e1000: Whitespace cleanup, cosmetic changes
[sfrench/cifs-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.1.9-k6"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
103         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
105         /* required last entry */
106         {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
110
111 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_tx_ring *txdr);
113 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
114                                     struct e1000_rx_ring *rxdr);
115 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *tx_ring);
117 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rx_ring);
119
120 /* Local Function Prototypes */
121
122 static int e1000_init_module(void);
123 static void e1000_exit_module(void);
124 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
125 static void __devexit e1000_remove(struct pci_dev *pdev);
126 static int e1000_alloc_queues(struct e1000_adapter *adapter);
127 static int e1000_sw_init(struct e1000_adapter *adapter);
128 static int e1000_open(struct net_device *netdev);
129 static int e1000_close(struct net_device *netdev);
130 static void e1000_configure_tx(struct e1000_adapter *adapter);
131 static void e1000_configure_rx(struct e1000_adapter *adapter);
132 static void e1000_setup_rctl(struct e1000_adapter *adapter);
133 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
134 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
136                                 struct e1000_tx_ring *tx_ring);
137 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
138                                 struct e1000_rx_ring *rx_ring);
139 static void e1000_set_multi(struct net_device *netdev);
140 static void e1000_update_phy_info(unsigned long data);
141 static void e1000_watchdog(unsigned long data);
142 static void e1000_82547_tx_fifo_stall(unsigned long data);
143 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
144 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
145 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
146 static int e1000_set_mac(struct net_device *netdev, void *p);
147 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
148 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
149                                     struct e1000_tx_ring *tx_ring);
150 #ifdef CONFIG_E1000_NAPI
151 static int e1000_clean(struct net_device *poll_dev, int *budget);
152 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
153                                     struct e1000_rx_ring *rx_ring,
154                                     int *work_done, int work_to_do);
155 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
156                                        struct e1000_rx_ring *rx_ring,
157                                        int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
160                                     struct e1000_rx_ring *rx_ring);
161 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
162                                        struct e1000_rx_ring *rx_ring);
163 #endif
164 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
165                                    struct e1000_rx_ring *rx_ring,
166                                    int cleaned_count);
167 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
168                                       struct e1000_rx_ring *rx_ring,
169                                       int cleaned_count);
170 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
171 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
172                            int cmd);
173 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
174 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_tx_timeout(struct net_device *dev);
176 static void e1000_reset_task(struct net_device *dev);
177 static void e1000_smartspeed(struct e1000_adapter *adapter);
178 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
179                                        struct sk_buff *skb);
180
181 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
182 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
183 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_restore_vlan(struct e1000_adapter *adapter);
185
186 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
187 #ifdef CONFIG_PM
188 static int e1000_resume(struct pci_dev *pdev);
189 #endif
190 static void e1000_shutdown(struct pci_dev *pdev);
191
192 #ifdef CONFIG_NET_POLL_CONTROLLER
193 /* for netdump / net console */
194 static void e1000_netpoll (struct net_device *netdev);
195 #endif
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198                      pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static struct pci_error_handlers e1000_err_handler = {
203         .error_detected = e1000_io_error_detected,
204         .slot_reset = e1000_io_slot_reset,
205         .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209         .name     = e1000_driver_name,
210         .id_table = e1000_pci_tbl,
211         .probe    = e1000_probe,
212         .remove   = __devexit_p(e1000_remove),
213         /* Power Managment Hooks */
214         .suspend  = e1000_suspend,
215 #ifdef CONFIG_PM
216         .resume   = e1000_resume,
217 #endif
218         .shutdown = e1000_shutdown,
219         .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230
231 /**
232  * e1000_init_module - Driver Registration Routine
233  *
234  * e1000_init_module is the first routine called when the driver is
235  * loaded. All it does is register with the PCI subsystem.
236  **/
237
238 static int __init
239 e1000_init_module(void)
240 {
241         int ret;
242         printk(KERN_INFO "%s - version %s\n",
243                e1000_driver_string, e1000_driver_version);
244
245         printk(KERN_INFO "%s\n", e1000_copyright);
246
247         ret = pci_register_driver(&e1000_driver);
248
249         return ret;
250 }
251
252 module_init(e1000_init_module);
253
254 /**
255  * e1000_exit_module - Driver Exit Cleanup Routine
256  *
257  * e1000_exit_module is called just before the driver is removed
258  * from memory.
259  **/
260
261 static void __exit
262 e1000_exit_module(void)
263 {
264         pci_unregister_driver(&e1000_driver);
265 }
266
267 module_exit(e1000_exit_module);
268
269 static int e1000_request_irq(struct e1000_adapter *adapter)
270 {
271         struct net_device *netdev = adapter->netdev;
272         int flags, err = 0;
273
274         flags = IRQF_SHARED;
275 #ifdef CONFIG_PCI_MSI
276         if (adapter->hw.mac_type > e1000_82547_rev_2) {
277                 adapter->have_msi = TRUE;
278                 if ((err = pci_enable_msi(adapter->pdev))) {
279                         DPRINTK(PROBE, ERR,
280                          "Unable to allocate MSI interrupt Error: %d\n", err);
281                         adapter->have_msi = FALSE;
282                 }
283         }
284         if (adapter->have_msi)
285                 flags &= ~IRQF_SHARED;
286 #endif
287         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
288                                netdev->name, netdev)))
289                 DPRINTK(PROBE, ERR,
290                         "Unable to allocate interrupt Error: %d\n", err);
291
292         return err;
293 }
294
295 static void e1000_free_irq(struct e1000_adapter *adapter)
296 {
297         struct net_device *netdev = adapter->netdev;
298
299         free_irq(adapter->pdev->irq, netdev);
300
301 #ifdef CONFIG_PCI_MSI
302         if (adapter->have_msi)
303                 pci_disable_msi(adapter->pdev);
304 #endif
305 }
306
307 /**
308  * e1000_irq_disable - Mask off interrupt generation on the NIC
309  * @adapter: board private structure
310  **/
311
312 static void
313 e1000_irq_disable(struct e1000_adapter *adapter)
314 {
315         atomic_inc(&adapter->irq_sem);
316         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
317         E1000_WRITE_FLUSH(&adapter->hw);
318         synchronize_irq(adapter->pdev->irq);
319 }
320
321 /**
322  * e1000_irq_enable - Enable default interrupt generation settings
323  * @adapter: board private structure
324  **/
325
326 static void
327 e1000_irq_enable(struct e1000_adapter *adapter)
328 {
329         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
330                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331                 E1000_WRITE_FLUSH(&adapter->hw);
332         }
333 }
334
335 static void
336 e1000_update_mng_vlan(struct e1000_adapter *adapter)
337 {
338         struct net_device *netdev = adapter->netdev;
339         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
340         uint16_t old_vid = adapter->mng_vlan_id;
341         if (adapter->vlgrp) {
342                 if (!adapter->vlgrp->vlan_devices[vid]) {
343                         if (adapter->hw.mng_cookie.status &
344                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
345                                 e1000_vlan_rx_add_vid(netdev, vid);
346                                 adapter->mng_vlan_id = vid;
347                         } else
348                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
349
350                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
351                                         (vid != old_vid) &&
352                                         !adapter->vlgrp->vlan_devices[old_vid])
353                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
354                 } else
355                         adapter->mng_vlan_id = vid;
356         }
357 }
358
359 /**
360  * e1000_release_hw_control - release control of the h/w to f/w
361  * @adapter: address of board private structure
362  *
363  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
364  * For ASF and Pass Through versions of f/w this means that the
365  * driver is no longer loaded. For AMT version (only with 82573) i
366  * of the f/w this means that the netowrk i/f is closed.
367  *
368  **/
369
370 static void
371 e1000_release_hw_control(struct e1000_adapter *adapter)
372 {
373         uint32_t ctrl_ext;
374         uint32_t swsm;
375         uint32_t extcnf;
376
377         /* Let firmware taken over control of h/w */
378         switch (adapter->hw.mac_type) {
379         case e1000_82571:
380         case e1000_82572:
381         case e1000_80003es2lan:
382                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
383                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
384                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
385                 break;
386         case e1000_82573:
387                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
388                 E1000_WRITE_REG(&adapter->hw, SWSM,
389                                 swsm & ~E1000_SWSM_DRV_LOAD);
390         case e1000_ich8lan:
391                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
392                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
393                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
394                 break;
395         default:
396                 break;
397         }
398 }
399
400 /**
401  * e1000_get_hw_control - get control of the h/w from f/w
402  * @adapter: address of board private structure
403  *
404  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
405  * For ASF and Pass Through versions of f/w this means that
406  * the driver is loaded. For AMT version (only with 82573)
407  * of the f/w this means that the netowrk i/f is open.
408  *
409  **/
410
411 static void
412 e1000_get_hw_control(struct e1000_adapter *adapter)
413 {
414         uint32_t ctrl_ext;
415         uint32_t swsm;
416         uint32_t extcnf;
417         /* Let firmware know the driver has taken over */
418         switch (adapter->hw.mac_type) {
419         case e1000_82571:
420         case e1000_82572:
421         case e1000_80003es2lan:
422                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
423                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
424                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
425                 break;
426         case e1000_82573:
427                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
428                 E1000_WRITE_REG(&adapter->hw, SWSM,
429                                 swsm | E1000_SWSM_DRV_LOAD);
430                 break;
431         case e1000_ich8lan:
432                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
433                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
434                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
435                 break;
436         default:
437                 break;
438         }
439 }
440
441 int
442 e1000_up(struct e1000_adapter *adapter)
443 {
444         struct net_device *netdev = adapter->netdev;
445         int i;
446
447         /* hardware has been reset, we need to reload some things */
448
449         e1000_set_multi(netdev);
450
451         e1000_restore_vlan(adapter);
452
453         e1000_configure_tx(adapter);
454         e1000_setup_rctl(adapter);
455         e1000_configure_rx(adapter);
456         /* call E1000_DESC_UNUSED which always leaves
457          * at least 1 descriptor unused to make sure
458          * next_to_use != next_to_clean */
459         for (i = 0; i < adapter->num_rx_queues; i++) {
460                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
461                 adapter->alloc_rx_buf(adapter, ring,
462                                       E1000_DESC_UNUSED(ring));
463         }
464
465         adapter->tx_queue_len = netdev->tx_queue_len;
466
467         mod_timer(&adapter->watchdog_timer, jiffies);
468
469 #ifdef CONFIG_E1000_NAPI
470         netif_poll_enable(netdev);
471 #endif
472         e1000_irq_enable(adapter);
473
474         return 0;
475 }
476
477 /**
478  * e1000_power_up_phy - restore link in case the phy was powered down
479  * @adapter: address of board private structure
480  *
481  * The phy may be powered down to save power and turn off link when the
482  * driver is unloaded and wake on lan is not enabled (among others)
483  * *** this routine MUST be followed by a call to e1000_reset ***
484  *
485  **/
486
487 void e1000_power_up_phy(struct e1000_adapter *adapter)
488 {
489         uint16_t mii_reg = 0;
490
491         /* Just clear the power down bit to wake the phy back up */
492         if (adapter->hw.media_type == e1000_media_type_copper) {
493                 /* according to the manual, the phy will retain its
494                  * settings across a power-down/up cycle */
495                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
496                 mii_reg &= ~MII_CR_POWER_DOWN;
497                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
498         }
499 }
500
501 static void e1000_power_down_phy(struct e1000_adapter *adapter)
502 {
503         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
504                                       e1000_check_mng_mode(&adapter->hw);
505         /* Power down the PHY so no link is implied when interface is down
506          * The PHY cannot be powered down if any of the following is TRUE
507          * (a) WoL is enabled
508          * (b) AMT is active
509          * (c) SoL/IDER session is active */
510         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
511             adapter->hw.mac_type != e1000_ich8lan &&
512             adapter->hw.media_type == e1000_media_type_copper &&
513             !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
514             !mng_mode_enabled &&
515             !e1000_check_phy_reset_block(&adapter->hw)) {
516                 uint16_t mii_reg = 0;
517                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
518                 mii_reg |= MII_CR_POWER_DOWN;
519                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
520                 mdelay(1);
521         }
522 }
523
524 void
525 e1000_down(struct e1000_adapter *adapter)
526 {
527         struct net_device *netdev = adapter->netdev;
528
529         e1000_irq_disable(adapter);
530
531         del_timer_sync(&adapter->tx_fifo_stall_timer);
532         del_timer_sync(&adapter->watchdog_timer);
533         del_timer_sync(&adapter->phy_info_timer);
534
535 #ifdef CONFIG_E1000_NAPI
536         netif_poll_disable(netdev);
537 #endif
538         netdev->tx_queue_len = adapter->tx_queue_len;
539         adapter->link_speed = 0;
540         adapter->link_duplex = 0;
541         netif_carrier_off(netdev);
542         netif_stop_queue(netdev);
543
544         e1000_reset(adapter);
545         e1000_clean_all_tx_rings(adapter);
546         e1000_clean_all_rx_rings(adapter);
547 }
548
549 void
550 e1000_reinit_locked(struct e1000_adapter *adapter)
551 {
552         WARN_ON(in_interrupt());
553         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
554                 msleep(1);
555         e1000_down(adapter);
556         e1000_up(adapter);
557         clear_bit(__E1000_RESETTING, &adapter->flags);
558 }
559
560 void
561 e1000_reset(struct e1000_adapter *adapter)
562 {
563         uint32_t pba, manc;
564         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
565
566         /* Repartition Pba for greater than 9k mtu
567          * To take effect CTRL.RST is required.
568          */
569
570         switch (adapter->hw.mac_type) {
571         case e1000_82547:
572         case e1000_82547_rev_2:
573                 pba = E1000_PBA_30K;
574                 break;
575         case e1000_82571:
576         case e1000_82572:
577         case e1000_80003es2lan:
578                 pba = E1000_PBA_38K;
579                 break;
580         case e1000_82573:
581                 pba = E1000_PBA_12K;
582                 break;
583         case e1000_ich8lan:
584                 pba = E1000_PBA_8K;
585                 break;
586         default:
587                 pba = E1000_PBA_48K;
588                 break;
589         }
590
591         if ((adapter->hw.mac_type != e1000_82573) &&
592            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
593                 pba -= 8; /* allocate more FIFO for Tx */
594
595
596         if (adapter->hw.mac_type == e1000_82547) {
597                 adapter->tx_fifo_head = 0;
598                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
599                 adapter->tx_fifo_size =
600                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
601                 atomic_set(&adapter->tx_fifo_stall, 0);
602         }
603
604         E1000_WRITE_REG(&adapter->hw, PBA, pba);
605
606         /* flow control settings */
607         /* Set the FC high water mark to 90% of the FIFO size.
608          * Required to clear last 3 LSB */
609         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
610         /* We can't use 90% on small FIFOs because the remainder
611          * would be less than 1 full frame.  In this case, we size
612          * it to allow at least a full frame above the high water
613          *  mark. */
614         if (pba < E1000_PBA_16K)
615                 fc_high_water_mark = (pba * 1024) - 1600;
616
617         adapter->hw.fc_high_water = fc_high_water_mark;
618         adapter->hw.fc_low_water = fc_high_water_mark - 8;
619         if (adapter->hw.mac_type == e1000_80003es2lan)
620                 adapter->hw.fc_pause_time = 0xFFFF;
621         else
622                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
623         adapter->hw.fc_send_xon = 1;
624         adapter->hw.fc = adapter->hw.original_fc;
625
626         /* Allow time for pending master requests to run */
627         e1000_reset_hw(&adapter->hw);
628         if (adapter->hw.mac_type >= e1000_82544)
629                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
630         if (e1000_init_hw(&adapter->hw))
631                 DPRINTK(PROBE, ERR, "Hardware Error\n");
632         e1000_update_mng_vlan(adapter);
633         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
634         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
635
636         e1000_reset_adaptive(&adapter->hw);
637         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
638
639         if (!adapter->smart_power_down &&
640             (adapter->hw.mac_type == e1000_82571 ||
641              adapter->hw.mac_type == e1000_82572)) {
642                 uint16_t phy_data = 0;
643                 /* speed up time to link by disabling smart power down, ignore
644                  * the return value of this function because there is nothing
645                  * different we would do if it failed */
646                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
647                                    &phy_data);
648                 phy_data &= ~IGP02E1000_PM_SPD;
649                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
650                                     phy_data);
651         }
652
653         if (adapter->hw.mac_type < e1000_ich8lan)
654         /* FIXME: this code is duplicate and wrong for PCI Express */
655         if (adapter->en_mng_pt) {
656                 manc = E1000_READ_REG(&adapter->hw, MANC);
657                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
658                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
659         }
660 }
661
662 /**
663  * e1000_probe - Device Initialization Routine
664  * @pdev: PCI device information struct
665  * @ent: entry in e1000_pci_tbl
666  *
667  * Returns 0 on success, negative on failure
668  *
669  * e1000_probe initializes an adapter identified by a pci_dev structure.
670  * The OS initialization, configuring of the adapter private structure,
671  * and a hardware reset occur.
672  **/
673
674 static int __devinit
675 e1000_probe(struct pci_dev *pdev,
676             const struct pci_device_id *ent)
677 {
678         struct net_device *netdev;
679         struct e1000_adapter *adapter;
680         unsigned long mmio_start, mmio_len;
681         unsigned long flash_start, flash_len;
682
683         static int cards_found = 0;
684         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
685         int i, err, pci_using_dac;
686         uint16_t eeprom_data;
687         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
688         if ((err = pci_enable_device(pdev)))
689                 return err;
690
691         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
692             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
693                 pci_using_dac = 1;
694         } else {
695                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
696                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
697                         E1000_ERR("No usable DMA configuration, aborting\n");
698                         return err;
699                 }
700                 pci_using_dac = 0;
701         }
702
703         if ((err = pci_request_regions(pdev, e1000_driver_name)))
704                 return err;
705
706         pci_set_master(pdev);
707
708         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
709         if (!netdev) {
710                 err = -ENOMEM;
711                 goto err_alloc_etherdev;
712         }
713
714         SET_MODULE_OWNER(netdev);
715         SET_NETDEV_DEV(netdev, &pdev->dev);
716
717         pci_set_drvdata(pdev, netdev);
718         adapter = netdev_priv(netdev);
719         adapter->netdev = netdev;
720         adapter->pdev = pdev;
721         adapter->hw.back = adapter;
722         adapter->msg_enable = (1 << debug) - 1;
723
724         mmio_start = pci_resource_start(pdev, BAR_0);
725         mmio_len = pci_resource_len(pdev, BAR_0);
726
727         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
728         if (!adapter->hw.hw_addr) {
729                 err = -EIO;
730                 goto err_ioremap;
731         }
732
733         for (i = BAR_1; i <= BAR_5; i++) {
734                 if (pci_resource_len(pdev, i) == 0)
735                         continue;
736                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
737                         adapter->hw.io_base = pci_resource_start(pdev, i);
738                         break;
739                 }
740         }
741
742         netdev->open = &e1000_open;
743         netdev->stop = &e1000_close;
744         netdev->hard_start_xmit = &e1000_xmit_frame;
745         netdev->get_stats = &e1000_get_stats;
746         netdev->set_multicast_list = &e1000_set_multi;
747         netdev->set_mac_address = &e1000_set_mac;
748         netdev->change_mtu = &e1000_change_mtu;
749         netdev->do_ioctl = &e1000_ioctl;
750         e1000_set_ethtool_ops(netdev);
751         netdev->tx_timeout = &e1000_tx_timeout;
752         netdev->watchdog_timeo = 5 * HZ;
753 #ifdef CONFIG_E1000_NAPI
754         netdev->poll = &e1000_clean;
755         netdev->weight = 64;
756 #endif
757         netdev->vlan_rx_register = e1000_vlan_rx_register;
758         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
759         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
760 #ifdef CONFIG_NET_POLL_CONTROLLER
761         netdev->poll_controller = e1000_netpoll;
762 #endif
763         strcpy(netdev->name, pci_name(pdev));
764
765         netdev->mem_start = mmio_start;
766         netdev->mem_end = mmio_start + mmio_len;
767         netdev->base_addr = adapter->hw.io_base;
768
769         adapter->bd_number = cards_found;
770
771         /* setup the private structure */
772
773         if ((err = e1000_sw_init(adapter)))
774                 goto err_sw_init;
775
776         /* Flash BAR mapping must happen after e1000_sw_init
777          * because it depends on mac_type */
778         if ((adapter->hw.mac_type == e1000_ich8lan) &&
779            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
780                 flash_start = pci_resource_start(pdev, 1);
781                 flash_len = pci_resource_len(pdev, 1);
782                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
783                 if (!adapter->hw.flash_address) {
784                         err = -EIO;
785                         goto err_flashmap;
786                 }
787         }
788
789         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
790                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
791
792         /* if ksp3, indicate if it's port a being setup */
793         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
794                         e1000_ksp3_port_a == 0)
795                 adapter->ksp3_port_a = 1;
796         e1000_ksp3_port_a++;
797         /* Reset for multiple KP3 adapters */
798         if (e1000_ksp3_port_a == 4)
799                 e1000_ksp3_port_a = 0;
800
801         if (adapter->hw.mac_type >= e1000_82543) {
802                 netdev->features = NETIF_F_SG |
803                                    NETIF_F_HW_CSUM |
804                                    NETIF_F_HW_VLAN_TX |
805                                    NETIF_F_HW_VLAN_RX |
806                                    NETIF_F_HW_VLAN_FILTER;
807                 if (adapter->hw.mac_type == e1000_ich8lan)
808                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
809         }
810
811 #ifdef NETIF_F_TSO
812         if ((adapter->hw.mac_type >= e1000_82544) &&
813            (adapter->hw.mac_type != e1000_82547))
814                 netdev->features |= NETIF_F_TSO;
815
816 #ifdef NETIF_F_TSO_IPV6
817         if (adapter->hw.mac_type > e1000_82547_rev_2)
818                 netdev->features |= NETIF_F_TSO_IPV6;
819 #endif
820 #endif
821         if (pci_using_dac)
822                 netdev->features |= NETIF_F_HIGHDMA;
823
824         netdev->features |= NETIF_F_LLTX;
825
826         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
827
828         /* initialize eeprom parameters */
829
830         if (e1000_init_eeprom_params(&adapter->hw)) {
831                 E1000_ERR("EEPROM initialization failed\n");
832                 return -EIO;
833         }
834
835         /* before reading the EEPROM, reset the controller to
836          * put the device in a known good starting state */
837
838         e1000_reset_hw(&adapter->hw);
839
840         /* make sure the EEPROM is good */
841
842         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
843                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
844                 err = -EIO;
845                 goto err_eeprom;
846         }
847
848         /* copy the MAC address out of the EEPROM */
849
850         if (e1000_read_mac_addr(&adapter->hw))
851                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
852         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
853         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
854
855         if (!is_valid_ether_addr(netdev->perm_addr)) {
856                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
857                 err = -EIO;
858                 goto err_eeprom;
859         }
860
861         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
862
863         e1000_get_bus_info(&adapter->hw);
864
865         init_timer(&adapter->tx_fifo_stall_timer);
866         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
867         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
868
869         init_timer(&adapter->watchdog_timer);
870         adapter->watchdog_timer.function = &e1000_watchdog;
871         adapter->watchdog_timer.data = (unsigned long) adapter;
872
873         init_timer(&adapter->phy_info_timer);
874         adapter->phy_info_timer.function = &e1000_update_phy_info;
875         adapter->phy_info_timer.data = (unsigned long) adapter;
876
877         INIT_WORK(&adapter->reset_task,
878                 (void (*)(void *))e1000_reset_task, netdev);
879
880         /* we're going to reset, so assume we have no link for now */
881
882         netif_carrier_off(netdev);
883         netif_stop_queue(netdev);
884
885         e1000_check_options(adapter);
886
887         /* Initial Wake on LAN setting
888          * If APM wake is enabled in the EEPROM,
889          * enable the ACPI Magic Packet filter
890          */
891
892         switch (adapter->hw.mac_type) {
893         case e1000_82542_rev2_0:
894         case e1000_82542_rev2_1:
895         case e1000_82543:
896                 break;
897         case e1000_82544:
898                 e1000_read_eeprom(&adapter->hw,
899                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
900                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
901                 break;
902         case e1000_ich8lan:
903                 e1000_read_eeprom(&adapter->hw,
904                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
905                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
906                 break;
907         case e1000_82546:
908         case e1000_82546_rev_3:
909         case e1000_82571:
910         case e1000_80003es2lan:
911                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
912                         e1000_read_eeprom(&adapter->hw,
913                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
914                         break;
915                 }
916                 /* Fall Through */
917         default:
918                 e1000_read_eeprom(&adapter->hw,
919                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
920                 break;
921         }
922         if (eeprom_data & eeprom_apme_mask)
923                 adapter->wol |= E1000_WUFC_MAG;
924
925         /* print bus type/speed/width info */
926         {
927         struct e1000_hw *hw = &adapter->hw;
928         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
929                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
930                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
931                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
932                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
933                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
934                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
935                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
936                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
937                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
938                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
939                  "32-bit"));
940         }
941
942         for (i = 0; i < 6; i++)
943                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
944
945         /* reset the hardware with the new settings */
946         e1000_reset(adapter);
947
948         /* If the controller is 82573 and f/w is AMT, do not set
949          * DRV_LOAD until the interface is up.  For all other cases,
950          * let the f/w know that the h/w is now under the control
951          * of the driver. */
952         if (adapter->hw.mac_type != e1000_82573 ||
953             !e1000_check_mng_mode(&adapter->hw))
954                 e1000_get_hw_control(adapter);
955
956         strcpy(netdev->name, "eth%d");
957         if ((err = register_netdev(netdev)))
958                 goto err_register;
959
960         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
961
962         cards_found++;
963         return 0;
964
965 err_register:
966         if (adapter->hw.flash_address)
967                 iounmap(adapter->hw.flash_address);
968 err_flashmap:
969 err_sw_init:
970 err_eeprom:
971         iounmap(adapter->hw.hw_addr);
972 err_ioremap:
973         free_netdev(netdev);
974 err_alloc_etherdev:
975         pci_release_regions(pdev);
976         return err;
977 }
978
979 /**
980  * e1000_remove - Device Removal Routine
981  * @pdev: PCI device information struct
982  *
983  * e1000_remove is called by the PCI subsystem to alert the driver
984  * that it should release a PCI device.  The could be caused by a
985  * Hot-Plug event, or because the driver is going to be removed from
986  * memory.
987  **/
988
989 static void __devexit
990 e1000_remove(struct pci_dev *pdev)
991 {
992         struct net_device *netdev = pci_get_drvdata(pdev);
993         struct e1000_adapter *adapter = netdev_priv(netdev);
994         uint32_t manc;
995 #ifdef CONFIG_E1000_NAPI
996         int i;
997 #endif
998
999         flush_scheduled_work();
1000
1001         if (adapter->hw.mac_type >= e1000_82540 &&
1002            adapter->hw.mac_type != e1000_ich8lan &&
1003            adapter->hw.media_type == e1000_media_type_copper) {
1004                 manc = E1000_READ_REG(&adapter->hw, MANC);
1005                 if (manc & E1000_MANC_SMBUS_EN) {
1006                         manc |= E1000_MANC_ARP_EN;
1007                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1008                 }
1009         }
1010
1011         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1012          * would have already happened in close and is redundant. */
1013         e1000_release_hw_control(adapter);
1014
1015         unregister_netdev(netdev);
1016 #ifdef CONFIG_E1000_NAPI
1017         for (i = 0; i < adapter->num_rx_queues; i++)
1018                 dev_put(&adapter->polling_netdev[i]);
1019 #endif
1020
1021         if (!e1000_check_phy_reset_block(&adapter->hw))
1022                 e1000_phy_hw_reset(&adapter->hw);
1023
1024         kfree(adapter->tx_ring);
1025         kfree(adapter->rx_ring);
1026 #ifdef CONFIG_E1000_NAPI
1027         kfree(adapter->polling_netdev);
1028 #endif
1029
1030         iounmap(adapter->hw.hw_addr);
1031         if (adapter->hw.flash_address)
1032                 iounmap(adapter->hw.flash_address);
1033         pci_release_regions(pdev);
1034
1035         free_netdev(netdev);
1036
1037         pci_disable_device(pdev);
1038 }
1039
1040 /**
1041  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1042  * @adapter: board private structure to initialize
1043  *
1044  * e1000_sw_init initializes the Adapter private data structure.
1045  * Fields are initialized based on PCI device information and
1046  * OS network device settings (MTU size).
1047  **/
1048
1049 static int __devinit
1050 e1000_sw_init(struct e1000_adapter *adapter)
1051 {
1052         struct e1000_hw *hw = &adapter->hw;
1053         struct net_device *netdev = adapter->netdev;
1054         struct pci_dev *pdev = adapter->pdev;
1055 #ifdef CONFIG_E1000_NAPI
1056         int i;
1057 #endif
1058
1059         /* PCI config space info */
1060
1061         hw->vendor_id = pdev->vendor;
1062         hw->device_id = pdev->device;
1063         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1064         hw->subsystem_id = pdev->subsystem_device;
1065
1066         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1067
1068         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1069
1070         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1071         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1072         hw->max_frame_size = netdev->mtu +
1073                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1074         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1075
1076         /* identify the MAC */
1077
1078         if (e1000_set_mac_type(hw)) {
1079                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1080                 return -EIO;
1081         }
1082
1083         switch (hw->mac_type) {
1084         default:
1085                 break;
1086         case e1000_82541:
1087         case e1000_82547:
1088         case e1000_82541_rev_2:
1089         case e1000_82547_rev_2:
1090                 hw->phy_init_script = 1;
1091                 break;
1092         }
1093
1094         e1000_set_media_type(hw);
1095
1096         hw->wait_autoneg_complete = FALSE;
1097         hw->tbi_compatibility_en = TRUE;
1098         hw->adaptive_ifs = TRUE;
1099
1100         /* Copper options */
1101
1102         if (hw->media_type == e1000_media_type_copper) {
1103                 hw->mdix = AUTO_ALL_MODES;
1104                 hw->disable_polarity_correction = FALSE;
1105                 hw->master_slave = E1000_MASTER_SLAVE;
1106         }
1107
1108         adapter->num_tx_queues = 1;
1109         adapter->num_rx_queues = 1;
1110
1111         if (e1000_alloc_queues(adapter)) {
1112                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1113                 return -ENOMEM;
1114         }
1115
1116 #ifdef CONFIG_E1000_NAPI
1117         for (i = 0; i < adapter->num_rx_queues; i++) {
1118                 adapter->polling_netdev[i].priv = adapter;
1119                 adapter->polling_netdev[i].poll = &e1000_clean;
1120                 adapter->polling_netdev[i].weight = 64;
1121                 dev_hold(&adapter->polling_netdev[i]);
1122                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1123         }
1124         spin_lock_init(&adapter->tx_queue_lock);
1125 #endif
1126
1127         atomic_set(&adapter->irq_sem, 1);
1128         spin_lock_init(&adapter->stats_lock);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  * e1000_alloc_queues - Allocate memory for all rings
1135  * @adapter: board private structure to initialize
1136  *
1137  * We allocate one ring per queue at run-time since we don't know the
1138  * number of queues at compile-time.  The polling_netdev array is
1139  * intended for Multiqueue, but should work fine with a single queue.
1140  **/
1141
1142 static int __devinit
1143 e1000_alloc_queues(struct e1000_adapter *adapter)
1144 {
1145         int size;
1146
1147         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1148         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1149         if (!adapter->tx_ring)
1150                 return -ENOMEM;
1151         memset(adapter->tx_ring, 0, size);
1152
1153         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1154         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1155         if (!adapter->rx_ring) {
1156                 kfree(adapter->tx_ring);
1157                 return -ENOMEM;
1158         }
1159         memset(adapter->rx_ring, 0, size);
1160
1161 #ifdef CONFIG_E1000_NAPI
1162         size = sizeof(struct net_device) * adapter->num_rx_queues;
1163         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1164         if (!adapter->polling_netdev) {
1165                 kfree(adapter->tx_ring);
1166                 kfree(adapter->rx_ring);
1167                 return -ENOMEM;
1168         }
1169         memset(adapter->polling_netdev, 0, size);
1170 #endif
1171
1172         return E1000_SUCCESS;
1173 }
1174
1175 /**
1176  * e1000_open - Called when a network interface is made active
1177  * @netdev: network interface device structure
1178  *
1179  * Returns 0 on success, negative value on failure
1180  *
1181  * The open entry point is called when a network interface is made
1182  * active by the system (IFF_UP).  At this point all resources needed
1183  * for transmit and receive operations are allocated, the interrupt
1184  * handler is registered with the OS, the watchdog timer is started,
1185  * and the stack is notified that the interface is ready.
1186  **/
1187
1188 static int
1189 e1000_open(struct net_device *netdev)
1190 {
1191         struct e1000_adapter *adapter = netdev_priv(netdev);
1192         int err;
1193
1194         /* disallow open during test */
1195         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1196                 return -EBUSY;
1197
1198         /* allocate transmit descriptors */
1199
1200         if ((err = e1000_setup_all_tx_resources(adapter)))
1201                 goto err_setup_tx;
1202
1203         /* allocate receive descriptors */
1204
1205         if ((err = e1000_setup_all_rx_resources(adapter)))
1206                 goto err_setup_rx;
1207
1208         err = e1000_request_irq(adapter);
1209         if (err)
1210                 goto err_up;
1211
1212         e1000_power_up_phy(adapter);
1213
1214         if ((err = e1000_up(adapter)))
1215                 goto err_up;
1216         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1217         if ((adapter->hw.mng_cookie.status &
1218                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1219                 e1000_update_mng_vlan(adapter);
1220         }
1221
1222         /* If AMT is enabled, let the firmware know that the network
1223          * interface is now open */
1224         if (adapter->hw.mac_type == e1000_82573 &&
1225             e1000_check_mng_mode(&adapter->hw))
1226                 e1000_get_hw_control(adapter);
1227
1228         return E1000_SUCCESS;
1229
1230 err_up:
1231         e1000_free_all_rx_resources(adapter);
1232 err_setup_rx:
1233         e1000_free_all_tx_resources(adapter);
1234 err_setup_tx:
1235         e1000_reset(adapter);
1236
1237         return err;
1238 }
1239
1240 /**
1241  * e1000_close - Disables a network interface
1242  * @netdev: network interface device structure
1243  *
1244  * Returns 0, this is not allowed to fail
1245  *
1246  * The close entry point is called when an interface is de-activated
1247  * by the OS.  The hardware is still under the drivers control, but
1248  * needs to be disabled.  A global MAC reset is issued to stop the
1249  * hardware, and all transmit and receive resources are freed.
1250  **/
1251
1252 static int
1253 e1000_close(struct net_device *netdev)
1254 {
1255         struct e1000_adapter *adapter = netdev_priv(netdev);
1256
1257         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1258         e1000_down(adapter);
1259         e1000_power_down_phy(adapter);
1260         e1000_free_irq(adapter);
1261
1262         e1000_free_all_tx_resources(adapter);
1263         e1000_free_all_rx_resources(adapter);
1264
1265         if ((adapter->hw.mng_cookie.status &
1266                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1267                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1268         }
1269
1270         /* If AMT is enabled, let the firmware know that the network
1271          * interface is now closed */
1272         if (adapter->hw.mac_type == e1000_82573 &&
1273             e1000_check_mng_mode(&adapter->hw))
1274                 e1000_release_hw_control(adapter);
1275
1276         return 0;
1277 }
1278
1279 /**
1280  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1281  * @adapter: address of board private structure
1282  * @start: address of beginning of memory
1283  * @len: length of memory
1284  **/
1285 static boolean_t
1286 e1000_check_64k_bound(struct e1000_adapter *adapter,
1287                       void *start, unsigned long len)
1288 {
1289         unsigned long begin = (unsigned long) start;
1290         unsigned long end = begin + len;
1291
1292         /* First rev 82545 and 82546 need to not allow any memory
1293          * write location to cross 64k boundary due to errata 23 */
1294         if (adapter->hw.mac_type == e1000_82545 ||
1295             adapter->hw.mac_type == e1000_82546) {
1296                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1297         }
1298
1299         return TRUE;
1300 }
1301
1302 /**
1303  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1304  * @adapter: board private structure
1305  * @txdr:    tx descriptor ring (for a specific queue) to setup
1306  *
1307  * Return 0 on success, negative on failure
1308  **/
1309
1310 static int
1311 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1312                          struct e1000_tx_ring *txdr)
1313 {
1314         struct pci_dev *pdev = adapter->pdev;
1315         int size;
1316
1317         size = sizeof(struct e1000_buffer) * txdr->count;
1318         txdr->buffer_info = vmalloc(size);
1319         if (!txdr->buffer_info) {
1320                 DPRINTK(PROBE, ERR,
1321                 "Unable to allocate memory for the transmit descriptor ring\n");
1322                 return -ENOMEM;
1323         }
1324         memset(txdr->buffer_info, 0, size);
1325
1326         /* round up to nearest 4K */
1327
1328         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1329         E1000_ROUNDUP(txdr->size, 4096);
1330
1331         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1332         if (!txdr->desc) {
1333 setup_tx_desc_die:
1334                 vfree(txdr->buffer_info);
1335                 DPRINTK(PROBE, ERR,
1336                 "Unable to allocate memory for the transmit descriptor ring\n");
1337                 return -ENOMEM;
1338         }
1339
1340         /* Fix for errata 23, can't cross 64kB boundary */
1341         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1342                 void *olddesc = txdr->desc;
1343                 dma_addr_t olddma = txdr->dma;
1344                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1345                                      "at %p\n", txdr->size, txdr->desc);
1346                 /* Try again, without freeing the previous */
1347                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1348                 /* Failed allocation, critical failure */
1349                 if (!txdr->desc) {
1350                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1351                         goto setup_tx_desc_die;
1352                 }
1353
1354                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1355                         /* give up */
1356                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1357                                             txdr->dma);
1358                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1359                         DPRINTK(PROBE, ERR,
1360                                 "Unable to allocate aligned memory "
1361                                 "for the transmit descriptor ring\n");
1362                         vfree(txdr->buffer_info);
1363                         return -ENOMEM;
1364                 } else {
1365                         /* Free old allocation, new allocation was successful */
1366                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1367                 }
1368         }
1369         memset(txdr->desc, 0, txdr->size);
1370
1371         txdr->next_to_use = 0;
1372         txdr->next_to_clean = 0;
1373         spin_lock_init(&txdr->tx_lock);
1374
1375         return 0;
1376 }
1377
1378 /**
1379  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1380  *                                (Descriptors) for all queues
1381  * @adapter: board private structure
1382  *
1383  * If this function returns with an error, then it's possible one or
1384  * more of the rings is populated (while the rest are not).  It is the
1385  * callers duty to clean those orphaned rings.
1386  *
1387  * Return 0 on success, negative on failure
1388  **/
1389
1390 int
1391 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1392 {
1393         int i, err = 0;
1394
1395         for (i = 0; i < adapter->num_tx_queues; i++) {
1396                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1397                 if (err) {
1398                         DPRINTK(PROBE, ERR,
1399                                 "Allocation for Tx Queue %u failed\n", i);
1400                         break;
1401                 }
1402         }
1403
1404         return err;
1405 }
1406
1407 /**
1408  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1409  * @adapter: board private structure
1410  *
1411  * Configure the Tx unit of the MAC after a reset.
1412  **/
1413
1414 static void
1415 e1000_configure_tx(struct e1000_adapter *adapter)
1416 {
1417         uint64_t tdba;
1418         struct e1000_hw *hw = &adapter->hw;
1419         uint32_t tdlen, tctl, tipg, tarc;
1420         uint32_t ipgr1, ipgr2;
1421
1422         /* Setup the HW Tx Head and Tail descriptor pointers */
1423
1424         switch (adapter->num_tx_queues) {
1425         case 1:
1426         default:
1427                 tdba = adapter->tx_ring[0].dma;
1428                 tdlen = adapter->tx_ring[0].count *
1429                         sizeof(struct e1000_tx_desc);
1430                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1431                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1432                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1433                 E1000_WRITE_REG(hw, TDT, 0);
1434                 E1000_WRITE_REG(hw, TDH, 0);
1435                 adapter->tx_ring[0].tdh = E1000_TDH;
1436                 adapter->tx_ring[0].tdt = E1000_TDT;
1437                 break;
1438         }
1439
1440         /* Set the default values for the Tx Inter Packet Gap timer */
1441
1442         if (hw->media_type == e1000_media_type_fiber ||
1443             hw->media_type == e1000_media_type_internal_serdes)
1444                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1445         else
1446                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1447
1448         switch (hw->mac_type) {
1449         case e1000_82542_rev2_0:
1450         case e1000_82542_rev2_1:
1451                 tipg = DEFAULT_82542_TIPG_IPGT;
1452                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1453                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1454                 break;
1455         case e1000_80003es2lan:
1456                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1457                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1458                 break;
1459         default:
1460                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1461                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1462                 break;
1463         }
1464         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1465         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1466         E1000_WRITE_REG(hw, TIPG, tipg);
1467
1468         /* Set the Tx Interrupt Delay register */
1469
1470         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1471         if (hw->mac_type >= e1000_82540)
1472                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1473
1474         /* Program the Transmit Control Register */
1475
1476         tctl = E1000_READ_REG(hw, TCTL);
1477
1478         tctl &= ~E1000_TCTL_CT;
1479         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1480                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1481
1482 #ifdef DISABLE_MULR
1483         /* disable Multiple Reads for debugging */
1484         tctl &= ~E1000_TCTL_MULR;
1485 #endif
1486
1487         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1488                 tarc = E1000_READ_REG(hw, TARC0);
1489                 tarc |= ((1 << 25) | (1 << 21));
1490                 E1000_WRITE_REG(hw, TARC0, tarc);
1491                 tarc = E1000_READ_REG(hw, TARC1);
1492                 tarc |= (1 << 25);
1493                 if (tctl & E1000_TCTL_MULR)
1494                         tarc &= ~(1 << 28);
1495                 else
1496                         tarc |= (1 << 28);
1497                 E1000_WRITE_REG(hw, TARC1, tarc);
1498         } else if (hw->mac_type == e1000_80003es2lan) {
1499                 tarc = E1000_READ_REG(hw, TARC0);
1500                 tarc |= 1;
1501                 E1000_WRITE_REG(hw, TARC0, tarc);
1502                 tarc = E1000_READ_REG(hw, TARC1);
1503                 tarc |= 1;
1504                 E1000_WRITE_REG(hw, TARC1, tarc);
1505         }
1506
1507         e1000_config_collision_dist(hw);
1508
1509         /* Setup Transmit Descriptor Settings for eop descriptor */
1510         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1511                 E1000_TXD_CMD_IFCS;
1512
1513         if (hw->mac_type < e1000_82543)
1514                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1515         else
1516                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1517
1518         /* Cache if we're 82544 running in PCI-X because we'll
1519          * need this to apply a workaround later in the send path. */
1520         if (hw->mac_type == e1000_82544 &&
1521             hw->bus_type == e1000_bus_type_pcix)
1522                 adapter->pcix_82544 = 1;
1523
1524         E1000_WRITE_REG(hw, TCTL, tctl);
1525
1526 }
1527
1528 /**
1529  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1530  * @adapter: board private structure
1531  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1532  *
1533  * Returns 0 on success, negative on failure
1534  **/
1535
1536 static int
1537 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1538                          struct e1000_rx_ring *rxdr)
1539 {
1540         struct pci_dev *pdev = adapter->pdev;
1541         int size, desc_len;
1542
1543         size = sizeof(struct e1000_buffer) * rxdr->count;
1544         rxdr->buffer_info = vmalloc(size);
1545         if (!rxdr->buffer_info) {
1546                 DPRINTK(PROBE, ERR,
1547                 "Unable to allocate memory for the receive descriptor ring\n");
1548                 return -ENOMEM;
1549         }
1550         memset(rxdr->buffer_info, 0, size);
1551
1552         size = sizeof(struct e1000_ps_page) * rxdr->count;
1553         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1554         if (!rxdr->ps_page) {
1555                 vfree(rxdr->buffer_info);
1556                 DPRINTK(PROBE, ERR,
1557                 "Unable to allocate memory for the receive descriptor ring\n");
1558                 return -ENOMEM;
1559         }
1560         memset(rxdr->ps_page, 0, size);
1561
1562         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1563         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1564         if (!rxdr->ps_page_dma) {
1565                 vfree(rxdr->buffer_info);
1566                 kfree(rxdr->ps_page);
1567                 DPRINTK(PROBE, ERR,
1568                 "Unable to allocate memory for the receive descriptor ring\n");
1569                 return -ENOMEM;
1570         }
1571         memset(rxdr->ps_page_dma, 0, size);
1572
1573         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1574                 desc_len = sizeof(struct e1000_rx_desc);
1575         else
1576                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1577
1578         /* Round up to nearest 4K */
1579
1580         rxdr->size = rxdr->count * desc_len;
1581         E1000_ROUNDUP(rxdr->size, 4096);
1582
1583         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1584
1585         if (!rxdr->desc) {
1586                 DPRINTK(PROBE, ERR,
1587                 "Unable to allocate memory for the receive descriptor ring\n");
1588 setup_rx_desc_die:
1589                 vfree(rxdr->buffer_info);
1590                 kfree(rxdr->ps_page);
1591                 kfree(rxdr->ps_page_dma);
1592                 return -ENOMEM;
1593         }
1594
1595         /* Fix for errata 23, can't cross 64kB boundary */
1596         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1597                 void *olddesc = rxdr->desc;
1598                 dma_addr_t olddma = rxdr->dma;
1599                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1600                                      "at %p\n", rxdr->size, rxdr->desc);
1601                 /* Try again, without freeing the previous */
1602                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1603                 /* Failed allocation, critical failure */
1604                 if (!rxdr->desc) {
1605                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1606                         DPRINTK(PROBE, ERR,
1607                                 "Unable to allocate memory "
1608                                 "for the receive descriptor ring\n");
1609                         goto setup_rx_desc_die;
1610                 }
1611
1612                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1613                         /* give up */
1614                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1615                                             rxdr->dma);
1616                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1617                         DPRINTK(PROBE, ERR,
1618                                 "Unable to allocate aligned memory "
1619                                 "for the receive descriptor ring\n");
1620                         goto setup_rx_desc_die;
1621                 } else {
1622                         /* Free old allocation, new allocation was successful */
1623                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1624                 }
1625         }
1626         memset(rxdr->desc, 0, rxdr->size);
1627
1628         rxdr->next_to_clean = 0;
1629         rxdr->next_to_use = 0;
1630
1631         return 0;
1632 }
1633
1634 /**
1635  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1636  *                                (Descriptors) for all queues
1637  * @adapter: board private structure
1638  *
1639  * If this function returns with an error, then it's possible one or
1640  * more of the rings is populated (while the rest are not).  It is the
1641  * callers duty to clean those orphaned rings.
1642  *
1643  * Return 0 on success, negative on failure
1644  **/
1645
1646 int
1647 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1648 {
1649         int i, err = 0;
1650
1651         for (i = 0; i < adapter->num_rx_queues; i++) {
1652                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1653                 if (err) {
1654                         DPRINTK(PROBE, ERR,
1655                                 "Allocation for Rx Queue %u failed\n", i);
1656                         break;
1657                 }
1658         }
1659
1660         return err;
1661 }
1662
1663 /**
1664  * e1000_setup_rctl - configure the receive control registers
1665  * @adapter: Board private structure
1666  **/
1667 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1668                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1669 static void
1670 e1000_setup_rctl(struct e1000_adapter *adapter)
1671 {
1672         uint32_t rctl, rfctl;
1673         uint32_t psrctl = 0;
1674 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1675         uint32_t pages = 0;
1676 #endif
1677
1678         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1679
1680         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1681
1682         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1683                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1684                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1685
1686         if (adapter->hw.tbi_compatibility_on == 1)
1687                 rctl |= E1000_RCTL_SBP;
1688         else
1689                 rctl &= ~E1000_RCTL_SBP;
1690
1691         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1692                 rctl &= ~E1000_RCTL_LPE;
1693         else
1694                 rctl |= E1000_RCTL_LPE;
1695
1696         /* Setup buffer sizes */
1697         rctl &= ~E1000_RCTL_SZ_4096;
1698         rctl |= E1000_RCTL_BSEX;
1699         switch (adapter->rx_buffer_len) {
1700                 case E1000_RXBUFFER_256:
1701                         rctl |= E1000_RCTL_SZ_256;
1702                         rctl &= ~E1000_RCTL_BSEX;
1703                         break;
1704                 case E1000_RXBUFFER_512:
1705                         rctl |= E1000_RCTL_SZ_512;
1706                         rctl &= ~E1000_RCTL_BSEX;
1707                         break;
1708                 case E1000_RXBUFFER_1024:
1709                         rctl |= E1000_RCTL_SZ_1024;
1710                         rctl &= ~E1000_RCTL_BSEX;
1711                         break;
1712                 case E1000_RXBUFFER_2048:
1713                 default:
1714                         rctl |= E1000_RCTL_SZ_2048;
1715                         rctl &= ~E1000_RCTL_BSEX;
1716                         break;
1717                 case E1000_RXBUFFER_4096:
1718                         rctl |= E1000_RCTL_SZ_4096;
1719                         break;
1720                 case E1000_RXBUFFER_8192:
1721                         rctl |= E1000_RCTL_SZ_8192;
1722                         break;
1723                 case E1000_RXBUFFER_16384:
1724                         rctl |= E1000_RCTL_SZ_16384;
1725                         break;
1726         }
1727
1728 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1729         /* 82571 and greater support packet-split where the protocol
1730          * header is placed in skb->data and the packet data is
1731          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1732          * In the case of a non-split, skb->data is linearly filled,
1733          * followed by the page buffers.  Therefore, skb->data is
1734          * sized to hold the largest protocol header.
1735          */
1736         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1737         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1738             PAGE_SIZE <= 16384)
1739                 adapter->rx_ps_pages = pages;
1740         else
1741                 adapter->rx_ps_pages = 0;
1742 #endif
1743         if (adapter->rx_ps_pages) {
1744                 /* Configure extra packet-split registers */
1745                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1746                 rfctl |= E1000_RFCTL_EXTEN;
1747                 /* disable IPv6 packet split support */
1748                 rfctl |= E1000_RFCTL_IPV6_DIS;
1749                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1750
1751                 rctl |= E1000_RCTL_DTYP_PS;
1752
1753                 psrctl |= adapter->rx_ps_bsize0 >>
1754                         E1000_PSRCTL_BSIZE0_SHIFT;
1755
1756                 switch (adapter->rx_ps_pages) {
1757                 case 3:
1758                         psrctl |= PAGE_SIZE <<
1759                                 E1000_PSRCTL_BSIZE3_SHIFT;
1760                 case 2:
1761                         psrctl |= PAGE_SIZE <<
1762                                 E1000_PSRCTL_BSIZE2_SHIFT;
1763                 case 1:
1764                         psrctl |= PAGE_SIZE >>
1765                                 E1000_PSRCTL_BSIZE1_SHIFT;
1766                         break;
1767                 }
1768
1769                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1770         }
1771
1772         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1773 }
1774
1775 /**
1776  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1777  * @adapter: board private structure
1778  *
1779  * Configure the Rx unit of the MAC after a reset.
1780  **/
1781
1782 static void
1783 e1000_configure_rx(struct e1000_adapter *adapter)
1784 {
1785         uint64_t rdba;
1786         struct e1000_hw *hw = &adapter->hw;
1787         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1788
1789         if (adapter->rx_ps_pages) {
1790                 /* this is a 32 byte descriptor */
1791                 rdlen = adapter->rx_ring[0].count *
1792                         sizeof(union e1000_rx_desc_packet_split);
1793                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1794                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1795         } else {
1796                 rdlen = adapter->rx_ring[0].count *
1797                         sizeof(struct e1000_rx_desc);
1798                 adapter->clean_rx = e1000_clean_rx_irq;
1799                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1800         }
1801
1802         /* disable receives while setting up the descriptors */
1803         rctl = E1000_READ_REG(hw, RCTL);
1804         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1805
1806         /* set the Receive Delay Timer Register */
1807         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1808
1809         if (hw->mac_type >= e1000_82540) {
1810                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1811                 if (adapter->itr > 1)
1812                         E1000_WRITE_REG(hw, ITR,
1813                                 1000000000 / (adapter->itr * 256));
1814         }
1815
1816         if (hw->mac_type >= e1000_82571) {
1817                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1818                 /* Reset delay timers after every interrupt */
1819                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1820 #ifdef CONFIG_E1000_NAPI
1821                 /* Auto-Mask interrupts upon ICR read. */
1822                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1823 #endif
1824                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1825                 E1000_WRITE_REG(hw, IAM, ~0);
1826                 E1000_WRITE_FLUSH(hw);
1827         }
1828
1829         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1830          * the Base and Length of the Rx Descriptor Ring */
1831         switch (adapter->num_rx_queues) {
1832         case 1:
1833         default:
1834                 rdba = adapter->rx_ring[0].dma;
1835                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1836                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1837                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1838                 E1000_WRITE_REG(hw, RDT, 0);
1839                 E1000_WRITE_REG(hw, RDH, 0);
1840                 adapter->rx_ring[0].rdh = E1000_RDH;
1841                 adapter->rx_ring[0].rdt = E1000_RDT;
1842                 break;
1843         }
1844
1845         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1846         if (hw->mac_type >= e1000_82543) {
1847                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1848                 if (adapter->rx_csum == TRUE) {
1849                         rxcsum |= E1000_RXCSUM_TUOFL;
1850
1851                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1852                          * Must be used in conjunction with packet-split. */
1853                         if ((hw->mac_type >= e1000_82571) &&
1854                             (adapter->rx_ps_pages)) {
1855                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1856                         }
1857                 } else {
1858                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1859                         /* don't need to clear IPPCSE as it defaults to 0 */
1860                 }
1861                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1862         }
1863
1864         /* Enable Receives */
1865         E1000_WRITE_REG(hw, RCTL, rctl);
1866 }
1867
1868 /**
1869  * e1000_free_tx_resources - Free Tx Resources per Queue
1870  * @adapter: board private structure
1871  * @tx_ring: Tx descriptor ring for a specific queue
1872  *
1873  * Free all transmit software resources
1874  **/
1875
1876 static void
1877 e1000_free_tx_resources(struct e1000_adapter *adapter,
1878                         struct e1000_tx_ring *tx_ring)
1879 {
1880         struct pci_dev *pdev = adapter->pdev;
1881
1882         e1000_clean_tx_ring(adapter, tx_ring);
1883
1884         vfree(tx_ring->buffer_info);
1885         tx_ring->buffer_info = NULL;
1886
1887         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1888
1889         tx_ring->desc = NULL;
1890 }
1891
1892 /**
1893  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1894  * @adapter: board private structure
1895  *
1896  * Free all transmit software resources
1897  **/
1898
1899 void
1900 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1901 {
1902         int i;
1903
1904         for (i = 0; i < adapter->num_tx_queues; i++)
1905                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1906 }
1907
1908 static void
1909 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1910                         struct e1000_buffer *buffer_info)
1911 {
1912         if (buffer_info->dma) {
1913                 pci_unmap_page(adapter->pdev,
1914                                 buffer_info->dma,
1915                                 buffer_info->length,
1916                                 PCI_DMA_TODEVICE);
1917         }
1918         if (buffer_info->skb)
1919                 dev_kfree_skb_any(buffer_info->skb);
1920         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1921 }
1922
1923 /**
1924  * e1000_clean_tx_ring - Free Tx Buffers
1925  * @adapter: board private structure
1926  * @tx_ring: ring to be cleaned
1927  **/
1928
1929 static void
1930 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1931                     struct e1000_tx_ring *tx_ring)
1932 {
1933         struct e1000_buffer *buffer_info;
1934         unsigned long size;
1935         unsigned int i;
1936
1937         /* Free all the Tx ring sk_buffs */
1938
1939         for (i = 0; i < tx_ring->count; i++) {
1940                 buffer_info = &tx_ring->buffer_info[i];
1941                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1942         }
1943
1944         size = sizeof(struct e1000_buffer) * tx_ring->count;
1945         memset(tx_ring->buffer_info, 0, size);
1946
1947         /* Zero out the descriptor ring */
1948
1949         memset(tx_ring->desc, 0, tx_ring->size);
1950
1951         tx_ring->next_to_use = 0;
1952         tx_ring->next_to_clean = 0;
1953         tx_ring->last_tx_tso = 0;
1954
1955         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1956         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1957 }
1958
1959 /**
1960  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1961  * @adapter: board private structure
1962  **/
1963
1964 static void
1965 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1966 {
1967         int i;
1968
1969         for (i = 0; i < adapter->num_tx_queues; i++)
1970                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1971 }
1972
1973 /**
1974  * e1000_free_rx_resources - Free Rx Resources
1975  * @adapter: board private structure
1976  * @rx_ring: ring to clean the resources from
1977  *
1978  * Free all receive software resources
1979  **/
1980
1981 static void
1982 e1000_free_rx_resources(struct e1000_adapter *adapter,
1983                         struct e1000_rx_ring *rx_ring)
1984 {
1985         struct pci_dev *pdev = adapter->pdev;
1986
1987         e1000_clean_rx_ring(adapter, rx_ring);
1988
1989         vfree(rx_ring->buffer_info);
1990         rx_ring->buffer_info = NULL;
1991         kfree(rx_ring->ps_page);
1992         rx_ring->ps_page = NULL;
1993         kfree(rx_ring->ps_page_dma);
1994         rx_ring->ps_page_dma = NULL;
1995
1996         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1997
1998         rx_ring->desc = NULL;
1999 }
2000
2001 /**
2002  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2003  * @adapter: board private structure
2004  *
2005  * Free all receive software resources
2006  **/
2007
2008 void
2009 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2010 {
2011         int i;
2012
2013         for (i = 0; i < adapter->num_rx_queues; i++)
2014                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2015 }
2016
2017 /**
2018  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2019  * @adapter: board private structure
2020  * @rx_ring: ring to free buffers from
2021  **/
2022
2023 static void
2024 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2025                     struct e1000_rx_ring *rx_ring)
2026 {
2027         struct e1000_buffer *buffer_info;
2028         struct e1000_ps_page *ps_page;
2029         struct e1000_ps_page_dma *ps_page_dma;
2030         struct pci_dev *pdev = adapter->pdev;
2031         unsigned long size;
2032         unsigned int i, j;
2033
2034         /* Free all the Rx ring sk_buffs */
2035         for (i = 0; i < rx_ring->count; i++) {
2036                 buffer_info = &rx_ring->buffer_info[i];
2037                 if (buffer_info->skb) {
2038                         pci_unmap_single(pdev,
2039                                          buffer_info->dma,
2040                                          buffer_info->length,
2041                                          PCI_DMA_FROMDEVICE);
2042
2043                         dev_kfree_skb(buffer_info->skb);
2044                         buffer_info->skb = NULL;
2045                 }
2046                 ps_page = &rx_ring->ps_page[i];
2047                 ps_page_dma = &rx_ring->ps_page_dma[i];
2048                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2049                         if (!ps_page->ps_page[j]) break;
2050                         pci_unmap_page(pdev,
2051                                        ps_page_dma->ps_page_dma[j],
2052                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2053                         ps_page_dma->ps_page_dma[j] = 0;
2054                         put_page(ps_page->ps_page[j]);
2055                         ps_page->ps_page[j] = NULL;
2056                 }
2057         }
2058
2059         size = sizeof(struct e1000_buffer) * rx_ring->count;
2060         memset(rx_ring->buffer_info, 0, size);
2061         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2062         memset(rx_ring->ps_page, 0, size);
2063         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2064         memset(rx_ring->ps_page_dma, 0, size);
2065
2066         /* Zero out the descriptor ring */
2067
2068         memset(rx_ring->desc, 0, rx_ring->size);
2069
2070         rx_ring->next_to_clean = 0;
2071         rx_ring->next_to_use = 0;
2072
2073         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2074         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2075 }
2076
2077 /**
2078  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2079  * @adapter: board private structure
2080  **/
2081
2082 static void
2083 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2084 {
2085         int i;
2086
2087         for (i = 0; i < adapter->num_rx_queues; i++)
2088                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2089 }
2090
2091 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2092  * and memory write and invalidate disabled for certain operations
2093  */
2094 static void
2095 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2096 {
2097         struct net_device *netdev = adapter->netdev;
2098         uint32_t rctl;
2099
2100         e1000_pci_clear_mwi(&adapter->hw);
2101
2102         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2103         rctl |= E1000_RCTL_RST;
2104         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2105         E1000_WRITE_FLUSH(&adapter->hw);
2106         mdelay(5);
2107
2108         if (netif_running(netdev))
2109                 e1000_clean_all_rx_rings(adapter);
2110 }
2111
2112 static void
2113 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2114 {
2115         struct net_device *netdev = adapter->netdev;
2116         uint32_t rctl;
2117
2118         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2119         rctl &= ~E1000_RCTL_RST;
2120         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2121         E1000_WRITE_FLUSH(&adapter->hw);
2122         mdelay(5);
2123
2124         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2125                 e1000_pci_set_mwi(&adapter->hw);
2126
2127         if (netif_running(netdev)) {
2128                 /* No need to loop, because 82542 supports only 1 queue */
2129                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2130                 e1000_configure_rx(adapter);
2131                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2132         }
2133 }
2134
2135 /**
2136  * e1000_set_mac - Change the Ethernet Address of the NIC
2137  * @netdev: network interface device structure
2138  * @p: pointer to an address structure
2139  *
2140  * Returns 0 on success, negative on failure
2141  **/
2142
2143 static int
2144 e1000_set_mac(struct net_device *netdev, void *p)
2145 {
2146         struct e1000_adapter *adapter = netdev_priv(netdev);
2147         struct sockaddr *addr = p;
2148
2149         if (!is_valid_ether_addr(addr->sa_data))
2150                 return -EADDRNOTAVAIL;
2151
2152         /* 82542 2.0 needs to be in reset to write receive address registers */
2153
2154         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2155                 e1000_enter_82542_rst(adapter);
2156
2157         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2158         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2159
2160         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2161
2162         /* With 82571 controllers, LAA may be overwritten (with the default)
2163          * due to controller reset from the other port. */
2164         if (adapter->hw.mac_type == e1000_82571) {
2165                 /* activate the work around */
2166                 adapter->hw.laa_is_present = 1;
2167
2168                 /* Hold a copy of the LAA in RAR[14] This is done so that
2169                  * between the time RAR[0] gets clobbered  and the time it
2170                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2171                  * of the RARs and no incoming packets directed to this port
2172                  * are dropped. Eventaully the LAA will be in RAR[0] and
2173                  * RAR[14] */
2174                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2175                                         E1000_RAR_ENTRIES - 1);
2176         }
2177
2178         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2179                 e1000_leave_82542_rst(adapter);
2180
2181         return 0;
2182 }
2183
2184 /**
2185  * e1000_set_multi - Multicast and Promiscuous mode set
2186  * @netdev: network interface device structure
2187  *
2188  * The set_multi entry point is called whenever the multicast address
2189  * list or the network interface flags are updated.  This routine is
2190  * responsible for configuring the hardware for proper multicast,
2191  * promiscuous mode, and all-multi behavior.
2192  **/
2193
2194 static void
2195 e1000_set_multi(struct net_device *netdev)
2196 {
2197         struct e1000_adapter *adapter = netdev_priv(netdev);
2198         struct e1000_hw *hw = &adapter->hw;
2199         struct dev_mc_list *mc_ptr;
2200         uint32_t rctl;
2201         uint32_t hash_value;
2202         int i, rar_entries = E1000_RAR_ENTRIES;
2203         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2204                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2205                                 E1000_NUM_MTA_REGISTERS;
2206
2207         if (adapter->hw.mac_type == e1000_ich8lan)
2208                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2209
2210         /* reserve RAR[14] for LAA over-write work-around */
2211         if (adapter->hw.mac_type == e1000_82571)
2212                 rar_entries--;
2213
2214         /* Check for Promiscuous and All Multicast modes */
2215
2216         rctl = E1000_READ_REG(hw, RCTL);
2217
2218         if (netdev->flags & IFF_PROMISC) {
2219                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2220         } else if (netdev->flags & IFF_ALLMULTI) {
2221                 rctl |= E1000_RCTL_MPE;
2222                 rctl &= ~E1000_RCTL_UPE;
2223         } else {
2224                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2225         }
2226
2227         E1000_WRITE_REG(hw, RCTL, rctl);
2228
2229         /* 82542 2.0 needs to be in reset to write receive address registers */
2230
2231         if (hw->mac_type == e1000_82542_rev2_0)
2232                 e1000_enter_82542_rst(adapter);
2233
2234         /* load the first 14 multicast address into the exact filters 1-14
2235          * RAR 0 is used for the station MAC adddress
2236          * if there are not 14 addresses, go ahead and clear the filters
2237          * -- with 82571 controllers only 0-13 entries are filled here
2238          */
2239         mc_ptr = netdev->mc_list;
2240
2241         for (i = 1; i < rar_entries; i++) {
2242                 if (mc_ptr) {
2243                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2244                         mc_ptr = mc_ptr->next;
2245                 } else {
2246                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2247                         E1000_WRITE_FLUSH(hw);
2248                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2249                         E1000_WRITE_FLUSH(hw);
2250                 }
2251         }
2252
2253         /* clear the old settings from the multicast hash table */
2254
2255         for (i = 0; i < mta_reg_count; i++) {
2256                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2257                 E1000_WRITE_FLUSH(hw);
2258         }
2259
2260         /* load any remaining addresses into the hash table */
2261
2262         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2263                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2264                 e1000_mta_set(hw, hash_value);
2265         }
2266
2267         if (hw->mac_type == e1000_82542_rev2_0)
2268                 e1000_leave_82542_rst(adapter);
2269 }
2270
2271 /* Need to wait a few seconds after link up to get diagnostic information from
2272  * the phy */
2273
2274 static void
2275 e1000_update_phy_info(unsigned long data)
2276 {
2277         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2278         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2279 }
2280
2281 /**
2282  * e1000_82547_tx_fifo_stall - Timer Call-back
2283  * @data: pointer to adapter cast into an unsigned long
2284  **/
2285
2286 static void
2287 e1000_82547_tx_fifo_stall(unsigned long data)
2288 {
2289         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2290         struct net_device *netdev = adapter->netdev;
2291         uint32_t tctl;
2292
2293         if (atomic_read(&adapter->tx_fifo_stall)) {
2294                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2295                     E1000_READ_REG(&adapter->hw, TDH)) &&
2296                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2297                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2298                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2299                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2300                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2301                         E1000_WRITE_REG(&adapter->hw, TCTL,
2302                                         tctl & ~E1000_TCTL_EN);
2303                         E1000_WRITE_REG(&adapter->hw, TDFT,
2304                                         adapter->tx_head_addr);
2305                         E1000_WRITE_REG(&adapter->hw, TDFH,
2306                                         adapter->tx_head_addr);
2307                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2308                                         adapter->tx_head_addr);
2309                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2310                                         adapter->tx_head_addr);
2311                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2312                         E1000_WRITE_FLUSH(&adapter->hw);
2313
2314                         adapter->tx_fifo_head = 0;
2315                         atomic_set(&adapter->tx_fifo_stall, 0);
2316                         netif_wake_queue(netdev);
2317                 } else {
2318                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2319                 }
2320         }
2321 }
2322
2323 /**
2324  * e1000_watchdog - Timer Call-back
2325  * @data: pointer to adapter cast into an unsigned long
2326  **/
2327 static void
2328 e1000_watchdog(unsigned long data)
2329 {
2330         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2331         struct net_device *netdev = adapter->netdev;
2332         struct e1000_tx_ring *txdr = adapter->tx_ring;
2333         uint32_t link, tctl;
2334         int32_t ret_val;
2335
2336         ret_val = e1000_check_for_link(&adapter->hw);
2337         if ((ret_val == E1000_ERR_PHY) &&
2338             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2339             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2340                 /* See e1000_kumeran_lock_loss_workaround() */
2341                 DPRINTK(LINK, INFO,
2342                         "Gigabit has been disabled, downgrading speed\n");
2343         }
2344         if (adapter->hw.mac_type == e1000_82573) {
2345                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2346                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2347                         e1000_update_mng_vlan(adapter);
2348         }
2349
2350         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2351            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2352                 link = !adapter->hw.serdes_link_down;
2353         else
2354                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2355
2356         if (link) {
2357                 if (!netif_carrier_ok(netdev)) {
2358                         boolean_t txb2b = 1;
2359                         e1000_get_speed_and_duplex(&adapter->hw,
2360                                                    &adapter->link_speed,
2361                                                    &adapter->link_duplex);
2362
2363                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2364                                adapter->link_speed,
2365                                adapter->link_duplex == FULL_DUPLEX ?
2366                                "Full Duplex" : "Half Duplex");
2367
2368                         /* tweak tx_queue_len according to speed/duplex
2369                          * and adjust the timeout factor */
2370                         netdev->tx_queue_len = adapter->tx_queue_len;
2371                         adapter->tx_timeout_factor = 1;
2372                         switch (adapter->link_speed) {
2373                         case SPEED_10:
2374                                 txb2b = 0;
2375                                 netdev->tx_queue_len = 10;
2376                                 adapter->tx_timeout_factor = 8;
2377                                 break;
2378                         case SPEED_100:
2379                                 txb2b = 0;
2380                                 netdev->tx_queue_len = 100;
2381                                 /* maybe add some timeout factor ? */
2382                                 break;
2383                         }
2384
2385                         if ((adapter->hw.mac_type == e1000_82571 ||
2386                              adapter->hw.mac_type == e1000_82572) &&
2387                             txb2b == 0) {
2388 #define SPEED_MODE_BIT (1 << 21)
2389                                 uint32_t tarc0;
2390                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2391                                 tarc0 &= ~SPEED_MODE_BIT;
2392                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2393                         }
2394                                 
2395 #ifdef NETIF_F_TSO
2396                         /* disable TSO for pcie and 10/100 speeds, to avoid
2397                          * some hardware issues */
2398                         if (!adapter->tso_force &&
2399                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2400                                 switch (adapter->link_speed) {
2401                                 case SPEED_10:
2402                                 case SPEED_100:
2403                                         DPRINTK(PROBE,INFO,
2404                                         "10/100 speed: disabling TSO\n");
2405                                         netdev->features &= ~NETIF_F_TSO;
2406                                         break;
2407                                 case SPEED_1000:
2408                                         netdev->features |= NETIF_F_TSO;
2409                                         break;
2410                                 default:
2411                                         /* oops */
2412                                         break;
2413                                 }
2414                         }
2415 #endif
2416
2417                         /* enable transmits in the hardware, need to do this
2418                          * after setting TARC0 */
2419                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2420                         tctl |= E1000_TCTL_EN;
2421                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2422
2423                         netif_carrier_on(netdev);
2424                         netif_wake_queue(netdev);
2425                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2426                         adapter->smartspeed = 0;
2427                 }
2428         } else {
2429                 if (netif_carrier_ok(netdev)) {
2430                         adapter->link_speed = 0;
2431                         adapter->link_duplex = 0;
2432                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2433                         netif_carrier_off(netdev);
2434                         netif_stop_queue(netdev);
2435                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2436
2437                         /* 80003ES2LAN workaround--
2438                          * For packet buffer work-around on link down event;
2439                          * disable receives in the ISR and
2440                          * reset device here in the watchdog
2441                          */
2442                         if (adapter->hw.mac_type == e1000_80003es2lan)
2443                                 /* reset device */
2444                                 schedule_work(&adapter->reset_task);
2445                 }
2446
2447                 e1000_smartspeed(adapter);
2448         }
2449
2450         e1000_update_stats(adapter);
2451
2452         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2453         adapter->tpt_old = adapter->stats.tpt;
2454         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2455         adapter->colc_old = adapter->stats.colc;
2456
2457         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2458         adapter->gorcl_old = adapter->stats.gorcl;
2459         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2460         adapter->gotcl_old = adapter->stats.gotcl;
2461
2462         e1000_update_adaptive(&adapter->hw);
2463
2464         if (!netif_carrier_ok(netdev)) {
2465                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2466                         /* We've lost link, so the controller stops DMA,
2467                          * but we've got queued Tx work that's never going
2468                          * to get done, so reset controller to flush Tx.
2469                          * (Do the reset outside of interrupt context). */
2470                         adapter->tx_timeout_count++;
2471                         schedule_work(&adapter->reset_task);
2472                 }
2473         }
2474
2475         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2476         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2477                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2478                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2479                  * else is between 2000-8000. */
2480                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2481                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2482                         adapter->gotcl - adapter->gorcl :
2483                         adapter->gorcl - adapter->gotcl) / 10000;
2484                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2485                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2486         }
2487
2488         /* Cause software interrupt to ensure rx ring is cleaned */
2489         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2490
2491         /* Force detection of hung controller every watchdog period */
2492         adapter->detect_tx_hung = TRUE;
2493
2494         /* With 82571 controllers, LAA may be overwritten due to controller
2495          * reset from the other port. Set the appropriate LAA in RAR[0] */
2496         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2497                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2498
2499         /* Reset the timer */
2500         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2501 }
2502
2503 #define E1000_TX_FLAGS_CSUM             0x00000001
2504 #define E1000_TX_FLAGS_VLAN             0x00000002
2505 #define E1000_TX_FLAGS_TSO              0x00000004
2506 #define E1000_TX_FLAGS_IPV4             0x00000008
2507 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2508 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2509
2510 static int
2511 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2512           struct sk_buff *skb)
2513 {
2514 #ifdef NETIF_F_TSO
2515         struct e1000_context_desc *context_desc;
2516         struct e1000_buffer *buffer_info;
2517         unsigned int i;
2518         uint32_t cmd_length = 0;
2519         uint16_t ipcse = 0, tucse, mss;
2520         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2521         int err;
2522
2523         if (skb_is_gso(skb)) {
2524                 if (skb_header_cloned(skb)) {
2525                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2526                         if (err)
2527                                 return err;
2528                 }
2529
2530                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2531                 mss = skb_shinfo(skb)->gso_size;
2532                 if (skb->protocol == htons(ETH_P_IP)) {
2533                         skb->nh.iph->tot_len = 0;
2534                         skb->nh.iph->check = 0;
2535                         skb->h.th->check =
2536                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2537                                                    skb->nh.iph->daddr,
2538                                                    0,
2539                                                    IPPROTO_TCP,
2540                                                    0);
2541                         cmd_length = E1000_TXD_CMD_IP;
2542                         ipcse = skb->h.raw - skb->data - 1;
2543 #ifdef NETIF_F_TSO_IPV6
2544                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2545                         skb->nh.ipv6h->payload_len = 0;
2546                         skb->h.th->check =
2547                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2548                                                  &skb->nh.ipv6h->daddr,
2549                                                  0,
2550                                                  IPPROTO_TCP,
2551                                                  0);
2552                         ipcse = 0;
2553 #endif
2554                 }
2555                 ipcss = skb->nh.raw - skb->data;
2556                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2557                 tucss = skb->h.raw - skb->data;
2558                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2559                 tucse = 0;
2560
2561                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2562                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2563
2564                 i = tx_ring->next_to_use;
2565                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2566                 buffer_info = &tx_ring->buffer_info[i];
2567
2568                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2569                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2570                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2571                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2572                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2573                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2574                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2575                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2576                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2577
2578                 buffer_info->time_stamp = jiffies;
2579
2580                 if (++i == tx_ring->count) i = 0;
2581                 tx_ring->next_to_use = i;
2582
2583                 return TRUE;
2584         }
2585 #endif
2586
2587         return FALSE;
2588 }
2589
2590 static boolean_t
2591 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2592               struct sk_buff *skb)
2593 {
2594         struct e1000_context_desc *context_desc;
2595         struct e1000_buffer *buffer_info;
2596         unsigned int i;
2597         uint8_t css;
2598
2599         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2600                 css = skb->h.raw - skb->data;
2601
2602                 i = tx_ring->next_to_use;
2603                 buffer_info = &tx_ring->buffer_info[i];
2604                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2605
2606                 context_desc->upper_setup.tcp_fields.tucss = css;
2607                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2608                 context_desc->upper_setup.tcp_fields.tucse = 0;
2609                 context_desc->tcp_seg_setup.data = 0;
2610                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2611
2612                 buffer_info->time_stamp = jiffies;
2613
2614                 if (unlikely(++i == tx_ring->count)) i = 0;
2615                 tx_ring->next_to_use = i;
2616
2617                 return TRUE;
2618         }
2619
2620         return FALSE;
2621 }
2622
2623 #define E1000_MAX_TXD_PWR       12
2624 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2625
2626 static int
2627 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2628              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2629              unsigned int nr_frags, unsigned int mss)
2630 {
2631         struct e1000_buffer *buffer_info;
2632         unsigned int len = skb->len;
2633         unsigned int offset = 0, size, count = 0, i;
2634         unsigned int f;
2635         len -= skb->data_len;
2636
2637         i = tx_ring->next_to_use;
2638
2639         while (len) {
2640                 buffer_info = &tx_ring->buffer_info[i];
2641                 size = min(len, max_per_txd);
2642 #ifdef NETIF_F_TSO
2643                 /* Workaround for Controller erratum --
2644                  * descriptor for non-tso packet in a linear SKB that follows a
2645                  * tso gets written back prematurely before the data is fully
2646                  * DMA'd to the controller */
2647                 if (!skb->data_len && tx_ring->last_tx_tso &&
2648                     !skb_is_gso(skb)) {
2649                         tx_ring->last_tx_tso = 0;
2650                         size -= 4;
2651                 }
2652
2653                 /* Workaround for premature desc write-backs
2654                  * in TSO mode.  Append 4-byte sentinel desc */
2655                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2656                         size -= 4;
2657 #endif
2658                 /* work-around for errata 10 and it applies
2659                  * to all controllers in PCI-X mode
2660                  * The fix is to make sure that the first descriptor of a
2661                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2662                  */
2663                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2664                                 (size > 2015) && count == 0))
2665                         size = 2015;
2666
2667                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2668                  * terminating buffers within evenly-aligned dwords. */
2669                 if (unlikely(adapter->pcix_82544 &&
2670                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2671                    size > 4))
2672                         size -= 4;
2673
2674                 buffer_info->length = size;
2675                 buffer_info->dma =
2676                         pci_map_single(adapter->pdev,
2677                                 skb->data + offset,
2678                                 size,
2679                                 PCI_DMA_TODEVICE);
2680                 buffer_info->time_stamp = jiffies;
2681
2682                 len -= size;
2683                 offset += size;
2684                 count++;
2685                 if (unlikely(++i == tx_ring->count)) i = 0;
2686         }
2687
2688         for (f = 0; f < nr_frags; f++) {
2689                 struct skb_frag_struct *frag;
2690
2691                 frag = &skb_shinfo(skb)->frags[f];
2692                 len = frag->size;
2693                 offset = frag->page_offset;
2694
2695                 while (len) {
2696                         buffer_info = &tx_ring->buffer_info[i];
2697                         size = min(len, max_per_txd);
2698 #ifdef NETIF_F_TSO
2699                         /* Workaround for premature desc write-backs
2700                          * in TSO mode.  Append 4-byte sentinel desc */
2701                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2702                                 size -= 4;
2703 #endif
2704                         /* Workaround for potential 82544 hang in PCI-X.
2705                          * Avoid terminating buffers within evenly-aligned
2706                          * dwords. */
2707                         if (unlikely(adapter->pcix_82544 &&
2708                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2709                            size > 4))
2710                                 size -= 4;
2711
2712                         buffer_info->length = size;
2713                         buffer_info->dma =
2714                                 pci_map_page(adapter->pdev,
2715                                         frag->page,
2716                                         offset,
2717                                         size,
2718                                         PCI_DMA_TODEVICE);
2719                         buffer_info->time_stamp = jiffies;
2720
2721                         len -= size;
2722                         offset += size;
2723                         count++;
2724                         if (unlikely(++i == tx_ring->count)) i = 0;
2725                 }
2726         }
2727
2728         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2729         tx_ring->buffer_info[i].skb = skb;
2730         tx_ring->buffer_info[first].next_to_watch = i;
2731
2732         return count;
2733 }
2734
2735 static void
2736 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2737                int tx_flags, int count)
2738 {
2739         struct e1000_tx_desc *tx_desc = NULL;
2740         struct e1000_buffer *buffer_info;
2741         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2742         unsigned int i;
2743
2744         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2745                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2746                              E1000_TXD_CMD_TSE;
2747                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2748
2749                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2750                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2751         }
2752
2753         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2754                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2755                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2756         }
2757
2758         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2759                 txd_lower |= E1000_TXD_CMD_VLE;
2760                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2761         }
2762
2763         i = tx_ring->next_to_use;
2764
2765         while (count--) {
2766                 buffer_info = &tx_ring->buffer_info[i];
2767                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2768                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2769                 tx_desc->lower.data =
2770                         cpu_to_le32(txd_lower | buffer_info->length);
2771                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2772                 if (unlikely(++i == tx_ring->count)) i = 0;
2773         }
2774
2775         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2776
2777         /* Force memory writes to complete before letting h/w
2778          * know there are new descriptors to fetch.  (Only
2779          * applicable for weak-ordered memory model archs,
2780          * such as IA-64). */
2781         wmb();
2782
2783         tx_ring->next_to_use = i;
2784         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2785 }
2786
2787 /**
2788  * 82547 workaround to avoid controller hang in half-duplex environment.
2789  * The workaround is to avoid queuing a large packet that would span
2790  * the internal Tx FIFO ring boundary by notifying the stack to resend
2791  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2792  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2793  * to the beginning of the Tx FIFO.
2794  **/
2795
2796 #define E1000_FIFO_HDR                  0x10
2797 #define E1000_82547_PAD_LEN             0x3E0
2798
2799 static int
2800 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2801 {
2802         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2803         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2804
2805         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2806
2807         if (adapter->link_duplex != HALF_DUPLEX)
2808                 goto no_fifo_stall_required;
2809
2810         if (atomic_read(&adapter->tx_fifo_stall))
2811                 return 1;
2812
2813         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2814                 atomic_set(&adapter->tx_fifo_stall, 1);
2815                 return 1;
2816         }
2817
2818 no_fifo_stall_required:
2819         adapter->tx_fifo_head += skb_fifo_len;
2820         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2821                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2822         return 0;
2823 }
2824
2825 #define MINIMUM_DHCP_PACKET_SIZE 282
2826 static int
2827 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2828 {
2829         struct e1000_hw *hw =  &adapter->hw;
2830         uint16_t length, offset;
2831         if (vlan_tx_tag_present(skb)) {
2832                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2833                         ( adapter->hw.mng_cookie.status &
2834                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2835                         return 0;
2836         }
2837         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2838                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2839                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2840                         const struct iphdr *ip =
2841                                 (struct iphdr *)((uint8_t *)skb->data+14);
2842                         if (IPPROTO_UDP == ip->protocol) {
2843                                 struct udphdr *udp =
2844                                         (struct udphdr *)((uint8_t *)ip +
2845                                                 (ip->ihl << 2));
2846                                 if (ntohs(udp->dest) == 67) {
2847                                         offset = (uint8_t *)udp + 8 - skb->data;
2848                                         length = skb->len - offset;
2849
2850                                         return e1000_mng_write_dhcp_info(hw,
2851                                                         (uint8_t *)udp + 8,
2852                                                         length);
2853                                 }
2854                         }
2855                 }
2856         }
2857         return 0;
2858 }
2859
2860 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2861 static int
2862 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2863 {
2864         struct e1000_adapter *adapter = netdev_priv(netdev);
2865         struct e1000_tx_ring *tx_ring;
2866         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2867         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2868         unsigned int tx_flags = 0;
2869         unsigned int len = skb->len;
2870         unsigned long flags;
2871         unsigned int nr_frags = 0;
2872         unsigned int mss = 0;
2873         int count = 0;
2874         int tso;
2875         unsigned int f;
2876         len -= skb->data_len;
2877
2878         tx_ring = adapter->tx_ring;
2879
2880         if (unlikely(skb->len <= 0)) {
2881                 dev_kfree_skb_any(skb);
2882                 return NETDEV_TX_OK;
2883         }
2884
2885 #ifdef NETIF_F_TSO
2886         mss = skb_shinfo(skb)->gso_size;
2887         /* The controller does a simple calculation to
2888          * make sure there is enough room in the FIFO before
2889          * initiating the DMA for each buffer.  The calc is:
2890          * 4 = ceil(buffer len/mss).  To make sure we don't
2891          * overrun the FIFO, adjust the max buffer len if mss
2892          * drops. */
2893         if (mss) {
2894                 uint8_t hdr_len;
2895                 max_per_txd = min(mss << 2, max_per_txd);
2896                 max_txd_pwr = fls(max_per_txd) - 1;
2897
2898         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2899          * points to just header, pull a few bytes of payload from
2900          * frags into skb->data */
2901                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2902                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2903                         switch (adapter->hw.mac_type) {
2904                                 unsigned int pull_size;
2905                         case e1000_82571:
2906                         case e1000_82572:
2907                         case e1000_82573:
2908                         case e1000_ich8lan:
2909                                 pull_size = min((unsigned int)4, skb->data_len);
2910                                 if (!__pskb_pull_tail(skb, pull_size)) {
2911                                         DPRINTK(DRV, ERR,
2912                                                 "__pskb_pull_tail failed.\n");
2913                                         dev_kfree_skb_any(skb);
2914                                         return NETDEV_TX_OK;
2915                                 }
2916                                 len = skb->len - skb->data_len;
2917                                 break;
2918                         default:
2919                                 /* do nothing */
2920                                 break;
2921                         }
2922                 }
2923         }
2924
2925         /* reserve a descriptor for the offload context */
2926         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2927                 count++;
2928         count++;
2929 #else
2930         if (skb->ip_summed == CHECKSUM_HW)
2931                 count++;
2932 #endif
2933
2934 #ifdef NETIF_F_TSO
2935         /* Controller Erratum workaround */
2936         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2937                 count++;
2938 #endif
2939
2940         count += TXD_USE_COUNT(len, max_txd_pwr);
2941
2942         if (adapter->pcix_82544)
2943                 count++;
2944
2945         /* work-around for errata 10 and it applies to all controllers
2946          * in PCI-X mode, so add one more descriptor to the count
2947          */
2948         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2949                         (len > 2015)))
2950                 count++;
2951
2952         nr_frags = skb_shinfo(skb)->nr_frags;
2953         for (f = 0; f < nr_frags; f++)
2954                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2955                                        max_txd_pwr);
2956         if (adapter->pcix_82544)
2957                 count += nr_frags;
2958
2959
2960         if (adapter->hw.tx_pkt_filtering &&
2961             (adapter->hw.mac_type == e1000_82573))
2962                 e1000_transfer_dhcp_info(adapter, skb);
2963
2964         local_irq_save(flags);
2965         if (!spin_trylock(&tx_ring->tx_lock)) {
2966                 /* Collision - tell upper layer to requeue */
2967                 local_irq_restore(flags);
2968                 return NETDEV_TX_LOCKED;
2969         }
2970
2971         /* need: count + 2 desc gap to keep tail from touching
2972          * head, otherwise try next time */
2973         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2974                 netif_stop_queue(netdev);
2975                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2976                 return NETDEV_TX_BUSY;
2977         }
2978
2979         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2980                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2981                         netif_stop_queue(netdev);
2982                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2983                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2984                         return NETDEV_TX_BUSY;
2985                 }
2986         }
2987
2988         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2989                 tx_flags |= E1000_TX_FLAGS_VLAN;
2990                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2991         }
2992
2993         first = tx_ring->next_to_use;
2994
2995         tso = e1000_tso(adapter, tx_ring, skb);
2996         if (tso < 0) {
2997                 dev_kfree_skb_any(skb);
2998                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2999                 return NETDEV_TX_OK;
3000         }
3001
3002         if (likely(tso)) {
3003                 tx_ring->last_tx_tso = 1;
3004                 tx_flags |= E1000_TX_FLAGS_TSO;
3005         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3006                 tx_flags |= E1000_TX_FLAGS_CSUM;
3007
3008         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3009          * 82571 hardware supports TSO capabilities for IPv6 as well...
3010          * no longer assume, we must. */
3011         if (likely(skb->protocol == htons(ETH_P_IP)))
3012                 tx_flags |= E1000_TX_FLAGS_IPV4;
3013
3014         e1000_tx_queue(adapter, tx_ring, tx_flags,
3015                        e1000_tx_map(adapter, tx_ring, skb, first,
3016                                     max_per_txd, nr_frags, mss));
3017
3018         netdev->trans_start = jiffies;
3019
3020         /* Make sure there is space in the ring for the next send. */
3021         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3022                 netif_stop_queue(netdev);
3023
3024         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3025         return NETDEV_TX_OK;
3026 }
3027
3028 /**
3029  * e1000_tx_timeout - Respond to a Tx Hang
3030  * @netdev: network interface device structure
3031  **/
3032
3033 static void
3034 e1000_tx_timeout(struct net_device *netdev)
3035 {
3036         struct e1000_adapter *adapter = netdev_priv(netdev);
3037
3038         /* Do the reset outside of interrupt context */
3039         adapter->tx_timeout_count++;
3040         schedule_work(&adapter->reset_task);
3041 }
3042
3043 static void
3044 e1000_reset_task(struct net_device *netdev)
3045 {
3046         struct e1000_adapter *adapter = netdev_priv(netdev);
3047
3048         e1000_reinit_locked(adapter);
3049 }
3050
3051 /**
3052  * e1000_get_stats - Get System Network Statistics
3053  * @netdev: network interface device structure
3054  *
3055  * Returns the address of the device statistics structure.
3056  * The statistics are actually updated from the timer callback.
3057  **/
3058
3059 static struct net_device_stats *
3060 e1000_get_stats(struct net_device *netdev)
3061 {
3062         struct e1000_adapter *adapter = netdev_priv(netdev);
3063
3064         /* only return the current stats */
3065         return &adapter->net_stats;
3066 }
3067
3068 /**
3069  * e1000_change_mtu - Change the Maximum Transfer Unit
3070  * @netdev: network interface device structure
3071  * @new_mtu: new value for maximum frame size
3072  *
3073  * Returns 0 on success, negative on failure
3074  **/
3075
3076 static int
3077 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3078 {
3079         struct e1000_adapter *adapter = netdev_priv(netdev);
3080         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3081         uint16_t eeprom_data = 0;
3082
3083         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3084             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3085                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3086                 return -EINVAL;
3087         }
3088
3089         /* Adapter-specific max frame size limits. */
3090         switch (adapter->hw.mac_type) {
3091         case e1000_undefined ... e1000_82542_rev2_1:
3092         case e1000_ich8lan:
3093                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3094                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3095                         return -EINVAL;
3096                 }
3097                 break;
3098         case e1000_82573:
3099                 /* only enable jumbo frames if ASPM is disabled completely
3100                  * this means both bits must be zero in 0x1A bits 3:2 */
3101                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3102                                   &eeprom_data);
3103                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3104                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3105                                 DPRINTK(PROBE, ERR,
3106                                         "Jumbo Frames not supported.\n");
3107                                 return -EINVAL;
3108                         }
3109                         break;
3110                 }
3111                 /* fall through to get support */
3112         case e1000_82571:
3113         case e1000_82572:
3114         case e1000_80003es2lan:
3115 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3116                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3117                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3118                         return -EINVAL;
3119                 }
3120                 break;
3121         default:
3122                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3123                 break;
3124         }
3125
3126         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3127          * means we reserve 2 more, this pushes us to allocate from the next
3128          * larger slab size
3129          * i.e. RXBUFFER_2048 --> size-4096 slab */
3130
3131         if (max_frame <= E1000_RXBUFFER_256)
3132                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3133         else if (max_frame <= E1000_RXBUFFER_512)
3134                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3135         else if (max_frame <= E1000_RXBUFFER_1024)
3136                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3137         else if (max_frame <= E1000_RXBUFFER_2048)
3138                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3139         else if (max_frame <= E1000_RXBUFFER_4096)
3140                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3141         else if (max_frame <= E1000_RXBUFFER_8192)
3142                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3143         else if (max_frame <= E1000_RXBUFFER_16384)
3144                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3145
3146         /* adjust allocation if LPE protects us, and we aren't using SBP */
3147         if (!adapter->hw.tbi_compatibility_on &&
3148             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3149              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3150                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3151
3152         netdev->mtu = new_mtu;
3153
3154         if (netif_running(netdev))
3155                 e1000_reinit_locked(adapter);
3156
3157         adapter->hw.max_frame_size = max_frame;
3158
3159         return 0;
3160 }
3161
3162 /**
3163  * e1000_update_stats - Update the board statistics counters
3164  * @adapter: board private structure
3165  **/
3166
3167 void
3168 e1000_update_stats(struct e1000_adapter *adapter)
3169 {
3170         struct e1000_hw *hw = &adapter->hw;
3171         struct pci_dev *pdev = adapter->pdev;
3172         unsigned long flags;
3173         uint16_t phy_tmp;
3174
3175 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3176
3177         /*
3178          * Prevent stats update while adapter is being reset, or if the pci
3179          * connection is down.
3180          */
3181         if (adapter->link_speed == 0)
3182                 return;
3183         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3184                 return;
3185
3186         spin_lock_irqsave(&adapter->stats_lock, flags);
3187
3188         /* these counters are modified from e1000_adjust_tbi_stats,
3189          * called from the interrupt context, so they must only
3190          * be written while holding adapter->stats_lock
3191          */
3192
3193         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3194         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3195         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3196         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3197         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3198         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3199         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3200
3201         if (adapter->hw.mac_type != e1000_ich8lan) {
3202         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3203         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3204         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3205         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3206         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3207         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3208         }
3209
3210         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3211         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3212         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3213         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3214         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3215         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3216         adapter->stats.dc += E1000_READ_REG(hw, DC);
3217         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3218         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3219         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3220         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3221         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3222         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3223         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3224         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3225         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3226         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3227         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3228         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3229         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3230         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3231         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3232         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3233         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3234         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3235         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3236
3237         if (adapter->hw.mac_type != e1000_ich8lan) {
3238         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3239         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3240         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3241         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3242         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3243         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3244         }
3245
3246         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3247         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3248
3249         /* used for adaptive IFS */
3250
3251         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3252         adapter->stats.tpt += hw->tx_packet_delta;
3253         hw->collision_delta = E1000_READ_REG(hw, COLC);
3254         adapter->stats.colc += hw->collision_delta;
3255
3256         if (hw->mac_type >= e1000_82543) {
3257                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3258                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3259                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3260                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3261                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3262                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3263         }
3264         if (hw->mac_type > e1000_82547_rev_2) {
3265                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3266                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3267
3268                 if (adapter->hw.mac_type != e1000_ich8lan) {
3269                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3270                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3271                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3272                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3273                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3274                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3275                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3276                 }
3277         }
3278
3279         /* Fill out the OS statistics structure */
3280
3281         adapter->net_stats.rx_packets = adapter->stats.gprc;
3282         adapter->net_stats.tx_packets = adapter->stats.gptc;
3283         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3284         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3285         adapter->net_stats.multicast = adapter->stats.mprc;
3286         adapter->net_stats.collisions = adapter->stats.colc;
3287
3288         /* Rx Errors */
3289
3290         /* RLEC on some newer hardware can be incorrect so build
3291         * our own version based on RUC and ROC */
3292         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3293                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3294                 adapter->stats.ruc + adapter->stats.roc +
3295                 adapter->stats.cexterr;
3296         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3297                                               adapter->stats.roc;
3298         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3299         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3300         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3301
3302         /* Tx Errors */
3303
3304         adapter->net_stats.tx_errors = adapter->stats.ecol +
3305                                        adapter->stats.latecol;
3306         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3307         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3308         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3309
3310         /* Tx Dropped needs to be maintained elsewhere */
3311
3312         /* Phy Stats */
3313
3314         if (hw->media_type == e1000_media_type_copper) {
3315                 if ((adapter->link_speed == SPEED_1000) &&
3316                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3317                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3318                         adapter->phy_stats.idle_errors += phy_tmp;
3319                 }
3320
3321                 if ((hw->mac_type <= e1000_82546) &&
3322                    (hw->phy_type == e1000_phy_m88) &&
3323                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3324                         adapter->phy_stats.receive_errors += phy_tmp;
3325         }
3326
3327         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3328 }
3329
3330 /**
3331  * e1000_intr - Interrupt Handler
3332  * @irq: interrupt number
3333  * @data: pointer to a network interface device structure
3334  * @pt_regs: CPU registers structure
3335  **/
3336
3337 static irqreturn_t
3338 e1000_intr(int irq, void *data, struct pt_regs *regs)
3339 {
3340         struct net_device *netdev = data;
3341         struct e1000_adapter *adapter = netdev_priv(netdev);
3342         struct e1000_hw *hw = &adapter->hw;
3343         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3344 #ifndef CONFIG_E1000_NAPI
3345         int i;
3346 #else
3347         /* Interrupt Auto-Mask...upon reading ICR,
3348          * interrupts are masked.  No need for the
3349          * IMC write, but it does mean we should
3350          * account for it ASAP. */
3351         if (likely(hw->mac_type >= e1000_82571))
3352                 atomic_inc(&adapter->irq_sem);
3353 #endif
3354
3355         if (unlikely(!icr)) {
3356 #ifdef CONFIG_E1000_NAPI
3357                 if (hw->mac_type >= e1000_82571)
3358                         e1000_irq_enable(adapter);
3359 #endif
3360                 return IRQ_NONE;  /* Not our interrupt */
3361         }
3362
3363         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3364                 hw->get_link_status = 1;
3365                 /* 80003ES2LAN workaround--
3366                  * For packet buffer work-around on link down event;
3367                  * disable receives here in the ISR and
3368                  * reset adapter in watchdog
3369                  */
3370                 if (netif_carrier_ok(netdev) &&
3371                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3372                         /* disable receives */
3373                         rctl = E1000_READ_REG(hw, RCTL);
3374                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3375                 }
3376                 mod_timer(&adapter->watchdog_timer, jiffies);
3377         }
3378
3379 #ifdef CONFIG_E1000_NAPI
3380         if (unlikely(hw->mac_type < e1000_82571)) {
3381                 atomic_inc(&adapter->irq_sem);
3382                 E1000_WRITE_REG(hw, IMC, ~0);
3383                 E1000_WRITE_FLUSH(hw);
3384         }
3385         if (likely(netif_rx_schedule_prep(netdev)))
3386                 __netif_rx_schedule(netdev);
3387         else
3388                 e1000_irq_enable(adapter);
3389 #else
3390         /* Writing IMC and IMS is needed for 82547.
3391          * Due to Hub Link bus being occupied, an interrupt
3392          * de-assertion message is not able to be sent.
3393          * When an interrupt assertion message is generated later,
3394          * two messages are re-ordered and sent out.
3395          * That causes APIC to think 82547 is in de-assertion
3396          * state, while 82547 is in assertion state, resulting
3397          * in dead lock. Writing IMC forces 82547 into
3398          * de-assertion state.
3399          */
3400         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3401                 atomic_inc(&adapter->irq_sem);
3402                 E1000_WRITE_REG(hw, IMC, ~0);
3403         }
3404
3405         for (i = 0; i < E1000_MAX_INTR; i++)
3406                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3407                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3408                         break;
3409
3410         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3411                 e1000_irq_enable(adapter);
3412
3413 #endif
3414
3415         return IRQ_HANDLED;
3416 }
3417
3418 #ifdef CONFIG_E1000_NAPI
3419 /**
3420  * e1000_clean - NAPI Rx polling callback
3421  * @adapter: board private structure
3422  **/
3423
3424 static int
3425 e1000_clean(struct net_device *poll_dev, int *budget)
3426 {
3427         struct e1000_adapter *adapter;
3428         int work_to_do = min(*budget, poll_dev->quota);
3429         int tx_cleaned = 0, work_done = 0;
3430
3431         /* Must NOT use netdev_priv macro here. */
3432         adapter = poll_dev->priv;
3433
3434         /* Keep link state information with original netdev */
3435         if (!netif_carrier_ok(poll_dev))
3436                 goto quit_polling;
3437
3438         /* e1000_clean is called per-cpu.  This lock protects
3439          * tx_ring[0] from being cleaned by multiple cpus
3440          * simultaneously.  A failure obtaining the lock means
3441          * tx_ring[0] is currently being cleaned anyway. */
3442         if (spin_trylock(&adapter->tx_queue_lock)) {
3443                 tx_cleaned = e1000_clean_tx_irq(adapter,
3444                                                 &adapter->tx_ring[0]);
3445                 spin_unlock(&adapter->tx_queue_lock);
3446         }
3447
3448         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3449                           &work_done, work_to_do);
3450
3451         *budget -= work_done;
3452         poll_dev->quota -= work_done;
3453
3454         /* If no Tx and not enough Rx work done, exit the polling mode */
3455         if ((!tx_cleaned && (work_done == 0)) ||
3456            !netif_running(poll_dev)) {
3457 quit_polling:
3458                 netif_rx_complete(poll_dev);
3459                 e1000_irq_enable(adapter);
3460                 return 0;
3461         }
3462
3463         return 1;
3464 }
3465
3466 #endif
3467 /**
3468  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3469  * @adapter: board private structure
3470  **/
3471
3472 static boolean_t
3473 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3474                    struct e1000_tx_ring *tx_ring)
3475 {
3476         struct net_device *netdev = adapter->netdev;
3477         struct e1000_tx_desc *tx_desc, *eop_desc;
3478         struct e1000_buffer *buffer_info;
3479         unsigned int i, eop;
3480 #ifdef CONFIG_E1000_NAPI
3481         unsigned int count = 0;
3482 #endif
3483         boolean_t cleaned = FALSE;
3484
3485         i = tx_ring->next_to_clean;
3486         eop = tx_ring->buffer_info[i].next_to_watch;
3487         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3488
3489         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3490                 for (cleaned = FALSE; !cleaned; ) {
3491                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3492                         buffer_info = &tx_ring->buffer_info[i];
3493                         cleaned = (i == eop);
3494
3495                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3496                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3497
3498                         if (unlikely(++i == tx_ring->count)) i = 0;
3499                 }
3500
3501
3502                 eop = tx_ring->buffer_info[i].next_to_watch;
3503                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3504 #ifdef CONFIG_E1000_NAPI
3505 #define E1000_TX_WEIGHT 64
3506                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3507                 if (count++ == E1000_TX_WEIGHT) break;
3508 #endif
3509         }
3510
3511         tx_ring->next_to_clean = i;
3512
3513 #define TX_WAKE_THRESHOLD 32
3514         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3515                      netif_carrier_ok(netdev))) {
3516                 spin_lock(&tx_ring->tx_lock);
3517                 if (netif_queue_stopped(netdev) &&
3518                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3519                         netif_wake_queue(netdev);
3520                 spin_unlock(&tx_ring->tx_lock);
3521         }
3522
3523         if (adapter->detect_tx_hung) {
3524                 /* Detect a transmit hang in hardware, this serializes the
3525                  * check with the clearing of time_stamp and movement of i */
3526                 adapter->detect_tx_hung = FALSE;
3527                 if (tx_ring->buffer_info[eop].dma &&
3528                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3529                                (adapter->tx_timeout_factor * HZ))
3530                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3531                          E1000_STATUS_TXOFF)) {
3532
3533                         /* detected Tx unit hang */
3534                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3535                                         "  Tx Queue             <%lu>\n"
3536                                         "  TDH                  <%x>\n"
3537                                         "  TDT                  <%x>\n"
3538                                         "  next_to_use          <%x>\n"
3539                                         "  next_to_clean        <%x>\n"
3540                                         "buffer_info[next_to_clean]\n"
3541                                         "  time_stamp           <%lx>\n"
3542                                         "  next_to_watch        <%x>\n"
3543                                         "  jiffies              <%lx>\n"
3544                                         "  next_to_watch.status <%x>\n",
3545                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3546                                         sizeof(struct e1000_tx_ring)),
3547                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3548                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3549                                 tx_ring->next_to_use,
3550                                 tx_ring->next_to_clean,
3551                                 tx_ring->buffer_info[eop].time_stamp,
3552                                 eop,
3553                                 jiffies,
3554                                 eop_desc->upper.fields.status);
3555                         netif_stop_queue(netdev);
3556                 }
3557         }
3558         return cleaned;
3559 }
3560
3561 /**
3562  * e1000_rx_checksum - Receive Checksum Offload for 82543
3563  * @adapter:     board private structure
3564  * @status_err:  receive descriptor status and error fields
3565  * @csum:        receive descriptor csum field
3566  * @sk_buff:     socket buffer with received data
3567  **/
3568
3569 static void
3570 e1000_rx_checksum(struct e1000_adapter *adapter,
3571                   uint32_t status_err, uint32_t csum,
3572                   struct sk_buff *skb)
3573 {
3574         uint16_t status = (uint16_t)status_err;
3575         uint8_t errors = (uint8_t)(status_err >> 24);
3576         skb->ip_summed = CHECKSUM_NONE;
3577
3578         /* 82543 or newer only */
3579         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3580         /* Ignore Checksum bit is set */
3581         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3582         /* TCP/UDP checksum error bit is set */
3583         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3584                 /* let the stack verify checksum errors */
3585                 adapter->hw_csum_err++;
3586                 return;
3587         }
3588         /* TCP/UDP Checksum has not been calculated */
3589         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3590                 if (!(status & E1000_RXD_STAT_TCPCS))
3591                         return;
3592         } else {
3593                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3594                         return;
3595         }
3596         /* It must be a TCP or UDP packet with a valid checksum */
3597         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3598                 /* TCP checksum is good */
3599                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3600         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3601                 /* IP fragment with UDP payload */
3602                 /* Hardware complements the payload checksum, so we undo it
3603                  * and then put the value in host order for further stack use.
3604                  */
3605                 csum = ntohl(csum ^ 0xFFFF);
3606                 skb->csum = csum;
3607                 skb->ip_summed = CHECKSUM_HW;
3608         }
3609         adapter->hw_csum_good++;
3610 }
3611
3612 /**
3613  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3614  * @adapter: board private structure
3615  **/
3616
3617 static boolean_t
3618 #ifdef CONFIG_E1000_NAPI
3619 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3620                    struct e1000_rx_ring *rx_ring,
3621                    int *work_done, int work_to_do)
3622 #else
3623 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3624                    struct e1000_rx_ring *rx_ring)
3625 #endif
3626 {
3627         struct net_device *netdev = adapter->netdev;
3628         struct pci_dev *pdev = adapter->pdev;
3629         struct e1000_rx_desc *rx_desc, *next_rxd;
3630         struct e1000_buffer *buffer_info, *next_buffer;
3631         unsigned long flags;
3632         uint32_t length;
3633         uint8_t last_byte;
3634         unsigned int i;
3635         int cleaned_count = 0;
3636         boolean_t cleaned = FALSE;
3637
3638         i = rx_ring->next_to_clean;
3639         rx_desc = E1000_RX_DESC(*rx_ring, i);
3640         buffer_info = &rx_ring->buffer_info[i];
3641
3642         while (rx_desc->status & E1000_RXD_STAT_DD) {
3643                 struct sk_buff *skb;
3644                 u8 status;
3645 #ifdef CONFIG_E1000_NAPI
3646                 if (*work_done >= work_to_do)
3647                         break;
3648                 (*work_done)++;
3649 #endif
3650                 status = rx_desc->status;
3651                 skb = buffer_info->skb;
3652                 buffer_info->skb = NULL;
3653
3654                 prefetch(skb->data - NET_IP_ALIGN);
3655
3656                 if (++i == rx_ring->count) i = 0;
3657                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3658                 prefetch(next_rxd);
3659
3660                 next_buffer = &rx_ring->buffer_info[i];
3661
3662                 cleaned = TRUE;
3663                 cleaned_count++;
3664                 pci_unmap_single(pdev,
3665                                  buffer_info->dma,
3666                                  buffer_info->length,
3667                                  PCI_DMA_FROMDEVICE);
3668
3669                 length = le16_to_cpu(rx_desc->length);
3670
3671                 /* adjust length to remove Ethernet CRC */
3672                 length -= 4;
3673
3674                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3675                         /* All receives must fit into a single buffer */
3676                         E1000_DBG("%s: Receive packet consumed multiple"
3677                                   " buffers\n", netdev->name);
3678                         /* recycle */
3679                         buffer_info->skb = skb;
3680                         goto next_desc;
3681                 }
3682
3683                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3684                         last_byte = *(skb->data + length - 1);
3685                         if (TBI_ACCEPT(&adapter->hw, status,
3686                                       rx_desc->errors, length, last_byte)) {
3687                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3688                                 e1000_tbi_adjust_stats(&adapter->hw,
3689                                                        &adapter->stats,
3690                                                        length, skb->data);
3691                                 spin_unlock_irqrestore(&adapter->stats_lock,
3692                                                        flags);
3693                                 length--;
3694                         } else {
3695                                 /* recycle */
3696                                 buffer_info->skb = skb;
3697                                 goto next_desc;
3698                         }
3699                 }
3700
3701                 /* code added for copybreak, this should improve
3702                  * performance for small packets with large amounts
3703                  * of reassembly being done in the stack */
3704 #define E1000_CB_LENGTH 256
3705                 if (length < E1000_CB_LENGTH) {
3706                         struct sk_buff *new_skb =
3707                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3708                         if (new_skb) {
3709                                 skb_reserve(new_skb, NET_IP_ALIGN);
3710                                 new_skb->dev = netdev;
3711                                 memcpy(new_skb->data - NET_IP_ALIGN,
3712                                        skb->data - NET_IP_ALIGN,
3713                                        length + NET_IP_ALIGN);
3714                                 /* save the skb in buffer_info as good */
3715                                 buffer_info->skb = skb;
3716                                 skb = new_skb;
3717                                 skb_put(skb, length);
3718                         }
3719                 } else
3720                         skb_put(skb, length);
3721
3722                 /* end copybreak code */
3723
3724                 /* Receive Checksum Offload */
3725                 e1000_rx_checksum(adapter,
3726                                   (uint32_t)(status) |
3727                                   ((uint32_t)(rx_desc->errors) << 24),
3728                                   le16_to_cpu(rx_desc->csum), skb);
3729
3730                 skb->protocol = eth_type_trans(skb, netdev);
3731 #ifdef CONFIG_E1000_NAPI
3732                 if (unlikely(adapter->vlgrp &&
3733                             (status & E1000_RXD_STAT_VP))) {
3734                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3735                                                  le16_to_cpu(rx_desc->special) &
3736                                                  E1000_RXD_SPC_VLAN_MASK);
3737                 } else {
3738                         netif_receive_skb(skb);
3739                 }
3740 #else /* CONFIG_E1000_NAPI */
3741                 if (unlikely(adapter->vlgrp &&
3742                             (status & E1000_RXD_STAT_VP))) {
3743                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3744                                         le16_to_cpu(rx_desc->special) &
3745                                         E1000_RXD_SPC_VLAN_MASK);
3746                 } else {
3747                         netif_rx(skb);
3748                 }
3749 #endif /* CONFIG_E1000_NAPI */
3750                 netdev->last_rx = jiffies;
3751
3752 next_desc:
3753                 rx_desc->status = 0;
3754
3755                 /* return some buffers to hardware, one at a time is too slow */
3756                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3757                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3758                         cleaned_count = 0;
3759                 }
3760
3761                 /* use prefetched values */
3762                 rx_desc = next_rxd;
3763                 buffer_info = next_buffer;
3764         }
3765         rx_ring->next_to_clean = i;
3766
3767         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3768         if (cleaned_count)
3769                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3770
3771         return cleaned;
3772 }
3773
3774 /**
3775  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3776  * @adapter: board private structure
3777  **/
3778
3779 static boolean_t
3780 #ifdef CONFIG_E1000_NAPI
3781 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3782                       struct e1000_rx_ring *rx_ring,
3783                       int *work_done, int work_to_do)
3784 #else
3785 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3786                       struct e1000_rx_ring *rx_ring)
3787 #endif
3788 {
3789         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3790         struct net_device *netdev = adapter->netdev;
3791         struct pci_dev *pdev = adapter->pdev;
3792         struct e1000_buffer *buffer_info, *next_buffer;
3793         struct e1000_ps_page *ps_page;
3794         struct e1000_ps_page_dma *ps_page_dma;
3795         struct sk_buff *skb;
3796         unsigned int i, j;
3797         uint32_t length, staterr;
3798         int cleaned_count = 0;
3799         boolean_t cleaned = FALSE;
3800
3801         i = rx_ring->next_to_clean;
3802         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3803         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3804         buffer_info = &rx_ring->buffer_info[i];
3805
3806         while (staterr & E1000_RXD_STAT_DD) {
3807                 ps_page = &rx_ring->ps_page[i];
3808                 ps_page_dma = &rx_ring->ps_page_dma[i];
3809 #ifdef CONFIG_E1000_NAPI
3810                 if (unlikely(*work_done >= work_to_do))
3811                         break;
3812                 (*work_done)++;
3813 #endif
3814                 skb = buffer_info->skb;
3815
3816                 /* in the packet split case this is header only */
3817                 prefetch(skb->data - NET_IP_ALIGN);
3818
3819                 if (++i == rx_ring->count) i = 0;
3820                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3821                 prefetch(next_rxd);
3822
3823                 next_buffer = &rx_ring->buffer_info[i];
3824
3825                 cleaned = TRUE;
3826                 cleaned_count++;
3827                 pci_unmap_single(pdev, buffer_info->dma,
3828                                  buffer_info->length,
3829                                  PCI_DMA_FROMDEVICE);
3830
3831                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3832                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3833                                   " the full packet\n", netdev->name);
3834                         dev_kfree_skb_irq(skb);
3835                         goto next_desc;
3836                 }
3837
3838                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3839                         dev_kfree_skb_irq(skb);
3840                         goto next_desc;
3841                 }
3842
3843                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3844
3845                 if (unlikely(!length)) {
3846                         E1000_DBG("%s: Last part of the packet spanning"
3847                                   " multiple descriptors\n", netdev->name);
3848                         dev_kfree_skb_irq(skb);
3849                         goto next_desc;
3850                 }
3851
3852                 /* Good Receive */
3853                 skb_put(skb, length);
3854
3855                 {
3856                 /* this looks ugly, but it seems compiler issues make it
3857                    more efficient than reusing j */
3858                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3859
3860                 /* page alloc/put takes too long and effects small packet
3861                  * throughput, so unsplit small packets and save the alloc/put*/
3862                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3863                         u8 *vaddr;
3864                         /* there is no documentation about how to call
3865                          * kmap_atomic, so we can't hold the mapping
3866                          * very long */
3867                         pci_dma_sync_single_for_cpu(pdev,
3868                                 ps_page_dma->ps_page_dma[0],
3869                                 PAGE_SIZE,
3870                                 PCI_DMA_FROMDEVICE);
3871                         vaddr = kmap_atomic(ps_page->ps_page[0],
3872                                             KM_SKB_DATA_SOFTIRQ);
3873                         memcpy(skb->tail, vaddr, l1);
3874                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3875                         pci_dma_sync_single_for_device(pdev,
3876                                 ps_page_dma->ps_page_dma[0],
3877                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3878                         /* remove the CRC */
3879                         l1 -= 4;
3880                         skb_put(skb, l1);
3881                         goto copydone;
3882                 } /* if */
3883                 }
3884                 
3885                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3886                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3887                                 break;
3888                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3889                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3890                         ps_page_dma->ps_page_dma[j] = 0;
3891                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3892                                            length);
3893                         ps_page->ps_page[j] = NULL;
3894                         skb->len += length;
3895                         skb->data_len += length;
3896                         skb->truesize += length;
3897                 }
3898
3899                 /* strip the ethernet crc, problem is we're using pages now so
3900                  * this whole operation can get a little cpu intensive */
3901                 pskb_trim(skb, skb->len - 4);
3902
3903 copydone:
3904                 e1000_rx_checksum(adapter, staterr,
3905                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3906                 skb->protocol = eth_type_trans(skb, netdev);
3907
3908                 if (likely(rx_desc->wb.upper.header_status &
3909                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3910                         adapter->rx_hdr_split++;
3911 #ifdef CONFIG_E1000_NAPI
3912                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3913                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3914                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3915                                 E1000_RXD_SPC_VLAN_MASK);
3916                 } else {
3917                         netif_receive_skb(skb);
3918                 }
3919 #else /* CONFIG_E1000_NAPI */
3920                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3921                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3922                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3923                                 E1000_RXD_SPC_VLAN_MASK);
3924                 } else {
3925                         netif_rx(skb);
3926                 }
3927 #endif /* CONFIG_E1000_NAPI */
3928                 netdev->last_rx = jiffies;
3929
3930 next_desc:
3931                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3932                 buffer_info->skb = NULL;
3933
3934                 /* return some buffers to hardware, one at a time is too slow */
3935                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3936                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3937                         cleaned_count = 0;
3938                 }
3939
3940                 /* use prefetched values */
3941                 rx_desc = next_rxd;
3942                 buffer_info = next_buffer;
3943
3944                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3945         }
3946         rx_ring->next_to_clean = i;
3947
3948         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3949         if (cleaned_count)
3950                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3951
3952         return cleaned;
3953 }
3954
3955 /**
3956  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3957  * @adapter: address of board private structure
3958  **/
3959
3960 static void
3961 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3962                        struct e1000_rx_ring *rx_ring,
3963                        int cleaned_count)
3964 {
3965         struct net_device *netdev = adapter->netdev;
3966         struct pci_dev *pdev = adapter->pdev;
3967         struct e1000_rx_desc *rx_desc;
3968         struct e1000_buffer *buffer_info;
3969         struct sk_buff *skb;
3970         unsigned int i;
3971         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3972
3973         i = rx_ring->next_to_use;
3974         buffer_info = &rx_ring->buffer_info[i];
3975
3976         while (cleaned_count--) {
3977                 if (!(skb = buffer_info->skb))
3978                         skb = netdev_alloc_skb(netdev, bufsz);
3979                 else {
3980                         skb_trim(skb, 0);
3981                         goto map_skb;
3982                 }
3983
3984                 if (unlikely(!skb)) {
3985                         /* Better luck next round */
3986                         adapter->alloc_rx_buff_failed++;
3987                         break;
3988                 }
3989
3990                 /* Fix for errata 23, can't cross 64kB boundary */
3991                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3992                         struct sk_buff *oldskb = skb;
3993                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3994                                              "at %p\n", bufsz, skb->data);
3995                         /* Try again, without freeing the previous */
3996                         skb = netdev_alloc_skb(netdev, bufsz);
3997                         /* Failed allocation, critical failure */
3998                         if (!skb) {
3999                                 dev_kfree_skb(oldskb);
4000                                 break;
4001                         }
4002
4003                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4004                                 /* give up */
4005                                 dev_kfree_skb(skb);
4006                                 dev_kfree_skb(oldskb);
4007                                 break; /* while !buffer_info->skb */
4008                         } else {
4009                                 /* Use new allocation */
4010                                 dev_kfree_skb(oldskb);
4011                         }
4012                 }
4013                 /* Make buffer alignment 2 beyond a 16 byte boundary
4014                  * this will result in a 16 byte aligned IP header after
4015                  * the 14 byte MAC header is removed
4016                  */
4017                 skb_reserve(skb, NET_IP_ALIGN);
4018
4019                 skb->dev = netdev;
4020
4021                 buffer_info->skb = skb;
4022                 buffer_info->length = adapter->rx_buffer_len;
4023 map_skb:
4024                 buffer_info->dma = pci_map_single(pdev,
4025                                                   skb->data,
4026                                                   adapter->rx_buffer_len,
4027                                                   PCI_DMA_FROMDEVICE);
4028
4029                 /* Fix for errata 23, can't cross 64kB boundary */
4030                 if (!e1000_check_64k_bound(adapter,
4031                                         (void *)(unsigned long)buffer_info->dma,
4032                                         adapter->rx_buffer_len)) {
4033                         DPRINTK(RX_ERR, ERR,
4034                                 "dma align check failed: %u bytes at %p\n",
4035                                 adapter->rx_buffer_len,
4036                                 (void *)(unsigned long)buffer_info->dma);
4037                         dev_kfree_skb(skb);
4038                         buffer_info->skb = NULL;
4039
4040                         pci_unmap_single(pdev, buffer_info->dma,
4041                                          adapter->rx_buffer_len,
4042                                          PCI_DMA_FROMDEVICE);
4043
4044                         break; /* while !buffer_info->skb */
4045                 }
4046                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4047                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4048
4049                 if (unlikely(++i == rx_ring->count))
4050                         i = 0;
4051                 buffer_info = &rx_ring->buffer_info[i];
4052         }
4053
4054         if (likely(rx_ring->next_to_use != i)) {
4055                 rx_ring->next_to_use = i;
4056                 if (unlikely(i-- == 0))
4057                         i = (rx_ring->count - 1);
4058
4059                 /* Force memory writes to complete before letting h/w
4060                  * know there are new descriptors to fetch.  (Only
4061                  * applicable for weak-ordered memory model archs,
4062                  * such as IA-64). */
4063                 wmb();
4064                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4065         }
4066 }
4067
4068 /**
4069  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4070  * @adapter: address of board private structure
4071  **/
4072
4073 static void
4074 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4075                           struct e1000_rx_ring *rx_ring,
4076                           int cleaned_count)
4077 {
4078         struct net_device *netdev = adapter->netdev;
4079         struct pci_dev *pdev = adapter->pdev;
4080         union e1000_rx_desc_packet_split *rx_desc;
4081         struct e1000_buffer *buffer_info;
4082         struct e1000_ps_page *ps_page;
4083         struct e1000_ps_page_dma *ps_page_dma;
4084         struct sk_buff *skb;
4085         unsigned int i, j;
4086
4087         i = rx_ring->next_to_use;
4088         buffer_info = &rx_ring->buffer_info[i];
4089         ps_page = &rx_ring->ps_page[i];
4090         ps_page_dma = &rx_ring->ps_page_dma[i];
4091
4092         while (cleaned_count--) {
4093                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4094
4095                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4096                         if (j < adapter->rx_ps_pages) {
4097                                 if (likely(!ps_page->ps_page[j])) {
4098                                         ps_page->ps_page[j] =
4099                                                 alloc_page(GFP_ATOMIC);
4100                                         if (unlikely(!ps_page->ps_page[j])) {
4101                                                 adapter->alloc_rx_buff_failed++;
4102                                                 goto no_buffers;
4103                                         }
4104                                         ps_page_dma->ps_page_dma[j] =
4105                                                 pci_map_page(pdev,
4106                                                             ps_page->ps_page[j],
4107                                                             0, PAGE_SIZE,
4108                                                             PCI_DMA_FROMDEVICE);
4109                                 }
4110                                 /* Refresh the desc even if buffer_addrs didn't
4111                                  * change because each write-back erases
4112                                  * this info.
4113                                  */
4114                                 rx_desc->read.buffer_addr[j+1] =
4115                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4116                         } else
4117                                 rx_desc->read.buffer_addr[j+1] = ~0;
4118                 }
4119
4120                 skb = netdev_alloc_skb(netdev,
4121                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4122
4123                 if (unlikely(!skb)) {
4124                         adapter->alloc_rx_buff_failed++;
4125                         break;
4126                 }
4127
4128                 /* Make buffer alignment 2 beyond a 16 byte boundary
4129                  * this will result in a 16 byte aligned IP header after
4130                  * the 14 byte MAC header is removed
4131                  */
4132                 skb_reserve(skb, NET_IP_ALIGN);
4133
4134                 skb->dev = netdev;
4135
4136                 buffer_info->skb = skb;
4137                 buffer_info->length = adapter->rx_ps_bsize0;
4138                 buffer_info->dma = pci_map_single(pdev, skb->data,
4139                                                   adapter->rx_ps_bsize0,
4140                                                   PCI_DMA_FROMDEVICE);
4141
4142                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4143
4144                 if (unlikely(++i == rx_ring->count)) i = 0;
4145                 buffer_info = &rx_ring->buffer_info[i];
4146                 ps_page = &rx_ring->ps_page[i];
4147                 ps_page_dma = &rx_ring->ps_page_dma[i];
4148         }
4149
4150 no_buffers:
4151         if (likely(rx_ring->next_to_use != i)) {
4152                 rx_ring->next_to_use = i;
4153                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4154
4155                 /* Force memory writes to complete before letting h/w
4156                  * know there are new descriptors to fetch.  (Only
4157                  * applicable for weak-ordered memory model archs,
4158                  * such as IA-64). */
4159                 wmb();
4160                 /* Hardware increments by 16 bytes, but packet split
4161                  * descriptors are 32 bytes...so we increment tail
4162                  * twice as much.
4163                  */
4164                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4165         }
4166 }
4167
4168 /**
4169  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4170  * @adapter:
4171  **/
4172
4173 static void
4174 e1000_smartspeed(struct e1000_adapter *adapter)
4175 {
4176         uint16_t phy_status;
4177         uint16_t phy_ctrl;
4178
4179         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4180            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4181                 return;
4182
4183         if (adapter->smartspeed == 0) {
4184                 /* If Master/Slave config fault is asserted twice,
4185                  * we assume back-to-back */
4186                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4187                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4188                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4189                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4190                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4191                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4192                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4193                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4194                                             phy_ctrl);
4195                         adapter->smartspeed++;
4196                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4197                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4198                                                &phy_ctrl)) {
4199                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4200                                              MII_CR_RESTART_AUTO_NEG);
4201                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4202                                                     phy_ctrl);
4203                         }
4204                 }
4205                 return;
4206         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4207                 /* If still no link, perhaps using 2/3 pair cable */
4208                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4209                 phy_ctrl |= CR_1000T_MS_ENABLE;
4210                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4211                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4212                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4213                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4214                                      MII_CR_RESTART_AUTO_NEG);
4215                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4216                 }
4217         }
4218         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4219         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4220                 adapter->smartspeed = 0;
4221 }
4222
4223 /**
4224  * e1000_ioctl -
4225  * @netdev:
4226  * @ifreq:
4227  * @cmd:
4228  **/
4229
4230 static int
4231 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4232 {
4233         switch (cmd) {
4234         case SIOCGMIIPHY:
4235         case SIOCGMIIREG:
4236         case SIOCSMIIREG:
4237                 return e1000_mii_ioctl(netdev, ifr, cmd);
4238         default:
4239                 return -EOPNOTSUPP;
4240         }
4241 }
4242
4243 /**
4244  * e1000_mii_ioctl -
4245  * @netdev:
4246  * @ifreq:
4247  * @cmd:
4248  **/
4249
4250 static int
4251 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4252 {
4253         struct e1000_adapter *adapter = netdev_priv(netdev);
4254         struct mii_ioctl_data *data = if_mii(ifr);
4255         int retval;
4256         uint16_t mii_reg;
4257         uint16_t spddplx;
4258         unsigned long flags;
4259
4260         if (adapter->hw.media_type != e1000_media_type_copper)
4261                 return -EOPNOTSUPP;
4262
4263         switch (cmd) {
4264         case SIOCGMIIPHY:
4265                 data->phy_id = adapter->hw.phy_addr;
4266                 break;
4267         case SIOCGMIIREG:
4268                 if (!capable(CAP_NET_ADMIN))
4269                         return -EPERM;
4270                 spin_lock_irqsave(&adapter->stats_lock, flags);
4271                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4272                                    &data->val_out)) {
4273                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4274                         return -EIO;
4275                 }
4276                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4277                 break;
4278         case SIOCSMIIREG:
4279                 if (!capable(CAP_NET_ADMIN))
4280                         return -EPERM;
4281                 if (data->reg_num & ~(0x1F))
4282                         return -EFAULT;
4283                 mii_reg = data->val_in;
4284                 spin_lock_irqsave(&adapter->stats_lock, flags);
4285                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4286                                         mii_reg)) {
4287                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4288                         return -EIO;
4289                 }
4290                 if (adapter->hw.media_type == e1000_media_type_copper) {
4291                         switch (data->reg_num) {
4292                         case PHY_CTRL:
4293                                 if (mii_reg & MII_CR_POWER_DOWN)
4294                                         break;
4295                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4296                                         adapter->hw.autoneg = 1;
4297                                         adapter->hw.autoneg_advertised = 0x2F;
4298                                 } else {
4299                                         if (mii_reg & 0x40)
4300                                                 spddplx = SPEED_1000;
4301                                         else if (mii_reg & 0x2000)
4302                                                 spddplx = SPEED_100;
4303                                         else
4304                                                 spddplx = SPEED_10;
4305                                         spddplx += (mii_reg & 0x100)
4306                                                    ? DUPLEX_FULL :
4307                                                    DUPLEX_HALF;
4308                                         retval = e1000_set_spd_dplx(adapter,
4309                                                                     spddplx);
4310                                         if (retval) {
4311                                                 spin_unlock_irqrestore(
4312                                                         &adapter->stats_lock,
4313                                                         flags);
4314                                                 return retval;
4315                                         }
4316                                 }
4317                                 if (netif_running(adapter->netdev))
4318                                         e1000_reinit_locked(adapter);
4319                                 else
4320                                         e1000_reset(adapter);
4321                                 break;
4322                         case M88E1000_PHY_SPEC_CTRL:
4323                         case M88E1000_EXT_PHY_SPEC_CTRL:
4324                                 if (e1000_phy_reset(&adapter->hw)) {
4325                                         spin_unlock_irqrestore(
4326                                                 &adapter->stats_lock, flags);
4327                                         return -EIO;
4328                                 }
4329                                 break;
4330                         }
4331                 } else {
4332                         switch (data->reg_num) {
4333                         case PHY_CTRL:
4334                                 if (mii_reg & MII_CR_POWER_DOWN)
4335                                         break;
4336                                 if (netif_running(adapter->netdev))
4337                                         e1000_reinit_locked(adapter);
4338                                 else
4339                                         e1000_reset(adapter);
4340                                 break;
4341                         }
4342                 }
4343                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4344                 break;
4345         default:
4346                 return -EOPNOTSUPP;
4347         }
4348         return E1000_SUCCESS;
4349 }
4350
4351 void
4352 e1000_pci_set_mwi(struct e1000_hw *hw)
4353 {
4354         struct e1000_adapter *adapter = hw->back;
4355         int ret_val = pci_set_mwi(adapter->pdev);
4356
4357         if (ret_val)
4358                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4359 }
4360
4361 void
4362 e1000_pci_clear_mwi(struct e1000_hw *hw)
4363 {
4364         struct e1000_adapter *adapter = hw->back;
4365
4366         pci_clear_mwi(adapter->pdev);
4367 }
4368
4369 void
4370 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4371 {
4372         struct e1000_adapter *adapter = hw->back;
4373
4374         pci_read_config_word(adapter->pdev, reg, value);
4375 }
4376
4377 void
4378 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4379 {
4380         struct e1000_adapter *adapter = hw->back;
4381
4382         pci_write_config_word(adapter->pdev, reg, *value);
4383 }
4384
4385 #if 0
4386 uint32_t
4387 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4388 {
4389         return inl(port);
4390 }
4391 #endif  /*  0  */
4392
4393 void
4394 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4395 {
4396         outl(value, port);
4397 }
4398
4399 static void
4400 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4401 {
4402         struct e1000_adapter *adapter = netdev_priv(netdev);
4403         uint32_t ctrl, rctl;
4404
4405         e1000_irq_disable(adapter);
4406         adapter->vlgrp = grp;
4407
4408         if (grp) {
4409                 /* enable VLAN tag insert/strip */
4410                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4411                 ctrl |= E1000_CTRL_VME;
4412                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4413
4414                 if (adapter->hw.mac_type != e1000_ich8lan) {
4415                 /* enable VLAN receive filtering */
4416                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4417                 rctl |= E1000_RCTL_VFE;
4418                 rctl &= ~E1000_RCTL_CFIEN;
4419                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4420                 e1000_update_mng_vlan(adapter);
4421                 }
4422         } else {
4423                 /* disable VLAN tag insert/strip */
4424                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4425                 ctrl &= ~E1000_CTRL_VME;
4426                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4427
4428                 if (adapter->hw.mac_type != e1000_ich8lan) {
4429                 /* disable VLAN filtering */
4430                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4431                 rctl &= ~E1000_RCTL_VFE;
4432                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4433                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4434                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4435                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4436                 }
4437                 }
4438         }
4439
4440         e1000_irq_enable(adapter);
4441 }
4442
4443 static void
4444 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4445 {
4446         struct e1000_adapter *adapter = netdev_priv(netdev);
4447         uint32_t vfta, index;
4448
4449         if ((adapter->hw.mng_cookie.status &
4450              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4451             (vid == adapter->mng_vlan_id))
4452                 return;
4453         /* add VID to filter table */
4454         index = (vid >> 5) & 0x7F;
4455         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4456         vfta |= (1 << (vid & 0x1F));
4457         e1000_write_vfta(&adapter->hw, index, vfta);
4458 }
4459
4460 static void
4461 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4462 {
4463         struct e1000_adapter *adapter = netdev_priv(netdev);
4464         uint32_t vfta, index;
4465
4466         e1000_irq_disable(adapter);
4467
4468         if (adapter->vlgrp)
4469                 adapter->vlgrp->vlan_devices[vid] = NULL;
4470
4471         e1000_irq_enable(adapter);
4472
4473         if ((adapter->hw.mng_cookie.status &
4474              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4475             (vid == adapter->mng_vlan_id)) {
4476                 /* release control to f/w */
4477                 e1000_release_hw_control(adapter);
4478                 return;
4479         }
4480
4481         /* remove VID from filter table */
4482         index = (vid >> 5) & 0x7F;
4483         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4484         vfta &= ~(1 << (vid & 0x1F));
4485         e1000_write_vfta(&adapter->hw, index, vfta);
4486 }
4487
4488 static void
4489 e1000_restore_vlan(struct e1000_adapter *adapter)
4490 {
4491         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4492
4493         if (adapter->vlgrp) {
4494                 uint16_t vid;
4495                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4496                         if (!adapter->vlgrp->vlan_devices[vid])
4497                                 continue;
4498                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4499                 }
4500         }
4501 }
4502
4503 int
4504 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4505 {
4506         adapter->hw.autoneg = 0;
4507
4508         /* Fiber NICs only allow 1000 gbps Full duplex */
4509         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4510                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4511                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4512                 return -EINVAL;
4513         }
4514
4515         switch (spddplx) {
4516         case SPEED_10 + DUPLEX_HALF:
4517                 adapter->hw.forced_speed_duplex = e1000_10_half;
4518                 break;
4519         case SPEED_10 + DUPLEX_FULL:
4520                 adapter->hw.forced_speed_duplex = e1000_10_full;
4521                 break;
4522         case SPEED_100 + DUPLEX_HALF:
4523                 adapter->hw.forced_speed_duplex = e1000_100_half;
4524                 break;
4525         case SPEED_100 + DUPLEX_FULL:
4526                 adapter->hw.forced_speed_duplex = e1000_100_full;
4527                 break;
4528         case SPEED_1000 + DUPLEX_FULL:
4529                 adapter->hw.autoneg = 1;
4530                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4531                 break;
4532         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4533         default:
4534                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4535                 return -EINVAL;
4536         }
4537         return 0;
4538 }
4539
4540 #ifdef CONFIG_PM
4541 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4542  * bus we're on (PCI(X) vs. PCI-E)
4543  */
4544 #define PCIE_CONFIG_SPACE_LEN 256
4545 #define PCI_CONFIG_SPACE_LEN 64
4546 static int
4547 e1000_pci_save_state(struct e1000_adapter *adapter)
4548 {
4549         struct pci_dev *dev = adapter->pdev;
4550         int size;
4551         int i;
4552
4553         if (adapter->hw.mac_type >= e1000_82571)
4554                 size = PCIE_CONFIG_SPACE_LEN;
4555         else
4556                 size = PCI_CONFIG_SPACE_LEN;
4557
4558         WARN_ON(adapter->config_space != NULL);
4559
4560         adapter->config_space = kmalloc(size, GFP_KERNEL);
4561         if (!adapter->config_space) {
4562                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4563                 return -ENOMEM;
4564         }
4565         for (i = 0; i < (size / 4); i++)
4566                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4567         return 0;
4568 }
4569
4570 static void
4571 e1000_pci_restore_state(struct e1000_adapter *adapter)
4572 {
4573         struct pci_dev *dev = adapter->pdev;
4574         int size;
4575         int i;
4576
4577         if (adapter->config_space == NULL)
4578                 return;
4579
4580         if (adapter->hw.mac_type >= e1000_82571)
4581                 size = PCIE_CONFIG_SPACE_LEN;
4582         else
4583                 size = PCI_CONFIG_SPACE_LEN;
4584         for (i = 0; i < (size / 4); i++)
4585                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4586         kfree(adapter->config_space);
4587         adapter->config_space = NULL;
4588         return;
4589 }
4590 #endif /* CONFIG_PM */
4591
4592 static int
4593 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4594 {
4595         struct net_device *netdev = pci_get_drvdata(pdev);
4596         struct e1000_adapter *adapter = netdev_priv(netdev);
4597         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4598         uint32_t wufc = adapter->wol;
4599 #ifdef CONFIG_PM
4600         int retval = 0;
4601 #endif
4602
4603         netif_device_detach(netdev);
4604
4605         if (netif_running(netdev)) {
4606                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4607                 e1000_down(adapter);
4608         }
4609
4610 #ifdef CONFIG_PM
4611         /* Implement our own version of pci_save_state(pdev) because pci-
4612          * express adapters have 256-byte config spaces. */
4613         retval = e1000_pci_save_state(adapter);
4614         if (retval)
4615                 return retval;
4616 #endif
4617
4618         status = E1000_READ_REG(&adapter->hw, STATUS);
4619         if (status & E1000_STATUS_LU)
4620                 wufc &= ~E1000_WUFC_LNKC;
4621
4622         if (wufc) {
4623                 e1000_setup_rctl(adapter);
4624                 e1000_set_multi(netdev);
4625
4626                 /* turn on all-multi mode if wake on multicast is enabled */
4627                 if (adapter->wol & E1000_WUFC_MC) {
4628                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4629                         rctl |= E1000_RCTL_MPE;
4630                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4631                 }
4632
4633                 if (adapter->hw.mac_type >= e1000_82540) {
4634                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4635                         /* advertise wake from D3Cold */
4636                         #define E1000_CTRL_ADVD3WUC 0x00100000
4637                         /* phy power management enable */
4638                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4639                         ctrl |= E1000_CTRL_ADVD3WUC |
4640                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4641                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4642                 }
4643
4644                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4645                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4646                         /* keep the laser running in D3 */
4647                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4648                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4649                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4650                 }
4651
4652                 /* Allow time for pending master requests to run */
4653                 e1000_disable_pciex_master(&adapter->hw);
4654
4655                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4656                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4657                 pci_enable_wake(pdev, PCI_D3hot, 1);
4658                 pci_enable_wake(pdev, PCI_D3cold, 1);
4659         } else {
4660                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4661                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4662                 pci_enable_wake(pdev, PCI_D3hot, 0);
4663                 pci_enable_wake(pdev, PCI_D3cold, 0);
4664         }
4665
4666         /* FIXME: this code is incorrect for PCI Express */
4667         if (adapter->hw.mac_type >= e1000_82540 &&
4668            adapter->hw.mac_type != e1000_ich8lan &&
4669            adapter->hw.media_type == e1000_media_type_copper) {
4670                 manc = E1000_READ_REG(&adapter->hw, MANC);
4671                 if (manc & E1000_MANC_SMBUS_EN) {
4672                         manc |= E1000_MANC_ARP_EN;
4673                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4674                         pci_enable_wake(pdev, PCI_D3hot, 1);
4675                         pci_enable_wake(pdev, PCI_D3cold, 1);
4676                 }
4677         }
4678
4679         if (adapter->hw.phy_type == e1000_phy_igp_3)
4680                 e1000_phy_powerdown_workaround(&adapter->hw);
4681
4682         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4683          * would have already happened in close and is redundant. */
4684         e1000_release_hw_control(adapter);
4685
4686         pci_disable_device(pdev);
4687
4688         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4689
4690         return 0;
4691 }
4692
4693 #ifdef CONFIG_PM
4694 static int
4695 e1000_resume(struct pci_dev *pdev)
4696 {
4697         struct net_device *netdev = pci_get_drvdata(pdev);
4698         struct e1000_adapter *adapter = netdev_priv(netdev);
4699         uint32_t manc, ret_val;
4700
4701         pci_set_power_state(pdev, PCI_D0);
4702         e1000_pci_restore_state(adapter);
4703         ret_val = pci_enable_device(pdev);
4704         pci_set_master(pdev);
4705
4706         pci_enable_wake(pdev, PCI_D3hot, 0);
4707         pci_enable_wake(pdev, PCI_D3cold, 0);
4708
4709         e1000_reset(adapter);
4710         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4711
4712         if (netif_running(netdev))
4713                 e1000_up(adapter);
4714
4715         netif_device_attach(netdev);
4716
4717         /* FIXME: this code is incorrect for PCI Express */
4718         if (adapter->hw.mac_type >= e1000_82540 &&
4719            adapter->hw.mac_type != e1000_ich8lan &&
4720            adapter->hw.media_type == e1000_media_type_copper) {
4721                 manc = E1000_READ_REG(&adapter->hw, MANC);
4722                 manc &= ~(E1000_MANC_ARP_EN);
4723                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4724         }
4725
4726         /* If the controller is 82573 and f/w is AMT, do not set
4727          * DRV_LOAD until the interface is up.  For all other cases,
4728          * let the f/w know that the h/w is now under the control
4729          * of the driver. */
4730         if (adapter->hw.mac_type != e1000_82573 ||
4731             !e1000_check_mng_mode(&adapter->hw))
4732                 e1000_get_hw_control(adapter);
4733
4734         return 0;
4735 }
4736 #endif
4737
4738 static void e1000_shutdown(struct pci_dev *pdev)
4739 {
4740         e1000_suspend(pdev, PMSG_SUSPEND);
4741 }
4742
4743 #ifdef CONFIG_NET_POLL_CONTROLLER
4744 /*
4745  * Polling 'interrupt' - used by things like netconsole to send skbs
4746  * without having to re-enable interrupts. It's not called while
4747  * the interrupt routine is executing.
4748  */
4749 static void
4750 e1000_netpoll(struct net_device *netdev)
4751 {
4752         struct e1000_adapter *adapter = netdev_priv(netdev);
4753
4754         disable_irq(adapter->pdev->irq);
4755         e1000_intr(adapter->pdev->irq, netdev, NULL);
4756         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4757 #ifndef CONFIG_E1000_NAPI
4758         adapter->clean_rx(adapter, adapter->rx_ring);
4759 #endif
4760         enable_irq(adapter->pdev->irq);
4761 }
4762 #endif
4763
4764 /**
4765  * e1000_io_error_detected - called when PCI error is detected
4766  * @pdev: Pointer to PCI device
4767  * @state: The current pci conneection state
4768  *
4769  * This function is called after a PCI bus error affecting
4770  * this device has been detected.
4771  */
4772 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4773 {
4774         struct net_device *netdev = pci_get_drvdata(pdev);
4775         struct e1000_adapter *adapter = netdev->priv;
4776
4777         netif_device_detach(netdev);
4778
4779         if (netif_running(netdev))
4780                 e1000_down(adapter);
4781
4782         /* Request a slot slot reset. */
4783         return PCI_ERS_RESULT_NEED_RESET;
4784 }
4785
4786 /**
4787  * e1000_io_slot_reset - called after the pci bus has been reset.
4788  * @pdev: Pointer to PCI device
4789  *
4790  * Restart the card from scratch, as if from a cold-boot. Implementation
4791  * resembles the first-half of the e1000_resume routine.
4792  */
4793 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4794 {
4795         struct net_device *netdev = pci_get_drvdata(pdev);
4796         struct e1000_adapter *adapter = netdev->priv;
4797
4798         if (pci_enable_device(pdev)) {
4799                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4800                 return PCI_ERS_RESULT_DISCONNECT;
4801         }
4802         pci_set_master(pdev);
4803
4804         pci_enable_wake(pdev, 3, 0);
4805         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4806
4807         /* Perform card reset only on one instance of the card */
4808         if (PCI_FUNC (pdev->devfn) != 0)
4809                 return PCI_ERS_RESULT_RECOVERED;
4810
4811         e1000_reset(adapter);
4812         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4813
4814         return PCI_ERS_RESULT_RECOVERED;
4815 }
4816
4817 /**
4818  * e1000_io_resume - called when traffic can start flowing again.
4819  * @pdev: Pointer to PCI device
4820  *
4821  * This callback is called when the error recovery driver tells us that
4822  * its OK to resume normal operation. Implementation resembles the
4823  * second-half of the e1000_resume routine.
4824  */
4825 static void e1000_io_resume(struct pci_dev *pdev)
4826 {
4827         struct net_device *netdev = pci_get_drvdata(pdev);
4828         struct e1000_adapter *adapter = netdev->priv;
4829         uint32_t manc, swsm;
4830
4831         if (netif_running(netdev)) {
4832                 if (e1000_up(adapter)) {
4833                         printk("e1000: can't bring device back up after reset\n");
4834                         return;
4835                 }
4836         }
4837
4838         netif_device_attach(netdev);
4839
4840         if (adapter->hw.mac_type >= e1000_82540 &&
4841             adapter->hw.media_type == e1000_media_type_copper) {
4842                 manc = E1000_READ_REG(&adapter->hw, MANC);
4843                 manc &= ~(E1000_MANC_ARP_EN);
4844                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4845         }
4846
4847         switch (adapter->hw.mac_type) {
4848         case e1000_82573:
4849                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4850                 E1000_WRITE_REG(&adapter->hw, SWSM,
4851                                 swsm | E1000_SWSM_DRV_LOAD);
4852                 break;
4853         default:
4854                 break;
4855         }
4856
4857         if (netif_running(netdev))
4858                 mod_timer(&adapter->watchdog_timer, jiffies);
4859 }
4860
4861 /* e1000_main.c */