Merge tag 'pwm/for-4.11-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2017 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/rtc.h>
37 #include <linux/bpf.h>
38 #include <net/ip.h>
39 #include <net/tcp.h>
40 #include <net/udp.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <net/udp_tunnel.h>
44 #include <linux/workqueue.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/log2.h>
48 #include <linux/aer.h>
49 #include <linux/bitmap.h>
50 #include <linux/cpu_rmap.h>
51
52 #include "bnxt_hsi.h"
53 #include "bnxt.h"
54 #include "bnxt_ulp.h"
55 #include "bnxt_sriov.h"
56 #include "bnxt_ethtool.h"
57 #include "bnxt_dcb.h"
58 #include "bnxt_xdp.h"
59
60 #define BNXT_TX_TIMEOUT         (5 * HZ)
61
62 static const char version[] =
63         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
64
65 MODULE_LICENSE("GPL");
66 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
67 MODULE_VERSION(DRV_MODULE_VERSION);
68
69 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
70 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
71 #define BNXT_RX_COPY_THRESH 256
72
73 #define BNXT_TX_PUSH_THRESH 164
74
75 enum board_idx {
76         BCM57301,
77         BCM57302,
78         BCM57304,
79         BCM57417_NPAR,
80         BCM58700,
81         BCM57311,
82         BCM57312,
83         BCM57402,
84         BCM57404,
85         BCM57406,
86         BCM57402_NPAR,
87         BCM57407,
88         BCM57412,
89         BCM57414,
90         BCM57416,
91         BCM57417,
92         BCM57412_NPAR,
93         BCM57314,
94         BCM57417_SFP,
95         BCM57416_SFP,
96         BCM57404_NPAR,
97         BCM57406_NPAR,
98         BCM57407_SFP,
99         BCM57407_NPAR,
100         BCM57414_NPAR,
101         BCM57416_NPAR,
102         BCM57452,
103         BCM57454,
104         NETXTREME_E_VF,
105         NETXTREME_C_VF,
106 };
107
108 /* indexed by enum above */
109 static const struct {
110         char *name;
111 } board_info[] = {
112         { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
113         { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
114         { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
115         { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
116         { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
117         { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
118         { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
119         { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
120         { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
121         { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
122         { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
123         { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
124         { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
125         { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
126         { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
127         { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
128         { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
129         { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
130         { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
131         { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
132         { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
133         { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
134         { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
135         { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
136         { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
137         { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
138         { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
139         { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
140         { "Broadcom NetXtreme-E Ethernet Virtual Function" },
141         { "Broadcom NetXtreme-C Ethernet Virtual Function" },
142 };
143
144 static const struct pci_device_id bnxt_pci_tbl[] = {
145         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
146         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
147         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
148         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
149         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
150         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
151         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
152         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
153         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
154         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
155         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
156         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
157         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
158         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
159         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
160         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
161         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
162         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
163         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
164         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
165         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
166         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
167         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
168         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
169         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
170         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
171         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
172         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
173         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
174         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
175         { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
176         { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
177 #ifdef CONFIG_BNXT_SRIOV
178         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
179         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
180         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
181         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
182         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
183         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
184 #endif
185         { 0 }
186 };
187
188 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
189
190 static const u16 bnxt_vf_req_snif[] = {
191         HWRM_FUNC_CFG,
192         HWRM_PORT_PHY_QCFG,
193         HWRM_CFA_L2_FILTER_ALLOC,
194 };
195
196 static const u16 bnxt_async_events_arr[] = {
197         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
198         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
199         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
200         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
201         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
202 };
203
204 static bool bnxt_vf_pciid(enum board_idx idx)
205 {
206         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
207 }
208
209 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
210 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
211 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
212
213 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
214                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
215
216 #define BNXT_CP_DB(db, raw_cons)                                        \
217                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
218
219 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
220                 writel(DB_CP_IRQ_DIS_FLAGS, db)
221
222 const u16 bnxt_lhint_arr[] = {
223         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
224         TX_BD_FLAGS_LHINT_512_TO_1023,
225         TX_BD_FLAGS_LHINT_1024_TO_2047,
226         TX_BD_FLAGS_LHINT_1024_TO_2047,
227         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
228         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242 };
243
244 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
245 {
246         struct bnxt *bp = netdev_priv(dev);
247         struct tx_bd *txbd;
248         struct tx_bd_ext *txbd1;
249         struct netdev_queue *txq;
250         int i;
251         dma_addr_t mapping;
252         unsigned int length, pad = 0;
253         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
254         u16 prod, last_frag;
255         struct pci_dev *pdev = bp->pdev;
256         struct bnxt_tx_ring_info *txr;
257         struct bnxt_sw_tx_bd *tx_buf;
258
259         i = skb_get_queue_mapping(skb);
260         if (unlikely(i >= bp->tx_nr_rings)) {
261                 dev_kfree_skb_any(skb);
262                 return NETDEV_TX_OK;
263         }
264
265         txq = netdev_get_tx_queue(dev, i);
266         txr = &bp->tx_ring[bp->tx_ring_map[i]];
267         prod = txr->tx_prod;
268
269         free_size = bnxt_tx_avail(bp, txr);
270         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
271                 netif_tx_stop_queue(txq);
272                 return NETDEV_TX_BUSY;
273         }
274
275         length = skb->len;
276         len = skb_headlen(skb);
277         last_frag = skb_shinfo(skb)->nr_frags;
278
279         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
280
281         txbd->tx_bd_opaque = prod;
282
283         tx_buf = &txr->tx_buf_ring[prod];
284         tx_buf->skb = skb;
285         tx_buf->nr_frags = last_frag;
286
287         vlan_tag_flags = 0;
288         cfa_action = 0;
289         if (skb_vlan_tag_present(skb)) {
290                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
291                                  skb_vlan_tag_get(skb);
292                 /* Currently supports 8021Q, 8021AD vlan offloads
293                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
294                  */
295                 if (skb->vlan_proto == htons(ETH_P_8021Q))
296                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
297         }
298
299         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
300                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
301                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
302                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
303                 void *pdata = tx_push_buf->data;
304                 u64 *end;
305                 int j, push_len;
306
307                 /* Set COAL_NOW to be ready quickly for the next push */
308                 tx_push->tx_bd_len_flags_type =
309                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
310                                         TX_BD_TYPE_LONG_TX_BD |
311                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
312                                         TX_BD_FLAGS_COAL_NOW |
313                                         TX_BD_FLAGS_PACKET_END |
314                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
315
316                 if (skb->ip_summed == CHECKSUM_PARTIAL)
317                         tx_push1->tx_bd_hsize_lflags =
318                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
319                 else
320                         tx_push1->tx_bd_hsize_lflags = 0;
321
322                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
323                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
324
325                 end = pdata + length;
326                 end = PTR_ALIGN(end, 8) - 1;
327                 *end = 0;
328
329                 skb_copy_from_linear_data(skb, pdata, len);
330                 pdata += len;
331                 for (j = 0; j < last_frag; j++) {
332                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
333                         void *fptr;
334
335                         fptr = skb_frag_address_safe(frag);
336                         if (!fptr)
337                                 goto normal_tx;
338
339                         memcpy(pdata, fptr, skb_frag_size(frag));
340                         pdata += skb_frag_size(frag);
341                 }
342
343                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
344                 txbd->tx_bd_haddr = txr->data_mapping;
345                 prod = NEXT_TX(prod);
346                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
347                 memcpy(txbd, tx_push1, sizeof(*txbd));
348                 prod = NEXT_TX(prod);
349                 tx_push->doorbell =
350                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
351                 txr->tx_prod = prod;
352
353                 tx_buf->is_push = 1;
354                 netdev_tx_sent_queue(txq, skb->len);
355                 wmb();  /* Sync is_push and byte queue before pushing data */
356
357                 push_len = (length + sizeof(*tx_push) + 7) / 8;
358                 if (push_len > 16) {
359                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
360                         __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
361                                          (push_len - 16) << 1);
362                 } else {
363                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
364                                          push_len);
365                 }
366
367                 goto tx_done;
368         }
369
370 normal_tx:
371         if (length < BNXT_MIN_PKT_SIZE) {
372                 pad = BNXT_MIN_PKT_SIZE - length;
373                 if (skb_pad(skb, pad)) {
374                         /* SKB already freed. */
375                         tx_buf->skb = NULL;
376                         return NETDEV_TX_OK;
377                 }
378                 length = BNXT_MIN_PKT_SIZE;
379         }
380
381         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
382
383         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
384                 dev_kfree_skb_any(skb);
385                 tx_buf->skb = NULL;
386                 return NETDEV_TX_OK;
387         }
388
389         dma_unmap_addr_set(tx_buf, mapping, mapping);
390         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
391                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
392
393         txbd->tx_bd_haddr = cpu_to_le64(mapping);
394
395         prod = NEXT_TX(prod);
396         txbd1 = (struct tx_bd_ext *)
397                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
398
399         txbd1->tx_bd_hsize_lflags = 0;
400         if (skb_is_gso(skb)) {
401                 u32 hdr_len;
402
403                 if (skb->encapsulation)
404                         hdr_len = skb_inner_network_offset(skb) +
405                                 skb_inner_network_header_len(skb) +
406                                 inner_tcp_hdrlen(skb);
407                 else
408                         hdr_len = skb_transport_offset(skb) +
409                                 tcp_hdrlen(skb);
410
411                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
412                                         TX_BD_FLAGS_T_IPID |
413                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
414                 length = skb_shinfo(skb)->gso_size;
415                 txbd1->tx_bd_mss = cpu_to_le32(length);
416                 length += hdr_len;
417         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
418                 txbd1->tx_bd_hsize_lflags =
419                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
420                 txbd1->tx_bd_mss = 0;
421         }
422
423         length >>= 9;
424         flags |= bnxt_lhint_arr[length];
425         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
426
427         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
428         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
429         for (i = 0; i < last_frag; i++) {
430                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
431
432                 prod = NEXT_TX(prod);
433                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
434
435                 len = skb_frag_size(frag);
436                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
437                                            DMA_TO_DEVICE);
438
439                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
440                         goto tx_dma_error;
441
442                 tx_buf = &txr->tx_buf_ring[prod];
443                 dma_unmap_addr_set(tx_buf, mapping, mapping);
444
445                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
446
447                 flags = len << TX_BD_LEN_SHIFT;
448                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
449         }
450
451         flags &= ~TX_BD_LEN;
452         txbd->tx_bd_len_flags_type =
453                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
454                             TX_BD_FLAGS_PACKET_END);
455
456         netdev_tx_sent_queue(txq, skb->len);
457
458         /* Sync BD data before updating doorbell */
459         wmb();
460
461         prod = NEXT_TX(prod);
462         txr->tx_prod = prod;
463
464         writel(DB_KEY_TX | prod, txr->tx_doorbell);
465         writel(DB_KEY_TX | prod, txr->tx_doorbell);
466
467 tx_done:
468
469         mmiowb();
470
471         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
472                 netif_tx_stop_queue(txq);
473
474                 /* netif_tx_stop_queue() must be done before checking
475                  * tx index in bnxt_tx_avail() below, because in
476                  * bnxt_tx_int(), we update tx index before checking for
477                  * netif_tx_queue_stopped().
478                  */
479                 smp_mb();
480                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
481                         netif_tx_wake_queue(txq);
482         }
483         return NETDEV_TX_OK;
484
485 tx_dma_error:
486         last_frag = i;
487
488         /* start back at beginning and unmap skb */
489         prod = txr->tx_prod;
490         tx_buf = &txr->tx_buf_ring[prod];
491         tx_buf->skb = NULL;
492         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
493                          skb_headlen(skb), PCI_DMA_TODEVICE);
494         prod = NEXT_TX(prod);
495
496         /* unmap remaining mapped pages */
497         for (i = 0; i < last_frag; i++) {
498                 prod = NEXT_TX(prod);
499                 tx_buf = &txr->tx_buf_ring[prod];
500                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
501                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
502                                PCI_DMA_TODEVICE);
503         }
504
505         dev_kfree_skb_any(skb);
506         return NETDEV_TX_OK;
507 }
508
509 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
510 {
511         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
512         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
513         u16 cons = txr->tx_cons;
514         struct pci_dev *pdev = bp->pdev;
515         int i;
516         unsigned int tx_bytes = 0;
517
518         for (i = 0; i < nr_pkts; i++) {
519                 struct bnxt_sw_tx_bd *tx_buf;
520                 struct sk_buff *skb;
521                 int j, last;
522
523                 tx_buf = &txr->tx_buf_ring[cons];
524                 cons = NEXT_TX(cons);
525                 skb = tx_buf->skb;
526                 tx_buf->skb = NULL;
527
528                 if (tx_buf->is_push) {
529                         tx_buf->is_push = 0;
530                         goto next_tx_int;
531                 }
532
533                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
534                                  skb_headlen(skb), PCI_DMA_TODEVICE);
535                 last = tx_buf->nr_frags;
536
537                 for (j = 0; j < last; j++) {
538                         cons = NEXT_TX(cons);
539                         tx_buf = &txr->tx_buf_ring[cons];
540                         dma_unmap_page(
541                                 &pdev->dev,
542                                 dma_unmap_addr(tx_buf, mapping),
543                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
544                                 PCI_DMA_TODEVICE);
545                 }
546
547 next_tx_int:
548                 cons = NEXT_TX(cons);
549
550                 tx_bytes += skb->len;
551                 dev_kfree_skb_any(skb);
552         }
553
554         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
555         txr->tx_cons = cons;
556
557         /* Need to make the tx_cons update visible to bnxt_start_xmit()
558          * before checking for netif_tx_queue_stopped().  Without the
559          * memory barrier, there is a small possibility that bnxt_start_xmit()
560          * will miss it and cause the queue to be stopped forever.
561          */
562         smp_mb();
563
564         if (unlikely(netif_tx_queue_stopped(txq)) &&
565             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
566                 __netif_tx_lock(txq, smp_processor_id());
567                 if (netif_tx_queue_stopped(txq) &&
568                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
569                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
570                         netif_tx_wake_queue(txq);
571                 __netif_tx_unlock(txq);
572         }
573 }
574
575 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
576                                          gfp_t gfp)
577 {
578         struct device *dev = &bp->pdev->dev;
579         struct page *page;
580
581         page = alloc_page(gfp);
582         if (!page)
583                 return NULL;
584
585         *mapping = dma_map_page(dev, page, 0, PAGE_SIZE, bp->rx_dir);
586         if (dma_mapping_error(dev, *mapping)) {
587                 __free_page(page);
588                 return NULL;
589         }
590         *mapping += bp->rx_dma_offset;
591         return page;
592 }
593
594 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
595                                        gfp_t gfp)
596 {
597         u8 *data;
598         struct pci_dev *pdev = bp->pdev;
599
600         data = kmalloc(bp->rx_buf_size, gfp);
601         if (!data)
602                 return NULL;
603
604         *mapping = dma_map_single(&pdev->dev, data + bp->rx_dma_offset,
605                                   bp->rx_buf_use_size, bp->rx_dir);
606
607         if (dma_mapping_error(&pdev->dev, *mapping)) {
608                 kfree(data);
609                 data = NULL;
610         }
611         return data;
612 }
613
614 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
615                        u16 prod, gfp_t gfp)
616 {
617         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
618         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
619         dma_addr_t mapping;
620
621         if (BNXT_RX_PAGE_MODE(bp)) {
622                 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
623
624                 if (!page)
625                         return -ENOMEM;
626
627                 rx_buf->data = page;
628                 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
629         } else {
630                 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
631
632                 if (!data)
633                         return -ENOMEM;
634
635                 rx_buf->data = data;
636                 rx_buf->data_ptr = data + bp->rx_offset;
637         }
638         rx_buf->mapping = mapping;
639
640         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
641         return 0;
642 }
643
644 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
645 {
646         u16 prod = rxr->rx_prod;
647         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
648         struct rx_bd *cons_bd, *prod_bd;
649
650         prod_rx_buf = &rxr->rx_buf_ring[prod];
651         cons_rx_buf = &rxr->rx_buf_ring[cons];
652
653         prod_rx_buf->data = data;
654         prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
655
656         prod_rx_buf->mapping = cons_rx_buf->mapping;
657
658         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
659         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
660
661         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
662 }
663
664 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
665 {
666         u16 next, max = rxr->rx_agg_bmap_size;
667
668         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
669         if (next >= max)
670                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
671         return next;
672 }
673
674 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
675                                      struct bnxt_rx_ring_info *rxr,
676                                      u16 prod, gfp_t gfp)
677 {
678         struct rx_bd *rxbd =
679                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
680         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
681         struct pci_dev *pdev = bp->pdev;
682         struct page *page;
683         dma_addr_t mapping;
684         u16 sw_prod = rxr->rx_sw_agg_prod;
685         unsigned int offset = 0;
686
687         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
688                 page = rxr->rx_page;
689                 if (!page) {
690                         page = alloc_page(gfp);
691                         if (!page)
692                                 return -ENOMEM;
693                         rxr->rx_page = page;
694                         rxr->rx_page_offset = 0;
695                 }
696                 offset = rxr->rx_page_offset;
697                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
698                 if (rxr->rx_page_offset == PAGE_SIZE)
699                         rxr->rx_page = NULL;
700                 else
701                         get_page(page);
702         } else {
703                 page = alloc_page(gfp);
704                 if (!page)
705                         return -ENOMEM;
706         }
707
708         mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
709                                PCI_DMA_FROMDEVICE);
710         if (dma_mapping_error(&pdev->dev, mapping)) {
711                 __free_page(page);
712                 return -EIO;
713         }
714
715         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
716                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
717
718         __set_bit(sw_prod, rxr->rx_agg_bmap);
719         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
720         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
721
722         rx_agg_buf->page = page;
723         rx_agg_buf->offset = offset;
724         rx_agg_buf->mapping = mapping;
725         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
726         rxbd->rx_bd_opaque = sw_prod;
727         return 0;
728 }
729
730 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
731                                    u32 agg_bufs)
732 {
733         struct bnxt *bp = bnapi->bp;
734         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
735         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
736         u16 prod = rxr->rx_agg_prod;
737         u16 sw_prod = rxr->rx_sw_agg_prod;
738         u32 i;
739
740         for (i = 0; i < agg_bufs; i++) {
741                 u16 cons;
742                 struct rx_agg_cmp *agg;
743                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
744                 struct rx_bd *prod_bd;
745                 struct page *page;
746
747                 agg = (struct rx_agg_cmp *)
748                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
749                 cons = agg->rx_agg_cmp_opaque;
750                 __clear_bit(cons, rxr->rx_agg_bmap);
751
752                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
753                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
754
755                 __set_bit(sw_prod, rxr->rx_agg_bmap);
756                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
757                 cons_rx_buf = &rxr->rx_agg_ring[cons];
758
759                 /* It is possible for sw_prod to be equal to cons, so
760                  * set cons_rx_buf->page to NULL first.
761                  */
762                 page = cons_rx_buf->page;
763                 cons_rx_buf->page = NULL;
764                 prod_rx_buf->page = page;
765                 prod_rx_buf->offset = cons_rx_buf->offset;
766
767                 prod_rx_buf->mapping = cons_rx_buf->mapping;
768
769                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
770
771                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
772                 prod_bd->rx_bd_opaque = sw_prod;
773
774                 prod = NEXT_RX_AGG(prod);
775                 sw_prod = NEXT_RX_AGG(sw_prod);
776                 cp_cons = NEXT_CMP(cp_cons);
777         }
778         rxr->rx_agg_prod = prod;
779         rxr->rx_sw_agg_prod = sw_prod;
780 }
781
782 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
783                                         struct bnxt_rx_ring_info *rxr,
784                                         u16 cons, void *data, u8 *data_ptr,
785                                         dma_addr_t dma_addr,
786                                         unsigned int offset_and_len)
787 {
788         unsigned int payload = offset_and_len >> 16;
789         unsigned int len = offset_and_len & 0xffff;
790         struct skb_frag_struct *frag;
791         struct page *page = data;
792         u16 prod = rxr->rx_prod;
793         struct sk_buff *skb;
794         int off, err;
795
796         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
797         if (unlikely(err)) {
798                 bnxt_reuse_rx_data(rxr, cons, data);
799                 return NULL;
800         }
801         dma_addr -= bp->rx_dma_offset;
802         dma_unmap_page(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir);
803
804         if (unlikely(!payload))
805                 payload = eth_get_headlen(data_ptr, len);
806
807         skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
808         if (!skb) {
809                 __free_page(page);
810                 return NULL;
811         }
812
813         off = (void *)data_ptr - page_address(page);
814         skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
815         memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
816                payload + NET_IP_ALIGN);
817
818         frag = &skb_shinfo(skb)->frags[0];
819         skb_frag_size_sub(frag, payload);
820         frag->page_offset += payload;
821         skb->data_len -= payload;
822         skb->tail += payload;
823
824         return skb;
825 }
826
827 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
828                                    struct bnxt_rx_ring_info *rxr, u16 cons,
829                                    void *data, u8 *data_ptr,
830                                    dma_addr_t dma_addr,
831                                    unsigned int offset_and_len)
832 {
833         u16 prod = rxr->rx_prod;
834         struct sk_buff *skb;
835         int err;
836
837         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
838         if (unlikely(err)) {
839                 bnxt_reuse_rx_data(rxr, cons, data);
840                 return NULL;
841         }
842
843         skb = build_skb(data, 0);
844         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
845                          bp->rx_dir);
846         if (!skb) {
847                 kfree(data);
848                 return NULL;
849         }
850
851         skb_reserve(skb, bp->rx_offset);
852         skb_put(skb, offset_and_len & 0xffff);
853         return skb;
854 }
855
856 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
857                                      struct sk_buff *skb, u16 cp_cons,
858                                      u32 agg_bufs)
859 {
860         struct pci_dev *pdev = bp->pdev;
861         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
862         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
863         u16 prod = rxr->rx_agg_prod;
864         u32 i;
865
866         for (i = 0; i < agg_bufs; i++) {
867                 u16 cons, frag_len;
868                 struct rx_agg_cmp *agg;
869                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
870                 struct page *page;
871                 dma_addr_t mapping;
872
873                 agg = (struct rx_agg_cmp *)
874                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
875                 cons = agg->rx_agg_cmp_opaque;
876                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
877                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
878
879                 cons_rx_buf = &rxr->rx_agg_ring[cons];
880                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
881                                    cons_rx_buf->offset, frag_len);
882                 __clear_bit(cons, rxr->rx_agg_bmap);
883
884                 /* It is possible for bnxt_alloc_rx_page() to allocate
885                  * a sw_prod index that equals the cons index, so we
886                  * need to clear the cons entry now.
887                  */
888                 mapping = cons_rx_buf->mapping;
889                 page = cons_rx_buf->page;
890                 cons_rx_buf->page = NULL;
891
892                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
893                         struct skb_shared_info *shinfo;
894                         unsigned int nr_frags;
895
896                         shinfo = skb_shinfo(skb);
897                         nr_frags = --shinfo->nr_frags;
898                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
899
900                         dev_kfree_skb(skb);
901
902                         cons_rx_buf->page = page;
903
904                         /* Update prod since possibly some pages have been
905                          * allocated already.
906                          */
907                         rxr->rx_agg_prod = prod;
908                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
909                         return NULL;
910                 }
911
912                 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
913                                PCI_DMA_FROMDEVICE);
914
915                 skb->data_len += frag_len;
916                 skb->len += frag_len;
917                 skb->truesize += PAGE_SIZE;
918
919                 prod = NEXT_RX_AGG(prod);
920                 cp_cons = NEXT_CMP(cp_cons);
921         }
922         rxr->rx_agg_prod = prod;
923         return skb;
924 }
925
926 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
927                                u8 agg_bufs, u32 *raw_cons)
928 {
929         u16 last;
930         struct rx_agg_cmp *agg;
931
932         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
933         last = RING_CMP(*raw_cons);
934         agg = (struct rx_agg_cmp *)
935                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
936         return RX_AGG_CMP_VALID(agg, *raw_cons);
937 }
938
939 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
940                                             unsigned int len,
941                                             dma_addr_t mapping)
942 {
943         struct bnxt *bp = bnapi->bp;
944         struct pci_dev *pdev = bp->pdev;
945         struct sk_buff *skb;
946
947         skb = napi_alloc_skb(&bnapi->napi, len);
948         if (!skb)
949                 return NULL;
950
951         dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
952                                 bp->rx_dir);
953
954         memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
955                len + NET_IP_ALIGN);
956
957         dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
958                                    bp->rx_dir);
959
960         skb_put(skb, len);
961         return skb;
962 }
963
964 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
965                            u32 *raw_cons, void *cmp)
966 {
967         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
968         struct rx_cmp *rxcmp = cmp;
969         u32 tmp_raw_cons = *raw_cons;
970         u8 cmp_type, agg_bufs = 0;
971
972         cmp_type = RX_CMP_TYPE(rxcmp);
973
974         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
975                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
976                             RX_CMP_AGG_BUFS) >>
977                            RX_CMP_AGG_BUFS_SHIFT;
978         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
979                 struct rx_tpa_end_cmp *tpa_end = cmp;
980
981                 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
982                             RX_TPA_END_CMP_AGG_BUFS) >>
983                            RX_TPA_END_CMP_AGG_BUFS_SHIFT;
984         }
985
986         if (agg_bufs) {
987                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
988                         return -EBUSY;
989         }
990         *raw_cons = tmp_raw_cons;
991         return 0;
992 }
993
994 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
995 {
996         if (!rxr->bnapi->in_reset) {
997                 rxr->bnapi->in_reset = true;
998                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
999                 schedule_work(&bp->sp_task);
1000         }
1001         rxr->rx_next_cons = 0xffff;
1002 }
1003
1004 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1005                            struct rx_tpa_start_cmp *tpa_start,
1006                            struct rx_tpa_start_cmp_ext *tpa_start1)
1007 {
1008         u8 agg_id = TPA_START_AGG_ID(tpa_start);
1009         u16 cons, prod;
1010         struct bnxt_tpa_info *tpa_info;
1011         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1012         struct rx_bd *prod_bd;
1013         dma_addr_t mapping;
1014
1015         cons = tpa_start->rx_tpa_start_cmp_opaque;
1016         prod = rxr->rx_prod;
1017         cons_rx_buf = &rxr->rx_buf_ring[cons];
1018         prod_rx_buf = &rxr->rx_buf_ring[prod];
1019         tpa_info = &rxr->rx_tpa[agg_id];
1020
1021         if (unlikely(cons != rxr->rx_next_cons)) {
1022                 bnxt_sched_reset(bp, rxr);
1023                 return;
1024         }
1025
1026         prod_rx_buf->data = tpa_info->data;
1027         prod_rx_buf->data_ptr = tpa_info->data_ptr;
1028
1029         mapping = tpa_info->mapping;
1030         prod_rx_buf->mapping = mapping;
1031
1032         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1033
1034         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1035
1036         tpa_info->data = cons_rx_buf->data;
1037         tpa_info->data_ptr = cons_rx_buf->data_ptr;
1038         cons_rx_buf->data = NULL;
1039         tpa_info->mapping = cons_rx_buf->mapping;
1040
1041         tpa_info->len =
1042                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1043                                 RX_TPA_START_CMP_LEN_SHIFT;
1044         if (likely(TPA_START_HASH_VALID(tpa_start))) {
1045                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1046
1047                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1048                 tpa_info->gso_type = SKB_GSO_TCPV4;
1049                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1050                 if (hash_type == 3)
1051                         tpa_info->gso_type = SKB_GSO_TCPV6;
1052                 tpa_info->rss_hash =
1053                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1054         } else {
1055                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1056                 tpa_info->gso_type = 0;
1057                 if (netif_msg_rx_err(bp))
1058                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
1059         }
1060         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1061         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1062         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1063
1064         rxr->rx_prod = NEXT_RX(prod);
1065         cons = NEXT_RX(cons);
1066         rxr->rx_next_cons = NEXT_RX(cons);
1067         cons_rx_buf = &rxr->rx_buf_ring[cons];
1068
1069         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1070         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1071         cons_rx_buf->data = NULL;
1072 }
1073
1074 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1075                            u16 cp_cons, u32 agg_bufs)
1076 {
1077         if (agg_bufs)
1078                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1079 }
1080
1081 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1082                                            int payload_off, int tcp_ts,
1083                                            struct sk_buff *skb)
1084 {
1085 #ifdef CONFIG_INET
1086         struct tcphdr *th;
1087         int len, nw_off;
1088         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1089         u32 hdr_info = tpa_info->hdr_info;
1090         bool loopback = false;
1091
1092         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1093         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1094         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1095
1096         /* If the packet is an internal loopback packet, the offsets will
1097          * have an extra 4 bytes.
1098          */
1099         if (inner_mac_off == 4) {
1100                 loopback = true;
1101         } else if (inner_mac_off > 4) {
1102                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1103                                             ETH_HLEN - 2));
1104
1105                 /* We only support inner iPv4/ipv6.  If we don't see the
1106                  * correct protocol ID, it must be a loopback packet where
1107                  * the offsets are off by 4.
1108                  */
1109                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1110                         loopback = true;
1111         }
1112         if (loopback) {
1113                 /* internal loopback packet, subtract all offsets by 4 */
1114                 inner_ip_off -= 4;
1115                 inner_mac_off -= 4;
1116                 outer_ip_off -= 4;
1117         }
1118
1119         nw_off = inner_ip_off - ETH_HLEN;
1120         skb_set_network_header(skb, nw_off);
1121         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1122                 struct ipv6hdr *iph = ipv6_hdr(skb);
1123
1124                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1125                 len = skb->len - skb_transport_offset(skb);
1126                 th = tcp_hdr(skb);
1127                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1128         } else {
1129                 struct iphdr *iph = ip_hdr(skb);
1130
1131                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1132                 len = skb->len - skb_transport_offset(skb);
1133                 th = tcp_hdr(skb);
1134                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1135         }
1136
1137         if (inner_mac_off) { /* tunnel */
1138                 struct udphdr *uh = NULL;
1139                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1140                                             ETH_HLEN - 2));
1141
1142                 if (proto == htons(ETH_P_IP)) {
1143                         struct iphdr *iph = (struct iphdr *)skb->data;
1144
1145                         if (iph->protocol == IPPROTO_UDP)
1146                                 uh = (struct udphdr *)(iph + 1);
1147                 } else {
1148                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1149
1150                         if (iph->nexthdr == IPPROTO_UDP)
1151                                 uh = (struct udphdr *)(iph + 1);
1152                 }
1153                 if (uh) {
1154                         if (uh->check)
1155                                 skb_shinfo(skb)->gso_type |=
1156                                         SKB_GSO_UDP_TUNNEL_CSUM;
1157                         else
1158                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1159                 }
1160         }
1161 #endif
1162         return skb;
1163 }
1164
1165 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1166 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1167
1168 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1169                                            int payload_off, int tcp_ts,
1170                                            struct sk_buff *skb)
1171 {
1172 #ifdef CONFIG_INET
1173         struct tcphdr *th;
1174         int len, nw_off, tcp_opt_len = 0;
1175
1176         if (tcp_ts)
1177                 tcp_opt_len = 12;
1178
1179         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1180                 struct iphdr *iph;
1181
1182                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1183                          ETH_HLEN;
1184                 skb_set_network_header(skb, nw_off);
1185                 iph = ip_hdr(skb);
1186                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1187                 len = skb->len - skb_transport_offset(skb);
1188                 th = tcp_hdr(skb);
1189                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1190         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1191                 struct ipv6hdr *iph;
1192
1193                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1194                          ETH_HLEN;
1195                 skb_set_network_header(skb, nw_off);
1196                 iph = ipv6_hdr(skb);
1197                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1198                 len = skb->len - skb_transport_offset(skb);
1199                 th = tcp_hdr(skb);
1200                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1201         } else {
1202                 dev_kfree_skb_any(skb);
1203                 return NULL;
1204         }
1205
1206         if (nw_off) { /* tunnel */
1207                 struct udphdr *uh = NULL;
1208
1209                 if (skb->protocol == htons(ETH_P_IP)) {
1210                         struct iphdr *iph = (struct iphdr *)skb->data;
1211
1212                         if (iph->protocol == IPPROTO_UDP)
1213                                 uh = (struct udphdr *)(iph + 1);
1214                 } else {
1215                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1216
1217                         if (iph->nexthdr == IPPROTO_UDP)
1218                                 uh = (struct udphdr *)(iph + 1);
1219                 }
1220                 if (uh) {
1221                         if (uh->check)
1222                                 skb_shinfo(skb)->gso_type |=
1223                                         SKB_GSO_UDP_TUNNEL_CSUM;
1224                         else
1225                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1226                 }
1227         }
1228 #endif
1229         return skb;
1230 }
1231
1232 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1233                                            struct bnxt_tpa_info *tpa_info,
1234                                            struct rx_tpa_end_cmp *tpa_end,
1235                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1236                                            struct sk_buff *skb)
1237 {
1238 #ifdef CONFIG_INET
1239         int payload_off;
1240         u16 segs;
1241
1242         segs = TPA_END_TPA_SEGS(tpa_end);
1243         if (segs == 1)
1244                 return skb;
1245
1246         NAPI_GRO_CB(skb)->count = segs;
1247         skb_shinfo(skb)->gso_size =
1248                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1249         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1250         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1251                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1252                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1253         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1254         if (likely(skb))
1255                 tcp_gro_complete(skb);
1256 #endif
1257         return skb;
1258 }
1259
1260 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1261                                            struct bnxt_napi *bnapi,
1262                                            u32 *raw_cons,
1263                                            struct rx_tpa_end_cmp *tpa_end,
1264                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1265                                            u8 *event)
1266 {
1267         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1268         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1269         u8 agg_id = TPA_END_AGG_ID(tpa_end);
1270         u8 *data_ptr, agg_bufs;
1271         u16 cp_cons = RING_CMP(*raw_cons);
1272         unsigned int len;
1273         struct bnxt_tpa_info *tpa_info;
1274         dma_addr_t mapping;
1275         struct sk_buff *skb;
1276         void *data;
1277
1278         if (unlikely(bnapi->in_reset)) {
1279                 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1280
1281                 if (rc < 0)
1282                         return ERR_PTR(-EBUSY);
1283                 return NULL;
1284         }
1285
1286         tpa_info = &rxr->rx_tpa[agg_id];
1287         data = tpa_info->data;
1288         data_ptr = tpa_info->data_ptr;
1289         prefetch(data_ptr);
1290         len = tpa_info->len;
1291         mapping = tpa_info->mapping;
1292
1293         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1294                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1295
1296         if (agg_bufs) {
1297                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1298                         return ERR_PTR(-EBUSY);
1299
1300                 *event |= BNXT_AGG_EVENT;
1301                 cp_cons = NEXT_CMP(cp_cons);
1302         }
1303
1304         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1305                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1306                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1307                             agg_bufs, (int)MAX_SKB_FRAGS);
1308                 return NULL;
1309         }
1310
1311         if (len <= bp->rx_copy_thresh) {
1312                 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1313                 if (!skb) {
1314                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1315                         return NULL;
1316                 }
1317         } else {
1318                 u8 *new_data;
1319                 dma_addr_t new_mapping;
1320
1321                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1322                 if (!new_data) {
1323                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1324                         return NULL;
1325                 }
1326
1327                 tpa_info->data = new_data;
1328                 tpa_info->data_ptr = new_data + bp->rx_offset;
1329                 tpa_info->mapping = new_mapping;
1330
1331                 skb = build_skb(data, 0);
1332                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1333                                  bp->rx_dir);
1334
1335                 if (!skb) {
1336                         kfree(data);
1337                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1338                         return NULL;
1339                 }
1340                 skb_reserve(skb, bp->rx_offset);
1341                 skb_put(skb, len);
1342         }
1343
1344         if (agg_bufs) {
1345                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1346                 if (!skb) {
1347                         /* Page reuse already handled by bnxt_rx_pages(). */
1348                         return NULL;
1349                 }
1350         }
1351         skb->protocol = eth_type_trans(skb, bp->dev);
1352
1353         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1354                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1355
1356         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1357             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1358                 u16 vlan_proto = tpa_info->metadata >>
1359                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1360                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1361
1362                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1363         }
1364
1365         skb_checksum_none_assert(skb);
1366         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1367                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1368                 skb->csum_level =
1369                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1370         }
1371
1372         if (TPA_END_GRO(tpa_end))
1373                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1374
1375         return skb;
1376 }
1377
1378 /* returns the following:
1379  * 1       - 1 packet successfully received
1380  * 0       - successful TPA_START, packet not completed yet
1381  * -EBUSY  - completion ring does not have all the agg buffers yet
1382  * -ENOMEM - packet aborted due to out of memory
1383  * -EIO    - packet aborted due to hw error indicated in BD
1384  */
1385 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1386                        u8 *event)
1387 {
1388         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1389         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1390         struct net_device *dev = bp->dev;
1391         struct rx_cmp *rxcmp;
1392         struct rx_cmp_ext *rxcmp1;
1393         u32 tmp_raw_cons = *raw_cons;
1394         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1395         struct bnxt_sw_rx_bd *rx_buf;
1396         unsigned int len;
1397         u8 *data_ptr, agg_bufs, cmp_type;
1398         dma_addr_t dma_addr;
1399         struct sk_buff *skb;
1400         void *data;
1401         int rc = 0;
1402         u32 misc;
1403
1404         rxcmp = (struct rx_cmp *)
1405                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1406
1407         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1408         cp_cons = RING_CMP(tmp_raw_cons);
1409         rxcmp1 = (struct rx_cmp_ext *)
1410                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1411
1412         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1413                 return -EBUSY;
1414
1415         cmp_type = RX_CMP_TYPE(rxcmp);
1416
1417         prod = rxr->rx_prod;
1418
1419         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1420                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1421                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1422
1423                 *event |= BNXT_RX_EVENT;
1424                 goto next_rx_no_prod;
1425
1426         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1427                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1428                                    (struct rx_tpa_end_cmp *)rxcmp,
1429                                    (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1430
1431                 if (unlikely(IS_ERR(skb)))
1432                         return -EBUSY;
1433
1434                 rc = -ENOMEM;
1435                 if (likely(skb)) {
1436                         skb_record_rx_queue(skb, bnapi->index);
1437                         napi_gro_receive(&bnapi->napi, skb);
1438                         rc = 1;
1439                 }
1440                 *event |= BNXT_RX_EVENT;
1441                 goto next_rx_no_prod;
1442         }
1443
1444         cons = rxcmp->rx_cmp_opaque;
1445         rx_buf = &rxr->rx_buf_ring[cons];
1446         data = rx_buf->data;
1447         data_ptr = rx_buf->data_ptr;
1448         if (unlikely(cons != rxr->rx_next_cons)) {
1449                 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1450
1451                 bnxt_sched_reset(bp, rxr);
1452                 return rc1;
1453         }
1454         prefetch(data_ptr);
1455
1456         misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1457         agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1458
1459         if (agg_bufs) {
1460                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1461                         return -EBUSY;
1462
1463                 cp_cons = NEXT_CMP(cp_cons);
1464                 *event |= BNXT_AGG_EVENT;
1465         }
1466         *event |= BNXT_RX_EVENT;
1467
1468         rx_buf->data = NULL;
1469         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1470                 bnxt_reuse_rx_data(rxr, cons, data);
1471                 if (agg_bufs)
1472                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1473
1474                 rc = -EIO;
1475                 goto next_rx;
1476         }
1477
1478         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1479         dma_addr = rx_buf->mapping;
1480
1481         if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1482                 rc = 1;
1483                 goto next_rx;
1484         }
1485
1486         if (len <= bp->rx_copy_thresh) {
1487                 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1488                 bnxt_reuse_rx_data(rxr, cons, data);
1489                 if (!skb) {
1490                         rc = -ENOMEM;
1491                         goto next_rx;
1492                 }
1493         } else {
1494                 u32 payload;
1495
1496                 if (rx_buf->data_ptr == data_ptr)
1497                         payload = misc & RX_CMP_PAYLOAD_OFFSET;
1498                 else
1499                         payload = 0;
1500                 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1501                                       payload | len);
1502                 if (!skb) {
1503                         rc = -ENOMEM;
1504                         goto next_rx;
1505                 }
1506         }
1507
1508         if (agg_bufs) {
1509                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1510                 if (!skb) {
1511                         rc = -ENOMEM;
1512                         goto next_rx;
1513                 }
1514         }
1515
1516         if (RX_CMP_HASH_VALID(rxcmp)) {
1517                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1518                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1519
1520                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1521                 if (hash_type != 1 && hash_type != 3)
1522                         type = PKT_HASH_TYPE_L3;
1523                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1524         }
1525
1526         skb->protocol = eth_type_trans(skb, dev);
1527
1528         if ((rxcmp1->rx_cmp_flags2 &
1529              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1530             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1531                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1532                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1533                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1534
1535                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1536         }
1537
1538         skb_checksum_none_assert(skb);
1539         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1540                 if (dev->features & NETIF_F_RXCSUM) {
1541                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1542                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1543                 }
1544         } else {
1545                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1546                         if (dev->features & NETIF_F_RXCSUM)
1547                                 cpr->rx_l4_csum_errors++;
1548                 }
1549         }
1550
1551         skb_record_rx_queue(skb, bnapi->index);
1552         napi_gro_receive(&bnapi->napi, skb);
1553         rc = 1;
1554
1555 next_rx:
1556         rxr->rx_prod = NEXT_RX(prod);
1557         rxr->rx_next_cons = NEXT_RX(cons);
1558
1559 next_rx_no_prod:
1560         *raw_cons = tmp_raw_cons;
1561
1562         return rc;
1563 }
1564
1565 #define BNXT_GET_EVENT_PORT(data)       \
1566         ((data) &                       \
1567          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1568
1569 static int bnxt_async_event_process(struct bnxt *bp,
1570                                     struct hwrm_async_event_cmpl *cmpl)
1571 {
1572         u16 event_id = le16_to_cpu(cmpl->event_id);
1573
1574         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1575         switch (event_id) {
1576         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1577                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1578                 struct bnxt_link_info *link_info = &bp->link_info;
1579
1580                 if (BNXT_VF(bp))
1581                         goto async_event_process_exit;
1582                 if (data1 & 0x20000) {
1583                         u16 fw_speed = link_info->force_link_speed;
1584                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1585
1586                         netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1587                                     speed);
1588                 }
1589                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1590                 /* fall thru */
1591         }
1592         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1593                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1594                 break;
1595         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1596                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1597                 break;
1598         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1599                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1600                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1601
1602                 if (BNXT_VF(bp))
1603                         break;
1604
1605                 if (bp->pf.port_id != port_id)
1606                         break;
1607
1608                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1609                 break;
1610         }
1611         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1612                 if (BNXT_PF(bp))
1613                         goto async_event_process_exit;
1614                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1615                 break;
1616         default:
1617                 goto async_event_process_exit;
1618         }
1619         schedule_work(&bp->sp_task);
1620 async_event_process_exit:
1621         bnxt_ulp_async_events(bp, cmpl);
1622         return 0;
1623 }
1624
1625 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1626 {
1627         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1628         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1629         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1630                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1631
1632         switch (cmpl_type) {
1633         case CMPL_BASE_TYPE_HWRM_DONE:
1634                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1635                 if (seq_id == bp->hwrm_intr_seq_id)
1636                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1637                 else
1638                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1639                 break;
1640
1641         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1642                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1643
1644                 if ((vf_id < bp->pf.first_vf_id) ||
1645                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1646                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1647                                    vf_id);
1648                         return -EINVAL;
1649                 }
1650
1651                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1652                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1653                 schedule_work(&bp->sp_task);
1654                 break;
1655
1656         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1657                 bnxt_async_event_process(bp,
1658                                          (struct hwrm_async_event_cmpl *)txcmp);
1659
1660         default:
1661                 break;
1662         }
1663
1664         return 0;
1665 }
1666
1667 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1668 {
1669         struct bnxt_napi *bnapi = dev_instance;
1670         struct bnxt *bp = bnapi->bp;
1671         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1672         u32 cons = RING_CMP(cpr->cp_raw_cons);
1673
1674         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1675         napi_schedule(&bnapi->napi);
1676         return IRQ_HANDLED;
1677 }
1678
1679 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1680 {
1681         u32 raw_cons = cpr->cp_raw_cons;
1682         u16 cons = RING_CMP(raw_cons);
1683         struct tx_cmp *txcmp;
1684
1685         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1686
1687         return TX_CMP_VALID(txcmp, raw_cons);
1688 }
1689
1690 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1691 {
1692         struct bnxt_napi *bnapi = dev_instance;
1693         struct bnxt *bp = bnapi->bp;
1694         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1695         u32 cons = RING_CMP(cpr->cp_raw_cons);
1696         u32 int_status;
1697
1698         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1699
1700         if (!bnxt_has_work(bp, cpr)) {
1701                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1702                 /* return if erroneous interrupt */
1703                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1704                         return IRQ_NONE;
1705         }
1706
1707         /* disable ring IRQ */
1708         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1709
1710         /* Return here if interrupt is shared and is disabled. */
1711         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1712                 return IRQ_HANDLED;
1713
1714         napi_schedule(&bnapi->napi);
1715         return IRQ_HANDLED;
1716 }
1717
1718 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1719 {
1720         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1721         u32 raw_cons = cpr->cp_raw_cons;
1722         u32 cons;
1723         int tx_pkts = 0;
1724         int rx_pkts = 0;
1725         u8 event = 0;
1726         struct tx_cmp *txcmp;
1727
1728         while (1) {
1729                 int rc;
1730
1731                 cons = RING_CMP(raw_cons);
1732                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1733
1734                 if (!TX_CMP_VALID(txcmp, raw_cons))
1735                         break;
1736
1737                 /* The valid test of the entry must be done first before
1738                  * reading any further.
1739                  */
1740                 dma_rmb();
1741                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1742                         tx_pkts++;
1743                         /* return full budget so NAPI will complete. */
1744                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1745                                 rx_pkts = budget;
1746                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1747                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1748                         if (likely(rc >= 0))
1749                                 rx_pkts += rc;
1750                         else if (rc == -EBUSY)  /* partial completion */
1751                                 break;
1752                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1753                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1754                                     (TX_CMP_TYPE(txcmp) ==
1755                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1756                                     (TX_CMP_TYPE(txcmp) ==
1757                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1758                         bnxt_hwrm_handler(bp, txcmp);
1759                 }
1760                 raw_cons = NEXT_RAW_CMP(raw_cons);
1761
1762                 if (rx_pkts == budget)
1763                         break;
1764         }
1765
1766         if (event & BNXT_TX_EVENT) {
1767                 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1768                 void __iomem *db = txr->tx_doorbell;
1769                 u16 prod = txr->tx_prod;
1770
1771                 /* Sync BD data before updating doorbell */
1772                 wmb();
1773
1774                 writel(DB_KEY_TX | prod, db);
1775                 writel(DB_KEY_TX | prod, db);
1776         }
1777
1778         cpr->cp_raw_cons = raw_cons;
1779         /* ACK completion ring before freeing tx ring and producing new
1780          * buffers in rx/agg rings to prevent overflowing the completion
1781          * ring.
1782          */
1783         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1784
1785         if (tx_pkts)
1786                 bnapi->tx_int(bp, bnapi, tx_pkts);
1787
1788         if (event & BNXT_RX_EVENT) {
1789                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1790
1791                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1792                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1793                 if (event & BNXT_AGG_EVENT) {
1794                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1795                                rxr->rx_agg_doorbell);
1796                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1797                                rxr->rx_agg_doorbell);
1798                 }
1799         }
1800         return rx_pkts;
1801 }
1802
1803 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1804 {
1805         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1806         struct bnxt *bp = bnapi->bp;
1807         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1808         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1809         struct tx_cmp *txcmp;
1810         struct rx_cmp_ext *rxcmp1;
1811         u32 cp_cons, tmp_raw_cons;
1812         u32 raw_cons = cpr->cp_raw_cons;
1813         u32 rx_pkts = 0;
1814         u8 event = 0;
1815
1816         while (1) {
1817                 int rc;
1818
1819                 cp_cons = RING_CMP(raw_cons);
1820                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1821
1822                 if (!TX_CMP_VALID(txcmp, raw_cons))
1823                         break;
1824
1825                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1826                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1827                         cp_cons = RING_CMP(tmp_raw_cons);
1828                         rxcmp1 = (struct rx_cmp_ext *)
1829                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1830
1831                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1832                                 break;
1833
1834                         /* force an error to recycle the buffer */
1835                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1836                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1837
1838                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1839                         if (likely(rc == -EIO))
1840                                 rx_pkts++;
1841                         else if (rc == -EBUSY)  /* partial completion */
1842                                 break;
1843                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1844                                     CMPL_BASE_TYPE_HWRM_DONE)) {
1845                         bnxt_hwrm_handler(bp, txcmp);
1846                 } else {
1847                         netdev_err(bp->dev,
1848                                    "Invalid completion received on special ring\n");
1849                 }
1850                 raw_cons = NEXT_RAW_CMP(raw_cons);
1851
1852                 if (rx_pkts == budget)
1853                         break;
1854         }
1855
1856         cpr->cp_raw_cons = raw_cons;
1857         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1858         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1859         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1860
1861         if (event & BNXT_AGG_EVENT) {
1862                 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1863                 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1864         }
1865
1866         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1867                 napi_complete_done(napi, rx_pkts);
1868                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1869         }
1870         return rx_pkts;
1871 }
1872
1873 static int bnxt_poll(struct napi_struct *napi, int budget)
1874 {
1875         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1876         struct bnxt *bp = bnapi->bp;
1877         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1878         int work_done = 0;
1879
1880         while (1) {
1881                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1882
1883                 if (work_done >= budget)
1884                         break;
1885
1886                 if (!bnxt_has_work(bp, cpr)) {
1887                         if (napi_complete_done(napi, work_done))
1888                                 BNXT_CP_DB_REARM(cpr->cp_doorbell,
1889                                                  cpr->cp_raw_cons);
1890                         break;
1891                 }
1892         }
1893         mmiowb();
1894         return work_done;
1895 }
1896
1897 static void bnxt_free_tx_skbs(struct bnxt *bp)
1898 {
1899         int i, max_idx;
1900         struct pci_dev *pdev = bp->pdev;
1901
1902         if (!bp->tx_ring)
1903                 return;
1904
1905         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1906         for (i = 0; i < bp->tx_nr_rings; i++) {
1907                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1908                 int j;
1909
1910                 for (j = 0; j < max_idx;) {
1911                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1912                         struct sk_buff *skb = tx_buf->skb;
1913                         int k, last;
1914
1915                         if (!skb) {
1916                                 j++;
1917                                 continue;
1918                         }
1919
1920                         tx_buf->skb = NULL;
1921
1922                         if (tx_buf->is_push) {
1923                                 dev_kfree_skb(skb);
1924                                 j += 2;
1925                                 continue;
1926                         }
1927
1928                         dma_unmap_single(&pdev->dev,
1929                                          dma_unmap_addr(tx_buf, mapping),
1930                                          skb_headlen(skb),
1931                                          PCI_DMA_TODEVICE);
1932
1933                         last = tx_buf->nr_frags;
1934                         j += 2;
1935                         for (k = 0; k < last; k++, j++) {
1936                                 int ring_idx = j & bp->tx_ring_mask;
1937                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1938
1939                                 tx_buf = &txr->tx_buf_ring[ring_idx];
1940                                 dma_unmap_page(
1941                                         &pdev->dev,
1942                                         dma_unmap_addr(tx_buf, mapping),
1943                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1944                         }
1945                         dev_kfree_skb(skb);
1946                 }
1947                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1948         }
1949 }
1950
1951 static void bnxt_free_rx_skbs(struct bnxt *bp)
1952 {
1953         int i, max_idx, max_agg_idx;
1954         struct pci_dev *pdev = bp->pdev;
1955
1956         if (!bp->rx_ring)
1957                 return;
1958
1959         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1960         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1961         for (i = 0; i < bp->rx_nr_rings; i++) {
1962                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1963                 int j;
1964
1965                 if (rxr->rx_tpa) {
1966                         for (j = 0; j < MAX_TPA; j++) {
1967                                 struct bnxt_tpa_info *tpa_info =
1968                                                         &rxr->rx_tpa[j];
1969                                 u8 *data = tpa_info->data;
1970
1971                                 if (!data)
1972                                         continue;
1973
1974                                 dma_unmap_single(&pdev->dev, tpa_info->mapping,
1975                                                  bp->rx_buf_use_size,
1976                                                  bp->rx_dir);
1977
1978                                 tpa_info->data = NULL;
1979
1980                                 kfree(data);
1981                         }
1982                 }
1983
1984                 for (j = 0; j < max_idx; j++) {
1985                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1986                         dma_addr_t mapping = rx_buf->mapping;
1987                         void *data = rx_buf->data;
1988
1989                         if (!data)
1990                                 continue;
1991
1992                         rx_buf->data = NULL;
1993
1994                         if (BNXT_RX_PAGE_MODE(bp)) {
1995                                 mapping -= bp->rx_dma_offset;
1996                                 dma_unmap_page(&pdev->dev, mapping,
1997                                                PAGE_SIZE, bp->rx_dir);
1998                                 __free_page(data);
1999                         } else {
2000                                 dma_unmap_single(&pdev->dev, mapping,
2001                                                  bp->rx_buf_use_size,
2002                                                  bp->rx_dir);
2003                                 kfree(data);
2004                         }
2005                 }
2006
2007                 for (j = 0; j < max_agg_idx; j++) {
2008                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2009                                 &rxr->rx_agg_ring[j];
2010                         struct page *page = rx_agg_buf->page;
2011
2012                         if (!page)
2013                                 continue;
2014
2015                         dma_unmap_page(&pdev->dev, rx_agg_buf->mapping,
2016                                        BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
2017
2018                         rx_agg_buf->page = NULL;
2019                         __clear_bit(j, rxr->rx_agg_bmap);
2020
2021                         __free_page(page);
2022                 }
2023                 if (rxr->rx_page) {
2024                         __free_page(rxr->rx_page);
2025                         rxr->rx_page = NULL;
2026                 }
2027         }
2028 }
2029
2030 static void bnxt_free_skbs(struct bnxt *bp)
2031 {
2032         bnxt_free_tx_skbs(bp);
2033         bnxt_free_rx_skbs(bp);
2034 }
2035
2036 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2037 {
2038         struct pci_dev *pdev = bp->pdev;
2039         int i;
2040
2041         for (i = 0; i < ring->nr_pages; i++) {
2042                 if (!ring->pg_arr[i])
2043                         continue;
2044
2045                 dma_free_coherent(&pdev->dev, ring->page_size,
2046                                   ring->pg_arr[i], ring->dma_arr[i]);
2047
2048                 ring->pg_arr[i] = NULL;
2049         }
2050         if (ring->pg_tbl) {
2051                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2052                                   ring->pg_tbl, ring->pg_tbl_map);
2053                 ring->pg_tbl = NULL;
2054         }
2055         if (ring->vmem_size && *ring->vmem) {
2056                 vfree(*ring->vmem);
2057                 *ring->vmem = NULL;
2058         }
2059 }
2060
2061 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2062 {
2063         int i;
2064         struct pci_dev *pdev = bp->pdev;
2065
2066         if (ring->nr_pages > 1) {
2067                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2068                                                   ring->nr_pages * 8,
2069                                                   &ring->pg_tbl_map,
2070                                                   GFP_KERNEL);
2071                 if (!ring->pg_tbl)
2072                         return -ENOMEM;
2073         }
2074
2075         for (i = 0; i < ring->nr_pages; i++) {
2076                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2077                                                      ring->page_size,
2078                                                      &ring->dma_arr[i],
2079                                                      GFP_KERNEL);
2080                 if (!ring->pg_arr[i])
2081                         return -ENOMEM;
2082
2083                 if (ring->nr_pages > 1)
2084                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2085         }
2086
2087         if (ring->vmem_size) {
2088                 *ring->vmem = vzalloc(ring->vmem_size);
2089                 if (!(*ring->vmem))
2090                         return -ENOMEM;
2091         }
2092         return 0;
2093 }
2094
2095 static void bnxt_free_rx_rings(struct bnxt *bp)
2096 {
2097         int i;
2098
2099         if (!bp->rx_ring)
2100                 return;
2101
2102         for (i = 0; i < bp->rx_nr_rings; i++) {
2103                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2104                 struct bnxt_ring_struct *ring;
2105
2106                 if (rxr->xdp_prog)
2107                         bpf_prog_put(rxr->xdp_prog);
2108
2109                 kfree(rxr->rx_tpa);
2110                 rxr->rx_tpa = NULL;
2111
2112                 kfree(rxr->rx_agg_bmap);
2113                 rxr->rx_agg_bmap = NULL;
2114
2115                 ring = &rxr->rx_ring_struct;
2116                 bnxt_free_ring(bp, ring);
2117
2118                 ring = &rxr->rx_agg_ring_struct;
2119                 bnxt_free_ring(bp, ring);
2120         }
2121 }
2122
2123 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2124 {
2125         int i, rc, agg_rings = 0, tpa_rings = 0;
2126
2127         if (!bp->rx_ring)
2128                 return -ENOMEM;
2129
2130         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2131                 agg_rings = 1;
2132
2133         if (bp->flags & BNXT_FLAG_TPA)
2134                 tpa_rings = 1;
2135
2136         for (i = 0; i < bp->rx_nr_rings; i++) {
2137                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2138                 struct bnxt_ring_struct *ring;
2139
2140                 ring = &rxr->rx_ring_struct;
2141
2142                 rc = bnxt_alloc_ring(bp, ring);
2143                 if (rc)
2144                         return rc;
2145
2146                 if (agg_rings) {
2147                         u16 mem_size;
2148
2149                         ring = &rxr->rx_agg_ring_struct;
2150                         rc = bnxt_alloc_ring(bp, ring);
2151                         if (rc)
2152                                 return rc;
2153
2154                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2155                         mem_size = rxr->rx_agg_bmap_size / 8;
2156                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2157                         if (!rxr->rx_agg_bmap)
2158                                 return -ENOMEM;
2159
2160                         if (tpa_rings) {
2161                                 rxr->rx_tpa = kcalloc(MAX_TPA,
2162                                                 sizeof(struct bnxt_tpa_info),
2163                                                 GFP_KERNEL);
2164                                 if (!rxr->rx_tpa)
2165                                         return -ENOMEM;
2166                         }
2167                 }
2168         }
2169         return 0;
2170 }
2171
2172 static void bnxt_free_tx_rings(struct bnxt *bp)
2173 {
2174         int i;
2175         struct pci_dev *pdev = bp->pdev;
2176
2177         if (!bp->tx_ring)
2178                 return;
2179
2180         for (i = 0; i < bp->tx_nr_rings; i++) {
2181                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2182                 struct bnxt_ring_struct *ring;
2183
2184                 if (txr->tx_push) {
2185                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2186                                           txr->tx_push, txr->tx_push_mapping);
2187                         txr->tx_push = NULL;
2188                 }
2189
2190                 ring = &txr->tx_ring_struct;
2191
2192                 bnxt_free_ring(bp, ring);
2193         }
2194 }
2195
2196 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2197 {
2198         int i, j, rc;
2199         struct pci_dev *pdev = bp->pdev;
2200
2201         bp->tx_push_size = 0;
2202         if (bp->tx_push_thresh) {
2203                 int push_size;
2204
2205                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2206                                         bp->tx_push_thresh);
2207
2208                 if (push_size > 256) {
2209                         push_size = 0;
2210                         bp->tx_push_thresh = 0;
2211                 }
2212
2213                 bp->tx_push_size = push_size;
2214         }
2215
2216         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2217                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2218                 struct bnxt_ring_struct *ring;
2219
2220                 ring = &txr->tx_ring_struct;
2221
2222                 rc = bnxt_alloc_ring(bp, ring);
2223                 if (rc)
2224                         return rc;
2225
2226                 if (bp->tx_push_size) {
2227                         dma_addr_t mapping;
2228
2229                         /* One pre-allocated DMA buffer to backup
2230                          * TX push operation
2231                          */
2232                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2233                                                 bp->tx_push_size,
2234                                                 &txr->tx_push_mapping,
2235                                                 GFP_KERNEL);
2236
2237                         if (!txr->tx_push)
2238                                 return -ENOMEM;
2239
2240                         mapping = txr->tx_push_mapping +
2241                                 sizeof(struct tx_push_bd);
2242                         txr->data_mapping = cpu_to_le64(mapping);
2243
2244                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2245                 }
2246                 ring->queue_id = bp->q_info[j].queue_id;
2247                 if (i < bp->tx_nr_rings_xdp)
2248                         continue;
2249                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2250                         j++;
2251         }
2252         return 0;
2253 }
2254
2255 static void bnxt_free_cp_rings(struct bnxt *bp)
2256 {
2257         int i;
2258
2259         if (!bp->bnapi)
2260                 return;
2261
2262         for (i = 0; i < bp->cp_nr_rings; i++) {
2263                 struct bnxt_napi *bnapi = bp->bnapi[i];
2264                 struct bnxt_cp_ring_info *cpr;
2265                 struct bnxt_ring_struct *ring;
2266
2267                 if (!bnapi)
2268                         continue;
2269
2270                 cpr = &bnapi->cp_ring;
2271                 ring = &cpr->cp_ring_struct;
2272
2273                 bnxt_free_ring(bp, ring);
2274         }
2275 }
2276
2277 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2278 {
2279         int i, rc;
2280
2281         for (i = 0; i < bp->cp_nr_rings; i++) {
2282                 struct bnxt_napi *bnapi = bp->bnapi[i];
2283                 struct bnxt_cp_ring_info *cpr;
2284                 struct bnxt_ring_struct *ring;
2285
2286                 if (!bnapi)
2287                         continue;
2288
2289                 cpr = &bnapi->cp_ring;
2290                 ring = &cpr->cp_ring_struct;
2291
2292                 rc = bnxt_alloc_ring(bp, ring);
2293                 if (rc)
2294                         return rc;
2295         }
2296         return 0;
2297 }
2298
2299 static void bnxt_init_ring_struct(struct bnxt *bp)
2300 {
2301         int i;
2302
2303         for (i = 0; i < bp->cp_nr_rings; i++) {
2304                 struct bnxt_napi *bnapi = bp->bnapi[i];
2305                 struct bnxt_cp_ring_info *cpr;
2306                 struct bnxt_rx_ring_info *rxr;
2307                 struct bnxt_tx_ring_info *txr;
2308                 struct bnxt_ring_struct *ring;
2309
2310                 if (!bnapi)
2311                         continue;
2312
2313                 cpr = &bnapi->cp_ring;
2314                 ring = &cpr->cp_ring_struct;
2315                 ring->nr_pages = bp->cp_nr_pages;
2316                 ring->page_size = HW_CMPD_RING_SIZE;
2317                 ring->pg_arr = (void **)cpr->cp_desc_ring;
2318                 ring->dma_arr = cpr->cp_desc_mapping;
2319                 ring->vmem_size = 0;
2320
2321                 rxr = bnapi->rx_ring;
2322                 if (!rxr)
2323                         goto skip_rx;
2324
2325                 ring = &rxr->rx_ring_struct;
2326                 ring->nr_pages = bp->rx_nr_pages;
2327                 ring->page_size = HW_RXBD_RING_SIZE;
2328                 ring->pg_arr = (void **)rxr->rx_desc_ring;
2329                 ring->dma_arr = rxr->rx_desc_mapping;
2330                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2331                 ring->vmem = (void **)&rxr->rx_buf_ring;
2332
2333                 ring = &rxr->rx_agg_ring_struct;
2334                 ring->nr_pages = bp->rx_agg_nr_pages;
2335                 ring->page_size = HW_RXBD_RING_SIZE;
2336                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2337                 ring->dma_arr = rxr->rx_agg_desc_mapping;
2338                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2339                 ring->vmem = (void **)&rxr->rx_agg_ring;
2340
2341 skip_rx:
2342                 txr = bnapi->tx_ring;
2343                 if (!txr)
2344                         continue;
2345
2346                 ring = &txr->tx_ring_struct;
2347                 ring->nr_pages = bp->tx_nr_pages;
2348                 ring->page_size = HW_RXBD_RING_SIZE;
2349                 ring->pg_arr = (void **)txr->tx_desc_ring;
2350                 ring->dma_arr = txr->tx_desc_mapping;
2351                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2352                 ring->vmem = (void **)&txr->tx_buf_ring;
2353         }
2354 }
2355
2356 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2357 {
2358         int i;
2359         u32 prod;
2360         struct rx_bd **rx_buf_ring;
2361
2362         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2363         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2364                 int j;
2365                 struct rx_bd *rxbd;
2366
2367                 rxbd = rx_buf_ring[i];
2368                 if (!rxbd)
2369                         continue;
2370
2371                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2372                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2373                         rxbd->rx_bd_opaque = prod;
2374                 }
2375         }
2376 }
2377
2378 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2379 {
2380         struct net_device *dev = bp->dev;
2381         struct bnxt_rx_ring_info *rxr;
2382         struct bnxt_ring_struct *ring;
2383         u32 prod, type;
2384         int i;
2385
2386         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2387                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2388
2389         if (NET_IP_ALIGN == 2)
2390                 type |= RX_BD_FLAGS_SOP;
2391
2392         rxr = &bp->rx_ring[ring_nr];
2393         ring = &rxr->rx_ring_struct;
2394         bnxt_init_rxbd_pages(ring, type);
2395
2396         if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2397                 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2398                 if (IS_ERR(rxr->xdp_prog)) {
2399                         int rc = PTR_ERR(rxr->xdp_prog);
2400
2401                         rxr->xdp_prog = NULL;
2402                         return rc;
2403                 }
2404         }
2405         prod = rxr->rx_prod;
2406         for (i = 0; i < bp->rx_ring_size; i++) {
2407                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2408                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2409                                     ring_nr, i, bp->rx_ring_size);
2410                         break;
2411                 }
2412                 prod = NEXT_RX(prod);
2413         }
2414         rxr->rx_prod = prod;
2415         ring->fw_ring_id = INVALID_HW_RING_ID;
2416
2417         ring = &rxr->rx_agg_ring_struct;
2418         ring->fw_ring_id = INVALID_HW_RING_ID;
2419
2420         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2421                 return 0;
2422
2423         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2424                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2425
2426         bnxt_init_rxbd_pages(ring, type);
2427
2428         prod = rxr->rx_agg_prod;
2429         for (i = 0; i < bp->rx_agg_ring_size; i++) {
2430                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2431                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2432                                     ring_nr, i, bp->rx_ring_size);
2433                         break;
2434                 }
2435                 prod = NEXT_RX_AGG(prod);
2436         }
2437         rxr->rx_agg_prod = prod;
2438
2439         if (bp->flags & BNXT_FLAG_TPA) {
2440                 if (rxr->rx_tpa) {
2441                         u8 *data;
2442                         dma_addr_t mapping;
2443
2444                         for (i = 0; i < MAX_TPA; i++) {
2445                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2446                                                             GFP_KERNEL);
2447                                 if (!data)
2448                                         return -ENOMEM;
2449
2450                                 rxr->rx_tpa[i].data = data;
2451                                 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2452                                 rxr->rx_tpa[i].mapping = mapping;
2453                         }
2454                 } else {
2455                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2456                         return -ENOMEM;
2457                 }
2458         }
2459
2460         return 0;
2461 }
2462
2463 static void bnxt_init_cp_rings(struct bnxt *bp)
2464 {
2465         int i;
2466
2467         for (i = 0; i < bp->cp_nr_rings; i++) {
2468                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2469                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2470
2471                 ring->fw_ring_id = INVALID_HW_RING_ID;
2472         }
2473 }
2474
2475 static int bnxt_init_rx_rings(struct bnxt *bp)
2476 {
2477         int i, rc = 0;
2478
2479         if (BNXT_RX_PAGE_MODE(bp)) {
2480                 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2481                 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2482         } else {
2483                 bp->rx_offset = BNXT_RX_OFFSET;
2484                 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2485         }
2486
2487         for (i = 0; i < bp->rx_nr_rings; i++) {
2488                 rc = bnxt_init_one_rx_ring(bp, i);
2489                 if (rc)
2490                         break;
2491         }
2492
2493         return rc;
2494 }
2495
2496 static int bnxt_init_tx_rings(struct bnxt *bp)
2497 {
2498         u16 i;
2499
2500         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2501                                    MAX_SKB_FRAGS + 1);
2502
2503         for (i = 0; i < bp->tx_nr_rings; i++) {
2504                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2505                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2506
2507                 ring->fw_ring_id = INVALID_HW_RING_ID;
2508         }
2509
2510         return 0;
2511 }
2512
2513 static void bnxt_free_ring_grps(struct bnxt *bp)
2514 {
2515         kfree(bp->grp_info);
2516         bp->grp_info = NULL;
2517 }
2518
2519 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2520 {
2521         int i;
2522
2523         if (irq_re_init) {
2524                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2525                                        sizeof(struct bnxt_ring_grp_info),
2526                                        GFP_KERNEL);
2527                 if (!bp->grp_info)
2528                         return -ENOMEM;
2529         }
2530         for (i = 0; i < bp->cp_nr_rings; i++) {
2531                 if (irq_re_init)
2532                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2533                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2534                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2535                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2536                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2537         }
2538         return 0;
2539 }
2540
2541 static void bnxt_free_vnics(struct bnxt *bp)
2542 {
2543         kfree(bp->vnic_info);
2544         bp->vnic_info = NULL;
2545         bp->nr_vnics = 0;
2546 }
2547
2548 static int bnxt_alloc_vnics(struct bnxt *bp)
2549 {
2550         int num_vnics = 1;
2551
2552 #ifdef CONFIG_RFS_ACCEL
2553         if (bp->flags & BNXT_FLAG_RFS)
2554                 num_vnics += bp->rx_nr_rings;
2555 #endif
2556
2557         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2558                 num_vnics++;
2559
2560         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2561                                 GFP_KERNEL);
2562         if (!bp->vnic_info)
2563                 return -ENOMEM;
2564
2565         bp->nr_vnics = num_vnics;
2566         return 0;
2567 }
2568
2569 static void bnxt_init_vnics(struct bnxt *bp)
2570 {
2571         int i;
2572
2573         for (i = 0; i < bp->nr_vnics; i++) {
2574                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2575
2576                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2577                 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2578                 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2579                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2580
2581                 if (bp->vnic_info[i].rss_hash_key) {
2582                         if (i == 0)
2583                                 prandom_bytes(vnic->rss_hash_key,
2584                                               HW_HASH_KEY_SIZE);
2585                         else
2586                                 memcpy(vnic->rss_hash_key,
2587                                        bp->vnic_info[0].rss_hash_key,
2588                                        HW_HASH_KEY_SIZE);
2589                 }
2590         }
2591 }
2592
2593 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2594 {
2595         int pages;
2596
2597         pages = ring_size / desc_per_pg;
2598
2599         if (!pages)
2600                 return 1;
2601
2602         pages++;
2603
2604         while (pages & (pages - 1))
2605                 pages++;
2606
2607         return pages;
2608 }
2609
2610 void bnxt_set_tpa_flags(struct bnxt *bp)
2611 {
2612         bp->flags &= ~BNXT_FLAG_TPA;
2613         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2614                 return;
2615         if (bp->dev->features & NETIF_F_LRO)
2616                 bp->flags |= BNXT_FLAG_LRO;
2617         if (bp->dev->features & NETIF_F_GRO)
2618                 bp->flags |= BNXT_FLAG_GRO;
2619 }
2620
2621 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2622  * be set on entry.
2623  */
2624 void bnxt_set_ring_params(struct bnxt *bp)
2625 {
2626         u32 ring_size, rx_size, rx_space;
2627         u32 agg_factor = 0, agg_ring_size = 0;
2628
2629         /* 8 for CRC and VLAN */
2630         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2631
2632         rx_space = rx_size + NET_SKB_PAD +
2633                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2634
2635         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2636         ring_size = bp->rx_ring_size;
2637         bp->rx_agg_ring_size = 0;
2638         bp->rx_agg_nr_pages = 0;
2639
2640         if (bp->flags & BNXT_FLAG_TPA)
2641                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2642
2643         bp->flags &= ~BNXT_FLAG_JUMBO;
2644         if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2645                 u32 jumbo_factor;
2646
2647                 bp->flags |= BNXT_FLAG_JUMBO;
2648                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2649                 if (jumbo_factor > agg_factor)
2650                         agg_factor = jumbo_factor;
2651         }
2652         agg_ring_size = ring_size * agg_factor;
2653
2654         if (agg_ring_size) {
2655                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2656                                                         RX_DESC_CNT);
2657                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2658                         u32 tmp = agg_ring_size;
2659
2660                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2661                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2662                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2663                                     tmp, agg_ring_size);
2664                 }
2665                 bp->rx_agg_ring_size = agg_ring_size;
2666                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2667                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2668                 rx_space = rx_size + NET_SKB_PAD +
2669                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2670         }
2671
2672         bp->rx_buf_use_size = rx_size;
2673         bp->rx_buf_size = rx_space;
2674
2675         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2676         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2677
2678         ring_size = bp->tx_ring_size;
2679         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2680         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2681
2682         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2683         bp->cp_ring_size = ring_size;
2684
2685         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2686         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2687                 bp->cp_nr_pages = MAX_CP_PAGES;
2688                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2689                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2690                             ring_size, bp->cp_ring_size);
2691         }
2692         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2693         bp->cp_ring_mask = bp->cp_bit - 1;
2694 }
2695
2696 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2697 {
2698         if (page_mode) {
2699                 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2700                         return -EOPNOTSUPP;
2701                 bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
2702                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2703                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2704                 bp->dev->hw_features &= ~NETIF_F_LRO;
2705                 bp->dev->features &= ~NETIF_F_LRO;
2706                 bp->rx_dir = DMA_BIDIRECTIONAL;
2707                 bp->rx_skb_func = bnxt_rx_page_skb;
2708         } else {
2709                 bp->dev->max_mtu = BNXT_MAX_MTU;
2710                 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2711                 bp->rx_dir = DMA_FROM_DEVICE;
2712                 bp->rx_skb_func = bnxt_rx_skb;
2713         }
2714         return 0;
2715 }
2716
2717 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2718 {
2719         int i;
2720         struct bnxt_vnic_info *vnic;
2721         struct pci_dev *pdev = bp->pdev;
2722
2723         if (!bp->vnic_info)
2724                 return;
2725
2726         for (i = 0; i < bp->nr_vnics; i++) {
2727                 vnic = &bp->vnic_info[i];
2728
2729                 kfree(vnic->fw_grp_ids);
2730                 vnic->fw_grp_ids = NULL;
2731
2732                 kfree(vnic->uc_list);
2733                 vnic->uc_list = NULL;
2734
2735                 if (vnic->mc_list) {
2736                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2737                                           vnic->mc_list, vnic->mc_list_mapping);
2738                         vnic->mc_list = NULL;
2739                 }
2740
2741                 if (vnic->rss_table) {
2742                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2743                                           vnic->rss_table,
2744                                           vnic->rss_table_dma_addr);
2745                         vnic->rss_table = NULL;
2746                 }
2747
2748                 vnic->rss_hash_key = NULL;
2749                 vnic->flags = 0;
2750         }
2751 }
2752
2753 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2754 {
2755         int i, rc = 0, size;
2756         struct bnxt_vnic_info *vnic;
2757         struct pci_dev *pdev = bp->pdev;
2758         int max_rings;
2759
2760         for (i = 0; i < bp->nr_vnics; i++) {
2761                 vnic = &bp->vnic_info[i];
2762
2763                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2764                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2765
2766                         if (mem_size > 0) {
2767                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2768                                 if (!vnic->uc_list) {
2769                                         rc = -ENOMEM;
2770                                         goto out;
2771                                 }
2772                         }
2773                 }
2774
2775                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2776                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2777                         vnic->mc_list =
2778                                 dma_alloc_coherent(&pdev->dev,
2779                                                    vnic->mc_list_size,
2780                                                    &vnic->mc_list_mapping,
2781                                                    GFP_KERNEL);
2782                         if (!vnic->mc_list) {
2783                                 rc = -ENOMEM;
2784                                 goto out;
2785                         }
2786                 }
2787
2788                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2789                         max_rings = bp->rx_nr_rings;
2790                 else
2791                         max_rings = 1;
2792
2793                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2794                 if (!vnic->fw_grp_ids) {
2795                         rc = -ENOMEM;
2796                         goto out;
2797                 }
2798
2799                 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2800                     !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2801                         continue;
2802
2803                 /* Allocate rss table and hash key */
2804                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2805                                                      &vnic->rss_table_dma_addr,
2806                                                      GFP_KERNEL);
2807                 if (!vnic->rss_table) {
2808                         rc = -ENOMEM;
2809                         goto out;
2810                 }
2811
2812                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2813
2814                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2815                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2816         }
2817         return 0;
2818
2819 out:
2820         return rc;
2821 }
2822
2823 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2824 {
2825         struct pci_dev *pdev = bp->pdev;
2826
2827         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2828                           bp->hwrm_cmd_resp_dma_addr);
2829
2830         bp->hwrm_cmd_resp_addr = NULL;
2831         if (bp->hwrm_dbg_resp_addr) {
2832                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2833                                   bp->hwrm_dbg_resp_addr,
2834                                   bp->hwrm_dbg_resp_dma_addr);
2835
2836                 bp->hwrm_dbg_resp_addr = NULL;
2837         }
2838 }
2839
2840 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2841 {
2842         struct pci_dev *pdev = bp->pdev;
2843
2844         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2845                                                    &bp->hwrm_cmd_resp_dma_addr,
2846                                                    GFP_KERNEL);
2847         if (!bp->hwrm_cmd_resp_addr)
2848                 return -ENOMEM;
2849         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2850                                                     HWRM_DBG_REG_BUF_SIZE,
2851                                                     &bp->hwrm_dbg_resp_dma_addr,
2852                                                     GFP_KERNEL);
2853         if (!bp->hwrm_dbg_resp_addr)
2854                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2855
2856         return 0;
2857 }
2858
2859 static void bnxt_free_stats(struct bnxt *bp)
2860 {
2861         u32 size, i;
2862         struct pci_dev *pdev = bp->pdev;
2863
2864         if (bp->hw_rx_port_stats) {
2865                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2866                                   bp->hw_rx_port_stats,
2867                                   bp->hw_rx_port_stats_map);
2868                 bp->hw_rx_port_stats = NULL;
2869                 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2870         }
2871
2872         if (!bp->bnapi)
2873                 return;
2874
2875         size = sizeof(struct ctx_hw_stats);
2876
2877         for (i = 0; i < bp->cp_nr_rings; i++) {
2878                 struct bnxt_napi *bnapi = bp->bnapi[i];
2879                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2880
2881                 if (cpr->hw_stats) {
2882                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2883                                           cpr->hw_stats_map);
2884                         cpr->hw_stats = NULL;
2885                 }
2886         }
2887 }
2888
2889 static int bnxt_alloc_stats(struct bnxt *bp)
2890 {
2891         u32 size, i;
2892         struct pci_dev *pdev = bp->pdev;
2893
2894         size = sizeof(struct ctx_hw_stats);
2895
2896         for (i = 0; i < bp->cp_nr_rings; i++) {
2897                 struct bnxt_napi *bnapi = bp->bnapi[i];
2898                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2899
2900                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2901                                                    &cpr->hw_stats_map,
2902                                                    GFP_KERNEL);
2903                 if (!cpr->hw_stats)
2904                         return -ENOMEM;
2905
2906                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2907         }
2908
2909         if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2910                 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2911                                          sizeof(struct tx_port_stats) + 1024;
2912
2913                 bp->hw_rx_port_stats =
2914                         dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2915                                            &bp->hw_rx_port_stats_map,
2916                                            GFP_KERNEL);
2917                 if (!bp->hw_rx_port_stats)
2918                         return -ENOMEM;
2919
2920                 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2921                                        512;
2922                 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2923                                            sizeof(struct rx_port_stats) + 512;
2924                 bp->flags |= BNXT_FLAG_PORT_STATS;
2925         }
2926         return 0;
2927 }
2928
2929 static void bnxt_clear_ring_indices(struct bnxt *bp)
2930 {
2931         int i;
2932
2933         if (!bp->bnapi)
2934                 return;
2935
2936         for (i = 0; i < bp->cp_nr_rings; i++) {
2937                 struct bnxt_napi *bnapi = bp->bnapi[i];
2938                 struct bnxt_cp_ring_info *cpr;
2939                 struct bnxt_rx_ring_info *rxr;
2940                 struct bnxt_tx_ring_info *txr;
2941
2942                 if (!bnapi)
2943                         continue;
2944
2945                 cpr = &bnapi->cp_ring;
2946                 cpr->cp_raw_cons = 0;
2947
2948                 txr = bnapi->tx_ring;
2949                 if (txr) {
2950                         txr->tx_prod = 0;
2951                         txr->tx_cons = 0;
2952                 }
2953
2954                 rxr = bnapi->rx_ring;
2955                 if (rxr) {
2956                         rxr->rx_prod = 0;
2957                         rxr->rx_agg_prod = 0;
2958                         rxr->rx_sw_agg_prod = 0;
2959                         rxr->rx_next_cons = 0;
2960                 }
2961         }
2962 }
2963
2964 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2965 {
2966 #ifdef CONFIG_RFS_ACCEL
2967         int i;
2968
2969         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2970          * safe to delete the hash table.
2971          */
2972         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2973                 struct hlist_head *head;
2974                 struct hlist_node *tmp;
2975                 struct bnxt_ntuple_filter *fltr;
2976
2977                 head = &bp->ntp_fltr_hash_tbl[i];
2978                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2979                         hlist_del(&fltr->hash);
2980                         kfree(fltr);
2981                 }
2982         }
2983         if (irq_reinit) {
2984                 kfree(bp->ntp_fltr_bmap);
2985                 bp->ntp_fltr_bmap = NULL;
2986         }
2987         bp->ntp_fltr_count = 0;
2988 #endif
2989 }
2990
2991 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2992 {
2993 #ifdef CONFIG_RFS_ACCEL
2994         int i, rc = 0;
2995
2996         if (!(bp->flags & BNXT_FLAG_RFS))
2997                 return 0;
2998
2999         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3000                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3001
3002         bp->ntp_fltr_count = 0;
3003         bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3004                                     GFP_KERNEL);
3005
3006         if (!bp->ntp_fltr_bmap)
3007                 rc = -ENOMEM;
3008
3009         return rc;
3010 #else
3011         return 0;
3012 #endif
3013 }
3014
3015 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3016 {
3017         bnxt_free_vnic_attributes(bp);
3018         bnxt_free_tx_rings(bp);
3019         bnxt_free_rx_rings(bp);
3020         bnxt_free_cp_rings(bp);
3021         bnxt_free_ntp_fltrs(bp, irq_re_init);
3022         if (irq_re_init) {
3023                 bnxt_free_stats(bp);
3024                 bnxt_free_ring_grps(bp);
3025                 bnxt_free_vnics(bp);
3026                 kfree(bp->tx_ring_map);
3027                 bp->tx_ring_map = NULL;
3028                 kfree(bp->tx_ring);
3029                 bp->tx_ring = NULL;
3030                 kfree(bp->rx_ring);
3031                 bp->rx_ring = NULL;
3032                 kfree(bp->bnapi);
3033                 bp->bnapi = NULL;
3034         } else {
3035                 bnxt_clear_ring_indices(bp);
3036         }
3037 }
3038
3039 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3040 {
3041         int i, j, rc, size, arr_size;
3042         void *bnapi;
3043
3044         if (irq_re_init) {
3045                 /* Allocate bnapi mem pointer array and mem block for
3046                  * all queues
3047                  */
3048                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3049                                 bp->cp_nr_rings);
3050                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3051                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3052                 if (!bnapi)
3053                         return -ENOMEM;
3054
3055                 bp->bnapi = bnapi;
3056                 bnapi += arr_size;
3057                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3058                         bp->bnapi[i] = bnapi;
3059                         bp->bnapi[i]->index = i;
3060                         bp->bnapi[i]->bp = bp;
3061                 }
3062
3063                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3064                                       sizeof(struct bnxt_rx_ring_info),
3065                                       GFP_KERNEL);
3066                 if (!bp->rx_ring)
3067                         return -ENOMEM;
3068
3069                 for (i = 0; i < bp->rx_nr_rings; i++) {
3070                         bp->rx_ring[i].bnapi = bp->bnapi[i];
3071                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3072                 }
3073
3074                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3075                                       sizeof(struct bnxt_tx_ring_info),
3076                                       GFP_KERNEL);
3077                 if (!bp->tx_ring)
3078                         return -ENOMEM;
3079
3080                 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3081                                           GFP_KERNEL);
3082
3083                 if (!bp->tx_ring_map)
3084                         return -ENOMEM;
3085
3086                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3087                         j = 0;
3088                 else
3089                         j = bp->rx_nr_rings;
3090
3091                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3092                         bp->tx_ring[i].bnapi = bp->bnapi[j];
3093                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3094                         bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3095                         if (i >= bp->tx_nr_rings_xdp) {
3096                                 bp->tx_ring[i].txq_index = i -
3097                                         bp->tx_nr_rings_xdp;
3098                                 bp->bnapi[j]->tx_int = bnxt_tx_int;
3099                         } else {
3100                                 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3101                                 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3102                         }
3103                 }
3104
3105                 rc = bnxt_alloc_stats(bp);
3106                 if (rc)
3107                         goto alloc_mem_err;
3108
3109                 rc = bnxt_alloc_ntp_fltrs(bp);
3110                 if (rc)
3111                         goto alloc_mem_err;
3112
3113                 rc = bnxt_alloc_vnics(bp);
3114                 if (rc)
3115                         goto alloc_mem_err;
3116         }
3117
3118         bnxt_init_ring_struct(bp);
3119
3120         rc = bnxt_alloc_rx_rings(bp);
3121         if (rc)
3122                 goto alloc_mem_err;
3123
3124         rc = bnxt_alloc_tx_rings(bp);
3125         if (rc)
3126                 goto alloc_mem_err;
3127
3128         rc = bnxt_alloc_cp_rings(bp);
3129         if (rc)
3130                 goto alloc_mem_err;
3131
3132         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3133                                   BNXT_VNIC_UCAST_FLAG;
3134         rc = bnxt_alloc_vnic_attributes(bp);
3135         if (rc)
3136                 goto alloc_mem_err;
3137         return 0;
3138
3139 alloc_mem_err:
3140         bnxt_free_mem(bp, true);
3141         return rc;
3142 }
3143
3144 static void bnxt_disable_int(struct bnxt *bp)
3145 {
3146         int i;
3147
3148         if (!bp->bnapi)
3149                 return;
3150
3151         for (i = 0; i < bp->cp_nr_rings; i++) {
3152                 struct bnxt_napi *bnapi = bp->bnapi[i];
3153                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3154                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3155
3156                 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3157                         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3158         }
3159 }
3160
3161 static void bnxt_disable_int_sync(struct bnxt *bp)
3162 {
3163         int i;
3164
3165         atomic_inc(&bp->intr_sem);
3166
3167         bnxt_disable_int(bp);
3168         for (i = 0; i < bp->cp_nr_rings; i++)
3169                 synchronize_irq(bp->irq_tbl[i].vector);
3170 }
3171
3172 static void bnxt_enable_int(struct bnxt *bp)
3173 {
3174         int i;
3175
3176         atomic_set(&bp->intr_sem, 0);
3177         for (i = 0; i < bp->cp_nr_rings; i++) {
3178                 struct bnxt_napi *bnapi = bp->bnapi[i];
3179                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3180
3181                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3182         }
3183 }
3184
3185 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3186                             u16 cmpl_ring, u16 target_id)
3187 {
3188         struct input *req = request;
3189
3190         req->req_type = cpu_to_le16(req_type);
3191         req->cmpl_ring = cpu_to_le16(cmpl_ring);
3192         req->target_id = cpu_to_le16(target_id);
3193         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3194 }
3195
3196 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3197                                  int timeout, bool silent)
3198 {
3199         int i, intr_process, rc, tmo_count;
3200         struct input *req = msg;
3201         u32 *data = msg;
3202         __le32 *resp_len, *valid;
3203         u16 cp_ring_id, len = 0;
3204         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3205
3206         req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3207         memset(resp, 0, PAGE_SIZE);
3208         cp_ring_id = le16_to_cpu(req->cmpl_ring);
3209         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3210
3211         /* Write request msg to hwrm channel */
3212         __iowrite32_copy(bp->bar0, data, msg_len / 4);
3213
3214         for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3215                 writel(0, bp->bar0 + i);
3216
3217         /* currently supports only one outstanding message */
3218         if (intr_process)
3219                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3220
3221         /* Ring channel doorbell */
3222         writel(1, bp->bar0 + 0x100);
3223
3224         if (!timeout)
3225                 timeout = DFLT_HWRM_CMD_TIMEOUT;
3226
3227         i = 0;
3228         tmo_count = timeout * 40;
3229         if (intr_process) {
3230                 /* Wait until hwrm response cmpl interrupt is processed */
3231                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3232                        i++ < tmo_count) {
3233                         usleep_range(25, 40);
3234                 }
3235
3236                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3237                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3238                                    le16_to_cpu(req->req_type));
3239                         return -1;
3240                 }
3241         } else {
3242                 /* Check if response len is updated */
3243                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3244                 for (i = 0; i < tmo_count; i++) {
3245                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3246                               HWRM_RESP_LEN_SFT;
3247                         if (len)
3248                                 break;
3249                         usleep_range(25, 40);
3250                 }
3251
3252                 if (i >= tmo_count) {
3253                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3254                                    timeout, le16_to_cpu(req->req_type),
3255                                    le16_to_cpu(req->seq_id), len);
3256                         return -1;
3257                 }
3258
3259                 /* Last word of resp contains valid bit */
3260                 valid = bp->hwrm_cmd_resp_addr + len - 4;
3261                 for (i = 0; i < 5; i++) {
3262                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3263                                 break;
3264                         udelay(1);
3265                 }
3266
3267                 if (i >= 5) {
3268                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3269                                    timeout, le16_to_cpu(req->req_type),
3270                                    le16_to_cpu(req->seq_id), len, *valid);
3271                         return -1;
3272                 }
3273         }
3274
3275         rc = le16_to_cpu(resp->error_code);
3276         if (rc && !silent)
3277                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3278                            le16_to_cpu(resp->req_type),
3279                            le16_to_cpu(resp->seq_id), rc);
3280         return rc;
3281 }
3282
3283 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3284 {
3285         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3286 }
3287
3288 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3289 {
3290         int rc;
3291
3292         mutex_lock(&bp->hwrm_cmd_lock);
3293         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3294         mutex_unlock(&bp->hwrm_cmd_lock);
3295         return rc;
3296 }
3297
3298 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3299                              int timeout)
3300 {
3301         int rc;
3302
3303         mutex_lock(&bp->hwrm_cmd_lock);
3304         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3305         mutex_unlock(&bp->hwrm_cmd_lock);
3306         return rc;
3307 }
3308
3309 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3310                                      int bmap_size)
3311 {
3312         struct hwrm_func_drv_rgtr_input req = {0};
3313         DECLARE_BITMAP(async_events_bmap, 256);
3314         u32 *events = (u32 *)async_events_bmap;
3315         int i;
3316
3317         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3318
3319         req.enables =
3320                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3321
3322         memset(async_events_bmap, 0, sizeof(async_events_bmap));
3323         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3324                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3325
3326         if (bmap && bmap_size) {
3327                 for (i = 0; i < bmap_size; i++) {
3328                         if (test_bit(i, bmap))
3329                                 __set_bit(i, async_events_bmap);
3330                 }
3331         }
3332
3333         for (i = 0; i < 8; i++)
3334                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3335
3336         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3337 }
3338
3339 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3340 {
3341         struct hwrm_func_drv_rgtr_input req = {0};
3342
3343         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3344
3345         req.enables =
3346                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3347                             FUNC_DRV_RGTR_REQ_ENABLES_VER);
3348
3349         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3350         req.ver_maj = DRV_VER_MAJ;
3351         req.ver_min = DRV_VER_MIN;
3352         req.ver_upd = DRV_VER_UPD;
3353
3354         if (BNXT_PF(bp)) {
3355                 DECLARE_BITMAP(vf_req_snif_bmap, 256);
3356                 u32 *data = (u32 *)vf_req_snif_bmap;
3357                 int i;
3358
3359                 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3360                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3361                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3362
3363                 for (i = 0; i < 8; i++)
3364                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3365
3366                 req.enables |=
3367                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3368         }
3369
3370         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3371 }
3372
3373 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3374 {
3375         struct hwrm_func_drv_unrgtr_input req = {0};
3376
3377         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3378         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3379 }
3380
3381 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3382 {
3383         u32 rc = 0;
3384         struct hwrm_tunnel_dst_port_free_input req = {0};
3385
3386         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3387         req.tunnel_type = tunnel_type;
3388
3389         switch (tunnel_type) {
3390         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3391                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3392                 break;
3393         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3394                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3395                 break;
3396         default:
3397                 break;
3398         }
3399
3400         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3401         if (rc)
3402                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3403                            rc);
3404         return rc;
3405 }
3406
3407 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3408                                            u8 tunnel_type)
3409 {
3410         u32 rc = 0;
3411         struct hwrm_tunnel_dst_port_alloc_input req = {0};
3412         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3413
3414         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3415
3416         req.tunnel_type = tunnel_type;
3417         req.tunnel_dst_port_val = port;
3418
3419         mutex_lock(&bp->hwrm_cmd_lock);
3420         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3421         if (rc) {
3422                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3423                            rc);
3424                 goto err_out;
3425         }
3426
3427         switch (tunnel_type) {
3428         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3429                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3430                 break;
3431         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3432                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3433                 break;
3434         default:
3435                 break;
3436         }
3437
3438 err_out:
3439         mutex_unlock(&bp->hwrm_cmd_lock);
3440         return rc;
3441 }
3442
3443 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3444 {
3445         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3446         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3447
3448         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3449         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3450
3451         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3452         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3453         req.mask = cpu_to_le32(vnic->rx_mask);
3454         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3455 }
3456
3457 #ifdef CONFIG_RFS_ACCEL
3458 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3459                                             struct bnxt_ntuple_filter *fltr)
3460 {
3461         struct hwrm_cfa_ntuple_filter_free_input req = {0};
3462
3463         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3464         req.ntuple_filter_id = fltr->filter_id;
3465         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3466 }
3467
3468 #define BNXT_NTP_FLTR_FLAGS                                     \
3469         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
3470          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
3471          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
3472          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
3473          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
3474          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
3475          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
3476          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
3477          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
3478          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
3479          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
3480          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
3481          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
3482          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3483
3484 #define BNXT_NTP_TUNNEL_FLTR_FLAG                               \
3485                 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3486
3487 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3488                                              struct bnxt_ntuple_filter *fltr)
3489 {
3490         int rc = 0;
3491         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3492         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3493                 bp->hwrm_cmd_resp_addr;
3494         struct flow_keys *keys = &fltr->fkeys;
3495         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3496
3497         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3498         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3499
3500         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3501
3502         req.ethertype = htons(ETH_P_IP);
3503         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3504         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3505         req.ip_protocol = keys->basic.ip_proto;
3506
3507         if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3508                 int i;
3509
3510                 req.ethertype = htons(ETH_P_IPV6);
3511                 req.ip_addr_type =
3512                         CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3513                 *(struct in6_addr *)&req.src_ipaddr[0] =
3514                         keys->addrs.v6addrs.src;
3515                 *(struct in6_addr *)&req.dst_ipaddr[0] =
3516                         keys->addrs.v6addrs.dst;
3517                 for (i = 0; i < 4; i++) {
3518                         req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3519                         req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3520                 }
3521         } else {
3522                 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3523                 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3524                 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3525                 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3526         }
3527         if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3528                 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3529                 req.tunnel_type =
3530                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3531         }
3532
3533         req.src_port = keys->ports.src;
3534         req.src_port_mask = cpu_to_be16(0xffff);
3535         req.dst_port = keys->ports.dst;
3536         req.dst_port_mask = cpu_to_be16(0xffff);
3537
3538         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3539         mutex_lock(&bp->hwrm_cmd_lock);
3540         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3541         if (!rc)
3542                 fltr->filter_id = resp->ntuple_filter_id;
3543         mutex_unlock(&bp->hwrm_cmd_lock);
3544         return rc;
3545 }
3546 #endif
3547
3548 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3549                                      u8 *mac_addr)
3550 {
3551         u32 rc = 0;
3552         struct hwrm_cfa_l2_filter_alloc_input req = {0};
3553         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3554
3555         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3556         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3557         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3558                 req.flags |=
3559                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3560         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3561         req.enables =
3562                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3563                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3564                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3565         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3566         req.l2_addr_mask[0] = 0xff;
3567         req.l2_addr_mask[1] = 0xff;
3568         req.l2_addr_mask[2] = 0xff;
3569         req.l2_addr_mask[3] = 0xff;
3570         req.l2_addr_mask[4] = 0xff;
3571         req.l2_addr_mask[5] = 0xff;
3572
3573         mutex_lock(&bp->hwrm_cmd_lock);
3574         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3575         if (!rc)
3576                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3577                                                         resp->l2_filter_id;
3578         mutex_unlock(&bp->hwrm_cmd_lock);
3579         return rc;
3580 }
3581
3582 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3583 {
3584         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3585         int rc = 0;
3586
3587         /* Any associated ntuple filters will also be cleared by firmware. */
3588         mutex_lock(&bp->hwrm_cmd_lock);
3589         for (i = 0; i < num_of_vnics; i++) {
3590                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3591
3592                 for (j = 0; j < vnic->uc_filter_count; j++) {
3593                         struct hwrm_cfa_l2_filter_free_input req = {0};
3594
3595                         bnxt_hwrm_cmd_hdr_init(bp, &req,
3596                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
3597
3598                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
3599
3600                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3601                                                 HWRM_CMD_TIMEOUT);
3602                 }
3603                 vnic->uc_filter_count = 0;
3604         }
3605         mutex_unlock(&bp->hwrm_cmd_lock);
3606
3607         return rc;
3608 }
3609
3610 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3611 {
3612         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3613         struct hwrm_vnic_tpa_cfg_input req = {0};
3614
3615         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3616
3617         if (tpa_flags) {
3618                 u16 mss = bp->dev->mtu - 40;
3619                 u32 nsegs, n, segs = 0, flags;
3620
3621                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3622                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3623                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3624                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3625                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3626                 if (tpa_flags & BNXT_FLAG_GRO)
3627                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3628
3629                 req.flags = cpu_to_le32(flags);
3630
3631                 req.enables =
3632                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3633                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3634                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3635
3636                 /* Number of segs are log2 units, and first packet is not
3637                  * included as part of this units.
3638                  */
3639                 if (mss <= BNXT_RX_PAGE_SIZE) {
3640                         n = BNXT_RX_PAGE_SIZE / mss;
3641                         nsegs = (MAX_SKB_FRAGS - 1) * n;
3642                 } else {
3643                         n = mss / BNXT_RX_PAGE_SIZE;
3644                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
3645                                 n++;
3646                         nsegs = (MAX_SKB_FRAGS - n) / n;
3647                 }
3648
3649                 segs = ilog2(nsegs);
3650                 req.max_agg_segs = cpu_to_le16(segs);
3651                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3652
3653                 req.min_agg_len = cpu_to_le32(512);
3654         }
3655         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3656
3657         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3658 }
3659
3660 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3661 {
3662         u32 i, j, max_rings;
3663         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3664         struct hwrm_vnic_rss_cfg_input req = {0};
3665
3666         if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3667                 return 0;
3668
3669         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3670         if (set_rss) {
3671                 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3672                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3673                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3674                                 max_rings = bp->rx_nr_rings - 1;
3675                         else
3676                                 max_rings = bp->rx_nr_rings;
3677                 } else {
3678                         max_rings = 1;
3679                 }
3680
3681                 /* Fill the RSS indirection table with ring group ids */
3682                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3683                         if (j == max_rings)
3684                                 j = 0;
3685                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3686                 }
3687
3688                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3689                 req.hash_key_tbl_addr =
3690                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3691         }
3692         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3693         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3694 }
3695
3696 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3697 {
3698         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3699         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3700
3701         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3702         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3703                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3704                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3705         req.enables =
3706                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3707                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3708         /* thresholds not implemented in firmware yet */
3709         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3710         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3711         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3712         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3713 }
3714
3715 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3716                                         u16 ctx_idx)
3717 {
3718         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3719
3720         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3721         req.rss_cos_lb_ctx_id =
3722                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3723
3724         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3725         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3726 }
3727
3728 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3729 {
3730         int i, j;
3731
3732         for (i = 0; i < bp->nr_vnics; i++) {
3733                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3734
3735                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3736                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3737                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3738                 }
3739         }
3740         bp->rsscos_nr_ctxs = 0;
3741 }
3742
3743 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3744 {
3745         int rc;
3746         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3747         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3748                                                 bp->hwrm_cmd_resp_addr;
3749
3750         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3751                                -1);
3752
3753         mutex_lock(&bp->hwrm_cmd_lock);
3754         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3755         if (!rc)
3756                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3757                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3758         mutex_unlock(&bp->hwrm_cmd_lock);
3759
3760         return rc;
3761 }
3762
3763 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3764 {
3765         unsigned int ring = 0, grp_idx;
3766         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3767         struct hwrm_vnic_cfg_input req = {0};
3768         u16 def_vlan = 0;
3769
3770         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3771
3772         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3773         /* Only RSS support for now TBD: COS & LB */
3774         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3775                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3776                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3777                                            VNIC_CFG_REQ_ENABLES_MRU);
3778         } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3779                 req.rss_rule =
3780                         cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3781                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3782                                            VNIC_CFG_REQ_ENABLES_MRU);
3783                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3784         } else {
3785                 req.rss_rule = cpu_to_le16(0xffff);
3786         }
3787
3788         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3789             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3790                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3791                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3792         } else {
3793                 req.cos_rule = cpu_to_le16(0xffff);
3794         }
3795
3796         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3797                 ring = 0;
3798         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3799                 ring = vnic_id - 1;
3800         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3801                 ring = bp->rx_nr_rings - 1;
3802
3803         grp_idx = bp->rx_ring[ring].bnapi->index;
3804         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3805         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3806
3807         req.lb_rule = cpu_to_le16(0xffff);
3808         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3809                               VLAN_HLEN);
3810
3811 #ifdef CONFIG_BNXT_SRIOV
3812         if (BNXT_VF(bp))
3813                 def_vlan = bp->vf.vlan;
3814 #endif
3815         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3816                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3817         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
3818                 req.flags |=
3819                         cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
3820
3821         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3822 }
3823
3824 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3825 {
3826         u32 rc = 0;
3827
3828         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3829                 struct hwrm_vnic_free_input req = {0};
3830
3831                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3832                 req.vnic_id =
3833                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3834
3835                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3836                 if (rc)
3837                         return rc;
3838                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3839         }
3840         return rc;
3841 }
3842
3843 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3844 {
3845         u16 i;
3846
3847         for (i = 0; i < bp->nr_vnics; i++)
3848                 bnxt_hwrm_vnic_free_one(bp, i);
3849 }
3850
3851 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3852                                 unsigned int start_rx_ring_idx,
3853                                 unsigned int nr_rings)
3854 {
3855         int rc = 0;
3856         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3857         struct hwrm_vnic_alloc_input req = {0};
3858         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3859
3860         /* map ring groups to this vnic */
3861         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3862                 grp_idx = bp->rx_ring[i].bnapi->index;
3863                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3864                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3865                                    j, nr_rings);
3866                         break;
3867                 }
3868                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3869                                         bp->grp_info[grp_idx].fw_grp_id;
3870         }
3871
3872         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3873         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3874         if (vnic_id == 0)
3875                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3876
3877         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3878
3879         mutex_lock(&bp->hwrm_cmd_lock);
3880         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3881         if (!rc)
3882                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3883         mutex_unlock(&bp->hwrm_cmd_lock);
3884         return rc;
3885 }
3886
3887 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
3888 {
3889         struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3890         struct hwrm_vnic_qcaps_input req = {0};
3891         int rc;
3892
3893         if (bp->hwrm_spec_code < 0x10600)
3894                 return 0;
3895
3896         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
3897         mutex_lock(&bp->hwrm_cmd_lock);
3898         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3899         if (!rc) {
3900                 if (resp->flags &
3901                     cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
3902                         bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
3903         }
3904         mutex_unlock(&bp->hwrm_cmd_lock);
3905         return rc;
3906 }
3907
3908 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3909 {
3910         u16 i;
3911         u32 rc = 0;
3912
3913         mutex_lock(&bp->hwrm_cmd_lock);
3914         for (i = 0; i < bp->rx_nr_rings; i++) {
3915                 struct hwrm_ring_grp_alloc_input req = {0};
3916                 struct hwrm_ring_grp_alloc_output *resp =
3917                                         bp->hwrm_cmd_resp_addr;
3918                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3919
3920                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3921
3922                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3923                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3924                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3925                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3926
3927                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3928                                         HWRM_CMD_TIMEOUT);
3929                 if (rc)
3930                         break;
3931
3932                 bp->grp_info[grp_idx].fw_grp_id =
3933                         le32_to_cpu(resp->ring_group_id);
3934         }
3935         mutex_unlock(&bp->hwrm_cmd_lock);
3936         return rc;
3937 }
3938
3939 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3940 {
3941         u16 i;
3942         u32 rc = 0;
3943         struct hwrm_ring_grp_free_input req = {0};
3944
3945         if (!bp->grp_info)
3946                 return 0;
3947
3948         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3949
3950         mutex_lock(&bp->hwrm_cmd_lock);
3951         for (i = 0; i < bp->cp_nr_rings; i++) {
3952                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3953                         continue;
3954                 req.ring_group_id =
3955                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3956
3957                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3958                                         HWRM_CMD_TIMEOUT);
3959                 if (rc)
3960                         break;
3961                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3962         }
3963         mutex_unlock(&bp->hwrm_cmd_lock);
3964         return rc;
3965 }
3966
3967 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3968                                     struct bnxt_ring_struct *ring,
3969                                     u32 ring_type, u32 map_index,
3970                                     u32 stats_ctx_id)
3971 {
3972         int rc = 0, err = 0;
3973         struct hwrm_ring_alloc_input req = {0};
3974         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3975         u16 ring_id;
3976
3977         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3978
3979         req.enables = 0;
3980         if (ring->nr_pages > 1) {
3981                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3982                 /* Page size is in log2 units */
3983                 req.page_size = BNXT_PAGE_SHIFT;
3984                 req.page_tbl_depth = 1;
3985         } else {
3986                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3987         }
3988         req.fbo = 0;
3989         /* Association of ring index with doorbell index and MSIX number */
3990         req.logical_id = cpu_to_le16(map_index);
3991
3992         switch (ring_type) {
3993         case HWRM_RING_ALLOC_TX:
3994                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3995                 /* Association of transmit ring with completion ring */
3996                 req.cmpl_ring_id =
3997                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3998                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3999                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4000                 req.queue_id = cpu_to_le16(ring->queue_id);
4001                 break;
4002         case HWRM_RING_ALLOC_RX:
4003                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4004                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4005                 break;
4006         case HWRM_RING_ALLOC_AGG:
4007                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4008                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4009                 break;
4010         case HWRM_RING_ALLOC_CMPL:
4011                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4012                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4013                 if (bp->flags & BNXT_FLAG_USING_MSIX)
4014                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4015                 break;
4016         default:
4017                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4018                            ring_type);
4019                 return -1;
4020         }
4021
4022         mutex_lock(&bp->hwrm_cmd_lock);
4023         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4024         err = le16_to_cpu(resp->error_code);
4025         ring_id = le16_to_cpu(resp->ring_id);
4026         mutex_unlock(&bp->hwrm_cmd_lock);
4027
4028         if (rc || err) {
4029                 switch (ring_type) {
4030                 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4031                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4032                                    rc, err);
4033                         return -1;
4034
4035                 case RING_FREE_REQ_RING_TYPE_RX:
4036                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4037                                    rc, err);
4038                         return -1;
4039
4040                 case RING_FREE_REQ_RING_TYPE_TX:
4041                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4042                                    rc, err);
4043                         return -1;
4044
4045                 default:
4046                         netdev_err(bp->dev, "Invalid ring\n");
4047                         return -1;
4048                 }
4049         }
4050         ring->fw_ring_id = ring_id;
4051         return rc;
4052 }
4053
4054 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4055 {
4056         int rc;
4057
4058         if (BNXT_PF(bp)) {
4059                 struct hwrm_func_cfg_input req = {0};
4060
4061                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4062                 req.fid = cpu_to_le16(0xffff);
4063                 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4064                 req.async_event_cr = cpu_to_le16(idx);
4065                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4066         } else {
4067                 struct hwrm_func_vf_cfg_input req = {0};
4068
4069                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4070                 req.enables =
4071                         cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4072                 req.async_event_cr = cpu_to_le16(idx);
4073                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4074         }
4075         return rc;
4076 }
4077
4078 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4079 {
4080         int i, rc = 0;
4081
4082         for (i = 0; i < bp->cp_nr_rings; i++) {
4083                 struct bnxt_napi *bnapi = bp->bnapi[i];
4084                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4085                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4086
4087                 cpr->cp_doorbell = bp->bar1 + i * 0x80;
4088                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4089                                               INVALID_STATS_CTX_ID);
4090                 if (rc)
4091                         goto err_out;
4092                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4093                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4094
4095                 if (!i) {
4096                         rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4097                         if (rc)
4098                                 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4099                 }
4100         }
4101
4102         for (i = 0; i < bp->tx_nr_rings; i++) {
4103                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4104                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4105                 u32 map_idx = txr->bnapi->index;
4106                 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4107
4108                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4109                                               map_idx, fw_stats_ctx);
4110                 if (rc)
4111                         goto err_out;
4112                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4113         }
4114
4115         for (i = 0; i < bp->rx_nr_rings; i++) {
4116                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4117                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4118                 u32 map_idx = rxr->bnapi->index;
4119
4120                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4121                                               map_idx, INVALID_STATS_CTX_ID);
4122                 if (rc)
4123                         goto err_out;
4124                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4125                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4126                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4127         }
4128
4129         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4130                 for (i = 0; i < bp->rx_nr_rings; i++) {
4131                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4132                         struct bnxt_ring_struct *ring =
4133                                                 &rxr->rx_agg_ring_struct;
4134                         u32 grp_idx = rxr->bnapi->index;
4135                         u32 map_idx = grp_idx + bp->rx_nr_rings;
4136
4137                         rc = hwrm_ring_alloc_send_msg(bp, ring,
4138                                                       HWRM_RING_ALLOC_AGG,
4139                                                       map_idx,
4140                                                       INVALID_STATS_CTX_ID);
4141                         if (rc)
4142                                 goto err_out;
4143
4144                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4145                         writel(DB_KEY_RX | rxr->rx_agg_prod,
4146                                rxr->rx_agg_doorbell);
4147                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4148                 }
4149         }
4150 err_out:
4151         return rc;
4152 }
4153
4154 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4155                                    struct bnxt_ring_struct *ring,
4156                                    u32 ring_type, int cmpl_ring_id)
4157 {
4158         int rc;
4159         struct hwrm_ring_free_input req = {0};
4160         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4161         u16 error_code;
4162
4163         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4164         req.ring_type = ring_type;
4165         req.ring_id = cpu_to_le16(ring->fw_ring_id);
4166
4167         mutex_lock(&bp->hwrm_cmd_lock);
4168         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4169         error_code = le16_to_cpu(resp->error_code);
4170         mutex_unlock(&bp->hwrm_cmd_lock);
4171
4172         if (rc || error_code) {
4173                 switch (ring_type) {
4174                 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4175                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4176                                    rc);
4177                         return rc;
4178                 case RING_FREE_REQ_RING_TYPE_RX:
4179                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4180                                    rc);
4181                         return rc;
4182                 case RING_FREE_REQ_RING_TYPE_TX:
4183                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4184                                    rc);
4185                         return rc;
4186                 default:
4187                         netdev_err(bp->dev, "Invalid ring\n");
4188                         return -1;
4189                 }
4190         }
4191         return 0;
4192 }
4193
4194 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4195 {
4196         int i;
4197
4198         if (!bp->bnapi)
4199                 return;
4200
4201         for (i = 0; i < bp->tx_nr_rings; i++) {
4202                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4203                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4204                 u32 grp_idx = txr->bnapi->index;
4205                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4206
4207                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4208                         hwrm_ring_free_send_msg(bp, ring,
4209                                                 RING_FREE_REQ_RING_TYPE_TX,
4210                                                 close_path ? cmpl_ring_id :
4211                                                 INVALID_HW_RING_ID);
4212                         ring->fw_ring_id = INVALID_HW_RING_ID;
4213                 }
4214         }
4215
4216         for (i = 0; i < bp->rx_nr_rings; i++) {
4217                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4218                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4219                 u32 grp_idx = rxr->bnapi->index;
4220                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4221
4222                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4223                         hwrm_ring_free_send_msg(bp, ring,
4224                                                 RING_FREE_REQ_RING_TYPE_RX,
4225                                                 close_path ? cmpl_ring_id :
4226                                                 INVALID_HW_RING_ID);
4227                         ring->fw_ring_id = INVALID_HW_RING_ID;
4228                         bp->grp_info[grp_idx].rx_fw_ring_id =
4229                                 INVALID_HW_RING_ID;
4230                 }
4231         }
4232
4233         for (i = 0; i < bp->rx_nr_rings; i++) {
4234                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4235                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4236                 u32 grp_idx = rxr->bnapi->index;
4237                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4238
4239                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4240                         hwrm_ring_free_send_msg(bp, ring,
4241                                                 RING_FREE_REQ_RING_TYPE_RX,
4242                                                 close_path ? cmpl_ring_id :
4243                                                 INVALID_HW_RING_ID);
4244                         ring->fw_ring_id = INVALID_HW_RING_ID;
4245                         bp->grp_info[grp_idx].agg_fw_ring_id =
4246                                 INVALID_HW_RING_ID;
4247                 }
4248         }
4249
4250         /* The completion rings are about to be freed.  After that the
4251          * IRQ doorbell will not work anymore.  So we need to disable
4252          * IRQ here.
4253          */
4254         bnxt_disable_int_sync(bp);
4255
4256         for (i = 0; i < bp->cp_nr_rings; i++) {
4257                 struct bnxt_napi *bnapi = bp->bnapi[i];
4258                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4259                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4260
4261                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4262                         hwrm_ring_free_send_msg(bp, ring,
4263                                                 RING_FREE_REQ_RING_TYPE_L2_CMPL,
4264                                                 INVALID_HW_RING_ID);
4265                         ring->fw_ring_id = INVALID_HW_RING_ID;
4266                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4267                 }
4268         }
4269 }
4270
4271 /* Caller must hold bp->hwrm_cmd_lock */
4272 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4273 {
4274         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4275         struct hwrm_func_qcfg_input req = {0};
4276         int rc;
4277
4278         if (bp->hwrm_spec_code < 0x10601)
4279                 return 0;
4280
4281         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4282         req.fid = cpu_to_le16(fid);
4283         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4284         if (!rc)
4285                 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4286
4287         return rc;
4288 }
4289
4290 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4291 {
4292         struct hwrm_func_cfg_input req = {0};
4293         int rc;
4294
4295         if (bp->hwrm_spec_code < 0x10601)
4296                 return 0;
4297
4298         if (BNXT_VF(bp))
4299                 return 0;
4300
4301         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4302         req.fid = cpu_to_le16(0xffff);
4303         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4304         req.num_tx_rings = cpu_to_le16(*tx_rings);
4305         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4306         if (rc)
4307                 return rc;
4308
4309         mutex_lock(&bp->hwrm_cmd_lock);
4310         rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4311         mutex_unlock(&bp->hwrm_cmd_lock);
4312         return rc;
4313 }
4314
4315 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
4316         u32 buf_tmrs, u16 flags,
4317         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4318 {
4319         req->flags = cpu_to_le16(flags);
4320         req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
4321         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
4322         req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
4323         req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
4324         /* Minimum time between 2 interrupts set to buf_tmr x 2 */
4325         req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
4326         req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
4327         req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
4328 }
4329
4330 int bnxt_hwrm_set_coal(struct bnxt *bp)
4331 {
4332         int i, rc = 0;
4333         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4334                                                            req_tx = {0}, *req;
4335         u16 max_buf, max_buf_irq;
4336         u16 buf_tmr, buf_tmr_irq;
4337         u32 flags;
4338
4339         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4340                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4341         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4342                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4343
4344         /* Each rx completion (2 records) should be DMAed immediately.
4345          * DMA 1/4 of the completion buffers at a time.
4346          */
4347         max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4348         /* max_buf must not be zero */
4349         max_buf = clamp_t(u16, max_buf, 1, 63);
4350         max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4351         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4352         /* buf timer set to 1/4 of interrupt timer */
4353         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4354         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4355         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4356
4357         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4358
4359         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
4360          * if coal_ticks is less than 25 us.
4361          */
4362         if (bp->rx_coal_ticks < 25)
4363                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4364
4365         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4366                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4367
4368         /* max_buf must not be zero */
4369         max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4370         max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4371         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4372         /* buf timer set to 1/4 of interrupt timer */
4373         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4374         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4375         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4376
4377         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4378         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4379                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4380
4381         mutex_lock(&bp->hwrm_cmd_lock);
4382         for (i = 0; i < bp->cp_nr_rings; i++) {
4383                 struct bnxt_napi *bnapi = bp->bnapi[i];
4384
4385                 req = &req_rx;
4386                 if (!bnapi->rx_ring)
4387                         req = &req_tx;
4388                 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4389
4390                 rc = _hwrm_send_message(bp, req, sizeof(*req),
4391                                         HWRM_CMD_TIMEOUT);
4392                 if (rc)
4393                         break;
4394         }
4395         mutex_unlock(&bp->hwrm_cmd_lock);
4396         return rc;
4397 }
4398
4399 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4400 {
4401         int rc = 0, i;
4402         struct hwrm_stat_ctx_free_input req = {0};
4403
4404         if (!bp->bnapi)
4405                 return 0;
4406
4407         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4408                 return 0;
4409
4410         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4411
4412         mutex_lock(&bp->hwrm_cmd_lock);
4413         for (i = 0; i < bp->cp_nr_rings; i++) {
4414                 struct bnxt_napi *bnapi = bp->bnapi[i];
4415                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4416
4417                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4418                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4419
4420                         rc = _hwrm_send_message(bp, &req, sizeof(req),
4421                                                 HWRM_CMD_TIMEOUT);
4422                         if (rc)
4423                                 break;
4424
4425                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4426                 }
4427         }
4428         mutex_unlock(&bp->hwrm_cmd_lock);
4429         return rc;
4430 }
4431
4432 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4433 {
4434         int rc = 0, i;
4435         struct hwrm_stat_ctx_alloc_input req = {0};
4436         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4437
4438         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4439                 return 0;
4440
4441         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4442
4443         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4444
4445         mutex_lock(&bp->hwrm_cmd_lock);
4446         for (i = 0; i < bp->cp_nr_rings; i++) {
4447                 struct bnxt_napi *bnapi = bp->bnapi[i];
4448                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4449
4450                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4451
4452                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4453                                         HWRM_CMD_TIMEOUT);
4454                 if (rc)
4455                         break;
4456
4457                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4458
4459                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4460         }
4461         mutex_unlock(&bp->hwrm_cmd_lock);
4462         return rc;
4463 }
4464
4465 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4466 {
4467         struct hwrm_func_qcfg_input req = {0};
4468         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4469         int rc;
4470
4471         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4472         req.fid = cpu_to_le16(0xffff);
4473         mutex_lock(&bp->hwrm_cmd_lock);
4474         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4475         if (rc)
4476                 goto func_qcfg_exit;
4477
4478 #ifdef CONFIG_BNXT_SRIOV
4479         if (BNXT_VF(bp)) {
4480                 struct bnxt_vf_info *vf = &bp->vf;
4481
4482                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4483         }
4484 #endif
4485         if (BNXT_PF(bp) && (le16_to_cpu(resp->flags) &
4486                             FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED))
4487                 bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
4488
4489         switch (resp->port_partition_type) {
4490         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4491         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4492         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4493                 bp->port_partition_type = resp->port_partition_type;
4494                 break;
4495         }
4496
4497 func_qcfg_exit:
4498         mutex_unlock(&bp->hwrm_cmd_lock);
4499         return rc;
4500 }
4501
4502 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4503 {
4504         int rc = 0;
4505         struct hwrm_func_qcaps_input req = {0};
4506         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4507
4508         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4509         req.fid = cpu_to_le16(0xffff);
4510
4511         mutex_lock(&bp->hwrm_cmd_lock);
4512         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4513         if (rc)
4514                 goto hwrm_func_qcaps_exit;
4515
4516         if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4517                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4518         if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4519                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4520
4521         bp->tx_push_thresh = 0;
4522         if (resp->flags &
4523             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4524                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4525
4526         if (BNXT_PF(bp)) {
4527                 struct bnxt_pf_info *pf = &bp->pf;
4528
4529                 pf->fw_fid = le16_to_cpu(resp->fid);
4530                 pf->port_id = le16_to_cpu(resp->port_id);
4531                 bp->dev->dev_port = pf->port_id;
4532                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4533                 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4534                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4535                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4536                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4537                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4538                 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4539                 if (!pf->max_hw_ring_grps)
4540                         pf->max_hw_ring_grps = pf->max_tx_rings;
4541                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4542                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
4543                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4544                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4545                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
4546                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4547                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4548                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4549                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4550                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4551                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4552         } else {
4553 #ifdef CONFIG_BNXT_SRIOV
4554                 struct bnxt_vf_info *vf = &bp->vf;
4555
4556                 vf->fw_fid = le16_to_cpu(resp->fid);
4557
4558                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4559                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4560                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4561                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4562                 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4563                 if (!vf->max_hw_ring_grps)
4564                         vf->max_hw_ring_grps = vf->max_tx_rings;
4565                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4566                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
4567                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4568
4569                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4570                 mutex_unlock(&bp->hwrm_cmd_lock);
4571
4572                 if (is_valid_ether_addr(vf->mac_addr)) {
4573                         /* overwrite netdev dev_adr with admin VF MAC */
4574                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4575                 } else {
4576                         eth_hw_addr_random(bp->dev);
4577                         rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
4578                 }
4579                 return rc;
4580 #endif
4581         }
4582
4583 hwrm_func_qcaps_exit:
4584         mutex_unlock(&bp->hwrm_cmd_lock);
4585         return rc;
4586 }
4587
4588 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4589 {
4590         struct hwrm_func_reset_input req = {0};
4591
4592         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4593         req.enables = 0;
4594
4595         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4596 }
4597
4598 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4599 {
4600         int rc = 0;
4601         struct hwrm_queue_qportcfg_input req = {0};
4602         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4603         u8 i, *qptr;
4604
4605         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4606
4607         mutex_lock(&bp->hwrm_cmd_lock);
4608         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4609         if (rc)
4610                 goto qportcfg_exit;
4611
4612         if (!resp->max_configurable_queues) {
4613                 rc = -EINVAL;
4614                 goto qportcfg_exit;
4615         }
4616         bp->max_tc = resp->max_configurable_queues;
4617         bp->max_lltc = resp->max_configurable_lossless_queues;
4618         if (bp->max_tc > BNXT_MAX_QUEUE)
4619                 bp->max_tc = BNXT_MAX_QUEUE;
4620
4621         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4622                 bp->max_tc = 1;
4623
4624         if (bp->max_lltc > bp->max_tc)
4625                 bp->max_lltc = bp->max_tc;
4626
4627         qptr = &resp->queue_id0;
4628         for (i = 0; i < bp->max_tc; i++) {
4629                 bp->q_info[i].queue_id = *qptr++;
4630                 bp->q_info[i].queue_profile = *qptr++;
4631         }
4632
4633 qportcfg_exit:
4634         mutex_unlock(&bp->hwrm_cmd_lock);
4635         return rc;
4636 }
4637
4638 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4639 {
4640         int rc;
4641         struct hwrm_ver_get_input req = {0};
4642         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4643
4644         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4645         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4646         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4647         req.hwrm_intf_min = HWRM_VERSION_MINOR;
4648         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4649         mutex_lock(&bp->hwrm_cmd_lock);
4650         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4651         if (rc)
4652                 goto hwrm_ver_get_exit;
4653
4654         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4655
4656         bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4657                              resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4658         if (resp->hwrm_intf_maj < 1) {
4659                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4660                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
4661                             resp->hwrm_intf_upd);
4662                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4663         }
4664         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4665                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4666                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4667
4668         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4669         if (!bp->hwrm_cmd_timeout)
4670                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4671
4672         if (resp->hwrm_intf_maj >= 1)
4673                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4674
4675         bp->chip_num = le16_to_cpu(resp->chip_num);
4676         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4677             !resp->chip_metal)
4678                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4679
4680 hwrm_ver_get_exit:
4681         mutex_unlock(&bp->hwrm_cmd_lock);
4682         return rc;
4683 }
4684
4685 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4686 {
4687 #if IS_ENABLED(CONFIG_RTC_LIB)
4688         struct hwrm_fw_set_time_input req = {0};
4689         struct rtc_time tm;
4690         struct timeval tv;
4691
4692         if (bp->hwrm_spec_code < 0x10400)
4693                 return -EOPNOTSUPP;
4694
4695         do_gettimeofday(&tv);
4696         rtc_time_to_tm(tv.tv_sec, &tm);
4697         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4698         req.year = cpu_to_le16(1900 + tm.tm_year);
4699         req.month = 1 + tm.tm_mon;
4700         req.day = tm.tm_mday;
4701         req.hour = tm.tm_hour;
4702         req.minute = tm.tm_min;
4703         req.second = tm.tm_sec;
4704         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4705 #else
4706         return -EOPNOTSUPP;
4707 #endif
4708 }
4709
4710 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4711 {
4712         int rc;
4713         struct bnxt_pf_info *pf = &bp->pf;
4714         struct hwrm_port_qstats_input req = {0};
4715
4716         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4717                 return 0;
4718
4719         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4720         req.port_id = cpu_to_le16(pf->port_id);
4721         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4722         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4723         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4724         return rc;
4725 }
4726
4727 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4728 {
4729         if (bp->vxlan_port_cnt) {
4730                 bnxt_hwrm_tunnel_dst_port_free(
4731                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4732         }
4733         bp->vxlan_port_cnt = 0;
4734         if (bp->nge_port_cnt) {
4735                 bnxt_hwrm_tunnel_dst_port_free(
4736                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4737         }
4738         bp->nge_port_cnt = 0;
4739 }
4740
4741 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4742 {
4743         int rc, i;
4744         u32 tpa_flags = 0;
4745
4746         if (set_tpa)
4747                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4748         for (i = 0; i < bp->nr_vnics; i++) {
4749                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4750                 if (rc) {
4751                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4752                                    i, rc);
4753                         return rc;
4754                 }
4755         }
4756         return 0;
4757 }
4758
4759 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4760 {
4761         int i;
4762
4763         for (i = 0; i < bp->nr_vnics; i++)
4764                 bnxt_hwrm_vnic_set_rss(bp, i, false);
4765 }
4766
4767 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4768                                     bool irq_re_init)
4769 {
4770         if (bp->vnic_info) {
4771                 bnxt_hwrm_clear_vnic_filter(bp);
4772                 /* clear all RSS setting before free vnic ctx */
4773                 bnxt_hwrm_clear_vnic_rss(bp);
4774                 bnxt_hwrm_vnic_ctx_free(bp);
4775                 /* before free the vnic, undo the vnic tpa settings */
4776                 if (bp->flags & BNXT_FLAG_TPA)
4777                         bnxt_set_tpa(bp, false);
4778                 bnxt_hwrm_vnic_free(bp);
4779         }
4780         bnxt_hwrm_ring_free(bp, close_path);
4781         bnxt_hwrm_ring_grp_free(bp);
4782         if (irq_re_init) {
4783                 bnxt_hwrm_stat_ctx_free(bp);
4784                 bnxt_hwrm_free_tunnel_ports(bp);
4785         }
4786 }
4787
4788 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4789 {
4790         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4791         int rc;
4792
4793         if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
4794                 goto skip_rss_ctx;
4795
4796         /* allocate context for vnic */
4797         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4798         if (rc) {
4799                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4800                            vnic_id, rc);
4801                 goto vnic_setup_err;
4802         }
4803         bp->rsscos_nr_ctxs++;
4804
4805         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4806                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4807                 if (rc) {
4808                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4809                                    vnic_id, rc);
4810                         goto vnic_setup_err;
4811                 }
4812                 bp->rsscos_nr_ctxs++;
4813         }
4814
4815 skip_rss_ctx:
4816         /* configure default vnic, ring grp */
4817         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4818         if (rc) {
4819                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4820                            vnic_id, rc);
4821                 goto vnic_setup_err;
4822         }
4823
4824         /* Enable RSS hashing on vnic */
4825         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4826         if (rc) {
4827                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4828                            vnic_id, rc);
4829                 goto vnic_setup_err;
4830         }
4831
4832         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4833                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4834                 if (rc) {
4835                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4836                                    vnic_id, rc);
4837                 }
4838         }
4839
4840 vnic_setup_err:
4841         return rc;
4842 }
4843
4844 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4845 {
4846 #ifdef CONFIG_RFS_ACCEL
4847         int i, rc = 0;
4848
4849         for (i = 0; i < bp->rx_nr_rings; i++) {
4850                 struct bnxt_vnic_info *vnic;
4851                 u16 vnic_id = i + 1;
4852                 u16 ring_id = i;
4853
4854                 if (vnic_id >= bp->nr_vnics)
4855                         break;
4856
4857                 vnic = &bp->vnic_info[vnic_id];
4858                 vnic->flags |= BNXT_VNIC_RFS_FLAG;
4859                 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
4860                         vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
4861                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4862                 if (rc) {
4863                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4864                                    vnic_id, rc);
4865                         break;
4866                 }
4867                 rc = bnxt_setup_vnic(bp, vnic_id);
4868                 if (rc)
4869                         break;
4870         }
4871         return rc;
4872 #else
4873         return 0;
4874 #endif
4875 }
4876
4877 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4878 static bool bnxt_promisc_ok(struct bnxt *bp)
4879 {
4880 #ifdef CONFIG_BNXT_SRIOV
4881         if (BNXT_VF(bp) && !bp->vf.vlan)
4882                 return false;
4883 #endif
4884         return true;
4885 }
4886
4887 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4888 {
4889         unsigned int rc = 0;
4890
4891         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4892         if (rc) {
4893                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4894                            rc);
4895                 return rc;
4896         }
4897
4898         rc = bnxt_hwrm_vnic_cfg(bp, 1);
4899         if (rc) {
4900                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4901                            rc);
4902                 return rc;
4903         }
4904         return rc;
4905 }
4906
4907 static int bnxt_cfg_rx_mode(struct bnxt *);
4908 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4909
4910 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4911 {
4912         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4913         int rc = 0;
4914         unsigned int rx_nr_rings = bp->rx_nr_rings;
4915
4916         if (irq_re_init) {
4917                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4918                 if (rc) {
4919                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4920                                    rc);
4921                         goto err_out;
4922                 }
4923         }
4924
4925         rc = bnxt_hwrm_ring_alloc(bp);
4926         if (rc) {
4927                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4928                 goto err_out;
4929         }
4930
4931         rc = bnxt_hwrm_ring_grp_alloc(bp);
4932         if (rc) {
4933                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4934                 goto err_out;
4935         }
4936
4937         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4938                 rx_nr_rings--;
4939
4940         /* default vnic 0 */
4941         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4942         if (rc) {
4943                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4944                 goto err_out;
4945         }
4946
4947         rc = bnxt_setup_vnic(bp, 0);
4948         if (rc)
4949                 goto err_out;
4950
4951         if (bp->flags & BNXT_FLAG_RFS) {
4952                 rc = bnxt_alloc_rfs_vnics(bp);
4953                 if (rc)
4954                         goto err_out;
4955         }
4956
4957         if (bp->flags & BNXT_FLAG_TPA) {
4958                 rc = bnxt_set_tpa(bp, true);
4959                 if (rc)
4960                         goto err_out;
4961         }
4962
4963         if (BNXT_VF(bp))
4964                 bnxt_update_vf_mac(bp);
4965
4966         /* Filter for default vnic 0 */
4967         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4968         if (rc) {
4969                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4970                 goto err_out;
4971         }
4972         vnic->uc_filter_count = 1;
4973
4974         vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4975
4976         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4977                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4978
4979         if (bp->dev->flags & IFF_ALLMULTI) {
4980                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4981                 vnic->mc_list_count = 0;
4982         } else {
4983                 u32 mask = 0;
4984
4985                 bnxt_mc_list_updated(bp, &mask);
4986                 vnic->rx_mask |= mask;
4987         }
4988
4989         rc = bnxt_cfg_rx_mode(bp);
4990         if (rc)
4991                 goto err_out;
4992
4993         rc = bnxt_hwrm_set_coal(bp);
4994         if (rc)
4995                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4996                                 rc);
4997
4998         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4999                 rc = bnxt_setup_nitroa0_vnic(bp);
5000                 if (rc)
5001                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5002                                    rc);
5003         }
5004
5005         if (BNXT_VF(bp)) {
5006                 bnxt_hwrm_func_qcfg(bp);
5007                 netdev_update_features(bp->dev);
5008         }
5009
5010         return 0;
5011
5012 err_out:
5013         bnxt_hwrm_resource_free(bp, 0, true);
5014
5015         return rc;
5016 }
5017
5018 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5019 {
5020         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5021         return 0;
5022 }
5023
5024 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5025 {
5026         bnxt_init_cp_rings(bp);
5027         bnxt_init_rx_rings(bp);
5028         bnxt_init_tx_rings(bp);
5029         bnxt_init_ring_grps(bp, irq_re_init);
5030         bnxt_init_vnics(bp);
5031
5032         return bnxt_init_chip(bp, irq_re_init);
5033 }
5034
5035 static int bnxt_set_real_num_queues(struct bnxt *bp)
5036 {
5037         int rc;
5038         struct net_device *dev = bp->dev;
5039
5040         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5041                                           bp->tx_nr_rings_xdp);
5042         if (rc)
5043                 return rc;
5044
5045         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5046         if (rc)
5047                 return rc;
5048
5049 #ifdef CONFIG_RFS_ACCEL
5050         if (bp->flags & BNXT_FLAG_RFS)
5051                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5052 #endif
5053
5054         return rc;
5055 }
5056
5057 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5058                            bool shared)
5059 {
5060         int _rx = *rx, _tx = *tx;
5061
5062         if (shared) {
5063                 *rx = min_t(int, _rx, max);
5064                 *tx = min_t(int, _tx, max);
5065         } else {
5066                 if (max < 2)
5067                         return -ENOMEM;
5068
5069                 while (_rx + _tx > max) {
5070                         if (_rx > _tx && _rx > 1)
5071                                 _rx--;
5072                         else if (_tx > 1)
5073                                 _tx--;
5074                 }
5075                 *rx = _rx;
5076                 *tx = _tx;
5077         }
5078         return 0;
5079 }
5080
5081 static void bnxt_setup_msix(struct bnxt *bp)
5082 {
5083         const int len = sizeof(bp->irq_tbl[0].name);
5084         struct net_device *dev = bp->dev;
5085         int tcs, i;
5086
5087         tcs = netdev_get_num_tc(dev);
5088         if (tcs > 1) {
5089                 int i, off, count;
5090
5091                 for (i = 0; i < tcs; i++) {
5092                         count = bp->tx_nr_rings_per_tc;
5093                         off = i * count;
5094                         netdev_set_tc_queue(dev, i, count, off);
5095                 }
5096         }
5097
5098         for (i = 0; i < bp->cp_nr_rings; i++) {
5099                 char *attr;
5100
5101                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5102                         attr = "TxRx";
5103                 else if (i < bp->rx_nr_rings)
5104                         attr = "rx";
5105                 else
5106                         attr = "tx";
5107
5108                 snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5109                          i);
5110                 bp->irq_tbl[i].handler = bnxt_msix;
5111         }
5112 }
5113
5114 static void bnxt_setup_inta(struct bnxt *bp)
5115 {
5116         const int len = sizeof(bp->irq_tbl[0].name);
5117
5118         if (netdev_get_num_tc(bp->dev))
5119                 netdev_reset_tc(bp->dev);
5120
5121         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5122                  0);
5123         bp->irq_tbl[0].handler = bnxt_inta;
5124 }
5125
5126 static int bnxt_setup_int_mode(struct bnxt *bp)
5127 {
5128         int rc;
5129
5130         if (bp->flags & BNXT_FLAG_USING_MSIX)
5131                 bnxt_setup_msix(bp);
5132         else
5133                 bnxt_setup_inta(bp);
5134
5135         rc = bnxt_set_real_num_queues(bp);
5136         return rc;
5137 }
5138
5139 #ifdef CONFIG_RFS_ACCEL
5140 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5141 {
5142 #if defined(CONFIG_BNXT_SRIOV)
5143         if (BNXT_VF(bp))
5144                 return bp->vf.max_rsscos_ctxs;
5145 #endif
5146         return bp->pf.max_rsscos_ctxs;
5147 }
5148
5149 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5150 {
5151 #if defined(CONFIG_BNXT_SRIOV)
5152         if (BNXT_VF(bp))
5153                 return bp->vf.max_vnics;
5154 #endif
5155         return bp->pf.max_vnics;
5156 }
5157 #endif
5158
5159 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5160 {
5161 #if defined(CONFIG_BNXT_SRIOV)
5162         if (BNXT_VF(bp))
5163                 return bp->vf.max_stat_ctxs;
5164 #endif
5165         return bp->pf.max_stat_ctxs;
5166 }
5167
5168 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5169 {
5170 #if defined(CONFIG_BNXT_SRIOV)
5171         if (BNXT_VF(bp))
5172                 bp->vf.max_stat_ctxs = max;
5173         else
5174 #endif
5175                 bp->pf.max_stat_ctxs = max;
5176 }
5177
5178 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5179 {
5180 #if defined(CONFIG_BNXT_SRIOV)
5181         if (BNXT_VF(bp))
5182                 return bp->vf.max_cp_rings;
5183 #endif
5184         return bp->pf.max_cp_rings;
5185 }
5186
5187 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5188 {
5189 #if defined(CONFIG_BNXT_SRIOV)
5190         if (BNXT_VF(bp))
5191                 bp->vf.max_cp_rings = max;
5192         else
5193 #endif
5194                 bp->pf.max_cp_rings = max;
5195 }
5196
5197 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5198 {
5199 #if defined(CONFIG_BNXT_SRIOV)
5200         if (BNXT_VF(bp))
5201                 return bp->vf.max_irqs;
5202 #endif
5203         return bp->pf.max_irqs;
5204 }
5205
5206 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5207 {
5208 #if defined(CONFIG_BNXT_SRIOV)
5209         if (BNXT_VF(bp))
5210                 bp->vf.max_irqs = max_irqs;
5211         else
5212 #endif
5213                 bp->pf.max_irqs = max_irqs;
5214 }
5215
5216 static int bnxt_init_msix(struct bnxt *bp)
5217 {
5218         int i, total_vecs, rc = 0, min = 1;
5219         struct msix_entry *msix_ent;
5220
5221         total_vecs = bnxt_get_max_func_irqs(bp);
5222         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5223         if (!msix_ent)
5224                 return -ENOMEM;
5225
5226         for (i = 0; i < total_vecs; i++) {
5227                 msix_ent[i].entry = i;
5228                 msix_ent[i].vector = 0;
5229         }
5230
5231         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5232                 min = 2;
5233
5234         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5235         if (total_vecs < 0) {
5236                 rc = -ENODEV;
5237                 goto msix_setup_exit;
5238         }
5239
5240         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5241         if (bp->irq_tbl) {
5242                 for (i = 0; i < total_vecs; i++)
5243                         bp->irq_tbl[i].vector = msix_ent[i].vector;
5244
5245                 bp->total_irqs = total_vecs;
5246                 /* Trim rings based upon num of vectors allocated */
5247                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5248                                      total_vecs, min == 1);
5249                 if (rc)
5250                         goto msix_setup_exit;
5251
5252                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5253                 bp->cp_nr_rings = (min == 1) ?
5254                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5255                                   bp->tx_nr_rings + bp->rx_nr_rings;
5256
5257         } else {
5258                 rc = -ENOMEM;
5259                 goto msix_setup_exit;
5260         }
5261         bp->flags |= BNXT_FLAG_USING_MSIX;
5262         kfree(msix_ent);
5263         return 0;
5264
5265 msix_setup_exit:
5266         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5267         kfree(bp->irq_tbl);
5268         bp->irq_tbl = NULL;
5269         pci_disable_msix(bp->pdev);
5270         kfree(msix_ent);
5271         return rc;
5272 }
5273
5274 static int bnxt_init_inta(struct bnxt *bp)
5275 {
5276         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5277         if (!bp->irq_tbl)
5278                 return -ENOMEM;
5279
5280         bp->total_irqs = 1;
5281         bp->rx_nr_rings = 1;
5282         bp->tx_nr_rings = 1;
5283         bp->cp_nr_rings = 1;
5284         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5285         bp->flags |= BNXT_FLAG_SHARED_RINGS;
5286         bp->irq_tbl[0].vector = bp->pdev->irq;
5287         return 0;
5288 }
5289
5290 static int bnxt_init_int_mode(struct bnxt *bp)
5291 {
5292         int rc = 0;
5293
5294         if (bp->flags & BNXT_FLAG_MSIX_CAP)
5295                 rc = bnxt_init_msix(bp);
5296
5297         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5298                 /* fallback to INTA */
5299                 rc = bnxt_init_inta(bp);
5300         }
5301         return rc;
5302 }
5303
5304 static void bnxt_clear_int_mode(struct bnxt *bp)
5305 {
5306         if (bp->flags & BNXT_FLAG_USING_MSIX)
5307                 pci_disable_msix(bp->pdev);
5308
5309         kfree(bp->irq_tbl);
5310         bp->irq_tbl = NULL;
5311         bp->flags &= ~BNXT_FLAG_USING_MSIX;
5312 }
5313
5314 static void bnxt_free_irq(struct bnxt *bp)
5315 {
5316         struct bnxt_irq *irq;
5317         int i;
5318
5319 #ifdef CONFIG_RFS_ACCEL
5320         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5321         bp->dev->rx_cpu_rmap = NULL;
5322 #endif
5323         if (!bp->irq_tbl)
5324                 return;
5325
5326         for (i = 0; i < bp->cp_nr_rings; i++) {
5327                 irq = &bp->irq_tbl[i];
5328                 if (irq->requested)
5329                         free_irq(irq->vector, bp->bnapi[i]);
5330                 irq->requested = 0;
5331         }
5332 }
5333
5334 static int bnxt_request_irq(struct bnxt *bp)
5335 {
5336         int i, j, rc = 0;
5337         unsigned long flags = 0;
5338 #ifdef CONFIG_RFS_ACCEL
5339         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5340 #endif
5341
5342         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5343                 flags = IRQF_SHARED;
5344
5345         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5346                 struct bnxt_irq *irq = &bp->irq_tbl[i];
5347 #ifdef CONFIG_RFS_ACCEL
5348                 if (rmap && bp->bnapi[i]->rx_ring) {
5349                         rc = irq_cpu_rmap_add(rmap, irq->vector);
5350                         if (rc)
5351                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5352                                             j);
5353                         j++;
5354                 }
5355 #endif
5356                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5357                                  bp->bnapi[i]);
5358                 if (rc)
5359                         break;
5360
5361                 irq->requested = 1;
5362         }
5363         return rc;
5364 }
5365
5366 static void bnxt_del_napi(struct bnxt *bp)
5367 {
5368         int i;
5369
5370         if (!bp->bnapi)
5371                 return;
5372
5373         for (i = 0; i < bp->cp_nr_rings; i++) {
5374                 struct bnxt_napi *bnapi = bp->bnapi[i];
5375
5376                 napi_hash_del(&bnapi->napi);
5377                 netif_napi_del(&bnapi->napi);
5378         }
5379         /* We called napi_hash_del() before netif_napi_del(), we need
5380          * to respect an RCU grace period before freeing napi structures.
5381          */
5382         synchronize_net();
5383 }
5384
5385 static void bnxt_init_napi(struct bnxt *bp)
5386 {
5387         int i;
5388         unsigned int cp_nr_rings = bp->cp_nr_rings;
5389         struct bnxt_napi *bnapi;
5390
5391         if (bp->flags & BNXT_FLAG_USING_MSIX) {
5392                 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5393                         cp_nr_rings--;
5394                 for (i = 0; i < cp_nr_rings; i++) {
5395                         bnapi = bp->bnapi[i];
5396                         netif_napi_add(bp->dev, &bnapi->napi,
5397                                        bnxt_poll, 64);
5398                 }
5399                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5400                         bnapi = bp->bnapi[cp_nr_rings];
5401                         netif_napi_add(bp->dev, &bnapi->napi,
5402                                        bnxt_poll_nitroa0, 64);
5403                 }
5404         } else {
5405                 bnapi = bp->bnapi[0];
5406                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5407         }
5408 }
5409
5410 static void bnxt_disable_napi(struct bnxt *bp)
5411 {
5412         int i;
5413
5414         if (!bp->bnapi)
5415                 return;
5416
5417         for (i = 0; i < bp->cp_nr_rings; i++)
5418                 napi_disable(&bp->bnapi[i]->napi);
5419 }
5420
5421 static void bnxt_enable_napi(struct bnxt *bp)
5422 {
5423         int i;
5424
5425         for (i = 0; i < bp->cp_nr_rings; i++) {
5426                 bp->bnapi[i]->in_reset = false;
5427                 napi_enable(&bp->bnapi[i]->napi);
5428         }
5429 }
5430
5431 void bnxt_tx_disable(struct bnxt *bp)
5432 {
5433         int i;
5434         struct bnxt_tx_ring_info *txr;
5435         struct netdev_queue *txq;
5436
5437         if (bp->tx_ring) {
5438                 for (i = 0; i < bp->tx_nr_rings; i++) {
5439                         txr = &bp->tx_ring[i];
5440                         txq = netdev_get_tx_queue(bp->dev, i);
5441                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
5442                 }
5443         }
5444         /* Stop all TX queues */
5445         netif_tx_disable(bp->dev);
5446         netif_carrier_off(bp->dev);
5447 }
5448
5449 void bnxt_tx_enable(struct bnxt *bp)
5450 {
5451         int i;
5452         struct bnxt_tx_ring_info *txr;
5453         struct netdev_queue *txq;
5454
5455         for (i = 0; i < bp->tx_nr_rings; i++) {
5456                 txr = &bp->tx_ring[i];
5457                 txq = netdev_get_tx_queue(bp->dev, i);
5458                 txr->dev_state = 0;
5459         }
5460         netif_tx_wake_all_queues(bp->dev);
5461         if (bp->link_info.link_up)
5462                 netif_carrier_on(bp->dev);
5463 }
5464
5465 static void bnxt_report_link(struct bnxt *bp)
5466 {
5467         if (bp->link_info.link_up) {
5468                 const char *duplex;
5469                 const char *flow_ctrl;
5470                 u16 speed, fec;
5471
5472                 netif_carrier_on(bp->dev);
5473                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5474                         duplex = "full";
5475                 else
5476                         duplex = "half";
5477                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5478                         flow_ctrl = "ON - receive & transmit";
5479                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5480                         flow_ctrl = "ON - transmit";
5481                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5482                         flow_ctrl = "ON - receive";
5483                 else
5484                         flow_ctrl = "none";
5485                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5486                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
5487                             speed, duplex, flow_ctrl);
5488                 if (bp->flags & BNXT_FLAG_EEE_CAP)
5489                         netdev_info(bp->dev, "EEE is %s\n",
5490                                     bp->eee.eee_active ? "active" :
5491                                                          "not active");
5492                 fec = bp->link_info.fec_cfg;
5493                 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5494                         netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5495                                     (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5496                                     (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5497                                      (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5498         } else {
5499                 netif_carrier_off(bp->dev);
5500                 netdev_err(bp->dev, "NIC Link is Down\n");
5501         }
5502 }
5503
5504 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5505 {
5506         int rc = 0;
5507         struct hwrm_port_phy_qcaps_input req = {0};
5508         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5509         struct bnxt_link_info *link_info = &bp->link_info;
5510
5511         if (bp->hwrm_spec_code < 0x10201)
5512                 return 0;
5513
5514         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5515
5516         mutex_lock(&bp->hwrm_cmd_lock);
5517         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5518         if (rc)
5519                 goto hwrm_phy_qcaps_exit;
5520
5521         if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5522                 struct ethtool_eee *eee = &bp->eee;
5523                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5524
5525                 bp->flags |= BNXT_FLAG_EEE_CAP;
5526                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5527                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5528                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5529                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5530                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5531         }
5532         if (resp->supported_speeds_auto_mode)
5533                 link_info->support_auto_speeds =
5534                         le16_to_cpu(resp->supported_speeds_auto_mode);
5535
5536 hwrm_phy_qcaps_exit:
5537         mutex_unlock(&bp->hwrm_cmd_lock);
5538         return rc;
5539 }
5540
5541 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5542 {
5543         int rc = 0;
5544         struct bnxt_link_info *link_info = &bp->link_info;
5545         struct hwrm_port_phy_qcfg_input req = {0};
5546         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5547         u8 link_up = link_info->link_up;
5548         u16 diff;
5549
5550         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5551
5552         mutex_lock(&bp->hwrm_cmd_lock);
5553         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5554         if (rc) {
5555                 mutex_unlock(&bp->hwrm_cmd_lock);
5556                 return rc;
5557         }
5558
5559         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5560         link_info->phy_link_status = resp->link;
5561         link_info->duplex =  resp->duplex;
5562         link_info->pause = resp->pause;
5563         link_info->auto_mode = resp->auto_mode;
5564         link_info->auto_pause_setting = resp->auto_pause;
5565         link_info->lp_pause = resp->link_partner_adv_pause;
5566         link_info->force_pause_setting = resp->force_pause;
5567         link_info->duplex_setting = resp->duplex;
5568         if (link_info->phy_link_status == BNXT_LINK_LINK)
5569                 link_info->link_speed = le16_to_cpu(resp->link_speed);
5570         else
5571                 link_info->link_speed = 0;
5572         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5573         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5574         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5575         link_info->lp_auto_link_speeds =
5576                 le16_to_cpu(resp->link_partner_adv_speeds);
5577         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5578         link_info->phy_ver[0] = resp->phy_maj;
5579         link_info->phy_ver[1] = resp->phy_min;
5580         link_info->phy_ver[2] = resp->phy_bld;
5581         link_info->media_type = resp->media_type;
5582         link_info->phy_type = resp->phy_type;
5583         link_info->transceiver = resp->xcvr_pkg_type;
5584         link_info->phy_addr = resp->eee_config_phy_addr &
5585                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5586         link_info->module_status = resp->module_status;
5587
5588         if (bp->flags & BNXT_FLAG_EEE_CAP) {
5589                 struct ethtool_eee *eee = &bp->eee;
5590                 u16 fw_speeds;
5591
5592                 eee->eee_active = 0;
5593                 if (resp->eee_config_phy_addr &
5594                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5595                         eee->eee_active = 1;
5596                         fw_speeds = le16_to_cpu(
5597                                 resp->link_partner_adv_eee_link_speed_mask);
5598                         eee->lp_advertised =
5599                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5600                 }
5601
5602                 /* Pull initial EEE config */
5603                 if (!chng_link_state) {
5604                         if (resp->eee_config_phy_addr &
5605                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5606                                 eee->eee_enabled = 1;
5607
5608                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5609                         eee->advertised =
5610                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5611
5612                         if (resp->eee_config_phy_addr &
5613                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5614                                 __le32 tmr;
5615
5616                                 eee->tx_lpi_enabled = 1;
5617                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5618                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
5619                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5620                         }
5621                 }
5622         }
5623
5624         link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5625         if (bp->hwrm_spec_code >= 0x10504)
5626                 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5627
5628         /* TODO: need to add more logic to report VF link */
5629         if (chng_link_state) {
5630                 if (link_info->phy_link_status == BNXT_LINK_LINK)
5631                         link_info->link_up = 1;
5632                 else
5633                         link_info->link_up = 0;
5634                 if (link_up != link_info->link_up)
5635                         bnxt_report_link(bp);
5636         } else {
5637                 /* alwasy link down if not require to update link state */
5638                 link_info->link_up = 0;
5639         }
5640         mutex_unlock(&bp->hwrm_cmd_lock);
5641
5642         diff = link_info->support_auto_speeds ^ link_info->advertising;
5643         if ((link_info->support_auto_speeds | diff) !=
5644             link_info->support_auto_speeds) {
5645                 /* An advertised speed is no longer supported, so we need to
5646                  * update the advertisement settings.  Caller holds RTNL
5647                  * so we can modify link settings.
5648                  */
5649                 link_info->advertising = link_info->support_auto_speeds;
5650                 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5651                         bnxt_hwrm_set_link_setting(bp, true, false);
5652         }
5653         return 0;
5654 }
5655
5656 static void bnxt_get_port_module_status(struct bnxt *bp)
5657 {
5658         struct bnxt_link_info *link_info = &bp->link_info;
5659         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5660         u8 module_status;
5661
5662         if (bnxt_update_link(bp, true))
5663                 return;
5664
5665         module_status = link_info->module_status;
5666         switch (module_status) {
5667         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5668         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5669         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5670                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5671                             bp->pf.port_id);
5672                 if (bp->hwrm_spec_code >= 0x10201) {
5673                         netdev_warn(bp->dev, "Module part number %s\n",
5674                                     resp->phy_vendor_partnumber);
5675                 }
5676                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5677                         netdev_warn(bp->dev, "TX is disabled\n");
5678                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5679                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5680         }
5681 }
5682
5683 static void
5684 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5685 {
5686         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5687                 if (bp->hwrm_spec_code >= 0x10201)
5688                         req->auto_pause =
5689                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5690                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5691                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5692                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5693                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5694                 req->enables |=
5695                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5696         } else {
5697                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5698                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5699                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5700                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5701                 req->enables |=
5702                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5703                 if (bp->hwrm_spec_code >= 0x10201) {
5704                         req->auto_pause = req->force_pause;
5705                         req->enables |= cpu_to_le32(
5706                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5707                 }
5708         }
5709 }
5710
5711 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5712                                       struct hwrm_port_phy_cfg_input *req)
5713 {
5714         u8 autoneg = bp->link_info.autoneg;
5715         u16 fw_link_speed = bp->link_info.req_link_speed;
5716         u16 advertising = bp->link_info.advertising;
5717
5718         if (autoneg & BNXT_AUTONEG_SPEED) {
5719                 req->auto_mode |=
5720                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5721
5722                 req->enables |= cpu_to_le32(
5723                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5724                 req->auto_link_speed_mask = cpu_to_le16(advertising);
5725
5726                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5727                 req->flags |=
5728                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5729         } else {
5730                 req->force_link_speed = cpu_to_le16(fw_link_speed);
5731                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5732         }
5733
5734         /* tell chimp that the setting takes effect immediately */
5735         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5736 }
5737
5738 int bnxt_hwrm_set_pause(struct bnxt *bp)
5739 {
5740         struct hwrm_port_phy_cfg_input req = {0};
5741         int rc;
5742
5743         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5744         bnxt_hwrm_set_pause_common(bp, &req);
5745
5746         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5747             bp->link_info.force_link_chng)
5748                 bnxt_hwrm_set_link_common(bp, &req);
5749
5750         mutex_lock(&bp->hwrm_cmd_lock);
5751         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5752         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5753                 /* since changing of pause setting doesn't trigger any link
5754                  * change event, the driver needs to update the current pause
5755                  * result upon successfully return of the phy_cfg command
5756                  */
5757                 bp->link_info.pause =
5758                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5759                 bp->link_info.auto_pause_setting = 0;
5760                 if (!bp->link_info.force_link_chng)
5761                         bnxt_report_link(bp);
5762         }
5763         bp->link_info.force_link_chng = false;
5764         mutex_unlock(&bp->hwrm_cmd_lock);
5765         return rc;
5766 }
5767
5768 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5769                               struct hwrm_port_phy_cfg_input *req)
5770 {
5771         struct ethtool_eee *eee = &bp->eee;
5772
5773         if (eee->eee_enabled) {
5774                 u16 eee_speeds;
5775                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5776
5777                 if (eee->tx_lpi_enabled)
5778                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5779                 else
5780                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5781
5782                 req->flags |= cpu_to_le32(flags);
5783                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5784                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5785                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5786         } else {
5787                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5788         }
5789 }
5790
5791 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5792 {
5793         struct hwrm_port_phy_cfg_input req = {0};
5794
5795         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5796         if (set_pause)
5797                 bnxt_hwrm_set_pause_common(bp, &req);
5798
5799         bnxt_hwrm_set_link_common(bp, &req);
5800
5801         if (set_eee)
5802                 bnxt_hwrm_set_eee(bp, &req);
5803         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5804 }
5805
5806 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5807 {
5808         struct hwrm_port_phy_cfg_input req = {0};
5809
5810         if (!BNXT_SINGLE_PF(bp))
5811                 return 0;
5812
5813         if (pci_num_vf(bp->pdev))
5814                 return 0;
5815
5816         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5817         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
5818         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5819 }
5820
5821 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
5822 {
5823         struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5824         struct hwrm_port_led_qcaps_input req = {0};
5825         struct bnxt_pf_info *pf = &bp->pf;
5826         int rc;
5827
5828         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
5829                 return 0;
5830
5831         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
5832         req.port_id = cpu_to_le16(pf->port_id);
5833         mutex_lock(&bp->hwrm_cmd_lock);
5834         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5835         if (rc) {
5836                 mutex_unlock(&bp->hwrm_cmd_lock);
5837                 return rc;
5838         }
5839         if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
5840                 int i;
5841
5842                 bp->num_leds = resp->num_leds;
5843                 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
5844                                                  bp->num_leds);
5845                 for (i = 0; i < bp->num_leds; i++) {
5846                         struct bnxt_led_info *led = &bp->leds[i];
5847                         __le16 caps = led->led_state_caps;
5848
5849                         if (!led->led_group_id ||
5850                             !BNXT_LED_ALT_BLINK_CAP(caps)) {
5851                                 bp->num_leds = 0;
5852                                 break;
5853                         }
5854                 }
5855         }
5856         mutex_unlock(&bp->hwrm_cmd_lock);
5857         return 0;
5858 }
5859
5860 static bool bnxt_eee_config_ok(struct bnxt *bp)
5861 {
5862         struct ethtool_eee *eee = &bp->eee;
5863         struct bnxt_link_info *link_info = &bp->link_info;
5864
5865         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5866                 return true;
5867
5868         if (eee->eee_enabled) {
5869                 u32 advertising =
5870                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5871
5872                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5873                         eee->eee_enabled = 0;
5874                         return false;
5875                 }
5876                 if (eee->advertised & ~advertising) {
5877                         eee->advertised = advertising & eee->supported;
5878                         return false;
5879                 }
5880         }
5881         return true;
5882 }
5883
5884 static int bnxt_update_phy_setting(struct bnxt *bp)
5885 {
5886         int rc;
5887         bool update_link = false;
5888         bool update_pause = false;
5889         bool update_eee = false;
5890         struct bnxt_link_info *link_info = &bp->link_info;
5891
5892         rc = bnxt_update_link(bp, true);
5893         if (rc) {
5894                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5895                            rc);
5896                 return rc;
5897         }
5898         if (!BNXT_SINGLE_PF(bp))
5899                 return 0;
5900
5901         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5902             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5903             link_info->req_flow_ctrl)
5904                 update_pause = true;
5905         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5906             link_info->force_pause_setting != link_info->req_flow_ctrl)
5907                 update_pause = true;
5908         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5909                 if (BNXT_AUTO_MODE(link_info->auto_mode))
5910                         update_link = true;
5911                 if (link_info->req_link_speed != link_info->force_link_speed)
5912                         update_link = true;
5913                 if (link_info->req_duplex != link_info->duplex_setting)
5914                         update_link = true;
5915         } else {
5916                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5917                         update_link = true;
5918                 if (link_info->advertising != link_info->auto_link_speeds)
5919                         update_link = true;
5920         }
5921
5922         /* The last close may have shutdown the link, so need to call
5923          * PHY_CFG to bring it back up.
5924          */
5925         if (!netif_carrier_ok(bp->dev))
5926                 update_link = true;
5927
5928         if (!bnxt_eee_config_ok(bp))
5929                 update_eee = true;
5930
5931         if (update_link)
5932                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5933         else if (update_pause)
5934                 rc = bnxt_hwrm_set_pause(bp);
5935         if (rc) {
5936                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5937                            rc);
5938                 return rc;
5939         }
5940
5941         return rc;
5942 }
5943
5944 /* Common routine to pre-map certain register block to different GRC window.
5945  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5946  * in PF and 3 windows in VF that can be customized to map in different
5947  * register blocks.
5948  */
5949 static void bnxt_preset_reg_win(struct bnxt *bp)
5950 {
5951         if (BNXT_PF(bp)) {
5952                 /* CAG registers map to GRC window #4 */
5953                 writel(BNXT_CAG_REG_BASE,
5954                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5955         }
5956 }
5957
5958 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5959 {
5960         int rc = 0;
5961
5962         bnxt_preset_reg_win(bp);
5963         netif_carrier_off(bp->dev);
5964         if (irq_re_init) {
5965                 rc = bnxt_setup_int_mode(bp);
5966                 if (rc) {
5967                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5968                                    rc);
5969                         return rc;
5970                 }
5971         }
5972         if ((bp->flags & BNXT_FLAG_RFS) &&
5973             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5974                 /* disable RFS if falling back to INTA */
5975                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5976                 bp->flags &= ~BNXT_FLAG_RFS;
5977         }
5978
5979         rc = bnxt_alloc_mem(bp, irq_re_init);
5980         if (rc) {
5981                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5982                 goto open_err_free_mem;
5983         }
5984
5985         if (irq_re_init) {
5986                 bnxt_init_napi(bp);
5987                 rc = bnxt_request_irq(bp);
5988                 if (rc) {
5989                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5990                         goto open_err;
5991                 }
5992         }
5993
5994         bnxt_enable_napi(bp);
5995
5996         rc = bnxt_init_nic(bp, irq_re_init);
5997         if (rc) {
5998                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5999                 goto open_err;
6000         }
6001
6002         if (link_re_init) {
6003                 rc = bnxt_update_phy_setting(bp);
6004                 if (rc)
6005                         netdev_warn(bp->dev, "failed to update phy settings\n");
6006         }
6007
6008         if (irq_re_init)
6009                 udp_tunnel_get_rx_info(bp->dev);
6010
6011         set_bit(BNXT_STATE_OPEN, &bp->state);
6012         bnxt_enable_int(bp);
6013         /* Enable TX queues */
6014         bnxt_tx_enable(bp);
6015         mod_timer(&bp->timer, jiffies + bp->current_interval);
6016         /* Poll link status and check for SFP+ module status */
6017         bnxt_get_port_module_status(bp);
6018
6019         return 0;
6020
6021 open_err:
6022         bnxt_disable_napi(bp);
6023         bnxt_del_napi(bp);
6024
6025 open_err_free_mem:
6026         bnxt_free_skbs(bp);
6027         bnxt_free_irq(bp);
6028         bnxt_free_mem(bp, true);
6029         return rc;
6030 }
6031
6032 /* rtnl_lock held */
6033 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6034 {
6035         int rc = 0;
6036
6037         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6038         if (rc) {
6039                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6040                 dev_close(bp->dev);
6041         }
6042         return rc;
6043 }
6044
6045 static int bnxt_open(struct net_device *dev)
6046 {
6047         struct bnxt *bp = netdev_priv(dev);
6048
6049         return __bnxt_open_nic(bp, true, true);
6050 }
6051
6052 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6053 {
6054         int rc = 0;
6055
6056 #ifdef CONFIG_BNXT_SRIOV
6057         if (bp->sriov_cfg) {
6058                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6059                                                       !bp->sriov_cfg,
6060                                                       BNXT_SRIOV_CFG_WAIT_TMO);
6061                 if (rc)
6062                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6063         }
6064 #endif
6065         /* Change device state to avoid TX queue wake up's */
6066         bnxt_tx_disable(bp);
6067
6068         clear_bit(BNXT_STATE_OPEN, &bp->state);
6069         smp_mb__after_atomic();
6070         while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
6071                 msleep(20);
6072
6073         /* Flush rings and and disable interrupts */
6074         bnxt_shutdown_nic(bp, irq_re_init);
6075
6076         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6077
6078         bnxt_disable_napi(bp);
6079         del_timer_sync(&bp->timer);
6080         bnxt_free_skbs(bp);
6081
6082         if (irq_re_init) {
6083                 bnxt_free_irq(bp);
6084                 bnxt_del_napi(bp);
6085         }
6086         bnxt_free_mem(bp, irq_re_init);
6087         return rc;
6088 }
6089
6090 static int bnxt_close(struct net_device *dev)
6091 {
6092         struct bnxt *bp = netdev_priv(dev);
6093
6094         bnxt_close_nic(bp, true, true);
6095         bnxt_hwrm_shutdown_link(bp);
6096         return 0;
6097 }
6098
6099 /* rtnl_lock held */
6100 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6101 {
6102         switch (cmd) {
6103         case SIOCGMIIPHY:
6104                 /* fallthru */
6105         case SIOCGMIIREG: {
6106                 if (!netif_running(dev))
6107                         return -EAGAIN;
6108
6109                 return 0;
6110         }
6111
6112         case SIOCSMIIREG:
6113                 if (!netif_running(dev))
6114                         return -EAGAIN;
6115
6116                 return 0;
6117
6118         default:
6119                 /* do nothing */
6120                 break;
6121         }
6122         return -EOPNOTSUPP;
6123 }
6124
6125 static void
6126 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6127 {
6128         u32 i;
6129         struct bnxt *bp = netdev_priv(dev);
6130
6131         if (!bp->bnapi)
6132                 return;
6133
6134         /* TODO check if we need to synchronize with bnxt_close path */
6135         for (i = 0; i < bp->cp_nr_rings; i++) {
6136                 struct bnxt_napi *bnapi = bp->bnapi[i];
6137                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6138                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6139
6140                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6141                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6142                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6143
6144                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6145                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6146                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6147
6148                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6149                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6150                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6151
6152                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6153                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6154                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6155
6156                 stats->rx_missed_errors +=
6157                         le64_to_cpu(hw_stats->rx_discard_pkts);
6158
6159                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6160
6161                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6162         }
6163
6164         if (bp->flags & BNXT_FLAG_PORT_STATS) {
6165                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
6166                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
6167
6168                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6169                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6170                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6171                                           le64_to_cpu(rx->rx_ovrsz_frames) +
6172                                           le64_to_cpu(rx->rx_runt_frames);
6173                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6174                                    le64_to_cpu(rx->rx_jbr_frames);
6175                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6176                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6177                 stats->tx_errors = le64_to_cpu(tx->tx_err);
6178         }
6179 }
6180
6181 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6182 {
6183         struct net_device *dev = bp->dev;
6184         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6185         struct netdev_hw_addr *ha;
6186         u8 *haddr;
6187         int mc_count = 0;
6188         bool update = false;
6189         int off = 0;
6190
6191         netdev_for_each_mc_addr(ha, dev) {
6192                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
6193                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6194                         vnic->mc_list_count = 0;
6195                         return false;
6196                 }
6197                 haddr = ha->addr;
6198                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6199                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6200                         update = true;
6201                 }
6202                 off += ETH_ALEN;
6203                 mc_count++;
6204         }
6205         if (mc_count)
6206                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6207
6208         if (mc_count != vnic->mc_list_count) {
6209                 vnic->mc_list_count = mc_count;
6210                 update = true;
6211         }
6212         return update;
6213 }
6214
6215 static bool bnxt_uc_list_updated(struct bnxt *bp)
6216 {
6217         struct net_device *dev = bp->dev;
6218         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6219         struct netdev_hw_addr *ha;
6220         int off = 0;
6221
6222         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6223                 return true;
6224
6225         netdev_for_each_uc_addr(ha, dev) {
6226                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6227                         return true;
6228
6229                 off += ETH_ALEN;
6230         }
6231         return false;
6232 }
6233
6234 static void bnxt_set_rx_mode(struct net_device *dev)
6235 {
6236         struct bnxt *bp = netdev_priv(dev);
6237         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6238         u32 mask = vnic->rx_mask;
6239         bool mc_update = false;
6240         bool uc_update;
6241
6242         if (!netif_running(dev))
6243                 return;
6244
6245         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6246                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6247                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6248
6249         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6250                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6251
6252         uc_update = bnxt_uc_list_updated(bp);
6253
6254         if (dev->flags & IFF_ALLMULTI) {
6255                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6256                 vnic->mc_list_count = 0;
6257         } else {
6258                 mc_update = bnxt_mc_list_updated(bp, &mask);
6259         }
6260
6261         if (mask != vnic->rx_mask || uc_update || mc_update) {
6262                 vnic->rx_mask = mask;
6263
6264                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6265                 schedule_work(&bp->sp_task);
6266         }
6267 }
6268
6269 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6270 {
6271         struct net_device *dev = bp->dev;
6272         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6273         struct netdev_hw_addr *ha;
6274         int i, off = 0, rc;
6275         bool uc_update;
6276
6277         netif_addr_lock_bh(dev);
6278         uc_update = bnxt_uc_list_updated(bp);
6279         netif_addr_unlock_bh(dev);
6280
6281         if (!uc_update)
6282                 goto skip_uc;
6283
6284         mutex_lock(&bp->hwrm_cmd_lock);
6285         for (i = 1; i < vnic->uc_filter_count; i++) {
6286                 struct hwrm_cfa_l2_filter_free_input req = {0};
6287
6288                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6289                                        -1);
6290
6291                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
6292
6293                 rc = _hwrm_send_message(bp, &req, sizeof(req),
6294                                         HWRM_CMD_TIMEOUT);
6295         }
6296         mutex_unlock(&bp->hwrm_cmd_lock);
6297
6298         vnic->uc_filter_count = 1;
6299
6300         netif_addr_lock_bh(dev);
6301         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6302                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6303         } else {
6304                 netdev_for_each_uc_addr(ha, dev) {
6305                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6306                         off += ETH_ALEN;
6307                         vnic->uc_filter_count++;
6308                 }
6309         }
6310         netif_addr_unlock_bh(dev);
6311
6312         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6313                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6314                 if (rc) {
6315                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6316                                    rc);
6317                         vnic->uc_filter_count = i;
6318                         return rc;
6319                 }
6320         }
6321
6322 skip_uc:
6323         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6324         if (rc)
6325                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6326                            rc);
6327
6328         return rc;
6329 }
6330
6331 /* If the chip and firmware supports RFS */
6332 static bool bnxt_rfs_supported(struct bnxt *bp)
6333 {
6334         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6335                 return true;
6336         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6337                 return true;
6338         return false;
6339 }
6340
6341 /* If runtime conditions support RFS */
6342 static bool bnxt_rfs_capable(struct bnxt *bp)
6343 {
6344 #ifdef CONFIG_RFS_ACCEL
6345         int vnics, max_vnics, max_rss_ctxs;
6346
6347         if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6348                 return false;
6349
6350         vnics = 1 + bp->rx_nr_rings;
6351         max_vnics = bnxt_get_max_func_vnics(bp);
6352         max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6353
6354         /* RSS contexts not a limiting factor */
6355         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6356                 max_rss_ctxs = max_vnics;
6357         if (vnics > max_vnics || vnics > max_rss_ctxs) {
6358                 netdev_warn(bp->dev,
6359                             "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6360                             min(max_rss_ctxs - 1, max_vnics - 1));
6361                 return false;
6362         }
6363
6364         return true;
6365 #else
6366         return false;
6367 #endif
6368 }
6369
6370 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6371                                            netdev_features_t features)
6372 {
6373         struct bnxt *bp = netdev_priv(dev);
6374
6375         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6376                 features &= ~NETIF_F_NTUPLE;
6377
6378         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
6379          * turned on or off together.
6380          */
6381         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6382             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6383                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6384                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6385                                       NETIF_F_HW_VLAN_STAG_RX);
6386                 else
6387                         features |= NETIF_F_HW_VLAN_CTAG_RX |
6388                                     NETIF_F_HW_VLAN_STAG_RX;
6389         }
6390 #ifdef CONFIG_BNXT_SRIOV
6391         if (BNXT_VF(bp)) {
6392                 if (bp->vf.vlan) {
6393                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6394                                       NETIF_F_HW_VLAN_STAG_RX);
6395                 }
6396         }
6397 #endif
6398         return features;
6399 }
6400
6401 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6402 {
6403         struct bnxt *bp = netdev_priv(dev);
6404         u32 flags = bp->flags;
6405         u32 changes;
6406         int rc = 0;
6407         bool re_init = false;
6408         bool update_tpa = false;
6409
6410         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6411         if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6412                 flags |= BNXT_FLAG_GRO;
6413         if (features & NETIF_F_LRO)
6414                 flags |= BNXT_FLAG_LRO;
6415
6416         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6417                 flags &= ~BNXT_FLAG_TPA;
6418
6419         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6420                 flags |= BNXT_FLAG_STRIP_VLAN;
6421
6422         if (features & NETIF_F_NTUPLE)
6423                 flags |= BNXT_FLAG_RFS;
6424
6425         changes = flags ^ bp->flags;
6426         if (changes & BNXT_FLAG_TPA) {
6427                 update_tpa = true;
6428                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6429                     (flags & BNXT_FLAG_TPA) == 0)
6430                         re_init = true;
6431         }
6432
6433         if (changes & ~BNXT_FLAG_TPA)
6434                 re_init = true;
6435
6436         if (flags != bp->flags) {
6437                 u32 old_flags = bp->flags;
6438
6439                 bp->flags = flags;
6440
6441                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6442                         if (update_tpa)
6443                                 bnxt_set_ring_params(bp);
6444                         return rc;
6445                 }
6446
6447                 if (re_init) {
6448                         bnxt_close_nic(bp, false, false);
6449                         if (update_tpa)
6450                                 bnxt_set_ring_params(bp);
6451
6452                         return bnxt_open_nic(bp, false, false);
6453                 }
6454                 if (update_tpa) {
6455                         rc = bnxt_set_tpa(bp,
6456                                           (flags & BNXT_FLAG_TPA) ?
6457                                           true : false);
6458                         if (rc)
6459                                 bp->flags = old_flags;
6460                 }
6461         }
6462         return rc;
6463 }
6464
6465 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6466 {
6467         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6468         int i = bnapi->index;
6469
6470         if (!txr)
6471                 return;
6472
6473         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6474                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6475                     txr->tx_cons);
6476 }
6477
6478 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6479 {
6480         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6481         int i = bnapi->index;
6482
6483         if (!rxr)
6484                 return;
6485
6486         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6487                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6488                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6489                     rxr->rx_sw_agg_prod);
6490 }
6491
6492 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6493 {
6494         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6495         int i = bnapi->index;
6496
6497         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6498                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6499 }
6500
6501 static void bnxt_dbg_dump_states(struct bnxt *bp)
6502 {
6503         int i;
6504         struct bnxt_napi *bnapi;
6505
6506         for (i = 0; i < bp->cp_nr_rings; i++) {
6507                 bnapi = bp->bnapi[i];
6508                 if (netif_msg_drv(bp)) {
6509                         bnxt_dump_tx_sw_state(bnapi);
6510                         bnxt_dump_rx_sw_state(bnapi);
6511                         bnxt_dump_cp_sw_state(bnapi);
6512                 }
6513         }
6514 }
6515
6516 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6517 {
6518         if (!silent)
6519                 bnxt_dbg_dump_states(bp);
6520         if (netif_running(bp->dev)) {
6521                 int rc;
6522
6523                 if (!silent)
6524                         bnxt_ulp_stop(bp);
6525                 bnxt_close_nic(bp, false, false);
6526                 rc = bnxt_open_nic(bp, false, false);
6527                 if (!silent && !rc)
6528                         bnxt_ulp_start(bp);
6529         }
6530 }
6531
6532 static void bnxt_tx_timeout(struct net_device *dev)
6533 {
6534         struct bnxt *bp = netdev_priv(dev);
6535
6536         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6537         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6538         schedule_work(&bp->sp_task);
6539 }
6540
6541 #ifdef CONFIG_NET_POLL_CONTROLLER
6542 static void bnxt_poll_controller(struct net_device *dev)
6543 {
6544         struct bnxt *bp = netdev_priv(dev);
6545         int i;
6546
6547         for (i = 0; i < bp->cp_nr_rings; i++) {
6548                 struct bnxt_irq *irq = &bp->irq_tbl[i];
6549
6550                 disable_irq(irq->vector);
6551                 irq->handler(irq->vector, bp->bnapi[i]);
6552                 enable_irq(irq->vector);
6553         }
6554 }
6555 #endif
6556
6557 static void bnxt_timer(unsigned long data)
6558 {
6559         struct bnxt *bp = (struct bnxt *)data;
6560         struct net_device *dev = bp->dev;
6561
6562         if (!netif_running(dev))
6563                 return;
6564
6565         if (atomic_read(&bp->intr_sem) != 0)
6566                 goto bnxt_restart_timer;
6567
6568         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6569                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6570                 schedule_work(&bp->sp_task);
6571         }
6572 bnxt_restart_timer:
6573         mod_timer(&bp->timer, jiffies + bp->current_interval);
6574 }
6575
6576 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6577 {
6578         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6579          * set.  If the device is being closed, bnxt_close() may be holding
6580          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6581          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6582          */
6583         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6584         rtnl_lock();
6585 }
6586
6587 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
6588 {
6589         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6590         rtnl_unlock();
6591 }
6592
6593 /* Only called from bnxt_sp_task() */
6594 static void bnxt_reset(struct bnxt *bp, bool silent)
6595 {
6596         bnxt_rtnl_lock_sp(bp);
6597         if (test_bit(BNXT_STATE_OPEN, &bp->state))
6598                 bnxt_reset_task(bp, silent);
6599         bnxt_rtnl_unlock_sp(bp);
6600 }
6601
6602 static void bnxt_cfg_ntp_filters(struct bnxt *);
6603
6604 static void bnxt_sp_task(struct work_struct *work)
6605 {
6606         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6607
6608         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6609         smp_mb__after_atomic();
6610         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6611                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6612                 return;
6613         }
6614
6615         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6616                 bnxt_cfg_rx_mode(bp);
6617
6618         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6619                 bnxt_cfg_ntp_filters(bp);
6620         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6621                 bnxt_hwrm_exec_fwd_req(bp);
6622         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6623                 bnxt_hwrm_tunnel_dst_port_alloc(
6624                         bp, bp->vxlan_port,
6625                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6626         }
6627         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6628                 bnxt_hwrm_tunnel_dst_port_free(
6629                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6630         }
6631         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6632                 bnxt_hwrm_tunnel_dst_port_alloc(
6633                         bp, bp->nge_port,
6634                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6635         }
6636         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6637                 bnxt_hwrm_tunnel_dst_port_free(
6638                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6639         }
6640         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6641                 bnxt_hwrm_port_qstats(bp);
6642
6643         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
6644          * must be the last functions to be called before exiting.
6645          */
6646         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6647                 int rc = 0;
6648
6649                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
6650                                        &bp->sp_event))
6651                         bnxt_hwrm_phy_qcaps(bp);
6652
6653                 bnxt_rtnl_lock_sp(bp);
6654                 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6655                         rc = bnxt_update_link(bp, true);
6656                 bnxt_rtnl_unlock_sp(bp);
6657                 if (rc)
6658                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6659                                    rc);
6660         }
6661         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
6662                 bnxt_rtnl_lock_sp(bp);
6663                 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6664                         bnxt_get_port_module_status(bp);
6665                 bnxt_rtnl_unlock_sp(bp);
6666         }
6667         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6668                 bnxt_reset(bp, false);
6669
6670         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6671                 bnxt_reset(bp, true);
6672
6673         smp_mb__before_atomic();
6674         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6675 }
6676
6677 /* Under rtnl_lock */
6678 int bnxt_reserve_rings(struct bnxt *bp, int tx, int rx, int tcs, int tx_xdp)
6679 {
6680         int max_rx, max_tx, tx_sets = 1;
6681         int tx_rings_needed;
6682         bool sh = true;
6683         int rc;
6684
6685         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
6686                 sh = false;
6687
6688         if (tcs)
6689                 tx_sets = tcs;
6690
6691         rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
6692         if (rc)
6693                 return rc;
6694
6695         if (max_rx < rx)
6696                 return -ENOMEM;
6697
6698         tx_rings_needed = tx * tx_sets + tx_xdp;
6699         if (max_tx < tx_rings_needed)
6700                 return -ENOMEM;
6701
6702         if (bnxt_hwrm_reserve_tx_rings(bp, &tx_rings_needed) ||
6703             tx_rings_needed < (tx * tx_sets + tx_xdp))
6704                 return -ENOMEM;
6705         return 0;
6706 }
6707
6708 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
6709 {
6710         if (bp->bar2) {
6711                 pci_iounmap(pdev, bp->bar2);
6712                 bp->bar2 = NULL;
6713         }
6714
6715         if (bp->bar1) {
6716                 pci_iounmap(pdev, bp->bar1);
6717                 bp->bar1 = NULL;
6718         }
6719
6720         if (bp->bar0) {
6721                 pci_iounmap(pdev, bp->bar0);
6722                 bp->bar0 = NULL;
6723         }
6724 }
6725
6726 static void bnxt_cleanup_pci(struct bnxt *bp)
6727 {
6728         bnxt_unmap_bars(bp, bp->pdev);
6729         pci_release_regions(bp->pdev);
6730         pci_disable_device(bp->pdev);
6731 }
6732
6733 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6734 {
6735         int rc;
6736         struct bnxt *bp = netdev_priv(dev);
6737
6738         SET_NETDEV_DEV(dev, &pdev->dev);
6739
6740         /* enable device (incl. PCI PM wakeup), and bus-mastering */
6741         rc = pci_enable_device(pdev);
6742         if (rc) {
6743                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6744                 goto init_err;
6745         }
6746
6747         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6748                 dev_err(&pdev->dev,
6749                         "Cannot find PCI device base address, aborting\n");
6750                 rc = -ENODEV;
6751                 goto init_err_disable;
6752         }
6753
6754         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6755         if (rc) {
6756                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6757                 goto init_err_disable;
6758         }
6759
6760         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6761             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6762                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6763                 goto init_err_disable;
6764         }
6765
6766         pci_set_master(pdev);
6767
6768         bp->dev = dev;
6769         bp->pdev = pdev;
6770
6771         bp->bar0 = pci_ioremap_bar(pdev, 0);
6772         if (!bp->bar0) {
6773                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6774                 rc = -ENOMEM;
6775                 goto init_err_release;
6776         }
6777
6778         bp->bar1 = pci_ioremap_bar(pdev, 2);
6779         if (!bp->bar1) {
6780                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6781                 rc = -ENOMEM;
6782                 goto init_err_release;
6783         }
6784
6785         bp->bar2 = pci_ioremap_bar(pdev, 4);
6786         if (!bp->bar2) {
6787                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6788                 rc = -ENOMEM;
6789                 goto init_err_release;
6790         }
6791
6792         pci_enable_pcie_error_reporting(pdev);
6793
6794         INIT_WORK(&bp->sp_task, bnxt_sp_task);
6795
6796         spin_lock_init(&bp->ntp_fltr_lock);
6797
6798         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6799         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6800
6801         /* tick values in micro seconds */
6802         bp->rx_coal_ticks = 12;
6803         bp->rx_coal_bufs = 30;
6804         bp->rx_coal_ticks_irq = 1;
6805         bp->rx_coal_bufs_irq = 2;
6806
6807         bp->tx_coal_ticks = 25;
6808         bp->tx_coal_bufs = 30;
6809         bp->tx_coal_ticks_irq = 2;
6810         bp->tx_coal_bufs_irq = 2;
6811
6812         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6813
6814         init_timer(&bp->timer);
6815         bp->timer.data = (unsigned long)bp;
6816         bp->timer.function = bnxt_timer;
6817         bp->current_interval = BNXT_TIMER_INTERVAL;
6818
6819         clear_bit(BNXT_STATE_OPEN, &bp->state);
6820         return 0;
6821
6822 init_err_release:
6823         bnxt_unmap_bars(bp, pdev);
6824         pci_release_regions(pdev);
6825
6826 init_err_disable:
6827         pci_disable_device(pdev);
6828
6829 init_err:
6830         return rc;
6831 }
6832
6833 /* rtnl_lock held */
6834 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6835 {
6836         struct sockaddr *addr = p;
6837         struct bnxt *bp = netdev_priv(dev);
6838         int rc = 0;
6839
6840         if (!is_valid_ether_addr(addr->sa_data))
6841                 return -EADDRNOTAVAIL;
6842
6843         rc = bnxt_approve_mac(bp, addr->sa_data);
6844         if (rc)
6845                 return rc;
6846
6847         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6848                 return 0;
6849
6850         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6851         if (netif_running(dev)) {
6852                 bnxt_close_nic(bp, false, false);
6853                 rc = bnxt_open_nic(bp, false, false);
6854         }
6855
6856         return rc;
6857 }
6858
6859 /* rtnl_lock held */
6860 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6861 {
6862         struct bnxt *bp = netdev_priv(dev);
6863
6864         if (netif_running(dev))
6865                 bnxt_close_nic(bp, false, false);
6866
6867         dev->mtu = new_mtu;
6868         bnxt_set_ring_params(bp);
6869
6870         if (netif_running(dev))
6871                 return bnxt_open_nic(bp, false, false);
6872
6873         return 0;
6874 }
6875
6876 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
6877 {
6878         struct bnxt *bp = netdev_priv(dev);
6879         bool sh = false;
6880         int rc;
6881
6882         if (tc > bp->max_tc) {
6883                 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
6884                            tc, bp->max_tc);
6885                 return -EINVAL;
6886         }
6887
6888         if (netdev_get_num_tc(dev) == tc)
6889                 return 0;
6890
6891         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6892                 sh = true;
6893
6894         rc = bnxt_reserve_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
6895                                 tc, bp->tx_nr_rings_xdp);
6896         if (rc)
6897                 return rc;
6898
6899         /* Needs to close the device and do hw resource re-allocations */
6900         if (netif_running(bp->dev))
6901                 bnxt_close_nic(bp, true, false);
6902
6903         if (tc) {
6904                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
6905                 netdev_set_num_tc(dev, tc);
6906         } else {
6907                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6908                 netdev_reset_tc(dev);
6909         }
6910         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6911                                bp->tx_nr_rings + bp->rx_nr_rings;
6912         bp->num_stat_ctxs = bp->cp_nr_rings;
6913
6914         if (netif_running(bp->dev))
6915                 return bnxt_open_nic(bp, true, false);
6916
6917         return 0;
6918 }
6919
6920 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
6921                          struct tc_to_netdev *ntc)
6922 {
6923         if (ntc->type != TC_SETUP_MQPRIO)
6924                 return -EINVAL;
6925
6926         return bnxt_setup_mq_tc(dev, ntc->tc);
6927 }
6928
6929 #ifdef CONFIG_RFS_ACCEL
6930 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
6931                             struct bnxt_ntuple_filter *f2)
6932 {
6933         struct flow_keys *keys1 = &f1->fkeys;
6934         struct flow_keys *keys2 = &f2->fkeys;
6935
6936         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
6937             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
6938             keys1->ports.ports == keys2->ports.ports &&
6939             keys1->basic.ip_proto == keys2->basic.ip_proto &&
6940             keys1->basic.n_proto == keys2->basic.n_proto &&
6941             keys1->control.flags == keys2->control.flags &&
6942             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
6943             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
6944                 return true;
6945
6946         return false;
6947 }
6948
6949 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
6950                               u16 rxq_index, u32 flow_id)
6951 {
6952         struct bnxt *bp = netdev_priv(dev);
6953         struct bnxt_ntuple_filter *fltr, *new_fltr;
6954         struct flow_keys *fkeys;
6955         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
6956         int rc = 0, idx, bit_id, l2_idx = 0;
6957         struct hlist_head *head;
6958
6959         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
6960                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6961                 int off = 0, j;
6962
6963                 netif_addr_lock_bh(dev);
6964                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
6965                         if (ether_addr_equal(eth->h_dest,
6966                                              vnic->uc_list + off)) {
6967                                 l2_idx = j + 1;
6968                                 break;
6969                         }
6970                 }
6971                 netif_addr_unlock_bh(dev);
6972                 if (!l2_idx)
6973                         return -EINVAL;
6974         }
6975         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
6976         if (!new_fltr)
6977                 return -ENOMEM;
6978
6979         fkeys = &new_fltr->fkeys;
6980         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
6981                 rc = -EPROTONOSUPPORT;
6982                 goto err_free;
6983         }
6984
6985         if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
6986              fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
6987             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
6988              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
6989                 rc = -EPROTONOSUPPORT;
6990                 goto err_free;
6991         }
6992         if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
6993             bp->hwrm_spec_code < 0x10601) {
6994                 rc = -EPROTONOSUPPORT;
6995                 goto err_free;
6996         }
6997         if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
6998             bp->hwrm_spec_code < 0x10601) {
6999                 rc = -EPROTONOSUPPORT;
7000                 goto err_free;
7001         }
7002
7003         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7004         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7005
7006         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7007         head = &bp->ntp_fltr_hash_tbl[idx];
7008         rcu_read_lock();
7009         hlist_for_each_entry_rcu(fltr, head, hash) {
7010                 if (bnxt_fltr_match(fltr, new_fltr)) {
7011                         rcu_read_unlock();
7012                         rc = 0;
7013                         goto err_free;
7014                 }
7015         }
7016         rcu_read_unlock();
7017
7018         spin_lock_bh(&bp->ntp_fltr_lock);
7019         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7020                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
7021         if (bit_id < 0) {
7022                 spin_unlock_bh(&bp->ntp_fltr_lock);
7023                 rc = -ENOMEM;
7024                 goto err_free;
7025         }
7026
7027         new_fltr->sw_id = (u16)bit_id;
7028         new_fltr->flow_id = flow_id;
7029         new_fltr->l2_fltr_idx = l2_idx;
7030         new_fltr->rxq = rxq_index;
7031         hlist_add_head_rcu(&new_fltr->hash, head);
7032         bp->ntp_fltr_count++;
7033         spin_unlock_bh(&bp->ntp_fltr_lock);
7034
7035         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7036         schedule_work(&bp->sp_task);
7037
7038         return new_fltr->sw_id;
7039
7040 err_free:
7041         kfree(new_fltr);
7042         return rc;
7043 }
7044
7045 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7046 {
7047         int i;
7048
7049         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7050                 struct hlist_head *head;
7051                 struct hlist_node *tmp;
7052                 struct bnxt_ntuple_filter *fltr;
7053                 int rc;
7054
7055                 head = &bp->ntp_fltr_hash_tbl[i];
7056                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7057                         bool del = false;
7058
7059                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7060                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
7061                                                         fltr->flow_id,
7062                                                         fltr->sw_id)) {
7063                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
7064                                                                          fltr);
7065                                         del = true;
7066                                 }
7067                         } else {
7068                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7069                                                                        fltr);
7070                                 if (rc)
7071                                         del = true;
7072                                 else
7073                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
7074                         }
7075
7076                         if (del) {
7077                                 spin_lock_bh(&bp->ntp_fltr_lock);
7078                                 hlist_del_rcu(&fltr->hash);
7079                                 bp->ntp_fltr_count--;
7080                                 spin_unlock_bh(&bp->ntp_fltr_lock);
7081                                 synchronize_rcu();
7082                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7083                                 kfree(fltr);
7084                         }
7085                 }
7086         }
7087         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7088                 netdev_info(bp->dev, "Receive PF driver unload event!");
7089 }
7090
7091 #else
7092
7093 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7094 {
7095 }
7096
7097 #endif /* CONFIG_RFS_ACCEL */
7098
7099 static void bnxt_udp_tunnel_add(struct net_device *dev,
7100                                 struct udp_tunnel_info *ti)
7101 {
7102         struct bnxt *bp = netdev_priv(dev);
7103
7104         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7105                 return;
7106
7107         if (!netif_running(dev))
7108                 return;
7109
7110         switch (ti->type) {
7111         case UDP_TUNNEL_TYPE_VXLAN:
7112                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7113                         return;
7114
7115                 bp->vxlan_port_cnt++;
7116                 if (bp->vxlan_port_cnt == 1) {
7117                         bp->vxlan_port = ti->port;
7118                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7119                         schedule_work(&bp->sp_task);
7120                 }
7121                 break;
7122         case UDP_TUNNEL_TYPE_GENEVE:
7123                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
7124                         return;
7125
7126                 bp->nge_port_cnt++;
7127                 if (bp->nge_port_cnt == 1) {
7128                         bp->nge_port = ti->port;
7129                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7130                 }
7131                 break;
7132         default:
7133                 return;
7134         }
7135
7136         schedule_work(&bp->sp_task);
7137 }
7138
7139 static void bnxt_udp_tunnel_del(struct net_device *dev,
7140                                 struct udp_tunnel_info *ti)
7141 {
7142         struct bnxt *bp = netdev_priv(dev);
7143
7144         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7145                 return;
7146
7147         if (!netif_running(dev))
7148                 return;
7149
7150         switch (ti->type) {
7151         case UDP_TUNNEL_TYPE_VXLAN:
7152                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7153                         return;
7154                 bp->vxlan_port_cnt--;
7155
7156                 if (bp->vxlan_port_cnt != 0)
7157                         return;
7158
7159                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7160                 break;
7161         case UDP_TUNNEL_TYPE_GENEVE:
7162                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7163                         return;
7164                 bp->nge_port_cnt--;
7165
7166                 if (bp->nge_port_cnt != 0)
7167                         return;
7168
7169                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7170                 break;
7171         default:
7172                 return;
7173         }
7174
7175         schedule_work(&bp->sp_task);
7176 }
7177
7178 static const struct net_device_ops bnxt_netdev_ops = {
7179         .ndo_open               = bnxt_open,
7180         .ndo_start_xmit         = bnxt_start_xmit,
7181         .ndo_stop               = bnxt_close,
7182         .ndo_get_stats64        = bnxt_get_stats64,
7183         .ndo_set_rx_mode        = bnxt_set_rx_mode,
7184         .ndo_do_ioctl           = bnxt_ioctl,
7185         .ndo_validate_addr      = eth_validate_addr,
7186         .ndo_set_mac_address    = bnxt_change_mac_addr,
7187         .ndo_change_mtu         = bnxt_change_mtu,
7188         .ndo_fix_features       = bnxt_fix_features,
7189         .ndo_set_features       = bnxt_set_features,
7190         .ndo_tx_timeout         = bnxt_tx_timeout,
7191 #ifdef CONFIG_BNXT_SRIOV
7192         .ndo_get_vf_config      = bnxt_get_vf_config,
7193         .ndo_set_vf_mac         = bnxt_set_vf_mac,
7194         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
7195         .ndo_set_vf_rate        = bnxt_set_vf_bw,
7196         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
7197         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
7198 #endif
7199 #ifdef CONFIG_NET_POLL_CONTROLLER
7200         .ndo_poll_controller    = bnxt_poll_controller,
7201 #endif
7202         .ndo_setup_tc           = bnxt_setup_tc,
7203 #ifdef CONFIG_RFS_ACCEL
7204         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
7205 #endif
7206         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
7207         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
7208         .ndo_xdp                = bnxt_xdp,
7209 };
7210
7211 static void bnxt_remove_one(struct pci_dev *pdev)
7212 {
7213         struct net_device *dev = pci_get_drvdata(pdev);
7214         struct bnxt *bp = netdev_priv(dev);
7215
7216         if (BNXT_PF(bp))
7217                 bnxt_sriov_disable(bp);
7218
7219         pci_disable_pcie_error_reporting(pdev);
7220         unregister_netdev(dev);
7221         cancel_work_sync(&bp->sp_task);
7222         bp->sp_event = 0;
7223
7224         bnxt_clear_int_mode(bp);
7225         bnxt_hwrm_func_drv_unrgtr(bp);
7226         bnxt_free_hwrm_resources(bp);
7227         bnxt_dcb_free(bp);
7228         kfree(bp->edev);
7229         bp->edev = NULL;
7230         if (bp->xdp_prog)
7231                 bpf_prog_put(bp->xdp_prog);
7232         bnxt_cleanup_pci(bp);
7233         free_netdev(dev);
7234 }
7235
7236 static int bnxt_probe_phy(struct bnxt *bp)
7237 {
7238         int rc = 0;
7239         struct bnxt_link_info *link_info = &bp->link_info;
7240
7241         rc = bnxt_hwrm_phy_qcaps(bp);
7242         if (rc) {
7243                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7244                            rc);
7245                 return rc;
7246         }
7247
7248         rc = bnxt_update_link(bp, false);
7249         if (rc) {
7250                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7251                            rc);
7252                 return rc;
7253         }
7254
7255         /* Older firmware does not have supported_auto_speeds, so assume
7256          * that all supported speeds can be autonegotiated.
7257          */
7258         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7259                 link_info->support_auto_speeds = link_info->support_speeds;
7260
7261         /*initialize the ethool setting copy with NVM settings */
7262         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7263                 link_info->autoneg = BNXT_AUTONEG_SPEED;
7264                 if (bp->hwrm_spec_code >= 0x10201) {
7265                         if (link_info->auto_pause_setting &
7266                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7267                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7268                 } else {
7269                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7270                 }
7271                 link_info->advertising = link_info->auto_link_speeds;
7272         } else {
7273                 link_info->req_link_speed = link_info->force_link_speed;
7274                 link_info->req_duplex = link_info->duplex_setting;
7275         }
7276         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7277                 link_info->req_flow_ctrl =
7278                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7279         else
7280                 link_info->req_flow_ctrl = link_info->force_pause_setting;
7281         return rc;
7282 }
7283
7284 static int bnxt_get_max_irq(struct pci_dev *pdev)
7285 {
7286         u16 ctrl;
7287
7288         if (!pdev->msix_cap)
7289                 return 1;
7290
7291         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7292         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7293 }
7294
7295 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7296                                 int *max_cp)
7297 {
7298         int max_ring_grps = 0;
7299
7300 #ifdef CONFIG_BNXT_SRIOV
7301         if (!BNXT_PF(bp)) {
7302                 *max_tx = bp->vf.max_tx_rings;
7303                 *max_rx = bp->vf.max_rx_rings;
7304                 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7305                 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7306                 max_ring_grps = bp->vf.max_hw_ring_grps;
7307         } else
7308 #endif
7309         {
7310                 *max_tx = bp->pf.max_tx_rings;
7311                 *max_rx = bp->pf.max_rx_rings;
7312                 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7313                 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7314                 max_ring_grps = bp->pf.max_hw_ring_grps;
7315         }
7316         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7317                 *max_cp -= 1;
7318                 *max_rx -= 2;
7319         }
7320         if (bp->flags & BNXT_FLAG_AGG_RINGS)
7321                 *max_rx >>= 1;
7322         *max_rx = min_t(int, *max_rx, max_ring_grps);
7323 }
7324
7325 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7326 {
7327         int rx, tx, cp;
7328
7329         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
7330         if (!rx || !tx || !cp)
7331                 return -ENOMEM;
7332
7333         *max_rx = rx;
7334         *max_tx = tx;
7335         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7336 }
7337
7338 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7339                                bool shared)
7340 {
7341         int rc;
7342
7343         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7344         if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7345                 /* Not enough rings, try disabling agg rings. */
7346                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7347                 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7348                 if (rc)
7349                         return rc;
7350                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7351                 bp->dev->hw_features &= ~NETIF_F_LRO;
7352                 bp->dev->features &= ~NETIF_F_LRO;
7353                 bnxt_set_ring_params(bp);
7354         }
7355
7356         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7357                 int max_cp, max_stat, max_irq;
7358
7359                 /* Reserve minimum resources for RoCE */
7360                 max_cp = bnxt_get_max_func_cp_rings(bp);
7361                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
7362                 max_irq = bnxt_get_max_func_irqs(bp);
7363                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7364                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7365                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7366                         return 0;
7367
7368                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7369                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7370                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7371                 max_cp = min_t(int, max_cp, max_irq);
7372                 max_cp = min_t(int, max_cp, max_stat);
7373                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7374                 if (rc)
7375                         rc = 0;
7376         }
7377         return rc;
7378 }
7379
7380 static int bnxt_set_dflt_rings(struct bnxt *bp)
7381 {
7382         int dflt_rings, max_rx_rings, max_tx_rings, rc;
7383         bool sh = true;
7384
7385         if (sh)
7386                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
7387         dflt_rings = netif_get_num_default_rss_queues();
7388         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7389         if (rc)
7390                 return rc;
7391         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7392         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7393
7394         rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7395         if (rc)
7396                 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7397
7398         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7399         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7400                                bp->tx_nr_rings + bp->rx_nr_rings;
7401         bp->num_stat_ctxs = bp->cp_nr_rings;
7402         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7403                 bp->rx_nr_rings++;
7404                 bp->cp_nr_rings++;
7405         }
7406         return rc;
7407 }
7408
7409 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7410 {
7411         ASSERT_RTNL();
7412         bnxt_hwrm_func_qcaps(bp);
7413         bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7414 }
7415
7416 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
7417 {
7418         enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
7419         enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
7420
7421         if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
7422             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
7423                 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
7424         else
7425                 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
7426                             speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
7427                             speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
7428                             speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
7429                             "Unknown", width);
7430 }
7431
7432 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7433 {
7434         static int version_printed;
7435         struct net_device *dev;
7436         struct bnxt *bp;
7437         int rc, max_irqs;
7438
7439         if (pci_is_bridge(pdev))
7440                 return -ENODEV;
7441
7442         if (version_printed++ == 0)
7443                 pr_info("%s", version);
7444
7445         max_irqs = bnxt_get_max_irq(pdev);
7446         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
7447         if (!dev)
7448                 return -ENOMEM;
7449
7450         bp = netdev_priv(dev);
7451
7452         if (bnxt_vf_pciid(ent->driver_data))
7453                 bp->flags |= BNXT_FLAG_VF;
7454
7455         if (pdev->msix_cap)
7456                 bp->flags |= BNXT_FLAG_MSIX_CAP;
7457
7458         rc = bnxt_init_board(pdev, dev);
7459         if (rc < 0)
7460                 goto init_err_free;
7461
7462         dev->netdev_ops = &bnxt_netdev_ops;
7463         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
7464         dev->ethtool_ops = &bnxt_ethtool_ops;
7465         pci_set_drvdata(pdev, dev);
7466
7467         rc = bnxt_alloc_hwrm_resources(bp);
7468         if (rc)
7469                 goto init_err_pci_clean;
7470
7471         mutex_init(&bp->hwrm_cmd_lock);
7472         rc = bnxt_hwrm_ver_get(bp);
7473         if (rc)
7474                 goto init_err_pci_clean;
7475
7476         rc = bnxt_hwrm_func_reset(bp);
7477         if (rc)
7478                 goto init_err_pci_clean;
7479
7480         bnxt_hwrm_fw_set_time(bp);
7481
7482         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7483                            NETIF_F_TSO | NETIF_F_TSO6 |
7484                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7485                            NETIF_F_GSO_IPXIP4 |
7486                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7487                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
7488                            NETIF_F_RXCSUM | NETIF_F_GRO;
7489
7490         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
7491                 dev->hw_features |= NETIF_F_LRO;
7492
7493         dev->hw_enc_features =
7494                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7495                         NETIF_F_TSO | NETIF_F_TSO6 |
7496                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7497                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7498                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
7499         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
7500                                     NETIF_F_GSO_GRE_CSUM;
7501         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
7502         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7503                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
7504         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
7505         dev->priv_flags |= IFF_UNICAST_FLT;
7506
7507         /* MTU range: 60 - 9500 */
7508         dev->min_mtu = ETH_ZLEN;
7509         dev->max_mtu = BNXT_MAX_MTU;
7510
7511         bnxt_dcb_init(bp);
7512
7513 #ifdef CONFIG_BNXT_SRIOV
7514         init_waitqueue_head(&bp->sriov_cfg_wait);
7515 #endif
7516         bp->gro_func = bnxt_gro_func_5730x;
7517         if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
7518                 bp->gro_func = bnxt_gro_func_5731x;
7519
7520         rc = bnxt_hwrm_func_drv_rgtr(bp);
7521         if (rc)
7522                 goto init_err_pci_clean;
7523
7524         rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
7525         if (rc)
7526                 goto init_err_pci_clean;
7527
7528         bp->ulp_probe = bnxt_ulp_probe;
7529
7530         /* Get the MAX capabilities for this function */
7531         rc = bnxt_hwrm_func_qcaps(bp);
7532         if (rc) {
7533                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
7534                            rc);
7535                 rc = -1;
7536                 goto init_err_pci_clean;
7537         }
7538
7539         rc = bnxt_hwrm_queue_qportcfg(bp);
7540         if (rc) {
7541                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
7542                            rc);
7543                 rc = -1;
7544                 goto init_err_pci_clean;
7545         }
7546
7547         bnxt_hwrm_func_qcfg(bp);
7548         bnxt_hwrm_port_led_qcaps(bp);
7549
7550         bnxt_set_rx_skb_mode(bp, false);
7551         bnxt_set_tpa_flags(bp);
7552         bnxt_set_ring_params(bp);
7553         bnxt_set_max_func_irqs(bp, max_irqs);
7554         rc = bnxt_set_dflt_rings(bp);
7555         if (rc) {
7556                 netdev_err(bp->dev, "Not enough rings available.\n");
7557                 rc = -ENOMEM;
7558                 goto init_err_pci_clean;
7559         }
7560
7561         /* Default RSS hash cfg. */
7562         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
7563                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
7564                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
7565                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
7566         if (!BNXT_CHIP_NUM_57X0X(bp->chip_num) &&
7567             !BNXT_CHIP_TYPE_NITRO_A0(bp) &&
7568             bp->hwrm_spec_code >= 0x10501) {
7569                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
7570                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
7571                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
7572         }
7573
7574         bnxt_hwrm_vnic_qcaps(bp);
7575         if (bnxt_rfs_supported(bp)) {
7576                 dev->hw_features |= NETIF_F_NTUPLE;
7577                 if (bnxt_rfs_capable(bp)) {
7578                         bp->flags |= BNXT_FLAG_RFS;
7579                         dev->features |= NETIF_F_NTUPLE;
7580                 }
7581         }
7582
7583         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
7584                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
7585
7586         rc = bnxt_probe_phy(bp);
7587         if (rc)
7588                 goto init_err_pci_clean;
7589
7590         rc = bnxt_init_int_mode(bp);
7591         if (rc)
7592                 goto init_err_pci_clean;
7593
7594         rc = register_netdev(dev);
7595         if (rc)
7596                 goto init_err_clr_int;
7597
7598         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
7599                     board_info[ent->driver_data].name,
7600                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
7601
7602         bnxt_parse_log_pcie_link(bp);
7603
7604         return 0;
7605
7606 init_err_clr_int:
7607         bnxt_clear_int_mode(bp);
7608
7609 init_err_pci_clean:
7610         bnxt_cleanup_pci(bp);
7611
7612 init_err_free:
7613         free_netdev(dev);
7614         return rc;
7615 }
7616
7617 /**
7618  * bnxt_io_error_detected - called when PCI error is detected
7619  * @pdev: Pointer to PCI device
7620  * @state: The current pci connection state
7621  *
7622  * This function is called after a PCI bus error affecting
7623  * this device has been detected.
7624  */
7625 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
7626                                                pci_channel_state_t state)
7627 {
7628         struct net_device *netdev = pci_get_drvdata(pdev);
7629         struct bnxt *bp = netdev_priv(netdev);
7630
7631         netdev_info(netdev, "PCI I/O error detected\n");
7632
7633         rtnl_lock();
7634         netif_device_detach(netdev);
7635
7636         bnxt_ulp_stop(bp);
7637
7638         if (state == pci_channel_io_perm_failure) {
7639                 rtnl_unlock();
7640                 return PCI_ERS_RESULT_DISCONNECT;
7641         }
7642
7643         if (netif_running(netdev))
7644                 bnxt_close(netdev);
7645
7646         pci_disable_device(pdev);
7647         rtnl_unlock();
7648
7649         /* Request a slot slot reset. */
7650         return PCI_ERS_RESULT_NEED_RESET;
7651 }
7652
7653 /**
7654  * bnxt_io_slot_reset - called after the pci bus has been reset.
7655  * @pdev: Pointer to PCI device
7656  *
7657  * Restart the card from scratch, as if from a cold-boot.
7658  * At this point, the card has exprienced a hard reset,
7659  * followed by fixups by BIOS, and has its config space
7660  * set up identically to what it was at cold boot.
7661  */
7662 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
7663 {
7664         struct net_device *netdev = pci_get_drvdata(pdev);
7665         struct bnxt *bp = netdev_priv(netdev);
7666         int err = 0;
7667         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
7668
7669         netdev_info(bp->dev, "PCI Slot Reset\n");
7670
7671         rtnl_lock();
7672
7673         if (pci_enable_device(pdev)) {
7674                 dev_err(&pdev->dev,
7675                         "Cannot re-enable PCI device after reset.\n");
7676         } else {
7677                 pci_set_master(pdev);
7678
7679                 err = bnxt_hwrm_func_reset(bp);
7680                 if (!err && netif_running(netdev))
7681                         err = bnxt_open(netdev);
7682
7683                 if (!err) {
7684                         result = PCI_ERS_RESULT_RECOVERED;
7685                         bnxt_ulp_start(bp);
7686                 }
7687         }
7688
7689         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7690                 dev_close(netdev);
7691
7692         rtnl_unlock();
7693
7694         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7695         if (err) {
7696                 dev_err(&pdev->dev,
7697                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7698                          err); /* non-fatal, continue */
7699         }
7700
7701         return PCI_ERS_RESULT_RECOVERED;
7702 }
7703
7704 /**
7705  * bnxt_io_resume - called when traffic can start flowing again.
7706  * @pdev: Pointer to PCI device
7707  *
7708  * This callback is called when the error recovery driver tells
7709  * us that its OK to resume normal operation.
7710  */
7711 static void bnxt_io_resume(struct pci_dev *pdev)
7712 {
7713         struct net_device *netdev = pci_get_drvdata(pdev);
7714
7715         rtnl_lock();
7716
7717         netif_device_attach(netdev);
7718
7719         rtnl_unlock();
7720 }
7721
7722 static const struct pci_error_handlers bnxt_err_handler = {
7723         .error_detected = bnxt_io_error_detected,
7724         .slot_reset     = bnxt_io_slot_reset,
7725         .resume         = bnxt_io_resume
7726 };
7727
7728 static struct pci_driver bnxt_pci_driver = {
7729         .name           = DRV_MODULE_NAME,
7730         .id_table       = bnxt_pci_tbl,
7731         .probe          = bnxt_init_one,
7732         .remove         = bnxt_remove_one,
7733         .err_handler    = &bnxt_err_handler,
7734 #if defined(CONFIG_BNXT_SRIOV)
7735         .sriov_configure = bnxt_sriov_configure,
7736 #endif
7737 };
7738
7739 module_pci_driver(bnxt_pci_driver);