Merge branch 'for-4.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[sfrench/cifs-2.6.git] / drivers / net / dsa / bcm_sf2_cfp.c
1 /*
2  * Broadcom Starfighter 2 DSA switch CFP support
3  *
4  * Copyright (C) 2016, Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11
12 #include <linux/list.h>
13 #include <linux/ethtool.h>
14 #include <linux/if_ether.h>
15 #include <linux/in.h>
16 #include <linux/netdevice.h>
17 #include <net/dsa.h>
18 #include <linux/bitmap.h>
19
20 #include "bcm_sf2.h"
21 #include "bcm_sf2_regs.h"
22
23 struct cfp_udf_slice_layout {
24         u8 slices[UDFS_PER_SLICE];
25         u32 mask_value;
26         u32 base_offset;
27 };
28
29 struct cfp_udf_layout {
30         struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
31 };
32
33 static const u8 zero_slice[UDFS_PER_SLICE] = { };
34
35 /* UDF slices layout for a TCPv4/UDPv4 specification */
36 static const struct cfp_udf_layout udf_tcpip4_layout = {
37         .udfs = {
38                 [1] = {
39                         .slices = {
40                                 /* End of L2, byte offset 12, src IP[0:15] */
41                                 CFG_UDF_EOL2 | 6,
42                                 /* End of L2, byte offset 14, src IP[16:31] */
43                                 CFG_UDF_EOL2 | 7,
44                                 /* End of L2, byte offset 16, dst IP[0:15] */
45                                 CFG_UDF_EOL2 | 8,
46                                 /* End of L2, byte offset 18, dst IP[16:31] */
47                                 CFG_UDF_EOL2 | 9,
48                                 /* End of L3, byte offset 0, src port */
49                                 CFG_UDF_EOL3 | 0,
50                                 /* End of L3, byte offset 2, dst port */
51                                 CFG_UDF_EOL3 | 1,
52                                 0, 0, 0
53                         },
54                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
55                         .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
56                 },
57         },
58 };
59
60 /* UDF slices layout for a TCPv6/UDPv6 specification */
61 static const struct cfp_udf_layout udf_tcpip6_layout = {
62         .udfs = {
63                 [0] = {
64                         .slices = {
65                                 /* End of L2, byte offset 8, src IP[0:15] */
66                                 CFG_UDF_EOL2 | 4,
67                                 /* End of L2, byte offset 10, src IP[16:31] */
68                                 CFG_UDF_EOL2 | 5,
69                                 /* End of L2, byte offset 12, src IP[32:47] */
70                                 CFG_UDF_EOL2 | 6,
71                                 /* End of L2, byte offset 14, src IP[48:63] */
72                                 CFG_UDF_EOL2 | 7,
73                                 /* End of L2, byte offset 16, src IP[64:79] */
74                                 CFG_UDF_EOL2 | 8,
75                                 /* End of L2, byte offset 18, src IP[80:95] */
76                                 CFG_UDF_EOL2 | 9,
77                                 /* End of L2, byte offset 20, src IP[96:111] */
78                                 CFG_UDF_EOL2 | 10,
79                                 /* End of L2, byte offset 22, src IP[112:127] */
80                                 CFG_UDF_EOL2 | 11,
81                                 /* End of L3, byte offset 0, src port */
82                                 CFG_UDF_EOL3 | 0,
83                         },
84                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
85                         .base_offset = CORE_UDF_0_B_0_8_PORT_0,
86                 },
87                 [3] = {
88                         .slices = {
89                                 /* End of L2, byte offset 24, dst IP[0:15] */
90                                 CFG_UDF_EOL2 | 12,
91                                 /* End of L2, byte offset 26, dst IP[16:31] */
92                                 CFG_UDF_EOL2 | 13,
93                                 /* End of L2, byte offset 28, dst IP[32:47] */
94                                 CFG_UDF_EOL2 | 14,
95                                 /* End of L2, byte offset 30, dst IP[48:63] */
96                                 CFG_UDF_EOL2 | 15,
97                                 /* End of L2, byte offset 32, dst IP[64:79] */
98                                 CFG_UDF_EOL2 | 16,
99                                 /* End of L2, byte offset 34, dst IP[80:95] */
100                                 CFG_UDF_EOL2 | 17,
101                                 /* End of L2, byte offset 36, dst IP[96:111] */
102                                 CFG_UDF_EOL2 | 18,
103                                 /* End of L2, byte offset 38, dst IP[112:127] */
104                                 CFG_UDF_EOL2 | 19,
105                                 /* End of L3, byte offset 2, dst port */
106                                 CFG_UDF_EOL3 | 1,
107                         },
108                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
109                         .base_offset = CORE_UDF_0_D_0_11_PORT_0,
110                 },
111         },
112 };
113
114 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
115 {
116         unsigned int i, count = 0;
117
118         for (i = 0; i < UDFS_PER_SLICE; i++) {
119                 if (layout[i] != 0)
120                         count++;
121         }
122
123         return count;
124 }
125
126 static inline u32 udf_upper_bits(unsigned int num_udf)
127 {
128         return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
129 }
130
131 static inline u32 udf_lower_bits(unsigned int num_udf)
132 {
133         return (u8)GENMASK(num_udf - 1, 0);
134 }
135
136 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
137                                              unsigned int start)
138 {
139         const struct cfp_udf_slice_layout *slice_layout;
140         unsigned int slice_idx;
141
142         for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
143                 slice_layout = &l->udfs[slice_idx];
144                 if (memcmp(slice_layout->slices, zero_slice,
145                            sizeof(zero_slice)))
146                         break;
147         }
148
149         return slice_idx;
150 }
151
152 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
153                                 const struct cfp_udf_layout *layout,
154                                 unsigned int slice_num)
155 {
156         u32 offset = layout->udfs[slice_num].base_offset;
157         unsigned int i;
158
159         for (i = 0; i < UDFS_PER_SLICE; i++)
160                 core_writel(priv, layout->udfs[slice_num].slices[i],
161                             offset + i * 4);
162 }
163
164 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
165 {
166         unsigned int timeout = 1000;
167         u32 reg;
168
169         reg = core_readl(priv, CORE_CFP_ACC);
170         reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
171         reg |= OP_STR_DONE | op;
172         core_writel(priv, reg, CORE_CFP_ACC);
173
174         do {
175                 reg = core_readl(priv, CORE_CFP_ACC);
176                 if (!(reg & OP_STR_DONE))
177                         break;
178
179                 cpu_relax();
180         } while (timeout--);
181
182         if (!timeout)
183                 return -ETIMEDOUT;
184
185         return 0;
186 }
187
188 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
189                                              unsigned int addr)
190 {
191         u32 reg;
192
193         WARN_ON(addr >= priv->num_cfp_rules);
194
195         reg = core_readl(priv, CORE_CFP_ACC);
196         reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
197         reg |= addr << XCESS_ADDR_SHIFT;
198         core_writel(priv, reg, CORE_CFP_ACC);
199 }
200
201 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
202 {
203         /* Entry #0 is reserved */
204         return priv->num_cfp_rules - 1;
205 }
206
207 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
208                                    unsigned int rule_index,
209                                    unsigned int port_num,
210                                    unsigned int queue_num,
211                                    bool fwd_map_change)
212 {
213         int ret;
214         u32 reg;
215
216         /* Replace ARL derived destination with DST_MAP derived, define
217          * which port and queue this should be forwarded to.
218          */
219         if (fwd_map_change)
220                 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
221                       BIT(port_num + DST_MAP_IB_SHIFT) |
222                       CHANGE_TC | queue_num << NEW_TC_SHIFT;
223         else
224                 reg = 0;
225
226         core_writel(priv, reg, CORE_ACT_POL_DATA0);
227
228         /* Set classification ID that needs to be put in Broadcom tag */
229         core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
230
231         core_writel(priv, 0, CORE_ACT_POL_DATA2);
232
233         /* Configure policer RAM now */
234         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
235         if (ret) {
236                 pr_err("Policer entry at %d failed\n", rule_index);
237                 return ret;
238         }
239
240         /* Disable the policer */
241         core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
242
243         /* Now the rate meter */
244         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
245         if (ret) {
246                 pr_err("Meter entry at %d failed\n", rule_index);
247                 return ret;
248         }
249
250         return 0;
251 }
252
253 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
254                                    struct ethtool_tcpip4_spec *v4_spec,
255                                    unsigned int slice_num,
256                                    bool mask)
257 {
258         u32 reg, offset;
259
260         /* C-Tag                [31:24]
261          * UDF_n_A8             [23:8]
262          * UDF_n_A7             [7:0]
263          */
264         reg = 0;
265         if (mask)
266                 offset = CORE_CFP_MASK_PORT(4);
267         else
268                 offset = CORE_CFP_DATA_PORT(4);
269         core_writel(priv, reg, offset);
270
271         /* UDF_n_A7             [31:24]
272          * UDF_n_A6             [23:8]
273          * UDF_n_A5             [7:0]
274          */
275         reg = be16_to_cpu(v4_spec->pdst) >> 8;
276         if (mask)
277                 offset = CORE_CFP_MASK_PORT(3);
278         else
279                 offset = CORE_CFP_DATA_PORT(3);
280         core_writel(priv, reg, offset);
281
282         /* UDF_n_A5             [31:24]
283          * UDF_n_A4             [23:8]
284          * UDF_n_A3             [7:0]
285          */
286         reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
287               (u32)be16_to_cpu(v4_spec->psrc) << 8 |
288               (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
289         if (mask)
290                 offset = CORE_CFP_MASK_PORT(2);
291         else
292                 offset = CORE_CFP_DATA_PORT(2);
293         core_writel(priv, reg, offset);
294
295         /* UDF_n_A3             [31:24]
296          * UDF_n_A2             [23:8]
297          * UDF_n_A1             [7:0]
298          */
299         reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
300               (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
301               (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
302         if (mask)
303                 offset = CORE_CFP_MASK_PORT(1);
304         else
305                 offset = CORE_CFP_DATA_PORT(1);
306         core_writel(priv, reg, offset);
307
308         /* UDF_n_A1             [31:24]
309          * UDF_n_A0             [23:8]
310          * Reserved             [7:4]
311          * Slice ID             [3:2]
312          * Slice valid          [1:0]
313          */
314         reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
315               (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
316               SLICE_NUM(slice_num) | SLICE_VALID;
317         if (mask)
318                 offset = CORE_CFP_MASK_PORT(0);
319         else
320                 offset = CORE_CFP_DATA_PORT(0);
321         core_writel(priv, reg, offset);
322 }
323
324 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
325                                      unsigned int port_num,
326                                      unsigned int queue_num,
327                                      struct ethtool_rx_flow_spec *fs)
328 {
329         struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
330         const struct cfp_udf_layout *layout;
331         unsigned int slice_num, rule_index;
332         u8 ip_proto, ip_frag;
333         u8 num_udf;
334         u32 reg;
335         int ret;
336
337         switch (fs->flow_type & ~FLOW_EXT) {
338         case TCP_V4_FLOW:
339                 ip_proto = IPPROTO_TCP;
340                 v4_spec = &fs->h_u.tcp_ip4_spec;
341                 v4_m_spec = &fs->m_u.tcp_ip4_spec;
342                 break;
343         case UDP_V4_FLOW:
344                 ip_proto = IPPROTO_UDP;
345                 v4_spec = &fs->h_u.udp_ip4_spec;
346                 v4_m_spec = &fs->m_u.udp_ip4_spec;
347                 break;
348         default:
349                 return -EINVAL;
350         }
351
352         ip_frag = be32_to_cpu(fs->m_ext.data[0]);
353
354         /* Locate the first rule available */
355         if (fs->location == RX_CLS_LOC_ANY)
356                 rule_index = find_first_zero_bit(priv->cfp.used,
357                                                  bcm_sf2_cfp_rule_size(priv));
358         else
359                 rule_index = fs->location;
360
361         layout = &udf_tcpip4_layout;
362         /* We only use one UDF slice for now */
363         slice_num = bcm_sf2_get_slice_number(layout, 0);
364         if (slice_num == UDF_NUM_SLICES)
365                 return -EINVAL;
366
367         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
368
369         /* Apply the UDF layout for this filter */
370         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
371
372         /* Apply to all packets received through this port */
373         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
374
375         /* Source port map match */
376         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
377
378         /* S-Tag status         [31:30]
379          * C-Tag status         [29:28]
380          * L2 framing           [27:26]
381          * L3 framing           [25:24]
382          * IP ToS               [23:16]
383          * IP proto             [15:08]
384          * IP Fragm             [7]
385          * Non 1st frag         [6]
386          * IP Authen            [5]
387          * TTL range            [4:3]
388          * PPPoE session        [2]
389          * Reserved             [1]
390          * UDF_Valid[8]         [0]
391          */
392         core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
393                     ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
394                     udf_upper_bits(num_udf),
395                     CORE_CFP_DATA_PORT(6));
396
397         /* Mask with the specific layout for IPv4 packets */
398         core_writel(priv, layout->udfs[slice_num].mask_value |
399                     udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
400
401         /* UDF_Valid[7:0]       [31:24]
402          * S-Tag                [23:8]
403          * C-Tag                [7:0]
404          */
405         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
406
407         /* Mask all but valid UDFs */
408         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
409
410         /* Program the match and the mask */
411         bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
412         bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
413
414         /* Insert into TCAM now */
415         bcm_sf2_cfp_rule_addr_set(priv, rule_index);
416
417         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
418         if (ret) {
419                 pr_err("TCAM entry at addr %d failed\n", rule_index);
420                 return ret;
421         }
422
423         /* Insert into Action and policer RAMs now */
424         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
425                                       queue_num, true);
426         if (ret)
427                 return ret;
428
429         /* Turn on CFP for this rule now */
430         reg = core_readl(priv, CORE_CFP_CTL_REG);
431         reg |= BIT(port);
432         core_writel(priv, reg, CORE_CFP_CTL_REG);
433
434         /* Flag the rule as being used and return it */
435         set_bit(rule_index, priv->cfp.used);
436         set_bit(rule_index, priv->cfp.unique);
437         fs->location = rule_index;
438
439         return 0;
440 }
441
442 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
443                                    const __be32 *ip6_addr, const __be16 port,
444                                    unsigned int slice_num,
445                                    bool mask)
446 {
447         u32 reg, tmp, val, offset;
448
449         /* C-Tag                [31:24]
450          * UDF_n_B8             [23:8]  (port)
451          * UDF_n_B7 (upper)     [7:0]   (addr[15:8])
452          */
453         reg = be32_to_cpu(ip6_addr[3]);
454         val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
455         if (mask)
456                 offset = CORE_CFP_MASK_PORT(4);
457         else
458                 offset = CORE_CFP_DATA_PORT(4);
459         core_writel(priv, val, offset);
460
461         /* UDF_n_B7 (lower)     [31:24] (addr[7:0])
462          * UDF_n_B6             [23:8] (addr[31:16])
463          * UDF_n_B5 (upper)     [7:0] (addr[47:40])
464          */
465         tmp = be32_to_cpu(ip6_addr[2]);
466         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
467               ((tmp >> 8) & 0xff);
468         if (mask)
469                 offset = CORE_CFP_MASK_PORT(3);
470         else
471                 offset = CORE_CFP_DATA_PORT(3);
472         core_writel(priv, val, offset);
473
474         /* UDF_n_B5 (lower)     [31:24] (addr[39:32])
475          * UDF_n_B4             [23:8] (addr[63:48])
476          * UDF_n_B3 (upper)     [7:0] (addr[79:72])
477          */
478         reg = be32_to_cpu(ip6_addr[1]);
479         val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
480               ((reg >> 8) & 0xff);
481         if (mask)
482                 offset = CORE_CFP_MASK_PORT(2);
483         else
484                 offset = CORE_CFP_DATA_PORT(2);
485         core_writel(priv, val, offset);
486
487         /* UDF_n_B3 (lower)     [31:24] (addr[71:64])
488          * UDF_n_B2             [23:8] (addr[95:80])
489          * UDF_n_B1 (upper)     [7:0] (addr[111:104])
490          */
491         tmp = be32_to_cpu(ip6_addr[0]);
492         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
493               ((tmp >> 8) & 0xff);
494         if (mask)
495                 offset = CORE_CFP_MASK_PORT(1);
496         else
497                 offset = CORE_CFP_DATA_PORT(1);
498         core_writel(priv, val, offset);
499
500         /* UDF_n_B1 (lower)     [31:24] (addr[103:96])
501          * UDF_n_B0             [23:8] (addr[127:112])
502          * Reserved             [7:4]
503          * Slice ID             [3:2]
504          * Slice valid          [1:0]
505          */
506         reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
507                SLICE_NUM(slice_num) | SLICE_VALID;
508         if (mask)
509                 offset = CORE_CFP_MASK_PORT(0);
510         else
511                 offset = CORE_CFP_DATA_PORT(0);
512         core_writel(priv, reg, offset);
513 }
514
515 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
516                                      unsigned int port_num,
517                                      unsigned int queue_num,
518                                      struct ethtool_rx_flow_spec *fs)
519 {
520         struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
521         unsigned int slice_num, rule_index[2];
522         const struct cfp_udf_layout *layout;
523         u8 ip_proto, ip_frag;
524         int ret = 0;
525         u8 num_udf;
526         u32 reg;
527
528         switch (fs->flow_type & ~FLOW_EXT) {
529         case TCP_V6_FLOW:
530                 ip_proto = IPPROTO_TCP;
531                 v6_spec = &fs->h_u.tcp_ip6_spec;
532                 v6_m_spec = &fs->m_u.tcp_ip6_spec;
533                 break;
534         case UDP_V6_FLOW:
535                 ip_proto = IPPROTO_UDP;
536                 v6_spec = &fs->h_u.udp_ip6_spec;
537                 v6_m_spec = &fs->m_u.udp_ip6_spec;
538                 break;
539         default:
540                 return -EINVAL;
541         }
542
543         ip_frag = be32_to_cpu(fs->m_ext.data[0]);
544
545         layout = &udf_tcpip6_layout;
546         slice_num = bcm_sf2_get_slice_number(layout, 0);
547         if (slice_num == UDF_NUM_SLICES)
548                 return -EINVAL;
549
550         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
551
552         /* Negotiate two indexes, one for the second half which we are chained
553          * from, which is what we will return to user-space, and a second one
554          * which is used to store its first half. That first half does not
555          * allow any choice of placement, so it just needs to find the next
556          * available bit. We return the second half as fs->location because
557          * that helps with the rule lookup later on since the second half is
558          * chained from its first half, we can easily identify IPv6 CFP rules
559          * by looking whether they carry a CHAIN_ID.
560          *
561          * We also want the second half to have a lower rule_index than its
562          * first half because the HW search is by incrementing addresses.
563          */
564         if (fs->location == RX_CLS_LOC_ANY)
565                 rule_index[0] = find_first_zero_bit(priv->cfp.used,
566                                                     bcm_sf2_cfp_rule_size(priv));
567         else
568                 rule_index[0] = fs->location;
569
570         /* Flag it as used (cleared on error path) such that we can immediately
571          * obtain a second one to chain from.
572          */
573         set_bit(rule_index[0], priv->cfp.used);
574
575         rule_index[1] = find_first_zero_bit(priv->cfp.used,
576                                             bcm_sf2_cfp_rule_size(priv));
577         if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) {
578                 ret = -ENOSPC;
579                 goto out_err;
580         }
581
582         /* Apply the UDF layout for this filter */
583         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
584
585         /* Apply to all packets received through this port */
586         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
587
588         /* Source port map match */
589         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
590
591         /* S-Tag status         [31:30]
592          * C-Tag status         [29:28]
593          * L2 framing           [27:26]
594          * L3 framing           [25:24]
595          * IP ToS               [23:16]
596          * IP proto             [15:08]
597          * IP Fragm             [7]
598          * Non 1st frag         [6]
599          * IP Authen            [5]
600          * TTL range            [4:3]
601          * PPPoE session        [2]
602          * Reserved             [1]
603          * UDF_Valid[8]         [0]
604          */
605         reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
606                 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
607         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
608
609         /* Mask with the specific layout for IPv6 packets including
610          * UDF_Valid[8]
611          */
612         reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
613         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
614
615         /* UDF_Valid[7:0]       [31:24]
616          * S-Tag                [23:8]
617          * C-Tag                [7:0]
618          */
619         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
620
621         /* Mask all but valid UDFs */
622         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
623
624         /* Slice the IPv6 source address and port */
625         bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
626                                 slice_num, false);
627         bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
628                                 SLICE_NUM_MASK, true);
629
630         /* Insert into TCAM now because we need to insert a second rule */
631         bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
632
633         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
634         if (ret) {
635                 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
636                 goto out_err;
637         }
638
639         /* Insert into Action and policer RAMs now */
640         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
641                                       queue_num, false);
642         if (ret)
643                 goto out_err;
644
645         /* Now deal with the second slice to chain this rule */
646         slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
647         if (slice_num == UDF_NUM_SLICES) {
648                 ret = -EINVAL;
649                 goto out_err;
650         }
651
652         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
653
654         /* Apply the UDF layout for this filter */
655         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
656
657         /* Chained rule, source port match is coming from the rule we are
658          * chained from.
659          */
660         core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
661         core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
662
663         /*
664          * CHAIN ID             [31:24] chain to previous slice
665          * Reserved             [23:20]
666          * UDF_Valid[11:8]      [19:16]
667          * UDF_Valid[7:0]       [15:8]
668          * UDF_n_D11            [7:0]
669          */
670         reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
671                 udf_lower_bits(num_udf) << 8;
672         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
673
674         /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
675         reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
676                 udf_lower_bits(num_udf) << 8;
677         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
678
679         /* Don't care */
680         core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
681
682         /* Mask all */
683         core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
684
685         bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
686                                false);
687         bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
688                                SLICE_NUM_MASK, true);
689
690         /* Insert into TCAM now */
691         bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
692
693         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
694         if (ret) {
695                 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
696                 goto out_err;
697         }
698
699         /* Insert into Action and policer RAMs now, set chain ID to
700          * the one we are chained to
701          */
702         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
703                                       queue_num, true);
704         if (ret)
705                 goto out_err;
706
707         /* Turn on CFP for this rule now */
708         reg = core_readl(priv, CORE_CFP_CTL_REG);
709         reg |= BIT(port);
710         core_writel(priv, reg, CORE_CFP_CTL_REG);
711
712         /* Flag the second half rule as being used now, return it as the
713          * location, and flag it as unique while dumping rules
714          */
715         set_bit(rule_index[1], priv->cfp.used);
716         set_bit(rule_index[1], priv->cfp.unique);
717         fs->location = rule_index[1];
718
719         return ret;
720
721 out_err:
722         clear_bit(rule_index[0], priv->cfp.used);
723         return ret;
724 }
725
726 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
727                                 struct ethtool_rx_flow_spec *fs)
728 {
729         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
730         unsigned int queue_num, port_num;
731         int ret = -EINVAL;
732
733         /* Check for unsupported extensions */
734         if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
735              fs->m_ext.data[1]))
736                 return -EINVAL;
737
738         if (fs->location != RX_CLS_LOC_ANY &&
739             test_bit(fs->location, priv->cfp.used))
740                 return -EBUSY;
741
742         if (fs->location != RX_CLS_LOC_ANY &&
743             fs->location > bcm_sf2_cfp_rule_size(priv))
744                 return -EINVAL;
745
746         /* We do not support discarding packets, check that the
747          * destination port is enabled and that we are within the
748          * number of ports supported by the switch
749          */
750         port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES;
751
752         if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
753             !dsa_is_user_port(ds, port_num) ||
754             port_num >= priv->hw_params.num_ports)
755                 return -EINVAL;
756         /*
757          * We have a small oddity where Port 6 just does not have a
758          * valid bit here (so we substract by one).
759          */
760         queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES;
761         if (port_num >= 7)
762                 port_num -= 1;
763
764         switch (fs->flow_type & ~FLOW_EXT) {
765         case TCP_V4_FLOW:
766         case UDP_V4_FLOW:
767                 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
768                                                 queue_num, fs);
769                 break;
770         case TCP_V6_FLOW:
771         case UDP_V6_FLOW:
772                 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
773                                                 queue_num, fs);
774                 break;
775         default:
776                 break;
777         }
778
779         return ret;
780 }
781
782 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
783                                     u32 loc, u32 *next_loc)
784 {
785         int ret;
786         u32 reg;
787
788         /* Refuse deletion of unused rules, and the default reserved rule */
789         if (!test_bit(loc, priv->cfp.used) || loc == 0)
790                 return -EINVAL;
791
792         /* Indicate which rule we want to read */
793         bcm_sf2_cfp_rule_addr_set(priv, loc);
794
795         ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
796         if (ret)
797                 return ret;
798
799         /* Check if this is possibly an IPv6 rule that would
800          * indicate we need to delete its companion rule
801          * as well
802          */
803         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
804         if (next_loc)
805                 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
806
807         /* Clear its valid bits */
808         reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
809         reg &= ~SLICE_VALID;
810         core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
811
812         /* Write back this entry into the TCAM now */
813         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
814         if (ret)
815                 return ret;
816
817         clear_bit(loc, priv->cfp.used);
818         clear_bit(loc, priv->cfp.unique);
819
820         return 0;
821 }
822
823 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
824                                 u32 loc)
825 {
826         u32 next_loc = 0;
827         int ret;
828
829         ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
830         if (ret)
831                 return ret;
832
833         /* If this was an IPv6 rule, delete is companion rule too */
834         if (next_loc)
835                 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
836
837         return ret;
838 }
839
840 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
841 {
842         unsigned int i;
843
844         for (i = 0; i < sizeof(flow->m_u); i++)
845                 flow->m_u.hdata[i] ^= 0xff;
846
847         flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
848         flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
849         flow->m_ext.data[0] ^= cpu_to_be32(~0);
850         flow->m_ext.data[1] ^= cpu_to_be32(~0);
851 }
852
853 static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
854                                     struct ethtool_tcpip4_spec *v4_spec,
855                                     bool mask)
856 {
857         u32 reg, offset, ipv4;
858         u16 src_dst_port;
859
860         if (mask)
861                 offset = CORE_CFP_MASK_PORT(3);
862         else
863                 offset = CORE_CFP_DATA_PORT(3);
864
865         reg = core_readl(priv, offset);
866         /* src port [15:8] */
867         src_dst_port = reg << 8;
868
869         if (mask)
870                 offset = CORE_CFP_MASK_PORT(2);
871         else
872                 offset = CORE_CFP_DATA_PORT(2);
873
874         reg = core_readl(priv, offset);
875         /* src port [7:0] */
876         src_dst_port |= (reg >> 24);
877
878         v4_spec->pdst = cpu_to_be16(src_dst_port);
879         v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
880
881         /* IPv4 dst [15:8] */
882         ipv4 = (reg & 0xff) << 8;
883
884         if (mask)
885                 offset = CORE_CFP_MASK_PORT(1);
886         else
887                 offset = CORE_CFP_DATA_PORT(1);
888
889         reg = core_readl(priv, offset);
890         /* IPv4 dst [31:16] */
891         ipv4 |= ((reg >> 8) & 0xffff) << 16;
892         /* IPv4 dst [7:0] */
893         ipv4 |= (reg >> 24) & 0xff;
894         v4_spec->ip4dst = cpu_to_be32(ipv4);
895
896         /* IPv4 src [15:8] */
897         ipv4 = (reg & 0xff) << 8;
898
899         if (mask)
900                 offset = CORE_CFP_MASK_PORT(0);
901         else
902                 offset = CORE_CFP_DATA_PORT(0);
903         reg = core_readl(priv, offset);
904
905         /* Once the TCAM is programmed, the mask reflects the slice number
906          * being matched, don't bother checking it when reading back the
907          * mask spec
908          */
909         if (!mask && !(reg & SLICE_VALID))
910                 return -EINVAL;
911
912         /* IPv4 src [7:0] */
913         ipv4 |= (reg >> 24) & 0xff;
914         /* IPv4 src [31:16] */
915         ipv4 |= ((reg >> 8) & 0xffff) << 16;
916         v4_spec->ip4src = cpu_to_be32(ipv4);
917
918         return 0;
919 }
920
921 static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
922                                      struct ethtool_rx_flow_spec *fs)
923 {
924         struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
925         u32 reg;
926         int ret;
927
928         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
929
930         switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
931         case IPPROTO_TCP:
932                 fs->flow_type = TCP_V4_FLOW;
933                 v4_spec = &fs->h_u.tcp_ip4_spec;
934                 v4_m_spec = &fs->m_u.tcp_ip4_spec;
935                 break;
936         case IPPROTO_UDP:
937                 fs->flow_type = UDP_V4_FLOW;
938                 v4_spec = &fs->h_u.udp_ip4_spec;
939                 v4_m_spec = &fs->m_u.udp_ip4_spec;
940                 break;
941         default:
942                 return -EINVAL;
943         }
944
945         fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
946         v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
947
948         ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
949         if (ret)
950                 return ret;
951
952         return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
953 }
954
955 static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
956                                      __be32 *ip6_addr, __be16 *port,
957                                      bool mask)
958 {
959         u32 reg, tmp, offset;
960
961         /* C-Tag                [31:24]
962          * UDF_n_B8             [23:8] (port)
963          * UDF_n_B7 (upper)     [7:0] (addr[15:8])
964          */
965         if (mask)
966                 offset = CORE_CFP_MASK_PORT(4);
967         else
968                 offset = CORE_CFP_DATA_PORT(4);
969         reg = core_readl(priv, offset);
970         *port = cpu_to_be32(reg) >> 8;
971         tmp = (u32)(reg & 0xff) << 8;
972
973         /* UDF_n_B7 (lower)     [31:24] (addr[7:0])
974          * UDF_n_B6             [23:8] (addr[31:16])
975          * UDF_n_B5 (upper)     [7:0] (addr[47:40])
976          */
977         if (mask)
978                 offset = CORE_CFP_MASK_PORT(3);
979         else
980                 offset = CORE_CFP_DATA_PORT(3);
981         reg = core_readl(priv, offset);
982         tmp |= (reg >> 24) & 0xff;
983         tmp |= (u32)((reg >> 8) << 16);
984         ip6_addr[3] = cpu_to_be32(tmp);
985         tmp = (u32)(reg & 0xff) << 8;
986
987         /* UDF_n_B5 (lower)     [31:24] (addr[39:32])
988          * UDF_n_B4             [23:8] (addr[63:48])
989          * UDF_n_B3 (upper)     [7:0] (addr[79:72])
990          */
991         if (mask)
992                 offset = CORE_CFP_MASK_PORT(2);
993         else
994                 offset = CORE_CFP_DATA_PORT(2);
995         reg = core_readl(priv, offset);
996         tmp |= (reg >> 24) & 0xff;
997         tmp |= (u32)((reg >> 8) << 16);
998         ip6_addr[2] = cpu_to_be32(tmp);
999         tmp = (u32)(reg & 0xff) << 8;
1000
1001         /* UDF_n_B3 (lower)     [31:24] (addr[71:64])
1002          * UDF_n_B2             [23:8] (addr[95:80])
1003          * UDF_n_B1 (upper)     [7:0] (addr[111:104])
1004          */
1005         if (mask)
1006                 offset = CORE_CFP_MASK_PORT(1);
1007         else
1008                 offset = CORE_CFP_DATA_PORT(1);
1009         reg = core_readl(priv, offset);
1010         tmp |= (reg >> 24) & 0xff;
1011         tmp |= (u32)((reg >> 8) << 16);
1012         ip6_addr[1] = cpu_to_be32(tmp);
1013         tmp = (u32)(reg & 0xff) << 8;
1014
1015         /* UDF_n_B1 (lower)     [31:24] (addr[103:96])
1016          * UDF_n_B0             [23:8] (addr[127:112])
1017          * Reserved             [7:4]
1018          * Slice ID             [3:2]
1019          * Slice valid          [1:0]
1020          */
1021         if (mask)
1022                 offset = CORE_CFP_MASK_PORT(0);
1023         else
1024                 offset = CORE_CFP_DATA_PORT(0);
1025         reg = core_readl(priv, offset);
1026         tmp |= (reg >> 24) & 0xff;
1027         tmp |= (u32)((reg >> 8) << 16);
1028         ip6_addr[0] = cpu_to_be32(tmp);
1029
1030         if (!mask && !(reg & SLICE_VALID))
1031                 return -EINVAL;
1032
1033         return 0;
1034 }
1035
1036 static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1037                                      struct ethtool_rx_flow_spec *fs,
1038                                      u32 next_loc)
1039 {
1040         struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1041         u32 reg;
1042         int ret;
1043
1044         /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1045          * assuming tcp_ip6_spec here being an union.
1046          */
1047         v6_spec = &fs->h_u.tcp_ip6_spec;
1048         v6_m_spec = &fs->m_u.tcp_ip6_spec;
1049
1050         /* Read the second half first */
1051         ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1052                                        false);
1053         if (ret)
1054                 return ret;
1055
1056         ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1057                                        &v6_m_spec->pdst, true);
1058         if (ret)
1059                 return ret;
1060
1061         /* Read last to avoid next entry clobbering the results during search
1062          * operations. We would not have the port enabled for this rule, so
1063          * don't bother checking it.
1064          */
1065         (void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1066
1067         /* The slice number is valid, so read the rule we are chained from now
1068          * which is our first half.
1069          */
1070         bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1071         ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1072         if (ret)
1073                 return ret;
1074
1075         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1076
1077         switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1078         case IPPROTO_TCP:
1079                 fs->flow_type = TCP_V6_FLOW;
1080                 break;
1081         case IPPROTO_UDP:
1082                 fs->flow_type = UDP_V6_FLOW;
1083                 break;
1084         default:
1085                 return -EINVAL;
1086         }
1087
1088         ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1089                                        false);
1090         if (ret)
1091                 return ret;
1092
1093         return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1094                                         &v6_m_spec->psrc, true);
1095 }
1096
1097 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1098                                 struct ethtool_rxnfc *nfc)
1099 {
1100         u32 reg, ipv4_or_chain_id;
1101         unsigned int queue_num;
1102         int ret;
1103
1104         bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1105
1106         ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1107         if (ret)
1108                 return ret;
1109
1110         reg = core_readl(priv, CORE_ACT_POL_DATA0);
1111
1112         ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1113         if (ret)
1114                 return ret;
1115
1116         /* Extract the destination port */
1117         nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1118                                   DST_MAP_IB_MASK) - 1;
1119
1120         /* There is no Port 6, so we compensate for that here */
1121         if (nfc->fs.ring_cookie >= 6)
1122                 nfc->fs.ring_cookie++;
1123         nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1124
1125         /* Extract the destination queue */
1126         queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1127         nfc->fs.ring_cookie += queue_num;
1128
1129         /* Extract the L3_FRAMING or CHAIN_ID */
1130         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1131
1132         /* With IPv6 rules this would contain a non-zero chain ID since
1133          * we reserve entry 0 and it cannot be used. So if we read 0 here
1134          * this means an IPv4 rule.
1135          */
1136         ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1137         if (ipv4_or_chain_id == 0)
1138                 ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1139         else
1140                 ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1141                                                 ipv4_or_chain_id);
1142         if (ret)
1143                 return ret;
1144
1145         /* Read last to avoid next entry clobbering the results during search
1146          * operations
1147          */
1148         reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1149         if (!(reg & 1 << port))
1150                 return -EINVAL;
1151
1152         bcm_sf2_invert_masks(&nfc->fs);
1153
1154         /* Put the TCAM size here */
1155         nfc->data = bcm_sf2_cfp_rule_size(priv);
1156
1157         return 0;
1158 }
1159
1160 /* We implement the search doing a TCAM search operation */
1161 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1162                                     int port, struct ethtool_rxnfc *nfc,
1163                                     u32 *rule_locs)
1164 {
1165         unsigned int index = 1, rules_cnt = 0;
1166
1167         for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1168                 rule_locs[rules_cnt] = index;
1169                 rules_cnt++;
1170         }
1171
1172         /* Put the TCAM size here */
1173         nfc->data = bcm_sf2_cfp_rule_size(priv);
1174         nfc->rule_cnt = rules_cnt;
1175
1176         return 0;
1177 }
1178
1179 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1180                       struct ethtool_rxnfc *nfc, u32 *rule_locs)
1181 {
1182         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1183         int ret = 0;
1184
1185         mutex_lock(&priv->cfp.lock);
1186
1187         switch (nfc->cmd) {
1188         case ETHTOOL_GRXCLSRLCNT:
1189                 /* Subtract the default, unusable rule */
1190                 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1191                                               priv->num_cfp_rules) - 1;
1192                 /* We support specifying rule locations */
1193                 nfc->data |= RX_CLS_LOC_SPECIAL;
1194                 break;
1195         case ETHTOOL_GRXCLSRULE:
1196                 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1197                 break;
1198         case ETHTOOL_GRXCLSRLALL:
1199                 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1200                 break;
1201         default:
1202                 ret = -EOPNOTSUPP;
1203                 break;
1204         }
1205
1206         mutex_unlock(&priv->cfp.lock);
1207
1208         return ret;
1209 }
1210
1211 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1212                       struct ethtool_rxnfc *nfc)
1213 {
1214         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1215         int ret = 0;
1216
1217         mutex_lock(&priv->cfp.lock);
1218
1219         switch (nfc->cmd) {
1220         case ETHTOOL_SRXCLSRLINS:
1221                 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1222                 break;
1223
1224         case ETHTOOL_SRXCLSRLDEL:
1225                 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1226                 break;
1227         default:
1228                 ret = -EOPNOTSUPP;
1229                 break;
1230         }
1231
1232         mutex_unlock(&priv->cfp.lock);
1233
1234         return ret;
1235 }
1236
1237 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1238 {
1239         unsigned int timeout = 1000;
1240         u32 reg;
1241
1242         reg = core_readl(priv, CORE_CFP_ACC);
1243         reg |= TCAM_RESET;
1244         core_writel(priv, reg, CORE_CFP_ACC);
1245
1246         do {
1247                 reg = core_readl(priv, CORE_CFP_ACC);
1248                 if (!(reg & TCAM_RESET))
1249                         break;
1250
1251                 cpu_relax();
1252         } while (timeout--);
1253
1254         if (!timeout)
1255                 return -ETIMEDOUT;
1256
1257         return 0;
1258 }