Merge branch 'vmwgfx-fixes-5.1' of git://people.freedesktop.org/~thomash/linux into...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_sp.c
1 /* bnx2x_sp.c: Qlogic Everest network driver.
2  *
3  * Copyright 2011-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and Qlogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other Qlogic software provided under a
14  * license other than the GPL, without Qlogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Vladislav Zolotarov
19  *
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/crc32.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/crc32c.h>
29 #include "bnx2x.h"
30 #include "bnx2x_cmn.h"
31 #include "bnx2x_sp.h"
32
33 #define BNX2X_MAX_EMUL_MULTI            16
34
35 /**** Exe Queue interfaces ****/
36
37 /**
38  * bnx2x_exe_queue_init - init the Exe Queue object
39  *
40  * @o:          pointer to the object
41  * @exe_len:    length
42  * @owner:      pointer to the owner
43  * @validate:   validate function pointer
44  * @optimize:   optimize function pointer
45  * @exec:       execute function pointer
46  * @get:        get function pointer
47  */
48 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
49                                         struct bnx2x_exe_queue_obj *o,
50                                         int exe_len,
51                                         union bnx2x_qable_obj *owner,
52                                         exe_q_validate validate,
53                                         exe_q_remove remove,
54                                         exe_q_optimize optimize,
55                                         exe_q_execute exec,
56                                         exe_q_get get)
57 {
58         memset(o, 0, sizeof(*o));
59
60         INIT_LIST_HEAD(&o->exe_queue);
61         INIT_LIST_HEAD(&o->pending_comp);
62
63         spin_lock_init(&o->lock);
64
65         o->exe_chunk_len = exe_len;
66         o->owner         = owner;
67
68         /* Owner specific callbacks */
69         o->validate      = validate;
70         o->remove        = remove;
71         o->optimize      = optimize;
72         o->execute       = exec;
73         o->get           = get;
74
75         DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
76            exe_len);
77 }
78
79 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
80                                              struct bnx2x_exeq_elem *elem)
81 {
82         DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
83         kfree(elem);
84 }
85
86 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
87 {
88         struct bnx2x_exeq_elem *elem;
89         int cnt = 0;
90
91         spin_lock_bh(&o->lock);
92
93         list_for_each_entry(elem, &o->exe_queue, link)
94                 cnt++;
95
96         spin_unlock_bh(&o->lock);
97
98         return cnt;
99 }
100
101 /**
102  * bnx2x_exe_queue_add - add a new element to the execution queue
103  *
104  * @bp:         driver handle
105  * @o:          queue
106  * @cmd:        new command to add
107  * @restore:    true - do not optimize the command
108  *
109  * If the element is optimized or is illegal, frees it.
110  */
111 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
112                                       struct bnx2x_exe_queue_obj *o,
113                                       struct bnx2x_exeq_elem *elem,
114                                       bool restore)
115 {
116         int rc;
117
118         spin_lock_bh(&o->lock);
119
120         if (!restore) {
121                 /* Try to cancel this element queue */
122                 rc = o->optimize(bp, o->owner, elem);
123                 if (rc)
124                         goto free_and_exit;
125
126                 /* Check if this request is ok */
127                 rc = o->validate(bp, o->owner, elem);
128                 if (rc) {
129                         DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
130                         goto free_and_exit;
131                 }
132         }
133
134         /* If so, add it to the execution queue */
135         list_add_tail(&elem->link, &o->exe_queue);
136
137         spin_unlock_bh(&o->lock);
138
139         return 0;
140
141 free_and_exit:
142         bnx2x_exe_queue_free_elem(bp, elem);
143
144         spin_unlock_bh(&o->lock);
145
146         return rc;
147 }
148
149 static inline void __bnx2x_exe_queue_reset_pending(
150         struct bnx2x *bp,
151         struct bnx2x_exe_queue_obj *o)
152 {
153         struct bnx2x_exeq_elem *elem;
154
155         while (!list_empty(&o->pending_comp)) {
156                 elem = list_first_entry(&o->pending_comp,
157                                         struct bnx2x_exeq_elem, link);
158
159                 list_del(&elem->link);
160                 bnx2x_exe_queue_free_elem(bp, elem);
161         }
162 }
163
164 /**
165  * bnx2x_exe_queue_step - execute one execution chunk atomically
166  *
167  * @bp:                 driver handle
168  * @o:                  queue
169  * @ramrod_flags:       flags
170  *
171  * (Should be called while holding the exe_queue->lock).
172  */
173 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
174                                        struct bnx2x_exe_queue_obj *o,
175                                        unsigned long *ramrod_flags)
176 {
177         struct bnx2x_exeq_elem *elem, spacer;
178         int cur_len = 0, rc;
179
180         memset(&spacer, 0, sizeof(spacer));
181
182         /* Next step should not be performed until the current is finished,
183          * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
184          * properly clear object internals without sending any command to the FW
185          * which also implies there won't be any completion to clear the
186          * 'pending' list.
187          */
188         if (!list_empty(&o->pending_comp)) {
189                 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
190                         DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
191                         __bnx2x_exe_queue_reset_pending(bp, o);
192                 } else {
193                         return 1;
194                 }
195         }
196
197         /* Run through the pending commands list and create a next
198          * execution chunk.
199          */
200         while (!list_empty(&o->exe_queue)) {
201                 elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
202                                         link);
203                 WARN_ON(!elem->cmd_len);
204
205                 if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
206                         cur_len += elem->cmd_len;
207                         /* Prevent from both lists being empty when moving an
208                          * element. This will allow the call of
209                          * bnx2x_exe_queue_empty() without locking.
210                          */
211                         list_add_tail(&spacer.link, &o->pending_comp);
212                         mb();
213                         list_move_tail(&elem->link, &o->pending_comp);
214                         list_del(&spacer.link);
215                 } else
216                         break;
217         }
218
219         /* Sanity check */
220         if (!cur_len)
221                 return 0;
222
223         rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
224         if (rc < 0)
225                 /* In case of an error return the commands back to the queue
226                  * and reset the pending_comp.
227                  */
228                 list_splice_init(&o->pending_comp, &o->exe_queue);
229         else if (!rc)
230                 /* If zero is returned, means there are no outstanding pending
231                  * completions and we may dismiss the pending list.
232                  */
233                 __bnx2x_exe_queue_reset_pending(bp, o);
234
235         return rc;
236 }
237
238 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
239 {
240         bool empty = list_empty(&o->exe_queue);
241
242         /* Don't reorder!!! */
243         mb();
244
245         return empty && list_empty(&o->pending_comp);
246 }
247
248 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
249         struct bnx2x *bp)
250 {
251         DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
252         return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
253 }
254
255 /************************ raw_obj functions ***********************************/
256 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
257 {
258         return !!test_bit(o->state, o->pstate);
259 }
260
261 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
262 {
263         smp_mb__before_atomic();
264         clear_bit(o->state, o->pstate);
265         smp_mb__after_atomic();
266 }
267
268 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
269 {
270         smp_mb__before_atomic();
271         set_bit(o->state, o->pstate);
272         smp_mb__after_atomic();
273 }
274
275 /**
276  * bnx2x_state_wait - wait until the given bit(state) is cleared
277  *
278  * @bp:         device handle
279  * @state:      state which is to be cleared
280  * @state_p:    state buffer
281  *
282  */
283 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
284                                    unsigned long *pstate)
285 {
286         /* can take a while if any port is running */
287         int cnt = 5000;
288
289         if (CHIP_REV_IS_EMUL(bp))
290                 cnt *= 20;
291
292         DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
293
294         might_sleep();
295         while (cnt--) {
296                 if (!test_bit(state, pstate)) {
297 #ifdef BNX2X_STOP_ON_ERROR
298                         DP(BNX2X_MSG_SP, "exit  (cnt %d)\n", 5000 - cnt);
299 #endif
300                         return 0;
301                 }
302
303                 usleep_range(1000, 2000);
304
305                 if (bp->panic)
306                         return -EIO;
307         }
308
309         /* timeout! */
310         BNX2X_ERR("timeout waiting for state %d\n", state);
311 #ifdef BNX2X_STOP_ON_ERROR
312         bnx2x_panic();
313 #endif
314
315         return -EBUSY;
316 }
317
318 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
319 {
320         return bnx2x_state_wait(bp, raw->state, raw->pstate);
321 }
322
323 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
324 /* credit handling callbacks */
325 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
326 {
327         struct bnx2x_credit_pool_obj *mp = o->macs_pool;
328
329         WARN_ON(!mp);
330
331         return mp->get_entry(mp, offset);
332 }
333
334 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
335 {
336         struct bnx2x_credit_pool_obj *mp = o->macs_pool;
337
338         WARN_ON(!mp);
339
340         return mp->get(mp, 1);
341 }
342
343 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
344 {
345         struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
346
347         WARN_ON(!vp);
348
349         return vp->get_entry(vp, offset);
350 }
351
352 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
353 {
354         struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
355
356         WARN_ON(!vp);
357
358         return vp->get(vp, 1);
359 }
360
361 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
362 {
363         struct bnx2x_credit_pool_obj *mp = o->macs_pool;
364         struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
365
366         if (!mp->get(mp, 1))
367                 return false;
368
369         if (!vp->get(vp, 1)) {
370                 mp->put(mp, 1);
371                 return false;
372         }
373
374         return true;
375 }
376
377 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
378 {
379         struct bnx2x_credit_pool_obj *mp = o->macs_pool;
380
381         return mp->put_entry(mp, offset);
382 }
383
384 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
385 {
386         struct bnx2x_credit_pool_obj *mp = o->macs_pool;
387
388         return mp->put(mp, 1);
389 }
390
391 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
392 {
393         struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
394
395         return vp->put_entry(vp, offset);
396 }
397
398 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
399 {
400         struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
401
402         return vp->put(vp, 1);
403 }
404
405 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
406 {
407         struct bnx2x_credit_pool_obj *mp = o->macs_pool;
408         struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
409
410         if (!mp->put(mp, 1))
411                 return false;
412
413         if (!vp->put(vp, 1)) {
414                 mp->get(mp, 1);
415                 return false;
416         }
417
418         return true;
419 }
420
421 /**
422  * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
423  *
424  * @bp:         device handle
425  * @o:          vlan_mac object
426  *
427  * @details: Non-blocking implementation; should be called under execution
428  *           queue lock.
429  */
430 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
431                                             struct bnx2x_vlan_mac_obj *o)
432 {
433         if (o->head_reader) {
434                 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
435                 return -EBUSY;
436         }
437
438         DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
439         return 0;
440 }
441
442 /**
443  * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
444  *
445  * @bp:         device handle
446  * @o:          vlan_mac object
447  *
448  * @details Should be called under execution queue lock; notice it might release
449  *          and reclaim it during its run.
450  */
451 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
452                                             struct bnx2x_vlan_mac_obj *o)
453 {
454         int rc;
455         unsigned long ramrod_flags = o->saved_ramrod_flags;
456
457         DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
458            ramrod_flags);
459         o->head_exe_request = false;
460         o->saved_ramrod_flags = 0;
461         rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
462         if ((rc != 0) && (rc != 1)) {
463                 BNX2X_ERR("execution of pending commands failed with rc %d\n",
464                           rc);
465 #ifdef BNX2X_STOP_ON_ERROR
466                 bnx2x_panic();
467 #endif
468         }
469 }
470
471 /**
472  * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
473  *
474  * @bp:                 device handle
475  * @o:                  vlan_mac object
476  * @ramrod_flags:       ramrod flags of missed execution
477  *
478  * @details Should be called under execution queue lock.
479  */
480 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
481                                     struct bnx2x_vlan_mac_obj *o,
482                                     unsigned long ramrod_flags)
483 {
484         o->head_exe_request = true;
485         o->saved_ramrod_flags = ramrod_flags;
486         DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
487            ramrod_flags);
488 }
489
490 /**
491  * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
492  *
493  * @bp:                 device handle
494  * @o:                  vlan_mac object
495  *
496  * @details Should be called under execution queue lock. Notice if a pending
497  *          execution exists, it would perform it - possibly releasing and
498  *          reclaiming the execution queue lock.
499  */
500 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
501                                             struct bnx2x_vlan_mac_obj *o)
502 {
503         /* It's possible a new pending execution was added since this writer
504          * executed. If so, execute again. [Ad infinitum]
505          */
506         while (o->head_exe_request) {
507                 DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
508                 __bnx2x_vlan_mac_h_exec_pending(bp, o);
509         }
510 }
511
512
513 /**
514  * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
515  *
516  * @bp:                 device handle
517  * @o:                  vlan_mac object
518  *
519  * @details Should be called under the execution queue lock. May sleep. May
520  *          release and reclaim execution queue lock during its run.
521  */
522 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
523                                         struct bnx2x_vlan_mac_obj *o)
524 {
525         /* If we got here, we're holding lock --> no WRITER exists */
526         o->head_reader++;
527         DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
528            o->head_reader);
529
530         return 0;
531 }
532
533 /**
534  * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
535  *
536  * @bp:                 device handle
537  * @o:                  vlan_mac object
538  *
539  * @details May sleep. Claims and releases execution queue lock during its run.
540  */
541 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
542                                struct bnx2x_vlan_mac_obj *o)
543 {
544         int rc;
545
546         spin_lock_bh(&o->exe_queue.lock);
547         rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
548         spin_unlock_bh(&o->exe_queue.lock);
549
550         return rc;
551 }
552
553 /**
554  * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
555  *
556  * @bp:                 device handle
557  * @o:                  vlan_mac object
558  *
559  * @details Should be called under execution queue lock. Notice if a pending
560  *          execution exists, it would be performed if this was the last
561  *          reader. possibly releasing and reclaiming the execution queue lock.
562  */
563 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
564                                           struct bnx2x_vlan_mac_obj *o)
565 {
566         if (!o->head_reader) {
567                 BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
568 #ifdef BNX2X_STOP_ON_ERROR
569                 bnx2x_panic();
570 #endif
571         } else {
572                 o->head_reader--;
573                 DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
574                    o->head_reader);
575         }
576
577         /* It's possible a new pending execution was added, and that this reader
578          * was last - if so we need to execute the command.
579          */
580         if (!o->head_reader && o->head_exe_request) {
581                 DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
582
583                 /* Writer release will do the trick */
584                 __bnx2x_vlan_mac_h_write_unlock(bp, o);
585         }
586 }
587
588 /**
589  * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
590  *
591  * @bp:                 device handle
592  * @o:                  vlan_mac object
593  *
594  * @details Notice if a pending execution exists, it would be performed if this
595  *          was the last reader. Claims and releases the execution queue lock
596  *          during its run.
597  */
598 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
599                                   struct bnx2x_vlan_mac_obj *o)
600 {
601         spin_lock_bh(&o->exe_queue.lock);
602         __bnx2x_vlan_mac_h_read_unlock(bp, o);
603         spin_unlock_bh(&o->exe_queue.lock);
604 }
605
606 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
607                                 int n, u8 *base, u8 stride, u8 size)
608 {
609         struct bnx2x_vlan_mac_registry_elem *pos;
610         u8 *next = base;
611         int counter = 0;
612         int read_lock;
613
614         DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
615         read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
616         if (read_lock != 0)
617                 BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
618
619         /* traverse list */
620         list_for_each_entry(pos, &o->head, link) {
621                 if (counter < n) {
622                         memcpy(next, &pos->u, size);
623                         counter++;
624                         DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
625                            counter, next);
626                         next += stride + size;
627                 }
628         }
629
630         if (read_lock == 0) {
631                 DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
632                 bnx2x_vlan_mac_h_read_unlock(bp, o);
633         }
634
635         return counter * ETH_ALEN;
636 }
637
638 /* check_add() callbacks */
639 static int bnx2x_check_mac_add(struct bnx2x *bp,
640                                struct bnx2x_vlan_mac_obj *o,
641                                union bnx2x_classification_ramrod_data *data)
642 {
643         struct bnx2x_vlan_mac_registry_elem *pos;
644
645         DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
646
647         if (!is_valid_ether_addr(data->mac.mac))
648                 return -EINVAL;
649
650         /* Check if a requested MAC already exists */
651         list_for_each_entry(pos, &o->head, link)
652                 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
653                     (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
654                         return -EEXIST;
655
656         return 0;
657 }
658
659 static int bnx2x_check_vlan_add(struct bnx2x *bp,
660                                 struct bnx2x_vlan_mac_obj *o,
661                                 union bnx2x_classification_ramrod_data *data)
662 {
663         struct bnx2x_vlan_mac_registry_elem *pos;
664
665         DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
666
667         list_for_each_entry(pos, &o->head, link)
668                 if (data->vlan.vlan == pos->u.vlan.vlan)
669                         return -EEXIST;
670
671         return 0;
672 }
673
674 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
675                                     struct bnx2x_vlan_mac_obj *o,
676                                    union bnx2x_classification_ramrod_data *data)
677 {
678         struct bnx2x_vlan_mac_registry_elem *pos;
679
680         DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
681            data->vlan_mac.mac, data->vlan_mac.vlan);
682
683         list_for_each_entry(pos, &o->head, link)
684                 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
685                     (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
686                                   ETH_ALEN)) &&
687                     (data->vlan_mac.is_inner_mac ==
688                      pos->u.vlan_mac.is_inner_mac))
689                         return -EEXIST;
690
691         return 0;
692 }
693
694 /* check_del() callbacks */
695 static struct bnx2x_vlan_mac_registry_elem *
696         bnx2x_check_mac_del(struct bnx2x *bp,
697                             struct bnx2x_vlan_mac_obj *o,
698                             union bnx2x_classification_ramrod_data *data)
699 {
700         struct bnx2x_vlan_mac_registry_elem *pos;
701
702         DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
703
704         list_for_each_entry(pos, &o->head, link)
705                 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
706                     (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
707                         return pos;
708
709         return NULL;
710 }
711
712 static struct bnx2x_vlan_mac_registry_elem *
713         bnx2x_check_vlan_del(struct bnx2x *bp,
714                              struct bnx2x_vlan_mac_obj *o,
715                              union bnx2x_classification_ramrod_data *data)
716 {
717         struct bnx2x_vlan_mac_registry_elem *pos;
718
719         DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
720
721         list_for_each_entry(pos, &o->head, link)
722                 if (data->vlan.vlan == pos->u.vlan.vlan)
723                         return pos;
724
725         return NULL;
726 }
727
728 static struct bnx2x_vlan_mac_registry_elem *
729         bnx2x_check_vlan_mac_del(struct bnx2x *bp,
730                                  struct bnx2x_vlan_mac_obj *o,
731                                  union bnx2x_classification_ramrod_data *data)
732 {
733         struct bnx2x_vlan_mac_registry_elem *pos;
734
735         DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
736            data->vlan_mac.mac, data->vlan_mac.vlan);
737
738         list_for_each_entry(pos, &o->head, link)
739                 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
740                     (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
741                              ETH_ALEN)) &&
742                     (data->vlan_mac.is_inner_mac ==
743                      pos->u.vlan_mac.is_inner_mac))
744                         return pos;
745
746         return NULL;
747 }
748
749 /* check_move() callback */
750 static bool bnx2x_check_move(struct bnx2x *bp,
751                              struct bnx2x_vlan_mac_obj *src_o,
752                              struct bnx2x_vlan_mac_obj *dst_o,
753                              union bnx2x_classification_ramrod_data *data)
754 {
755         struct bnx2x_vlan_mac_registry_elem *pos;
756         int rc;
757
758         /* Check if we can delete the requested configuration from the first
759          * object.
760          */
761         pos = src_o->check_del(bp, src_o, data);
762
763         /*  check if configuration can be added */
764         rc = dst_o->check_add(bp, dst_o, data);
765
766         /* If this classification can not be added (is already set)
767          * or can't be deleted - return an error.
768          */
769         if (rc || !pos)
770                 return false;
771
772         return true;
773 }
774
775 static bool bnx2x_check_move_always_err(
776         struct bnx2x *bp,
777         struct bnx2x_vlan_mac_obj *src_o,
778         struct bnx2x_vlan_mac_obj *dst_o,
779         union bnx2x_classification_ramrod_data *data)
780 {
781         return false;
782 }
783
784 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
785 {
786         struct bnx2x_raw_obj *raw = &o->raw;
787         u8 rx_tx_flag = 0;
788
789         if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
790             (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
791                 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
792
793         if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
794             (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
795                 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
796
797         return rx_tx_flag;
798 }
799
800 static void bnx2x_set_mac_in_nig(struct bnx2x *bp,
801                                  bool add, unsigned char *dev_addr, int index)
802 {
803         u32 wb_data[2];
804         u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
805                          NIG_REG_LLH0_FUNC_MEM;
806
807         if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
808                 return;
809
810         if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
811                 return;
812
813         DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
814                          (add ? "ADD" : "DELETE"), index);
815
816         if (add) {
817                 /* LLH_FUNC_MEM is a u64 WB register */
818                 reg_offset += 8*index;
819
820                 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
821                               (dev_addr[4] <<  8) |  dev_addr[5]);
822                 wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
823
824                 REG_WR_DMAE(bp, reg_offset, wb_data, 2);
825         }
826
827         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
828                                   NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
829 }
830
831 /**
832  * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
833  *
834  * @bp:         device handle
835  * @o:          queue for which we want to configure this rule
836  * @add:        if true the command is an ADD command, DEL otherwise
837  * @opcode:     CLASSIFY_RULE_OPCODE_XXX
838  * @hdr:        pointer to a header to setup
839  *
840  */
841 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
842         struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
843         struct eth_classify_cmd_header *hdr)
844 {
845         struct bnx2x_raw_obj *raw = &o->raw;
846
847         hdr->client_id = raw->cl_id;
848         hdr->func_id = raw->func_id;
849
850         /* Rx or/and Tx (internal switching) configuration ? */
851         hdr->cmd_general_data |=
852                 bnx2x_vlan_mac_get_rx_tx_flag(o);
853
854         if (add)
855                 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
856
857         hdr->cmd_general_data |=
858                 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
859 }
860
861 /**
862  * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
863  *
864  * @cid:        connection id
865  * @type:       BNX2X_FILTER_XXX_PENDING
866  * @hdr:        pointer to header to setup
867  * @rule_cnt:
868  *
869  * currently we always configure one rule and echo field to contain a CID and an
870  * opcode type.
871  */
872 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
873                                 struct eth_classify_header *hdr, int rule_cnt)
874 {
875         hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
876                                 (type << BNX2X_SWCID_SHIFT));
877         hdr->rule_cnt = (u8)rule_cnt;
878 }
879
880 /* hw_config() callbacks */
881 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
882                                  struct bnx2x_vlan_mac_obj *o,
883                                  struct bnx2x_exeq_elem *elem, int rule_idx,
884                                  int cam_offset)
885 {
886         struct bnx2x_raw_obj *raw = &o->raw;
887         struct eth_classify_rules_ramrod_data *data =
888                 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
889         int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
890         union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
891         bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
892         unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
893         u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
894
895         /* Set LLH CAM entry: currently only iSCSI and ETH macs are
896          * relevant. In addition, current implementation is tuned for a
897          * single ETH MAC.
898          *
899          * When multiple unicast ETH MACs PF configuration in switch
900          * independent mode is required (NetQ, multiple netdev MACs,
901          * etc.), consider better utilisation of 8 per function MAC
902          * entries in the LLH register. There is also
903          * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
904          * total number of CAM entries to 16.
905          *
906          * Currently we won't configure NIG for MACs other than a primary ETH
907          * MAC and iSCSI L2 MAC.
908          *
909          * If this MAC is moving from one Queue to another, no need to change
910          * NIG configuration.
911          */
912         if (cmd != BNX2X_VLAN_MAC_MOVE) {
913                 if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
914                         bnx2x_set_mac_in_nig(bp, add, mac,
915                                              BNX2X_LLH_CAM_ISCSI_ETH_LINE);
916                 else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
917                         bnx2x_set_mac_in_nig(bp, add, mac,
918                                              BNX2X_LLH_CAM_ETH_LINE);
919         }
920
921         /* Reset the ramrod data buffer for the first rule */
922         if (rule_idx == 0)
923                 memset(data, 0, sizeof(*data));
924
925         /* Setup a command header */
926         bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
927                                       &rule_entry->mac.header);
928
929         DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
930            (add ? "add" : "delete"), mac, raw->cl_id);
931
932         /* Set a MAC itself */
933         bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
934                               &rule_entry->mac.mac_mid,
935                               &rule_entry->mac.mac_lsb, mac);
936         rule_entry->mac.inner_mac =
937                 cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
938
939         /* MOVE: Add a rule that will add this MAC to the target Queue */
940         if (cmd == BNX2X_VLAN_MAC_MOVE) {
941                 rule_entry++;
942                 rule_cnt++;
943
944                 /* Setup ramrod data */
945                 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
946                                         elem->cmd_data.vlan_mac.target_obj,
947                                               true, CLASSIFY_RULE_OPCODE_MAC,
948                                               &rule_entry->mac.header);
949
950                 /* Set a MAC itself */
951                 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
952                                       &rule_entry->mac.mac_mid,
953                                       &rule_entry->mac.mac_lsb, mac);
954                 rule_entry->mac.inner_mac =
955                         cpu_to_le16(elem->cmd_data.vlan_mac.
956                                                 u.mac.is_inner_mac);
957         }
958
959         /* Set the ramrod data header */
960         /* TODO: take this to the higher level in order to prevent multiple
961                  writing */
962         bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
963                                         rule_cnt);
964 }
965
966 /**
967  * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
968  *
969  * @bp:         device handle
970  * @o:          queue
971  * @type:
972  * @cam_offset: offset in cam memory
973  * @hdr:        pointer to a header to setup
974  *
975  * E1/E1H
976  */
977 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
978         struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
979         struct mac_configuration_hdr *hdr)
980 {
981         struct bnx2x_raw_obj *r = &o->raw;
982
983         hdr->length = 1;
984         hdr->offset = (u8)cam_offset;
985         hdr->client_id = cpu_to_le16(0xff);
986         hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
987                                 (type << BNX2X_SWCID_SHIFT));
988 }
989
990 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
991         struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
992         u16 vlan_id, struct mac_configuration_entry *cfg_entry)
993 {
994         struct bnx2x_raw_obj *r = &o->raw;
995         u32 cl_bit_vec = (1 << r->cl_id);
996
997         cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
998         cfg_entry->pf_id = r->func_id;
999         cfg_entry->vlan_id = cpu_to_le16(vlan_id);
1000
1001         if (add) {
1002                 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1003                          T_ETH_MAC_COMMAND_SET);
1004                 SET_FLAG(cfg_entry->flags,
1005                          MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
1006
1007                 /* Set a MAC in a ramrod data */
1008                 bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1009                                       &cfg_entry->middle_mac_addr,
1010                                       &cfg_entry->lsb_mac_addr, mac);
1011         } else
1012                 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1013                          T_ETH_MAC_COMMAND_INVALIDATE);
1014 }
1015
1016 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
1017         struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
1018         u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1019 {
1020         struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1021         struct bnx2x_raw_obj *raw = &o->raw;
1022
1023         bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
1024                                          &config->hdr);
1025         bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
1026                                          cfg_entry);
1027
1028         DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
1029                          (add ? "setting" : "clearing"),
1030                          mac, raw->cl_id, cam_offset);
1031 }
1032
1033 /**
1034  * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1035  *
1036  * @bp:         device handle
1037  * @o:          bnx2x_vlan_mac_obj
1038  * @elem:       bnx2x_exeq_elem
1039  * @rule_idx:   rule_idx
1040  * @cam_offset: cam_offset
1041  */
1042 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
1043                                   struct bnx2x_vlan_mac_obj *o,
1044                                   struct bnx2x_exeq_elem *elem, int rule_idx,
1045                                   int cam_offset)
1046 {
1047         struct bnx2x_raw_obj *raw = &o->raw;
1048         struct mac_configuration_cmd *config =
1049                 (struct mac_configuration_cmd *)(raw->rdata);
1050         /* 57710 and 57711 do not support MOVE command,
1051          * so it's either ADD or DEL
1052          */
1053         bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1054                 true : false;
1055
1056         /* Reset the ramrod data buffer */
1057         memset(config, 0, sizeof(*config));
1058
1059         bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
1060                                      cam_offset, add,
1061                                      elem->cmd_data.vlan_mac.u.mac.mac, 0,
1062                                      ETH_VLAN_FILTER_ANY_VLAN, config);
1063 }
1064
1065 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
1066                                   struct bnx2x_vlan_mac_obj *o,
1067                                   struct bnx2x_exeq_elem *elem, int rule_idx,
1068                                   int cam_offset)
1069 {
1070         struct bnx2x_raw_obj *raw = &o->raw;
1071         struct eth_classify_rules_ramrod_data *data =
1072                 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1073         int rule_cnt = rule_idx + 1;
1074         union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1075         enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1076         bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1077         u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1078
1079         /* Reset the ramrod data buffer for the first rule */
1080         if (rule_idx == 0)
1081                 memset(data, 0, sizeof(*data));
1082
1083         /* Set a rule header */
1084         bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1085                                       &rule_entry->vlan.header);
1086
1087         DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1088                          vlan);
1089
1090         /* Set a VLAN itself */
1091         rule_entry->vlan.vlan = cpu_to_le16(vlan);
1092
1093         /* MOVE: Add a rule that will add this MAC to the target Queue */
1094         if (cmd == BNX2X_VLAN_MAC_MOVE) {
1095                 rule_entry++;
1096                 rule_cnt++;
1097
1098                 /* Setup ramrod data */
1099                 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1100                                         elem->cmd_data.vlan_mac.target_obj,
1101                                               true, CLASSIFY_RULE_OPCODE_VLAN,
1102                                               &rule_entry->vlan.header);
1103
1104                 /* Set a VLAN itself */
1105                 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1106         }
1107
1108         /* Set the ramrod data header */
1109         /* TODO: take this to the higher level in order to prevent multiple
1110                  writing */
1111         bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1112                                         rule_cnt);
1113 }
1114
1115 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
1116                                       struct bnx2x_vlan_mac_obj *o,
1117                                       struct bnx2x_exeq_elem *elem,
1118                                       int rule_idx, int cam_offset)
1119 {
1120         struct bnx2x_raw_obj *raw = &o->raw;
1121         struct eth_classify_rules_ramrod_data *data =
1122                 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1123         int rule_cnt = rule_idx + 1;
1124         union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1125         enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1126         bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1127         u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1128         u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1129         u16 inner_mac;
1130
1131         /* Reset the ramrod data buffer for the first rule */
1132         if (rule_idx == 0)
1133                 memset(data, 0, sizeof(*data));
1134
1135         /* Set a rule header */
1136         bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1137                                       &rule_entry->pair.header);
1138
1139         /* Set VLAN and MAC themselves */
1140         rule_entry->pair.vlan = cpu_to_le16(vlan);
1141         bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1142                               &rule_entry->pair.mac_mid,
1143                               &rule_entry->pair.mac_lsb, mac);
1144         inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1145         rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1146         /* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */
1147         if (cmd == BNX2X_VLAN_MAC_MOVE) {
1148                 struct bnx2x_vlan_mac_obj *target_obj;
1149
1150                 rule_entry++;
1151                 rule_cnt++;
1152
1153                 /* Setup ramrod data */
1154                 target_obj = elem->cmd_data.vlan_mac.target_obj;
1155                 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj,
1156                                               true, CLASSIFY_RULE_OPCODE_PAIR,
1157                                               &rule_entry->pair.header);
1158
1159                 /* Set a VLAN itself */
1160                 rule_entry->pair.vlan = cpu_to_le16(vlan);
1161                 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1162                                       &rule_entry->pair.mac_mid,
1163                                       &rule_entry->pair.mac_lsb, mac);
1164                 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1165         }
1166
1167         /* Set the ramrod data header */
1168         bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1169                                         rule_cnt);
1170 }
1171
1172 /**
1173  * bnx2x_set_one_vlan_mac_e1h -
1174  *
1175  * @bp:         device handle
1176  * @o:          bnx2x_vlan_mac_obj
1177  * @elem:       bnx2x_exeq_elem
1178  * @rule_idx:   rule_idx
1179  * @cam_offset: cam_offset
1180  */
1181 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1182                                        struct bnx2x_vlan_mac_obj *o,
1183                                        struct bnx2x_exeq_elem *elem,
1184                                        int rule_idx, int cam_offset)
1185 {
1186         struct bnx2x_raw_obj *raw = &o->raw;
1187         struct mac_configuration_cmd *config =
1188                 (struct mac_configuration_cmd *)(raw->rdata);
1189         /* 57710 and 57711 do not support MOVE command,
1190          * so it's either ADD or DEL
1191          */
1192         bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1193                 true : false;
1194
1195         /* Reset the ramrod data buffer */
1196         memset(config, 0, sizeof(*config));
1197
1198         bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1199                                      cam_offset, add,
1200                                      elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1201                                      elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1202                                      ETH_VLAN_FILTER_CLASSIFY, config);
1203 }
1204
1205 /**
1206  * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1207  *
1208  * @bp:         device handle
1209  * @p:          command parameters
1210  * @ppos:       pointer to the cookie
1211  *
1212  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1213  * previously configured elements list.
1214  *
1215  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1216  * into an account
1217  *
1218  * pointer to the cookie  - that should be given back in the next call to make
1219  * function handle the next element. If *ppos is set to NULL it will restart the
1220  * iterator. If returned *ppos == NULL this means that the last element has been
1221  * handled.
1222  *
1223  */
1224 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1225                            struct bnx2x_vlan_mac_ramrod_params *p,
1226                            struct bnx2x_vlan_mac_registry_elem **ppos)
1227 {
1228         struct bnx2x_vlan_mac_registry_elem *pos;
1229         struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1230
1231         /* If list is empty - there is nothing to do here */
1232         if (list_empty(&o->head)) {
1233                 *ppos = NULL;
1234                 return 0;
1235         }
1236
1237         /* make a step... */
1238         if (*ppos == NULL)
1239                 *ppos = list_first_entry(&o->head,
1240                                          struct bnx2x_vlan_mac_registry_elem,
1241                                          link);
1242         else
1243                 *ppos = list_next_entry(*ppos, link);
1244
1245         pos = *ppos;
1246
1247         /* If it's the last step - return NULL */
1248         if (list_is_last(&pos->link, &o->head))
1249                 *ppos = NULL;
1250
1251         /* Prepare a 'user_req' */
1252         memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1253
1254         /* Set the command */
1255         p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1256
1257         /* Set vlan_mac_flags */
1258         p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1259
1260         /* Set a restore bit */
1261         __set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1262
1263         return bnx2x_config_vlan_mac(bp, p);
1264 }
1265
1266 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1267  * pointer to an element with a specific criteria and NULL if such an element
1268  * hasn't been found.
1269  */
1270 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1271         struct bnx2x_exe_queue_obj *o,
1272         struct bnx2x_exeq_elem *elem)
1273 {
1274         struct bnx2x_exeq_elem *pos;
1275         struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1276
1277         /* Check pending for execution commands */
1278         list_for_each_entry(pos, &o->exe_queue, link)
1279                 if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1280                               sizeof(*data)) &&
1281                     (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1282                         return pos;
1283
1284         return NULL;
1285 }
1286
1287 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1288         struct bnx2x_exe_queue_obj *o,
1289         struct bnx2x_exeq_elem *elem)
1290 {
1291         struct bnx2x_exeq_elem *pos;
1292         struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1293
1294         /* Check pending for execution commands */
1295         list_for_each_entry(pos, &o->exe_queue, link)
1296                 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1297                               sizeof(*data)) &&
1298                     (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1299                         return pos;
1300
1301         return NULL;
1302 }
1303
1304 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1305         struct bnx2x_exe_queue_obj *o,
1306         struct bnx2x_exeq_elem *elem)
1307 {
1308         struct bnx2x_exeq_elem *pos;
1309         struct bnx2x_vlan_mac_ramrod_data *data =
1310                 &elem->cmd_data.vlan_mac.u.vlan_mac;
1311
1312         /* Check pending for execution commands */
1313         list_for_each_entry(pos, &o->exe_queue, link)
1314                 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1315                             sizeof(*data)) &&
1316                     (pos->cmd_data.vlan_mac.cmd ==
1317                      elem->cmd_data.vlan_mac.cmd))
1318                         return pos;
1319
1320         return NULL;
1321 }
1322
1323 /**
1324  * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1325  *
1326  * @bp:         device handle
1327  * @qo:         bnx2x_qable_obj
1328  * @elem:       bnx2x_exeq_elem
1329  *
1330  * Checks that the requested configuration can be added. If yes and if
1331  * requested, consume CAM credit.
1332  *
1333  * The 'validate' is run after the 'optimize'.
1334  *
1335  */
1336 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1337                                               union bnx2x_qable_obj *qo,
1338                                               struct bnx2x_exeq_elem *elem)
1339 {
1340         struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1341         struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1342         int rc;
1343
1344         /* Check the registry */
1345         rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1346         if (rc) {
1347                 DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1348                 return rc;
1349         }
1350
1351         /* Check if there is a pending ADD command for this
1352          * MAC/VLAN/VLAN-MAC. Return an error if there is.
1353          */
1354         if (exeq->get(exeq, elem)) {
1355                 DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1356                 return -EEXIST;
1357         }
1358
1359         /* TODO: Check the pending MOVE from other objects where this
1360          * object is a destination object.
1361          */
1362
1363         /* Consume the credit if not requested not to */
1364         if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1365                        &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1366             o->get_credit(o)))
1367                 return -EINVAL;
1368
1369         return 0;
1370 }
1371
1372 /**
1373  * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1374  *
1375  * @bp:         device handle
1376  * @qo:         quable object to check
1377  * @elem:       element that needs to be deleted
1378  *
1379  * Checks that the requested configuration can be deleted. If yes and if
1380  * requested, returns a CAM credit.
1381  *
1382  * The 'validate' is run after the 'optimize'.
1383  */
1384 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1385                                               union bnx2x_qable_obj *qo,
1386                                               struct bnx2x_exeq_elem *elem)
1387 {
1388         struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1389         struct bnx2x_vlan_mac_registry_elem *pos;
1390         struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1391         struct bnx2x_exeq_elem query_elem;
1392
1393         /* If this classification can not be deleted (doesn't exist)
1394          * - return a BNX2X_EXIST.
1395          */
1396         pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1397         if (!pos) {
1398                 DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1399                 return -EEXIST;
1400         }
1401
1402         /* Check if there are pending DEL or MOVE commands for this
1403          * MAC/VLAN/VLAN-MAC. Return an error if so.
1404          */
1405         memcpy(&query_elem, elem, sizeof(query_elem));
1406
1407         /* Check for MOVE commands */
1408         query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1409         if (exeq->get(exeq, &query_elem)) {
1410                 BNX2X_ERR("There is a pending MOVE command already\n");
1411                 return -EINVAL;
1412         }
1413
1414         /* Check for DEL commands */
1415         if (exeq->get(exeq, elem)) {
1416                 DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1417                 return -EEXIST;
1418         }
1419
1420         /* Return the credit to the credit pool if not requested not to */
1421         if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1422                        &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1423             o->put_credit(o))) {
1424                 BNX2X_ERR("Failed to return a credit\n");
1425                 return -EINVAL;
1426         }
1427
1428         return 0;
1429 }
1430
1431 /**
1432  * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1433  *
1434  * @bp:         device handle
1435  * @qo:         quable object to check (source)
1436  * @elem:       element that needs to be moved
1437  *
1438  * Checks that the requested configuration can be moved. If yes and if
1439  * requested, returns a CAM credit.
1440  *
1441  * The 'validate' is run after the 'optimize'.
1442  */
1443 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1444                                                union bnx2x_qable_obj *qo,
1445                                                struct bnx2x_exeq_elem *elem)
1446 {
1447         struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1448         struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1449         struct bnx2x_exeq_elem query_elem;
1450         struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1451         struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1452
1453         /* Check if we can perform this operation based on the current registry
1454          * state.
1455          */
1456         if (!src_o->check_move(bp, src_o, dest_o,
1457                                &elem->cmd_data.vlan_mac.u)) {
1458                 DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1459                 return -EINVAL;
1460         }
1461
1462         /* Check if there is an already pending DEL or MOVE command for the
1463          * source object or ADD command for a destination object. Return an
1464          * error if so.
1465          */
1466         memcpy(&query_elem, elem, sizeof(query_elem));
1467
1468         /* Check DEL on source */
1469         query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1470         if (src_exeq->get(src_exeq, &query_elem)) {
1471                 BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1472                 return -EINVAL;
1473         }
1474
1475         /* Check MOVE on source */
1476         if (src_exeq->get(src_exeq, elem)) {
1477                 DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1478                 return -EEXIST;
1479         }
1480
1481         /* Check ADD on destination */
1482         query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1483         if (dest_exeq->get(dest_exeq, &query_elem)) {
1484                 BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1485                 return -EINVAL;
1486         }
1487
1488         /* Consume the credit if not requested not to */
1489         if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1490                        &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1491             dest_o->get_credit(dest_o)))
1492                 return -EINVAL;
1493
1494         if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1495                        &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1496             src_o->put_credit(src_o))) {
1497                 /* return the credit taken from dest... */
1498                 dest_o->put_credit(dest_o);
1499                 return -EINVAL;
1500         }
1501
1502         return 0;
1503 }
1504
1505 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1506                                    union bnx2x_qable_obj *qo,
1507                                    struct bnx2x_exeq_elem *elem)
1508 {
1509         switch (elem->cmd_data.vlan_mac.cmd) {
1510         case BNX2X_VLAN_MAC_ADD:
1511                 return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1512         case BNX2X_VLAN_MAC_DEL:
1513                 return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1514         case BNX2X_VLAN_MAC_MOVE:
1515                 return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1516         default:
1517                 return -EINVAL;
1518         }
1519 }
1520
1521 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1522                                   union bnx2x_qable_obj *qo,
1523                                   struct bnx2x_exeq_elem *elem)
1524 {
1525         int rc = 0;
1526
1527         /* If consumption wasn't required, nothing to do */
1528         if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1529                      &elem->cmd_data.vlan_mac.vlan_mac_flags))
1530                 return 0;
1531
1532         switch (elem->cmd_data.vlan_mac.cmd) {
1533         case BNX2X_VLAN_MAC_ADD:
1534         case BNX2X_VLAN_MAC_MOVE:
1535                 rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1536                 break;
1537         case BNX2X_VLAN_MAC_DEL:
1538                 rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1539                 break;
1540         default:
1541                 return -EINVAL;
1542         }
1543
1544         if (rc != true)
1545                 return -EINVAL;
1546
1547         return 0;
1548 }
1549
1550 /**
1551  * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1552  *
1553  * @bp:         device handle
1554  * @o:          bnx2x_vlan_mac_obj
1555  *
1556  */
1557 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1558                                struct bnx2x_vlan_mac_obj *o)
1559 {
1560         int cnt = 5000, rc;
1561         struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1562         struct bnx2x_raw_obj *raw = &o->raw;
1563
1564         while (cnt--) {
1565                 /* Wait for the current command to complete */
1566                 rc = raw->wait_comp(bp, raw);
1567                 if (rc)
1568                         return rc;
1569
1570                 /* Wait until there are no pending commands */
1571                 if (!bnx2x_exe_queue_empty(exeq))
1572                         usleep_range(1000, 2000);
1573                 else
1574                         return 0;
1575         }
1576
1577         return -EBUSY;
1578 }
1579
1580 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1581                                          struct bnx2x_vlan_mac_obj *o,
1582                                          unsigned long *ramrod_flags)
1583 {
1584         int rc = 0;
1585
1586         spin_lock_bh(&o->exe_queue.lock);
1587
1588         DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1589         rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1590
1591         if (rc != 0) {
1592                 __bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1593
1594                 /* Calling function should not differentiate between this case
1595                  * and the case in which there is already a pending ramrod
1596                  */
1597                 rc = 1;
1598         } else {
1599                 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1600         }
1601         spin_unlock_bh(&o->exe_queue.lock);
1602
1603         return rc;
1604 }
1605
1606 /**
1607  * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1608  *
1609  * @bp:         device handle
1610  * @o:          bnx2x_vlan_mac_obj
1611  * @cqe:
1612  * @cont:       if true schedule next execution chunk
1613  *
1614  */
1615 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1616                                    struct bnx2x_vlan_mac_obj *o,
1617                                    union event_ring_elem *cqe,
1618                                    unsigned long *ramrod_flags)
1619 {
1620         struct bnx2x_raw_obj *r = &o->raw;
1621         int rc;
1622
1623         /* Clearing the pending list & raw state should be made
1624          * atomically (as execution flow assumes they represent the same).
1625          */
1626         spin_lock_bh(&o->exe_queue.lock);
1627
1628         /* Reset pending list */
1629         __bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1630
1631         /* Clear pending */
1632         r->clear_pending(r);
1633
1634         spin_unlock_bh(&o->exe_queue.lock);
1635
1636         /* If ramrod failed this is most likely a SW bug */
1637         if (cqe->message.error)
1638                 return -EINVAL;
1639
1640         /* Run the next bulk of pending commands if requested */
1641         if (test_bit(RAMROD_CONT, ramrod_flags)) {
1642                 rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1643
1644                 if (rc < 0)
1645                         return rc;
1646         }
1647
1648         /* If there is more work to do return PENDING */
1649         if (!bnx2x_exe_queue_empty(&o->exe_queue))
1650                 return 1;
1651
1652         return 0;
1653 }
1654
1655 /**
1656  * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1657  *
1658  * @bp:         device handle
1659  * @o:          bnx2x_qable_obj
1660  * @elem:       bnx2x_exeq_elem
1661  */
1662 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1663                                    union bnx2x_qable_obj *qo,
1664                                    struct bnx2x_exeq_elem *elem)
1665 {
1666         struct bnx2x_exeq_elem query, *pos;
1667         struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1668         struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1669
1670         memcpy(&query, elem, sizeof(query));
1671
1672         switch (elem->cmd_data.vlan_mac.cmd) {
1673         case BNX2X_VLAN_MAC_ADD:
1674                 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1675                 break;
1676         case BNX2X_VLAN_MAC_DEL:
1677                 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1678                 break;
1679         default:
1680                 /* Don't handle anything other than ADD or DEL */
1681                 return 0;
1682         }
1683
1684         /* If we found the appropriate element - delete it */
1685         pos = exeq->get(exeq, &query);
1686         if (pos) {
1687
1688                 /* Return the credit of the optimized command */
1689                 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1690                               &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1691                         if ((query.cmd_data.vlan_mac.cmd ==
1692                              BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1693                                 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1694                                 return -EINVAL;
1695                         } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1696                                 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1697                                 return -EINVAL;
1698                         }
1699                 }
1700
1701                 DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1702                            (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1703                            "ADD" : "DEL");
1704
1705                 list_del(&pos->link);
1706                 bnx2x_exe_queue_free_elem(bp, pos);
1707                 return 1;
1708         }
1709
1710         return 0;
1711 }
1712
1713 /**
1714  * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1715  *
1716  * @bp:   device handle
1717  * @o:
1718  * @elem:
1719  * @restore:
1720  * @re:
1721  *
1722  * prepare a registry element according to the current command request.
1723  */
1724 static inline int bnx2x_vlan_mac_get_registry_elem(
1725         struct bnx2x *bp,
1726         struct bnx2x_vlan_mac_obj *o,
1727         struct bnx2x_exeq_elem *elem,
1728         bool restore,
1729         struct bnx2x_vlan_mac_registry_elem **re)
1730 {
1731         enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1732         struct bnx2x_vlan_mac_registry_elem *reg_elem;
1733
1734         /* Allocate a new registry element if needed. */
1735         if (!restore &&
1736             ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1737                 reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1738                 if (!reg_elem)
1739                         return -ENOMEM;
1740
1741                 /* Get a new CAM offset */
1742                 if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1743                         /* This shall never happen, because we have checked the
1744                          * CAM availability in the 'validate'.
1745                          */
1746                         WARN_ON(1);
1747                         kfree(reg_elem);
1748                         return -EINVAL;
1749                 }
1750
1751                 DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1752
1753                 /* Set a VLAN-MAC data */
1754                 memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1755                           sizeof(reg_elem->u));
1756
1757                 /* Copy the flags (needed for DEL and RESTORE flows) */
1758                 reg_elem->vlan_mac_flags =
1759                         elem->cmd_data.vlan_mac.vlan_mac_flags;
1760         } else /* DEL, RESTORE */
1761                 reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1762
1763         *re = reg_elem;
1764         return 0;
1765 }
1766
1767 /**
1768  * bnx2x_execute_vlan_mac - execute vlan mac command
1769  *
1770  * @bp:                 device handle
1771  * @qo:
1772  * @exe_chunk:
1773  * @ramrod_flags:
1774  *
1775  * go and send a ramrod!
1776  */
1777 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1778                                   union bnx2x_qable_obj *qo,
1779                                   struct list_head *exe_chunk,
1780                                   unsigned long *ramrod_flags)
1781 {
1782         struct bnx2x_exeq_elem *elem;
1783         struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1784         struct bnx2x_raw_obj *r = &o->raw;
1785         int rc, idx = 0;
1786         bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1787         bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1788         struct bnx2x_vlan_mac_registry_elem *reg_elem;
1789         enum bnx2x_vlan_mac_cmd cmd;
1790
1791         /* If DRIVER_ONLY execution is requested, cleanup a registry
1792          * and exit. Otherwise send a ramrod to FW.
1793          */
1794         if (!drv_only) {
1795                 WARN_ON(r->check_pending(r));
1796
1797                 /* Set pending */
1798                 r->set_pending(r);
1799
1800                 /* Fill the ramrod data */
1801                 list_for_each_entry(elem, exe_chunk, link) {
1802                         cmd = elem->cmd_data.vlan_mac.cmd;
1803                         /* We will add to the target object in MOVE command, so
1804                          * change the object for a CAM search.
1805                          */
1806                         if (cmd == BNX2X_VLAN_MAC_MOVE)
1807                                 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1808                         else
1809                                 cam_obj = o;
1810
1811                         rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1812                                                               elem, restore,
1813                                                               &reg_elem);
1814                         if (rc)
1815                                 goto error_exit;
1816
1817                         WARN_ON(!reg_elem);
1818
1819                         /* Push a new entry into the registry */
1820                         if (!restore &&
1821                             ((cmd == BNX2X_VLAN_MAC_ADD) ||
1822                             (cmd == BNX2X_VLAN_MAC_MOVE)))
1823                                 list_add(&reg_elem->link, &cam_obj->head);
1824
1825                         /* Configure a single command in a ramrod data buffer */
1826                         o->set_one_rule(bp, o, elem, idx,
1827                                         reg_elem->cam_offset);
1828
1829                         /* MOVE command consumes 2 entries in the ramrod data */
1830                         if (cmd == BNX2X_VLAN_MAC_MOVE)
1831                                 idx += 2;
1832                         else
1833                                 idx++;
1834                 }
1835
1836                 /* No need for an explicit memory barrier here as long we would
1837                  * need to ensure the ordering of writing to the SPQ element
1838                  * and updating of the SPQ producer which involves a memory
1839                  * read and we will have to put a full memory barrier there
1840                  * (inside bnx2x_sp_post()).
1841                  */
1842
1843                 rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1844                                    U64_HI(r->rdata_mapping),
1845                                    U64_LO(r->rdata_mapping),
1846                                    ETH_CONNECTION_TYPE);
1847                 if (rc)
1848                         goto error_exit;
1849         }
1850
1851         /* Now, when we are done with the ramrod - clean up the registry */
1852         list_for_each_entry(elem, exe_chunk, link) {
1853                 cmd = elem->cmd_data.vlan_mac.cmd;
1854                 if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1855                     (cmd == BNX2X_VLAN_MAC_MOVE)) {
1856                         reg_elem = o->check_del(bp, o,
1857                                                 &elem->cmd_data.vlan_mac.u);
1858
1859                         WARN_ON(!reg_elem);
1860
1861                         o->put_cam_offset(o, reg_elem->cam_offset);
1862                         list_del(&reg_elem->link);
1863                         kfree(reg_elem);
1864                 }
1865         }
1866
1867         if (!drv_only)
1868                 return 1;
1869         else
1870                 return 0;
1871
1872 error_exit:
1873         r->clear_pending(r);
1874
1875         /* Cleanup a registry in case of a failure */
1876         list_for_each_entry(elem, exe_chunk, link) {
1877                 cmd = elem->cmd_data.vlan_mac.cmd;
1878
1879                 if (cmd == BNX2X_VLAN_MAC_MOVE)
1880                         cam_obj = elem->cmd_data.vlan_mac.target_obj;
1881                 else
1882                         cam_obj = o;
1883
1884                 /* Delete all newly added above entries */
1885                 if (!restore &&
1886                     ((cmd == BNX2X_VLAN_MAC_ADD) ||
1887                     (cmd == BNX2X_VLAN_MAC_MOVE))) {
1888                         reg_elem = o->check_del(bp, cam_obj,
1889                                                 &elem->cmd_data.vlan_mac.u);
1890                         if (reg_elem) {
1891                                 list_del(&reg_elem->link);
1892                                 kfree(reg_elem);
1893                         }
1894                 }
1895         }
1896
1897         return rc;
1898 }
1899
1900 static inline int bnx2x_vlan_mac_push_new_cmd(
1901         struct bnx2x *bp,
1902         struct bnx2x_vlan_mac_ramrod_params *p)
1903 {
1904         struct bnx2x_exeq_elem *elem;
1905         struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1906         bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1907
1908         /* Allocate the execution queue element */
1909         elem = bnx2x_exe_queue_alloc_elem(bp);
1910         if (!elem)
1911                 return -ENOMEM;
1912
1913         /* Set the command 'length' */
1914         switch (p->user_req.cmd) {
1915         case BNX2X_VLAN_MAC_MOVE:
1916                 elem->cmd_len = 2;
1917                 break;
1918         default:
1919                 elem->cmd_len = 1;
1920         }
1921
1922         /* Fill the object specific info */
1923         memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1924
1925         /* Try to add a new command to the pending list */
1926         return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1927 }
1928
1929 /**
1930  * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1931  *
1932  * @bp:   device handle
1933  * @p:
1934  *
1935  */
1936 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1937                            struct bnx2x_vlan_mac_ramrod_params *p)
1938 {
1939         int rc = 0;
1940         struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1941         unsigned long *ramrod_flags = &p->ramrod_flags;
1942         bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1943         struct bnx2x_raw_obj *raw = &o->raw;
1944
1945         /*
1946          * Add new elements to the execution list for commands that require it.
1947          */
1948         if (!cont) {
1949                 rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1950                 if (rc)
1951                         return rc;
1952         }
1953
1954         /* If nothing will be executed further in this iteration we want to
1955          * return PENDING if there are pending commands
1956          */
1957         if (!bnx2x_exe_queue_empty(&o->exe_queue))
1958                 rc = 1;
1959
1960         if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
1961                 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1962                 raw->clear_pending(raw);
1963         }
1964
1965         /* Execute commands if required */
1966         if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1967             test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1968                 rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1969                                                    &p->ramrod_flags);
1970                 if (rc < 0)
1971                         return rc;
1972         }
1973
1974         /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1975          * then user want to wait until the last command is done.
1976          */
1977         if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1978                 /* Wait maximum for the current exe_queue length iterations plus
1979                  * one (for the current pending command).
1980                  */
1981                 int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1982
1983                 while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1984                        max_iterations--) {
1985
1986                         /* Wait for the current command to complete */
1987                         rc = raw->wait_comp(bp, raw);
1988                         if (rc)
1989                                 return rc;
1990
1991                         /* Make a next step */
1992                         rc = __bnx2x_vlan_mac_execute_step(bp,
1993                                                            p->vlan_mac_obj,
1994                                                            &p->ramrod_flags);
1995                         if (rc < 0)
1996                                 return rc;
1997                 }
1998
1999                 return 0;
2000         }
2001
2002         return rc;
2003 }
2004
2005 /**
2006  * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2007  *
2008  * @bp:                 device handle
2009  * @o:
2010  * @vlan_mac_flags:
2011  * @ramrod_flags:       execution flags to be used for this deletion
2012  *
2013  * if the last operation has completed successfully and there are no
2014  * more elements left, positive value if the last operation has completed
2015  * successfully and there are more previously configured elements, negative
2016  * value is current operation has failed.
2017  */
2018 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
2019                                   struct bnx2x_vlan_mac_obj *o,
2020                                   unsigned long *vlan_mac_flags,
2021                                   unsigned long *ramrod_flags)
2022 {
2023         struct bnx2x_vlan_mac_registry_elem *pos = NULL;
2024         struct bnx2x_vlan_mac_ramrod_params p;
2025         struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
2026         struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
2027         unsigned long flags;
2028         int read_lock;
2029         int rc = 0;
2030
2031         /* Clear pending commands first */
2032
2033         spin_lock_bh(&exeq->lock);
2034
2035         list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
2036                 flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2037                 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2038                     BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2039                         rc = exeq->remove(bp, exeq->owner, exeq_pos);
2040                         if (rc) {
2041                                 BNX2X_ERR("Failed to remove command\n");
2042                                 spin_unlock_bh(&exeq->lock);
2043                                 return rc;
2044                         }
2045                         list_del(&exeq_pos->link);
2046                         bnx2x_exe_queue_free_elem(bp, exeq_pos);
2047                 }
2048         }
2049
2050         spin_unlock_bh(&exeq->lock);
2051
2052         /* Prepare a command request */
2053         memset(&p, 0, sizeof(p));
2054         p.vlan_mac_obj = o;
2055         p.ramrod_flags = *ramrod_flags;
2056         p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
2057
2058         /* Add all but the last VLAN-MAC to the execution queue without actually
2059          * execution anything.
2060          */
2061         __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
2062         __clear_bit(RAMROD_EXEC, &p.ramrod_flags);
2063         __clear_bit(RAMROD_CONT, &p.ramrod_flags);
2064
2065         DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2066         read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
2067         if (read_lock != 0)
2068                 return read_lock;
2069
2070         list_for_each_entry(pos, &o->head, link) {
2071                 flags = pos->vlan_mac_flags;
2072                 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2073                     BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2074                         p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2075                         memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2076                         rc = bnx2x_config_vlan_mac(bp, &p);
2077                         if (rc < 0) {
2078                                 BNX2X_ERR("Failed to add a new DEL command\n");
2079                                 bnx2x_vlan_mac_h_read_unlock(bp, o);
2080                                 return rc;
2081                         }
2082                 }
2083         }
2084
2085         DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2086         bnx2x_vlan_mac_h_read_unlock(bp, o);
2087
2088         p.ramrod_flags = *ramrod_flags;
2089         __set_bit(RAMROD_CONT, &p.ramrod_flags);
2090
2091         return bnx2x_config_vlan_mac(bp, &p);
2092 }
2093
2094 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
2095         u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
2096         unsigned long *pstate, bnx2x_obj_type type)
2097 {
2098         raw->func_id = func_id;
2099         raw->cid = cid;
2100         raw->cl_id = cl_id;
2101         raw->rdata = rdata;
2102         raw->rdata_mapping = rdata_mapping;
2103         raw->state = state;
2104         raw->pstate = pstate;
2105         raw->obj_type = type;
2106         raw->check_pending = bnx2x_raw_check_pending;
2107         raw->clear_pending = bnx2x_raw_clear_pending;
2108         raw->set_pending = bnx2x_raw_set_pending;
2109         raw->wait_comp = bnx2x_raw_wait;
2110 }
2111
2112 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
2113         u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
2114         int state, unsigned long *pstate, bnx2x_obj_type type,
2115         struct bnx2x_credit_pool_obj *macs_pool,
2116         struct bnx2x_credit_pool_obj *vlans_pool)
2117 {
2118         INIT_LIST_HEAD(&o->head);
2119         o->head_reader = 0;
2120         o->head_exe_request = false;
2121         o->saved_ramrod_flags = 0;
2122
2123         o->macs_pool = macs_pool;
2124         o->vlans_pool = vlans_pool;
2125
2126         o->delete_all = bnx2x_vlan_mac_del_all;
2127         o->restore = bnx2x_vlan_mac_restore;
2128         o->complete = bnx2x_complete_vlan_mac;
2129         o->wait = bnx2x_wait_vlan_mac;
2130
2131         bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2132                            state, pstate, type);
2133 }
2134
2135 void bnx2x_init_mac_obj(struct bnx2x *bp,
2136                         struct bnx2x_vlan_mac_obj *mac_obj,
2137                         u8 cl_id, u32 cid, u8 func_id, void *rdata,
2138                         dma_addr_t rdata_mapping, int state,
2139                         unsigned long *pstate, bnx2x_obj_type type,
2140                         struct bnx2x_credit_pool_obj *macs_pool)
2141 {
2142         union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
2143
2144         bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2145                                    rdata_mapping, state, pstate, type,
2146                                    macs_pool, NULL);
2147
2148         /* CAM credit pool handling */
2149         mac_obj->get_credit = bnx2x_get_credit_mac;
2150         mac_obj->put_credit = bnx2x_put_credit_mac;
2151         mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2152         mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2153
2154         if (CHIP_IS_E1x(bp)) {
2155                 mac_obj->set_one_rule      = bnx2x_set_one_mac_e1x;
2156                 mac_obj->check_del         = bnx2x_check_mac_del;
2157                 mac_obj->check_add         = bnx2x_check_mac_add;
2158                 mac_obj->check_move        = bnx2x_check_move_always_err;
2159                 mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2160
2161                 /* Exe Queue */
2162                 bnx2x_exe_queue_init(bp,
2163                                      &mac_obj->exe_queue, 1, qable_obj,
2164                                      bnx2x_validate_vlan_mac,
2165                                      bnx2x_remove_vlan_mac,
2166                                      bnx2x_optimize_vlan_mac,
2167                                      bnx2x_execute_vlan_mac,
2168                                      bnx2x_exeq_get_mac);
2169         } else {
2170                 mac_obj->set_one_rule      = bnx2x_set_one_mac_e2;
2171                 mac_obj->check_del         = bnx2x_check_mac_del;
2172                 mac_obj->check_add         = bnx2x_check_mac_add;
2173                 mac_obj->check_move        = bnx2x_check_move;
2174                 mac_obj->ramrod_cmd        =
2175                         RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2176                 mac_obj->get_n_elements    = bnx2x_get_n_elements;
2177
2178                 /* Exe Queue */
2179                 bnx2x_exe_queue_init(bp,
2180                                      &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2181                                      qable_obj, bnx2x_validate_vlan_mac,
2182                                      bnx2x_remove_vlan_mac,
2183                                      bnx2x_optimize_vlan_mac,
2184                                      bnx2x_execute_vlan_mac,
2185                                      bnx2x_exeq_get_mac);
2186         }
2187 }
2188
2189 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2190                          struct bnx2x_vlan_mac_obj *vlan_obj,
2191                          u8 cl_id, u32 cid, u8 func_id, void *rdata,
2192                          dma_addr_t rdata_mapping, int state,
2193                          unsigned long *pstate, bnx2x_obj_type type,
2194                          struct bnx2x_credit_pool_obj *vlans_pool)
2195 {
2196         union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2197
2198         bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2199                                    rdata_mapping, state, pstate, type, NULL,
2200                                    vlans_pool);
2201
2202         vlan_obj->get_credit = bnx2x_get_credit_vlan;
2203         vlan_obj->put_credit = bnx2x_put_credit_vlan;
2204         vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2205         vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2206
2207         if (CHIP_IS_E1x(bp)) {
2208                 BNX2X_ERR("Do not support chips others than E2 and newer\n");
2209                 BUG();
2210         } else {
2211                 vlan_obj->set_one_rule      = bnx2x_set_one_vlan_e2;
2212                 vlan_obj->check_del         = bnx2x_check_vlan_del;
2213                 vlan_obj->check_add         = bnx2x_check_vlan_add;
2214                 vlan_obj->check_move        = bnx2x_check_move;
2215                 vlan_obj->ramrod_cmd        =
2216                         RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2217                 vlan_obj->get_n_elements    = bnx2x_get_n_elements;
2218
2219                 /* Exe Queue */
2220                 bnx2x_exe_queue_init(bp,
2221                                      &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2222                                      qable_obj, bnx2x_validate_vlan_mac,
2223                                      bnx2x_remove_vlan_mac,
2224                                      bnx2x_optimize_vlan_mac,
2225                                      bnx2x_execute_vlan_mac,
2226                                      bnx2x_exeq_get_vlan);
2227         }
2228 }
2229
2230 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2231                              struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2232                              u8 cl_id, u32 cid, u8 func_id, void *rdata,
2233                              dma_addr_t rdata_mapping, int state,
2234                              unsigned long *pstate, bnx2x_obj_type type,
2235                              struct bnx2x_credit_pool_obj *macs_pool,
2236                              struct bnx2x_credit_pool_obj *vlans_pool)
2237 {
2238         union bnx2x_qable_obj *qable_obj =
2239                 (union bnx2x_qable_obj *)vlan_mac_obj;
2240
2241         bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2242                                    rdata_mapping, state, pstate, type,
2243                                    macs_pool, vlans_pool);
2244
2245         /* CAM pool handling */
2246         vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2247         vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2248         /* CAM offset is relevant for 57710 and 57711 chips only which have a
2249          * single CAM for both MACs and VLAN-MAC pairs. So the offset
2250          * will be taken from MACs' pool object only.
2251          */
2252         vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2253         vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2254
2255         if (CHIP_IS_E1(bp)) {
2256                 BNX2X_ERR("Do not support chips others than E2\n");
2257                 BUG();
2258         } else if (CHIP_IS_E1H(bp)) {
2259                 vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e1h;
2260                 vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2261                 vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2262                 vlan_mac_obj->check_move        = bnx2x_check_move_always_err;
2263                 vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2264
2265                 /* Exe Queue */
2266                 bnx2x_exe_queue_init(bp,
2267                                      &vlan_mac_obj->exe_queue, 1, qable_obj,
2268                                      bnx2x_validate_vlan_mac,
2269                                      bnx2x_remove_vlan_mac,
2270                                      bnx2x_optimize_vlan_mac,
2271                                      bnx2x_execute_vlan_mac,
2272                                      bnx2x_exeq_get_vlan_mac);
2273         } else {
2274                 vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e2;
2275                 vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2276                 vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2277                 vlan_mac_obj->check_move        = bnx2x_check_move;
2278                 vlan_mac_obj->ramrod_cmd        =
2279                         RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2280
2281                 /* Exe Queue */
2282                 bnx2x_exe_queue_init(bp,
2283                                      &vlan_mac_obj->exe_queue,
2284                                      CLASSIFY_RULES_COUNT,
2285                                      qable_obj, bnx2x_validate_vlan_mac,
2286                                      bnx2x_remove_vlan_mac,
2287                                      bnx2x_optimize_vlan_mac,
2288                                      bnx2x_execute_vlan_mac,
2289                                      bnx2x_exeq_get_vlan_mac);
2290         }
2291 }
2292 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2293 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2294                         struct tstorm_eth_mac_filter_config *mac_filters,
2295                         u16 pf_id)
2296 {
2297         size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2298
2299         u32 addr = BAR_TSTRORM_INTMEM +
2300                         TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2301
2302         __storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2303 }
2304
2305 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2306                                  struct bnx2x_rx_mode_ramrod_params *p)
2307 {
2308         /* update the bp MAC filter structure */
2309         u32 mask = (1 << p->cl_id);
2310
2311         struct tstorm_eth_mac_filter_config *mac_filters =
2312                 (struct tstorm_eth_mac_filter_config *)p->rdata;
2313
2314         /* initial setting is drop-all */
2315         u8 drop_all_ucast = 1, drop_all_mcast = 1;
2316         u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2317         u8 unmatched_unicast = 0;
2318
2319     /* In e1x there we only take into account rx accept flag since tx switching
2320      * isn't enabled. */
2321         if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2322                 /* accept matched ucast */
2323                 drop_all_ucast = 0;
2324
2325         if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2326                 /* accept matched mcast */
2327                 drop_all_mcast = 0;
2328
2329         if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2330                 /* accept all mcast */
2331                 drop_all_ucast = 0;
2332                 accp_all_ucast = 1;
2333         }
2334         if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2335                 /* accept all mcast */
2336                 drop_all_mcast = 0;
2337                 accp_all_mcast = 1;
2338         }
2339         if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2340                 /* accept (all) bcast */
2341                 accp_all_bcast = 1;
2342         if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2343                 /* accept unmatched unicasts */
2344                 unmatched_unicast = 1;
2345
2346         mac_filters->ucast_drop_all = drop_all_ucast ?
2347                 mac_filters->ucast_drop_all | mask :
2348                 mac_filters->ucast_drop_all & ~mask;
2349
2350         mac_filters->mcast_drop_all = drop_all_mcast ?
2351                 mac_filters->mcast_drop_all | mask :
2352                 mac_filters->mcast_drop_all & ~mask;
2353
2354         mac_filters->ucast_accept_all = accp_all_ucast ?
2355                 mac_filters->ucast_accept_all | mask :
2356                 mac_filters->ucast_accept_all & ~mask;
2357
2358         mac_filters->mcast_accept_all = accp_all_mcast ?
2359                 mac_filters->mcast_accept_all | mask :
2360                 mac_filters->mcast_accept_all & ~mask;
2361
2362         mac_filters->bcast_accept_all = accp_all_bcast ?
2363                 mac_filters->bcast_accept_all | mask :
2364                 mac_filters->bcast_accept_all & ~mask;
2365
2366         mac_filters->unmatched_unicast = unmatched_unicast ?
2367                 mac_filters->unmatched_unicast | mask :
2368                 mac_filters->unmatched_unicast & ~mask;
2369
2370         DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2371                          "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2372            mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2373            mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2374            mac_filters->bcast_accept_all);
2375
2376         /* write the MAC filter structure*/
2377         __storm_memset_mac_filters(bp, mac_filters, p->func_id);
2378
2379         /* The operation is completed */
2380         clear_bit(p->state, p->pstate);
2381         smp_mb__after_atomic();
2382
2383         return 0;
2384 }
2385
2386 /* Setup ramrod data */
2387 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2388                                 struct eth_classify_header *hdr,
2389                                 u8 rule_cnt)
2390 {
2391         hdr->echo = cpu_to_le32(cid);
2392         hdr->rule_cnt = rule_cnt;
2393 }
2394
2395 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2396                                 unsigned long *accept_flags,
2397                                 struct eth_filter_rules_cmd *cmd,
2398                                 bool clear_accept_all)
2399 {
2400         u16 state;
2401
2402         /* start with 'drop-all' */
2403         state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2404                 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2405
2406         if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2407                 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2408
2409         if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2410                 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2411
2412         if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2413                 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2414                 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2415         }
2416
2417         if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2418                 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2419                 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2420         }
2421
2422         if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2423                 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2424
2425         if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2426                 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2427                 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2428         }
2429
2430         if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2431                 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2432
2433         /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2434         if (clear_accept_all) {
2435                 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2436                 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2437                 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2438                 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2439         }
2440
2441         cmd->state = cpu_to_le16(state);
2442 }
2443
2444 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2445                                 struct bnx2x_rx_mode_ramrod_params *p)
2446 {
2447         struct eth_filter_rules_ramrod_data *data = p->rdata;
2448         int rc;
2449         u8 rule_idx = 0;
2450
2451         /* Reset the ramrod data buffer */
2452         memset(data, 0, sizeof(*data));
2453
2454         /* Setup ramrod data */
2455
2456         /* Tx (internal switching) */
2457         if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2458                 data->rules[rule_idx].client_id = p->cl_id;
2459                 data->rules[rule_idx].func_id = p->func_id;
2460
2461                 data->rules[rule_idx].cmd_general_data =
2462                         ETH_FILTER_RULES_CMD_TX_CMD;
2463
2464                 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2465                                                &(data->rules[rule_idx++]),
2466                                                false);
2467         }
2468
2469         /* Rx */
2470         if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2471                 data->rules[rule_idx].client_id = p->cl_id;
2472                 data->rules[rule_idx].func_id = p->func_id;
2473
2474                 data->rules[rule_idx].cmd_general_data =
2475                         ETH_FILTER_RULES_CMD_RX_CMD;
2476
2477                 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2478                                                &(data->rules[rule_idx++]),
2479                                                false);
2480         }
2481
2482         /* If FCoE Queue configuration has been requested configure the Rx and
2483          * internal switching modes for this queue in separate rules.
2484          *
2485          * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2486          * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2487          */
2488         if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2489                 /*  Tx (internal switching) */
2490                 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2491                         data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2492                         data->rules[rule_idx].func_id = p->func_id;
2493
2494                         data->rules[rule_idx].cmd_general_data =
2495                                                 ETH_FILTER_RULES_CMD_TX_CMD;
2496
2497                         bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2498                                                        &(data->rules[rule_idx]),
2499                                                        true);
2500                         rule_idx++;
2501                 }
2502
2503                 /* Rx */
2504                 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2505                         data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2506                         data->rules[rule_idx].func_id = p->func_id;
2507
2508                         data->rules[rule_idx].cmd_general_data =
2509                                                 ETH_FILTER_RULES_CMD_RX_CMD;
2510
2511                         bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2512                                                        &(data->rules[rule_idx]),
2513                                                        true);
2514                         rule_idx++;
2515                 }
2516         }
2517
2518         /* Set the ramrod header (most importantly - number of rules to
2519          * configure).
2520          */
2521         bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2522
2523         DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2524                          data->header.rule_cnt, p->rx_accept_flags,
2525                          p->tx_accept_flags);
2526
2527         /* No need for an explicit memory barrier here as long as we
2528          * ensure the ordering of writing to the SPQ element
2529          * and updating of the SPQ producer which involves a memory
2530          * read. If the memory read is removed we will have to put a
2531          * full memory barrier there (inside bnx2x_sp_post()).
2532          */
2533
2534         /* Send a ramrod */
2535         rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2536                            U64_HI(p->rdata_mapping),
2537                            U64_LO(p->rdata_mapping),
2538                            ETH_CONNECTION_TYPE);
2539         if (rc)
2540                 return rc;
2541
2542         /* Ramrod completion is pending */
2543         return 1;
2544 }
2545
2546 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2547                                       struct bnx2x_rx_mode_ramrod_params *p)
2548 {
2549         return bnx2x_state_wait(bp, p->state, p->pstate);
2550 }
2551
2552 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2553                                     struct bnx2x_rx_mode_ramrod_params *p)
2554 {
2555         /* Do nothing */
2556         return 0;
2557 }
2558
2559 int bnx2x_config_rx_mode(struct bnx2x *bp,
2560                          struct bnx2x_rx_mode_ramrod_params *p)
2561 {
2562         int rc;
2563
2564         /* Configure the new classification in the chip */
2565         rc = p->rx_mode_obj->config_rx_mode(bp, p);
2566         if (rc < 0)
2567                 return rc;
2568
2569         /* Wait for a ramrod completion if was requested */
2570         if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2571                 rc = p->rx_mode_obj->wait_comp(bp, p);
2572                 if (rc)
2573                         return rc;
2574         }
2575
2576         return rc;
2577 }
2578
2579 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2580                             struct bnx2x_rx_mode_obj *o)
2581 {
2582         if (CHIP_IS_E1x(bp)) {
2583                 o->wait_comp      = bnx2x_empty_rx_mode_wait;
2584                 o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2585         } else {
2586                 o->wait_comp      = bnx2x_wait_rx_mode_comp_e2;
2587                 o->config_rx_mode = bnx2x_set_rx_mode_e2;
2588         }
2589 }
2590
2591 /********************* Multicast verbs: SET, CLEAR ****************************/
2592 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2593 {
2594         return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2595 }
2596
2597 struct bnx2x_mcast_mac_elem {
2598         struct list_head link;
2599         u8 mac[ETH_ALEN];
2600         u8 pad[2]; /* For a natural alignment of the following buffer */
2601 };
2602
2603 struct bnx2x_mcast_bin_elem {
2604         struct list_head link;
2605         int bin;
2606         int type; /* BNX2X_MCAST_CMD_SET_{ADD, DEL} */
2607 };
2608
2609 union bnx2x_mcast_elem {
2610         struct bnx2x_mcast_bin_elem bin_elem;
2611         struct bnx2x_mcast_mac_elem mac_elem;
2612 };
2613
2614 struct bnx2x_mcast_elem_group {
2615         struct list_head mcast_group_link;
2616         union bnx2x_mcast_elem mcast_elems[];
2617 };
2618
2619 #define MCAST_MAC_ELEMS_PER_PG \
2620         ((PAGE_SIZE - sizeof(struct bnx2x_mcast_elem_group)) / \
2621         sizeof(union bnx2x_mcast_elem))
2622
2623 struct bnx2x_pending_mcast_cmd {
2624         struct list_head link;
2625         struct list_head group_head;
2626         int type; /* BNX2X_MCAST_CMD_X */
2627         union {
2628                 struct list_head macs_head;
2629                 u32 macs_num; /* Needed for DEL command */
2630                 int next_bin; /* Needed for RESTORE flow with aprox match */
2631         } data;
2632
2633         bool set_convert; /* in case type == BNX2X_MCAST_CMD_SET, this is set
2634                            * when macs_head had been converted to a list of
2635                            * bnx2x_mcast_bin_elem.
2636                            */
2637
2638         bool done; /* set to true, when the command has been handled,
2639                     * practically used in 57712 handling only, where one pending
2640                     * command may be handled in a few operations. As long as for
2641                     * other chips every operation handling is completed in a
2642                     * single ramrod, there is no need to utilize this field.
2643                     */
2644 };
2645
2646 static int bnx2x_mcast_wait(struct bnx2x *bp,
2647                             struct bnx2x_mcast_obj *o)
2648 {
2649         if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2650                         o->raw.wait_comp(bp, &o->raw))
2651                 return -EBUSY;
2652
2653         return 0;
2654 }
2655
2656 static void bnx2x_free_groups(struct list_head *mcast_group_list)
2657 {
2658         struct bnx2x_mcast_elem_group *current_mcast_group;
2659
2660         while (!list_empty(mcast_group_list)) {
2661                 current_mcast_group = list_first_entry(mcast_group_list,
2662                                       struct bnx2x_mcast_elem_group,
2663                                       mcast_group_link);
2664                 list_del(&current_mcast_group->mcast_group_link);
2665                 free_page((unsigned long)current_mcast_group);
2666         }
2667 }
2668
2669 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2670                                    struct bnx2x_mcast_obj *o,
2671                                    struct bnx2x_mcast_ramrod_params *p,
2672                                    enum bnx2x_mcast_cmd cmd)
2673 {
2674         struct bnx2x_pending_mcast_cmd *new_cmd;
2675         struct bnx2x_mcast_list_elem *pos;
2676         struct bnx2x_mcast_elem_group *elem_group;
2677         struct bnx2x_mcast_mac_elem *mac_elem;
2678         int total_elems = 0, macs_list_len = 0, offset = 0;
2679
2680         /* When adding MACs we'll need to store their values */
2681         if (cmd == BNX2X_MCAST_CMD_ADD || cmd == BNX2X_MCAST_CMD_SET)
2682                 macs_list_len = p->mcast_list_len;
2683
2684         /* If the command is empty ("handle pending commands only"), break */
2685         if (!p->mcast_list_len)
2686                 return 0;
2687
2688         /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2689         new_cmd = kzalloc(sizeof(*new_cmd), GFP_ATOMIC);
2690         if (!new_cmd)
2691                 return -ENOMEM;
2692
2693         INIT_LIST_HEAD(&new_cmd->data.macs_head);
2694         INIT_LIST_HEAD(&new_cmd->group_head);
2695         new_cmd->type = cmd;
2696         new_cmd->done = false;
2697
2698         DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2699            cmd, macs_list_len);
2700
2701         switch (cmd) {
2702         case BNX2X_MCAST_CMD_ADD:
2703         case BNX2X_MCAST_CMD_SET:
2704                 /* For a set command, we need to allocate sufficient memory for
2705                  * all the bins, since we can't analyze at this point how much
2706                  * memory would be required.
2707                  */
2708                 total_elems = macs_list_len;
2709                 if (cmd == BNX2X_MCAST_CMD_SET) {
2710                         if (total_elems < BNX2X_MCAST_BINS_NUM)
2711                                 total_elems = BNX2X_MCAST_BINS_NUM;
2712                 }
2713                 while (total_elems > 0) {
2714                         elem_group = (struct bnx2x_mcast_elem_group *)
2715                                      __get_free_page(GFP_ATOMIC | __GFP_ZERO);
2716                         if (!elem_group) {
2717                                 bnx2x_free_groups(&new_cmd->group_head);
2718                                 kfree(new_cmd);
2719                                 return -ENOMEM;
2720                         }
2721                         total_elems -= MCAST_MAC_ELEMS_PER_PG;
2722                         list_add_tail(&elem_group->mcast_group_link,
2723                                       &new_cmd->group_head);
2724                 }
2725                 elem_group = list_first_entry(&new_cmd->group_head,
2726                                               struct bnx2x_mcast_elem_group,
2727                                               mcast_group_link);
2728                 list_for_each_entry(pos, &p->mcast_list, link) {
2729                         mac_elem = &elem_group->mcast_elems[offset].mac_elem;
2730                         memcpy(mac_elem->mac, pos->mac, ETH_ALEN);
2731                         /* Push the MACs of the current command into the pending
2732                          * command MACs list: FIFO
2733                          */
2734                         list_add_tail(&mac_elem->link,
2735                                       &new_cmd->data.macs_head);
2736                         offset++;
2737                         if (offset == MCAST_MAC_ELEMS_PER_PG) {
2738                                 offset = 0;
2739                                 elem_group = list_next_entry(elem_group,
2740                                                              mcast_group_link);
2741                         }
2742                 }
2743                 break;
2744
2745         case BNX2X_MCAST_CMD_DEL:
2746                 new_cmd->data.macs_num = p->mcast_list_len;
2747                 break;
2748
2749         case BNX2X_MCAST_CMD_RESTORE:
2750                 new_cmd->data.next_bin = 0;
2751                 break;
2752
2753         default:
2754                 kfree(new_cmd);
2755                 BNX2X_ERR("Unknown command: %d\n", cmd);
2756                 return -EINVAL;
2757         }
2758
2759         /* Push the new pending command to the tail of the pending list: FIFO */
2760         list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2761
2762         o->set_sched(o);
2763
2764         return 1;
2765 }
2766
2767 /**
2768  * bnx2x_mcast_get_next_bin - get the next set bin (index)
2769  *
2770  * @o:
2771  * @last:       index to start looking from (including)
2772  *
2773  * returns the next found (set) bin or a negative value if none is found.
2774  */
2775 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2776 {
2777         int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2778
2779         for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2780                 if (o->registry.aprox_match.vec[i])
2781                         for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2782                                 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2783                                 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2784                                                        vec, cur_bit)) {
2785                                         return cur_bit;
2786                                 }
2787                         }
2788                 inner_start = 0;
2789         }
2790
2791         /* None found */
2792         return -1;
2793 }
2794
2795 /**
2796  * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2797  *
2798  * @o:
2799  *
2800  * returns the index of the found bin or -1 if none is found
2801  */
2802 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2803 {
2804         int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2805
2806         if (cur_bit >= 0)
2807                 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2808
2809         return cur_bit;
2810 }
2811
2812 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2813 {
2814         struct bnx2x_raw_obj *raw = &o->raw;
2815         u8 rx_tx_flag = 0;
2816
2817         if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2818             (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2819                 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2820
2821         if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2822             (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2823                 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2824
2825         return rx_tx_flag;
2826 }
2827
2828 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2829                                         struct bnx2x_mcast_obj *o, int idx,
2830                                         union bnx2x_mcast_config_data *cfg_data,
2831                                         enum bnx2x_mcast_cmd cmd)
2832 {
2833         struct bnx2x_raw_obj *r = &o->raw;
2834         struct eth_multicast_rules_ramrod_data *data =
2835                 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2836         u8 func_id = r->func_id;
2837         u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2838         int bin;
2839
2840         if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE) ||
2841             (cmd == BNX2X_MCAST_CMD_SET_ADD))
2842                 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2843
2844         data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2845
2846         /* Get a bin and update a bins' vector */
2847         switch (cmd) {
2848         case BNX2X_MCAST_CMD_ADD:
2849                 bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2850                 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2851                 break;
2852
2853         case BNX2X_MCAST_CMD_DEL:
2854                 /* If there were no more bins to clear
2855                  * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2856                  * clear any (0xff) bin.
2857                  * See bnx2x_mcast_validate_e2() for explanation when it may
2858                  * happen.
2859                  */
2860                 bin = bnx2x_mcast_clear_first_bin(o);
2861                 break;
2862
2863         case BNX2X_MCAST_CMD_RESTORE:
2864                 bin = cfg_data->bin;
2865                 break;
2866
2867         case BNX2X_MCAST_CMD_SET_ADD:
2868                 bin = cfg_data->bin;
2869                 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2870                 break;
2871
2872         case BNX2X_MCAST_CMD_SET_DEL:
2873                 bin = cfg_data->bin;
2874                 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, bin);
2875                 break;
2876
2877         default:
2878                 BNX2X_ERR("Unknown command: %d\n", cmd);
2879                 return;
2880         }
2881
2882         DP(BNX2X_MSG_SP, "%s bin %d\n",
2883                          ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2884                          "Setting"  : "Clearing"), bin);
2885
2886         data->rules[idx].bin_id    = (u8)bin;
2887         data->rules[idx].func_id   = func_id;
2888         data->rules[idx].engine_id = o->engine_id;
2889 }
2890
2891 /**
2892  * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2893  *
2894  * @bp:         device handle
2895  * @o:
2896  * @start_bin:  index in the registry to start from (including)
2897  * @rdata_idx:  index in the ramrod data to start from
2898  *
2899  * returns last handled bin index or -1 if all bins have been handled
2900  */
2901 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2902         struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2903         int *rdata_idx)
2904 {
2905         int cur_bin, cnt = *rdata_idx;
2906         union bnx2x_mcast_config_data cfg_data = {NULL};
2907
2908         /* go through the registry and configure the bins from it */
2909         for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2910             cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2911
2912                 cfg_data.bin = (u8)cur_bin;
2913                 o->set_one_rule(bp, o, cnt, &cfg_data,
2914                                 BNX2X_MCAST_CMD_RESTORE);
2915
2916                 cnt++;
2917
2918                 DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2919
2920                 /* Break if we reached the maximum number
2921                  * of rules.
2922                  */
2923                 if (cnt >= o->max_cmd_len)
2924                         break;
2925         }
2926
2927         *rdata_idx = cnt;
2928
2929         return cur_bin;
2930 }
2931
2932 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2933         struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2934         int *line_idx)
2935 {
2936         struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2937         int cnt = *line_idx;
2938         union bnx2x_mcast_config_data cfg_data = {NULL};
2939
2940         list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2941                                  link) {
2942
2943                 cfg_data.mac = &pmac_pos->mac[0];
2944                 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2945
2946                 cnt++;
2947
2948                 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2949                    pmac_pos->mac);
2950
2951                 list_del(&pmac_pos->link);
2952
2953                 /* Break if we reached the maximum number
2954                  * of rules.
2955                  */
2956                 if (cnt >= o->max_cmd_len)
2957                         break;
2958         }
2959
2960         *line_idx = cnt;
2961
2962         /* if no more MACs to configure - we are done */
2963         if (list_empty(&cmd_pos->data.macs_head))
2964                 cmd_pos->done = true;
2965 }
2966
2967 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2968         struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2969         int *line_idx)
2970 {
2971         int cnt = *line_idx;
2972
2973         while (cmd_pos->data.macs_num) {
2974                 o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2975
2976                 cnt++;
2977
2978                 cmd_pos->data.macs_num--;
2979
2980                 DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2981                    cmd_pos->data.macs_num, cnt);
2982
2983                 /* Break if we reached the maximum
2984                  * number of rules.
2985                  */
2986                 if (cnt >= o->max_cmd_len)
2987                         break;
2988         }
2989
2990         *line_idx = cnt;
2991
2992         /* If we cleared all bins - we are done */
2993         if (!cmd_pos->data.macs_num)
2994                 cmd_pos->done = true;
2995 }
2996
2997 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
2998         struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2999         int *line_idx)
3000 {
3001         cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
3002                                                 line_idx);
3003
3004         if (cmd_pos->data.next_bin < 0)
3005                 /* If o->set_restore returned -1 we are done */
3006                 cmd_pos->done = true;
3007         else
3008                 /* Start from the next bin next time */
3009                 cmd_pos->data.next_bin++;
3010 }
3011
3012 static void
3013 bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x *bp,
3014                                        struct bnx2x_mcast_obj *o,
3015                                        struct bnx2x_pending_mcast_cmd *cmd_pos)
3016 {
3017         u64 cur[BNX2X_MCAST_VEC_SZ], req[BNX2X_MCAST_VEC_SZ];
3018         struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3019         struct bnx2x_mcast_bin_elem *p_item;
3020         struct bnx2x_mcast_elem_group *elem_group;
3021         int cnt = 0, mac_cnt = 0, offset = 0, i;
3022
3023         memset(req, 0, sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3024         memcpy(cur, o->registry.aprox_match.vec,
3025                sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3026
3027         /* Fill `current' with the required set of bins to configure */
3028         list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
3029                                  link) {
3030                 int bin = bnx2x_mcast_bin_from_mac(pmac_pos->mac);
3031
3032                 DP(BNX2X_MSG_SP, "Set contains %pM mcast MAC\n",
3033                    pmac_pos->mac);
3034
3035                 BIT_VEC64_SET_BIT(req, bin);
3036                 list_del(&pmac_pos->link);
3037                 mac_cnt++;
3038         }
3039
3040         /* We no longer have use for the MACs; Need to re-use memory for
3041          * a list that will be used to configure bins.
3042          */
3043         cmd_pos->set_convert = true;
3044         INIT_LIST_HEAD(&cmd_pos->data.macs_head);
3045         elem_group = list_first_entry(&cmd_pos->group_head,
3046                                       struct bnx2x_mcast_elem_group,
3047                                       mcast_group_link);
3048         for (i = 0; i < BNX2X_MCAST_BINS_NUM; i++) {
3049                 bool b_current = !!BIT_VEC64_TEST_BIT(cur, i);
3050                 bool b_required = !!BIT_VEC64_TEST_BIT(req, i);
3051
3052                 if (b_current == b_required)
3053                         continue;
3054
3055                 p_item = &elem_group->mcast_elems[offset].bin_elem;
3056                 p_item->bin = i;
3057                 p_item->type = b_required ? BNX2X_MCAST_CMD_SET_ADD
3058                                           : BNX2X_MCAST_CMD_SET_DEL;
3059                 list_add_tail(&p_item->link , &cmd_pos->data.macs_head);
3060                 cnt++;
3061                 offset++;
3062                 if (offset == MCAST_MAC_ELEMS_PER_PG) {
3063                         offset = 0;
3064                         elem_group = list_next_entry(elem_group,
3065                                                      mcast_group_link);
3066                 }
3067         }
3068
3069         /* We now definitely know how many commands are hiding here.
3070          * Also need to correct the disruption we've added to guarantee this
3071          * would be enqueued.
3072          */
3073         o->total_pending_num -= (o->max_cmd_len + mac_cnt);
3074         o->total_pending_num += cnt;
3075
3076         DP(BNX2X_MSG_SP, "o->total_pending_num=%d\n", o->total_pending_num);
3077 }
3078
3079 static void
3080 bnx2x_mcast_hdl_pending_set_e2(struct bnx2x *bp,
3081                                struct bnx2x_mcast_obj *o,
3082                                struct bnx2x_pending_mcast_cmd *cmd_pos,
3083                                int *cnt)
3084 {
3085         union bnx2x_mcast_config_data cfg_data = {NULL};
3086         struct bnx2x_mcast_bin_elem *p_item, *p_item_n;
3087
3088         /* This is actually a 2-part scheme - it starts by converting the MACs
3089          * into a list of bins to be added/removed, and correcting the numbers
3090          * on the object. this is now allowed, as we're now sure that all
3091          * previous configured requests have already applied.
3092          * The second part is actually adding rules for the newly introduced
3093          * entries [like all the rest of the hdl_pending functions].
3094          */
3095         if (!cmd_pos->set_convert)
3096                 bnx2x_mcast_hdl_pending_set_e2_convert(bp, o, cmd_pos);
3097
3098         list_for_each_entry_safe(p_item, p_item_n, &cmd_pos->data.macs_head,
3099                                  link) {
3100                 cfg_data.bin = (u8)p_item->bin;
3101                 o->set_one_rule(bp, o, *cnt, &cfg_data, p_item->type);
3102                 (*cnt)++;
3103
3104                 list_del(&p_item->link);
3105
3106                 /* Break if we reached the maximum number of rules. */
3107                 if (*cnt >= o->max_cmd_len)
3108                         break;
3109         }
3110
3111         /* if no more MACs to configure - we are done */
3112         if (list_empty(&cmd_pos->data.macs_head))
3113                 cmd_pos->done = true;
3114 }
3115
3116 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
3117                                 struct bnx2x_mcast_ramrod_params *p)
3118 {
3119         struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3120         int cnt = 0;
3121         struct bnx2x_mcast_obj *o = p->mcast_obj;
3122
3123         list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
3124                                  link) {
3125                 switch (cmd_pos->type) {
3126                 case BNX2X_MCAST_CMD_ADD:
3127                         bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
3128                         break;
3129
3130                 case BNX2X_MCAST_CMD_DEL:
3131                         bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
3132                         break;
3133
3134                 case BNX2X_MCAST_CMD_RESTORE:
3135                         bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
3136                                                            &cnt);
3137                         break;
3138
3139                 case BNX2X_MCAST_CMD_SET:
3140                         bnx2x_mcast_hdl_pending_set_e2(bp, o, cmd_pos, &cnt);
3141                         break;
3142
3143                 default:
3144                         BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3145                         return -EINVAL;
3146                 }
3147
3148                 /* If the command has been completed - remove it from the list
3149                  * and free the memory
3150                  */
3151                 if (cmd_pos->done) {
3152                         list_del(&cmd_pos->link);
3153                         bnx2x_free_groups(&cmd_pos->group_head);
3154                         kfree(cmd_pos);
3155                 }
3156
3157                 /* Break if we reached the maximum number of rules */
3158                 if (cnt >= o->max_cmd_len)
3159                         break;
3160         }
3161
3162         return cnt;
3163 }
3164
3165 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
3166         struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3167         int *line_idx)
3168 {
3169         struct bnx2x_mcast_list_elem *mlist_pos;
3170         union bnx2x_mcast_config_data cfg_data = {NULL};
3171         int cnt = *line_idx;
3172
3173         list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3174                 cfg_data.mac = mlist_pos->mac;
3175                 o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
3176
3177                 cnt++;
3178
3179                 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3180                    mlist_pos->mac);
3181         }
3182
3183         *line_idx = cnt;
3184 }
3185
3186 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
3187         struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3188         int *line_idx)
3189 {
3190         int cnt = *line_idx, i;
3191
3192         for (i = 0; i < p->mcast_list_len; i++) {
3193                 o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
3194
3195                 cnt++;
3196
3197                 DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
3198                                  p->mcast_list_len - i - 1);
3199         }
3200
3201         *line_idx = cnt;
3202 }
3203
3204 /**
3205  * bnx2x_mcast_handle_current_cmd -
3206  *
3207  * @bp:         device handle
3208  * @p:
3209  * @cmd:
3210  * @start_cnt:  first line in the ramrod data that may be used
3211  *
3212  * This function is called iff there is enough place for the current command in
3213  * the ramrod data.
3214  * Returns number of lines filled in the ramrod data in total.
3215  */
3216 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
3217                         struct bnx2x_mcast_ramrod_params *p,
3218                         enum bnx2x_mcast_cmd cmd,
3219                         int start_cnt)
3220 {
3221         struct bnx2x_mcast_obj *o = p->mcast_obj;
3222         int cnt = start_cnt;
3223
3224         DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3225
3226         switch (cmd) {
3227         case BNX2X_MCAST_CMD_ADD:
3228                 bnx2x_mcast_hdl_add(bp, o, p, &cnt);
3229                 break;
3230
3231         case BNX2X_MCAST_CMD_DEL:
3232                 bnx2x_mcast_hdl_del(bp, o, p, &cnt);
3233                 break;
3234
3235         case BNX2X_MCAST_CMD_RESTORE:
3236                 o->hdl_restore(bp, o, 0, &cnt);
3237                 break;
3238
3239         default:
3240                 BNX2X_ERR("Unknown command: %d\n", cmd);
3241                 return -EINVAL;
3242         }
3243
3244         /* The current command has been handled */
3245         p->mcast_list_len = 0;
3246
3247         return cnt;
3248 }
3249
3250 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
3251                                    struct bnx2x_mcast_ramrod_params *p,
3252                                    enum bnx2x_mcast_cmd cmd)
3253 {
3254         struct bnx2x_mcast_obj *o = p->mcast_obj;
3255         int reg_sz = o->get_registry_size(o);
3256
3257         switch (cmd) {
3258         /* DEL command deletes all currently configured MACs */
3259         case BNX2X_MCAST_CMD_DEL:
3260                 o->set_registry_size(o, 0);
3261                 /* fall through */
3262
3263         /* RESTORE command will restore the entire multicast configuration */
3264         case BNX2X_MCAST_CMD_RESTORE:
3265                 /* Here we set the approximate amount of work to do, which in
3266                  * fact may be only less as some MACs in postponed ADD
3267                  * command(s) scheduled before this command may fall into
3268                  * the same bin and the actual number of bins set in the
3269                  * registry would be less than we estimated here. See
3270                  * bnx2x_mcast_set_one_rule_e2() for further details.
3271                  */
3272                 p->mcast_list_len = reg_sz;
3273                 break;
3274
3275         case BNX2X_MCAST_CMD_ADD:
3276         case BNX2X_MCAST_CMD_CONT:
3277                 /* Here we assume that all new MACs will fall into new bins.
3278                  * However we will correct the real registry size after we
3279                  * handle all pending commands.
3280                  */
3281                 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3282                 break;
3283
3284         case BNX2X_MCAST_CMD_SET:
3285                 /* We can only learn how many commands would actually be used
3286                  * when this is being configured. So for now, simply guarantee
3287                  * the command will be enqueued [to refrain from adding logic
3288                  * that handles this and THEN learns it needs several ramrods].
3289                  * Just like for ADD/Cont, the mcast_list_len might be an over
3290                  * estimation; or even more so, since we don't take into
3291                  * account the possibility of removal of existing bins.
3292                  */
3293                 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3294                 o->total_pending_num += o->max_cmd_len;
3295                 break;
3296
3297         default:
3298                 BNX2X_ERR("Unknown command: %d\n", cmd);
3299                 return -EINVAL;
3300         }
3301
3302         /* Increase the total number of MACs pending to be configured */
3303         o->total_pending_num += p->mcast_list_len;
3304
3305         return 0;
3306 }
3307
3308 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
3309                                       struct bnx2x_mcast_ramrod_params *p,
3310                                   int old_num_bins,
3311                                   enum bnx2x_mcast_cmd cmd)
3312 {
3313         struct bnx2x_mcast_obj *o = p->mcast_obj;
3314
3315         o->set_registry_size(o, old_num_bins);
3316         o->total_pending_num -= p->mcast_list_len;
3317
3318         if (cmd == BNX2X_MCAST_CMD_SET)
3319                 o->total_pending_num -= o->max_cmd_len;
3320 }
3321
3322 /**
3323  * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3324  *
3325  * @bp:         device handle
3326  * @p:
3327  * @len:        number of rules to handle
3328  */
3329 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
3330                                         struct bnx2x_mcast_ramrod_params *p,
3331                                         u8 len)
3332 {
3333         struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3334         struct eth_multicast_rules_ramrod_data *data =
3335                 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3336
3337         data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3338                                         (BNX2X_FILTER_MCAST_PENDING <<
3339                                          BNX2X_SWCID_SHIFT));
3340         data->header.rule_cnt = len;
3341 }
3342
3343 /**
3344  * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3345  *
3346  * @bp:         device handle
3347  * @o:
3348  *
3349  * Recalculate the actual number of set bins in the registry using Brian
3350  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3351  *
3352  * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3353  */
3354 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
3355                                                   struct bnx2x_mcast_obj *o)
3356 {
3357         int i, cnt = 0;
3358         u64 elem;
3359
3360         for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
3361                 elem = o->registry.aprox_match.vec[i];
3362                 for (; elem; cnt++)
3363                         elem &= elem - 1;
3364         }
3365
3366         o->set_registry_size(o, cnt);
3367
3368         return 0;
3369 }
3370
3371 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
3372                                 struct bnx2x_mcast_ramrod_params *p,
3373                                 enum bnx2x_mcast_cmd cmd)
3374 {
3375         struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
3376         struct bnx2x_mcast_obj *o = p->mcast_obj;
3377         struct eth_multicast_rules_ramrod_data *data =
3378                 (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3379         int cnt = 0, rc;
3380
3381         /* Reset the ramrod data buffer */
3382         memset(data, 0, sizeof(*data));
3383
3384         cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
3385
3386         /* If there are no more pending commands - clear SCHEDULED state */
3387         if (list_empty(&o->pending_cmds_head))
3388                 o->clear_sched(o);
3389
3390         /* The below may be true iff there was enough room in ramrod
3391          * data for all pending commands and for the current
3392          * command. Otherwise the current command would have been added
3393          * to the pending commands and p->mcast_list_len would have been
3394          * zeroed.
3395          */
3396         if (p->mcast_list_len > 0)
3397                 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
3398
3399         /* We've pulled out some MACs - update the total number of
3400          * outstanding.
3401          */
3402         o->total_pending_num -= cnt;
3403
3404         /* send a ramrod */
3405         WARN_ON(o->total_pending_num < 0);
3406         WARN_ON(cnt > o->max_cmd_len);
3407
3408         bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3409
3410         /* Update a registry size if there are no more pending operations.
3411          *
3412          * We don't want to change the value of the registry size if there are
3413          * pending operations because we want it to always be equal to the
3414          * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3415          * set bins after the last requested operation in order to properly
3416          * evaluate the size of the next DEL/RESTORE operation.
3417          *
3418          * Note that we update the registry itself during command(s) handling
3419          * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3420          * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3421          * with a limited amount of update commands (per MAC/bin) and we don't
3422          * know in this scope what the actual state of bins configuration is
3423          * going to be after this ramrod.
3424          */
3425         if (!o->total_pending_num)
3426                 bnx2x_mcast_refresh_registry_e2(bp, o);
3427
3428         /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3429          * RAMROD_PENDING status immediately. due to the SET option, it's also
3430          * possible that after evaluating the differences there's no need for
3431          * a ramrod. In that case, we can skip it as well.
3432          */
3433         if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags) || !cnt) {
3434                 raw->clear_pending(raw);
3435                 return 0;
3436         } else {
3437                 /* No need for an explicit memory barrier here as long as we
3438                  * ensure the ordering of writing to the SPQ element
3439                  * and updating of the SPQ producer which involves a memory
3440                  * read. If the memory read is removed we will have to put a
3441                  * full memory barrier there (inside bnx2x_sp_post()).
3442                  */
3443
3444                 /* Send a ramrod */
3445                 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3446                                    raw->cid, U64_HI(raw->rdata_mapping),
3447                                    U64_LO(raw->rdata_mapping),
3448                                    ETH_CONNECTION_TYPE);
3449                 if (rc)
3450                         return rc;
3451
3452                 /* Ramrod completion is pending */
3453                 return 1;
3454         }
3455 }
3456
3457 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3458                                     struct bnx2x_mcast_ramrod_params *p,
3459                                     enum bnx2x_mcast_cmd cmd)
3460 {
3461         if (cmd == BNX2X_MCAST_CMD_SET) {
3462                 BNX2X_ERR("Can't use `set' command on e1h!\n");
3463                 return -EINVAL;
3464         }
3465
3466         /* Mark, that there is a work to do */
3467         if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3468                 p->mcast_list_len = 1;
3469
3470         return 0;
3471 }
3472
3473 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3474                                        struct bnx2x_mcast_ramrod_params *p,
3475                                        int old_num_bins,
3476                                        enum bnx2x_mcast_cmd cmd)
3477 {
3478         /* Do nothing */
3479 }
3480
3481 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3482 do { \
3483         (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3484 } while (0)
3485
3486 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3487                                            struct bnx2x_mcast_obj *o,
3488                                            struct bnx2x_mcast_ramrod_params *p,
3489                                            u32 *mc_filter)
3490 {
3491         struct bnx2x_mcast_list_elem *mlist_pos;
3492         int bit;
3493
3494         list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3495                 bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3496                 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3497
3498                 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3499                    mlist_pos->mac, bit);
3500
3501                 /* bookkeeping... */
3502                 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3503                                   bit);
3504         }
3505 }
3506
3507 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3508         struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3509         u32 *mc_filter)
3510 {
3511         int bit;
3512
3513         for (bit = bnx2x_mcast_get_next_bin(o, 0);
3514              bit >= 0;
3515              bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3516                 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3517                 DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3518         }
3519 }
3520
3521 /* On 57711 we write the multicast MACs' approximate match
3522  * table by directly into the TSTORM's internal RAM. So we don't
3523  * really need to handle any tricks to make it work.
3524  */
3525 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3526                                  struct bnx2x_mcast_ramrod_params *p,
3527                                  enum bnx2x_mcast_cmd cmd)
3528 {
3529         int i;
3530         struct bnx2x_mcast_obj *o = p->mcast_obj;
3531         struct bnx2x_raw_obj *r = &o->raw;
3532
3533         /* If CLEAR_ONLY has been requested - clear the registry
3534          * and clear a pending bit.
3535          */
3536         if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3537                 u32 mc_filter[MC_HASH_SIZE] = {0};
3538
3539                 /* Set the multicast filter bits before writing it into
3540                  * the internal memory.
3541                  */
3542                 switch (cmd) {
3543                 case BNX2X_MCAST_CMD_ADD:
3544                         bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3545                         break;
3546
3547                 case BNX2X_MCAST_CMD_DEL:
3548                         DP(BNX2X_MSG_SP,
3549                            "Invalidating multicast MACs configuration\n");
3550
3551                         /* clear the registry */
3552                         memset(o->registry.aprox_match.vec, 0,
3553                                sizeof(o->registry.aprox_match.vec));
3554                         break;
3555
3556                 case BNX2X_MCAST_CMD_RESTORE:
3557                         bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3558                         break;
3559
3560                 default:
3561                         BNX2X_ERR("Unknown command: %d\n", cmd);
3562                         return -EINVAL;
3563                 }
3564
3565                 /* Set the mcast filter in the internal memory */
3566                 for (i = 0; i < MC_HASH_SIZE; i++)
3567                         REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3568         } else
3569                 /* clear the registry */
3570                 memset(o->registry.aprox_match.vec, 0,
3571                        sizeof(o->registry.aprox_match.vec));
3572
3573         /* We are done */
3574         r->clear_pending(r);
3575
3576         return 0;
3577 }
3578
3579 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3580                                    struct bnx2x_mcast_ramrod_params *p,
3581                                    enum bnx2x_mcast_cmd cmd)
3582 {
3583         struct bnx2x_mcast_obj *o = p->mcast_obj;
3584         int reg_sz = o->get_registry_size(o);
3585
3586         if (cmd == BNX2X_MCAST_CMD_SET) {
3587                 BNX2X_ERR("Can't use `set' command on e1!\n");
3588                 return -EINVAL;
3589         }
3590
3591         switch (cmd) {
3592         /* DEL command deletes all currently configured MACs */
3593         case BNX2X_MCAST_CMD_DEL:
3594                 o->set_registry_size(o, 0);
3595                 /* fall through */
3596
3597         /* RESTORE command will restore the entire multicast configuration */
3598         case BNX2X_MCAST_CMD_RESTORE:
3599                 p->mcast_list_len = reg_sz;
3600                 DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3601                    cmd, p->mcast_list_len);
3602                 break;
3603
3604         case BNX2X_MCAST_CMD_ADD:
3605         case BNX2X_MCAST_CMD_CONT:
3606                 /* Multicast MACs on 57710 are configured as unicast MACs and
3607                  * there is only a limited number of CAM entries for that
3608                  * matter.
3609                  */
3610                 if (p->mcast_list_len > o->max_cmd_len) {
3611                         BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3612                                   o->max_cmd_len);
3613                         return -EINVAL;
3614                 }
3615                 /* Every configured MAC should be cleared if DEL command is
3616                  * called. Only the last ADD command is relevant as long as
3617                  * every ADD commands overrides the previous configuration.
3618                  */
3619                 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3620                 if (p->mcast_list_len > 0)
3621                         o->set_registry_size(o, p->mcast_list_len);
3622
3623                 break;
3624
3625         default:
3626                 BNX2X_ERR("Unknown command: %d\n", cmd);
3627                 return -EINVAL;
3628         }
3629
3630         /* We want to ensure that commands are executed one by one for 57710.
3631          * Therefore each none-empty command will consume o->max_cmd_len.
3632          */
3633         if (p->mcast_list_len)
3634                 o->total_pending_num += o->max_cmd_len;
3635
3636         return 0;
3637 }
3638
3639 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3640                                       struct bnx2x_mcast_ramrod_params *p,
3641                                    int old_num_macs,
3642                                    enum bnx2x_mcast_cmd cmd)
3643 {
3644         struct bnx2x_mcast_obj *o = p->mcast_obj;
3645
3646         o->set_registry_size(o, old_num_macs);
3647
3648         /* If current command hasn't been handled yet and we are
3649          * here means that it's meant to be dropped and we have to
3650          * update the number of outstanding MACs accordingly.
3651          */
3652         if (p->mcast_list_len)
3653                 o->total_pending_num -= o->max_cmd_len;
3654 }
3655
3656 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3657                                         struct bnx2x_mcast_obj *o, int idx,
3658                                         union bnx2x_mcast_config_data *cfg_data,
3659                                         enum bnx2x_mcast_cmd cmd)
3660 {
3661         struct bnx2x_raw_obj *r = &o->raw;
3662         struct mac_configuration_cmd *data =
3663                 (struct mac_configuration_cmd *)(r->rdata);
3664
3665         /* copy mac */
3666         if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3667                 bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3668                                       &data->config_table[idx].middle_mac_addr,
3669                                       &data->config_table[idx].lsb_mac_addr,
3670                                       cfg_data->mac);
3671
3672                 data->config_table[idx].vlan_id = 0;
3673                 data->config_table[idx].pf_id = r->func_id;
3674                 data->config_table[idx].clients_bit_vector =
3675                         cpu_to_le32(1 << r->cl_id);
3676
3677                 SET_FLAG(data->config_table[idx].flags,
3678                          MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3679                          T_ETH_MAC_COMMAND_SET);
3680         }
3681 }
3682
3683 /**
3684  * bnx2x_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3685  *
3686  * @bp:         device handle
3687  * @p:
3688  * @len:        number of rules to handle
3689  */
3690 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3691                                         struct bnx2x_mcast_ramrod_params *p,
3692                                         u8 len)
3693 {
3694         struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3695         struct mac_configuration_cmd *data =
3696                 (struct mac_configuration_cmd *)(r->rdata);
3697
3698         u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3699                      BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3700                      BNX2X_MAX_MULTICAST*(1 + r->func_id));
3701
3702         data->hdr.offset = offset;
3703         data->hdr.client_id = cpu_to_le16(0xff);
3704         data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3705                                      (BNX2X_FILTER_MCAST_PENDING <<
3706                                       BNX2X_SWCID_SHIFT));
3707         data->hdr.length = len;
3708 }
3709
3710 /**
3711  * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3712  *
3713  * @bp:         device handle
3714  * @o:
3715  * @start_idx:  index in the registry to start from
3716  * @rdata_idx:  index in the ramrod data to start from
3717  *
3718  * restore command for 57710 is like all other commands - always a stand alone
3719  * command - start_idx and rdata_idx will always be 0. This function will always
3720  * succeed.
3721  * returns -1 to comply with 57712 variant.
3722  */
3723 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3724         struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3725         int *rdata_idx)
3726 {
3727         struct bnx2x_mcast_mac_elem *elem;
3728         int i = 0;
3729         union bnx2x_mcast_config_data cfg_data = {NULL};
3730
3731         /* go through the registry and configure the MACs from it. */
3732         list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3733                 cfg_data.mac = &elem->mac[0];
3734                 o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3735
3736                 i++;
3737
3738                 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3739                    cfg_data.mac);
3740         }
3741
3742         *rdata_idx = i;
3743
3744         return -1;
3745 }
3746
3747 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3748         struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3749 {
3750         struct bnx2x_pending_mcast_cmd *cmd_pos;
3751         struct bnx2x_mcast_mac_elem *pmac_pos;
3752         struct bnx2x_mcast_obj *o = p->mcast_obj;
3753         union bnx2x_mcast_config_data cfg_data = {NULL};
3754         int cnt = 0;
3755
3756         /* If nothing to be done - return */
3757         if (list_empty(&o->pending_cmds_head))
3758                 return 0;
3759
3760         /* Handle the first command */
3761         cmd_pos = list_first_entry(&o->pending_cmds_head,
3762                                    struct bnx2x_pending_mcast_cmd, link);
3763
3764         switch (cmd_pos->type) {
3765         case BNX2X_MCAST_CMD_ADD:
3766                 list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3767                         cfg_data.mac = &pmac_pos->mac[0];
3768                         o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3769
3770                         cnt++;
3771
3772                         DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3773                            pmac_pos->mac);
3774                 }
3775                 break;
3776
3777         case BNX2X_MCAST_CMD_DEL:
3778                 cnt = cmd_pos->data.macs_num;
3779                 DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3780                 break;
3781
3782         case BNX2X_MCAST_CMD_RESTORE:
3783                 o->hdl_restore(bp, o, 0, &cnt);
3784                 break;
3785
3786         default:
3787                 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3788                 return -EINVAL;
3789         }
3790
3791         list_del(&cmd_pos->link);
3792         bnx2x_free_groups(&cmd_pos->group_head);
3793         kfree(cmd_pos);
3794
3795         return cnt;
3796 }
3797
3798 /**
3799  * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3800  *
3801  * @fw_hi:
3802  * @fw_mid:
3803  * @fw_lo:
3804  * @mac:
3805  */
3806 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3807                                          __le16 *fw_lo, u8 *mac)
3808 {
3809         mac[1] = ((u8 *)fw_hi)[0];
3810         mac[0] = ((u8 *)fw_hi)[1];
3811         mac[3] = ((u8 *)fw_mid)[0];
3812         mac[2] = ((u8 *)fw_mid)[1];
3813         mac[5] = ((u8 *)fw_lo)[0];
3814         mac[4] = ((u8 *)fw_lo)[1];
3815 }
3816
3817 /**
3818  * bnx2x_mcast_refresh_registry_e1 -
3819  *
3820  * @bp:         device handle
3821  * @cnt:
3822  *
3823  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3824  * and update the registry correspondingly: if ADD - allocate a memory and add
3825  * the entries to the registry (list), if DELETE - clear the registry and free
3826  * the memory.
3827  */
3828 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3829                                                   struct bnx2x_mcast_obj *o)
3830 {
3831         struct bnx2x_raw_obj *raw = &o->raw;
3832         struct bnx2x_mcast_mac_elem *elem;
3833         struct mac_configuration_cmd *data =
3834                         (struct mac_configuration_cmd *)(raw->rdata);
3835
3836         /* If first entry contains a SET bit - the command was ADD,
3837          * otherwise - DEL_ALL
3838          */
3839         if (GET_FLAG(data->config_table[0].flags,
3840                         MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3841                 int i, len = data->hdr.length;
3842
3843                 /* Break if it was a RESTORE command */
3844                 if (!list_empty(&o->registry.exact_match.macs))
3845                         return 0;
3846
3847                 elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3848                 if (!elem) {
3849                         BNX2X_ERR("Failed to allocate registry memory\n");
3850                         return -ENOMEM;
3851                 }
3852
3853                 for (i = 0; i < len; i++, elem++) {
3854                         bnx2x_get_fw_mac_addr(
3855                                 &data->config_table[i].msb_mac_addr,
3856                                 &data->config_table[i].middle_mac_addr,
3857                                 &data->config_table[i].lsb_mac_addr,
3858                                 elem->mac);
3859                         DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3860                            elem->mac);
3861                         list_add_tail(&elem->link,
3862                                       &o->registry.exact_match.macs);
3863                 }
3864         } else {
3865                 elem = list_first_entry(&o->registry.exact_match.macs,
3866                                         struct bnx2x_mcast_mac_elem, link);
3867                 DP(BNX2X_MSG_SP, "Deleting a registry\n");
3868                 kfree(elem);
3869                 INIT_LIST_HEAD(&o->registry.exact_match.macs);
3870         }
3871
3872         return 0;
3873 }
3874
3875 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3876                                 struct bnx2x_mcast_ramrod_params *p,
3877                                 enum bnx2x_mcast_cmd cmd)
3878 {
3879         struct bnx2x_mcast_obj *o = p->mcast_obj;
3880         struct bnx2x_raw_obj *raw = &o->raw;
3881         struct mac_configuration_cmd *data =
3882                 (struct mac_configuration_cmd *)(raw->rdata);
3883         int cnt = 0, i, rc;
3884
3885         /* Reset the ramrod data buffer */
3886         memset(data, 0, sizeof(*data));
3887
3888         /* First set all entries as invalid */
3889         for (i = 0; i < o->max_cmd_len ; i++)
3890                 SET_FLAG(data->config_table[i].flags,
3891                          MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3892                          T_ETH_MAC_COMMAND_INVALIDATE);
3893
3894         /* Handle pending commands first */
3895         cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3896
3897         /* If there are no more pending commands - clear SCHEDULED state */
3898         if (list_empty(&o->pending_cmds_head))
3899                 o->clear_sched(o);
3900
3901         /* The below may be true iff there were no pending commands */
3902         if (!cnt)
3903                 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3904
3905         /* For 57710 every command has o->max_cmd_len length to ensure that
3906          * commands are done one at a time.
3907          */
3908         o->total_pending_num -= o->max_cmd_len;
3909
3910         /* send a ramrod */
3911
3912         WARN_ON(cnt > o->max_cmd_len);
3913
3914         /* Set ramrod header (in particular, a number of entries to update) */
3915         bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3916
3917         /* update a registry: we need the registry contents to be always up
3918          * to date in order to be able to execute a RESTORE opcode. Here
3919          * we use the fact that for 57710 we sent one command at a time
3920          * hence we may take the registry update out of the command handling
3921          * and do it in a simpler way here.
3922          */
3923         rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3924         if (rc)
3925                 return rc;
3926
3927         /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3928          * RAMROD_PENDING status immediately.
3929          */
3930         if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3931                 raw->clear_pending(raw);
3932                 return 0;
3933         } else {
3934                 /* No need for an explicit memory barrier here as long as we
3935                  * ensure the ordering of writing to the SPQ element
3936                  * and updating of the SPQ producer which involves a memory
3937                  * read. If the memory read is removed we will have to put a
3938                  * full memory barrier there (inside bnx2x_sp_post()).
3939                  */
3940
3941                 /* Send a ramrod */
3942                 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3943                                    U64_HI(raw->rdata_mapping),
3944                                    U64_LO(raw->rdata_mapping),
3945                                    ETH_CONNECTION_TYPE);
3946                 if (rc)
3947                         return rc;
3948
3949                 /* Ramrod completion is pending */
3950                 return 1;
3951         }
3952 }
3953
3954 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3955 {
3956         return o->registry.exact_match.num_macs_set;
3957 }
3958
3959 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3960 {
3961         return o->registry.aprox_match.num_bins_set;
3962 }
3963
3964 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3965                                                 int n)
3966 {
3967         o->registry.exact_match.num_macs_set = n;
3968 }
3969
3970 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3971                                                 int n)
3972 {
3973         o->registry.aprox_match.num_bins_set = n;
3974 }
3975
3976 int bnx2x_config_mcast(struct bnx2x *bp,
3977                        struct bnx2x_mcast_ramrod_params *p,
3978                        enum bnx2x_mcast_cmd cmd)
3979 {
3980         struct bnx2x_mcast_obj *o = p->mcast_obj;
3981         struct bnx2x_raw_obj *r = &o->raw;
3982         int rc = 0, old_reg_size;
3983
3984         /* This is needed to recover number of currently configured mcast macs
3985          * in case of failure.
3986          */
3987         old_reg_size = o->get_registry_size(o);
3988
3989         /* Do some calculations and checks */
3990         rc = o->validate(bp, p, cmd);
3991         if (rc)
3992                 return rc;
3993
3994         /* Return if there is no work to do */
3995         if ((!p->mcast_list_len) && (!o->check_sched(o)))
3996                 return 0;
3997
3998         DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3999            o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4000
4001         /* Enqueue the current command to the pending list if we can't complete
4002          * it in the current iteration
4003          */
4004         if (r->check_pending(r) ||
4005             ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4006                 rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
4007                 if (rc < 0)
4008                         goto error_exit1;
4009
4010                 /* As long as the current command is in a command list we
4011                  * don't need to handle it separately.
4012                  */
4013                 p->mcast_list_len = 0;
4014         }
4015
4016         if (!r->check_pending(r)) {
4017
4018                 /* Set 'pending' state */
4019                 r->set_pending(r);
4020
4021                 /* Configure the new classification in the chip */
4022                 rc = o->config_mcast(bp, p, cmd);
4023                 if (rc < 0)
4024                         goto error_exit2;
4025
4026                 /* Wait for a ramrod completion if was requested */
4027                 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4028                         rc = o->wait_comp(bp, o);
4029         }
4030
4031         return rc;
4032
4033 error_exit2:
4034         r->clear_pending(r);
4035
4036 error_exit1:
4037         o->revert(bp, p, old_reg_size, cmd);
4038
4039         return rc;
4040 }
4041
4042 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
4043 {
4044         smp_mb__before_atomic();
4045         clear_bit(o->sched_state, o->raw.pstate);
4046         smp_mb__after_atomic();
4047 }
4048
4049 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
4050 {
4051         smp_mb__before_atomic();
4052         set_bit(o->sched_state, o->raw.pstate);
4053         smp_mb__after_atomic();
4054 }
4055
4056 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
4057 {
4058         return !!test_bit(o->sched_state, o->raw.pstate);
4059 }
4060
4061 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
4062 {
4063         return o->raw.check_pending(&o->raw) || o->check_sched(o);
4064 }
4065
4066 void bnx2x_init_mcast_obj(struct bnx2x *bp,
4067                           struct bnx2x_mcast_obj *mcast_obj,
4068                           u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
4069                           u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
4070                           int state, unsigned long *pstate, bnx2x_obj_type type)
4071 {
4072         memset(mcast_obj, 0, sizeof(*mcast_obj));
4073
4074         bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4075                            rdata, rdata_mapping, state, pstate, type);
4076
4077         mcast_obj->engine_id = engine_id;
4078
4079         INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
4080
4081         mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
4082         mcast_obj->check_sched = bnx2x_mcast_check_sched;
4083         mcast_obj->set_sched = bnx2x_mcast_set_sched;
4084         mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
4085
4086         if (CHIP_IS_E1(bp)) {
4087                 mcast_obj->config_mcast      = bnx2x_mcast_setup_e1;
4088                 mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
4089                 mcast_obj->hdl_restore       =
4090                         bnx2x_mcast_handle_restore_cmd_e1;
4091                 mcast_obj->check_pending     = bnx2x_mcast_check_pending;
4092
4093                 if (CHIP_REV_IS_SLOW(bp))
4094                         mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
4095                 else
4096                         mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
4097
4098                 mcast_obj->wait_comp         = bnx2x_mcast_wait;
4099                 mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e1;
4100                 mcast_obj->validate          = bnx2x_mcast_validate_e1;
4101                 mcast_obj->revert            = bnx2x_mcast_revert_e1;
4102                 mcast_obj->get_registry_size =
4103                         bnx2x_mcast_get_registry_size_exact;
4104                 mcast_obj->set_registry_size =
4105                         bnx2x_mcast_set_registry_size_exact;
4106
4107                 /* 57710 is the only chip that uses the exact match for mcast
4108                  * at the moment.
4109                  */
4110                 INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
4111
4112         } else if (CHIP_IS_E1H(bp)) {
4113                 mcast_obj->config_mcast  = bnx2x_mcast_setup_e1h;
4114                 mcast_obj->enqueue_cmd   = NULL;
4115                 mcast_obj->hdl_restore   = NULL;
4116                 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4117
4118                 /* 57711 doesn't send a ramrod, so it has unlimited credit
4119                  * for one command.
4120                  */
4121                 mcast_obj->max_cmd_len       = -1;
4122                 mcast_obj->wait_comp         = bnx2x_mcast_wait;
4123                 mcast_obj->set_one_rule      = NULL;
4124                 mcast_obj->validate          = bnx2x_mcast_validate_e1h;
4125                 mcast_obj->revert            = bnx2x_mcast_revert_e1h;
4126                 mcast_obj->get_registry_size =
4127                         bnx2x_mcast_get_registry_size_aprox;
4128                 mcast_obj->set_registry_size =
4129                         bnx2x_mcast_set_registry_size_aprox;
4130         } else {
4131                 mcast_obj->config_mcast      = bnx2x_mcast_setup_e2;
4132                 mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
4133                 mcast_obj->hdl_restore       =
4134                         bnx2x_mcast_handle_restore_cmd_e2;
4135                 mcast_obj->check_pending     = bnx2x_mcast_check_pending;
4136                 /* TODO: There should be a proper HSI define for this number!!!
4137                  */
4138                 mcast_obj->max_cmd_len       = 16;
4139                 mcast_obj->wait_comp         = bnx2x_mcast_wait;
4140                 mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e2;
4141                 mcast_obj->validate          = bnx2x_mcast_validate_e2;
4142                 mcast_obj->revert            = bnx2x_mcast_revert_e2;
4143                 mcast_obj->get_registry_size =
4144                         bnx2x_mcast_get_registry_size_aprox;
4145                 mcast_obj->set_registry_size =
4146                         bnx2x_mcast_set_registry_size_aprox;
4147         }
4148 }
4149
4150 /*************************** Credit handling **********************************/
4151
4152 /**
4153  * atomic_add_ifless - add if the result is less than a given value.
4154  *
4155  * @v:  pointer of type atomic_t
4156  * @a:  the amount to add to v...
4157  * @u:  ...if (v + a) is less than u.
4158  *
4159  * returns true if (v + a) was less than u, and false otherwise.
4160  *
4161  */
4162 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
4163 {
4164         int c, old;
4165
4166         c = atomic_read(v);
4167         for (;;) {
4168                 if (unlikely(c + a >= u))
4169                         return false;
4170
4171                 old = atomic_cmpxchg((v), c, c + a);
4172                 if (likely(old == c))
4173                         break;
4174                 c = old;
4175         }
4176
4177         return true;
4178 }
4179
4180 /**
4181  * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4182  *
4183  * @v:  pointer of type atomic_t
4184  * @a:  the amount to dec from v...
4185  * @u:  ...if (v - a) is more or equal than u.
4186  *
4187  * returns true if (v - a) was more or equal than u, and false
4188  * otherwise.
4189  */
4190 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
4191 {
4192         int c, old;
4193
4194         c = atomic_read(v);
4195         for (;;) {
4196                 if (unlikely(c - a < u))
4197                         return false;
4198
4199                 old = atomic_cmpxchg((v), c, c - a);
4200                 if (likely(old == c))
4201                         break;
4202                 c = old;
4203         }
4204
4205         return true;
4206 }
4207
4208 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
4209 {
4210         bool rc;
4211
4212         smp_mb();
4213         rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4214         smp_mb();
4215
4216         return rc;
4217 }
4218
4219 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
4220 {
4221         bool rc;
4222
4223         smp_mb();
4224
4225         /* Don't let to refill if credit + cnt > pool_sz */
4226         rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4227
4228         smp_mb();
4229
4230         return rc;
4231 }
4232
4233 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
4234 {
4235         int cur_credit;
4236
4237         smp_mb();
4238         cur_credit = atomic_read(&o->credit);
4239
4240         return cur_credit;
4241 }
4242
4243 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
4244                                           int cnt)
4245 {
4246         return true;
4247 }
4248
4249 static bool bnx2x_credit_pool_get_entry(
4250         struct bnx2x_credit_pool_obj *o,
4251         int *offset)
4252 {
4253         int idx, vec, i;
4254
4255         *offset = -1;
4256
4257         /* Find "internal cam-offset" then add to base for this object... */
4258         for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
4259
4260                 /* Skip the current vector if there are no free entries in it */
4261                 if (!o->pool_mirror[vec])
4262                         continue;
4263
4264                 /* If we've got here we are going to find a free entry */
4265                 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4266                       i < BIT_VEC64_ELEM_SZ; idx++, i++)
4267
4268                         if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4269                                 /* Got one!! */
4270                                 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4271                                 *offset = o->base_pool_offset + idx;
4272                                 return true;
4273                         }
4274         }
4275
4276         return false;
4277 }
4278
4279 static bool bnx2x_credit_pool_put_entry(
4280         struct bnx2x_credit_pool_obj *o,
4281         int offset)
4282 {
4283         if (offset < o->base_pool_offset)
4284                 return false;
4285
4286         offset -= o->base_pool_offset;
4287
4288         if (offset >= o->pool_sz)
4289                 return false;
4290
4291         /* Return the entry to the pool */
4292         BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4293
4294         return true;
4295 }
4296
4297 static bool bnx2x_credit_pool_put_entry_always_true(
4298         struct bnx2x_credit_pool_obj *o,
4299         int offset)
4300 {
4301         return true;
4302 }
4303
4304 static bool bnx2x_credit_pool_get_entry_always_true(
4305         struct bnx2x_credit_pool_obj *o,
4306         int *offset)
4307 {
4308         *offset = -1;
4309         return true;
4310 }
4311 /**
4312  * bnx2x_init_credit_pool - initialize credit pool internals.
4313  *
4314  * @p:
4315  * @base:       Base entry in the CAM to use.
4316  * @credit:     pool size.
4317  *
4318  * If base is negative no CAM entries handling will be performed.
4319  * If credit is negative pool operations will always succeed (unlimited pool).
4320  *
4321  */
4322 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
4323                             int base, int credit)
4324 {
4325         /* Zero the object first */
4326         memset(p, 0, sizeof(*p));
4327
4328         /* Set the table to all 1s */
4329         memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4330
4331         /* Init a pool as full */
4332         atomic_set(&p->credit, credit);
4333
4334         /* The total poll size */
4335         p->pool_sz = credit;
4336
4337         p->base_pool_offset = base;
4338
4339         /* Commit the change */
4340         smp_mb();
4341
4342         p->check = bnx2x_credit_pool_check;
4343
4344         /* if pool credit is negative - disable the checks */
4345         if (credit >= 0) {
4346                 p->put      = bnx2x_credit_pool_put;
4347                 p->get      = bnx2x_credit_pool_get;
4348                 p->put_entry = bnx2x_credit_pool_put_entry;
4349                 p->get_entry = bnx2x_credit_pool_get_entry;
4350         } else {
4351                 p->put      = bnx2x_credit_pool_always_true;
4352                 p->get      = bnx2x_credit_pool_always_true;
4353                 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4354                 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4355         }
4356
4357         /* If base is negative - disable entries handling */
4358         if (base < 0) {
4359                 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4360                 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4361         }
4362 }
4363
4364 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
4365                                 struct bnx2x_credit_pool_obj *p, u8 func_id,
4366                                 u8 func_num)
4367 {
4368 /* TODO: this will be defined in consts as well... */
4369 #define BNX2X_CAM_SIZE_EMUL 5
4370
4371         int cam_sz;
4372
4373         if (CHIP_IS_E1(bp)) {
4374                 /* In E1, Multicast is saved in cam... */
4375                 if (!CHIP_REV_IS_SLOW(bp))
4376                         cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
4377                 else
4378                         cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
4379
4380                 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4381
4382         } else if (CHIP_IS_E1H(bp)) {
4383                 /* CAM credit is equaly divided between all active functions
4384                  * on the PORT!.
4385                  */
4386                 if ((func_num > 0)) {
4387                         if (!CHIP_REV_IS_SLOW(bp))
4388                                 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4389                         else
4390                                 cam_sz = BNX2X_CAM_SIZE_EMUL;
4391                         bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4392                 } else {
4393                         /* this should never happen! Block MAC operations. */
4394                         bnx2x_init_credit_pool(p, 0, 0);
4395                 }
4396
4397         } else {
4398
4399                 /* CAM credit is equaly divided between all active functions
4400                  * on the PATH.
4401                  */
4402                 if (func_num > 0) {
4403                         if (!CHIP_REV_IS_SLOW(bp))
4404                                 cam_sz = PF_MAC_CREDIT_E2(bp, func_num);
4405                         else
4406                                 cam_sz = BNX2X_CAM_SIZE_EMUL;
4407
4408                         /* No need for CAM entries handling for 57712 and
4409                          * newer.
4410                          */
4411                         bnx2x_init_credit_pool(p, -1, cam_sz);
4412                 } else {
4413                         /* this should never happen! Block MAC operations. */
4414                         bnx2x_init_credit_pool(p, 0, 0);
4415                 }
4416         }
4417 }
4418
4419 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4420                                  struct bnx2x_credit_pool_obj *p,
4421                                  u8 func_id,
4422                                  u8 func_num)
4423 {
4424         if (CHIP_IS_E1x(bp)) {
4425                 /* There is no VLAN credit in HW on 57710 and 57711 only
4426                  * MAC / MAC-VLAN can be set
4427                  */
4428                 bnx2x_init_credit_pool(p, 0, -1);
4429         } else {
4430                 /* CAM credit is equally divided between all active functions
4431                  * on the PATH.
4432                  */
4433                 if (func_num > 0) {
4434                         int credit = PF_VLAN_CREDIT_E2(bp, func_num);
4435
4436                         bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit);
4437                 } else
4438                         /* this should never happen! Block VLAN operations. */
4439                         bnx2x_init_credit_pool(p, 0, 0);
4440         }
4441 }
4442
4443 /****************** RSS Configuration ******************/
4444 /**
4445  * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4446  *
4447  * @bp:         driver handle
4448  * @p:          pointer to rss configuration
4449  *
4450  * Prints it when NETIF_MSG_IFUP debug level is configured.
4451  */
4452 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4453                                         struct bnx2x_config_rss_params *p)
4454 {
4455         int i;
4456
4457         DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4458         DP(BNX2X_MSG_SP, "0x0000: ");
4459         for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4460                 DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4461
4462                 /* Print 4 bytes in a line */
4463                 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4464                     (((i + 1) & 0x3) == 0)) {
4465                         DP_CONT(BNX2X_MSG_SP, "\n");
4466                         DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4467                 }
4468         }
4469
4470         DP_CONT(BNX2X_MSG_SP, "\n");
4471 }
4472
4473 /**
4474  * bnx2x_setup_rss - configure RSS
4475  *
4476  * @bp:         device handle
4477  * @p:          rss configuration
4478  *
4479  * sends on UPDATE ramrod for that matter.
4480  */
4481 static int bnx2x_setup_rss(struct bnx2x *bp,
4482                            struct bnx2x_config_rss_params *p)
4483 {
4484         struct bnx2x_rss_config_obj *o = p->rss_obj;
4485         struct bnx2x_raw_obj *r = &o->raw;
4486         struct eth_rss_update_ramrod_data *data =
4487                 (struct eth_rss_update_ramrod_data *)(r->rdata);
4488         u16 caps = 0;
4489         u8 rss_mode = 0;
4490         int rc;
4491
4492         memset(data, 0, sizeof(*data));
4493
4494         DP(BNX2X_MSG_SP, "Configuring RSS\n");
4495
4496         /* Set an echo field */
4497         data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4498                                  (r->state << BNX2X_SWCID_SHIFT));
4499
4500         /* RSS mode */
4501         if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4502                 rss_mode = ETH_RSS_MODE_DISABLED;
4503         else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4504                 rss_mode = ETH_RSS_MODE_REGULAR;
4505
4506         data->rss_mode = rss_mode;
4507
4508         DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4509
4510         /* RSS capabilities */
4511         if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4512                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4513
4514         if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4515                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4516
4517         if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4518                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4519
4520         if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4521                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4522
4523         if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4524                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4525
4526         if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4527                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4528
4529         if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags))
4530                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4531
4532         if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags))
4533                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4534
4535         if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4536                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4537
4538         /* RSS keys */
4539         if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4540                 u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key);
4541                 const u8 *src = (const u8 *)p->rss_key;
4542                 int i;
4543
4544                 /* Apparently, bnx2x reads this array in reverse order
4545                  * We need to byte swap rss_key to comply with Toeplitz specs.
4546                  */
4547                 for (i = 0; i < sizeof(data->rss_key); i++)
4548                         *--dst = *src++;
4549
4550                 caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4551         }
4552
4553         data->capabilities = cpu_to_le16(caps);
4554
4555         /* Hashing mask */
4556         data->rss_result_mask = p->rss_result_mask;
4557
4558         /* RSS engine ID */
4559         data->rss_engine_id = o->engine_id;
4560
4561         DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4562
4563         /* Indirection table */
4564         memcpy(data->indirection_table, p->ind_table,
4565                   T_ETH_INDIRECTION_TABLE_SIZE);
4566
4567         /* Remember the last configuration */
4568         memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4569
4570         /* Print the indirection table */
4571         if (netif_msg_ifup(bp))
4572                 bnx2x_debug_print_ind_table(bp, p);
4573
4574         /* No need for an explicit memory barrier here as long as we
4575          * ensure the ordering of writing to the SPQ element
4576          * and updating of the SPQ producer which involves a memory
4577          * read. If the memory read is removed we will have to put a
4578          * full memory barrier there (inside bnx2x_sp_post()).
4579          */
4580
4581         /* Send a ramrod */
4582         rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4583                            U64_HI(r->rdata_mapping),
4584                            U64_LO(r->rdata_mapping),
4585                            ETH_CONNECTION_TYPE);
4586
4587         if (rc < 0)
4588                 return rc;
4589
4590         return 1;
4591 }
4592
4593 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4594                              u8 *ind_table)
4595 {
4596         memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4597 }
4598
4599 int bnx2x_config_rss(struct bnx2x *bp,
4600                      struct bnx2x_config_rss_params *p)
4601 {
4602         int rc;
4603         struct bnx2x_rss_config_obj *o = p->rss_obj;
4604         struct bnx2x_raw_obj *r = &o->raw;
4605
4606         /* Do nothing if only driver cleanup was requested */
4607         if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4608                 DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n",
4609                    p->ramrod_flags);
4610                 return 0;
4611         }
4612
4613         r->set_pending(r);
4614
4615         rc = o->config_rss(bp, p);
4616         if (rc < 0) {
4617                 r->clear_pending(r);
4618                 return rc;
4619         }
4620
4621         if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4622                 rc = r->wait_comp(bp, r);
4623
4624         return rc;
4625 }
4626
4627 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4628                                struct bnx2x_rss_config_obj *rss_obj,
4629                                u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4630                                void *rdata, dma_addr_t rdata_mapping,
4631                                int state, unsigned long *pstate,
4632                                bnx2x_obj_type type)
4633 {
4634         bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4635                            rdata_mapping, state, pstate, type);
4636
4637         rss_obj->engine_id  = engine_id;
4638         rss_obj->config_rss = bnx2x_setup_rss;
4639 }
4640
4641 /********************** Queue state object ***********************************/
4642
4643 /**
4644  * bnx2x_queue_state_change - perform Queue state change transition
4645  *
4646  * @bp:         device handle
4647  * @params:     parameters to perform the transition
4648  *
4649  * returns 0 in case of successfully completed transition, negative error
4650  * code in case of failure, positive (EBUSY) value if there is a completion
4651  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4652  * not set in params->ramrod_flags for asynchronous commands).
4653  *
4654  */
4655 int bnx2x_queue_state_change(struct bnx2x *bp,
4656                              struct bnx2x_queue_state_params *params)
4657 {
4658         struct bnx2x_queue_sp_obj *o = params->q_obj;
4659         int rc, pending_bit;
4660         unsigned long *pending = &o->pending;
4661
4662         /* Check that the requested transition is legal */
4663         rc = o->check_transition(bp, o, params);
4664         if (rc) {
4665                 BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4666                 return -EINVAL;
4667         }
4668
4669         /* Set "pending" bit */
4670         DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4671         pending_bit = o->set_pending(o, params);
4672         DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4673
4674         /* Don't send a command if only driver cleanup was requested */
4675         if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4676                 o->complete_cmd(bp, o, pending_bit);
4677         else {
4678                 /* Send a ramrod */
4679                 rc = o->send_cmd(bp, params);
4680                 if (rc) {
4681                         o->next_state = BNX2X_Q_STATE_MAX;
4682                         clear_bit(pending_bit, pending);
4683                         smp_mb__after_atomic();
4684                         return rc;
4685                 }
4686
4687                 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4688                         rc = o->wait_comp(bp, o, pending_bit);
4689                         if (rc)
4690                                 return rc;
4691
4692                         return 0;
4693                 }
4694         }
4695
4696         return !!test_bit(pending_bit, pending);
4697 }
4698
4699 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4700                                    struct bnx2x_queue_state_params *params)
4701 {
4702         enum bnx2x_queue_cmd cmd = params->cmd, bit;
4703
4704         /* ACTIVATE and DEACTIVATE commands are implemented on top of
4705          * UPDATE command.
4706          */
4707         if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4708             (cmd == BNX2X_Q_CMD_DEACTIVATE))
4709                 bit = BNX2X_Q_CMD_UPDATE;
4710         else
4711                 bit = cmd;
4712
4713         set_bit(bit, &obj->pending);
4714         return bit;
4715 }
4716
4717 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4718                                  struct bnx2x_queue_sp_obj *o,
4719                                  enum bnx2x_queue_cmd cmd)
4720 {
4721         return bnx2x_state_wait(bp, cmd, &o->pending);
4722 }
4723
4724 /**
4725  * bnx2x_queue_comp_cmd - complete the state change command.
4726  *
4727  * @bp:         device handle
4728  * @o:
4729  * @cmd:
4730  *
4731  * Checks that the arrived completion is expected.
4732  */
4733 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4734                                 struct bnx2x_queue_sp_obj *o,
4735                                 enum bnx2x_queue_cmd cmd)
4736 {
4737         unsigned long cur_pending = o->pending;
4738
4739         if (!test_and_clear_bit(cmd, &cur_pending)) {
4740                 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4741                           cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4742                           o->state, cur_pending, o->next_state);
4743                 return -EINVAL;
4744         }
4745
4746         if (o->next_tx_only >= o->max_cos)
4747                 /* >= because tx only must always be smaller than cos since the
4748                  * primary connection supports COS 0
4749                  */
4750                 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4751                            o->next_tx_only, o->max_cos);
4752
4753         DP(BNX2X_MSG_SP,
4754            "Completing command %d for queue %d, setting state to %d\n",
4755            cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4756
4757         if (o->next_tx_only)  /* print num tx-only if any exist */
4758                 DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4759                    o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4760
4761         o->state = o->next_state;
4762         o->num_tx_only = o->next_tx_only;
4763         o->next_state = BNX2X_Q_STATE_MAX;
4764
4765         /* It's important that o->state and o->next_state are
4766          * updated before o->pending.
4767          */
4768         wmb();
4769
4770         clear_bit(cmd, &o->pending);
4771         smp_mb__after_atomic();
4772
4773         return 0;
4774 }
4775
4776 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4777                                 struct bnx2x_queue_state_params *cmd_params,
4778                                 struct client_init_ramrod_data *data)
4779 {
4780         struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4781
4782         /* Rx data */
4783
4784         /* IPv6 TPA supported for E2 and above only */
4785         data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4786                                 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4787 }
4788
4789 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4790                                 struct bnx2x_queue_sp_obj *o,
4791                                 struct bnx2x_general_setup_params *params,
4792                                 struct client_init_general_data *gen_data,
4793                                 unsigned long *flags)
4794 {
4795         gen_data->client_id = o->cl_id;
4796
4797         if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4798                 gen_data->statistics_counter_id =
4799                                         params->stat_id;
4800                 gen_data->statistics_en_flg = 1;
4801                 gen_data->statistics_zero_flg =
4802                         test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4803         } else
4804                 gen_data->statistics_counter_id =
4805                                         DISABLE_STATISTIC_COUNTER_ID_VALUE;
4806
4807         gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4808         gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4809         gen_data->sp_client_id = params->spcl_id;
4810         gen_data->mtu = cpu_to_le16(params->mtu);
4811         gen_data->func_id = o->func_id;
4812
4813         gen_data->cos = params->cos;
4814
4815         gen_data->traffic_type =
4816                 test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4817                 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4818
4819         gen_data->fp_hsi_ver = params->fp_hsi;
4820
4821         DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4822            gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4823 }
4824
4825 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4826                                 struct bnx2x_txq_setup_params *params,
4827                                 struct client_init_tx_data *tx_data,
4828                                 unsigned long *flags)
4829 {
4830         tx_data->enforce_security_flg =
4831                 test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4832         tx_data->default_vlan =
4833                 cpu_to_le16(params->default_vlan);
4834         tx_data->default_vlan_flg =
4835                 test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4836         tx_data->tx_switching_flg =
4837                 test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4838         tx_data->anti_spoofing_flg =
4839                 test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4840         tx_data->force_default_pri_flg =
4841                 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4842         tx_data->refuse_outband_vlan_flg =
4843                 test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4844         tx_data->tunnel_lso_inc_ip_id =
4845                 test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4846         tx_data->tunnel_non_lso_pcsum_location =
4847                 test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4848                                                             CSUM_ON_BD;
4849
4850         tx_data->tx_status_block_id = params->fw_sb_id;
4851         tx_data->tx_sb_index_number = params->sb_cq_index;
4852         tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4853
4854         tx_data->tx_bd_page_base.lo =
4855                 cpu_to_le32(U64_LO(params->dscr_map));
4856         tx_data->tx_bd_page_base.hi =
4857                 cpu_to_le32(U64_HI(params->dscr_map));
4858
4859         /* Don't configure any Tx switching mode during queue SETUP */
4860         tx_data->state = 0;
4861 }
4862
4863 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4864                                 struct rxq_pause_params *params,
4865                                 struct client_init_rx_data *rx_data)
4866 {
4867         /* flow control data */
4868         rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4869         rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4870         rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4871         rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4872         rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4873         rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4874         rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4875 }
4876
4877 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4878                                 struct bnx2x_rxq_setup_params *params,
4879                                 struct client_init_rx_data *rx_data,
4880                                 unsigned long *flags)
4881 {
4882         rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4883                                 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4884         rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4885                                 CLIENT_INIT_RX_DATA_TPA_MODE;
4886         rx_data->vmqueue_mode_en_flg = 0;
4887
4888         rx_data->cache_line_alignment_log_size =
4889                 params->cache_line_log;
4890         rx_data->enable_dynamic_hc =
4891                 test_bit(BNX2X_Q_FLG_DHC, flags);
4892         rx_data->max_sges_for_packet = params->max_sges_pkt;
4893         rx_data->client_qzone_id = params->cl_qzone_id;
4894         rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4895
4896         /* Always start in DROP_ALL mode */
4897         rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4898                                      CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4899
4900         /* We don't set drop flags */
4901         rx_data->drop_ip_cs_err_flg = 0;
4902         rx_data->drop_tcp_cs_err_flg = 0;
4903         rx_data->drop_ttl0_flg = 0;
4904         rx_data->drop_udp_cs_err_flg = 0;
4905         rx_data->inner_vlan_removal_enable_flg =
4906                 test_bit(BNX2X_Q_FLG_VLAN, flags);
4907         rx_data->outer_vlan_removal_enable_flg =
4908                 test_bit(BNX2X_Q_FLG_OV, flags);
4909         rx_data->status_block_id = params->fw_sb_id;
4910         rx_data->rx_sb_index_number = params->sb_cq_index;
4911         rx_data->max_tpa_queues = params->max_tpa_queues;
4912         rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4913         rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4914         rx_data->bd_page_base.lo =
4915                 cpu_to_le32(U64_LO(params->dscr_map));
4916         rx_data->bd_page_base.hi =
4917                 cpu_to_le32(U64_HI(params->dscr_map));
4918         rx_data->sge_page_base.lo =
4919                 cpu_to_le32(U64_LO(params->sge_map));
4920         rx_data->sge_page_base.hi =
4921                 cpu_to_le32(U64_HI(params->sge_map));
4922         rx_data->cqe_page_base.lo =
4923                 cpu_to_le32(U64_LO(params->rcq_map));
4924         rx_data->cqe_page_base.hi =
4925                 cpu_to_le32(U64_HI(params->rcq_map));
4926         rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4927
4928         if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4929                 rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4930                 rx_data->is_approx_mcast = 1;
4931         }
4932
4933         rx_data->rss_engine_id = params->rss_engine_id;
4934
4935         /* silent vlan removal */
4936         rx_data->silent_vlan_removal_flg =
4937                 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4938         rx_data->silent_vlan_value =
4939                 cpu_to_le16(params->silent_removal_value);
4940         rx_data->silent_vlan_mask =
4941                 cpu_to_le16(params->silent_removal_mask);
4942 }
4943
4944 /* initialize the general, tx and rx parts of a queue object */
4945 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4946                                 struct bnx2x_queue_state_params *cmd_params,
4947                                 struct client_init_ramrod_data *data)
4948 {
4949         bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4950                                        &cmd_params->params.setup.gen_params,
4951                                        &data->general,
4952                                        &cmd_params->params.setup.flags);
4953
4954         bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4955                                   &cmd_params->params.setup.txq_params,
4956                                   &data->tx,
4957                                   &cmd_params->params.setup.flags);
4958
4959         bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4960                                   &cmd_params->params.setup.rxq_params,
4961                                   &data->rx,
4962                                   &cmd_params->params.setup.flags);
4963
4964         bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4965                                      &cmd_params->params.setup.pause_params,
4966                                      &data->rx);
4967 }
4968
4969 /* initialize the general and tx parts of a tx-only queue object */
4970 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4971                                 struct bnx2x_queue_state_params *cmd_params,
4972                                 struct tx_queue_init_ramrod_data *data)
4973 {
4974         bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4975                                        &cmd_params->params.tx_only.gen_params,
4976                                        &data->general,
4977                                        &cmd_params->params.tx_only.flags);
4978
4979         bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4980                                   &cmd_params->params.tx_only.txq_params,
4981                                   &data->tx,
4982                                   &cmd_params->params.tx_only.flags);
4983
4984         DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4985                          cmd_params->q_obj->cids[0],
4986                          data->tx.tx_bd_page_base.lo,
4987                          data->tx.tx_bd_page_base.hi);
4988 }
4989
4990 /**
4991  * bnx2x_q_init - init HW/FW queue
4992  *
4993  * @bp:         device handle
4994  * @params:
4995  *
4996  * HW/FW initial Queue configuration:
4997  *      - HC: Rx and Tx
4998  *      - CDU context validation
4999  *
5000  */
5001 static inline int bnx2x_q_init(struct bnx2x *bp,
5002                                struct bnx2x_queue_state_params *params)
5003 {
5004         struct bnx2x_queue_sp_obj *o = params->q_obj;
5005         struct bnx2x_queue_init_params *init = &params->params.init;
5006         u16 hc_usec;
5007         u8 cos;
5008
5009         /* Tx HC configuration */
5010         if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
5011             test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
5012                 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5013
5014                 bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
5015                         init->tx.sb_cq_index,
5016                         !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
5017                         hc_usec);
5018         }
5019
5020         /* Rx HC configuration */
5021         if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
5022             test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
5023                 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5024
5025                 bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
5026                         init->rx.sb_cq_index,
5027                         !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
5028                         hc_usec);
5029         }
5030
5031         /* Set CDU context validation values */
5032         for (cos = 0; cos < o->max_cos; cos++) {
5033                 DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
5034                                  o->cids[cos], cos);
5035                 DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
5036                 bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
5037         }
5038
5039         /* As no ramrod is sent, complete the command immediately  */
5040         o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
5041
5042         mmiowb();
5043         smp_mb();
5044
5045         return 0;
5046 }
5047
5048 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
5049                                         struct bnx2x_queue_state_params *params)
5050 {
5051         struct bnx2x_queue_sp_obj *o = params->q_obj;
5052         struct client_init_ramrod_data *rdata =
5053                 (struct client_init_ramrod_data *)o->rdata;
5054         dma_addr_t data_mapping = o->rdata_mapping;
5055         int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5056
5057         /* Clear the ramrod data */
5058         memset(rdata, 0, sizeof(*rdata));
5059
5060         /* Fill the ramrod data */
5061         bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5062
5063         /* No need for an explicit memory barrier here as long as we
5064          * ensure the ordering of writing to the SPQ element
5065          * and updating of the SPQ producer which involves a memory
5066          * read. If the memory read is removed we will have to put a
5067          * full memory barrier there (inside bnx2x_sp_post()).
5068          */
5069         return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5070                              U64_HI(data_mapping),
5071                              U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5072 }
5073
5074 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
5075                                         struct bnx2x_queue_state_params *params)
5076 {
5077         struct bnx2x_queue_sp_obj *o = params->q_obj;
5078         struct client_init_ramrod_data *rdata =
5079                 (struct client_init_ramrod_data *)o->rdata;
5080         dma_addr_t data_mapping = o->rdata_mapping;
5081         int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5082
5083         /* Clear the ramrod data */
5084         memset(rdata, 0, sizeof(*rdata));
5085
5086         /* Fill the ramrod data */
5087         bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5088         bnx2x_q_fill_setup_data_e2(bp, params, rdata);
5089
5090         /* No need for an explicit memory barrier here as long as we
5091          * ensure the ordering of writing to the SPQ element
5092          * and updating of the SPQ producer which involves a memory
5093          * read. If the memory read is removed we will have to put a
5094          * full memory barrier there (inside bnx2x_sp_post()).
5095          */
5096         return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5097                              U64_HI(data_mapping),
5098                              U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5099 }
5100
5101 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
5102                                   struct bnx2x_queue_state_params *params)
5103 {
5104         struct bnx2x_queue_sp_obj *o = params->q_obj;
5105         struct tx_queue_init_ramrod_data *rdata =
5106                 (struct tx_queue_init_ramrod_data *)o->rdata;
5107         dma_addr_t data_mapping = o->rdata_mapping;
5108         int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5109         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
5110                 &params->params.tx_only;
5111         u8 cid_index = tx_only_params->cid_index;
5112
5113         if (cid_index >= o->max_cos) {
5114                 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5115                           o->cl_id, cid_index);
5116                 return -EINVAL;
5117         }
5118
5119         DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
5120                          tx_only_params->gen_params.cos,
5121                          tx_only_params->gen_params.spcl_id);
5122
5123         /* Clear the ramrod data */
5124         memset(rdata, 0, sizeof(*rdata));
5125
5126         /* Fill the ramrod data */
5127         bnx2x_q_fill_setup_tx_only(bp, params, rdata);
5128
5129         DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5130                          o->cids[cid_index], rdata->general.client_id,
5131                          rdata->general.sp_client_id, rdata->general.cos);
5132
5133         /* No need for an explicit memory barrier here as long as we
5134          * ensure the ordering of writing to the SPQ element
5135          * and updating of the SPQ producer which involves a memory
5136          * read. If the memory read is removed we will have to put a
5137          * full memory barrier there (inside bnx2x_sp_post()).
5138          */
5139         return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
5140                              U64_HI(data_mapping),
5141                              U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5142 }
5143
5144 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
5145                                      struct bnx2x_queue_sp_obj *obj,
5146                                      struct bnx2x_queue_update_params *params,
5147                                      struct client_update_ramrod_data *data)
5148 {
5149         /* Client ID of the client to update */
5150         data->client_id = obj->cl_id;
5151
5152         /* Function ID of the client to update */
5153         data->func_id = obj->func_id;
5154
5155         /* Default VLAN value */
5156         data->default_vlan = cpu_to_le16(params->def_vlan);
5157
5158         /* Inner VLAN stripping */
5159         data->inner_vlan_removal_enable_flg =
5160                 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
5161         data->inner_vlan_removal_change_flg =
5162                 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
5163                          &params->update_flags);
5164
5165         /* Outer VLAN stripping */
5166         data->outer_vlan_removal_enable_flg =
5167                 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
5168         data->outer_vlan_removal_change_flg =
5169                 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
5170                          &params->update_flags);
5171
5172         /* Drop packets that have source MAC that doesn't belong to this
5173          * Queue.
5174          */
5175         data->anti_spoofing_enable_flg =
5176                 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
5177         data->anti_spoofing_change_flg =
5178                 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
5179
5180         /* Activate/Deactivate */
5181         data->activate_flg =
5182                 test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
5183         data->activate_change_flg =
5184                 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
5185
5186         /* Enable default VLAN */
5187         data->default_vlan_enable_flg =
5188                 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
5189         data->default_vlan_change_flg =
5190                 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
5191                          &params->update_flags);
5192
5193         /* silent vlan removal */
5194         data->silent_vlan_change_flg =
5195                 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5196                          &params->update_flags);
5197         data->silent_vlan_removal_flg =
5198                 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
5199         data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
5200         data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
5201
5202         /* tx switching */
5203         data->tx_switching_flg =
5204                 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &params->update_flags);
5205         data->tx_switching_change_flg =
5206                 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
5207                          &params->update_flags);
5208
5209         /* PTP */
5210         data->handle_ptp_pkts_flg =
5211                 test_bit(BNX2X_Q_UPDATE_PTP_PKTS, &params->update_flags);
5212         data->handle_ptp_pkts_change_flg =
5213                 test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, &params->update_flags);
5214 }
5215
5216 static inline int bnx2x_q_send_update(struct bnx2x *bp,
5217                                       struct bnx2x_queue_state_params *params)
5218 {
5219         struct bnx2x_queue_sp_obj *o = params->q_obj;
5220         struct client_update_ramrod_data *rdata =
5221                 (struct client_update_ramrod_data *)o->rdata;
5222         dma_addr_t data_mapping = o->rdata_mapping;
5223         struct bnx2x_queue_update_params *update_params =
5224                 &params->params.update;
5225         u8 cid_index = update_params->cid_index;
5226
5227         if (cid_index >= o->max_cos) {
5228                 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5229                           o->cl_id, cid_index);
5230                 return -EINVAL;
5231         }
5232
5233         /* Clear the ramrod data */
5234         memset(rdata, 0, sizeof(*rdata));
5235
5236         /* Fill the ramrod data */
5237         bnx2x_q_fill_update_data(bp, o, update_params, rdata);
5238
5239         /* No need for an explicit memory barrier here as long as we
5240          * ensure the ordering of writing to the SPQ element
5241          * and updating of the SPQ producer which involves a memory
5242          * read. If the memory read is removed we will have to put a
5243          * full memory barrier there (inside bnx2x_sp_post()).
5244          */
5245         return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5246                              o->cids[cid_index], U64_HI(data_mapping),
5247                              U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5248 }
5249
5250 /**
5251  * bnx2x_q_send_deactivate - send DEACTIVATE command
5252  *
5253  * @bp:         device handle
5254  * @params:
5255  *
5256  * implemented using the UPDATE command.
5257  */
5258 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
5259                                         struct bnx2x_queue_state_params *params)
5260 {
5261         struct bnx2x_queue_update_params *update = &params->params.update;
5262
5263         memset(update, 0, sizeof(*update));
5264
5265         __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5266
5267         return bnx2x_q_send_update(bp, params);
5268 }
5269
5270 /**
5271  * bnx2x_q_send_activate - send ACTIVATE command
5272  *
5273  * @bp:         device handle
5274  * @params:
5275  *
5276  * implemented using the UPDATE command.
5277  */
5278 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
5279                                         struct bnx2x_queue_state_params *params)
5280 {
5281         struct bnx2x_queue_update_params *update = &params->params.update;
5282
5283         memset(update, 0, sizeof(*update));
5284
5285         __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
5286         __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5287
5288         return bnx2x_q_send_update(bp, params);
5289 }
5290
5291 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp,
5292                                 struct bnx2x_queue_sp_obj *obj,
5293                                 struct bnx2x_queue_update_tpa_params *params,
5294                                 struct tpa_update_ramrod_data *data)
5295 {
5296         data->client_id = obj->cl_id;
5297         data->complete_on_both_clients = params->complete_on_both_clients;
5298         data->dont_verify_rings_pause_thr_flg =
5299                 params->dont_verify_thr;
5300         data->max_agg_size = cpu_to_le16(params->max_agg_sz);
5301         data->max_sges_for_packet = params->max_sges_pkt;
5302         data->max_tpa_queues = params->max_tpa_queues;
5303         data->sge_buff_size = cpu_to_le16(params->sge_buff_sz);
5304         data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map));
5305         data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map));
5306         data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high);
5307         data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low);
5308         data->tpa_mode = params->tpa_mode;
5309         data->update_ipv4 = params->update_ipv4;
5310         data->update_ipv6 = params->update_ipv6;
5311 }
5312
5313 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
5314                                         struct bnx2x_queue_state_params *params)
5315 {
5316         struct bnx2x_queue_sp_obj *o = params->q_obj;
5317         struct tpa_update_ramrod_data *rdata =
5318                 (struct tpa_update_ramrod_data *)o->rdata;
5319         dma_addr_t data_mapping = o->rdata_mapping;
5320         struct bnx2x_queue_update_tpa_params *update_tpa_params =
5321                 &params->params.update_tpa;
5322         u16 type;
5323
5324         /* Clear the ramrod data */
5325         memset(rdata, 0, sizeof(*rdata));
5326
5327         /* Fill the ramrod data */
5328         bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata);
5329
5330         /* Add the function id inside the type, so that sp post function
5331          * doesn't automatically add the PF func-id, this is required
5332          * for operations done by PFs on behalf of their VFs
5333          */
5334         type = ETH_CONNECTION_TYPE |
5335                 ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5336
5337         /* No need for an explicit memory barrier here as long as we
5338          * ensure the ordering of writing to the SPQ element
5339          * and updating of the SPQ producer which involves a memory
5340          * read. If the memory read is removed we will have to put a
5341          * full memory barrier there (inside bnx2x_sp_post()).
5342          */
5343         return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5344                              o->cids[BNX2X_PRIMARY_CID_INDEX],
5345                              U64_HI(data_mapping),
5346                              U64_LO(data_mapping), type);
5347 }
5348
5349 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
5350                                     struct bnx2x_queue_state_params *params)
5351 {
5352         struct bnx2x_queue_sp_obj *o = params->q_obj;
5353
5354         return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
5355                              o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
5356                              ETH_CONNECTION_TYPE);
5357 }
5358
5359 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
5360                                        struct bnx2x_queue_state_params *params)
5361 {
5362         struct bnx2x_queue_sp_obj *o = params->q_obj;
5363         u8 cid_idx = params->params.cfc_del.cid_index;
5364
5365         if (cid_idx >= o->max_cos) {
5366                 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5367                           o->cl_id, cid_idx);
5368                 return -EINVAL;
5369         }
5370
5371         return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
5372                              o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
5373 }
5374
5375 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
5376                                         struct bnx2x_queue_state_params *params)
5377 {
5378         struct bnx2x_queue_sp_obj *o = params->q_obj;
5379         u8 cid_index = params->params.terminate.cid_index;
5380
5381         if (cid_index >= o->max_cos) {
5382                 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5383                           o->cl_id, cid_index);
5384                 return -EINVAL;
5385         }
5386
5387         return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
5388                              o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
5389 }
5390
5391 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
5392                                      struct bnx2x_queue_state_params *params)
5393 {
5394         struct bnx2x_queue_sp_obj *o = params->q_obj;
5395
5396         return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
5397                              o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
5398                              ETH_CONNECTION_TYPE);
5399 }
5400
5401 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
5402                                         struct bnx2x_queue_state_params *params)
5403 {
5404         switch (params->cmd) {
5405         case BNX2X_Q_CMD_INIT:
5406                 return bnx2x_q_init(bp, params);
5407         case BNX2X_Q_CMD_SETUP_TX_ONLY:
5408                 return bnx2x_q_send_setup_tx_only(bp, params);
5409         case BNX2X_Q_CMD_DEACTIVATE:
5410                 return bnx2x_q_send_deactivate(bp, params);
5411         case BNX2X_Q_CMD_ACTIVATE:
5412                 return bnx2x_q_send_activate(bp, params);
5413         case BNX2X_Q_CMD_UPDATE:
5414                 return bnx2x_q_send_update(bp, params);
5415         case BNX2X_Q_CMD_UPDATE_TPA:
5416                 return bnx2x_q_send_update_tpa(bp, params);
5417         case BNX2X_Q_CMD_HALT:
5418                 return bnx2x_q_send_halt(bp, params);
5419         case BNX2X_Q_CMD_CFC_DEL:
5420                 return bnx2x_q_send_cfc_del(bp, params);
5421         case BNX2X_Q_CMD_TERMINATE:
5422                 return bnx2x_q_send_terminate(bp, params);
5423         case BNX2X_Q_CMD_EMPTY:
5424                 return bnx2x_q_send_empty(bp, params);
5425         default:
5426                 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5427                 return -EINVAL;
5428         }
5429 }
5430
5431 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
5432                                     struct bnx2x_queue_state_params *params)
5433 {
5434         switch (params->cmd) {
5435         case BNX2X_Q_CMD_SETUP:
5436                 return bnx2x_q_send_setup_e1x(bp, params);
5437         case BNX2X_Q_CMD_INIT:
5438         case BNX2X_Q_CMD_SETUP_TX_ONLY:
5439         case BNX2X_Q_CMD_DEACTIVATE:
5440         case BNX2X_Q_CMD_ACTIVATE:
5441         case BNX2X_Q_CMD_UPDATE:
5442         case BNX2X_Q_CMD_UPDATE_TPA:
5443         case BNX2X_Q_CMD_HALT:
5444         case BNX2X_Q_CMD_CFC_DEL:
5445         case BNX2X_Q_CMD_TERMINATE:
5446         case BNX2X_Q_CMD_EMPTY:
5447                 return bnx2x_queue_send_cmd_cmn(bp, params);
5448         default:
5449                 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5450                 return -EINVAL;
5451         }
5452 }
5453
5454 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
5455                                    struct bnx2x_queue_state_params *params)
5456 {
5457         switch (params->cmd) {
5458         case BNX2X_Q_CMD_SETUP:
5459                 return bnx2x_q_send_setup_e2(bp, params);
5460         case BNX2X_Q_CMD_INIT:
5461         case BNX2X_Q_CMD_SETUP_TX_ONLY:
5462         case BNX2X_Q_CMD_DEACTIVATE:
5463         case BNX2X_Q_CMD_ACTIVATE:
5464         case BNX2X_Q_CMD_UPDATE:
5465         case BNX2X_Q_CMD_UPDATE_TPA:
5466         case BNX2X_Q_CMD_HALT:
5467         case BNX2X_Q_CMD_CFC_DEL:
5468         case BNX2X_Q_CMD_TERMINATE:
5469         case BNX2X_Q_CMD_EMPTY:
5470                 return bnx2x_queue_send_cmd_cmn(bp, params);
5471         default:
5472                 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5473                 return -EINVAL;
5474         }
5475 }
5476
5477 /**
5478  * bnx2x_queue_chk_transition - check state machine of a regular Queue
5479  *
5480  * @bp:         device handle
5481  * @o:
5482  * @params:
5483  *
5484  * (not Forwarding)
5485  * It both checks if the requested command is legal in a current
5486  * state and, if it's legal, sets a `next_state' in the object
5487  * that will be used in the completion flow to set the `state'
5488  * of the object.
5489  *
5490  * returns 0 if a requested command is a legal transition,
5491  *         -EINVAL otherwise.
5492  */
5493 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5494                                       struct bnx2x_queue_sp_obj *o,
5495                                       struct bnx2x_queue_state_params *params)
5496 {
5497         enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5498         enum bnx2x_queue_cmd cmd = params->cmd;
5499         struct bnx2x_queue_update_params *update_params =
5500                  &params->params.update;
5501         u8 next_tx_only = o->num_tx_only;
5502
5503         /* Forget all pending for completion commands if a driver only state
5504          * transition has been requested.
5505          */
5506         if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5507                 o->pending = 0;
5508                 o->next_state = BNX2X_Q_STATE_MAX;
5509         }
5510
5511         /* Don't allow a next state transition if we are in the middle of
5512          * the previous one.
5513          */
5514         if (o->pending) {
5515                 BNX2X_ERR("Blocking transition since pending was %lx\n",
5516                           o->pending);
5517                 return -EBUSY;
5518         }
5519
5520         switch (state) {
5521         case BNX2X_Q_STATE_RESET:
5522                 if (cmd == BNX2X_Q_CMD_INIT)
5523                         next_state = BNX2X_Q_STATE_INITIALIZED;
5524
5525                 break;
5526         case BNX2X_Q_STATE_INITIALIZED:
5527                 if (cmd == BNX2X_Q_CMD_SETUP) {
5528                         if (test_bit(BNX2X_Q_FLG_ACTIVE,
5529                                      &params->params.setup.flags))
5530                                 next_state = BNX2X_Q_STATE_ACTIVE;
5531                         else
5532                                 next_state = BNX2X_Q_STATE_INACTIVE;
5533                 }
5534
5535                 break;
5536         case BNX2X_Q_STATE_ACTIVE:
5537                 if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5538                         next_state = BNX2X_Q_STATE_INACTIVE;
5539
5540                 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5541                          (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5542                         next_state = BNX2X_Q_STATE_ACTIVE;
5543
5544                 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5545                         next_state = BNX2X_Q_STATE_MULTI_COS;
5546                         next_tx_only = 1;
5547                 }
5548
5549                 else if (cmd == BNX2X_Q_CMD_HALT)
5550                         next_state = BNX2X_Q_STATE_STOPPED;
5551
5552                 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5553                         /* If "active" state change is requested, update the
5554                          *  state accordingly.
5555                          */
5556                         if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5557                                      &update_params->update_flags) &&
5558                             !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5559                                       &update_params->update_flags))
5560                                 next_state = BNX2X_Q_STATE_INACTIVE;
5561                         else
5562                                 next_state = BNX2X_Q_STATE_ACTIVE;
5563                 }
5564
5565                 break;
5566         case BNX2X_Q_STATE_MULTI_COS:
5567                 if (cmd == BNX2X_Q_CMD_TERMINATE)
5568                         next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5569
5570                 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5571                         next_state = BNX2X_Q_STATE_MULTI_COS;
5572                         next_tx_only = o->num_tx_only + 1;
5573                 }
5574
5575                 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5576                          (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5577                         next_state = BNX2X_Q_STATE_MULTI_COS;
5578
5579                 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5580                         /* If "active" state change is requested, update the
5581                          *  state accordingly.
5582                          */
5583                         if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5584                                      &update_params->update_flags) &&
5585                             !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5586                                       &update_params->update_flags))
5587                                 next_state = BNX2X_Q_STATE_INACTIVE;
5588                         else
5589                                 next_state = BNX2X_Q_STATE_MULTI_COS;
5590                 }
5591
5592                 break;
5593         case BNX2X_Q_STATE_MCOS_TERMINATED:
5594                 if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5595                         next_tx_only = o->num_tx_only - 1;
5596                         if (next_tx_only == 0)
5597                                 next_state = BNX2X_Q_STATE_ACTIVE;
5598                         else
5599                                 next_state = BNX2X_Q_STATE_MULTI_COS;
5600                 }
5601
5602                 break;
5603         case BNX2X_Q_STATE_INACTIVE:
5604                 if (cmd == BNX2X_Q_CMD_ACTIVATE)
5605                         next_state = BNX2X_Q_STATE_ACTIVE;
5606
5607                 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5608                          (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5609                         next_state = BNX2X_Q_STATE_INACTIVE;
5610
5611                 else if (cmd == BNX2X_Q_CMD_HALT)
5612                         next_state = BNX2X_Q_STATE_STOPPED;
5613
5614                 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5615                         /* If "active" state change is requested, update the
5616                          * state accordingly.
5617                          */
5618                         if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5619                                      &update_params->update_flags) &&
5620                             test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5621                                      &update_params->update_flags)){
5622                                 if (o->num_tx_only == 0)
5623                                         next_state = BNX2X_Q_STATE_ACTIVE;
5624                                 else /* tx only queues exist for this queue */
5625                                         next_state = BNX2X_Q_STATE_MULTI_COS;
5626                         } else
5627                                 next_state = BNX2X_Q_STATE_INACTIVE;
5628                 }
5629
5630                 break;
5631         case BNX2X_Q_STATE_STOPPED:
5632                 if (cmd == BNX2X_Q_CMD_TERMINATE)
5633                         next_state = BNX2X_Q_STATE_TERMINATED;
5634
5635                 break;
5636         case BNX2X_Q_STATE_TERMINATED:
5637                 if (cmd == BNX2X_Q_CMD_CFC_DEL)
5638                         next_state = BNX2X_Q_STATE_RESET;
5639
5640                 break;
5641         default:
5642                 BNX2X_ERR("Illegal state: %d\n", state);
5643         }
5644
5645         /* Transition is assured */
5646         if (next_state != BNX2X_Q_STATE_MAX) {
5647                 DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5648                                  state, cmd, next_state);
5649                 o->next_state = next_state;
5650                 o->next_tx_only = next_tx_only;
5651                 return 0;
5652         }
5653
5654         DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5655
5656         return -EINVAL;
5657 }
5658
5659 void bnx2x_init_queue_obj(struct bnx2x *bp,
5660                           struct bnx2x_queue_sp_obj *obj,
5661                           u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5662                           void *rdata,
5663                           dma_addr_t rdata_mapping, unsigned long type)
5664 {
5665         memset(obj, 0, sizeof(*obj));
5666
5667         /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5668         BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5669
5670         memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5671         obj->max_cos = cid_cnt;
5672         obj->cl_id = cl_id;
5673         obj->func_id = func_id;
5674         obj->rdata = rdata;
5675         obj->rdata_mapping = rdata_mapping;
5676         obj->type = type;
5677         obj->next_state = BNX2X_Q_STATE_MAX;
5678
5679         if (CHIP_IS_E1x(bp))
5680                 obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5681         else
5682                 obj->send_cmd = bnx2x_queue_send_cmd_e2;
5683
5684         obj->check_transition = bnx2x_queue_chk_transition;
5685
5686         obj->complete_cmd = bnx2x_queue_comp_cmd;
5687         obj->wait_comp = bnx2x_queue_wait_comp;
5688         obj->set_pending = bnx2x_queue_set_pending;
5689 }
5690
5691 /* return a queue object's logical state*/
5692 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5693                                struct bnx2x_queue_sp_obj *obj)
5694 {
5695         switch (obj->state) {
5696         case BNX2X_Q_STATE_ACTIVE:
5697         case BNX2X_Q_STATE_MULTI_COS:
5698                 return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5699         case BNX2X_Q_STATE_RESET:
5700         case BNX2X_Q_STATE_INITIALIZED:
5701         case BNX2X_Q_STATE_MCOS_TERMINATED:
5702         case BNX2X_Q_STATE_INACTIVE:
5703         case BNX2X_Q_STATE_STOPPED:
5704         case BNX2X_Q_STATE_TERMINATED:
5705         case BNX2X_Q_STATE_FLRED:
5706                 return BNX2X_Q_LOGICAL_STATE_STOPPED;
5707         default:
5708                 return -EINVAL;
5709         }
5710 }
5711
5712 /********************** Function state object *********************************/
5713 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5714                                            struct bnx2x_func_sp_obj *o)
5715 {
5716         /* in the middle of transaction - return INVALID state */
5717         if (o->pending)
5718                 return BNX2X_F_STATE_MAX;
5719
5720         /* unsure the order of reading of o->pending and o->state
5721          * o->pending should be read first
5722          */
5723         rmb();
5724
5725         return o->state;
5726 }
5727
5728 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5729                                 struct bnx2x_func_sp_obj *o,
5730                                 enum bnx2x_func_cmd cmd)
5731 {
5732         return bnx2x_state_wait(bp, cmd, &o->pending);
5733 }
5734
5735 /**
5736  * bnx2x_func_state_change_comp - complete the state machine transition
5737  *
5738  * @bp:         device handle
5739  * @o:
5740  * @cmd:
5741  *
5742  * Called on state change transition. Completes the state
5743  * machine transition only - no HW interaction.
5744  */
5745 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5746                                                struct bnx2x_func_sp_obj *o,
5747                                                enum bnx2x_func_cmd cmd)
5748 {
5749         unsigned long cur_pending = o->pending;
5750
5751         if (!test_and_clear_bit(cmd, &cur_pending)) {
5752                 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5753                           cmd, BP_FUNC(bp), o->state,
5754                           cur_pending, o->next_state);
5755                 return -EINVAL;
5756         }
5757
5758         DP(BNX2X_MSG_SP,
5759            "Completing command %d for func %d, setting state to %d\n",
5760            cmd, BP_FUNC(bp), o->next_state);
5761
5762         o->state = o->next_state;
5763         o->next_state = BNX2X_F_STATE_MAX;
5764
5765         /* It's important that o->state and o->next_state are
5766          * updated before o->pending.
5767          */
5768         wmb();
5769
5770         clear_bit(cmd, &o->pending);
5771         smp_mb__after_atomic();
5772
5773         return 0;
5774 }
5775
5776 /**
5777  * bnx2x_func_comp_cmd - complete the state change command
5778  *
5779  * @bp:         device handle
5780  * @o:
5781  * @cmd:
5782  *
5783  * Checks that the arrived completion is expected.
5784  */
5785 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5786                                struct bnx2x_func_sp_obj *o,
5787                                enum bnx2x_func_cmd cmd)
5788 {
5789         /* Complete the state machine part first, check if it's a
5790          * legal completion.
5791          */
5792         int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5793         return rc;
5794 }
5795
5796 /**
5797  * bnx2x_func_chk_transition - perform function state machine transition
5798  *
5799  * @bp:         device handle
5800  * @o:
5801  * @params:
5802  *
5803  * It both checks if the requested command is legal in a current
5804  * state and, if it's legal, sets a `next_state' in the object
5805  * that will be used in the completion flow to set the `state'
5806  * of the object.
5807  *
5808  * returns 0 if a requested command is a legal transition,
5809  *         -EINVAL otherwise.
5810  */
5811 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5812                                      struct bnx2x_func_sp_obj *o,
5813                                      struct bnx2x_func_state_params *params)
5814 {
5815         enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5816         enum bnx2x_func_cmd cmd = params->cmd;
5817
5818         /* Forget all pending for completion commands if a driver only state
5819          * transition has been requested.
5820          */
5821         if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5822                 o->pending = 0;
5823                 o->next_state = BNX2X_F_STATE_MAX;
5824         }
5825
5826         /* Don't allow a next state transition if we are in the middle of
5827          * the previous one.
5828          */
5829         if (o->pending)
5830                 return -EBUSY;
5831
5832         switch (state) {
5833         case BNX2X_F_STATE_RESET:
5834                 if (cmd == BNX2X_F_CMD_HW_INIT)
5835                         next_state = BNX2X_F_STATE_INITIALIZED;
5836
5837                 break;
5838         case BNX2X_F_STATE_INITIALIZED:
5839                 if (cmd == BNX2X_F_CMD_START)
5840                         next_state = BNX2X_F_STATE_STARTED;
5841
5842                 else if (cmd == BNX2X_F_CMD_HW_RESET)
5843                         next_state = BNX2X_F_STATE_RESET;
5844
5845                 break;
5846         case BNX2X_F_STATE_STARTED:
5847                 if (cmd == BNX2X_F_CMD_STOP)
5848                         next_state = BNX2X_F_STATE_INITIALIZED;
5849                 /* afex ramrods can be sent only in started mode, and only
5850                  * if not pending for function_stop ramrod completion
5851                  * for these events - next state remained STARTED.
5852                  */
5853                 else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5854                          (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5855                         next_state = BNX2X_F_STATE_STARTED;
5856
5857                 else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5858                          (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5859                         next_state = BNX2X_F_STATE_STARTED;
5860
5861                 /* Switch_update ramrod can be sent in either started or
5862                  * tx_stopped state, and it doesn't change the state.
5863                  */
5864                 else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5865                          (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5866                         next_state = BNX2X_F_STATE_STARTED;
5867
5868                 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5869                          (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5870                         next_state = BNX2X_F_STATE_STARTED;
5871
5872                 else if (cmd == BNX2X_F_CMD_TX_STOP)
5873                         next_state = BNX2X_F_STATE_TX_STOPPED;
5874
5875                 break;
5876         case BNX2X_F_STATE_TX_STOPPED:
5877                 if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5878                     (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5879                         next_state = BNX2X_F_STATE_TX_STOPPED;
5880
5881                 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5882                          (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5883                         next_state = BNX2X_F_STATE_TX_STOPPED;
5884
5885                 else if (cmd == BNX2X_F_CMD_TX_START)
5886                         next_state = BNX2X_F_STATE_STARTED;
5887
5888                 break;
5889         default:
5890                 BNX2X_ERR("Unknown state: %d\n", state);
5891         }
5892
5893         /* Transition is assured */
5894         if (next_state != BNX2X_F_STATE_MAX) {
5895                 DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5896                                  state, cmd, next_state);
5897                 o->next_state = next_state;
5898                 return 0;
5899         }
5900
5901         DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5902                          state, cmd);
5903
5904         return -EINVAL;
5905 }
5906
5907 /**
5908  * bnx2x_func_init_func - performs HW init at function stage
5909  *
5910  * @bp:         device handle
5911  * @drv:
5912  *
5913  * Init HW when the current phase is
5914  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5915  * HW blocks.
5916  */
5917 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5918                                        const struct bnx2x_func_sp_drv_ops *drv)
5919 {
5920         return drv->init_hw_func(bp);
5921 }
5922
5923 /**
5924  * bnx2x_func_init_port - performs HW init at port stage
5925  *
5926  * @bp:         device handle
5927  * @drv:
5928  *
5929  * Init HW when the current phase is
5930  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5931  * FUNCTION-only HW blocks.
5932  *
5933  */
5934 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5935                                        const struct bnx2x_func_sp_drv_ops *drv)
5936 {
5937         int rc = drv->init_hw_port(bp);
5938         if (rc)
5939                 return rc;
5940
5941         return bnx2x_func_init_func(bp, drv);
5942 }
5943
5944 /**
5945  * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5946  *
5947  * @bp:         device handle
5948  * @drv:
5949  *
5950  * Init HW when the current phase is
5951  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5952  * PORT-only and FUNCTION-only HW blocks.
5953  */
5954 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5955                                         const struct bnx2x_func_sp_drv_ops *drv)
5956 {
5957         int rc = drv->init_hw_cmn_chip(bp);
5958         if (rc)
5959                 return rc;
5960
5961         return bnx2x_func_init_port(bp, drv);
5962 }
5963
5964 /**
5965  * bnx2x_func_init_cmn - performs HW init at common stage
5966  *
5967  * @bp:         device handle
5968  * @drv:
5969  *
5970  * Init HW when the current phase is
5971  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5972  * PORT-only and FUNCTION-only HW blocks.
5973  */
5974 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5975                                       const struct bnx2x_func_sp_drv_ops *drv)
5976 {
5977         int rc = drv->init_hw_cmn(bp);
5978         if (rc)
5979                 return rc;
5980
5981         return bnx2x_func_init_port(bp, drv);
5982 }
5983
5984 static int bnx2x_func_hw_init(struct bnx2x *bp,
5985                               struct bnx2x_func_state_params *params)
5986 {
5987         u32 load_code = params->params.hw_init.load_phase;
5988         struct bnx2x_func_sp_obj *o = params->f_obj;
5989         const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5990         int rc = 0;
5991
5992         DP(BNX2X_MSG_SP, "function %d  load_code %x\n",
5993                          BP_ABS_FUNC(bp), load_code);
5994
5995         /* Prepare buffers for unzipping the FW */
5996         rc = drv->gunzip_init(bp);
5997         if (rc)
5998                 return rc;
5999
6000         /* Prepare FW */
6001         rc = drv->init_fw(bp);
6002         if (rc) {
6003                 BNX2X_ERR("Error loading firmware\n");
6004                 goto init_err;
6005         }
6006
6007         /* Handle the beginning of COMMON_XXX pases separately... */
6008         switch (load_code) {
6009         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6010                 rc = bnx2x_func_init_cmn_chip(bp, drv);
6011                 if (rc)
6012                         goto init_err;
6013
6014                 break;
6015         case FW_MSG_CODE_DRV_LOAD_COMMON:
6016                 rc = bnx2x_func_init_cmn(bp, drv);
6017                 if (rc)
6018                         goto init_err;
6019
6020                 break;
6021         case FW_MSG_CODE_DRV_LOAD_PORT:
6022                 rc = bnx2x_func_init_port(bp, drv);
6023                 if (rc)
6024                         goto init_err;
6025
6026                 break;
6027         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6028                 rc = bnx2x_func_init_func(bp, drv);
6029                 if (rc)
6030                         goto init_err;
6031
6032                 break;
6033         default:
6034                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6035                 rc = -EINVAL;
6036         }
6037
6038 init_err:
6039         drv->gunzip_end(bp);
6040
6041         /* In case of success, complete the command immediately: no ramrods
6042          * have been sent.
6043          */
6044         if (!rc)
6045                 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
6046
6047         return rc;
6048 }
6049
6050 /**
6051  * bnx2x_func_reset_func - reset HW at function stage
6052  *
6053  * @bp:         device handle
6054  * @drv:
6055  *
6056  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6057  * FUNCTION-only HW blocks.
6058  */
6059 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
6060                                         const struct bnx2x_func_sp_drv_ops *drv)
6061 {
6062         drv->reset_hw_func(bp);
6063 }
6064
6065 /**
6066  * bnx2x_func_reset_port - reset HW at port stage
6067  *
6068  * @bp:         device handle
6069  * @drv:
6070  *
6071  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6072  * FUNCTION-only and PORT-only HW blocks.
6073  *
6074  *                 !!!IMPORTANT!!!
6075  *
6076  * It's important to call reset_port before reset_func() as the last thing
6077  * reset_func does is pf_disable() thus disabling PGLUE_B, which
6078  * makes impossible any DMAE transactions.
6079  */
6080 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
6081                                         const struct bnx2x_func_sp_drv_ops *drv)
6082 {
6083         drv->reset_hw_port(bp);
6084         bnx2x_func_reset_func(bp, drv);
6085 }
6086
6087 /**
6088  * bnx2x_func_reset_cmn - reset HW at common stage
6089  *
6090  * @bp:         device handle
6091  * @drv:
6092  *
6093  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6094  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6095  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6096  */
6097 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
6098                                         const struct bnx2x_func_sp_drv_ops *drv)
6099 {
6100         bnx2x_func_reset_port(bp, drv);
6101         drv->reset_hw_cmn(bp);
6102 }
6103
6104 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
6105                                       struct bnx2x_func_state_params *params)
6106 {
6107         u32 reset_phase = params->params.hw_reset.reset_phase;
6108         struct bnx2x_func_sp_obj *o = params->f_obj;
6109         const struct bnx2x_func_sp_drv_ops *drv = o->drv;
6110
6111         DP(BNX2X_MSG_SP, "function %d  reset_phase %x\n", BP_ABS_FUNC(bp),
6112                          reset_phase);
6113
6114         switch (reset_phase) {
6115         case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6116                 bnx2x_func_reset_cmn(bp, drv);
6117                 break;
6118         case FW_MSG_CODE_DRV_UNLOAD_PORT:
6119                 bnx2x_func_reset_port(bp, drv);
6120                 break;
6121         case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6122                 bnx2x_func_reset_func(bp, drv);
6123                 break;
6124         default:
6125                 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
6126                            reset_phase);
6127                 break;
6128         }
6129
6130         /* Complete the command immediately: no ramrods have been sent. */
6131         o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
6132
6133         return 0;
6134 }
6135
6136 static inline int bnx2x_func_send_start(struct bnx2x *bp,
6137                                         struct bnx2x_func_state_params *params)
6138 {
6139         struct bnx2x_func_sp_obj *o = params->f_obj;
6140         struct function_start_data *rdata =
6141                 (struct function_start_data *)o->rdata;
6142         dma_addr_t data_mapping = o->rdata_mapping;
6143         struct bnx2x_func_start_params *start_params = &params->params.start;
6144
6145         memset(rdata, 0, sizeof(*rdata));
6146
6147         /* Fill the ramrod data with provided parameters */
6148         rdata->function_mode    = (u8)start_params->mf_mode;
6149         rdata->sd_vlan_tag      = cpu_to_le16(start_params->sd_vlan_tag);
6150         rdata->path_id          = BP_PATH(bp);
6151         rdata->network_cos_mode = start_params->network_cos_mode;
6152         rdata->dmae_cmd_id      = BNX2X_FW_DMAE_C;
6153
6154         rdata->vxlan_dst_port   = cpu_to_le16(start_params->vxlan_dst_port);
6155         rdata->geneve_dst_port  = cpu_to_le16(start_params->geneve_dst_port);
6156         rdata->inner_clss_l2gre = start_params->inner_clss_l2gre;
6157         rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6158         rdata->inner_clss_vxlan = start_params->inner_clss_vxlan;
6159         rdata->inner_rss        = start_params->inner_rss;
6160
6161         rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6162         if (start_params->class_fail_ethtype) {
6163                 rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6164                 rdata->sd_accept_mf_clss_fail_ethtype =
6165                         cpu_to_le16(start_params->class_fail_ethtype);
6166         }
6167
6168         rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6169         rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6170         if (start_params->sd_vlan_eth_type)
6171                 rdata->sd_vlan_eth_type =
6172                         cpu_to_le16(start_params->sd_vlan_eth_type);
6173         else
6174                 rdata->sd_vlan_eth_type =
6175                         cpu_to_le16(0x8100);
6176
6177         rdata->no_added_tags = start_params->no_added_tags;
6178
6179         rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6180         if (rdata->c2s_pri_tt_valid) {
6181                 memcpy(rdata->c2s_pri_trans_table.val,
6182                        start_params->c2s_pri,
6183                        MAX_VLAN_PRIORITIES);
6184                 rdata->c2s_pri_default = start_params->c2s_pri_default;
6185         }
6186         /* No need for an explicit memory barrier here as long we would
6187          * need to ensure the ordering of writing to the SPQ element
6188          * and updating of the SPQ producer which involves a memory
6189          * read and we will have to put a full memory barrier there
6190          * (inside bnx2x_sp_post()).
6191          */
6192
6193         return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6194                              U64_HI(data_mapping),
6195                              U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6196 }
6197
6198 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
6199                                         struct bnx2x_func_state_params *params)
6200 {
6201         struct bnx2x_func_sp_obj *o = params->f_obj;
6202         struct function_update_data *rdata =
6203                 (struct function_update_data *)o->rdata;
6204         dma_addr_t data_mapping = o->rdata_mapping;
6205         struct bnx2x_func_switch_update_params *switch_update_params =
6206                 &params->params.switch_update;
6207
6208         memset(rdata, 0, sizeof(*rdata));
6209
6210         /* Fill the ramrod data with provided parameters */
6211         if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6212                      &switch_update_params->changes)) {
6213                 rdata->tx_switch_suspend_change_flg = 1;
6214                 rdata->tx_switch_suspend =
6215                         test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
6216                                  &switch_update_params->changes);
6217         }
6218
6219         if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
6220                      &switch_update_params->changes)) {
6221                 rdata->sd_vlan_tag_change_flg = 1;
6222                 rdata->sd_vlan_tag =
6223                         cpu_to_le16(switch_update_params->vlan);
6224         }
6225
6226         if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6227                      &switch_update_params->changes)) {
6228                 rdata->sd_vlan_eth_type_change_flg = 1;
6229                 rdata->sd_vlan_eth_type =
6230                         cpu_to_le16(switch_update_params->vlan_eth_type);
6231         }
6232
6233         if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6234                      &switch_update_params->changes)) {
6235                 rdata->sd_vlan_force_pri_change_flg = 1;
6236                 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6237                              &switch_update_params->changes))
6238                         rdata->sd_vlan_force_pri_flg = 1;
6239                 rdata->sd_vlan_force_pri_flg =
6240                         switch_update_params->vlan_force_prio;
6241         }
6242
6243         if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
6244                      &switch_update_params->changes)) {
6245                 rdata->update_tunn_cfg_flg = 1;
6246                 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6247                              &switch_update_params->changes))
6248                         rdata->inner_clss_l2gre = 1;
6249                 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6250                              &switch_update_params->changes))
6251                         rdata->inner_clss_vxlan = 1;
6252                 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6253                              &switch_update_params->changes))
6254                         rdata->inner_clss_l2geneve = 1;
6255                 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
6256                              &switch_update_params->changes))
6257                         rdata->inner_rss = 1;
6258                 rdata->vxlan_dst_port =
6259                         cpu_to_le16(switch_update_params->vxlan_dst_port);
6260                 rdata->geneve_dst_port =
6261                         cpu_to_le16(switch_update_params->geneve_dst_port);
6262         }
6263
6264         rdata->echo = SWITCH_UPDATE;
6265
6266         /* No need for an explicit memory barrier here as long as we
6267          * ensure the ordering of writing to the SPQ element
6268          * and updating of the SPQ producer which involves a memory
6269          * read. If the memory read is removed we will have to put a
6270          * full memory barrier there (inside bnx2x_sp_post()).
6271          */
6272         return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6273                              U64_HI(data_mapping),
6274                              U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6275 }
6276
6277 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
6278                                          struct bnx2x_func_state_params *params)
6279 {
6280         struct bnx2x_func_sp_obj *o = params->f_obj;
6281         struct function_update_data *rdata =
6282                 (struct function_update_data *)o->afex_rdata;
6283         dma_addr_t data_mapping = o->afex_rdata_mapping;
6284         struct bnx2x_func_afex_update_params *afex_update_params =
6285                 &params->params.afex_update;
6286
6287         memset(rdata, 0, sizeof(*rdata));
6288
6289         /* Fill the ramrod data with provided parameters */
6290         rdata->vif_id_change_flg = 1;
6291         rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
6292         rdata->afex_default_vlan_change_flg = 1;
6293         rdata->afex_default_vlan =
6294                 cpu_to_le16(afex_update_params->afex_default_vlan);
6295         rdata->allowed_priorities_change_flg = 1;
6296         rdata->allowed_priorities = afex_update_params->allowed_priorities;
6297         rdata->echo = AFEX_UPDATE;
6298
6299         /* No need for an explicit memory barrier here as long as we
6300          * ensure the ordering of writing to the SPQ element
6301          * and updating of the SPQ producer which involves a memory
6302          * read. If the memory read is removed we will have to put a
6303          * full memory barrier there (inside bnx2x_sp_post()).
6304          */
6305         DP(BNX2X_MSG_SP,
6306            "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6307            rdata->vif_id,
6308            rdata->afex_default_vlan, rdata->allowed_priorities);
6309
6310         return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6311                              U64_HI(data_mapping),
6312                              U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6313 }
6314
6315 static
6316 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
6317                                          struct bnx2x_func_state_params *params)
6318 {
6319         struct bnx2x_func_sp_obj *o = params->f_obj;
6320         struct afex_vif_list_ramrod_data *rdata =
6321                 (struct afex_vif_list_ramrod_data *)o->afex_rdata;
6322         struct bnx2x_func_afex_viflists_params *afex_vif_params =
6323                 &params->params.afex_viflists;
6324         u64 *p_rdata = (u64 *)rdata;
6325
6326         memset(rdata, 0, sizeof(*rdata));
6327
6328         /* Fill the ramrod data with provided parameters */
6329         rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
6330         rdata->func_bit_map          = afex_vif_params->func_bit_map;
6331         rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6332         rdata->func_to_clear         = afex_vif_params->func_to_clear;
6333
6334         /* send in echo type of sub command */
6335         rdata->echo = afex_vif_params->afex_vif_list_command;
6336
6337         /*  No need for an explicit memory barrier here as long we would
6338          *  need to ensure the ordering of writing to the SPQ element
6339          *  and updating of the SPQ producer which involves a memory
6340          *  read and we will have to put a full memory barrier there
6341          *  (inside bnx2x_sp_post()).
6342          */
6343
6344         DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6345            rdata->afex_vif_list_command, rdata->vif_list_index,
6346            rdata->func_bit_map, rdata->func_to_clear);
6347
6348         /* this ramrod sends data directly and not through DMA mapping */
6349         return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6350                              U64_HI(*p_rdata), U64_LO(*p_rdata),
6351                              NONE_CONNECTION_TYPE);
6352 }
6353
6354 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
6355                                        struct bnx2x_func_state_params *params)
6356 {
6357         return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
6358                              NONE_CONNECTION_TYPE);
6359 }
6360
6361 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
6362                                        struct bnx2x_func_state_params *params)
6363 {
6364         return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
6365                              NONE_CONNECTION_TYPE);
6366 }
6367 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
6368                                        struct bnx2x_func_state_params *params)
6369 {
6370         struct bnx2x_func_sp_obj *o = params->f_obj;
6371         struct flow_control_configuration *rdata =
6372                 (struct flow_control_configuration *)o->rdata;
6373         dma_addr_t data_mapping = o->rdata_mapping;
6374         struct bnx2x_func_tx_start_params *tx_start_params =
6375                 &params->params.tx_start;
6376         int i;
6377
6378         memset(rdata, 0, sizeof(*rdata));
6379
6380         rdata->dcb_enabled = tx_start_params->dcb_enabled;
6381         rdata->dcb_version = tx_start_params->dcb_version;
6382         rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6383
6384         for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6385                 rdata->traffic_type_to_priority_cos[i] =
6386                         tx_start_params->traffic_type_to_priority_cos[i];
6387
6388         for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6389                 rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6390         /* No need for an explicit memory barrier here as long as we
6391          * ensure the ordering of writing to the SPQ element
6392          * and updating of the SPQ producer which involves a memory
6393          * read. If the memory read is removed we will have to put a
6394          * full memory barrier there (inside bnx2x_sp_post()).
6395          */
6396         return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6397                              U64_HI(data_mapping),
6398                              U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6399 }
6400
6401 static inline
6402 int bnx2x_func_send_set_timesync(struct bnx2x *bp,
6403                                  struct bnx2x_func_state_params *params)
6404 {
6405         struct bnx2x_func_sp_obj *o = params->f_obj;
6406         struct set_timesync_ramrod_data *rdata =
6407                 (struct set_timesync_ramrod_data *)o->rdata;
6408         dma_addr_t data_mapping = o->rdata_mapping;
6409         struct bnx2x_func_set_timesync_params *set_timesync_params =
6410                 &params->params.set_timesync;
6411
6412         memset(rdata, 0, sizeof(*rdata));
6413
6414         /* Fill the ramrod data with provided parameters */
6415         rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6416         rdata->offset_cmd = set_timesync_params->offset_cmd;
6417         rdata->add_sub_drift_adjust_value =
6418                 set_timesync_params->add_sub_drift_adjust_value;
6419         rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6420         rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6421         rdata->offset_delta.lo =
6422                 cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6423         rdata->offset_delta.hi =
6424                 cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6425
6426         DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6427            rdata->drift_adjust_cmd, rdata->offset_cmd,
6428            rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6429            rdata->drift_adjust_period, rdata->offset_delta.lo,
6430            rdata->offset_delta.hi);
6431
6432         return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6433                              U64_HI(data_mapping),
6434                              U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6435 }
6436
6437 static int bnx2x_func_send_cmd(struct bnx2x *bp,
6438                                struct bnx2x_func_state_params *params)
6439 {
6440         switch (params->cmd) {
6441         case BNX2X_F_CMD_HW_INIT:
6442                 return bnx2x_func_hw_init(bp, params);
6443         case BNX2X_F_CMD_START:
6444                 return bnx2x_func_send_start(bp, params);
6445         case BNX2X_F_CMD_STOP:
6446                 return bnx2x_func_send_stop(bp, params);
6447         case BNX2X_F_CMD_HW_RESET:
6448                 return bnx2x_func_hw_reset(bp, params);
6449         case BNX2X_F_CMD_AFEX_UPDATE:
6450                 return bnx2x_func_send_afex_update(bp, params);
6451         case BNX2X_F_CMD_AFEX_VIFLISTS:
6452                 return bnx2x_func_send_afex_viflists(bp, params);
6453         case BNX2X_F_CMD_TX_STOP:
6454                 return bnx2x_func_send_tx_stop(bp, params);
6455         case BNX2X_F_CMD_TX_START:
6456                 return bnx2x_func_send_tx_start(bp, params);
6457         case BNX2X_F_CMD_SWITCH_UPDATE:
6458                 return bnx2x_func_send_switch_update(bp, params);
6459         case BNX2X_F_CMD_SET_TIMESYNC:
6460                 return bnx2x_func_send_set_timesync(bp, params);
6461         default:
6462                 BNX2X_ERR("Unknown command: %d\n", params->cmd);
6463                 return -EINVAL;
6464         }
6465 }
6466
6467 void bnx2x_init_func_obj(struct bnx2x *bp,
6468                          struct bnx2x_func_sp_obj *obj,
6469                          void *rdata, dma_addr_t rdata_mapping,
6470                          void *afex_rdata, dma_addr_t afex_rdata_mapping,
6471                          struct bnx2x_func_sp_drv_ops *drv_iface)
6472 {
6473         memset(obj, 0, sizeof(*obj));
6474
6475         mutex_init(&obj->one_pending_mutex);
6476
6477         obj->rdata = rdata;
6478         obj->rdata_mapping = rdata_mapping;
6479         obj->afex_rdata = afex_rdata;
6480         obj->afex_rdata_mapping = afex_rdata_mapping;
6481         obj->send_cmd = bnx2x_func_send_cmd;
6482         obj->check_transition = bnx2x_func_chk_transition;
6483         obj->complete_cmd = bnx2x_func_comp_cmd;
6484         obj->wait_comp = bnx2x_func_wait_comp;
6485
6486         obj->drv = drv_iface;
6487 }
6488
6489 /**
6490  * bnx2x_func_state_change - perform Function state change transition
6491  *
6492  * @bp:         device handle
6493  * @params:     parameters to perform the transaction
6494  *
6495  * returns 0 in case of successfully completed transition,
6496  *         negative error code in case of failure, positive
6497  *         (EBUSY) value if there is a completion to that is
6498  *         still pending (possible only if RAMROD_COMP_WAIT is
6499  *         not set in params->ramrod_flags for asynchronous
6500  *         commands).
6501  */
6502 int bnx2x_func_state_change(struct bnx2x *bp,
6503                             struct bnx2x_func_state_params *params)
6504 {
6505         struct bnx2x_func_sp_obj *o = params->f_obj;
6506         int rc, cnt = 300;
6507         enum bnx2x_func_cmd cmd = params->cmd;
6508         unsigned long *pending = &o->pending;
6509
6510         mutex_lock(&o->one_pending_mutex);
6511
6512         /* Check that the requested transition is legal */
6513         rc = o->check_transition(bp, o, params);
6514         if ((rc == -EBUSY) &&
6515             (test_bit(RAMROD_RETRY, &params->ramrod_flags))) {
6516                 while ((rc == -EBUSY) && (--cnt > 0)) {
6517                         mutex_unlock(&o->one_pending_mutex);
6518                         msleep(10);
6519                         mutex_lock(&o->one_pending_mutex);
6520                         rc = o->check_transition(bp, o, params);
6521                 }
6522                 if (rc == -EBUSY) {
6523                         mutex_unlock(&o->one_pending_mutex);
6524                         BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6525                         return rc;
6526                 }
6527         } else if (rc) {
6528                 mutex_unlock(&o->one_pending_mutex);
6529                 return rc;
6530         }
6531
6532         /* Set "pending" bit */
6533         set_bit(cmd, pending);
6534
6535         /* Don't send a command if only driver cleanup was requested */
6536         if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6537                 bnx2x_func_state_change_comp(bp, o, cmd);
6538                 mutex_unlock(&o->one_pending_mutex);
6539         } else {
6540                 /* Send a ramrod */
6541                 rc = o->send_cmd(bp, params);
6542
6543                 mutex_unlock(&o->one_pending_mutex);
6544
6545                 if (rc) {
6546                         o->next_state = BNX2X_F_STATE_MAX;
6547                         clear_bit(cmd, pending);
6548                         smp_mb__after_atomic();
6549                         return rc;
6550                 }
6551
6552                 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6553                         rc = o->wait_comp(bp, o, cmd);
6554                         if (rc)
6555                                 return rc;
6556
6557                         return 0;
6558                 }
6559         }
6560
6561         return !!test_bit(cmd, pending);
6562 }