Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2
[sfrench/cifs-2.6.git] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  */
56
57 #include "e1000.h"
58
59 #define ICH_FLASH_GFPREG                0x0000
60 #define ICH_FLASH_HSFSTS                0x0004
61 #define ICH_FLASH_HSFCTL                0x0006
62 #define ICH_FLASH_FADDR                 0x0008
63 #define ICH_FLASH_FDATA0                0x0010
64 #define ICH_FLASH_PR0                   0x0074
65
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
71
72 #define ICH_CYCLE_READ                  0
73 #define ICH_CYCLE_WRITE                 2
74 #define ICH_CYCLE_ERASE                 3
75
76 #define FLASH_GFPREG_BASE_MASK          0x1FFF
77 #define FLASH_SECTOR_ADDR_SHIFT         12
78
79 #define ICH_FLASH_SEG_SIZE_256          256
80 #define ICH_FLASH_SEG_SIZE_4K           4096
81 #define ICH_FLASH_SEG_SIZE_8K           8192
82 #define ICH_FLASH_SEG_SIZE_64K          65536
83
84
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
86
87 #define E1000_ICH_MNG_IAMT_MODE         0x2
88
89 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
90                                  (ID_LED_DEF1_OFF2 <<  8) | \
91                                  (ID_LED_DEF1_ON2  <<  4) | \
92                                  (ID_LED_DEF1_DEF2))
93
94 #define E1000_ICH_NVM_SIG_WORD          0x13
95 #define E1000_ICH_NVM_SIG_MASK          0xC000
96 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
97 #define E1000_ICH_NVM_SIG_VALUE         0x80
98
99 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
100
101 #define E1000_FEXTNVM_SW_CONFIG         1
102 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
103
104 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
105
106 #define E1000_ICH_RAR_ENTRIES           7
107
108 #define PHY_PAGE_SHIFT 5
109 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
110                            ((reg) & MAX_PHY_REG_ADDRESS))
111 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
112 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
113
114 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
115 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
116 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
117
118 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
119
120 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
121
122 /* SMBus Address Phy Register */
123 #define HV_SMB_ADDR            PHY_REG(768, 26)
124 #define HV_SMB_ADDR_PEC_EN     0x0200
125 #define HV_SMB_ADDR_VALID      0x0080
126
127 /* Strapping Option Register - RO */
128 #define E1000_STRAP                     0x0000C
129 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
130 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
131
132 /* OEM Bits Phy Register */
133 #define HV_OEM_BITS            PHY_REG(768, 25)
134 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
135 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
136 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
137
138 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
139 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
140
141 /* KMRN Mode Control */
142 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
143 #define HV_KMRN_MDIO_SLOW      0x0400
144
145 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
146 /* Offset 04h HSFSTS */
147 union ich8_hws_flash_status {
148         struct ich8_hsfsts {
149                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
150                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
151                 u16 dael       :1; /* bit 2 Direct Access error Log */
152                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
153                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
154                 u16 reserved1  :2; /* bit 13:6 Reserved */
155                 u16 reserved2  :6; /* bit 13:6 Reserved */
156                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
157                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
158         } hsf_status;
159         u16 regval;
160 };
161
162 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
163 /* Offset 06h FLCTL */
164 union ich8_hws_flash_ctrl {
165         struct ich8_hsflctl {
166                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
167                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
168                 u16 reserved   :5;   /* 7:3 Reserved  */
169                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
170                 u16 flockdn    :6;   /* 15:10 Reserved */
171         } hsf_ctrl;
172         u16 regval;
173 };
174
175 /* ICH Flash Region Access Permissions */
176 union ich8_hws_flash_regacc {
177         struct ich8_flracc {
178                 u32 grra      :8; /* 0:7 GbE region Read Access */
179                 u32 grwa      :8; /* 8:15 GbE region Write Access */
180                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
181                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
182         } hsf_flregacc;
183         u16 regval;
184 };
185
186 /* ICH Flash Protected Region */
187 union ich8_flash_protected_range {
188         struct ich8_pr {
189                 u32 base:13;     /* 0:12 Protected Range Base */
190                 u32 reserved1:2; /* 13:14 Reserved */
191                 u32 rpe:1;       /* 15 Read Protection Enable */
192                 u32 limit:13;    /* 16:28 Protected Range Limit */
193                 u32 reserved2:2; /* 29:30 Reserved */
194                 u32 wpe:1;       /* 31 Write Protection Enable */
195         } range;
196         u32 regval;
197 };
198
199 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
200 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
201 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
202 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
203 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
204                                                 u32 offset, u8 byte);
205 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
206                                          u8 *data);
207 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
208                                          u16 *data);
209 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
210                                          u8 size, u16 *data);
211 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
212 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
213 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
214 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
215 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
216 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
217 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
218 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
219 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
220 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
221 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
222 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
223 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
224 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
225 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
226 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
227
228 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
229 {
230         return readw(hw->flash_address + reg);
231 }
232
233 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
234 {
235         return readl(hw->flash_address + reg);
236 }
237
238 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
239 {
240         writew(val, hw->flash_address + reg);
241 }
242
243 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
244 {
245         writel(val, hw->flash_address + reg);
246 }
247
248 #define er16flash(reg)          __er16flash(hw, (reg))
249 #define er32flash(reg)          __er32flash(hw, (reg))
250 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
251 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
252
253 /**
254  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
255  *  @hw: pointer to the HW structure
256  *
257  *  Initialize family-specific PHY parameters and function pointers.
258  **/
259 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
260 {
261         struct e1000_phy_info *phy = &hw->phy;
262         s32 ret_val = 0;
263
264         phy->addr                     = 1;
265         phy->reset_delay_us           = 100;
266
267         phy->ops.read_reg             = e1000_read_phy_reg_hv;
268         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
269         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
270         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
271         phy->ops.write_reg            = e1000_write_phy_reg_hv;
272         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
273         phy->ops.power_up             = e1000_power_up_phy_copper;
274         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
275         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
276
277         phy->id = e1000_phy_unknown;
278         ret_val = e1000e_get_phy_id(hw);
279         if (ret_val)
280                 goto out;
281         if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
282                 /*
283                  * In case the PHY needs to be in mdio slow mode (eg. 82577),
284                  * set slow mode and try to get the PHY id again.
285                  */
286                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
287                 if (ret_val)
288                         goto out;
289                 ret_val = e1000e_get_phy_id(hw);
290                 if (ret_val)
291                         goto out;
292         }
293         phy->type = e1000e_get_phy_type_from_id(phy->id);
294
295         switch (phy->type) {
296         case e1000_phy_82577:
297                 phy->ops.check_polarity = e1000_check_polarity_82577;
298                 phy->ops.force_speed_duplex =
299                         e1000_phy_force_speed_duplex_82577;
300                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
301                 phy->ops.get_info = e1000_get_phy_info_82577;
302                 phy->ops.commit = e1000e_phy_sw_reset;
303         case e1000_phy_82578:
304                 phy->ops.check_polarity = e1000_check_polarity_m88;
305                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
306                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
307                 phy->ops.get_info = e1000e_get_phy_info_m88;
308                 break;
309         default:
310                 ret_val = -E1000_ERR_PHY;
311                 break;
312         }
313
314 out:
315         return ret_val;
316 }
317
318 /**
319  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
320  *  @hw: pointer to the HW structure
321  *
322  *  Initialize family-specific PHY parameters and function pointers.
323  **/
324 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
325 {
326         struct e1000_phy_info *phy = &hw->phy;
327         s32 ret_val;
328         u16 i = 0;
329
330         phy->addr                       = 1;
331         phy->reset_delay_us             = 100;
332
333         phy->ops.power_up               = e1000_power_up_phy_copper;
334         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
335
336         /*
337          * We may need to do this twice - once for IGP and if that fails,
338          * we'll set BM func pointers and try again
339          */
340         ret_val = e1000e_determine_phy_address(hw);
341         if (ret_val) {
342                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
343                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
344                 ret_val = e1000e_determine_phy_address(hw);
345                 if (ret_val) {
346                         e_dbg("Cannot determine PHY addr. Erroring out\n");
347                         return ret_val;
348                 }
349         }
350
351         phy->id = 0;
352         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
353                (i++ < 100)) {
354                 msleep(1);
355                 ret_val = e1000e_get_phy_id(hw);
356                 if (ret_val)
357                         return ret_val;
358         }
359
360         /* Verify phy id */
361         switch (phy->id) {
362         case IGP03E1000_E_PHY_ID:
363                 phy->type = e1000_phy_igp_3;
364                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
365                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
366                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
367                 phy->ops.get_info = e1000e_get_phy_info_igp;
368                 phy->ops.check_polarity = e1000_check_polarity_igp;
369                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
370                 break;
371         case IFE_E_PHY_ID:
372         case IFE_PLUS_E_PHY_ID:
373         case IFE_C_E_PHY_ID:
374                 phy->type = e1000_phy_ife;
375                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
376                 phy->ops.get_info = e1000_get_phy_info_ife;
377                 phy->ops.check_polarity = e1000_check_polarity_ife;
378                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
379                 break;
380         case BME1000_E_PHY_ID:
381                 phy->type = e1000_phy_bm;
382                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
383                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
384                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
385                 phy->ops.commit = e1000e_phy_sw_reset;
386                 phy->ops.get_info = e1000e_get_phy_info_m88;
387                 phy->ops.check_polarity = e1000_check_polarity_m88;
388                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
389                 break;
390         default:
391                 return -E1000_ERR_PHY;
392                 break;
393         }
394
395         return 0;
396 }
397
398 /**
399  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
400  *  @hw: pointer to the HW structure
401  *
402  *  Initialize family-specific NVM parameters and function
403  *  pointers.
404  **/
405 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
406 {
407         struct e1000_nvm_info *nvm = &hw->nvm;
408         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
409         u32 gfpreg, sector_base_addr, sector_end_addr;
410         u16 i;
411
412         /* Can't read flash registers if the register set isn't mapped. */
413         if (!hw->flash_address) {
414                 e_dbg("ERROR: Flash registers not mapped\n");
415                 return -E1000_ERR_CONFIG;
416         }
417
418         nvm->type = e1000_nvm_flash_sw;
419
420         gfpreg = er32flash(ICH_FLASH_GFPREG);
421
422         /*
423          * sector_X_addr is a "sector"-aligned address (4096 bytes)
424          * Add 1 to sector_end_addr since this sector is included in
425          * the overall size.
426          */
427         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
428         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
429
430         /* flash_base_addr is byte-aligned */
431         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
432
433         /*
434          * find total size of the NVM, then cut in half since the total
435          * size represents two separate NVM banks.
436          */
437         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
438                                 << FLASH_SECTOR_ADDR_SHIFT;
439         nvm->flash_bank_size /= 2;
440         /* Adjust to word count */
441         nvm->flash_bank_size /= sizeof(u16);
442
443         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
444
445         /* Clear shadow ram */
446         for (i = 0; i < nvm->word_size; i++) {
447                 dev_spec->shadow_ram[i].modified = false;
448                 dev_spec->shadow_ram[i].value    = 0xFFFF;
449         }
450
451         return 0;
452 }
453
454 /**
455  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
456  *  @hw: pointer to the HW structure
457  *
458  *  Initialize family-specific MAC parameters and function
459  *  pointers.
460  **/
461 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
462 {
463         struct e1000_hw *hw = &adapter->hw;
464         struct e1000_mac_info *mac = &hw->mac;
465
466         /* Set media type function pointer */
467         hw->phy.media_type = e1000_media_type_copper;
468
469         /* Set mta register count */
470         mac->mta_reg_count = 32;
471         /* Set rar entry count */
472         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
473         if (mac->type == e1000_ich8lan)
474                 mac->rar_entry_count--;
475         /* Set if manageability features are enabled. */
476         mac->arc_subsystem_valid = true;
477         /* Adaptive IFS supported */
478         mac->adaptive_ifs = true;
479
480         /* LED operations */
481         switch (mac->type) {
482         case e1000_ich8lan:
483         case e1000_ich9lan:
484         case e1000_ich10lan:
485                 /* ID LED init */
486                 mac->ops.id_led_init = e1000e_id_led_init;
487                 /* setup LED */
488                 mac->ops.setup_led = e1000e_setup_led_generic;
489                 /* cleanup LED */
490                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
491                 /* turn on/off LED */
492                 mac->ops.led_on = e1000_led_on_ich8lan;
493                 mac->ops.led_off = e1000_led_off_ich8lan;
494                 break;
495         case e1000_pchlan:
496                 /* ID LED init */
497                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
498                 /* setup LED */
499                 mac->ops.setup_led = e1000_setup_led_pchlan;
500                 /* cleanup LED */
501                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
502                 /* turn on/off LED */
503                 mac->ops.led_on = e1000_led_on_pchlan;
504                 mac->ops.led_off = e1000_led_off_pchlan;
505                 break;
506         default:
507                 break;
508         }
509
510         /* Enable PCS Lock-loss workaround for ICH8 */
511         if (mac->type == e1000_ich8lan)
512                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
513
514         return 0;
515 }
516
517 /**
518  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
519  *  @hw: pointer to the HW structure
520  *
521  *  Checks to see of the link status of the hardware has changed.  If a
522  *  change in link status has been detected, then we read the PHY registers
523  *  to get the current speed/duplex if link exists.
524  **/
525 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
526 {
527         struct e1000_mac_info *mac = &hw->mac;
528         s32 ret_val;
529         bool link;
530
531         /*
532          * We only want to go out to the PHY registers to see if Auto-Neg
533          * has completed and/or if our link status has changed.  The
534          * get_link_status flag is set upon receiving a Link Status
535          * Change or Rx Sequence Error interrupt.
536          */
537         if (!mac->get_link_status) {
538                 ret_val = 0;
539                 goto out;
540         }
541
542         /*
543          * First we want to see if the MII Status Register reports
544          * link.  If so, then we want to get the current speed/duplex
545          * of the PHY.
546          */
547         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
548         if (ret_val)
549                 goto out;
550
551         if (hw->mac.type == e1000_pchlan) {
552                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
553                 if (ret_val)
554                         goto out;
555         }
556
557         if (!link)
558                 goto out; /* No link detected */
559
560         mac->get_link_status = false;
561
562         if (hw->phy.type == e1000_phy_82578) {
563                 ret_val = e1000_link_stall_workaround_hv(hw);
564                 if (ret_val)
565                         goto out;
566         }
567
568         /*
569          * Check if there was DownShift, must be checked
570          * immediately after link-up
571          */
572         e1000e_check_downshift(hw);
573
574         /*
575          * If we are forcing speed/duplex, then we simply return since
576          * we have already determined whether we have link or not.
577          */
578         if (!mac->autoneg) {
579                 ret_val = -E1000_ERR_CONFIG;
580                 goto out;
581         }
582
583         /*
584          * Auto-Neg is enabled.  Auto Speed Detection takes care
585          * of MAC speed/duplex configuration.  So we only need to
586          * configure Collision Distance in the MAC.
587          */
588         e1000e_config_collision_dist(hw);
589
590         /*
591          * Configure Flow Control now that Auto-Neg has completed.
592          * First, we need to restore the desired flow control
593          * settings because we may have had to re-autoneg with a
594          * different link partner.
595          */
596         ret_val = e1000e_config_fc_after_link_up(hw);
597         if (ret_val)
598                 e_dbg("Error configuring flow control\n");
599
600 out:
601         return ret_val;
602 }
603
604 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
605 {
606         struct e1000_hw *hw = &adapter->hw;
607         s32 rc;
608
609         rc = e1000_init_mac_params_ich8lan(adapter);
610         if (rc)
611                 return rc;
612
613         rc = e1000_init_nvm_params_ich8lan(hw);
614         if (rc)
615                 return rc;
616
617         if (hw->mac.type == e1000_pchlan)
618                 rc = e1000_init_phy_params_pchlan(hw);
619         else
620                 rc = e1000_init_phy_params_ich8lan(hw);
621         if (rc)
622                 return rc;
623
624         if (adapter->hw.phy.type == e1000_phy_ife) {
625                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
626                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
627         }
628
629         if ((adapter->hw.mac.type == e1000_ich8lan) &&
630             (adapter->hw.phy.type == e1000_phy_igp_3))
631                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
632
633         return 0;
634 }
635
636 static DEFINE_MUTEX(nvm_mutex);
637
638 /**
639  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
640  *  @hw: pointer to the HW structure
641  *
642  *  Acquires the mutex for performing NVM operations.
643  **/
644 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
645 {
646         mutex_lock(&nvm_mutex);
647
648         return 0;
649 }
650
651 /**
652  *  e1000_release_nvm_ich8lan - Release NVM mutex
653  *  @hw: pointer to the HW structure
654  *
655  *  Releases the mutex used while performing NVM operations.
656  **/
657 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
658 {
659         mutex_unlock(&nvm_mutex);
660
661         return;
662 }
663
664 static DEFINE_MUTEX(swflag_mutex);
665
666 /**
667  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
668  *  @hw: pointer to the HW structure
669  *
670  *  Acquires the software control flag for performing PHY and select
671  *  MAC CSR accesses.
672  **/
673 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
674 {
675         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
676         s32 ret_val = 0;
677
678         mutex_lock(&swflag_mutex);
679
680         while (timeout) {
681                 extcnf_ctrl = er32(EXTCNF_CTRL);
682                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
683                         break;
684
685                 mdelay(1);
686                 timeout--;
687         }
688
689         if (!timeout) {
690                 e_dbg("SW/FW/HW has locked the resource for too long.\n");
691                 ret_val = -E1000_ERR_CONFIG;
692                 goto out;
693         }
694
695         timeout = SW_FLAG_TIMEOUT;
696
697         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
698         ew32(EXTCNF_CTRL, extcnf_ctrl);
699
700         while (timeout) {
701                 extcnf_ctrl = er32(EXTCNF_CTRL);
702                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
703                         break;
704
705                 mdelay(1);
706                 timeout--;
707         }
708
709         if (!timeout) {
710                 e_dbg("Failed to acquire the semaphore.\n");
711                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
712                 ew32(EXTCNF_CTRL, extcnf_ctrl);
713                 ret_val = -E1000_ERR_CONFIG;
714                 goto out;
715         }
716
717 out:
718         if (ret_val)
719                 mutex_unlock(&swflag_mutex);
720
721         return ret_val;
722 }
723
724 /**
725  *  e1000_release_swflag_ich8lan - Release software control flag
726  *  @hw: pointer to the HW structure
727  *
728  *  Releases the software control flag for performing PHY and select
729  *  MAC CSR accesses.
730  **/
731 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
732 {
733         u32 extcnf_ctrl;
734
735         extcnf_ctrl = er32(EXTCNF_CTRL);
736         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
737         ew32(EXTCNF_CTRL, extcnf_ctrl);
738
739         mutex_unlock(&swflag_mutex);
740
741         return;
742 }
743
744 /**
745  *  e1000_check_mng_mode_ich8lan - Checks management mode
746  *  @hw: pointer to the HW structure
747  *
748  *  This checks if the adapter has manageability enabled.
749  *  This is a function pointer entry point only called by read/write
750  *  routines for the PHY and NVM parts.
751  **/
752 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
753 {
754         u32 fwsm;
755
756         fwsm = er32(FWSM);
757
758         return (fwsm & E1000_FWSM_MODE_MASK) ==
759                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
760 }
761
762 /**
763  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
764  *  @hw: pointer to the HW structure
765  *
766  *  Checks if firmware is blocking the reset of the PHY.
767  *  This is a function pointer entry point only called by
768  *  reset routines.
769  **/
770 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
771 {
772         u32 fwsm;
773
774         fwsm = er32(FWSM);
775
776         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
777 }
778
779 /**
780  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
781  *  @hw:   pointer to the HW structure
782  *
783  *  SW should configure the LCD from the NVM extended configuration region
784  *  as a workaround for certain parts.
785  **/
786 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
787 {
788         struct e1000_phy_info *phy = &hw->phy;
789         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
790         s32 ret_val;
791         u16 word_addr, reg_data, reg_addr, phy_page = 0;
792
793         ret_val = hw->phy.ops.acquire(hw);
794         if (ret_val)
795                 return ret_val;
796
797         /*
798          * Initialize the PHY from the NVM on ICH platforms.  This
799          * is needed due to an issue where the NVM configuration is
800          * not properly autoloaded after power transitions.
801          * Therefore, after each PHY reset, we will load the
802          * configuration data out of the NVM manually.
803          */
804         if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
805                 (hw->mac.type == e1000_pchlan)) {
806                 struct e1000_adapter *adapter = hw->adapter;
807
808                 /* Check if SW needs to configure the PHY */
809                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
810                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
811                     (hw->mac.type == e1000_pchlan))
812                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
813                 else
814                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
815
816                 data = er32(FEXTNVM);
817                 if (!(data & sw_cfg_mask))
818                         goto out;
819
820                 /* Wait for basic configuration completes before proceeding */
821                 e1000_lan_init_done_ich8lan(hw);
822
823                 /*
824                  * Make sure HW does not configure LCD from PHY
825                  * extended configuration before SW configuration
826                  */
827                 data = er32(EXTCNF_CTRL);
828                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
829                         goto out;
830
831                 cnf_size = er32(EXTCNF_SIZE);
832                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
833                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
834                 if (!cnf_size)
835                         goto out;
836
837                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
838                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
839
840                 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
841                     (hw->mac.type == e1000_pchlan)) {
842                         /*
843                          * HW configures the SMBus address and LEDs when the
844                          * OEM and LCD Write Enable bits are set in the NVM.
845                          * When both NVM bits are cleared, SW will configure
846                          * them instead.
847                          */
848                         data = er32(STRAP);
849                         data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
850                         reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
851                         reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
852                         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
853                                                                 reg_data);
854                         if (ret_val)
855                                 goto out;
856
857                         data = er32(LEDCTL);
858                         ret_val = e1000_write_phy_reg_hv_locked(hw,
859                                                                 HV_LED_CONFIG,
860                                                                 (u16)data);
861                         if (ret_val)
862                                 goto out;
863                 }
864                 /* Configure LCD from extended configuration region. */
865
866                 /* cnf_base_addr is in DWORD */
867                 word_addr = (u16)(cnf_base_addr << 1);
868
869                 for (i = 0; i < cnf_size; i++) {
870                         ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
871                                                    &reg_data);
872                         if (ret_val)
873                                 goto out;
874
875                         ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
876                                                    1, &reg_addr);
877                         if (ret_val)
878                                 goto out;
879
880                         /* Save off the PHY page for future writes. */
881                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
882                                 phy_page = reg_data;
883                                 continue;
884                         }
885
886                         reg_addr &= PHY_REG_MASK;
887                         reg_addr |= phy_page;
888
889                         ret_val = phy->ops.write_reg_locked(hw,
890                                                             (u32)reg_addr,
891                                                             reg_data);
892                         if (ret_val)
893                                 goto out;
894                 }
895         }
896
897 out:
898         hw->phy.ops.release(hw);
899         return ret_val;
900 }
901
902 /**
903  *  e1000_k1_gig_workaround_hv - K1 Si workaround
904  *  @hw:   pointer to the HW structure
905  *  @link: link up bool flag
906  *
907  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
908  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
909  *  If link is down, the function will restore the default K1 setting located
910  *  in the NVM.
911  **/
912 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
913 {
914         s32 ret_val = 0;
915         u16 status_reg = 0;
916         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
917
918         if (hw->mac.type != e1000_pchlan)
919                 goto out;
920
921         /* Wrap the whole flow with the sw flag */
922         ret_val = hw->phy.ops.acquire(hw);
923         if (ret_val)
924                 goto out;
925
926         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
927         if (link) {
928                 if (hw->phy.type == e1000_phy_82578) {
929                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
930                                                                   &status_reg);
931                         if (ret_val)
932                                 goto release;
933
934                         status_reg &= BM_CS_STATUS_LINK_UP |
935                                       BM_CS_STATUS_RESOLVED |
936                                       BM_CS_STATUS_SPEED_MASK;
937
938                         if (status_reg == (BM_CS_STATUS_LINK_UP |
939                                            BM_CS_STATUS_RESOLVED |
940                                            BM_CS_STATUS_SPEED_1000))
941                                 k1_enable = false;
942                 }
943
944                 if (hw->phy.type == e1000_phy_82577) {
945                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
946                                                                   &status_reg);
947                         if (ret_val)
948                                 goto release;
949
950                         status_reg &= HV_M_STATUS_LINK_UP |
951                                       HV_M_STATUS_AUTONEG_COMPLETE |
952                                       HV_M_STATUS_SPEED_MASK;
953
954                         if (status_reg == (HV_M_STATUS_LINK_UP |
955                                            HV_M_STATUS_AUTONEG_COMPLETE |
956                                            HV_M_STATUS_SPEED_1000))
957                                 k1_enable = false;
958                 }
959
960                 /* Link stall fix for link up */
961                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
962                                                            0x0100);
963                 if (ret_val)
964                         goto release;
965
966         } else {
967                 /* Link stall fix for link down */
968                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
969                                                            0x4100);
970                 if (ret_val)
971                         goto release;
972         }
973
974         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
975
976 release:
977         hw->phy.ops.release(hw);
978 out:
979         return ret_val;
980 }
981
982 /**
983  *  e1000_configure_k1_ich8lan - Configure K1 power state
984  *  @hw: pointer to the HW structure
985  *  @enable: K1 state to configure
986  *
987  *  Configure the K1 power state based on the provided parameter.
988  *  Assumes semaphore already acquired.
989  *
990  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
991  **/
992 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
993 {
994         s32 ret_val = 0;
995         u32 ctrl_reg = 0;
996         u32 ctrl_ext = 0;
997         u32 reg = 0;
998         u16 kmrn_reg = 0;
999
1000         ret_val = e1000e_read_kmrn_reg_locked(hw,
1001                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1002                                              &kmrn_reg);
1003         if (ret_val)
1004                 goto out;
1005
1006         if (k1_enable)
1007                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1008         else
1009                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1010
1011         ret_val = e1000e_write_kmrn_reg_locked(hw,
1012                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1013                                               kmrn_reg);
1014         if (ret_val)
1015                 goto out;
1016
1017         udelay(20);
1018         ctrl_ext = er32(CTRL_EXT);
1019         ctrl_reg = er32(CTRL);
1020
1021         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1022         reg |= E1000_CTRL_FRCSPD;
1023         ew32(CTRL, reg);
1024
1025         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1026         udelay(20);
1027         ew32(CTRL, ctrl_reg);
1028         ew32(CTRL_EXT, ctrl_ext);
1029         udelay(20);
1030
1031 out:
1032         return ret_val;
1033 }
1034
1035 /**
1036  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1037  *  @hw:       pointer to the HW structure
1038  *  @d0_state: boolean if entering d0 or d3 device state
1039  *
1040  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1041  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1042  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1043  **/
1044 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1045 {
1046         s32 ret_val = 0;
1047         u32 mac_reg;
1048         u16 oem_reg;
1049
1050         if (hw->mac.type != e1000_pchlan)
1051                 return ret_val;
1052
1053         ret_val = hw->phy.ops.acquire(hw);
1054         if (ret_val)
1055                 return ret_val;
1056
1057         mac_reg = er32(EXTCNF_CTRL);
1058         if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1059                 goto out;
1060
1061         mac_reg = er32(FEXTNVM);
1062         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1063                 goto out;
1064
1065         mac_reg = er32(PHY_CTRL);
1066
1067         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1068         if (ret_val)
1069                 goto out;
1070
1071         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1072
1073         if (d0_state) {
1074                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1075                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1076
1077                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1078                         oem_reg |= HV_OEM_BITS_LPLU;
1079         } else {
1080                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1081                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1082
1083                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1084                         oem_reg |= HV_OEM_BITS_LPLU;
1085         }
1086         /* Restart auto-neg to activate the bits */
1087         if (!e1000_check_reset_block(hw))
1088                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1089         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1090
1091 out:
1092         hw->phy.ops.release(hw);
1093
1094         return ret_val;
1095 }
1096
1097
1098 /**
1099  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1100  *  @hw:   pointer to the HW structure
1101  **/
1102 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1103 {
1104         s32 ret_val;
1105         u16 data;
1106
1107         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1108         if (ret_val)
1109                 return ret_val;
1110
1111         data |= HV_KMRN_MDIO_SLOW;
1112
1113         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1114
1115         return ret_val;
1116 }
1117
1118 /**
1119  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1120  *  done after every PHY reset.
1121  **/
1122 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1123 {
1124         s32 ret_val = 0;
1125         u16 phy_data;
1126
1127         if (hw->mac.type != e1000_pchlan)
1128                 return ret_val;
1129
1130         /* Set MDIO slow mode before any other MDIO access */
1131         if (hw->phy.type == e1000_phy_82577) {
1132                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1133                 if (ret_val)
1134                         goto out;
1135         }
1136
1137         if (((hw->phy.type == e1000_phy_82577) &&
1138              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1139             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1140                 /* Disable generation of early preamble */
1141                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1142                 if (ret_val)
1143                         return ret_val;
1144
1145                 /* Preamble tuning for SSC */
1146                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1147                 if (ret_val)
1148                         return ret_val;
1149         }
1150
1151         if (hw->phy.type == e1000_phy_82578) {
1152                 /*
1153                  * Return registers to default by doing a soft reset then
1154                  * writing 0x3140 to the control register.
1155                  */
1156                 if (hw->phy.revision < 2) {
1157                         e1000e_phy_sw_reset(hw);
1158                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1159                 }
1160         }
1161
1162         /* Select page 0 */
1163         ret_val = hw->phy.ops.acquire(hw);
1164         if (ret_val)
1165                 return ret_val;
1166
1167         hw->phy.addr = 1;
1168         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1169         hw->phy.ops.release(hw);
1170         if (ret_val)
1171                 goto out;
1172
1173         /*
1174          * Configure the K1 Si workaround during phy reset assuming there is
1175          * link so that it disables K1 if link is in 1Gbps.
1176          */
1177         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1178         if (ret_val)
1179                 goto out;
1180
1181         /* Workaround for link disconnects on a busy hub in half duplex */
1182         ret_val = hw->phy.ops.acquire(hw);
1183         if (ret_val)
1184                 goto out;
1185         ret_val = hw->phy.ops.read_reg_locked(hw,
1186                                               PHY_REG(BM_PORT_CTRL_PAGE, 17),
1187                                               &phy_data);
1188         if (ret_val)
1189                 goto release;
1190         ret_val = hw->phy.ops.write_reg_locked(hw,
1191                                                PHY_REG(BM_PORT_CTRL_PAGE, 17),
1192                                                phy_data & 0x00FF);
1193 release:
1194         hw->phy.ops.release(hw);
1195 out:
1196         return ret_val;
1197 }
1198
1199 /**
1200  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1201  *  @hw: pointer to the HW structure
1202  *
1203  *  Check the appropriate indication the MAC has finished configuring the
1204  *  PHY after a software reset.
1205  **/
1206 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1207 {
1208         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1209
1210         /* Wait for basic configuration completes before proceeding */
1211         do {
1212                 data = er32(STATUS);
1213                 data &= E1000_STATUS_LAN_INIT_DONE;
1214                 udelay(100);
1215         } while ((!data) && --loop);
1216
1217         /*
1218          * If basic configuration is incomplete before the above loop
1219          * count reaches 0, loading the configuration from NVM will
1220          * leave the PHY in a bad state possibly resulting in no link.
1221          */
1222         if (loop == 0)
1223                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1224
1225         /* Clear the Init Done bit for the next init event */
1226         data = er32(STATUS);
1227         data &= ~E1000_STATUS_LAN_INIT_DONE;
1228         ew32(STATUS, data);
1229 }
1230
1231 /**
1232  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1233  *  @hw: pointer to the HW structure
1234  *
1235  *  Resets the PHY
1236  *  This is a function pointer entry point called by drivers
1237  *  or other shared routines.
1238  **/
1239 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1240 {
1241         s32 ret_val = 0;
1242         u16 reg;
1243
1244         ret_val = e1000e_phy_hw_reset_generic(hw);
1245         if (ret_val)
1246                 return ret_val;
1247
1248         /* Allow time for h/w to get to a quiescent state after reset */
1249         mdelay(10);
1250
1251         /* Perform any necessary post-reset workarounds */
1252         if (hw->mac.type == e1000_pchlan) {
1253                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1254                 if (ret_val)
1255                         return ret_val;
1256         }
1257
1258         /* Dummy read to clear the phy wakeup bit after lcd reset */
1259         if (hw->mac.type == e1000_pchlan)
1260                 e1e_rphy(hw, BM_WUC, &reg);
1261
1262         /* Configure the LCD with the extended configuration region in NVM */
1263         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1264         if (ret_val)
1265                 goto out;
1266
1267         /* Configure the LCD with the OEM bits in NVM */
1268         if (hw->mac.type == e1000_pchlan)
1269                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1270
1271 out:
1272         return 0;
1273 }
1274
1275 /**
1276  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1277  *  @hw: pointer to the HW structure
1278  *  @active: true to enable LPLU, false to disable
1279  *
1280  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1281  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1282  *  the phy speed. This function will manually set the LPLU bit and restart
1283  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1284  *  since it configures the same bit.
1285  **/
1286 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1287 {
1288         s32 ret_val = 0;
1289         u16 oem_reg;
1290
1291         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1292         if (ret_val)
1293                 goto out;
1294
1295         if (active)
1296                 oem_reg |= HV_OEM_BITS_LPLU;
1297         else
1298                 oem_reg &= ~HV_OEM_BITS_LPLU;
1299
1300         oem_reg |= HV_OEM_BITS_RESTART_AN;
1301         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1302
1303 out:
1304         return ret_val;
1305 }
1306
1307 /**
1308  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1309  *  @hw: pointer to the HW structure
1310  *  @active: true to enable LPLU, false to disable
1311  *
1312  *  Sets the LPLU D0 state according to the active flag.  When
1313  *  activating LPLU this function also disables smart speed
1314  *  and vice versa.  LPLU will not be activated unless the
1315  *  device autonegotiation advertisement meets standards of
1316  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1317  *  This is a function pointer entry point only called by
1318  *  PHY setup routines.
1319  **/
1320 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1321 {
1322         struct e1000_phy_info *phy = &hw->phy;
1323         u32 phy_ctrl;
1324         s32 ret_val = 0;
1325         u16 data;
1326
1327         if (phy->type == e1000_phy_ife)
1328                 return ret_val;
1329
1330         phy_ctrl = er32(PHY_CTRL);
1331
1332         if (active) {
1333                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1334                 ew32(PHY_CTRL, phy_ctrl);
1335
1336                 if (phy->type != e1000_phy_igp_3)
1337                         return 0;
1338
1339                 /*
1340                  * Call gig speed drop workaround on LPLU before accessing
1341                  * any PHY registers
1342                  */
1343                 if (hw->mac.type == e1000_ich8lan)
1344                         e1000e_gig_downshift_workaround_ich8lan(hw);
1345
1346                 /* When LPLU is enabled, we should disable SmartSpeed */
1347                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1348                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1349                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1350                 if (ret_val)
1351                         return ret_val;
1352         } else {
1353                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1354                 ew32(PHY_CTRL, phy_ctrl);
1355
1356                 if (phy->type != e1000_phy_igp_3)
1357                         return 0;
1358
1359                 /*
1360                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1361                  * during Dx states where the power conservation is most
1362                  * important.  During driver activity we should enable
1363                  * SmartSpeed, so performance is maintained.
1364                  */
1365                 if (phy->smart_speed == e1000_smart_speed_on) {
1366                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1367                                            &data);
1368                         if (ret_val)
1369                                 return ret_val;
1370
1371                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1372                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1373                                            data);
1374                         if (ret_val)
1375                                 return ret_val;
1376                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1377                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1378                                            &data);
1379                         if (ret_val)
1380                                 return ret_val;
1381
1382                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1383                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1384                                            data);
1385                         if (ret_val)
1386                                 return ret_val;
1387                 }
1388         }
1389
1390         return 0;
1391 }
1392
1393 /**
1394  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1395  *  @hw: pointer to the HW structure
1396  *  @active: true to enable LPLU, false to disable
1397  *
1398  *  Sets the LPLU D3 state according to the active flag.  When
1399  *  activating LPLU this function also disables smart speed
1400  *  and vice versa.  LPLU will not be activated unless the
1401  *  device autonegotiation advertisement meets standards of
1402  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1403  *  This is a function pointer entry point only called by
1404  *  PHY setup routines.
1405  **/
1406 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1407 {
1408         struct e1000_phy_info *phy = &hw->phy;
1409         u32 phy_ctrl;
1410         s32 ret_val;
1411         u16 data;
1412
1413         phy_ctrl = er32(PHY_CTRL);
1414
1415         if (!active) {
1416                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1417                 ew32(PHY_CTRL, phy_ctrl);
1418
1419                 if (phy->type != e1000_phy_igp_3)
1420                         return 0;
1421
1422                 /*
1423                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1424                  * during Dx states where the power conservation is most
1425                  * important.  During driver activity we should enable
1426                  * SmartSpeed, so performance is maintained.
1427                  */
1428                 if (phy->smart_speed == e1000_smart_speed_on) {
1429                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1430                                            &data);
1431                         if (ret_val)
1432                                 return ret_val;
1433
1434                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1435                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1436                                            data);
1437                         if (ret_val)
1438                                 return ret_val;
1439                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1440                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1441                                            &data);
1442                         if (ret_val)
1443                                 return ret_val;
1444
1445                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1446                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1447                                            data);
1448                         if (ret_val)
1449                                 return ret_val;
1450                 }
1451         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1452                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1453                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1454                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1455                 ew32(PHY_CTRL, phy_ctrl);
1456
1457                 if (phy->type != e1000_phy_igp_3)
1458                         return 0;
1459
1460                 /*
1461                  * Call gig speed drop workaround on LPLU before accessing
1462                  * any PHY registers
1463                  */
1464                 if (hw->mac.type == e1000_ich8lan)
1465                         e1000e_gig_downshift_workaround_ich8lan(hw);
1466
1467                 /* When LPLU is enabled, we should disable SmartSpeed */
1468                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1469                 if (ret_val)
1470                         return ret_val;
1471
1472                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1473                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1474         }
1475
1476         return 0;
1477 }
1478
1479 /**
1480  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1481  *  @hw: pointer to the HW structure
1482  *  @bank:  pointer to the variable that returns the active bank
1483  *
1484  *  Reads signature byte from the NVM using the flash access registers.
1485  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1486  **/
1487 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1488 {
1489         u32 eecd;
1490         struct e1000_nvm_info *nvm = &hw->nvm;
1491         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1492         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1493         u8 sig_byte = 0;
1494         s32 ret_val = 0;
1495
1496         switch (hw->mac.type) {
1497         case e1000_ich8lan:
1498         case e1000_ich9lan:
1499                 eecd = er32(EECD);
1500                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1501                     E1000_EECD_SEC1VAL_VALID_MASK) {
1502                         if (eecd & E1000_EECD_SEC1VAL)
1503                                 *bank = 1;
1504                         else
1505                                 *bank = 0;
1506
1507                         return 0;
1508                 }
1509                 e_dbg("Unable to determine valid NVM bank via EEC - "
1510                        "reading flash signature\n");
1511                 /* fall-thru */
1512         default:
1513                 /* set bank to 0 in case flash read fails */
1514                 *bank = 0;
1515
1516                 /* Check bank 0 */
1517                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1518                                                         &sig_byte);
1519                 if (ret_val)
1520                         return ret_val;
1521                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1522                     E1000_ICH_NVM_SIG_VALUE) {
1523                         *bank = 0;
1524                         return 0;
1525                 }
1526
1527                 /* Check bank 1 */
1528                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1529                                                         bank1_offset,
1530                                                         &sig_byte);
1531                 if (ret_val)
1532                         return ret_val;
1533                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1534                     E1000_ICH_NVM_SIG_VALUE) {
1535                         *bank = 1;
1536                         return 0;
1537                 }
1538
1539                 e_dbg("ERROR: No valid NVM bank present\n");
1540                 return -E1000_ERR_NVM;
1541         }
1542
1543         return 0;
1544 }
1545
1546 /**
1547  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1548  *  @hw: pointer to the HW structure
1549  *  @offset: The offset (in bytes) of the word(s) to read.
1550  *  @words: Size of data to read in words
1551  *  @data: Pointer to the word(s) to read at offset.
1552  *
1553  *  Reads a word(s) from the NVM using the flash access registers.
1554  **/
1555 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1556                                   u16 *data)
1557 {
1558         struct e1000_nvm_info *nvm = &hw->nvm;
1559         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1560         u32 act_offset;
1561         s32 ret_val = 0;
1562         u32 bank = 0;
1563         u16 i, word;
1564
1565         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1566             (words == 0)) {
1567                 e_dbg("nvm parameter(s) out of bounds\n");
1568                 ret_val = -E1000_ERR_NVM;
1569                 goto out;
1570         }
1571
1572         nvm->ops.acquire(hw);
1573
1574         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1575         if (ret_val) {
1576                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1577                 bank = 0;
1578         }
1579
1580         act_offset = (bank) ? nvm->flash_bank_size : 0;
1581         act_offset += offset;
1582
1583         ret_val = 0;
1584         for (i = 0; i < words; i++) {
1585                 if ((dev_spec->shadow_ram) &&
1586                     (dev_spec->shadow_ram[offset+i].modified)) {
1587                         data[i] = dev_spec->shadow_ram[offset+i].value;
1588                 } else {
1589                         ret_val = e1000_read_flash_word_ich8lan(hw,
1590                                                                 act_offset + i,
1591                                                                 &word);
1592                         if (ret_val)
1593                                 break;
1594                         data[i] = word;
1595                 }
1596         }
1597
1598         nvm->ops.release(hw);
1599
1600 out:
1601         if (ret_val)
1602                 e_dbg("NVM read error: %d\n", ret_val);
1603
1604         return ret_val;
1605 }
1606
1607 /**
1608  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1609  *  @hw: pointer to the HW structure
1610  *
1611  *  This function does initial flash setup so that a new read/write/erase cycle
1612  *  can be started.
1613  **/
1614 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1615 {
1616         union ich8_hws_flash_status hsfsts;
1617         s32 ret_val = -E1000_ERR_NVM;
1618         s32 i = 0;
1619
1620         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1621
1622         /* Check if the flash descriptor is valid */
1623         if (hsfsts.hsf_status.fldesvalid == 0) {
1624                 e_dbg("Flash descriptor invalid.  "
1625                          "SW Sequencing must be used.");
1626                 return -E1000_ERR_NVM;
1627         }
1628
1629         /* Clear FCERR and DAEL in hw status by writing 1 */
1630         hsfsts.hsf_status.flcerr = 1;
1631         hsfsts.hsf_status.dael = 1;
1632
1633         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1634
1635         /*
1636          * Either we should have a hardware SPI cycle in progress
1637          * bit to check against, in order to start a new cycle or
1638          * FDONE bit should be changed in the hardware so that it
1639          * is 1 after hardware reset, which can then be used as an
1640          * indication whether a cycle is in progress or has been
1641          * completed.
1642          */
1643
1644         if (hsfsts.hsf_status.flcinprog == 0) {
1645                 /*
1646                  * There is no cycle running at present,
1647                  * so we can start a cycle.
1648                  * Begin by setting Flash Cycle Done.
1649                  */
1650                 hsfsts.hsf_status.flcdone = 1;
1651                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1652                 ret_val = 0;
1653         } else {
1654                 /*
1655                  * Otherwise poll for sometime so the current
1656                  * cycle has a chance to end before giving up.
1657                  */
1658                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1659                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1660                         if (hsfsts.hsf_status.flcinprog == 0) {
1661                                 ret_val = 0;
1662                                 break;
1663                         }
1664                         udelay(1);
1665                 }
1666                 if (ret_val == 0) {
1667                         /*
1668                          * Successful in waiting for previous cycle to timeout,
1669                          * now set the Flash Cycle Done.
1670                          */
1671                         hsfsts.hsf_status.flcdone = 1;
1672                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1673                 } else {
1674                         e_dbg("Flash controller busy, cannot get access");
1675                 }
1676         }
1677
1678         return ret_val;
1679 }
1680
1681 /**
1682  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1683  *  @hw: pointer to the HW structure
1684  *  @timeout: maximum time to wait for completion
1685  *
1686  *  This function starts a flash cycle and waits for its completion.
1687  **/
1688 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1689 {
1690         union ich8_hws_flash_ctrl hsflctl;
1691         union ich8_hws_flash_status hsfsts;
1692         s32 ret_val = -E1000_ERR_NVM;
1693         u32 i = 0;
1694
1695         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1696         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1697         hsflctl.hsf_ctrl.flcgo = 1;
1698         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1699
1700         /* wait till FDONE bit is set to 1 */
1701         do {
1702                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1703                 if (hsfsts.hsf_status.flcdone == 1)
1704                         break;
1705                 udelay(1);
1706         } while (i++ < timeout);
1707
1708         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1709                 return 0;
1710
1711         return ret_val;
1712 }
1713
1714 /**
1715  *  e1000_read_flash_word_ich8lan - Read word from flash
1716  *  @hw: pointer to the HW structure
1717  *  @offset: offset to data location
1718  *  @data: pointer to the location for storing the data
1719  *
1720  *  Reads the flash word at offset into data.  Offset is converted
1721  *  to bytes before read.
1722  **/
1723 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1724                                          u16 *data)
1725 {
1726         /* Must convert offset into bytes. */
1727         offset <<= 1;
1728
1729         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1730 }
1731
1732 /**
1733  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1734  *  @hw: pointer to the HW structure
1735  *  @offset: The offset of the byte to read.
1736  *  @data: Pointer to a byte to store the value read.
1737  *
1738  *  Reads a single byte from the NVM using the flash access registers.
1739  **/
1740 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1741                                          u8 *data)
1742 {
1743         s32 ret_val;
1744         u16 word = 0;
1745
1746         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1747         if (ret_val)
1748                 return ret_val;
1749
1750         *data = (u8)word;
1751
1752         return 0;
1753 }
1754
1755 /**
1756  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1757  *  @hw: pointer to the HW structure
1758  *  @offset: The offset (in bytes) of the byte or word to read.
1759  *  @size: Size of data to read, 1=byte 2=word
1760  *  @data: Pointer to the word to store the value read.
1761  *
1762  *  Reads a byte or word from the NVM using the flash access registers.
1763  **/
1764 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1765                                          u8 size, u16 *data)
1766 {
1767         union ich8_hws_flash_status hsfsts;
1768         union ich8_hws_flash_ctrl hsflctl;
1769         u32 flash_linear_addr;
1770         u32 flash_data = 0;
1771         s32 ret_val = -E1000_ERR_NVM;
1772         u8 count = 0;
1773
1774         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1775                 return -E1000_ERR_NVM;
1776
1777         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1778                             hw->nvm.flash_base_addr;
1779
1780         do {
1781                 udelay(1);
1782                 /* Steps */
1783                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1784                 if (ret_val != 0)
1785                         break;
1786
1787                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1788                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1789                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1790                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1791                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1792
1793                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1794
1795                 ret_val = e1000_flash_cycle_ich8lan(hw,
1796                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1797
1798                 /*
1799                  * Check if FCERR is set to 1, if set to 1, clear it
1800                  * and try the whole sequence a few more times, else
1801                  * read in (shift in) the Flash Data0, the order is
1802                  * least significant byte first msb to lsb
1803                  */
1804                 if (ret_val == 0) {
1805                         flash_data = er32flash(ICH_FLASH_FDATA0);
1806                         if (size == 1) {
1807                                 *data = (u8)(flash_data & 0x000000FF);
1808                         } else if (size == 2) {
1809                                 *data = (u16)(flash_data & 0x0000FFFF);
1810                         }
1811                         break;
1812                 } else {
1813                         /*
1814                          * If we've gotten here, then things are probably
1815                          * completely hosed, but if the error condition is
1816                          * detected, it won't hurt to give it another try...
1817                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1818                          */
1819                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1820                         if (hsfsts.hsf_status.flcerr == 1) {
1821                                 /* Repeat for some time before giving up. */
1822                                 continue;
1823                         } else if (hsfsts.hsf_status.flcdone == 0) {
1824                                 e_dbg("Timeout error - flash cycle "
1825                                          "did not complete.");
1826                                 break;
1827                         }
1828                 }
1829         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1830
1831         return ret_val;
1832 }
1833
1834 /**
1835  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1836  *  @hw: pointer to the HW structure
1837  *  @offset: The offset (in bytes) of the word(s) to write.
1838  *  @words: Size of data to write in words
1839  *  @data: Pointer to the word(s) to write at offset.
1840  *
1841  *  Writes a byte or word to the NVM using the flash access registers.
1842  **/
1843 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1844                                    u16 *data)
1845 {
1846         struct e1000_nvm_info *nvm = &hw->nvm;
1847         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1848         u16 i;
1849
1850         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1851             (words == 0)) {
1852                 e_dbg("nvm parameter(s) out of bounds\n");
1853                 return -E1000_ERR_NVM;
1854         }
1855
1856         nvm->ops.acquire(hw);
1857
1858         for (i = 0; i < words; i++) {
1859                 dev_spec->shadow_ram[offset+i].modified = true;
1860                 dev_spec->shadow_ram[offset+i].value = data[i];
1861         }
1862
1863         nvm->ops.release(hw);
1864
1865         return 0;
1866 }
1867
1868 /**
1869  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1870  *  @hw: pointer to the HW structure
1871  *
1872  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1873  *  which writes the checksum to the shadow ram.  The changes in the shadow
1874  *  ram are then committed to the EEPROM by processing each bank at a time
1875  *  checking for the modified bit and writing only the pending changes.
1876  *  After a successful commit, the shadow ram is cleared and is ready for
1877  *  future writes.
1878  **/
1879 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1880 {
1881         struct e1000_nvm_info *nvm = &hw->nvm;
1882         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1883         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1884         s32 ret_val;
1885         u16 data;
1886
1887         ret_val = e1000e_update_nvm_checksum_generic(hw);
1888         if (ret_val)
1889                 goto out;
1890
1891         if (nvm->type != e1000_nvm_flash_sw)
1892                 goto out;
1893
1894         nvm->ops.acquire(hw);
1895
1896         /*
1897          * We're writing to the opposite bank so if we're on bank 1,
1898          * write to bank 0 etc.  We also need to erase the segment that
1899          * is going to be written
1900          */
1901         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1902         if (ret_val) {
1903                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1904                 bank = 0;
1905         }
1906
1907         if (bank == 0) {
1908                 new_bank_offset = nvm->flash_bank_size;
1909                 old_bank_offset = 0;
1910                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1911                 if (ret_val) {
1912                         nvm->ops.release(hw);
1913                         goto out;
1914                 }
1915         } else {
1916                 old_bank_offset = nvm->flash_bank_size;
1917                 new_bank_offset = 0;
1918                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1919                 if (ret_val) {
1920                         nvm->ops.release(hw);
1921                         goto out;
1922                 }
1923         }
1924
1925         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1926                 /*
1927                  * Determine whether to write the value stored
1928                  * in the other NVM bank or a modified value stored
1929                  * in the shadow RAM
1930                  */
1931                 if (dev_spec->shadow_ram[i].modified) {
1932                         data = dev_spec->shadow_ram[i].value;
1933                 } else {
1934                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
1935                                                                 old_bank_offset,
1936                                                                 &data);
1937                         if (ret_val)
1938                                 break;
1939                 }
1940
1941                 /*
1942                  * If the word is 0x13, then make sure the signature bits
1943                  * (15:14) are 11b until the commit has completed.
1944                  * This will allow us to write 10b which indicates the
1945                  * signature is valid.  We want to do this after the write
1946                  * has completed so that we don't mark the segment valid
1947                  * while the write is still in progress
1948                  */
1949                 if (i == E1000_ICH_NVM_SIG_WORD)
1950                         data |= E1000_ICH_NVM_SIG_MASK;
1951
1952                 /* Convert offset to bytes. */
1953                 act_offset = (i + new_bank_offset) << 1;
1954
1955                 udelay(100);
1956                 /* Write the bytes to the new bank. */
1957                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1958                                                                act_offset,
1959                                                                (u8)data);
1960                 if (ret_val)
1961                         break;
1962
1963                 udelay(100);
1964                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1965                                                           act_offset + 1,
1966                                                           (u8)(data >> 8));
1967                 if (ret_val)
1968                         break;
1969         }
1970
1971         /*
1972          * Don't bother writing the segment valid bits if sector
1973          * programming failed.
1974          */
1975         if (ret_val) {
1976                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1977                 e_dbg("Flash commit failed.\n");
1978                 nvm->ops.release(hw);
1979                 goto out;
1980         }
1981
1982         /*
1983          * Finally validate the new segment by setting bit 15:14
1984          * to 10b in word 0x13 , this can be done without an
1985          * erase as well since these bits are 11 to start with
1986          * and we need to change bit 14 to 0b
1987          */
1988         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1989         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1990         if (ret_val) {
1991                 nvm->ops.release(hw);
1992                 goto out;
1993         }
1994         data &= 0xBFFF;
1995         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1996                                                        act_offset * 2 + 1,
1997                                                        (u8)(data >> 8));
1998         if (ret_val) {
1999                 nvm->ops.release(hw);
2000                 goto out;
2001         }
2002
2003         /*
2004          * And invalidate the previously valid segment by setting
2005          * its signature word (0x13) high_byte to 0b. This can be
2006          * done without an erase because flash erase sets all bits
2007          * to 1's. We can write 1's to 0's without an erase
2008          */
2009         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2010         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2011         if (ret_val) {
2012                 nvm->ops.release(hw);
2013                 goto out;
2014         }
2015
2016         /* Great!  Everything worked, we can now clear the cached entries. */
2017         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2018                 dev_spec->shadow_ram[i].modified = false;
2019                 dev_spec->shadow_ram[i].value = 0xFFFF;
2020         }
2021
2022         nvm->ops.release(hw);
2023
2024         /*
2025          * Reload the EEPROM, or else modifications will not appear
2026          * until after the next adapter reset.
2027          */
2028         e1000e_reload_nvm(hw);
2029         msleep(10);
2030
2031 out:
2032         if (ret_val)
2033                 e_dbg("NVM update error: %d\n", ret_val);
2034
2035         return ret_val;
2036 }
2037
2038 /**
2039  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2040  *  @hw: pointer to the HW structure
2041  *
2042  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2043  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2044  *  calculated, in which case we need to calculate the checksum and set bit 6.
2045  **/
2046 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2047 {
2048         s32 ret_val;
2049         u16 data;
2050
2051         /*
2052          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2053          * needs to be fixed.  This bit is an indication that the NVM
2054          * was prepared by OEM software and did not calculate the
2055          * checksum...a likely scenario.
2056          */
2057         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2058         if (ret_val)
2059                 return ret_val;
2060
2061         if ((data & 0x40) == 0) {
2062                 data |= 0x40;
2063                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2064                 if (ret_val)
2065                         return ret_val;
2066                 ret_val = e1000e_update_nvm_checksum(hw);
2067                 if (ret_val)
2068                         return ret_val;
2069         }
2070
2071         return e1000e_validate_nvm_checksum_generic(hw);
2072 }
2073
2074 /**
2075  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2076  *  @hw: pointer to the HW structure
2077  *
2078  *  To prevent malicious write/erase of the NVM, set it to be read-only
2079  *  so that the hardware ignores all write/erase cycles of the NVM via
2080  *  the flash control registers.  The shadow-ram copy of the NVM will
2081  *  still be updated, however any updates to this copy will not stick
2082  *  across driver reloads.
2083  **/
2084 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2085 {
2086         struct e1000_nvm_info *nvm = &hw->nvm;
2087         union ich8_flash_protected_range pr0;
2088         union ich8_hws_flash_status hsfsts;
2089         u32 gfpreg;
2090
2091         nvm->ops.acquire(hw);
2092
2093         gfpreg = er32flash(ICH_FLASH_GFPREG);
2094
2095         /* Write-protect GbE Sector of NVM */
2096         pr0.regval = er32flash(ICH_FLASH_PR0);
2097         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2098         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2099         pr0.range.wpe = true;
2100         ew32flash(ICH_FLASH_PR0, pr0.regval);
2101
2102         /*
2103          * Lock down a subset of GbE Flash Control Registers, e.g.
2104          * PR0 to prevent the write-protection from being lifted.
2105          * Once FLOCKDN is set, the registers protected by it cannot
2106          * be written until FLOCKDN is cleared by a hardware reset.
2107          */
2108         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2109         hsfsts.hsf_status.flockdn = true;
2110         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2111
2112         nvm->ops.release(hw);
2113 }
2114
2115 /**
2116  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2117  *  @hw: pointer to the HW structure
2118  *  @offset: The offset (in bytes) of the byte/word to read.
2119  *  @size: Size of data to read, 1=byte 2=word
2120  *  @data: The byte(s) to write to the NVM.
2121  *
2122  *  Writes one/two bytes to the NVM using the flash access registers.
2123  **/
2124 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2125                                           u8 size, u16 data)
2126 {
2127         union ich8_hws_flash_status hsfsts;
2128         union ich8_hws_flash_ctrl hsflctl;
2129         u32 flash_linear_addr;
2130         u32 flash_data = 0;
2131         s32 ret_val;
2132         u8 count = 0;
2133
2134         if (size < 1 || size > 2 || data > size * 0xff ||
2135             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2136                 return -E1000_ERR_NVM;
2137
2138         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2139                             hw->nvm.flash_base_addr;
2140
2141         do {
2142                 udelay(1);
2143                 /* Steps */
2144                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2145                 if (ret_val)
2146                         break;
2147
2148                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2149                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2150                 hsflctl.hsf_ctrl.fldbcount = size -1;
2151                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2152                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2153
2154                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2155
2156                 if (size == 1)
2157                         flash_data = (u32)data & 0x00FF;
2158                 else
2159                         flash_data = (u32)data;
2160
2161                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2162
2163                 /*
2164                  * check if FCERR is set to 1 , if set to 1, clear it
2165                  * and try the whole sequence a few more times else done
2166                  */
2167                 ret_val = e1000_flash_cycle_ich8lan(hw,
2168                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2169                 if (!ret_val)
2170                         break;
2171
2172                 /*
2173                  * If we're here, then things are most likely
2174                  * completely hosed, but if the error condition
2175                  * is detected, it won't hurt to give it another
2176                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2177                  */
2178                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2179                 if (hsfsts.hsf_status.flcerr == 1)
2180                         /* Repeat for some time before giving up. */
2181                         continue;
2182                 if (hsfsts.hsf_status.flcdone == 0) {
2183                         e_dbg("Timeout error - flash cycle "
2184                                  "did not complete.");
2185                         break;
2186                 }
2187         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2188
2189         return ret_val;
2190 }
2191
2192 /**
2193  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2194  *  @hw: pointer to the HW structure
2195  *  @offset: The index of the byte to read.
2196  *  @data: The byte to write to the NVM.
2197  *
2198  *  Writes a single byte to the NVM using the flash access registers.
2199  **/
2200 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2201                                           u8 data)
2202 {
2203         u16 word = (u16)data;
2204
2205         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2206 }
2207
2208 /**
2209  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2210  *  @hw: pointer to the HW structure
2211  *  @offset: The offset of the byte to write.
2212  *  @byte: The byte to write to the NVM.
2213  *
2214  *  Writes a single byte to the NVM using the flash access registers.
2215  *  Goes through a retry algorithm before giving up.
2216  **/
2217 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2218                                                 u32 offset, u8 byte)
2219 {
2220         s32 ret_val;
2221         u16 program_retries;
2222
2223         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2224         if (!ret_val)
2225                 return ret_val;
2226
2227         for (program_retries = 0; program_retries < 100; program_retries++) {
2228                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2229                 udelay(100);
2230                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2231                 if (!ret_val)
2232                         break;
2233         }
2234         if (program_retries == 100)
2235                 return -E1000_ERR_NVM;
2236
2237         return 0;
2238 }
2239
2240 /**
2241  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2242  *  @hw: pointer to the HW structure
2243  *  @bank: 0 for first bank, 1 for second bank, etc.
2244  *
2245  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2246  *  bank N is 4096 * N + flash_reg_addr.
2247  **/
2248 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2249 {
2250         struct e1000_nvm_info *nvm = &hw->nvm;
2251         union ich8_hws_flash_status hsfsts;
2252         union ich8_hws_flash_ctrl hsflctl;
2253         u32 flash_linear_addr;
2254         /* bank size is in 16bit words - adjust to bytes */
2255         u32 flash_bank_size = nvm->flash_bank_size * 2;
2256         s32 ret_val;
2257         s32 count = 0;
2258         s32 j, iteration, sector_size;
2259
2260         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2261
2262         /*
2263          * Determine HW Sector size: Read BERASE bits of hw flash status
2264          * register
2265          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2266          *     consecutive sectors.  The start index for the nth Hw sector
2267          *     can be calculated as = bank * 4096 + n * 256
2268          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2269          *     The start index for the nth Hw sector can be calculated
2270          *     as = bank * 4096
2271          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2272          *     (ich9 only, otherwise error condition)
2273          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2274          */
2275         switch (hsfsts.hsf_status.berasesz) {
2276         case 0:
2277                 /* Hw sector size 256 */
2278                 sector_size = ICH_FLASH_SEG_SIZE_256;
2279                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2280                 break;
2281         case 1:
2282                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2283                 iteration = 1;
2284                 break;
2285         case 2:
2286                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2287                 iteration = 1;
2288                 break;
2289         case 3:
2290                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2291                 iteration = 1;
2292                 break;
2293         default:
2294                 return -E1000_ERR_NVM;
2295         }
2296
2297         /* Start with the base address, then add the sector offset. */
2298         flash_linear_addr = hw->nvm.flash_base_addr;
2299         flash_linear_addr += (bank) ? flash_bank_size : 0;
2300
2301         for (j = 0; j < iteration ; j++) {
2302                 do {
2303                         /* Steps */
2304                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2305                         if (ret_val)
2306                                 return ret_val;
2307
2308                         /*
2309                          * Write a value 11 (block Erase) in Flash
2310                          * Cycle field in hw flash control
2311                          */
2312                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2313                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2314                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2315
2316                         /*
2317                          * Write the last 24 bits of an index within the
2318                          * block into Flash Linear address field in Flash
2319                          * Address.
2320                          */
2321                         flash_linear_addr += (j * sector_size);
2322                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2323
2324                         ret_val = e1000_flash_cycle_ich8lan(hw,
2325                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2326                         if (ret_val == 0)
2327                                 break;
2328
2329                         /*
2330                          * Check if FCERR is set to 1.  If 1,
2331                          * clear it and try the whole sequence
2332                          * a few more times else Done
2333                          */
2334                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2335                         if (hsfsts.hsf_status.flcerr == 1)
2336                                 /* repeat for some time before giving up */
2337                                 continue;
2338                         else if (hsfsts.hsf_status.flcdone == 0)
2339                                 return ret_val;
2340                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2341         }
2342
2343         return 0;
2344 }
2345
2346 /**
2347  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2348  *  @hw: pointer to the HW structure
2349  *  @data: Pointer to the LED settings
2350  *
2351  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2352  *  settings is all 0's or F's, set the LED default to a valid LED default
2353  *  setting.
2354  **/
2355 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2356 {
2357         s32 ret_val;
2358
2359         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2360         if (ret_val) {
2361                 e_dbg("NVM Read Error\n");
2362                 return ret_val;
2363         }
2364
2365         if (*data == ID_LED_RESERVED_0000 ||
2366             *data == ID_LED_RESERVED_FFFF)
2367                 *data = ID_LED_DEFAULT_ICH8LAN;
2368
2369         return 0;
2370 }
2371
2372 /**
2373  *  e1000_id_led_init_pchlan - store LED configurations
2374  *  @hw: pointer to the HW structure
2375  *
2376  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2377  *  the PHY LED configuration register.
2378  *
2379  *  PCH also does not have an "always on" or "always off" mode which
2380  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2381  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2382  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2383  *  link based on logic in e1000_led_[on|off]_pchlan().
2384  **/
2385 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2386 {
2387         struct e1000_mac_info *mac = &hw->mac;
2388         s32 ret_val;
2389         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2390         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2391         u16 data, i, temp, shift;
2392
2393         /* Get default ID LED modes */
2394         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2395         if (ret_val)
2396                 goto out;
2397
2398         mac->ledctl_default = er32(LEDCTL);
2399         mac->ledctl_mode1 = mac->ledctl_default;
2400         mac->ledctl_mode2 = mac->ledctl_default;
2401
2402         for (i = 0; i < 4; i++) {
2403                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2404                 shift = (i * 5);
2405                 switch (temp) {
2406                 case ID_LED_ON1_DEF2:
2407                 case ID_LED_ON1_ON2:
2408                 case ID_LED_ON1_OFF2:
2409                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2410                         mac->ledctl_mode1 |= (ledctl_on << shift);
2411                         break;
2412                 case ID_LED_OFF1_DEF2:
2413                 case ID_LED_OFF1_ON2:
2414                 case ID_LED_OFF1_OFF2:
2415                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2416                         mac->ledctl_mode1 |= (ledctl_off << shift);
2417                         break;
2418                 default:
2419                         /* Do nothing */
2420                         break;
2421                 }
2422                 switch (temp) {
2423                 case ID_LED_DEF1_ON2:
2424                 case ID_LED_ON1_ON2:
2425                 case ID_LED_OFF1_ON2:
2426                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2427                         mac->ledctl_mode2 |= (ledctl_on << shift);
2428                         break;
2429                 case ID_LED_DEF1_OFF2:
2430                 case ID_LED_ON1_OFF2:
2431                 case ID_LED_OFF1_OFF2:
2432                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2433                         mac->ledctl_mode2 |= (ledctl_off << shift);
2434                         break;
2435                 default:
2436                         /* Do nothing */
2437                         break;
2438                 }
2439         }
2440
2441 out:
2442         return ret_val;
2443 }
2444
2445 /**
2446  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2447  *  @hw: pointer to the HW structure
2448  *
2449  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2450  *  register, so the the bus width is hard coded.
2451  **/
2452 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2453 {
2454         struct e1000_bus_info *bus = &hw->bus;
2455         s32 ret_val;
2456
2457         ret_val = e1000e_get_bus_info_pcie(hw);
2458
2459         /*
2460          * ICH devices are "PCI Express"-ish.  They have
2461          * a configuration space, but do not contain
2462          * PCI Express Capability registers, so bus width
2463          * must be hardcoded.
2464          */
2465         if (bus->width == e1000_bus_width_unknown)
2466                 bus->width = e1000_bus_width_pcie_x1;
2467
2468         return ret_val;
2469 }
2470
2471 /**
2472  *  e1000_reset_hw_ich8lan - Reset the hardware
2473  *  @hw: pointer to the HW structure
2474  *
2475  *  Does a full reset of the hardware which includes a reset of the PHY and
2476  *  MAC.
2477  **/
2478 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2479 {
2480         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2481         u16 reg;
2482         u32 ctrl, icr, kab;
2483         s32 ret_val;
2484
2485         /*
2486          * Prevent the PCI-E bus from sticking if there is no TLP connection
2487          * on the last TLP read/write transaction when MAC is reset.
2488          */
2489         ret_val = e1000e_disable_pcie_master(hw);
2490         if (ret_val) {
2491                 e_dbg("PCI-E Master disable polling has failed.\n");
2492         }
2493
2494         e_dbg("Masking off all interrupts\n");
2495         ew32(IMC, 0xffffffff);
2496
2497         /*
2498          * Disable the Transmit and Receive units.  Then delay to allow
2499          * any pending transactions to complete before we hit the MAC
2500          * with the global reset.
2501          */
2502         ew32(RCTL, 0);
2503         ew32(TCTL, E1000_TCTL_PSP);
2504         e1e_flush();
2505
2506         msleep(10);
2507
2508         /* Workaround for ICH8 bit corruption issue in FIFO memory */
2509         if (hw->mac.type == e1000_ich8lan) {
2510                 /* Set Tx and Rx buffer allocation to 8k apiece. */
2511                 ew32(PBA, E1000_PBA_8K);
2512                 /* Set Packet Buffer Size to 16k. */
2513                 ew32(PBS, E1000_PBS_16K);
2514         }
2515
2516         if (hw->mac.type == e1000_pchlan) {
2517                 /* Save the NVM K1 bit setting*/
2518                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2519                 if (ret_val)
2520                         return ret_val;
2521
2522                 if (reg & E1000_NVM_K1_ENABLE)
2523                         dev_spec->nvm_k1_enabled = true;
2524                 else
2525                         dev_spec->nvm_k1_enabled = false;
2526         }
2527
2528         ctrl = er32(CTRL);
2529
2530         if (!e1000_check_reset_block(hw)) {
2531                 /* Clear PHY Reset Asserted bit */
2532                 if (hw->mac.type >= e1000_pchlan) {
2533                         u32 status = er32(STATUS);
2534                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2535                 }
2536
2537                 /*
2538                  * PHY HW reset requires MAC CORE reset at the same
2539                  * time to make sure the interface between MAC and the
2540                  * external PHY is reset.
2541                  */
2542                 ctrl |= E1000_CTRL_PHY_RST;
2543         }
2544         ret_val = e1000_acquire_swflag_ich8lan(hw);
2545         e_dbg("Issuing a global reset to ich8lan\n");
2546         ew32(CTRL, (ctrl | E1000_CTRL_RST));
2547         msleep(20);
2548
2549         if (!ret_val)
2550                 e1000_release_swflag_ich8lan(hw);
2551
2552         /* Perform any necessary post-reset workarounds */
2553         if (hw->mac.type == e1000_pchlan)
2554                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2555
2556         if (ctrl & E1000_CTRL_PHY_RST)
2557                 ret_val = hw->phy.ops.get_cfg_done(hw);
2558
2559         if (hw->mac.type >= e1000_ich10lan) {
2560                 e1000_lan_init_done_ich8lan(hw);
2561         } else {
2562                 ret_val = e1000e_get_auto_rd_done(hw);
2563                 if (ret_val) {
2564                         /*
2565                          * When auto config read does not complete, do not
2566                          * return with an error. This can happen in situations
2567                          * where there is no eeprom and prevents getting link.
2568                          */
2569                         e_dbg("Auto Read Done did not complete\n");
2570                 }
2571         }
2572         /* Dummy read to clear the phy wakeup bit after lcd reset */
2573         if (hw->mac.type == e1000_pchlan)
2574                 e1e_rphy(hw, BM_WUC, &reg);
2575
2576         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2577         if (ret_val)
2578                 goto out;
2579
2580         if (hw->mac.type == e1000_pchlan) {
2581                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2582                 if (ret_val)
2583                         goto out;
2584         }
2585         /*
2586          * For PCH, this write will make sure that any noise
2587          * will be detected as a CRC error and be dropped rather than show up
2588          * as a bad packet to the DMA engine.
2589          */
2590         if (hw->mac.type == e1000_pchlan)
2591                 ew32(CRC_OFFSET, 0x65656565);
2592
2593         ew32(IMC, 0xffffffff);
2594         icr = er32(ICR);
2595
2596         kab = er32(KABGTXD);
2597         kab |= E1000_KABGTXD_BGSQLBIAS;
2598         ew32(KABGTXD, kab);
2599
2600 out:
2601         return ret_val;
2602 }
2603
2604 /**
2605  *  e1000_init_hw_ich8lan - Initialize the hardware
2606  *  @hw: pointer to the HW structure
2607  *
2608  *  Prepares the hardware for transmit and receive by doing the following:
2609  *   - initialize hardware bits
2610  *   - initialize LED identification
2611  *   - setup receive address registers
2612  *   - setup flow control
2613  *   - setup transmit descriptors
2614  *   - clear statistics
2615  **/
2616 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2617 {
2618         struct e1000_mac_info *mac = &hw->mac;
2619         u32 ctrl_ext, txdctl, snoop;
2620         s32 ret_val;
2621         u16 i;
2622
2623         e1000_initialize_hw_bits_ich8lan(hw);
2624
2625         /* Initialize identification LED */
2626         ret_val = mac->ops.id_led_init(hw);
2627         if (ret_val)
2628                 e_dbg("Error initializing identification LED\n");
2629                 /* This is not fatal and we should not stop init due to this */
2630
2631         /* Setup the receive address. */
2632         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2633
2634         /* Zero out the Multicast HASH table */
2635         e_dbg("Zeroing the MTA\n");
2636         for (i = 0; i < mac->mta_reg_count; i++)
2637                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2638
2639         /*
2640          * The 82578 Rx buffer will stall if wakeup is enabled in host and
2641          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
2642          * Reset the phy after disabling host wakeup to reset the Rx buffer.
2643          */
2644         if (hw->phy.type == e1000_phy_82578) {
2645                 hw->phy.ops.read_reg(hw, BM_WUC, &i);
2646                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2647                 if (ret_val)
2648                         return ret_val;
2649         }
2650
2651         /* Setup link and flow control */
2652         ret_val = e1000_setup_link_ich8lan(hw);
2653
2654         /* Set the transmit descriptor write-back policy for both queues */
2655         txdctl = er32(TXDCTL(0));
2656         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2657                  E1000_TXDCTL_FULL_TX_DESC_WB;
2658         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2659                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2660         ew32(TXDCTL(0), txdctl);
2661         txdctl = er32(TXDCTL(1));
2662         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2663                  E1000_TXDCTL_FULL_TX_DESC_WB;
2664         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2665                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2666         ew32(TXDCTL(1), txdctl);
2667
2668         /*
2669          * ICH8 has opposite polarity of no_snoop bits.
2670          * By default, we should use snoop behavior.
2671          */
2672         if (mac->type == e1000_ich8lan)
2673                 snoop = PCIE_ICH8_SNOOP_ALL;
2674         else
2675                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2676         e1000e_set_pcie_no_snoop(hw, snoop);
2677
2678         ctrl_ext = er32(CTRL_EXT);
2679         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2680         ew32(CTRL_EXT, ctrl_ext);
2681
2682         /*
2683          * Clear all of the statistics registers (clear on read).  It is
2684          * important that we do this after we have tried to establish link
2685          * because the symbol error count will increment wildly if there
2686          * is no link.
2687          */
2688         e1000_clear_hw_cntrs_ich8lan(hw);
2689
2690         return 0;
2691 }
2692 /**
2693  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2694  *  @hw: pointer to the HW structure
2695  *
2696  *  Sets/Clears required hardware bits necessary for correctly setting up the
2697  *  hardware for transmit and receive.
2698  **/
2699 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2700 {
2701         u32 reg;
2702
2703         /* Extended Device Control */
2704         reg = er32(CTRL_EXT);
2705         reg |= (1 << 22);
2706         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2707         if (hw->mac.type >= e1000_pchlan)
2708                 reg |= E1000_CTRL_EXT_PHYPDEN;
2709         ew32(CTRL_EXT, reg);
2710
2711         /* Transmit Descriptor Control 0 */
2712         reg = er32(TXDCTL(0));
2713         reg |= (1 << 22);
2714         ew32(TXDCTL(0), reg);
2715
2716         /* Transmit Descriptor Control 1 */
2717         reg = er32(TXDCTL(1));
2718         reg |= (1 << 22);
2719         ew32(TXDCTL(1), reg);
2720
2721         /* Transmit Arbitration Control 0 */
2722         reg = er32(TARC(0));
2723         if (hw->mac.type == e1000_ich8lan)
2724                 reg |= (1 << 28) | (1 << 29);
2725         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2726         ew32(TARC(0), reg);
2727
2728         /* Transmit Arbitration Control 1 */
2729         reg = er32(TARC(1));
2730         if (er32(TCTL) & E1000_TCTL_MULR)
2731                 reg &= ~(1 << 28);
2732         else
2733                 reg |= (1 << 28);
2734         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2735         ew32(TARC(1), reg);
2736
2737         /* Device Status */
2738         if (hw->mac.type == e1000_ich8lan) {
2739                 reg = er32(STATUS);
2740                 reg &= ~(1 << 31);
2741                 ew32(STATUS, reg);
2742         }
2743 }
2744
2745 /**
2746  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2747  *  @hw: pointer to the HW structure
2748  *
2749  *  Determines which flow control settings to use, then configures flow
2750  *  control.  Calls the appropriate media-specific link configuration
2751  *  function.  Assuming the adapter has a valid link partner, a valid link
2752  *  should be established.  Assumes the hardware has previously been reset
2753  *  and the transmitter and receiver are not enabled.
2754  **/
2755 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2756 {
2757         s32 ret_val;
2758
2759         if (e1000_check_reset_block(hw))
2760                 return 0;
2761
2762         /*
2763          * ICH parts do not have a word in the NVM to determine
2764          * the default flow control setting, so we explicitly
2765          * set it to full.
2766          */
2767         if (hw->fc.requested_mode == e1000_fc_default) {
2768                 /* Workaround h/w hang when Tx flow control enabled */
2769                 if (hw->mac.type == e1000_pchlan)
2770                         hw->fc.requested_mode = e1000_fc_rx_pause;
2771                 else
2772                         hw->fc.requested_mode = e1000_fc_full;
2773         }
2774
2775         /*
2776          * Save off the requested flow control mode for use later.  Depending
2777          * on the link partner's capabilities, we may or may not use this mode.
2778          */
2779         hw->fc.current_mode = hw->fc.requested_mode;
2780
2781         e_dbg("After fix-ups FlowControl is now = %x\n",
2782                 hw->fc.current_mode);
2783
2784         /* Continue to configure the copper link. */
2785         ret_val = e1000_setup_copper_link_ich8lan(hw);
2786         if (ret_val)
2787                 return ret_val;
2788
2789         ew32(FCTTV, hw->fc.pause_time);
2790         if ((hw->phy.type == e1000_phy_82578) ||
2791             (hw->phy.type == e1000_phy_82577)) {
2792                 ret_val = hw->phy.ops.write_reg(hw,
2793                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
2794                                              hw->fc.pause_time);
2795                 if (ret_val)
2796                         return ret_val;
2797         }
2798
2799         return e1000e_set_fc_watermarks(hw);
2800 }
2801
2802 /**
2803  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2804  *  @hw: pointer to the HW structure
2805  *
2806  *  Configures the kumeran interface to the PHY to wait the appropriate time
2807  *  when polling the PHY, then call the generic setup_copper_link to finish
2808  *  configuring the copper link.
2809  **/
2810 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2811 {
2812         u32 ctrl;
2813         s32 ret_val;
2814         u16 reg_data;
2815
2816         ctrl = er32(CTRL);
2817         ctrl |= E1000_CTRL_SLU;
2818         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2819         ew32(CTRL, ctrl);
2820
2821         /*
2822          * Set the mac to wait the maximum time between each iteration
2823          * and increase the max iterations when polling the phy;
2824          * this fixes erroneous timeouts at 10Mbps.
2825          */
2826         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
2827         if (ret_val)
2828                 return ret_val;
2829         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2830                                        &reg_data);
2831         if (ret_val)
2832                 return ret_val;
2833         reg_data |= 0x3F;
2834         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2835                                         reg_data);
2836         if (ret_val)
2837                 return ret_val;
2838
2839         switch (hw->phy.type) {
2840         case e1000_phy_igp_3:
2841                 ret_val = e1000e_copper_link_setup_igp(hw);
2842                 if (ret_val)
2843                         return ret_val;
2844                 break;
2845         case e1000_phy_bm:
2846         case e1000_phy_82578:
2847                 ret_val = e1000e_copper_link_setup_m88(hw);
2848                 if (ret_val)
2849                         return ret_val;
2850                 break;
2851         case e1000_phy_82577:
2852                 ret_val = e1000_copper_link_setup_82577(hw);
2853                 if (ret_val)
2854                         return ret_val;
2855                 break;
2856         case e1000_phy_ife:
2857                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
2858                                                &reg_data);
2859                 if (ret_val)
2860                         return ret_val;
2861
2862                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2863
2864                 switch (hw->phy.mdix) {
2865                 case 1:
2866                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2867                         break;
2868                 case 2:
2869                         reg_data |= IFE_PMC_FORCE_MDIX;
2870                         break;
2871                 case 0:
2872                 default:
2873                         reg_data |= IFE_PMC_AUTO_MDIX;
2874                         break;
2875                 }
2876                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
2877                                                 reg_data);
2878                 if (ret_val)
2879                         return ret_val;
2880                 break;
2881         default:
2882                 break;
2883         }
2884         return e1000e_setup_copper_link(hw);
2885 }
2886
2887 /**
2888  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2889  *  @hw: pointer to the HW structure
2890  *  @speed: pointer to store current link speed
2891  *  @duplex: pointer to store the current link duplex
2892  *
2893  *  Calls the generic get_speed_and_duplex to retrieve the current link
2894  *  information and then calls the Kumeran lock loss workaround for links at
2895  *  gigabit speeds.
2896  **/
2897 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2898                                           u16 *duplex)
2899 {
2900         s32 ret_val;
2901
2902         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2903         if (ret_val)
2904                 return ret_val;
2905
2906         if ((hw->mac.type == e1000_ich8lan) &&
2907             (hw->phy.type == e1000_phy_igp_3) &&
2908             (*speed == SPEED_1000)) {
2909                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2910         }
2911
2912         return ret_val;
2913 }
2914
2915 /**
2916  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2917  *  @hw: pointer to the HW structure
2918  *
2919  *  Work-around for 82566 Kumeran PCS lock loss:
2920  *  On link status change (i.e. PCI reset, speed change) and link is up and
2921  *  speed is gigabit-
2922  *    0) if workaround is optionally disabled do nothing
2923  *    1) wait 1ms for Kumeran link to come up
2924  *    2) check Kumeran Diagnostic register PCS lock loss bit
2925  *    3) if not set the link is locked (all is good), otherwise...
2926  *    4) reset the PHY
2927  *    5) repeat up to 10 times
2928  *  Note: this is only called for IGP3 copper when speed is 1gb.
2929  **/
2930 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2931 {
2932         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2933         u32 phy_ctrl;
2934         s32 ret_val;
2935         u16 i, data;
2936         bool link;
2937
2938         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2939                 return 0;
2940
2941         /*
2942          * Make sure link is up before proceeding.  If not just return.
2943          * Attempting this while link is negotiating fouled up link
2944          * stability
2945          */
2946         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2947         if (!link)
2948                 return 0;
2949
2950         for (i = 0; i < 10; i++) {
2951                 /* read once to clear */
2952                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2953                 if (ret_val)
2954                         return ret_val;
2955                 /* and again to get new status */
2956                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2957                 if (ret_val)
2958                         return ret_val;
2959
2960                 /* check for PCS lock */
2961                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2962                         return 0;
2963
2964                 /* Issue PHY reset */
2965                 e1000_phy_hw_reset(hw);
2966                 mdelay(5);
2967         }
2968         /* Disable GigE link negotiation */
2969         phy_ctrl = er32(PHY_CTRL);
2970         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2971                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2972         ew32(PHY_CTRL, phy_ctrl);
2973
2974         /*
2975          * Call gig speed drop workaround on Gig disable before accessing
2976          * any PHY registers
2977          */
2978         e1000e_gig_downshift_workaround_ich8lan(hw);
2979
2980         /* unable to acquire PCS lock */
2981         return -E1000_ERR_PHY;
2982 }
2983
2984 /**
2985  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2986  *  @hw: pointer to the HW structure
2987  *  @state: boolean value used to set the current Kumeran workaround state
2988  *
2989  *  If ICH8, set the current Kumeran workaround state (enabled - true
2990  *  /disabled - false).
2991  **/
2992 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2993                                                  bool state)
2994 {
2995         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2996
2997         if (hw->mac.type != e1000_ich8lan) {
2998                 e_dbg("Workaround applies to ICH8 only.\n");
2999                 return;
3000         }
3001
3002         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3003 }
3004
3005 /**
3006  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3007  *  @hw: pointer to the HW structure
3008  *
3009  *  Workaround for 82566 power-down on D3 entry:
3010  *    1) disable gigabit link
3011  *    2) write VR power-down enable
3012  *    3) read it back
3013  *  Continue if successful, else issue LCD reset and repeat
3014  **/
3015 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3016 {
3017         u32 reg;
3018         u16 data;
3019         u8  retry = 0;
3020
3021         if (hw->phy.type != e1000_phy_igp_3)
3022                 return;
3023
3024         /* Try the workaround twice (if needed) */
3025         do {
3026                 /* Disable link */
3027                 reg = er32(PHY_CTRL);
3028                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3029                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3030                 ew32(PHY_CTRL, reg);
3031
3032                 /*
3033                  * Call gig speed drop workaround on Gig disable before
3034                  * accessing any PHY registers
3035                  */
3036                 if (hw->mac.type == e1000_ich8lan)
3037                         e1000e_gig_downshift_workaround_ich8lan(hw);
3038
3039                 /* Write VR power-down enable */
3040                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3041                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3042                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3043
3044                 /* Read it back and test */
3045                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3046                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3047                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3048                         break;
3049
3050                 /* Issue PHY reset and repeat at most one more time */
3051                 reg = er32(CTRL);
3052                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3053                 retry++;
3054         } while (retry);
3055 }
3056
3057 /**
3058  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3059  *  @hw: pointer to the HW structure
3060  *
3061  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3062  *  LPLU, Gig disable, MDIC PHY reset):
3063  *    1) Set Kumeran Near-end loopback
3064  *    2) Clear Kumeran Near-end loopback
3065  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3066  **/
3067 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3068 {
3069         s32 ret_val;
3070         u16 reg_data;
3071
3072         if ((hw->mac.type != e1000_ich8lan) ||
3073             (hw->phy.type != e1000_phy_igp_3))
3074                 return;
3075
3076         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3077                                       &reg_data);
3078         if (ret_val)
3079                 return;
3080         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3081         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3082                                        reg_data);
3083         if (ret_val)
3084                 return;
3085         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3086         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3087                                        reg_data);
3088 }
3089
3090 /**
3091  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3092  *  @hw: pointer to the HW structure
3093  *
3094  *  During S0 to Sx transition, it is possible the link remains at gig
3095  *  instead of negotiating to a lower speed.  Before going to Sx, set
3096  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3097  *  to a lower speed.
3098  *
3099  *  Should only be called for applicable parts.
3100  **/
3101 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3102 {
3103         u32 phy_ctrl;
3104
3105         switch (hw->mac.type) {
3106         case e1000_ich8lan:
3107         case e1000_ich9lan:
3108         case e1000_ich10lan:
3109         case e1000_pchlan:
3110                 phy_ctrl = er32(PHY_CTRL);
3111                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3112                             E1000_PHY_CTRL_GBE_DISABLE;
3113                 ew32(PHY_CTRL, phy_ctrl);
3114
3115                 if (hw->mac.type == e1000_pchlan)
3116                         e1000_phy_hw_reset_ich8lan(hw);
3117         default:
3118                 break;
3119         }
3120
3121         return;
3122 }
3123
3124 /**
3125  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3126  *  @hw: pointer to the HW structure
3127  *
3128  *  Return the LED back to the default configuration.
3129  **/
3130 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3131 {
3132         if (hw->phy.type == e1000_phy_ife)
3133                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3134
3135         ew32(LEDCTL, hw->mac.ledctl_default);
3136         return 0;
3137 }
3138
3139 /**
3140  *  e1000_led_on_ich8lan - Turn LEDs on
3141  *  @hw: pointer to the HW structure
3142  *
3143  *  Turn on the LEDs.
3144  **/
3145 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3146 {
3147         if (hw->phy.type == e1000_phy_ife)
3148                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3149                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3150
3151         ew32(LEDCTL, hw->mac.ledctl_mode2);
3152         return 0;
3153 }
3154
3155 /**
3156  *  e1000_led_off_ich8lan - Turn LEDs off
3157  *  @hw: pointer to the HW structure
3158  *
3159  *  Turn off the LEDs.
3160  **/
3161 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3162 {
3163         if (hw->phy.type == e1000_phy_ife)
3164                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3165                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3166
3167         ew32(LEDCTL, hw->mac.ledctl_mode1);
3168         return 0;
3169 }
3170
3171 /**
3172  *  e1000_setup_led_pchlan - Configures SW controllable LED
3173  *  @hw: pointer to the HW structure
3174  *
3175  *  This prepares the SW controllable LED for use.
3176  **/
3177 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3178 {
3179         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3180                                         (u16)hw->mac.ledctl_mode1);
3181 }
3182
3183 /**
3184  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3185  *  @hw: pointer to the HW structure
3186  *
3187  *  Return the LED back to the default configuration.
3188  **/
3189 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3190 {
3191         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3192                                         (u16)hw->mac.ledctl_default);
3193 }
3194
3195 /**
3196  *  e1000_led_on_pchlan - Turn LEDs on
3197  *  @hw: pointer to the HW structure
3198  *
3199  *  Turn on the LEDs.
3200  **/
3201 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3202 {
3203         u16 data = (u16)hw->mac.ledctl_mode2;
3204         u32 i, led;
3205
3206         /*
3207          * If no link, then turn LED on by setting the invert bit
3208          * for each LED that's mode is "link_up" in ledctl_mode2.
3209          */
3210         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3211                 for (i = 0; i < 3; i++) {
3212                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3213                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3214                             E1000_LEDCTL_MODE_LINK_UP)
3215                                 continue;
3216                         if (led & E1000_PHY_LED0_IVRT)
3217                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3218                         else
3219                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3220                 }
3221         }
3222
3223         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3224 }
3225
3226 /**
3227  *  e1000_led_off_pchlan - Turn LEDs off
3228  *  @hw: pointer to the HW structure
3229  *
3230  *  Turn off the LEDs.
3231  **/
3232 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3233 {
3234         u16 data = (u16)hw->mac.ledctl_mode1;
3235         u32 i, led;
3236
3237         /*
3238          * If no link, then turn LED off by clearing the invert bit
3239          * for each LED that's mode is "link_up" in ledctl_mode1.
3240          */
3241         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3242                 for (i = 0; i < 3; i++) {
3243                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3244                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3245                             E1000_LEDCTL_MODE_LINK_UP)
3246                                 continue;
3247                         if (led & E1000_PHY_LED0_IVRT)
3248                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3249                         else
3250                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3251                 }
3252         }
3253
3254         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3255 }
3256
3257 /**
3258  *  e1000_get_cfg_done_ich8lan - Read config done bit
3259  *  @hw: pointer to the HW structure
3260  *
3261  *  Read the management control register for the config done bit for
3262  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
3263  *  to read the config done bit, so an error is *ONLY* logged and returns
3264  *  0.  If we were to return with error, EEPROM-less silicon
3265  *  would not be able to be reset or change link.
3266  **/
3267 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3268 {
3269         u32 bank = 0;
3270
3271         if (hw->mac.type >= e1000_pchlan) {
3272                 u32 status = er32(STATUS);
3273
3274                 if (status & E1000_STATUS_PHYRA)
3275                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3276                 else
3277                         e_dbg("PHY Reset Asserted not set - needs delay\n");
3278         }
3279
3280         e1000e_get_cfg_done(hw);
3281
3282         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3283         if ((hw->mac.type != e1000_ich10lan) &&
3284             (hw->mac.type != e1000_pchlan)) {
3285                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3286                     (hw->phy.type == e1000_phy_igp_3)) {
3287                         e1000e_phy_init_script_igp3(hw);
3288                 }
3289         } else {
3290                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3291                         /* Maybe we should do a basic PHY config */
3292                         e_dbg("EEPROM not present\n");
3293                         return -E1000_ERR_CONFIG;
3294                 }
3295         }
3296
3297         return 0;
3298 }
3299
3300 /**
3301  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3302  * @hw: pointer to the HW structure
3303  *
3304  * In the case of a PHY power down to save power, or to turn off link during a
3305  * driver unload, or wake on lan is not enabled, remove the link.
3306  **/
3307 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3308 {
3309         /* If the management interface is not enabled, then power down */
3310         if (!(hw->mac.ops.check_mng_mode(hw) ||
3311               hw->phy.ops.check_reset_block(hw)))
3312                 e1000_power_down_phy_copper(hw);
3313
3314         return;
3315 }
3316
3317 /**
3318  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3319  *  @hw: pointer to the HW structure
3320  *
3321  *  Clears hardware counters specific to the silicon family and calls
3322  *  clear_hw_cntrs_generic to clear all general purpose counters.
3323  **/
3324 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3325 {
3326         u16 phy_data;
3327
3328         e1000e_clear_hw_cntrs_base(hw);
3329
3330         er32(ALGNERRC);
3331         er32(RXERRC);
3332         er32(TNCRS);
3333         er32(CEXTERR);
3334         er32(TSCTC);
3335         er32(TSCTFC);
3336
3337         er32(MGTPRC);
3338         er32(MGTPDC);
3339         er32(MGTPTC);
3340
3341         er32(IAC);
3342         er32(ICRXOC);
3343
3344         /* Clear PHY statistics registers */
3345         if ((hw->phy.type == e1000_phy_82578) ||
3346             (hw->phy.type == e1000_phy_82577)) {
3347                 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3348                 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3349                 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3350                 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3351                 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3352                 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3353                 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3354                 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3355                 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3356                 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3357                 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3358                 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3359                 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3360                 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3361         }
3362 }
3363
3364 static struct e1000_mac_operations ich8_mac_ops = {
3365         .id_led_init            = e1000e_id_led_init,
3366         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
3367         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3368         /* cleanup_led dependent on mac type */
3369         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3370         .get_bus_info           = e1000_get_bus_info_ich8lan,
3371         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3372         /* led_on dependent on mac type */
3373         /* led_off dependent on mac type */
3374         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3375         .reset_hw               = e1000_reset_hw_ich8lan,
3376         .init_hw                = e1000_init_hw_ich8lan,
3377         .setup_link             = e1000_setup_link_ich8lan,
3378         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3379         /* id_led_init dependent on mac type */
3380 };
3381
3382 static struct e1000_phy_operations ich8_phy_ops = {
3383         .acquire                = e1000_acquire_swflag_ich8lan,
3384         .check_reset_block      = e1000_check_reset_block_ich8lan,
3385         .commit                 = NULL,
3386         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3387         .get_cable_length       = e1000e_get_cable_length_igp_2,
3388         .read_reg               = e1000e_read_phy_reg_igp,
3389         .release                = e1000_release_swflag_ich8lan,
3390         .reset                  = e1000_phy_hw_reset_ich8lan,
3391         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3392         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3393         .write_reg              = e1000e_write_phy_reg_igp,
3394 };
3395
3396 static struct e1000_nvm_operations ich8_nvm_ops = {
3397         .acquire                = e1000_acquire_nvm_ich8lan,
3398         .read                   = e1000_read_nvm_ich8lan,
3399         .release                = e1000_release_nvm_ich8lan,
3400         .update                 = e1000_update_nvm_checksum_ich8lan,
3401         .valid_led_default      = e1000_valid_led_default_ich8lan,
3402         .validate               = e1000_validate_nvm_checksum_ich8lan,
3403         .write                  = e1000_write_nvm_ich8lan,
3404 };
3405
3406 struct e1000_info e1000_ich8_info = {
3407         .mac                    = e1000_ich8lan,
3408         .flags                  = FLAG_HAS_WOL
3409                                   | FLAG_IS_ICH
3410                                   | FLAG_RX_CSUM_ENABLED
3411                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3412                                   | FLAG_HAS_AMT
3413                                   | FLAG_HAS_FLASH
3414                                   | FLAG_APME_IN_WUC,
3415         .pba                    = 8,
3416         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3417         .get_variants           = e1000_get_variants_ich8lan,
3418         .mac_ops                = &ich8_mac_ops,
3419         .phy_ops                = &ich8_phy_ops,
3420         .nvm_ops                = &ich8_nvm_ops,
3421 };
3422
3423 struct e1000_info e1000_ich9_info = {
3424         .mac                    = e1000_ich9lan,
3425         .flags                  = FLAG_HAS_JUMBO_FRAMES
3426                                   | FLAG_IS_ICH
3427                                   | FLAG_HAS_WOL
3428                                   | FLAG_RX_CSUM_ENABLED
3429                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3430                                   | FLAG_HAS_AMT
3431                                   | FLAG_HAS_ERT
3432                                   | FLAG_HAS_FLASH
3433                                   | FLAG_APME_IN_WUC,
3434         .pba                    = 10,
3435         .max_hw_frame_size      = DEFAULT_JUMBO,
3436         .get_variants           = e1000_get_variants_ich8lan,
3437         .mac_ops                = &ich8_mac_ops,
3438         .phy_ops                = &ich8_phy_ops,
3439         .nvm_ops                = &ich8_nvm_ops,
3440 };
3441
3442 struct e1000_info e1000_ich10_info = {
3443         .mac                    = e1000_ich10lan,
3444         .flags                  = FLAG_HAS_JUMBO_FRAMES
3445                                   | FLAG_IS_ICH
3446                                   | FLAG_HAS_WOL
3447                                   | FLAG_RX_CSUM_ENABLED
3448                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3449                                   | FLAG_HAS_AMT
3450                                   | FLAG_HAS_ERT
3451                                   | FLAG_HAS_FLASH
3452                                   | FLAG_APME_IN_WUC,
3453         .pba                    = 10,
3454         .max_hw_frame_size      = DEFAULT_JUMBO,
3455         .get_variants           = e1000_get_variants_ich8lan,
3456         .mac_ops                = &ich8_mac_ops,
3457         .phy_ops                = &ich8_phy_ops,
3458         .nvm_ops                = &ich8_nvm_ops,
3459 };
3460
3461 struct e1000_info e1000_pch_info = {
3462         .mac                    = e1000_pchlan,
3463         .flags                  = FLAG_IS_ICH
3464                                   | FLAG_HAS_WOL
3465                                   | FLAG_RX_CSUM_ENABLED
3466                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3467                                   | FLAG_HAS_AMT
3468                                   | FLAG_HAS_FLASH
3469                                   | FLAG_HAS_JUMBO_FRAMES
3470                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3471                                   | FLAG_APME_IN_WUC,
3472         .pba                    = 26,
3473         .max_hw_frame_size      = 4096,
3474         .get_variants           = e1000_get_variants_ich8lan,
3475         .mac_ops                = &ich8_mac_ops,
3476         .phy_ops                = &ich8_phy_ops,
3477         .nvm_ops                = &ich8_nvm_ops,
3478 };