                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6200                         eee->eee_enabled = 0;
6201                         return false;
6202                 }
6203                 if (eee->advertised & ~advertising) {
6204                         eee->advertised = advertising & eee->supported;
6205                         return false;
6206                 }
6207         }
6208         return true;
6209 }
6210
6211 static int bnxt_update_phy_setting(struct bnxt *bp)
6212 {
6213         int rc;
6214         bool update_link = false;
6215         bool update_pause = false;
6216         bool update_eee = false;
6217         struct bnxt_link_info *link_info = &bp->link_info;
6218
6219         rc = bnxt_update_link(bp, true);
6220         if (rc) {
6221                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6222                            rc);
6223                 return rc;
6224         }
6225         if (!BNXT_SINGLE_PF(bp))
6226                 return 0;
6227
6228         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6229             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6230             link_info->req_flow_ctrl)
6231                 update_pause = true;
6232         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6233             link_info->force_pause_setting != link_info->req_flow_ctrl)
6234                 update_pause = true;
6235         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6236                 if (BNXT_AUTO_MODE(link_info->auto_mode))
6237                         update_link = true;
6238                 if (link_info->req_link_speed != link_info->force_link_speed)
6239                         update_link = true;
6240                 if (link_info->req_duplex != link_info->duplex_setting)
6241                         update_link = true;
6242         } else {
6243                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6244                         update_link = true;
6245                 if (link_info->advertising != link_info->auto_link_speeds)
6246                         update_link = true;
6247         }
6248
6249         /* The last close may have shutdown the link, so need to call
6250          * PHY_CFG to bring it back up.
6251          */
6252         if (!netif_carrier_ok(bp->dev))
6253                 update_link = true;
6254
6255         if (!bnxt_eee_config_ok(bp))
6256                 update_eee = true;
6257
6258         if (update_link)
6259                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6260         else if (update_pause)
6261                 rc = bnxt_hwrm_set_pause(bp);
6262         if (rc) {
6263                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6264                            rc);
6265                 return rc;
6266         }
6267
6268         return rc;
6269 }
6270
6271 /* Common routine to pre-map certain register block to different GRC window.
6272  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6273  * in PF and 3 windows in VF that can be customized to map in different
6274  * register blocks.
6275  */
6276 static void bnxt_preset_reg_win(struct bnxt *bp)
6277 {
6278         if (BNXT_PF(bp)) {
6279                 /* CAG registers map to GRC window #4 */
6280                 writel(BNXT_CAG_REG_BASE,
6281                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6282         }
6283 }
6284
6285 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6286 {
6287         int rc = 0;
6288
6289         bnxt_preset_reg_win(bp);
6290         netif_carrier_off(bp->dev);
6291         if (irq_re_init) {
6292                 rc = bnxt_setup_int_mode(bp);
6293                 if (rc) {
6294                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6295                                    rc);
6296                         return rc;
6297                 }
6298         }
6299         if ((bp->flags & BNXT_FLAG_RFS) &&
6300             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6301                 /* disable RFS if falling back to INTA */
6302                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6303                 bp->flags &= ~BNXT_FLAG_RFS;
6304         }
6305
6306         rc = bnxt_alloc_mem(bp, irq_re_init);
6307         if (rc) {
6308                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6309                 goto open_err_free_mem;
6310         }
6311
6312         if (irq_re_init) {
6313                 bnxt_init_napi(bp);
6314                 rc = bnxt_request_irq(bp);
6315                 if (rc) {
6316                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6317                         goto open_err;
6318                 }
6319         }
6320
6321         bnxt_enable_napi(bp);
6322
6323         rc = bnxt_init_nic(bp, irq_re_init);
6324         if (rc) {
6325                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6326                 goto open_err;
6327         }
6328
6329         if (link_re_init) {
6330                 rc = bnxt_update_phy_setting(bp);
6331                 if (rc)
6332                         netdev_warn(bp->dev, "failed to update phy settings\n");
6333         }
6334
6335         if (irq_re_init)
6336                 udp_tunnel_get_rx_info(bp->dev);
6337
6338         set_bit(BNXT_STATE_OPEN, &bp->state);
6339         bnxt_enable_int(bp);
6340         /* Enable TX queues */
6341         bnxt_tx_enable(bp);
6342         mod_timer(&bp->timer, jiffies + bp->current_interval);
6343         /* Poll link status and check for SFP+ module status */
6344         bnxt_get_port_module_status(bp);
6345
6346         /* VF-reps may need to be re-opened after the PF is re-opened */
6347         if (BNXT_PF(bp))
6348                 bnxt_vf_reps_open(bp);
6349         return 0;
6350
6351 open_err:
6352         bnxt_disable_napi(bp);
6353         bnxt_del_napi(bp);
6354
6355 open_err_free_mem:
6356         bnxt_free_skbs(bp);
6357         bnxt_free_irq(bp);
6358         bnxt_free_mem(bp, true);
6359         return rc;
6360 }
6361
6362 /* rtnl_lock held */
6363 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6364 {
6365         int rc = 0;
6366
6367         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6368         if (rc) {
6369                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6370                 dev_close(bp->dev);
6371         }
6372         return rc;
6373 }
6374
6375 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6376  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6377  * self tests.
6378  */
6379 int bnxt_half_open_nic(struct bnxt *bp)
6380 {
6381         int rc = 0;
6382
6383         rc = bnxt_alloc_mem(bp, false);
6384         if (rc) {
6385                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6386                 goto half_open_err;
6387         }
6388         rc = bnxt_init_nic(bp, false);
6389         if (rc) {
6390                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6391                 goto half_open_err;
6392         }
6393         return 0;
6394
6395 half_open_err:
6396         bnxt_free_skbs(bp);
6397         bnxt_free_mem(bp, false);
6398         dev_close(bp->dev);
6399         return rc;
6400 }
6401
6402 /* rtnl_lock held, this call can only be made after a previous successful
6403  * call to bnxt_half_open_nic().
6404  */
6405 void bnxt_half_close_nic(struct bnxt *bp)
6406 {
6407         bnxt_hwrm_resource_free(bp, false, false);
6408         bnxt_free_skbs(bp);
6409         bnxt_free_mem(bp, false);
6410 }
6411
6412 static int bnxt_open(struct net_device *dev)
6413 {
6414         struct bnxt *bp = netdev_priv(dev);
6415
6416         return __bnxt_open_nic(bp, true, true);
6417 }
6418
6419 static bool bnxt_drv_busy(struct bnxt *bp)
6420 {
6421         return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
6422                 test_bit(BNXT_STATE_READ_STATS, &bp->state));
6423 }
6424
6425 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6426 {
6427         int rc = 0;
6428
6429 #ifdef CONFIG_BNXT_SRIOV
6430         if (bp->sriov_cfg) {
6431                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6432                                                       !bp->sriov_cfg,
6433                                                       BNXT_SRIOV_CFG_WAIT_TMO);
6434                 if (rc)
6435                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6436         }
6437
6438         /* Close the VF-reps before closing PF */
6439         if (BNXT_PF(bp))
6440                 bnxt_vf_reps_close(bp);
6441 #endif
6442         /* Change device state to avoid TX queue wake up's */
6443         bnxt_tx_disable(bp);
6444
6445         clear_bit(BNXT_STATE_OPEN, &bp->state);
6446         smp_mb__after_atomic();
6447         while (bnxt_drv_busy(bp))
6448                 msleep(20);
6449
6450         /* Flush rings and and disable interrupts */
6451         bnxt_shutdown_nic(bp, irq_re_init);
6452
6453         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6454
6455         bnxt_disable_napi(bp);
6456         del_timer_sync(&bp->timer);
6457         bnxt_free_skbs(bp);
6458
6459         if (irq_re_init) {
6460                 bnxt_free_irq(bp);
6461                 bnxt_del_napi(bp);
6462         }
6463         bnxt_free_mem(bp, irq_re_init);
6464         return rc;
6465 }
6466
6467 static int bnxt_close(struct net_device *dev)
6468 {
6469         struct bnxt *bp = netdev_priv(dev);
6470
6471         bnxt_close_nic(bp, true, true);
6472         bnxt_hwrm_shutdown_link(bp);
6473         return 0;
6474 }
6475
6476 /* rtnl_lock held */
6477 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6478 {
6479         switch (cmd) {
6480         case SIOCGMIIPHY:
6481                 /* fallthru */
6482         case SIOCGMIIREG: {
6483                 if (!netif_running(dev))
6484                         return -EAGAIN;
6485
6486                 return 0;
6487         }
6488
6489         case SIOCSMIIREG:
6490                 if (!netif_running(dev))
6491                         return -EAGAIN;
6492
6493                 return 0;
6494
6495         default:
6496                 /* do nothing */
6497                 break;
6498         }
6499         return -EOPNOTSUPP;
6500 }
6501
6502 static void
6503 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6504 {
6505         u32 i;
6506         struct bnxt *bp = netdev_priv(dev);
6507
6508         set_bit(BNXT_STATE_READ_STATS, &bp->state);
6509         /* Make sure bnxt_close_nic() sees that we are reading stats before
6510          * we check the BNXT_STATE_OPEN flag.
6511          */
6512         smp_mb__after_atomic();
6513         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6514                 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6515                 return;
6516         }
6517
6518         /* TODO check if we need to synchronize with bnxt_close path */
6519         for (i = 0; i < bp->cp_nr_rings; i++) {
6520                 struct bnxt_napi *bnapi = bp->bnapi[i];
6521                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6522                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6523
6524                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6525                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6526                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6527
6528                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6529                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6530                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6531
6532                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6533                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6534                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6535
6536                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6537                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6538                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6539
6540                 stats->rx_missed_errors +=
6541                         le64_to_cpu(hw_stats->rx_discard_pkts);
6542
6543                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6544
6545                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6546         }
6547
6548         if (bp->flags & BNXT_FLAG_PORT_STATS) {
6549                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
6550                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
6551
6552                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6553                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6554                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6555                                           le64_to_cpu(rx->rx_ovrsz_frames) +
6556                                           le64_to_cpu(rx->rx_runt_frames);
6557                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6558                                    le64_to_cpu(rx->rx_jbr_frames);
6559                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6560                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6561                 stats->tx_errors = le64_to_cpu(tx->tx_err);
6562         }
6563         clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6564 }
6565
6566 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6567 {
6568         struct net_device *dev = bp->dev;
6569         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6570         struct netdev_hw_addr *ha;
6571         u8 *haddr;
6572         int mc_count = 0;
6573         bool update = false;
6574         int off = 0;
6575
6576         netdev_for_each_mc_addr(ha, dev) {
6577                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
6578                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6579                         vnic->mc_list_count = 0;
6580                         return false;
6581                 }
6582                 haddr = ha->addr;
6583                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6584                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6585                         update = true;
6586                 }
6587                 off += ETH_ALEN;
6588                 mc_count++;
6589         }
6590         if (mc_count)
6591                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6592
6593         if (mc_count != vnic->mc_list_count) {
6594                 vnic->mc_list_count = mc_count;
6595                 update = true;
6596         }
6597         return update;
6598 }
6599
6600 static bool bnxt_uc_list_updated(struct bnxt *bp)
6601 {
6602         struct net_device *dev = bp->dev;
6603         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6604         struct netdev_hw_addr *ha;
6605         int off = 0;
6606
6607         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6608                 return true;
6609
6610         netdev_for_each_uc_addr(ha, dev) {
6611                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6612                         return true;
6613
6614                 off += ETH_ALEN;
6615         }
6616         return false;
6617 }
6618
6619 static void bnxt_set_rx_mode(struct net_device *dev)
6620 {
6621         struct bnxt *bp = netdev_priv(dev);
6622         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6623         u32 mask = vnic->rx_mask;
6624         bool mc_update = false;
6625         bool uc_update;
6626
6627         if (!netif_running(dev))
6628                 return;
6629
6630         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6631                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6632                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6633
6634         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6635                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6636
6637         uc_update = bnxt_uc_list_updated(bp);
6638
6639         if (dev->flags & IFF_ALLMULTI) {
6640                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6641                 vnic->mc_list_count = 0;
6642         } else {
6643                 mc_update = bnxt_mc_list_updated(bp, &mask);
6644         }
6645
6646         if (mask != vnic->rx_mask || uc_update || mc_update) {
6647                 vnic->rx_mask = mask;
6648
6649                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6650                 schedule_work(&bp->sp_task);
6651         }
6652 }
6653
6654 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6655 {
6656         struct net_device *dev = bp->dev;
6657         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6658         struct netdev_hw_addr *ha;
6659         int i, off = 0, rc;
6660         bool uc_update;
6661
6662         netif_addr_lock_bh(dev);
6663         uc_update = bnxt_uc_list_updated(bp);
6664         netif_addr_unlock_bh(dev);
6665
6666         if (!uc_update)
6667                 goto skip_uc;
6668
6669         mutex_lock(&bp->hwrm_cmd_lock);
6670         for (i = 1; i < vnic->uc_filter_count; i++) {
6671                 struct hwrm_cfa_l2_filter_free_input req = {0};
6672
6673                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6674                                        -1);
6675
6676                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
6677
6678                 rc = _hwrm_send_message(bp, &req, sizeof(req),
6679                                         HWRM_CMD_TIMEOUT);
6680         }
6681         mutex_unlock(&bp->hwrm_cmd_lock);
6682
6683         vnic->uc_filter_count = 1;
6684
6685         netif_addr_lock_bh(dev);
6686         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6687                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6688         } else {
6689                 netdev_for_each_uc_addr(ha, dev) {
6690                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6691                         off += ETH_ALEN;
6692                         vnic->uc_filter_count++;
6693                 }
6694         }
6695         netif_addr_unlock_bh(dev);
6696
6697         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6698                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6699                 if (rc) {
6700                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6701                                    rc);
6702                         vnic->uc_filter_count = i;
6703                         return rc;
6704                 }
6705         }
6706
6707 skip_uc:
6708         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6709         if (rc)
6710                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6711                            rc);
6712
6713         return rc;
6714 }
6715
6716 /* If the chip and firmware supports RFS */
6717 static bool bnxt_rfs_supported(struct bnxt *bp)
6718 {
6719         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6720                 return true;
6721         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6722                 return true;
6723         return false;
6724 }
6725
6726 /* If runtime conditions support RFS */
6727 static bool bnxt_rfs_capable(struct bnxt *bp)
6728 {
6729 #ifdef CONFIG_RFS_ACCEL
6730         int vnics, max_vnics, max_rss_ctxs;
6731
6732         if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6733                 return false;
6734
6735         vnics = 1 + bp->rx_nr_rings;
6736         max_vnics = bnxt_get_max_func_vnics(bp);
6737         max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6738
6739         /* RSS contexts not a limiting factor */
6740         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6741                 max_rss_ctxs = max_vnics;
6742         if (vnics > max_vnics || vnics > max_rss_ctxs) {
6743                 netdev_warn(bp->dev,
6744                             "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6745                             min(max_rss_ctxs - 1, max_vnics - 1));
6746                 return false;
6747         }
6748
6749         return true;
6750 #else
6751         return false;
6752 #endif
6753 }
6754
6755 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6756                                            netdev_features_t features)
6757 {
6758         struct bnxt *bp = netdev_priv(dev);
6759
6760         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6761                 features &= ~NETIF_F_NTUPLE;
6762
6763         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
6764          * turned on or off together.
6765          */
6766         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6767             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6768                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6769                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6770                                       NETIF_F_HW_VLAN_STAG_RX);
6771                 else
6772                         features |= NETIF_F_HW_VLAN_CTAG_RX |
6773                                     NETIF_F_HW_VLAN_STAG_RX;
6774         }
6775 #ifdef CONFIG_BNXT_SRIOV
6776         if (BNXT_VF(bp)) {
6777                 if (bp->vf.vlan) {
6778                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6779                                       NETIF_F_HW_VLAN_STAG_RX);
6780                 }
6781         }
6782 #endif
6783         return features;
6784 }
6785
6786 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6787 {
6788         struct bnxt *bp = netdev_priv(dev);
6789         u32 flags = bp->flags;
6790         u32 changes;
6791         int rc = 0;
6792         bool re_init = false;
6793         bool update_tpa = false;
6794
6795         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6796         if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6797                 flags |= BNXT_FLAG_GRO;
6798         if (features & NETIF_F_LRO)
6799                 flags |= BNXT_FLAG_LRO;
6800
6801         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6802                 flags &= ~BNXT_FLAG_TPA;
6803
6804         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6805                 flags |= BNXT_FLAG_STRIP_VLAN;
6806
6807         if (features & NETIF_F_NTUPLE)
6808                 flags |= BNXT_FLAG_RFS;
6809
6810         changes = flags ^ bp->flags;
6811         if (changes & BNXT_FLAG_TPA) {
6812                 update_tpa = true;
6813                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6814                     (flags & BNXT_FLAG_TPA) == 0)
6815                         re_init = true;
6816         }
6817
6818         if (changes & ~BNXT_FLAG_TPA)
6819                 re_init = true;
6820
6821         if (flags != bp->flags) {
6822                 u32 old_flags = bp->flags;
6823
6824                 bp->flags = flags;
6825
6826                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6827                         if (update_tpa)
6828                                 bnxt_set_ring_params(bp);
6829                         return rc;
6830                 }
6831
6832                 if (re_init) {
6833                         bnxt_close_nic(bp, false, false);
6834                         if (update_tpa)
6835                                 bnxt_set_ring_params(bp);
6836
6837                         return bnxt_open_nic(bp, false, false);
6838                 }
6839                 if (update_tpa) {
6840                         rc = bnxt_set_tpa(bp,
6841                                           (flags & BNXT_FLAG_TPA) ?
6842                                           true : false);
6843                         if (rc)
6844                                 bp->flags = old_flags;
6845                 }
6846         }
6847         return rc;
6848 }
6849
6850 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6851 {
6852         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6853         int i = bnapi->index;
6854
6855         if (!txr)
6856                 return;
6857
6858         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6859                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6860                     txr->tx_cons);
6861 }
6862
6863 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6864 {
6865         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6866         int i = bnapi->index;
6867
6868         if (!rxr)
6869                 return;
6870
6871         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6872                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6873                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6874                     rxr->rx_sw_agg_prod);
6875 }
6876
6877 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6878 {
6879         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6880         int i = bnapi->index;
6881
6882         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6883                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6884 }
6885
6886 static void bnxt_dbg_dump_states(struct bnxt *bp)
6887 {
6888         int i;
6889         struct bnxt_napi *bnapi;
6890
6891         for (i = 0; i < bp->cp_nr_rings; i++) {
6892                 bnapi = bp->bnapi[i];
6893                 if (netif_msg_drv(bp)) {
6894                         bnxt_dump_tx_sw_state(bnapi);
6895                         bnxt_dump_rx_sw_state(bnapi);
6896                         bnxt_dump_cp_sw_state(bnapi);
6897                 }
6898         }
6899 }
6900
6901 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6902 {
6903         if (!silent)
6904                 bnxt_dbg_dump_states(bp);
6905         if (netif_running(bp->dev)) {
6906                 int rc;
6907
6908                 if (!silent)
6909                         bnxt_ulp_stop(bp);
6910                 bnxt_close_nic(bp, false, false);
6911                 rc = bnxt_open_nic(bp, false, false);
6912                 if (!silent && !rc)
6913                         bnxt_ulp_start(bp);
6914         }
6915 }
6916
6917 static void bnxt_tx_timeout(struct net_device *dev)
6918 {
6919         struct bnxt *bp = netdev_priv(dev);
6920
6921         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6922         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6923         schedule_work(&bp->sp_task);
6924 }
6925
6926 #ifdef CONFIG_NET_POLL_CONTROLLER
6927 static void bnxt_poll_controller(struct net_device *dev)
6928 {
6929         struct bnxt *bp = netdev_priv(dev);
6930         int i;
6931
6932         /* Only process tx rings/combined rings in netpoll mode. */
6933         for (i = 0; i < bp->tx_nr_rings; i++) {
6934                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6935
6936                 napi_schedule(&txr->bnapi->napi);
6937         }
6938 }
6939 #endif
6940
6941 static void bnxt_timer(unsigned long data)
6942 {
6943         struct bnxt *bp = (struct bnxt *)data;
6944         struct net_device *dev = bp->dev;
6945
6946         if (!netif_running(dev))
6947                 return;
6948
6949         if (atomic_read(&bp->intr_sem) != 0)
6950                 goto bnxt_restart_timer;
6951
6952         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
6953             bp->stats_coal_ticks) {
6954                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6955                 schedule_work(&bp->sp_task);
6956         }
6957 bnxt_restart_timer:
6958         mod_timer(&bp->timer, jiffies + bp->current_interval);
6959 }
6960
6961 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6962 {
6963         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6964          * set.  If the device is being closed, bnxt_close() may be holding
6965          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6966          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6967          */
6968         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6969         rtnl_lock();
6970 }
6971
6972 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
6973 {
6974         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6975         rtnl_unlock();
6976 }
6977
6978 /* Only called from bnxt_sp_task() */
6979 static void bnxt_reset(struct bnxt *bp, bool silent)
6980 {
6981         bnxt_rtnl_lock_sp(bp);
6982         if (test_bit(BNXT_STATE_OPEN, &bp->state))
6983                 bnxt_reset_task(bp, silent);
6984         bnxt_rtnl_unlock_sp(bp);
6985 }
6986
6987 static void bnxt_cfg_ntp_filters(struct bnxt *);
6988
6989 static void bnxt_sp_task(struct work_struct *work)
6990 {
6991         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6992
6993         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6994         smp_mb__after_atomic();
6995         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6996                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6997                 return;
6998         }
6999
7000         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7001                 bnxt_cfg_rx_mode(bp);
7002
7003         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7004                 bnxt_cfg_ntp_filters(bp);
7005         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7006                 bnxt_hwrm_exec_fwd_req(bp);
7007         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7008                 bnxt_hwrm_tunnel_dst_port_alloc(
7009                         bp, bp->vxlan_port,
7010                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7011         }
7012         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7013                 bnxt_hwrm_tunnel_dst_port_free(
7014                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7015         }
7016         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7017                 bnxt_hwrm_tunnel_dst_port_alloc(
7018                         bp, bp->nge_port,
7019                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7020         }
7021         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7022                 bnxt_hwrm_tunnel_dst_port_free(
7023                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7024         }
7025         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
7026                 bnxt_hwrm_port_qstats(bp);
7027
7028         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7029          * must be the last functions to be called before exiting.
7030          */
7031         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7032                 int rc = 0;
7033
7034                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7035                                        &bp->sp_event))
7036                         bnxt_hwrm_phy_qcaps(bp);
7037
7038                 bnxt_rtnl_lock_sp(bp);
7039                 if (test_bit(BNXT_STATE_OPEN, &bp->state))
7040                         rc = bnxt_update_link(bp, true);
7041                 bnxt_rtnl_unlock_sp(bp);
7042                 if (rc)
7043                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7044                                    rc);
7045         }
7046         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7047                 bnxt_rtnl_lock_sp(bp);
7048                 if (test_bit(BNXT_STATE_OPEN, &bp->state))
7049                         bnxt_get_port_module_status(bp);
7050                 bnxt_rtnl_unlock_sp(bp);
7051         }
7052         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7053                 bnxt_reset(bp, false);
7054
7055         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7056                 bnxt_reset(bp, true);
7057
7058         smp_mb__before_atomic();
7059         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7060 }
7061
7062 /* Under rtnl_lock */
7063 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7064                      int tx_xdp)
7065 {
7066         int max_rx, max_tx, tx_sets = 1;
7067         int tx_rings_needed;
7068         int rc;
7069
7070         if (tcs)
7071                 tx_sets = tcs;
7072
7073         rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7074         if (rc)
7075                 return rc;
7076
7077         if (max_rx < rx)
7078                 return -ENOMEM;
7079
7080         tx_rings_needed = tx * tx_sets + tx_xdp;
7081         if (max_tx < tx_rings_needed)
7082                 return -ENOMEM;
7083
7084         return bnxt_hwrm_check_tx_rings(bp, tx_rings_needed);
7085 }
7086
7087 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7088 {
7089         if (bp->bar2) {
7090                 pci_iounmap(pdev, bp->bar2);
7091                 bp->bar2 = NULL;
7092         }
7093
7094         if (bp->bar1) {
7095                 pci_iounmap(pdev, bp->bar1);
7096                 bp->bar1 = NULL;
7097         }
7098
7099         if (bp->bar0) {
7100                 pci_iounmap(pdev, bp->bar0);
7101                 bp->bar0 = NULL;
7102         }
7103 }
7104
7105 static void bnxt_cleanup_pci(struct bnxt *bp)
7106 {
7107         bnxt_unmap_bars(bp, bp->pdev);
7108         pci_release_regions(bp->pdev);
7109         pci_disable_device(bp->pdev);
7110 }
7111
7112 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7113 {
7114         int rc;
7115         struct bnxt *bp = netdev_priv(dev);
7116
7117         SET_NETDEV_DEV(dev, &pdev->dev);
7118
7119         /* enable device (incl. PCI PM wakeup), and bus-mastering */
7120         rc = pci_enable_device(pdev);
7121         if (rc) {
7122                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7123                 goto init_err;
7124         }
7125
7126         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7127                 dev_err(&pdev->dev,
7128                         "Cannot find PCI device base address, aborting\n");
7129                 rc = -ENODEV;
7130                 goto init_err_disable;
7131         }
7132
7133         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7134         if (rc) {
7135                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7136                 goto init_err_disable;
7137         }
7138
7139         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7140             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7141                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7142                 goto init_err_disable;
7143         }
7144
7145         pci_set_master(pdev);
7146
7147         bp->dev = dev;
7148         bp->pdev = pdev;
7149
7150         bp->bar0 = pci_ioremap_bar(pdev, 0);
7151         if (!bp->bar0) {
7152                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7153                 rc = -ENOMEM;
7154                 goto init_err_release;
7155         }
7156
7157         bp->bar1 = pci_ioremap_bar(pdev, 2);
7158         if (!bp->bar1) {
7159                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7160                 rc = -ENOMEM;
7161                 goto init_err_release;
7162         }
7163
7164         bp->bar2 = pci_ioremap_bar(pdev, 4);
7165         if (!bp->bar2) {
7166                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7167                 rc = -ENOMEM;
7168                 goto init_err_release;
7169         }
7170
7171         pci_enable_pcie_error_reporting(pdev);
7172
7173         INIT_WORK(&bp->sp_task, bnxt_sp_task);
7174
7175         spin_lock_init(&bp->ntp_fltr_lock);
7176
7177         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7178         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7179
7180         /* tick values in micro seconds */
7181         bp->rx_coal_ticks = 12;
7182         bp->rx_coal_bufs = 30;
7183         bp->rx_coal_ticks_irq = 1;
7184         bp->rx_coal_bufs_irq = 2;
7185
7186         bp->tx_coal_ticks = 25;
7187         bp->tx_coal_bufs = 30;
7188         bp->tx_coal_ticks_irq = 2;
7189         bp->tx_coal_bufs_irq = 2;
7190
7191         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7192
7193         init_timer(&bp->timer);
7194         bp->timer.data = (unsigned long)bp;
7195         bp->timer.function = bnxt_timer;
7196         bp->current_interval = BNXT_TIMER_INTERVAL;
7197
7198         clear_bit(BNXT_STATE_OPEN, &bp->state);
7199         return 0;
7200
7201 init_err_release:
7202         bnxt_unmap_bars(bp, pdev);
7203         pci_release_regions(pdev);
7204
7205 init_err_disable:
7206         pci_disable_device(pdev);
7207
7208 init_err:
7209         return rc;
7210 }
7211
7212 /* rtnl_lock held */
7213 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7214 {
7215         struct sockaddr *addr = p;
7216         struct bnxt *bp = netdev_priv(dev);
7217         int rc = 0;
7218
7219         if (!is_valid_ether_addr(addr->sa_data))
7220                 return -EADDRNOTAVAIL;
7221
7222         rc = bnxt_approve_mac(bp, addr->sa_data);
7223         if (rc)
7224                 return rc;
7225
7226         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7227                 return 0;
7228
7229         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7230         if (netif_running(dev)) {
7231                 bnxt_close_nic(bp, false, false);
7232                 rc = bnxt_open_nic(bp, false, false);
7233         }
7234
7235         return rc;
7236 }
7237
7238 /* rtnl_lock held */
7239 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7240 {
7241         struct bnxt *bp = netdev_priv(dev);
7242
7243         if (netif_running(dev))
7244                 bnxt_close_nic(bp, false, false);
7245
7246         dev->mtu = new_mtu;
7247         bnxt_set_ring_params(bp);
7248
7249         if (netif_running(dev))
7250                 return bnxt_open_nic(bp, false, false);
7251
7252         return 0;
7253 }
7254
7255 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7256 {
7257         struct bnxt *bp = netdev_priv(dev);
7258         bool sh = false;
7259         int rc;
7260
7261         if (tc > bp->max_tc) {
7262                 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7263                            tc, bp->max_tc);
7264                 return -EINVAL;
7265         }
7266
7267         if (netdev_get_num_tc(dev) == tc)
7268                 return 0;
7269
7270         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7271                 sh = true;
7272
7273         rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7274                               sh, tc, bp->tx_nr_rings_xdp);
7275         if (rc)
7276                 return rc;
7277
7278         /* Needs to close the device and do hw resource re-allocations */
7279         if (netif_running(bp->dev))
7280                 bnxt_close_nic(bp, true, false);
7281
7282         if (tc) {
7283                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7284                 netdev_set_num_tc(dev, tc);
7285         } else {
7286                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7287                 netdev_reset_tc(dev);
7288         }
7289         bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7290         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7291                                bp->tx_nr_rings + bp->rx_nr_rings;
7292         bp->num_stat_ctxs = bp->cp_nr_rings;
7293
7294         if (netif_running(bp->dev))
7295                 return bnxt_open_nic(bp, true, false);
7296
7297         return 0;
7298 }
7299
7300 static int bnxt_setup_flower(struct net_device *dev,
7301                              struct tc_cls_flower_offload *cls_flower)
7302 {
7303         struct bnxt *bp = netdev_priv(dev);
7304
7305         if (BNXT_VF(bp))
7306                 return -EOPNOTSUPP;
7307
7308         return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, cls_flower);
7309 }
7310
7311 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7312                          void *type_data)
7313 {
7314         switch (type) {
7315         case TC_SETUP_CLSFLOWER:
7316                 return bnxt_setup_flower(dev, type_data);
7317         case TC_SETUP_MQPRIO: {
7318                 struct tc_mqprio_qopt *mqprio = type_data;
7319
7320                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7321
7322                 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
7323         }
7324         default:
7325                 return -EOPNOTSUPP;
7326         }
7327 }
7328
7329 #ifdef CONFIG_RFS_ACCEL
7330 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7331                             struct bnxt_ntuple_filter *f2)
7332 {
7333         struct flow_keys *keys1 = &f1->fkeys;
7334         struct flow_keys *keys2 = &f2->fkeys;
7335
7336         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7337             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7338             keys1->ports.ports == keys2->ports.ports &&
7339             keys1->basic.ip_proto == keys2->basic.ip_proto &&
7340             keys1->basic.n_proto == keys2->basic.n_proto &&
7341             keys1->control.flags == keys2->control.flags &&
7342             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7343             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7344                 return true;
7345
7346         return false;
7347 }
7348
7349 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7350                               u16 rxq_index, u32 flow_id)
7351 {
7352         struct bnxt *bp = netdev_priv(dev);
7353         struct bnxt_ntuple_filter *fltr, *new_fltr;
7354         struct flow_keys *fkeys;
7355         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
7356         int rc = 0, idx, bit_id, l2_idx = 0;
7357         struct hlist_head *head;
7358
7359         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
7360                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7361                 int off = 0, j;
7362
7363                 netif_addr_lock_bh(dev);
7364                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
7365                         if (ether_addr_equal(eth->h_dest,
7366                                              vnic->uc_list + off)) {
7367                                 l2_idx = j + 1;
7368                                 break;
7369                         }
7370                 }
7371                 netif_addr_unlock_bh(dev);
7372                 if (!l2_idx)
7373                         return -EINVAL;
7374         }
7375         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
7376         if (!new_fltr)
7377                 return -ENOMEM;
7378
7379         fkeys = &new_fltr->fkeys;
7380         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
7381                 rc = -EPROTONOSUPPORT;
7382                 goto err_free;
7383         }
7384
7385         if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
7386              fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
7387             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
7388              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
7389                 rc = -EPROTONOSUPPORT;
7390                 goto err_free;
7391         }
7392         if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
7393             bp->hwrm_spec_code < 0x10601) {
7394                 rc = -EPROTONOSUPPORT;
7395                 goto err_free;
7396         }
7397         if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
7398             bp->hwrm_spec_code < 0x10601) {
7399                 rc = -EPROTONOSUPPORT;
7400                 goto err_free;
7401         }
7402
7403         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7404         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7405
7406         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7407         head = &bp->ntp_fltr_hash_tbl[idx];
7408         rcu_read_lock();
7409         hlist_for_each_entry_rcu(fltr, head, hash) {
7410                 if (bnxt_fltr_match(fltr, new_fltr)) {
7411                         rcu_read_unlock();
7412                         rc = 0;
7413                         goto err_free;
7414                 }
7415         }
7416         rcu_read_unlock();
7417
7418         spin_lock_bh(&bp->ntp_fltr_lock);
7419         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7420                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
7421         if (bit_id < 0) {
7422                 spin_unlock_bh(&bp->ntp_fltr_lock);
7423                 rc = -ENOMEM;
7424                 goto err_free;
7425         }
7426
7427         new_fltr->sw_id = (u16)bit_id;
7428         new_fltr->flow_id = flow_id;
7429         new_fltr->l2_fltr_idx = l2_idx;
7430         new_fltr->rxq = rxq_index;
7431         hlist_add_head_rcu(&new_fltr->hash, head);
7432         bp->ntp_fltr_count++;
7433         spin_unlock_bh(&bp->ntp_fltr_lock);
7434
7435         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7436         schedule_work(&bp->sp_task);
7437
7438         return new_fltr->sw_id;
7439
7440 err_free:
7441         kfree(new_fltr);
7442         return rc;
7443 }
7444
7445 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7446 {
7447         int i;
7448
7449         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7450                 struct hlist_head *head;
7451                 struct hlist_node *tmp;
7452                 struct bnxt_ntuple_filter *fltr;
7453                 int rc;
7454
7455                 head = &bp->ntp_fltr_hash_tbl[i];
7456                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7457                         bool del = false;
7458
7459                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7460                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
7461                                                         fltr->flow_id,
7462                                                         fltr->sw_id)) {
7463                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
7464                                                                          fltr);
7465                                         del = true;
7466                                 }
7467                         } else {
7468                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7469                                                                        fltr);
7470                                 if (rc)
7471                                         del = true;
7472                                 else
7473                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
7474                         }
7475
7476                         if (del) {
7477                                 spin_lock_bh(&bp->ntp_fltr_lock);
7478                                 hlist_del_rcu(&fltr->hash);
7479                                 bp->ntp_fltr_count--;
7480                                 spin_unlock_bh(&bp->ntp_fltr_lock);
7481                                 synchronize_rcu();
7482                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7483                                 kfree(fltr);
7484                         }
7485                 }
7486         }
7487         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7488                 netdev_info(bp->dev, "Receive PF driver unload event!");
7489 }
7490
7491 #else
7492
7493 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7494 {
7495 }
7496
7497 #endif /* CONFIG_RFS_ACCEL */
7498
7499 static void bnxt_udp_tunnel_add(struct net_device *dev,
7500                                 struct udp_tunnel_info *ti)
7501 {
7502         struct bnxt *bp = netdev_priv(dev);
7503
7504         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7505                 return;
7506
7507         if (!netif_running(dev))
7508                 return;
7509
7510         switch (ti->type) {
7511         case UDP_TUNNEL_TYPE_VXLAN:
7512                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7513                         return;
7514
7515                 bp->vxlan_port_cnt++;
7516                 if (bp->vxlan_port_cnt == 1) {
7517                         bp->vxlan_port = ti->port;
7518                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7519                         schedule_work(&bp->sp_task);
7520                 }
7521                 break;
7522         case UDP_TUNNEL_TYPE_GENEVE:
7523                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
7524                         return;
7525
7526                 bp->nge_port_cnt++;
7527                 if (bp->nge_port_cnt == 1) {
7528                         bp->nge_port = ti->port;
7529                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7530                 }
7531                 break;
7532         default:
7533                 return;
7534         }
7535
7536         schedule_work(&bp->sp_task);
7537 }
7538
7539 static void bnxt_udp_tunnel_del(struct net_device *dev,
7540                                 struct udp_tunnel_info *ti)
7541 {
7542         struct bnxt *bp = netdev_priv(dev);
7543
7544         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7545                 return;
7546
7547         if (!netif_running(dev))
7548                 return;
7549
7550         switch (ti->type) {
7551         case UDP_TUNNEL_TYPE_VXLAN:
7552                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7553                         return;
7554                 bp->vxlan_port_cnt--;
7555
7556                 if (bp->vxlan_port_cnt != 0)
7557                         return;
7558
7559                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7560                 break;
7561         case UDP_TUNNEL_TYPE_GENEVE:
7562                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7563                         return;
7564                 bp->nge_port_cnt--;
7565
7566                 if (bp->nge_port_cnt != 0)
7567                         return;
7568
7569                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7570                 break;
7571         default:
7572                 return;
7573         }
7574
7575         schedule_work(&bp->sp_task);
7576 }
7577
7578 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7579                                struct net_device *dev, u32 filter_mask,
7580                                int nlflags)
7581 {
7582         struct bnxt *bp = netdev_priv(dev);
7583
7584         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
7585                                        nlflags, filter_mask, NULL);
7586 }
7587
7588 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7589                                u16 flags)
7590 {
7591         struct bnxt *bp = netdev_priv(dev);
7592         struct nlattr *attr, *br_spec;
7593         int rem, rc = 0;
7594
7595         if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
7596                 return -EOPNOTSUPP;
7597
7598         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7599         if (!br_spec)
7600                 return -EINVAL;
7601
7602         nla_for_each_nested(attr, br_spec, rem) {
7603                 u16 mode;
7604
7605                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7606                         continue;
7607
7608                 if (nla_len(attr) < sizeof(mode))
7609                         return -EINVAL;
7610
7611                 mode = nla_get_u16(attr);
7612                 if (mode == bp->br_mode)
7613                         break;
7614
7615                 rc = bnxt_hwrm_set_br_mode(bp, mode);
7616                 if (!rc)
7617                         bp->br_mode = mode;
7618                 break;
7619         }
7620         return rc;
7621 }
7622
7623 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
7624                                    size_t len)
7625 {
7626         struct bnxt *bp = netdev_priv(dev);
7627         int rc;
7628
7629         /* The PF and it's VF-reps only support the switchdev framework */
7630         if (!BNXT_PF(bp))
7631                 return -EOPNOTSUPP;
7632
7633         rc = snprintf(buf, len, "p%d", bp->pf.port_id);
7634
7635         if (rc >= len)
7636                 return -EOPNOTSUPP;
7637         return 0;
7638 }
7639
7640 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
7641 {
7642         if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
7643                 return -EOPNOTSUPP;
7644
7645         /* The PF and it's VF-reps only support the switchdev framework */
7646         if (!BNXT_PF(bp))
7647                 return -EOPNOTSUPP;
7648
7649         switch (attr->id) {
7650         case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
7651                 /* In SRIOV each PF-pool (PF + child VFs) serves as a
7652                  * switching domain, the PF's perm mac-addr can be used
7653                  * as the unique parent-id
7654                  */
7655                 attr->u.ppid.id_len = ETH_ALEN;
7656                 ether_addr_copy(attr->u.ppid.id, bp->pf.mac_addr);
7657                 break;
7658         default:
7659                 return -EOPNOTSUPP;
7660         }
7661         return 0;
7662 }
7663
7664 static int bnxt_swdev_port_attr_get(struct net_device *dev,
7665                                     struct switchdev_attr *attr)
7666 {
7667         return bnxt_port_attr_get(netdev_priv(dev), attr);
7668 }
7669
7670 static const struct switchdev_ops bnxt_switchdev_ops = {
7671         .switchdev_port_attr_get        = bnxt_swdev_port_attr_get
7672 };
7673
7674 static const struct net_device_ops bnxt_netdev_ops = {
7675         .ndo_open               = bnxt_open,
7676         .ndo_start_xmit         = bnxt_start_xmit,
7677         .ndo_stop               = bnxt_close,
7678         .ndo_get_stats64        = bnxt_get_stats64,
7679         .ndo_set_rx_mode        = bnxt_set_rx_mode,
7680         .ndo_do_ioctl           = bnxt_ioctl,
7681         .ndo_validate_addr      = eth_validate_addr,
7682         .ndo_set_mac_address    = bnxt_change_mac_addr,
7683         .ndo_change_mtu         = bnxt_change_mtu,
7684         .ndo_fix_features       = bnxt_fix_features,
7685         .ndo_set_features       = bnxt_set_features,
7686         .ndo_tx_timeout         = bnxt_tx_timeout,
7687 #ifdef CONFIG_BNXT_SRIOV
7688         .ndo_get_vf_config      = bnxt_get_vf_config,
7689         .ndo_set_vf_mac         = bnxt_set_vf_mac,
7690         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
7691         .ndo_set_vf_rate        = bnxt_set_vf_bw,
7692         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
7693         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
7694 #endif
7695 #ifdef CONFIG_NET_POLL_CONTROLLER
7696         .ndo_poll_controller    = bnxt_poll_controller,
7697 #endif
7698         .ndo_setup_tc           = bnxt_setup_tc,
7699 #ifdef CONFIG_RFS_ACCEL
7700         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
7701 #endif
7702         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
7703         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
7704         .ndo_xdp                = bnxt_xdp,
7705         .ndo_bridge_getlink     = bnxt_bridge_getlink,
7706         .ndo_bridge_setlink     = bnxt_bridge_setlink,
7707         .ndo_get_phys_port_name = bnxt_get_phys_port_name
7708 };
7709
7710 static void bnxt_remove_one(struct pci_dev *pdev)
7711 {
7712         struct net_device *dev = pci_get_drvdata(pdev);
7713         struct bnxt *bp = netdev_priv(dev);
7714
7715         if (BNXT_PF(bp)) {
7716                 bnxt_sriov_disable(bp);
7717                 bnxt_dl_unregister(bp);
7718         }
7719
7720         pci_disable_pcie_error_reporting(pdev);
7721         unregister_netdev(dev);
7722         bnxt_shutdown_tc(bp);
7723         cancel_work_sync(&bp->sp_task);
7724         bp->sp_event = 0;
7725
7726         bnxt_clear_int_mode(bp);
7727         bnxt_hwrm_func_drv_unrgtr(bp);
7728         bnxt_free_hwrm_resources(bp);
7729         bnxt_free_hwrm_short_cmd_req(bp);
7730         bnxt_ethtool_free(bp);
7731         bnxt_dcb_free(bp);
7732         kfree(bp->edev);
7733         bp->edev = NULL;
7734         if (bp->xdp_prog)
7735                 bpf_prog_put(bp->xdp_prog);
7736         bnxt_cleanup_pci(bp);
7737         free_netdev(dev);
7738 }
7739
7740 static int bnxt_probe_phy(struct bnxt *bp)
7741 {
7742         int rc = 0;
7743         struct bnxt_link_info *link_info = &bp->link_info;
7744
7745         rc = bnxt_hwrm_phy_qcaps(bp);
7746         if (rc) {
7747                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7748                            rc);
7749                 return rc;
7750         }
7751
7752         rc = bnxt_update_link(bp, false);
7753         if (rc) {
7754                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7755                            rc);
7756                 return rc;
7757         }
7758
7759         /* Older firmware does not have supported_auto_speeds, so assume
7760          * that all supported speeds can be autonegotiated.
7761          */
7762         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7763                 link_info->support_auto_speeds = link_info->support_speeds;
7764
7765         /*initialize the ethool setting copy with NVM settings */
7766         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7767                 link_info->autoneg = BNXT_AUTONEG_SPEED;
7768                 if (bp->hwrm_spec_code >= 0x10201) {
7769                         if (link_info->auto_pause_setting &
7770                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7771                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7772                 } else {
7773                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7774                 }
7775                 link_info->advertising = link_info->auto_link_speeds;
7776         } else {
7777                 link_info->req_link_speed = link_info->force_link_speed;
7778                 link_info->req_duplex = link_info->duplex_setting;
7779         }
7780         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7781                 link_info->req_flow_ctrl =
7782                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7783         else
7784                 link_info->req_flow_ctrl = link_info->force_pause_setting;
7785         return rc;
7786 }
7787
7788 static int bnxt_get_max_irq(struct pci_dev *pdev)
7789 {
7790         u16 ctrl;
7791
7792         if (!pdev->msix_cap)
7793                 return 1;
7794
7795         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7796         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7797 }
7798
7799 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7800                                 int *max_cp)
7801 {
7802         int max_ring_grps = 0;
7803
7804 #ifdef CONFIG_BNXT_SRIOV
7805         if (!BNXT_PF(bp)) {
7806                 *max_tx = bp->vf.max_tx_rings;
7807                 *max_rx = bp->vf.max_rx_rings;
7808                 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7809                 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7810                 max_ring_grps = bp->vf.max_hw_ring_grps;
7811         } else
7812 #endif
7813         {
7814                 *max_tx = bp->pf.max_tx_rings;
7815                 *max_rx = bp->pf.max_rx_rings;
7816                 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7817                 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7818                 max_ring_grps = bp->pf.max_hw_ring_grps;
7819         }
7820         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7821                 *max_cp -= 1;
7822                 *max_rx -= 2;
7823         }
7824         if (bp->flags & BNXT_FLAG_AGG_RINGS)
7825                 *max_rx >>= 1;
7826         *max_rx = min_t(int, *max_rx, max_ring_grps);
7827 }
7828
7829 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7830 {
7831         int rx, tx, cp;
7832
7833         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
7834         if (!rx || !tx || !cp)
7835                 return -ENOMEM;
7836
7837         *max_rx = rx;
7838         *max_tx = tx;
7839         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7840 }
7841
7842 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7843                                bool shared)
7844 {
7845         int rc;
7846
7847         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7848         if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7849                 /* Not enough rings, try disabling agg rings. */
7850                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7851                 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7852                 if (rc)
7853                         return rc;
7854                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7855                 bp->dev->hw_features &= ~NETIF_F_LRO;
7856                 bp->dev->features &= ~NETIF_F_LRO;
7857                 bnxt_set_ring_params(bp);
7858         }
7859
7860         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7861                 int max_cp, max_stat, max_irq;
7862
7863                 /* Reserve minimum resources for RoCE */
7864                 max_cp = bnxt_get_max_func_cp_rings(bp);
7865                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
7866                 max_irq = bnxt_get_max_func_irqs(bp);
7867                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7868                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7869                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7870                         return 0;
7871
7872                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7873                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7874                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7875                 max_cp = min_t(int, max_cp, max_irq);
7876                 max_cp = min_t(int, max_cp, max_stat);
7877                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7878                 if (rc)
7879                         rc = 0;
7880         }
7881         return rc;
7882 }
7883
7884 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
7885 {
7886         int dflt_rings, max_rx_rings, max_tx_rings, rc;
7887
7888         if (sh)
7889                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
7890         dflt_rings = netif_get_num_default_rss_queues();
7891         /* Reduce default rings to reduce memory usage on multi-port cards */
7892         if (bp->port_count > 1)
7893                 dflt_rings = min_t(int, dflt_rings, 4);
7894         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7895         if (rc)
7896                 return rc;
7897         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7898         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7899
7900         rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7901         if (rc)
7902                 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7903
7904         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7905         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7906                                bp->tx_nr_rings + bp->rx_nr_rings;
7907         bp->num_stat_ctxs = bp->cp_nr_rings;
7908         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7909                 bp->rx_nr_rings++;
7910                 bp->cp_nr_rings++;
7911         }
7912         return rc;
7913 }
7914
7915 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7916 {
7917         ASSERT_RTNL();
7918         bnxt_hwrm_func_qcaps(bp);
7919         bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7920 }
7921
7922 static int bnxt_init_mac_addr(struct bnxt *bp)
7923 {
7924         int rc = 0;
7925
7926         if (BNXT_PF(bp)) {
7927                 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
7928         } else {
7929 #ifdef CONFIG_BNXT_SRIOV
7930                 struct bnxt_vf_info *vf = &bp->vf;
7931
7932                 if (is_valid_ether_addr(vf->mac_addr)) {
7933                         /* overwrite netdev dev_adr with admin VF MAC */
7934                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
7935                 } else {
7936                         eth_hw_addr_random(bp->dev);
7937                         rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
7938                 }
7939 #endif
7940         }
7941         return rc;
7942 }
7943
7944 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
7945 {
7946         enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
7947         enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
7948
7949         if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
7950             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
7951                 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
7952         else
7953                 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
7954                             speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
7955                             speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
7956                             speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
7957                             "Unknown", width);
7958 }
7959
7960 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7961 {
7962         static int version_printed;
7963         struct net_device *dev;
7964         struct bnxt *bp;
7965         int rc, max_irqs;
7966
7967         if (pci_is_bridge(pdev))
7968                 return -ENODEV;
7969
7970         if (version_printed++ == 0)
7971                 pr_info("%s", version);
7972
7973         max_irqs = bnxt_get_max_irq(pdev);
7974         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
7975         if (!dev)
7976                 return -ENOMEM;
7977
7978         bp = netdev_priv(dev);
7979
7980         if (bnxt_vf_pciid(ent->driver_data))
7981                 bp->flags |= BNXT_FLAG_VF;
7982
7983         if (pdev->msix_cap)
7984                 bp->flags |= BNXT_FLAG_MSIX_CAP;
7985
7986         rc = bnxt_init_board(pdev, dev);
7987         if (rc < 0)
7988                 goto init_err_free;
7989
7990         dev->netdev_ops = &bnxt_netdev_ops;
7991         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
7992         dev->ethtool_ops = &bnxt_ethtool_ops;
7993         SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
7994         pci_set_drvdata(pdev, dev);
7995
7996         rc = bnxt_alloc_hwrm_resources(bp);
7997         if (rc)
7998                 goto init_err_pci_clean;
7999
8000         mutex_init(&bp->hwrm_cmd_lock);
8001         rc = bnxt_hwrm_ver_get(bp);
8002         if (rc)
8003                 goto init_err_pci_clean;
8004
8005         if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8006                 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8007                 if (rc)
8008                         goto init_err_pci_clean;
8009         }
8010
8011         rc = bnxt_hwrm_func_reset(bp);
8012         if (rc)
8013                 goto init_err_pci_clean;
8014
8015         bnxt_hwrm_fw_set_time(bp);
8016
8017         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8018                            NETIF_F_TSO | NETIF_F_TSO6 |
8019                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8020                            NETIF_F_GSO_IPXIP4 |
8021                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8022                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8023                            NETIF_F_RXCSUM | NETIF_F_GRO;
8024
8025         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8026                 dev->hw_features |= NETIF_F_LRO;
8027
8028         dev->hw_enc_features =
8029                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8030                         NETIF_F_TSO | NETIF_F_TSO6 |
8031                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8032                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8033                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8034         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8035                                     NETIF_F_GSO_GRE_CSUM;
8036         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8037         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8038                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8039         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8040         dev->priv_flags |= IFF_UNICAST_FLT;
8041
8042         /* MTU range: 60 - 9500 */
8043         dev->min_mtu = ETH_ZLEN;
8044         dev->max_mtu = BNXT_MAX_MTU;
8045
8046 #ifdef CONFIG_BNXT_SRIOV
8047         init_waitqueue_head(&bp->sriov_cfg_wait);
8048         mutex_init(&bp->sriov_lock);
8049 #endif
8050         bp->gro_func = bnxt_gro_func_5730x;
8051         if (BNXT_CHIP_P4_PLUS(bp))
8052                 bp->gro_func = bnxt_gro_func_5731x;
8053         else
8054                 bp->flags |= BNXT_FLAG_DOUBLE_DB;
8055
8056         rc = bnxt_hwrm_func_drv_rgtr(bp);
8057         if (rc)
8058                 goto init_err_pci_clean;
8059
8060         rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8061         if (rc)
8062                 goto init_err_pci_clean;
8063
8064         bp->ulp_probe = bnxt_ulp_probe;
8065
8066         /* Get the MAX capabilities for this function */
8067         rc = bnxt_hwrm_func_qcaps(bp);
8068         if (rc) {
8069                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8070                            rc);
8071                 rc = -1;
8072                 goto init_err_pci_clean;
8073         }
8074         rc = bnxt_init_mac_addr(bp);
8075         if (rc) {
8076                 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8077                 rc = -EADDRNOTAVAIL;
8078                 goto init_err_pci_clean;
8079         }
8080         rc = bnxt_hwrm_queue_qportcfg(bp);
8081         if (rc) {
8082                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8083                            rc);
8084                 rc = -1;
8085                 goto init_err_pci_clean;
8086         }
8087
8088         bnxt_hwrm_func_qcfg(bp);
8089         bnxt_hwrm_port_led_qcaps(bp);
8090         bnxt_ethtool_init(bp);
8091         bnxt_dcb_init(bp);
8092
8093         rc = bnxt_probe_phy(bp);
8094         if (rc)
8095                 goto init_err_pci_clean;
8096
8097         bnxt_set_rx_skb_mode(bp, false);
8098         bnxt_set_tpa_flags(bp);
8099         bnxt_set_ring_params(bp);
8100         bnxt_set_max_func_irqs(bp, max_irqs);
8101         rc = bnxt_set_dflt_rings(bp, true);
8102         if (rc) {
8103                 netdev_err(bp->dev, "Not enough rings available.\n");
8104                 rc = -ENOMEM;
8105                 goto init_err_pci_clean;
8106         }
8107
8108         /* Default RSS hash cfg. */
8109         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8110                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8111                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8112                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8113         if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8114                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8115                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8116                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8117         }
8118
8119         bnxt_hwrm_vnic_qcaps(bp);
8120         if (bnxt_rfs_supported(bp)) {
8121                 dev->hw_features |= NETIF_F_NTUPLE;
8122                 if (bnxt_rfs_capable(bp)) {
8123                         bp->flags |= BNXT_FLAG_RFS;
8124                         dev->features |= NETIF_F_NTUPLE;
8125                 }
8126         }
8127
8128         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8129                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
8130
8131         rc = bnxt_init_int_mode(bp);
8132         if (rc)
8133                 goto init_err_pci_clean;
8134
8135         bnxt_get_wol_settings(bp);
8136         if (bp->flags & BNXT_FLAG_WOL_CAP)
8137                 device_set_wakeup_enable(&pdev->dev, bp->wol);
8138         else
8139                 device_set_wakeup_capable(&pdev->dev, false);
8140
8141         if (BNXT_PF(bp))
8142                 bnxt_init_tc(bp);
8143
8144         rc = register_netdev(dev);
8145         if (rc)
8146                 goto init_err_cleanup_tc;
8147
8148         if (BNXT_PF(bp))
8149                 bnxt_dl_register(bp);
8150
8151         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8152                     board_info[ent->driver_data].name,
8153                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
8154
8155         bnxt_parse_log_pcie_link(bp);
8156
8157         return 0;
8158
8159 init_err_cleanup_tc:
8160         bnxt_shutdown_tc(bp);
8161         bnxt_clear_int_mode(bp);
8162
8163 init_err_pci_clean:
8164         bnxt_cleanup_pci(bp);
8165
8166 init_err_free:
8167         free_netdev(dev);
8168         return rc;
8169 }
8170
8171 static void bnxt_shutdown(struct pci_dev *pdev)
8172 {
8173         struct net_device *dev = pci_get_drvdata(pdev);
8174         struct bnxt *bp;
8175
8176         if (!dev)
8177                 return;
8178
8179         rtnl_lock();
8180         bp = netdev_priv(dev);
8181         if (!bp)
8182                 goto shutdown_exit;
8183
8184         if (netif_running(dev))
8185                 dev_close(dev);
8186
8187         if (system_state == SYSTEM_POWER_OFF) {
8188                 bnxt_ulp_shutdown(bp);
8189                 bnxt_clear_int_mode(bp);
8190                 pci_wake_from_d3(pdev, bp->wol);
8191                 pci_set_power_state(pdev, PCI_D3hot);
8192         }
8193
8194 shutdown_exit:
8195         rtnl_unlock();
8196 }
8197
8198 #ifdef CONFIG_PM_SLEEP
8199 static int bnxt_suspend(struct device *device)
8200 {
8201         struct pci_dev *pdev = to_pci_dev(device);
8202         struct net_device *dev = pci_get_drvdata(pdev);
8203         struct bnxt *bp = netdev_priv(dev);
8204         int rc = 0;
8205
8206         rtnl_lock();
8207         if (netif_running(dev)) {
8208                 netif_device_detach(dev);
8209                 rc = bnxt_close(dev);
8210         }
8211         bnxt_hwrm_func_drv_unrgtr(bp);
8212         rtnl_unlock();
8213         return rc;
8214 }
8215
8216 static int bnxt_resume(struct device *device)
8217 {
8218         struct pci_dev *pdev = to_pci_dev(device);
8219         struct net_device *dev = pci_get_drvdata(pdev);
8220         struct bnxt *bp = netdev_priv(dev);
8221         int rc = 0;
8222
8223         rtnl_lock();
8224         if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8225                 rc = -ENODEV;
8226                 goto resume_exit;
8227         }
8228         rc = bnxt_hwrm_func_reset(bp);
8229         if (rc) {
8230                 rc = -EBUSY;
8231                 goto resume_exit;
8232         }
8233         bnxt_get_wol_settings(bp);
8234         if (netif_running(dev)) {
8235                 rc = bnxt_open(dev);
8236                 if (!rc)
8237                         netif_device_attach(dev);
8238         }
8239
8240 resume_exit:
8241         rtnl_unlock();
8242         return rc;
8243 }
8244
8245 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8246 #define BNXT_PM_OPS (&bnxt_pm_ops)
8247
8248 #else
8249
8250 #define BNXT_PM_OPS NULL
8251
8252 #endif /* CONFIG_PM_SLEEP */
8253
8254 /**
8255  * bnxt_io_error_detected - called when PCI error is detected
8256  * @pdev: Pointer to PCI device
8257  * @state: The current pci connection state
8258  *
8259  * This function is called after a PCI bus error affecting
8260  * this device has been detected.
8261  */
8262 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
8263                                                pci_channel_state_t state)
8264 {
8265         struct net_device *netdev = pci_get_drvdata(pdev);
8266         struct bnxt *bp = netdev_priv(netdev);
8267
8268         netdev_info(netdev, "PCI I/O error detected\n");
8269
8270         rtnl_lock();
8271         netif_device_detach(netdev);
8272
8273         bnxt_ulp_stop(bp);
8274
8275         if (state == pci_channel_io_perm_failure) {
8276                 rtnl_unlock();
8277                 return PCI_ERS_RESULT_DISCONNECT;
8278         }
8279
8280         if (netif_running(netdev))
8281                 bnxt_close(netdev);
8282
8283         pci_disable_device(pdev);
8284         rtnl_unlock();
8285
8286         /* Request a slot slot reset. */
8287         return PCI_ERS_RESULT_NEED_RESET;
8288 }
8289
8290 /**
8291  * bnxt_io_slot_reset - called after the pci bus has been reset.
8292  * @pdev: Pointer to PCI device
8293  *
8294  * Restart the card from scratch, as if from a cold-boot.
8295  * At this point, the card has exprienced a hard reset,
8296  * followed by fixups by BIOS, and has its config space
8297  * set up identically to what it was at cold boot.
8298  */
8299 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
8300 {
8301         struct net_device *netdev = pci_get_drvdata(pdev);
8302         struct bnxt *bp = netdev_priv(netdev);
8303         int err = 0;
8304         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
8305
8306         netdev_info(bp->dev, "PCI Slot Reset\n");
8307
8308         rtnl_lock();
8309
8310         if (pci_enable_device(pdev)) {
8311                 dev_err(&pdev->dev,
8312                         "Cannot re-enable PCI device after reset.\n");
8313         } else {
8314                 pci_set_master(pdev);
8315
8316                 err = bnxt_hwrm_func_reset(bp);
8317                 if (!err && netif_running(netdev))
8318                         err = bnxt_open(netdev);
8319
8320                 if (!err) {
8321                         result = PCI_ERS_RESULT_RECOVERED;
8322                         bnxt_ulp_start(bp);
8323                 }
8324         }
8325
8326         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
8327                 dev_close(netdev);
8328
8329         rtnl_unlock();
8330
8331         err = pci_cleanup_aer_uncorrect_error_status(pdev);
8332         if (err) {
8333                 dev_err(&pdev->dev,
8334                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8335                          err); /* non-fatal, continue */
8336         }
8337
8338         return PCI_ERS_RESULT_RECOVERED;
8339 }
8340
8341 /**
8342  * bnxt_io_resume - called when traffic can start flowing again.
8343  * @pdev: Pointer to PCI device
8344  *
8345  * This callback is called when the error recovery driver tells
8346  * us that its OK to resume normal operation.
8347  */
8348 static void bnxt_io_resume(struct pci_dev *pdev)
8349 {
8350         struct net_device *netdev = pci_get_drvdata(pdev);
8351
8352         rtnl_lock();
8353
8354         netif_device_attach(netdev);
8355
8356         rtnl_unlock();
8357 }
8358
8359 static const struct pci_error_handlers bnxt_err_handler = {
8360         .error_detected = bnxt_io_error_detected,
8361         .slot_reset     = bnxt_io_slot_reset,
8362         .resume         = bnxt_io_resume
8363 };
8364
8365 static struct pci_driver bnxt_pci_driver = {
8366         .name           = DRV_MODULE_NAME,
8367         .id_table       = bnxt_pci_tbl,
8368         .probe          = bnxt_init_one,
8369         .remove         = bnxt_remove_one,
8370         .shutdown       = bnxt_shutdown,
8371         .driver.pm      = BNXT_PM_OPS,
8372         .err_handler    = &bnxt_err_handler,
8373 #if defined(CONFIG_BNXT_SRIOV)
8374         .sriov_configure = bnxt_sriov_configure,
8375 #endif
8376 };
8377
8378 module_pci_driver(bnxt_pci_driver);