Merge git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[sfrench/cifs-2.6.git] / drivers / net / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page. 
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targetted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering 
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.  
67  */
68
69 #include <linux/config.h>
70
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
84
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95
96 #include <net/checksum.h>
97
98 #include <asm/atomic.h>
99 #include <asm/system.h>
100 #include <asm/io.h>
101 #include <asm/byteorder.h>
102 #include <asm/uaccess.h>
103
104 #define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
106 #define CAS_NCPUS            num_online_cpus()
107
108 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
109 #define USE_NAPI
110 #define cas_skb_release(x)  netif_receive_skb(x)
111 #else
112 #define cas_skb_release(x)  netif_rx(x)
113 #endif
114
115 /* select which firmware to use */
116 #define USE_HP_WORKAROUND     
117 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
118 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
119
120 #include "cassini.h"
121
122 #define USE_TX_COMPWB      /* use completion writeback registers */
123 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
124 #define USE_RX_BLANK       /* hw interrupt mitigation */
125 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
126
127 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
128  * also, we need to make cp->lock finer-grained.
129  */
130 #undef  USE_PCI_INTB
131 #undef  USE_PCI_INTC
132 #undef  USE_PCI_INTD
133 #undef  USE_QOS
134
135 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
136
137 /* rx processing options */
138 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
139 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
140 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
141 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
142 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
143
144 #define DRV_MODULE_NAME         "cassini"
145 #define PFX DRV_MODULE_NAME     ": "
146 #define DRV_MODULE_VERSION      "1.4"
147 #define DRV_MODULE_RELDATE      "1 July 2004"
148
149 #define CAS_DEF_MSG_ENABLE        \
150         (NETIF_MSG_DRV          | \
151          NETIF_MSG_PROBE        | \
152          NETIF_MSG_LINK         | \
153          NETIF_MSG_TIMER        | \
154          NETIF_MSG_IFDOWN       | \
155          NETIF_MSG_IFUP         | \
156          NETIF_MSG_RX_ERR       | \
157          NETIF_MSG_TX_ERR)
158
159 /* length of time before we decide the hardware is borked,
160  * and dev->tx_timeout() should be called to fix the problem
161  */
162 #define CAS_TX_TIMEOUT                  (HZ)
163 #define CAS_LINK_TIMEOUT                (22*HZ/10)
164 #define CAS_LINK_FAST_TIMEOUT           (1)
165
166 /* timeout values for state changing. these specify the number
167  * of 10us delays to be used before giving up.
168  */
169 #define STOP_TRIES_PHY 1000
170 #define STOP_TRIES     5000
171
172 /* specify a minimum frame size to deal with some fifo issues 
173  * max mtu == 2 * page size - ethernet header - 64 - swivel =
174  *            2 * page_size - 0x50
175  */
176 #define CAS_MIN_FRAME                   97
177 #define CAS_1000MB_MIN_FRAME            255
178 #define CAS_MIN_MTU                     60
179 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
180
181 #if 1
182 /*
183  * Eliminate these and use separate atomic counters for each, to
184  * avoid a race condition.
185  */
186 #else
187 #define CAS_RESET_MTU                   1
188 #define CAS_RESET_ALL                   2
189 #define CAS_RESET_SPARE                 3
190 #endif
191
192 static char version[] __devinitdata =
193         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
194
195 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
196 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
197 MODULE_LICENSE("GPL");
198 MODULE_PARM(cassini_debug, "i");
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 MODULE_PARM(link_mode, "i");
201 MODULE_PARM_DESC(link_mode, "default link mode");
202
203 /*
204  * Work around for a PCS bug in which the link goes down due to the chip
205  * being confused and never showing a link status of "up."
206  */
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 /* 
209  * Value in seconds, for user input.
210  */
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 MODULE_PARM(linkdown_timeout, "i");
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
215
216 /*
217  * value in 'ticks' (units used by jiffies). Set when we init the
218  * module because 'HZ' in actually a function call on some flavors of
219  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220  */
221 static int link_transition_timeout;
222
223
224 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
225 static int link_mode;
226
227 static u16 link_modes[] __devinitdata = {
228         BMCR_ANENABLE,                   /* 0 : autoneg */
229         0,                               /* 1 : 10bt half duplex */
230         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
231         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
232         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
233         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234 };
235
236 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241         { 0, }
242 };
243
244 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
245
246 static void cas_set_link_modes(struct cas *cp);
247
248 static inline void cas_lock_tx(struct cas *cp)
249 {
250         int i;
251
252         for (i = 0; i < N_TX_RINGS; i++)  
253                 spin_lock(&cp->tx_lock[i]);
254 }
255
256 static inline void cas_lock_all(struct cas *cp)
257 {
258         spin_lock_irq(&cp->lock);
259         cas_lock_tx(cp);
260 }
261
262 /* WTZ: QA was finding deadlock problems with the previous
263  * versions after long test runs with multiple cards per machine.
264  * See if replacing cas_lock_all with safer versions helps. The
265  * symptoms QA is reporting match those we'd expect if interrupts
266  * aren't being properly restored, and we fixed a previous deadlock
267  * with similar symptoms by using save/restore versions in other
268  * places.
269  */
270 #define cas_lock_all_save(cp, flags) \
271 do { \
272         struct cas *xxxcp = (cp); \
273         spin_lock_irqsave(&xxxcp->lock, flags); \
274         cas_lock_tx(xxxcp); \
275 } while (0)
276
277 static inline void cas_unlock_tx(struct cas *cp)
278 {
279         int i;
280
281         for (i = N_TX_RINGS; i > 0; i--)  
282                 spin_unlock(&cp->tx_lock[i - 1]);  
283 }
284
285 static inline void cas_unlock_all(struct cas *cp)
286 {
287         cas_unlock_tx(cp);
288         spin_unlock_irq(&cp->lock);
289 }
290
291 #define cas_unlock_all_restore(cp, flags) \
292 do { \
293         struct cas *xxxcp = (cp); \
294         cas_unlock_tx(xxxcp); \
295         spin_unlock_irqrestore(&xxxcp->lock, flags); \
296 } while (0)
297
298 static void cas_disable_irq(struct cas *cp, const int ring)
299 {
300         /* Make sure we won't get any more interrupts */
301         if (ring == 0) {
302                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303                 return;
304         }
305
306         /* disable completion interrupts and selectively mask */
307         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308                 switch (ring) {
309 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310 #ifdef USE_PCI_INTB
311                 case 1:
312 #endif
313 #ifdef USE_PCI_INTC
314                 case 2:
315 #endif
316 #ifdef USE_PCI_INTD
317                 case 3:
318 #endif
319                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 
320                                cp->regs + REG_PLUS_INTRN_MASK(ring));
321                         break;
322 #endif
323                 default:
324                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325                                REG_PLUS_INTRN_MASK(ring));
326                         break;
327                 }
328         }
329 }
330
331 static inline void cas_mask_intr(struct cas *cp)
332 {
333         int i;
334
335         for (i = 0; i < N_RX_COMP_RINGS; i++)
336                 cas_disable_irq(cp, i);
337 }
338
339 static inline void cas_buffer_init(cas_page_t *cp)
340 {
341         struct page *page = cp->buffer;
342         atomic_set((atomic_t *)&page->lru.next, 1);
343 }
344
345 static inline int cas_buffer_count(cas_page_t *cp)
346 {
347         struct page *page = cp->buffer;
348         return atomic_read((atomic_t *)&page->lru.next);
349 }
350
351 static inline void cas_buffer_inc(cas_page_t *cp)
352 {
353         struct page *page = cp->buffer;
354         atomic_inc((atomic_t *)&page->lru.next);
355 }
356
357 static inline void cas_buffer_dec(cas_page_t *cp)
358 {
359         struct page *page = cp->buffer;
360         atomic_dec((atomic_t *)&page->lru.next);
361 }
362
363 static void cas_enable_irq(struct cas *cp, const int ring)
364 {
365         if (ring == 0) { /* all but TX_DONE */
366                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
367                 return;
368         }
369
370         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
371                 switch (ring) {
372 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
373 #ifdef USE_PCI_INTB
374                 case 1:
375 #endif
376 #ifdef USE_PCI_INTC
377                 case 2:
378 #endif
379 #ifdef USE_PCI_INTD
380                 case 3:
381 #endif
382                         writel(INTRN_MASK_RX_EN, cp->regs +
383                                REG_PLUS_INTRN_MASK(ring));
384                         break;
385 #endif
386                 default:
387                         break;
388                 }
389         }
390 }
391
392 static inline void cas_unmask_intr(struct cas *cp)
393 {
394         int i;
395
396         for (i = 0; i < N_RX_COMP_RINGS; i++)
397                 cas_enable_irq(cp, i);
398 }
399
400 static inline void cas_entropy_gather(struct cas *cp)
401 {
402 #ifdef USE_ENTROPY_DEV
403         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
404                 return;
405
406         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
407                             readl(cp->regs + REG_ENTROPY_IV),
408                             sizeof(uint64_t)*8);
409 #endif
410 }
411
412 static inline void cas_entropy_reset(struct cas *cp)
413 {
414 #ifdef USE_ENTROPY_DEV
415         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
416                 return;
417
418         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 
419                cp->regs + REG_BIM_LOCAL_DEV_EN);
420         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
421         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
422
423         /* if we read back 0x0, we don't have an entropy device */
424         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
425                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
426 #endif
427 }
428
429 /* access to the phy. the following assumes that we've initialized the MIF to 
430  * be in frame rather than bit-bang mode
431  */
432 static u16 cas_phy_read(struct cas *cp, int reg)
433 {
434         u32 cmd;
435         int limit = STOP_TRIES_PHY;
436
437         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
438         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
439         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
440         cmd |= MIF_FRAME_TURN_AROUND_MSB;
441         writel(cmd, cp->regs + REG_MIF_FRAME);
442         
443         /* poll for completion */
444         while (limit-- > 0) {
445                 udelay(10);
446                 cmd = readl(cp->regs + REG_MIF_FRAME);
447                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
448                         return (cmd & MIF_FRAME_DATA_MASK);
449         }
450         return 0xFFFF; /* -1 */
451 }
452
453 static int cas_phy_write(struct cas *cp, int reg, u16 val)
454 {
455         int limit = STOP_TRIES_PHY;
456         u32 cmd;
457
458         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
459         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
460         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
461         cmd |= MIF_FRAME_TURN_AROUND_MSB;
462         cmd |= val & MIF_FRAME_DATA_MASK;
463         writel(cmd, cp->regs + REG_MIF_FRAME);
464         
465         /* poll for completion */
466         while (limit-- > 0) {
467                 udelay(10);
468                 cmd = readl(cp->regs + REG_MIF_FRAME);
469                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
470                         return 0;
471         }
472         return -1;
473 }
474
475 static void cas_phy_powerup(struct cas *cp)
476 {
477         u16 ctl = cas_phy_read(cp, MII_BMCR);   
478
479         if ((ctl & BMCR_PDOWN) == 0)
480                 return;
481         ctl &= ~BMCR_PDOWN;
482         cas_phy_write(cp, MII_BMCR, ctl);
483 }
484
485 static void cas_phy_powerdown(struct cas *cp)
486 {
487         u16 ctl = cas_phy_read(cp, MII_BMCR);   
488
489         if (ctl & BMCR_PDOWN)
490                 return;
491         ctl |= BMCR_PDOWN;
492         cas_phy_write(cp, MII_BMCR, ctl);
493 }
494
495 /* cp->lock held. note: the last put_page will free the buffer */
496 static int cas_page_free(struct cas *cp, cas_page_t *page)
497 {
498         pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, 
499                        PCI_DMA_FROMDEVICE);
500         cas_buffer_dec(page);
501         __free_pages(page->buffer, cp->page_order);
502         kfree(page);
503         return 0;
504 }
505
506 #ifdef RX_COUNT_BUFFERS
507 #define RX_USED_ADD(x, y)       ((x)->used += (y))
508 #define RX_USED_SET(x, y)       ((x)->used  = (y))
509 #else
510 #define RX_USED_ADD(x, y) 
511 #define RX_USED_SET(x, y)
512 #endif
513
514 /* local page allocation routines for the receive buffers. jumbo pages
515  * require at least 8K contiguous and 8K aligned buffers.
516  */
517 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
518 {
519         cas_page_t *page;
520
521         page = kmalloc(sizeof(cas_page_t), flags);
522         if (!page)
523                 return NULL;
524
525         INIT_LIST_HEAD(&page->list);
526         RX_USED_SET(page, 0);
527         page->buffer = alloc_pages(flags, cp->page_order);
528         if (!page->buffer)
529                 goto page_err;
530         cas_buffer_init(page);
531         page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
532                                       cp->page_size, PCI_DMA_FROMDEVICE);
533         return page;
534
535 page_err:
536         kfree(page);
537         return NULL;
538 }
539
540 /* initialize spare pool of rx buffers, but allocate during the open */
541 static void cas_spare_init(struct cas *cp)
542 {
543         spin_lock(&cp->rx_inuse_lock);
544         INIT_LIST_HEAD(&cp->rx_inuse_list);
545         spin_unlock(&cp->rx_inuse_lock);
546
547         spin_lock(&cp->rx_spare_lock);
548         INIT_LIST_HEAD(&cp->rx_spare_list);
549         cp->rx_spares_needed = RX_SPARE_COUNT;
550         spin_unlock(&cp->rx_spare_lock);
551 }
552
553 /* used on close. free all the spare buffers. */
554 static void cas_spare_free(struct cas *cp)
555 {
556         struct list_head list, *elem, *tmp;
557
558         /* free spare buffers */
559         INIT_LIST_HEAD(&list);
560         spin_lock(&cp->rx_spare_lock);
561         list_splice(&cp->rx_spare_list, &list);
562         INIT_LIST_HEAD(&cp->rx_spare_list);
563         spin_unlock(&cp->rx_spare_lock);
564         list_for_each_safe(elem, tmp, &list) {
565                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
566         }
567
568         INIT_LIST_HEAD(&list);
569 #if 1
570         /*
571          * Looks like Adrian had protected this with a different
572          * lock than used everywhere else to manipulate this list.
573          */
574         spin_lock(&cp->rx_inuse_lock);
575         list_splice(&cp->rx_inuse_list, &list);
576         INIT_LIST_HEAD(&cp->rx_inuse_list);
577         spin_unlock(&cp->rx_inuse_lock);
578 #else
579         spin_lock(&cp->rx_spare_lock);
580         list_splice(&cp->rx_inuse_list, &list);
581         INIT_LIST_HEAD(&cp->rx_inuse_list);
582         spin_unlock(&cp->rx_spare_lock);
583 #endif
584         list_for_each_safe(elem, tmp, &list) {
585                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
586         }
587 }
588
589 /* replenish spares if needed */
590 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
591 {
592         struct list_head list, *elem, *tmp;
593         int needed, i;
594
595         /* check inuse list. if we don't need any more free buffers,
596          * just free it
597          */
598
599         /* make a local copy of the list */
600         INIT_LIST_HEAD(&list);
601         spin_lock(&cp->rx_inuse_lock);
602         list_splice(&cp->rx_inuse_list, &list);
603         INIT_LIST_HEAD(&cp->rx_inuse_list);
604         spin_unlock(&cp->rx_inuse_lock);
605         
606         list_for_each_safe(elem, tmp, &list) {
607                 cas_page_t *page = list_entry(elem, cas_page_t, list);
608
609                 if (cas_buffer_count(page) > 1)
610                         continue;
611
612                 list_del(elem);
613                 spin_lock(&cp->rx_spare_lock);
614                 if (cp->rx_spares_needed > 0) {
615                         list_add(elem, &cp->rx_spare_list);
616                         cp->rx_spares_needed--;
617                         spin_unlock(&cp->rx_spare_lock);
618                 } else {
619                         spin_unlock(&cp->rx_spare_lock);
620                         cas_page_free(cp, page);
621                 }
622         }
623
624         /* put any inuse buffers back on the list */
625         if (!list_empty(&list)) {
626                 spin_lock(&cp->rx_inuse_lock);
627                 list_splice(&list, &cp->rx_inuse_list);
628                 spin_unlock(&cp->rx_inuse_lock);
629         }
630         
631         spin_lock(&cp->rx_spare_lock);
632         needed = cp->rx_spares_needed;
633         spin_unlock(&cp->rx_spare_lock);
634         if (!needed)
635                 return;
636
637         /* we still need spares, so try to allocate some */
638         INIT_LIST_HEAD(&list);
639         i = 0;
640         while (i < needed) {
641                 cas_page_t *spare = cas_page_alloc(cp, flags);
642                 if (!spare) 
643                         break;
644                 list_add(&spare->list, &list);
645                 i++;
646         }
647
648         spin_lock(&cp->rx_spare_lock);
649         list_splice(&list, &cp->rx_spare_list);
650         cp->rx_spares_needed -= i;
651         spin_unlock(&cp->rx_spare_lock);
652 }
653
654 /* pull a page from the list. */
655 static cas_page_t *cas_page_dequeue(struct cas *cp)
656 {
657         struct list_head *entry;
658         int recover;
659
660         spin_lock(&cp->rx_spare_lock);
661         if (list_empty(&cp->rx_spare_list)) {
662                 /* try to do a quick recovery */
663                 spin_unlock(&cp->rx_spare_lock);
664                 cas_spare_recover(cp, GFP_ATOMIC);
665                 spin_lock(&cp->rx_spare_lock);
666                 if (list_empty(&cp->rx_spare_list)) {
667                         if (netif_msg_rx_err(cp))
668                                 printk(KERN_ERR "%s: no spare buffers "
669                                        "available.\n", cp->dev->name);
670                         spin_unlock(&cp->rx_spare_lock);
671                         return NULL;
672                 }
673         }
674
675         entry = cp->rx_spare_list.next;
676         list_del(entry);
677         recover = ++cp->rx_spares_needed;
678         spin_unlock(&cp->rx_spare_lock);
679
680         /* trigger the timer to do the recovery */
681         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
682 #if 1
683                 atomic_inc(&cp->reset_task_pending);
684                 atomic_inc(&cp->reset_task_pending_spare);
685                 schedule_work(&cp->reset_task);
686 #else
687                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
688                 schedule_work(&cp->reset_task);
689 #endif
690         }
691         return list_entry(entry, cas_page_t, list);
692 }
693
694
695 static void cas_mif_poll(struct cas *cp, const int enable)
696 {
697         u32 cfg;
698         
699         cfg  = readl(cp->regs + REG_MIF_CFG); 
700         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
701
702         if (cp->phy_type & CAS_PHY_MII_MDIO1)
703                 cfg |= MIF_CFG_PHY_SELECT; 
704
705         /* poll and interrupt on link status change. */
706         if (enable) {
707                 cfg |= MIF_CFG_POLL_EN;
708                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
709                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
710         }
711         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 
712                cp->regs + REG_MIF_MASK); 
713         writel(cfg, cp->regs + REG_MIF_CFG);
714 }
715
716 /* Must be invoked under cp->lock */
717 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
718 {
719         u16 ctl;
720 #if 1
721         int lcntl;
722         int changed = 0;
723         int oldstate = cp->lstate;
724         int link_was_not_down = !(oldstate == link_down);
725 #endif
726         /* Setup link parameters */
727         if (!ep)
728                 goto start_aneg;
729         lcntl = cp->link_cntl;
730         if (ep->autoneg == AUTONEG_ENABLE)
731                 cp->link_cntl = BMCR_ANENABLE;
732         else {
733                 cp->link_cntl = 0;
734                 if (ep->speed == SPEED_100)
735                         cp->link_cntl |= BMCR_SPEED100;
736                 else if (ep->speed == SPEED_1000)
737                         cp->link_cntl |= CAS_BMCR_SPEED1000;
738                 if (ep->duplex == DUPLEX_FULL)
739                         cp->link_cntl |= BMCR_FULLDPLX;
740         }
741 #if 1
742         changed = (lcntl != cp->link_cntl);
743 #endif
744 start_aneg:
745         if (cp->lstate == link_up) {
746                 printk(KERN_INFO "%s: PCS link down.\n",
747                        cp->dev->name);
748         } else {
749                 if (changed) {
750                         printk(KERN_INFO "%s: link configuration changed\n",
751                                cp->dev->name);
752                 }
753         }
754         cp->lstate = link_down;
755         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
756         if (!cp->hw_running)
757                 return;
758 #if 1
759         /*
760          * WTZ: If the old state was link_up, we turn off the carrier
761          * to replicate everything we do elsewhere on a link-down
762          * event when we were already in a link-up state..  
763          */
764         if (oldstate == link_up)
765                 netif_carrier_off(cp->dev);
766         if (changed  && link_was_not_down) {
767                 /*
768                  * WTZ: This branch will simply schedule a full reset after
769                  * we explicitly changed link modes in an ioctl. See if this
770                  * fixes the link-problems we were having for forced mode. 
771                  */
772                 atomic_inc(&cp->reset_task_pending);
773                 atomic_inc(&cp->reset_task_pending_all);
774                 schedule_work(&cp->reset_task);
775                 cp->timer_ticks = 0;
776                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
777                 return;
778         }
779 #endif
780         if (cp->phy_type & CAS_PHY_SERDES) {
781                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
782
783                 if (cp->link_cntl & BMCR_ANENABLE) {
784                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
785                         cp->lstate = link_aneg;
786                 } else {
787                         if (cp->link_cntl & BMCR_FULLDPLX)
788                                 val |= PCS_MII_CTRL_DUPLEX;
789                         val &= ~PCS_MII_AUTONEG_EN;
790                         cp->lstate = link_force_ok;
791                 }
792                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
793                 writel(val, cp->regs + REG_PCS_MII_CTRL);
794
795         } else {
796                 cas_mif_poll(cp, 0);
797                 ctl = cas_phy_read(cp, MII_BMCR);
798                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 
799                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
800                 ctl |= cp->link_cntl;
801                 if (ctl & BMCR_ANENABLE) {
802                         ctl |= BMCR_ANRESTART;
803                         cp->lstate = link_aneg;
804                 } else {
805                         cp->lstate = link_force_ok;
806                 }
807                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
808                 cas_phy_write(cp, MII_BMCR, ctl);
809                 cas_mif_poll(cp, 1);
810         }
811
812         cp->timer_ticks = 0;
813         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
814 }
815
816 /* Must be invoked under cp->lock. */
817 static int cas_reset_mii_phy(struct cas *cp)
818 {
819         int limit = STOP_TRIES_PHY;
820         u16 val;
821         
822         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
823         udelay(100);
824         while (limit--) {
825                 val = cas_phy_read(cp, MII_BMCR);
826                 if ((val & BMCR_RESET) == 0)
827                         break;
828                 udelay(10);
829         }
830         return (limit <= 0);
831 }
832
833 static void cas_saturn_firmware_load(struct cas *cp)
834 {
835         cas_saturn_patch_t *patch = cas_saturn_patch;
836
837         cas_phy_powerdown(cp);
838
839         /* expanded memory access mode */
840         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
841
842         /* pointer configuration for new firmware */
843         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
844         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
845         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
846         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
847         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
848         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
849         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
850         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
851
852         /* download new firmware */
853         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
854         cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
855         while (patch->addr) {
856                 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
857                 patch++;
858         }
859
860         /* enable firmware */
861         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
862         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
863 }
864
865
866 /* phy initialization */
867 static void cas_phy_init(struct cas *cp)
868 {
869         u16 val;
870
871         /* if we're in MII/GMII mode, set up phy */
872         if (CAS_PHY_MII(cp->phy_type)) {
873                 writel(PCS_DATAPATH_MODE_MII,
874                        cp->regs + REG_PCS_DATAPATH_MODE);
875
876                 cas_mif_poll(cp, 0);
877                 cas_reset_mii_phy(cp); /* take out of isolate mode */
878
879                 if (PHY_LUCENT_B0 == cp->phy_id) {
880                         /* workaround link up/down issue with lucent */
881                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
882                         cas_phy_write(cp, MII_BMCR, 0x00f1);
883                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
884
885                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
886                         /* workarounds for broadcom phy */
887                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
888                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
889                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
890                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
891                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
892                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
893                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
894                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
895                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
896                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
897                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
898
899                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
900                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
901                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
902                         if (val & 0x0080) {
903                                 /* link workaround */
904                                 cas_phy_write(cp, BROADCOM_MII_REG4, 
905                                               val & ~0x0080);
906                         }
907                         
908                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
909                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 
910                                SATURN_PCFG_FSI : 0x0, 
911                                cp->regs + REG_SATURN_PCFG);
912
913                         /* load firmware to address 10Mbps auto-negotiation
914                          * issue. NOTE: this will need to be changed if the 
915                          * default firmware gets fixed.
916                          */
917                         if (PHY_NS_DP83065 == cp->phy_id) {
918                                 cas_saturn_firmware_load(cp);
919                         }
920                         cas_phy_powerup(cp);
921                 }
922
923                 /* advertise capabilities */
924                 val = cas_phy_read(cp, MII_BMCR);
925                 val &= ~BMCR_ANENABLE;
926                 cas_phy_write(cp, MII_BMCR, val);
927                 udelay(10);
928
929                 cas_phy_write(cp, MII_ADVERTISE,
930                               cas_phy_read(cp, MII_ADVERTISE) |
931                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
932                                ADVERTISE_100HALF | ADVERTISE_100FULL |
933                                CAS_ADVERTISE_PAUSE | 
934                                CAS_ADVERTISE_ASYM_PAUSE));
935                 
936                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
937                         /* make sure that we don't advertise half
938                          * duplex to avoid a chip issue
939                          */
940                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
941                         val &= ~CAS_ADVERTISE_1000HALF;
942                         val |= CAS_ADVERTISE_1000FULL;
943                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
944                 }
945
946         } else {
947                 /* reset pcs for serdes */
948                 u32 val;
949                 int limit;
950
951                 writel(PCS_DATAPATH_MODE_SERDES,
952                        cp->regs + REG_PCS_DATAPATH_MODE);
953
954                 /* enable serdes pins on saturn */
955                 if (cp->cas_flags & CAS_FLAG_SATURN)
956                         writel(0, cp->regs + REG_SATURN_PCFG);
957
958                 /* Reset PCS unit. */
959                 val = readl(cp->regs + REG_PCS_MII_CTRL);
960                 val |= PCS_MII_RESET;
961                 writel(val, cp->regs + REG_PCS_MII_CTRL);
962
963                 limit = STOP_TRIES;
964                 while (limit-- > 0) {
965                         udelay(10);
966                         if ((readl(cp->regs + REG_PCS_MII_CTRL) & 
967                              PCS_MII_RESET) == 0)
968                                 break;
969                 }
970                 if (limit <= 0)
971                         printk(KERN_WARNING "%s: PCS reset bit would not "
972                                "clear [%08x].\n", cp->dev->name,
973                                readl(cp->regs + REG_PCS_STATE_MACHINE));
974
975                 /* Make sure PCS is disabled while changing advertisement
976                  * configuration.
977                  */
978                 writel(0x0, cp->regs + REG_PCS_CFG);
979
980                 /* Advertise all capabilities except half-duplex. */
981                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
982                 val &= ~PCS_MII_ADVERT_HD;
983                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 
984                         PCS_MII_ADVERT_ASYM_PAUSE);
985                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
986
987                 /* enable PCS */
988                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
989
990                 /* pcs workaround: enable sync detect */
991                 writel(PCS_SERDES_CTRL_SYNCD_EN,
992                        cp->regs + REG_PCS_SERDES_CTRL);
993         }
994 }
995
996
997 static int cas_pcs_link_check(struct cas *cp)
998 {
999         u32 stat, state_machine;
1000         int retval = 0;
1001
1002         /* The link status bit latches on zero, so you must
1003          * read it twice in such a case to see a transition
1004          * to the link being up.
1005          */
1006         stat = readl(cp->regs + REG_PCS_MII_STATUS);
1007         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1008                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1009
1010         /* The remote-fault indication is only valid
1011          * when autoneg has completed.
1012          */
1013         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1014                      PCS_MII_STATUS_REMOTE_FAULT)) ==
1015             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1016                 if (netif_msg_link(cp))
1017                         printk(KERN_INFO "%s: PCS RemoteFault\n", 
1018                                cp->dev->name);
1019         }
1020
1021         /* work around link detection issue by querying the PCS state
1022          * machine directly.
1023          */
1024         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1025         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1026                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1027         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1028                 stat |= PCS_MII_STATUS_LINK_STATUS;
1029         }
1030
1031         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1032                 if (cp->lstate != link_up) {
1033                         if (cp->opened) {
1034                                 cp->lstate = link_up;
1035                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1036                                 
1037                                 cas_set_link_modes(cp);
1038                                 netif_carrier_on(cp->dev);
1039                         }
1040                 }
1041         } else if (cp->lstate == link_up) {
1042                 cp->lstate = link_down;
1043                 if (link_transition_timeout != 0 &&
1044                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1045                     !cp->link_transition_jiffies_valid) {
1046                         /*
1047                          * force a reset, as a workaround for the 
1048                          * link-failure problem. May want to move this to a 
1049                          * point a bit earlier in the sequence. If we had
1050                          * generated a reset a short time ago, we'll wait for
1051                          * the link timer to check the status until a
1052                          * timer expires (link_transistion_jiffies_valid is
1053                          * true when the timer is running.)  Instead of using
1054                          * a system timer, we just do a check whenever the
1055                          * link timer is running - this clears the flag after
1056                          * a suitable delay.
1057                          */
1058                         retval = 1;
1059                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1060                         cp->link_transition_jiffies = jiffies;
1061                         cp->link_transition_jiffies_valid = 1;
1062                 } else {
1063                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1064                 }
1065                 netif_carrier_off(cp->dev);
1066                 if (cp->opened && netif_msg_link(cp)) {
1067                         printk(KERN_INFO "%s: PCS link down.\n",
1068                                cp->dev->name);
1069                 }
1070
1071                 /* Cassini only: if you force a mode, there can be
1072                  * sync problems on link down. to fix that, the following
1073                  * things need to be checked:
1074                  * 1) read serialink state register
1075                  * 2) read pcs status register to verify link down.
1076                  * 3) if link down and serial link == 0x03, then you need
1077                  *    to global reset the chip.
1078                  */
1079                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1080                         /* should check to see if we're in a forced mode */
1081                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1082                         if (stat == 0x03)
1083                                 return 1;
1084                 }
1085         } else if (cp->lstate == link_down) {
1086                 if (link_transition_timeout != 0 &&
1087                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1088                     !cp->link_transition_jiffies_valid) {
1089                         /* force a reset, as a workaround for the
1090                          * link-failure problem.  May want to move
1091                          * this to a point a bit earlier in the
1092                          * sequence.
1093                          */
1094                         retval = 1;
1095                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1096                         cp->link_transition_jiffies = jiffies;
1097                         cp->link_transition_jiffies_valid = 1;
1098                 } else {
1099                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1100                 }
1101         }
1102
1103         return retval;
1104 }
1105
1106 static int cas_pcs_interrupt(struct net_device *dev, 
1107                              struct cas *cp, u32 status)
1108 {
1109         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1110
1111         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 
1112                 return 0;
1113         return cas_pcs_link_check(cp);
1114 }
1115
1116 static int cas_txmac_interrupt(struct net_device *dev, 
1117                                struct cas *cp, u32 status)
1118 {
1119         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1120
1121         if (!txmac_stat)
1122                 return 0;
1123
1124         if (netif_msg_intr(cp))
1125                 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1126                         cp->dev->name, txmac_stat);
1127
1128         /* Defer timer expiration is quite normal,
1129          * don't even log the event.
1130          */
1131         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1132             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1133                 return 0;
1134
1135         spin_lock(&cp->stat_lock[0]);
1136         if (txmac_stat & MAC_TX_UNDERRUN) {
1137                 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1138                        dev->name);
1139                 cp->net_stats[0].tx_fifo_errors++;
1140         }
1141
1142         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1143                 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1144                        dev->name);
1145                 cp->net_stats[0].tx_errors++;
1146         }
1147
1148         /* The rest are all cases of one of the 16-bit TX
1149          * counters expiring.
1150          */
1151         if (txmac_stat & MAC_TX_COLL_NORMAL)
1152                 cp->net_stats[0].collisions += 0x10000;
1153
1154         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1156                 cp->net_stats[0].collisions += 0x10000;
1157         }
1158
1159         if (txmac_stat & MAC_TX_COLL_LATE) {
1160                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1161                 cp->net_stats[0].collisions += 0x10000;
1162         }
1163         spin_unlock(&cp->stat_lock[0]);
1164
1165         /* We do not keep track of MAC_TX_COLL_FIRST and
1166          * MAC_TX_PEAK_ATTEMPTS events.
1167          */
1168         return 0;
1169 }
1170
1171 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 
1172 {
1173         cas_hp_inst_t *inst;
1174         u32 val;
1175         int i;
1176
1177         i = 0;
1178         while ((inst = firmware) && inst->note) {
1179                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1180
1181                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1184
1185                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1193
1194                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1199                 ++firmware;
1200                 ++i;
1201         }
1202 }
1203
1204 static void cas_init_rx_dma(struct cas *cp)
1205 {
1206         u64 desc_dma = cp->block_dvma; 
1207         u32 val;
1208         int i, size;
1209
1210         /* rx free descriptors */
1211         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 
1212         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214         if ((N_RX_DESC_RINGS > 1) &&
1215             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1216                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217         writel(val, cp->regs + REG_RX_CFG);
1218
1219         val = (unsigned long) cp->init_rxds[0] - 
1220                 (unsigned long) cp->init_block;
1221         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1224
1225         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1226                 /* rx desc 2 is for IPSEC packets. however, 
1227                  * we don't it that for that purpose.
1228                  */
1229                 val = (unsigned long) cp->init_rxds[1] - 
1230                         (unsigned long) cp->init_block;
1231                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1232                 writel((desc_dma + val) & 0xffffffff, cp->regs + 
1233                        REG_PLUS_RX_DB1_LOW);
1234                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 
1235                        REG_PLUS_RX_KICK1);
1236         }
1237         
1238         /* rx completion registers */
1239         val = (unsigned long) cp->init_rxcs[0] - 
1240                 (unsigned long) cp->init_block;
1241         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1243
1244         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1245                 /* rx comp 2-4 */
1246                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1247                         val = (unsigned long) cp->init_rxcs[i] - 
1248                                 (unsigned long) cp->init_block;
1249                         writel((desc_dma + val) >> 32, cp->regs + 
1250                                REG_PLUS_RX_CBN_HI(i));
1251                         writel((desc_dma + val) & 0xffffffff, cp->regs + 
1252                                REG_PLUS_RX_CBN_LOW(i));
1253                 }
1254         }
1255
1256         /* read selective clear regs to prevent spurious interrupts
1257          * on reset because complete == kick.
1258          * selective clear set up to prevent interrupts on resets
1259          */
1260         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1264                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1265
1266                 /* 2 is different from 3 and 4 */
1267                 if (N_RX_COMP_RINGS > 1)
1268                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 
1269                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1270
1271                 for (i = 2; i < N_RX_COMP_RINGS; i++) 
1272                         writel(INTR_RX_DONE_ALT, 
1273                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1274         }
1275
1276         /* set up pause thresholds */
1277         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1279         val |= CAS_BASE(RX_PAUSE_THRESH_ON, 
1280                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1282         
1283         /* zero out dma reassembly buffers */
1284         for (i = 0; i < 64; i++) {
1285                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1289         }
1290
1291         /* make sure address register is 0 for normal operation */
1292         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1294
1295         /* interrupt mitigation */
1296 #ifdef USE_RX_BLANK
1297         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299         writel(val, cp->regs + REG_RX_BLANK);
1300 #else
1301         writel(0x0, cp->regs + REG_RX_BLANK);
1302 #endif
1303
1304         /* interrupt generation as a function of low water marks for
1305          * free desc and completion entries. these are used to trigger
1306          * housekeeping for rx descs. we don't use the free interrupt
1307          * as it's not very useful
1308          */
1309         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311         writel(val, cp->regs + REG_RX_AE_THRESH);
1312         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1315         }
1316
1317         /* Random early detect registers. useful for congestion avoidance.
1318          * this should be tunable.
1319          */
1320         writel(0x0, cp->regs + REG_RX_RED);
1321         
1322         /* receive page sizes. default == 2K (0x800) */
1323         val = 0;
1324         if (cp->page_size == 0x1000)
1325                 val = 0x1;
1326         else if (cp->page_size == 0x2000)
1327                 val = 0x2;
1328         else if (cp->page_size == 0x4000)
1329                 val = 0x3;
1330         
1331         /* round mtu + offset. constrain to page size. */
1332         size = cp->dev->mtu + 64;
1333         if (size > cp->page_size)
1334                 size = cp->page_size;
1335
1336         if (size <= 0x400)
1337                 i = 0x0;
1338         else if (size <= 0x800)
1339                 i = 0x1;
1340         else if (size <= 0x1000)
1341                 i = 0x2;
1342         else
1343                 i = 0x3;
1344
1345         cp->mtu_stride = 1 << (i + 10);
1346         val  = CAS_BASE(RX_PAGE_SIZE, val);
1347         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 
1348         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1351         
1352         /* enable the header parser if desired */
1353         if (CAS_HP_FIRMWARE == cas_prog_null)
1354                 return;
1355
1356         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359         writel(val, cp->regs + REG_HP_CFG);
1360 }
1361
1362 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1363 {
1364         memset(rxc, 0, sizeof(*rxc));
1365         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 
1366 }
1367
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369  * flipping is protected by the fact that the chip will not
1370  * hand back the same page index while it's being processed.
1371  */
1372 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1373 {
1374         cas_page_t *page = cp->rx_pages[1][index];
1375         cas_page_t *new;
1376
1377         if (cas_buffer_count(page) == 1)
1378                 return page;
1379
1380         new = cas_page_dequeue(cp);
1381         if (new) {
1382                 spin_lock(&cp->rx_inuse_lock);
1383                 list_add(&page->list, &cp->rx_inuse_list);
1384                 spin_unlock(&cp->rx_inuse_lock);
1385         }
1386         return new;
1387 }
1388                                    
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 
1391                                  const int index)
1392 {
1393         cas_page_t **page0 = cp->rx_pages[0];
1394         cas_page_t **page1 = cp->rx_pages[1];
1395
1396         /* swap if buffer is in use */
1397         if (cas_buffer_count(page0[index]) > 1) {
1398                 cas_page_t *new = cas_page_spare(cp, index);
1399                 if (new) {
1400                         page1[index] = page0[index];
1401                         page0[index] = new;
1402                 }
1403         } 
1404         RX_USED_SET(page0[index], 0);
1405         return page0[index];
1406 }
1407
1408 static void cas_clean_rxds(struct cas *cp)
1409 {
1410         /* only clean ring 0 as ring 1 is used for spare buffers */
1411         struct cas_rx_desc *rxd = cp->init_rxds[0];
1412         int i, size;
1413
1414         /* release all rx flows */
1415         for (i = 0; i < N_RX_FLOWS; i++) {
1416                 struct sk_buff *skb;
1417                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418                         cas_skb_release(skb);
1419                 }
1420         }
1421
1422         /* initialize descriptors */
1423         size = RX_DESC_RINGN_SIZE(0);
1424         for (i = 0; i < size; i++) {
1425                 cas_page_t *page = cas_page_swap(cp, 0, i);
1426                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1427                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 
1428                                             CAS_BASE(RX_INDEX_RING, 0));
1429         }
1430
1431         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4; 
1432         cp->rx_last[0] = 0;
1433         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1434 }
1435
1436 static void cas_clean_rxcs(struct cas *cp)
1437 {
1438         int i, j;
1439
1440         /* take ownership of rx comp descriptors */
1441         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446                         cas_rxc_init(rxc + j);
1447                 }
1448         }
1449 }
1450
1451 #if 0
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453  * so we do the following.
1454  *
1455  * If any part of the reset goes wrong, we return 1 and that causes the
1456  * whole chip to be reset.
1457  */
1458 static int cas_rxmac_reset(struct cas *cp)
1459 {
1460         struct net_device *dev = cp->dev;
1461         int limit;
1462         u32 val;
1463
1464         /* First, reset MAC RX. */
1465         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466         for (limit = 0; limit < STOP_TRIES; limit++) {
1467                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1468                         break;
1469                 udelay(10);
1470         }
1471         if (limit == STOP_TRIES) {
1472                 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1473                        "chip.\n", dev->name);
1474                 return 1;
1475         }
1476
1477         /* Second, disable RX DMA. */
1478         writel(0, cp->regs + REG_RX_CFG);
1479         for (limit = 0; limit < STOP_TRIES; limit++) {
1480                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1481                         break;
1482                 udelay(10);
1483         }
1484         if (limit == STOP_TRIES) {
1485                 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1486                        "chip.\n", dev->name);
1487                 return 1;
1488         }
1489
1490         mdelay(5);
1491
1492         /* Execute RX reset command. */
1493         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1494         for (limit = 0; limit < STOP_TRIES; limit++) {
1495                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1496                         break;
1497                 udelay(10);
1498         }
1499         if (limit == STOP_TRIES) {
1500                 printk(KERN_ERR "%s: RX reset command will not execute, "
1501                        "resetting whole chip.\n", dev->name);
1502                 return 1;
1503         }
1504
1505         /* reset driver rx state */
1506         cas_clean_rxds(cp);
1507         cas_clean_rxcs(cp);
1508
1509         /* Now, reprogram the rest of RX unit. */
1510         cas_init_rx_dma(cp);
1511
1512         /* re-enable */
1513         val = readl(cp->regs + REG_RX_CFG);
1514         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1515         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1516         val = readl(cp->regs + REG_MAC_RX_CFG);
1517         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1518         return 0;
1519 }
1520 #endif
1521
1522 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1523                                u32 status)
1524 {
1525         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1526
1527         if (!stat)
1528                 return 0;
1529
1530         if (netif_msg_intr(cp))
1531                 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1532                         cp->dev->name, stat);
1533
1534         /* these are all rollovers */
1535         spin_lock(&cp->stat_lock[0]);
1536         if (stat & MAC_RX_ALIGN_ERR) 
1537                 cp->net_stats[0].rx_frame_errors += 0x10000;
1538
1539         if (stat & MAC_RX_CRC_ERR)
1540                 cp->net_stats[0].rx_crc_errors += 0x10000;
1541
1542         if (stat & MAC_RX_LEN_ERR)
1543                 cp->net_stats[0].rx_length_errors += 0x10000;
1544
1545         if (stat & MAC_RX_OVERFLOW) {
1546                 cp->net_stats[0].rx_over_errors++;
1547                 cp->net_stats[0].rx_fifo_errors++;
1548         }
1549
1550         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1551          * events.
1552          */
1553         spin_unlock(&cp->stat_lock[0]);
1554         return 0;
1555 }
1556
1557 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1558                              u32 status)
1559 {
1560         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1561
1562         if (!stat)
1563                 return 0;
1564
1565         if (netif_msg_intr(cp))
1566                 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1567                         cp->dev->name, stat);
1568
1569         /* This interrupt is just for pause frame and pause
1570          * tracking.  It is useful for diagnostics and debug
1571          * but probably by default we will mask these events.
1572          */
1573         if (stat & MAC_CTRL_PAUSE_STATE)
1574                 cp->pause_entered++;
1575
1576         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1577                 cp->pause_last_time_recvd = (stat >> 16);
1578
1579         return 0;
1580 }
1581
1582         
1583 /* Must be invoked under cp->lock. */
1584 static inline int cas_mdio_link_not_up(struct cas *cp)
1585 {
1586         u16 val;
1587         
1588         switch (cp->lstate) {
1589         case link_force_ret:
1590                 if (netif_msg_link(cp))
1591                         printk(KERN_INFO "%s: Autoneg failed again, keeping"
1592                                 " forced mode\n", cp->dev->name);
1593                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1594                 cp->timer_ticks = 5;
1595                 cp->lstate = link_force_ok;
1596                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1597                 break;
1598                 
1599         case link_aneg:
1600                 val = cas_phy_read(cp, MII_BMCR);
1601
1602                 /* Try forced modes. we try things in the following order:
1603                  * 1000 full -> 100 full/half -> 10 half
1604                  */
1605                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1606                 val |= BMCR_FULLDPLX;
1607                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 
1608                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1609                 cas_phy_write(cp, MII_BMCR, val);
1610                 cp->timer_ticks = 5;
1611                 cp->lstate = link_force_try;
1612                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1613                 break;
1614
1615         case link_force_try:
1616                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1617                 val = cas_phy_read(cp, MII_BMCR);
1618                 cp->timer_ticks = 5;
1619                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1620                         val &= ~CAS_BMCR_SPEED1000;
1621                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1622                         cas_phy_write(cp, MII_BMCR, val);
1623                         break;
1624                 }
1625
1626                 if (val & BMCR_SPEED100) {
1627                         if (val & BMCR_FULLDPLX) /* fd failed */
1628                                 val &= ~BMCR_FULLDPLX;
1629                         else { /* 100Mbps failed */
1630                                 val &= ~BMCR_SPEED100;
1631                         }
1632                         cas_phy_write(cp, MII_BMCR, val);
1633                         break;
1634                 }
1635         default:
1636                 break;
1637         }
1638         return 0;
1639 }
1640
1641
1642 /* must be invoked with cp->lock held */
1643 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1644 {
1645         int restart;
1646
1647         if (bmsr & BMSR_LSTATUS) {
1648                 /* Ok, here we got a link. If we had it due to a forced
1649                  * fallback, and we were configured for autoneg, we 
1650                  * retry a short autoneg pass. If you know your hub is
1651                  * broken, use ethtool ;)
1652                  */
1653                 if ((cp->lstate == link_force_try) && 
1654                     (cp->link_cntl & BMCR_ANENABLE)) {
1655                         cp->lstate = link_force_ret;
1656                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1657                         cas_mif_poll(cp, 0);
1658                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1659                         cp->timer_ticks = 5;
1660                         if (cp->opened && netif_msg_link(cp))
1661                                 printk(KERN_INFO "%s: Got link after fallback, retrying"
1662                                        " autoneg once...\n", cp->dev->name);
1663                         cas_phy_write(cp, MII_BMCR,
1664                                       cp->link_fcntl | BMCR_ANENABLE |
1665                                       BMCR_ANRESTART);
1666                         cas_mif_poll(cp, 1);
1667
1668                 } else if (cp->lstate != link_up) {
1669                         cp->lstate = link_up;
1670                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1671
1672                         if (cp->opened) {
1673                                 cas_set_link_modes(cp);
1674                                 netif_carrier_on(cp->dev);
1675                         }
1676                 }
1677                 return 0;
1678         }
1679
1680         /* link not up. if the link was previously up, we restart the
1681          * whole process
1682          */
1683         restart = 0;
1684         if (cp->lstate == link_up) {
1685                 cp->lstate = link_down;
1686                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1687
1688                 netif_carrier_off(cp->dev);
1689                 if (cp->opened && netif_msg_link(cp))
1690                         printk(KERN_INFO "%s: Link down\n",
1691                                cp->dev->name);
1692                 restart = 1;
1693                 
1694         } else if (++cp->timer_ticks > 10)
1695                 cas_mdio_link_not_up(cp);
1696                 
1697         return restart;
1698 }
1699
1700 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1701                              u32 status)
1702 {
1703         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1704         u16 bmsr;
1705
1706         /* check for a link change */
1707         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1708                 return 0;
1709
1710         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1711         return cas_mii_link_check(cp, bmsr);
1712 }
1713
1714 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1715                              u32 status)
1716 {
1717         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1718
1719         if (!stat)
1720                 return 0;
1721
1722         printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1723                readl(cp->regs + REG_BIM_DIAG));
1724
1725         /* cassini+ has this reserved */
1726         if ((stat & PCI_ERR_BADACK) &&
1727             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1728                 printk("<No ACK64# during ABS64 cycle> ");
1729
1730         if (stat & PCI_ERR_DTRTO)
1731                 printk("<Delayed transaction timeout> ");
1732         if (stat & PCI_ERR_OTHER)
1733                 printk("<other> ");
1734         if (stat & PCI_ERR_BIM_DMA_WRITE)
1735                 printk("<BIM DMA 0 write req> ");
1736         if (stat & PCI_ERR_BIM_DMA_READ)
1737                 printk("<BIM DMA 0 read req> ");
1738         printk("\n");
1739
1740         if (stat & PCI_ERR_OTHER) {
1741                 u16 cfg;
1742
1743                 /* Interrogate PCI config space for the
1744                  * true cause.
1745                  */
1746                 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1747                 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1748                        dev->name, cfg);
1749                 if (cfg & PCI_STATUS_PARITY)
1750                         printk(KERN_ERR "%s: PCI parity error detected.\n",
1751                                dev->name);
1752                 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1753                         printk(KERN_ERR "%s: PCI target abort.\n",
1754                                dev->name);
1755                 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1756                         printk(KERN_ERR "%s: PCI master acks target abort.\n",
1757                                dev->name);
1758                 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1759                         printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1760                 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1761                         printk(KERN_ERR "%s: PCI system error SERR#.\n",
1762                                dev->name);
1763                 if (cfg & PCI_STATUS_DETECTED_PARITY)
1764                         printk(KERN_ERR "%s: PCI parity error.\n",
1765                                dev->name);
1766
1767                 /* Write the error bits back to clear them. */
1768                 cfg &= (PCI_STATUS_PARITY |
1769                         PCI_STATUS_SIG_TARGET_ABORT |
1770                         PCI_STATUS_REC_TARGET_ABORT |
1771                         PCI_STATUS_REC_MASTER_ABORT |
1772                         PCI_STATUS_SIG_SYSTEM_ERROR |
1773                         PCI_STATUS_DETECTED_PARITY);
1774                 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1775         }
1776
1777         /* For all PCI errors, we should reset the chip. */
1778         return 1;
1779 }
1780
1781 /* All non-normal interrupt conditions get serviced here.
1782  * Returns non-zero if we should just exit the interrupt
1783  * handler right now (ie. if we reset the card which invalidates
1784  * all of the other original irq status bits).
1785  */
1786 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1787                             u32 status)
1788 {
1789         if (status & INTR_RX_TAG_ERROR) {
1790                 /* corrupt RX tag framing */
1791                 if (netif_msg_rx_err(cp))
1792                         printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1793                                 cp->dev->name);
1794                 spin_lock(&cp->stat_lock[0]);
1795                 cp->net_stats[0].rx_errors++;
1796                 spin_unlock(&cp->stat_lock[0]);
1797                 goto do_reset;
1798         }
1799
1800         if (status & INTR_RX_LEN_MISMATCH) {
1801                 /* length mismatch. */
1802                 if (netif_msg_rx_err(cp))
1803                         printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1804                                 cp->dev->name);
1805                 spin_lock(&cp->stat_lock[0]);
1806                 cp->net_stats[0].rx_errors++;
1807                 spin_unlock(&cp->stat_lock[0]);
1808                 goto do_reset;
1809         }
1810
1811         if (status & INTR_PCS_STATUS) {
1812                 if (cas_pcs_interrupt(dev, cp, status))
1813                         goto do_reset;
1814         }
1815
1816         if (status & INTR_TX_MAC_STATUS) {
1817                 if (cas_txmac_interrupt(dev, cp, status))
1818                         goto do_reset;
1819         }
1820
1821         if (status & INTR_RX_MAC_STATUS) {
1822                 if (cas_rxmac_interrupt(dev, cp, status))
1823                         goto do_reset;
1824         }
1825
1826         if (status & INTR_MAC_CTRL_STATUS) {
1827                 if (cas_mac_interrupt(dev, cp, status))
1828                         goto do_reset;
1829         }
1830
1831         if (status & INTR_MIF_STATUS) {
1832                 if (cas_mif_interrupt(dev, cp, status))
1833                         goto do_reset;
1834         }
1835
1836         if (status & INTR_PCI_ERROR_STATUS) {
1837                 if (cas_pci_interrupt(dev, cp, status))
1838                         goto do_reset;
1839         }
1840         return 0;
1841
1842 do_reset:
1843 #if 1
1844         atomic_inc(&cp->reset_task_pending);
1845         atomic_inc(&cp->reset_task_pending_all);
1846         printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1847                dev->name, status);
1848         schedule_work(&cp->reset_task);
1849 #else
1850         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1851         printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1852         schedule_work(&cp->reset_task);
1853 #endif
1854         return 1;
1855 }
1856
1857 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1858  *       determining whether to do a netif_stop/wakeup
1859  */
1860 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1861 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1862 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1863                                   const int len)
1864 {
1865         unsigned long off = addr + len;
1866
1867         if (CAS_TABORT(cp) == 1)
1868                 return 0;
1869         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1870                 return 0;
1871         return TX_TARGET_ABORT_LEN;
1872 }
1873
1874 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1875 {
1876         struct cas_tx_desc *txds;
1877         struct sk_buff **skbs;
1878         struct net_device *dev = cp->dev;
1879         int entry, count;
1880
1881         spin_lock(&cp->tx_lock[ring]);
1882         txds = cp->init_txds[ring];
1883         skbs = cp->tx_skbs[ring];
1884         entry = cp->tx_old[ring];
1885
1886         count = TX_BUFF_COUNT(ring, entry, limit);
1887         while (entry != limit) {
1888                 struct sk_buff *skb = skbs[entry];
1889                 dma_addr_t daddr;
1890                 u32 dlen;
1891                 int frag;
1892
1893                 if (!skb) {
1894                         /* this should never occur */
1895                         entry = TX_DESC_NEXT(ring, entry);
1896                         continue;
1897                 }
1898
1899                 /* however, we might get only a partial skb release. */
1900                 count -= skb_shinfo(skb)->nr_frags +
1901                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1902                 if (count < 0)
1903                         break;
1904
1905                 if (netif_msg_tx_done(cp))
1906                         printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1907                                cp->dev->name, ring, entry);
1908
1909                 skbs[entry] = NULL;
1910                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1911                 
1912                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1913                         struct cas_tx_desc *txd = txds + entry;
1914
1915                         daddr = le64_to_cpu(txd->buffer);
1916                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1917                                        le64_to_cpu(txd->control));
1918                         pci_unmap_page(cp->pdev, daddr, dlen,
1919                                        PCI_DMA_TODEVICE);
1920                         entry = TX_DESC_NEXT(ring, entry);
1921
1922                         /* tiny buffer may follow */
1923                         if (cp->tx_tiny_use[ring][entry].used) {
1924                                 cp->tx_tiny_use[ring][entry].used = 0;
1925                                 entry = TX_DESC_NEXT(ring, entry);
1926                         } 
1927                 }
1928
1929                 spin_lock(&cp->stat_lock[ring]);
1930                 cp->net_stats[ring].tx_packets++;
1931                 cp->net_stats[ring].tx_bytes += skb->len;
1932                 spin_unlock(&cp->stat_lock[ring]);
1933                 dev_kfree_skb_irq(skb);
1934         }
1935         cp->tx_old[ring] = entry;
1936
1937         /* this is wrong for multiple tx rings. the net device needs
1938          * multiple queues for this to do the right thing.  we wait
1939          * for 2*packets to be available when using tiny buffers
1940          */
1941         if (netif_queue_stopped(dev) &&
1942             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1943                 netif_wake_queue(dev);
1944         spin_unlock(&cp->tx_lock[ring]);
1945 }
1946
1947 static void cas_tx(struct net_device *dev, struct cas *cp,
1948                    u32 status)
1949 {
1950         int limit, ring;
1951 #ifdef USE_TX_COMPWB
1952         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1953 #endif
1954         if (netif_msg_intr(cp))
1955                 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1956                         cp->dev->name, status, (unsigned long long)compwb);
1957         /* process all the rings */
1958         for (ring = 0; ring < N_TX_RINGS; ring++) {
1959 #ifdef USE_TX_COMPWB
1960                 /* use the completion writeback registers */
1961                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1962                         CAS_VAL(TX_COMPWB_LSB, compwb);
1963                 compwb = TX_COMPWB_NEXT(compwb);
1964 #else
1965                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1966 #endif
1967                 if (cp->tx_old[ring] != limit) 
1968                         cas_tx_ringN(cp, ring, limit);
1969         }
1970 }
1971
1972
1973 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 
1974                               int entry, const u64 *words, 
1975                               struct sk_buff **skbref)
1976 {
1977         int dlen, hlen, len, i, alloclen;
1978         int off, swivel = RX_SWIVEL_OFF_VAL;
1979         struct cas_page *page;
1980         struct sk_buff *skb;
1981         void *addr, *crcaddr;
1982         char *p; 
1983
1984         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1985         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1986         len  = hlen + dlen;
1987
1988         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 
1989                 alloclen = len;
1990         else 
1991                 alloclen = max(hlen, RX_COPY_MIN);
1992
1993         skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1994         if (skb == NULL) 
1995                 return -1;
1996
1997         *skbref = skb;
1998         skb->dev = cp->dev;
1999         skb_reserve(skb, swivel);
2000
2001         p = skb->data;
2002         addr = crcaddr = NULL;
2003         if (hlen) { /* always copy header pages */
2004                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2005                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2006                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 
2007                         swivel;
2008
2009                 i = hlen;
2010                 if (!dlen) /* attach FCS */
2011                         i += cp->crc_size;
2012                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2013                                     PCI_DMA_FROMDEVICE);
2014                 addr = cas_page_map(page->buffer);
2015                 memcpy(p, addr + off, i);
2016                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2017                                     PCI_DMA_FROMDEVICE);
2018                 cas_page_unmap(addr);
2019                 RX_USED_ADD(page, 0x100);
2020                 p += hlen;
2021                 swivel = 0;
2022         } 
2023
2024
2025         if (alloclen < (hlen + dlen)) {
2026                 skb_frag_t *frag = skb_shinfo(skb)->frags;
2027
2028                 /* normal or jumbo packets. we use frags */
2029                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2030                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2031                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2032
2033                 hlen = min(cp->page_size - off, dlen);
2034                 if (hlen < 0) {
2035                         if (netif_msg_rx_err(cp)) {
2036                                 printk(KERN_DEBUG "%s: rx page overflow: "
2037                                        "%d\n", cp->dev->name, hlen);
2038                         }
2039                         dev_kfree_skb_irq(skb);
2040                         return -1;
2041                 }
2042                 i = hlen;
2043                 if (i == dlen)  /* attach FCS */
2044                         i += cp->crc_size;
2045                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2046                                     PCI_DMA_FROMDEVICE);
2047
2048                 /* make sure we always copy a header */
2049                 swivel = 0;
2050                 if (p == (char *) skb->data) { /* not split */
2051                         addr = cas_page_map(page->buffer);
2052                         memcpy(p, addr + off, RX_COPY_MIN);
2053                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2054                                         PCI_DMA_FROMDEVICE);
2055                         cas_page_unmap(addr);
2056                         off += RX_COPY_MIN;
2057                         swivel = RX_COPY_MIN;
2058                         RX_USED_ADD(page, cp->mtu_stride);
2059                 } else {
2060                         RX_USED_ADD(page, hlen);
2061                 }
2062                 skb_put(skb, alloclen);
2063
2064                 skb_shinfo(skb)->nr_frags++;
2065                 skb->data_len += hlen - swivel;
2066                 skb->len      += hlen - swivel;
2067
2068                 get_page(page->buffer);
2069                 cas_buffer_inc(page);
2070                 frag->page = page->buffer;
2071                 frag->page_offset = off;
2072                 frag->size = hlen - swivel;
2073                 
2074                 /* any more data? */
2075                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2076                         hlen = dlen;
2077                         off = 0;
2078
2079                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2080                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2081                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 
2082                                             hlen + cp->crc_size, 
2083                                             PCI_DMA_FROMDEVICE);
2084                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2085                                             hlen + cp->crc_size,
2086                                             PCI_DMA_FROMDEVICE);
2087
2088                         skb_shinfo(skb)->nr_frags++;
2089                         skb->data_len += hlen;
2090                         skb->len      += hlen; 
2091                         frag++;
2092
2093                         get_page(page->buffer);
2094                         cas_buffer_inc(page);
2095                         frag->page = page->buffer;
2096                         frag->page_offset = 0;
2097                         frag->size = hlen;
2098                         RX_USED_ADD(page, hlen + cp->crc_size);
2099                 }
2100
2101                 if (cp->crc_size) {
2102                         addr = cas_page_map(page->buffer);
2103                         crcaddr  = addr + off + hlen;
2104                 }
2105
2106         } else {
2107                 /* copying packet */
2108                 if (!dlen)
2109                         goto end_copy_pkt;
2110
2111                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2112                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2113                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2114                 hlen = min(cp->page_size - off, dlen);
2115                 if (hlen < 0) {
2116                         if (netif_msg_rx_err(cp)) {
2117                                 printk(KERN_DEBUG "%s: rx page overflow: "
2118                                        "%d\n", cp->dev->name, hlen);
2119                         }
2120                         dev_kfree_skb_irq(skb);
2121                         return -1;
2122                 }
2123                 i = hlen;
2124                 if (i == dlen) /* attach FCS */
2125                         i += cp->crc_size;
2126                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2127                                     PCI_DMA_FROMDEVICE);
2128                 addr = cas_page_map(page->buffer);
2129                 memcpy(p, addr + off, i);
2130                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2131                                     PCI_DMA_FROMDEVICE);
2132                 cas_page_unmap(addr);
2133                 if (p == (char *) skb->data) /* not split */
2134                         RX_USED_ADD(page, cp->mtu_stride);
2135                 else
2136                         RX_USED_ADD(page, i);
2137         
2138                 /* any more data? */
2139                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2140                         p += hlen;
2141                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2142                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2143                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 
2144                                             dlen + cp->crc_size, 
2145                                             PCI_DMA_FROMDEVICE);
2146                         addr = cas_page_map(page->buffer);
2147                         memcpy(p, addr, dlen + cp->crc_size);
2148                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2149                                             dlen + cp->crc_size,
2150                                             PCI_DMA_FROMDEVICE);
2151                         cas_page_unmap(addr);
2152                         RX_USED_ADD(page, dlen + cp->crc_size); 
2153                 }
2154 end_copy_pkt:
2155                 if (cp->crc_size) {
2156                         addr    = NULL;
2157                         crcaddr = skb->data + alloclen;
2158                 }
2159                 skb_put(skb, alloclen);
2160         }
2161
2162         i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
2163         if (cp->crc_size) {
2164                 /* checksum includes FCS. strip it out. */
2165                 i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
2166                 if (addr)
2167                         cas_page_unmap(addr);
2168         }
2169         skb->csum = ntohs(i ^ 0xffff);
2170         skb->ip_summed = CHECKSUM_HW;
2171         skb->protocol = eth_type_trans(skb, cp->dev);
2172         return len;
2173 }
2174
2175
2176 /* we can handle up to 64 rx flows at a time. we do the same thing
2177  * as nonreassm except that we batch up the buffers. 
2178  * NOTE: we currently just treat each flow as a bunch of packets that
2179  *       we pass up. a better way would be to coalesce the packets
2180  *       into a jumbo packet. to do that, we need to do the following:
2181  *       1) the first packet will have a clean split between header and
2182  *          data. save both.
2183  *       2) each time the next flow packet comes in, extend the
2184  *          data length and merge the checksums.
2185  *       3) on flow release, fix up the header.
2186  *       4) make sure the higher layer doesn't care.
2187  * because packets get coalesced, we shouldn't run into fragment count 
2188  * issues.
2189  */
2190 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2191                                    struct sk_buff *skb)
2192 {
2193         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2194         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2195         
2196         /* this is protected at a higher layer, so no need to 
2197          * do any additional locking here. stick the buffer
2198          * at the end.
2199          */
2200         __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2201         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2202                 while ((skb = __skb_dequeue(flow))) {
2203                         cas_skb_release(skb);
2204                 }
2205         }
2206 }
2207
2208 /* put rx descriptor back on ring. if a buffer is in use by a higher
2209  * layer, this will need to put in a replacement.
2210  */
2211 static void cas_post_page(struct cas *cp, const int ring, const int index)
2212 {
2213         cas_page_t *new;
2214         int entry;
2215
2216         entry = cp->rx_old[ring];
2217
2218         new = cas_page_swap(cp, ring, index);
2219         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2220         cp->init_rxds[ring][entry].index  =
2221                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 
2222                             CAS_BASE(RX_INDEX_RING, ring));
2223
2224         entry = RX_DESC_ENTRY(ring, entry + 1);
2225         cp->rx_old[ring] = entry;
2226         
2227         if (entry % 4)
2228                 return;
2229
2230         if (ring == 0)
2231                 writel(entry, cp->regs + REG_RX_KICK);
2232         else if ((N_RX_DESC_RINGS > 1) &&
2233                  (cp->cas_flags & CAS_FLAG_REG_PLUS)) 
2234                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2235 }
2236
2237
2238 /* only when things are bad */
2239 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2240 {
2241         unsigned int entry, last, count, released;
2242         int cluster;
2243         cas_page_t **page = cp->rx_pages[ring];
2244
2245         entry = cp->rx_old[ring];
2246
2247         if (netif_msg_intr(cp))
2248                 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2249                        cp->dev->name, ring, entry);
2250
2251         cluster = -1;
2252         count = entry & 0x3; 
2253         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2254         released = 0;
2255         while (entry != last) {
2256                 /* make a new buffer if it's still in use */
2257                 if (cas_buffer_count(page[entry]) > 1) {
2258                         cas_page_t *new = cas_page_dequeue(cp);
2259                         if (!new) {
2260                                 /* let the timer know that we need to 
2261                                  * do this again
2262                                  */
2263                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2264                                 if (!timer_pending(&cp->link_timer))
2265                                         mod_timer(&cp->link_timer, jiffies + 
2266                                                   CAS_LINK_FAST_TIMEOUT);
2267                                 cp->rx_old[ring]  = entry;
2268                                 cp->rx_last[ring] = num ? num - released : 0;
2269                                 return -ENOMEM;
2270                         }
2271                         spin_lock(&cp->rx_inuse_lock);
2272                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2273                         spin_unlock(&cp->rx_inuse_lock);
2274                         cp->init_rxds[ring][entry].buffer = 
2275                                 cpu_to_le64(new->dma_addr);
2276                         page[entry] = new;
2277                         
2278                 }
2279
2280                 if (++count == 4) {
2281                         cluster = entry;
2282                         count = 0;
2283                 }
2284                 released++;
2285                 entry = RX_DESC_ENTRY(ring, entry + 1);
2286         }
2287         cp->rx_old[ring] = entry;
2288
2289         if (cluster < 0) 
2290                 return 0;
2291
2292         if (ring == 0)
2293                 writel(cluster, cp->regs + REG_RX_KICK);
2294         else if ((N_RX_DESC_RINGS > 1) &&
2295                  (cp->cas_flags & CAS_FLAG_REG_PLUS)) 
2296                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2297         return 0;
2298 }
2299
2300
2301 /* process a completion ring. packets are set up in three basic ways:
2302  * small packets: should be copied header + data in single buffer.
2303  * large packets: header and data in a single buffer.
2304  * split packets: header in a separate buffer from data. 
2305  *                data may be in multiple pages. data may be > 256
2306  *                bytes but in a single page. 
2307  *
2308  * NOTE: RX page posting is done in this routine as well. while there's
2309  *       the capability of using multiple RX completion rings, it isn't
2310  *       really worthwhile due to the fact that the page posting will
2311  *       force serialization on the single descriptor ring. 
2312  */
2313 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2314 {
2315         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2316         int entry, drops;
2317         int npackets = 0;
2318
2319         if (netif_msg_intr(cp))
2320                 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2321                        cp->dev->name, ring,
2322                        readl(cp->regs + REG_RX_COMP_HEAD), 
2323                        cp->rx_new[ring]);
2324
2325         entry = cp->rx_new[ring];
2326         drops = 0;
2327         while (1) {
2328                 struct cas_rx_comp *rxc = rxcs + entry;
2329                 struct sk_buff *skb;
2330                 int type, len;
2331                 u64 words[4];
2332                 int i, dring;
2333
2334                 words[0] = le64_to_cpu(rxc->word1);
2335                 words[1] = le64_to_cpu(rxc->word2);
2336                 words[2] = le64_to_cpu(rxc->word3);
2337                 words[3] = le64_to_cpu(rxc->word4);
2338
2339                 /* don't touch if still owned by hw */
2340                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2341                 if (type == 0)
2342                         break;
2343
2344                 /* hw hasn't cleared the zero bit yet */
2345                 if (words[3] & RX_COMP4_ZERO) {
2346                         break;
2347                 }
2348
2349                 /* get info on the packet */
2350                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2351                         spin_lock(&cp->stat_lock[ring]);
2352                         cp->net_stats[ring].rx_errors++;
2353                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2354                                 cp->net_stats[ring].rx_length_errors++;
2355                         if (words[3] & RX_COMP4_BAD)
2356                                 cp->net_stats[ring].rx_crc_errors++;
2357                         spin_unlock(&cp->stat_lock[ring]);
2358
2359                         /* We'll just return it to Cassini. */
2360                 drop_it:
2361                         spin_lock(&cp->stat_lock[ring]);
2362                         ++cp->net_stats[ring].rx_dropped;
2363                         spin_unlock(&cp->stat_lock[ring]);
2364                         goto next;
2365                 }
2366
2367                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2368                 if (len < 0) {
2369                         ++drops;
2370                         goto drop_it;
2371                 }
2372
2373                 /* see if it's a flow re-assembly or not. the driver
2374                  * itself handles release back up.
2375                  */
2376                 if (RX_DONT_BATCH || (type == 0x2)) {
2377                         /* non-reassm: these always get released */
2378                         cas_skb_release(skb); 
2379                 } else {
2380                         cas_rx_flow_pkt(cp, words, skb);
2381                 }
2382
2383                 spin_lock(&cp->stat_lock[ring]);
2384                 cp->net_stats[ring].rx_packets++;
2385                 cp->net_stats[ring].rx_bytes += len;
2386                 spin_unlock(&cp->stat_lock[ring]);
2387                 cp->dev->last_rx = jiffies;
2388
2389         next:
2390                 npackets++;
2391
2392                 /* should it be released? */
2393                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2394                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2395                         dring = CAS_VAL(RX_INDEX_RING, i);
2396                         i = CAS_VAL(RX_INDEX_NUM, i);
2397                         cas_post_page(cp, dring, i);
2398                 }
2399                 
2400                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2401                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2402                         dring = CAS_VAL(RX_INDEX_RING, i);
2403                         i = CAS_VAL(RX_INDEX_NUM, i);
2404                         cas_post_page(cp, dring, i);
2405                 }
2406
2407                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2408                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2409                         dring = CAS_VAL(RX_INDEX_RING, i);
2410                         i = CAS_VAL(RX_INDEX_NUM, i);
2411                         cas_post_page(cp, dring, i);
2412                 }
2413
2414                 /* skip to the next entry */
2415                 entry = RX_COMP_ENTRY(ring, entry + 1 + 
2416                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2417 #ifdef USE_NAPI
2418                 if (budget && (npackets >= budget))
2419                         break;
2420 #endif
2421         }
2422         cp->rx_new[ring] = entry;
2423
2424         if (drops)
2425                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2426                        cp->dev->name);
2427         return npackets;
2428 }
2429
2430
2431 /* put completion entries back on the ring */
2432 static void cas_post_rxcs_ringN(struct net_device *dev,
2433                                 struct cas *cp, int ring)
2434 {
2435         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2436         int last, entry;
2437
2438         last = cp->rx_cur[ring];
2439         entry = cp->rx_new[ring]; 
2440         if (netif_msg_intr(cp))
2441                 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2442                        dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2443                        entry);
2444         
2445         /* zero and re-mark descriptors */
2446         while (last != entry) {
2447                 cas_rxc_init(rxc + last);
2448                 last = RX_COMP_ENTRY(ring, last + 1);
2449         }
2450         cp->rx_cur[ring] = last;
2451
2452         if (ring == 0)
2453                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2454         else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 
2455                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2456 }
2457
2458
2459
2460 /* cassini can use all four PCI interrupts for the completion ring. 
2461  * rings 3 and 4 are identical
2462  */
2463 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2464 static inline void cas_handle_irqN(struct net_device *dev, 
2465                                    struct cas *cp, const u32 status,
2466                                    const int ring)
2467 {
2468         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 
2469                 cas_post_rxcs_ringN(dev, cp, ring);
2470 }
2471
2472 static irqreturn_t cas_interruptN(int irq, void *dev_id, struct pt_regs *regs)
2473 {
2474         struct net_device *dev = dev_id;
2475         struct cas *cp = netdev_priv(dev);
2476         unsigned long flags;
2477         int ring;
2478         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2479
2480         /* check for shared irq */
2481         if (status == 0)
2482                 return IRQ_NONE;
2483
2484         ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2485         spin_lock_irqsave(&cp->lock, flags);
2486         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2487 #ifdef USE_NAPI
2488                 cas_mask_intr(cp);
2489                 netif_rx_schedule(dev);
2490 #else
2491                 cas_rx_ringN(cp, ring, 0);
2492 #endif
2493                 status &= ~INTR_RX_DONE_ALT;
2494         }
2495
2496         if (status)
2497                 cas_handle_irqN(dev, cp, status, ring);
2498         spin_unlock_irqrestore(&cp->lock, flags);
2499         return IRQ_HANDLED;
2500 }
2501 #endif
2502
2503 #ifdef USE_PCI_INTB
2504 /* everything but rx packets */
2505 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2506 {
2507         if (status & INTR_RX_BUF_UNAVAIL_1) {
2508                 /* Frame arrived, no free RX buffers available. 
2509                  * NOTE: we can get this on a link transition. */
2510                 cas_post_rxds_ringN(cp, 1, 0);
2511                 spin_lock(&cp->stat_lock[1]);
2512                 cp->net_stats[1].rx_dropped++;
2513                 spin_unlock(&cp->stat_lock[1]);
2514         }
2515
2516         if (status & INTR_RX_BUF_AE_1) 
2517                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 
2518                                     RX_AE_FREEN_VAL(1));
2519
2520         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2521                 cas_post_rxcs_ringN(cp, 1);
2522 }
2523
2524 /* ring 2 handles a few more events than 3 and 4 */
2525 static irqreturn_t cas_interrupt1(int irq, void *dev_id, struct pt_regs *regs)
2526 {
2527         struct net_device *dev = dev_id;
2528         struct cas *cp = netdev_priv(dev);
2529         unsigned long flags;
2530         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2531
2532         /* check for shared interrupt */
2533         if (status == 0)
2534                 return IRQ_NONE;
2535
2536         spin_lock_irqsave(&cp->lock, flags);
2537         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2538 #ifdef USE_NAPI
2539                 cas_mask_intr(cp);
2540                 netif_rx_schedule(dev);
2541 #else
2542                 cas_rx_ringN(cp, 1, 0);
2543 #endif
2544                 status &= ~INTR_RX_DONE_ALT;
2545         }
2546         if (status)
2547                 cas_handle_irq1(cp, status);
2548         spin_unlock_irqrestore(&cp->lock, flags);
2549         return IRQ_HANDLED;
2550 }
2551 #endif
2552
2553 static inline void cas_handle_irq(struct net_device *dev,
2554                                   struct cas *cp, const u32 status)
2555 {
2556         /* housekeeping interrupts */
2557         if (status & INTR_ERROR_MASK)
2558                 cas_abnormal_irq(dev, cp, status);
2559
2560         if (status & INTR_RX_BUF_UNAVAIL) {
2561                 /* Frame arrived, no free RX buffers available. 
2562                  * NOTE: we can get this on a link transition.
2563                  */
2564                 cas_post_rxds_ringN(cp, 0, 0);
2565                 spin_lock(&cp->stat_lock[0]);
2566                 cp->net_stats[0].rx_dropped++;
2567                 spin_unlock(&cp->stat_lock[0]);
2568         } else if (status & INTR_RX_BUF_AE) {
2569                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2570                                     RX_AE_FREEN_VAL(0));
2571         }
2572
2573         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2574                 cas_post_rxcs_ringN(dev, cp, 0);
2575 }
2576
2577 static irqreturn_t cas_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2578 {
2579         struct net_device *dev = dev_id;
2580         struct cas *cp = netdev_priv(dev);
2581         unsigned long flags;
2582         u32 status = readl(cp->regs + REG_INTR_STATUS);
2583
2584         if (status == 0)
2585                 return IRQ_NONE;
2586
2587         spin_lock_irqsave(&cp->lock, flags);
2588         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2589                 cas_tx(dev, cp, status);
2590                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2591         }
2592
2593         if (status & INTR_RX_DONE) {
2594 #ifdef USE_NAPI
2595                 cas_mask_intr(cp);
2596                 netif_rx_schedule(dev);
2597 #else
2598                 cas_rx_ringN(cp, 0, 0);
2599 #endif
2600                 status &= ~INTR_RX_DONE;
2601         }
2602
2603         if (status)
2604                 cas_handle_irq(dev, cp, status);
2605         spin_unlock_irqrestore(&cp->lock, flags);
2606         return IRQ_HANDLED;
2607 }
2608
2609
2610 #ifdef USE_NAPI
2611 static int cas_poll(struct net_device *dev, int *budget)
2612 {
2613         struct cas *cp = netdev_priv(dev);
2614         int i, enable_intr, todo, credits;
2615         u32 status = readl(cp->regs + REG_INTR_STATUS);
2616         unsigned long flags;
2617
2618         spin_lock_irqsave(&cp->lock, flags);
2619         cas_tx(dev, cp, status);
2620         spin_unlock_irqrestore(&cp->lock, flags);
2621
2622         /* NAPI rx packets. we spread the credits across all of the
2623          * rxc rings
2624          */
2625         todo = min(*budget, dev->quota);
2626
2627         /* to make sure we're fair with the work we loop through each
2628          * ring N_RX_COMP_RING times with a request of 
2629          * todo / N_RX_COMP_RINGS
2630          */
2631         enable_intr = 1;
2632         credits = 0;
2633         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2634                 int j;
2635                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2636                         credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS);
2637                         if (credits >= todo) {
2638                                 enable_intr = 0;
2639                                 goto rx_comp;
2640                         }
2641                 }
2642         }
2643
2644 rx_comp:
2645         *budget    -= credits;
2646         dev->quota -= credits;
2647
2648         /* final rx completion */
2649         spin_lock_irqsave(&cp->lock, flags);
2650         if (status)
2651                 cas_handle_irq(dev, cp, status);
2652
2653 #ifdef USE_PCI_INTB
2654         if (N_RX_COMP_RINGS > 1) {
2655                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2656                 if (status)
2657                         cas_handle_irq1(dev, cp, status);
2658         }
2659 #endif
2660
2661 #ifdef USE_PCI_INTC
2662         if (N_RX_COMP_RINGS > 2) {
2663                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2664                 if (status)
2665                         cas_handle_irqN(dev, cp, status, 2);
2666         }
2667 #endif
2668
2669 #ifdef USE_PCI_INTD
2670         if (N_RX_COMP_RINGS > 3) {
2671                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2672                 if (status)
2673                         cas_handle_irqN(dev, cp, status, 3);
2674         }
2675 #endif
2676         spin_unlock_irqrestore(&cp->lock, flags);
2677         if (enable_intr) {
2678                 netif_rx_complete(dev);
2679                 cas_unmask_intr(cp);
2680                 return 0;
2681         }
2682         return 1;
2683 }
2684 #endif
2685
2686 #ifdef CONFIG_NET_POLL_CONTROLLER
2687 static void cas_netpoll(struct net_device *dev)
2688 {
2689         struct cas *cp = netdev_priv(dev);
2690
2691         cas_disable_irq(cp, 0);
2692         cas_interrupt(cp->pdev->irq, dev, NULL);
2693         cas_enable_irq(cp, 0);
2694
2695 #ifdef USE_PCI_INTB
2696         if (N_RX_COMP_RINGS > 1) {
2697                 /* cas_interrupt1(); */
2698         }
2699 #endif
2700 #ifdef USE_PCI_INTC
2701         if (N_RX_COMP_RINGS > 2) {
2702                 /* cas_interruptN(); */
2703         }
2704 #endif
2705 #ifdef USE_PCI_INTD
2706         if (N_RX_COMP_RINGS > 3) {
2707                 /* cas_interruptN(); */
2708         }
2709 #endif
2710 }
2711 #endif
2712
2713 static void cas_tx_timeout(struct net_device *dev)
2714 {
2715         struct cas *cp = netdev_priv(dev);
2716
2717         printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2718         if (!cp->hw_running) {
2719                 printk("%s: hrm.. hw not running!\n", dev->name);
2720                 return;
2721         }
2722
2723         printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2724                dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2725
2726         printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2727                dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2728
2729         printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2730                "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2731                dev->name,
2732                readl(cp->regs + REG_TX_CFG),
2733                readl(cp->regs + REG_MAC_TX_STATUS),
2734                readl(cp->regs + REG_MAC_TX_CFG),
2735                readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2736                readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2737                readl(cp->regs + REG_TX_FIFO_READ_PTR),
2738                readl(cp->regs + REG_TX_SM_1),
2739                readl(cp->regs + REG_TX_SM_2));
2740
2741         printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2742                dev->name,
2743                readl(cp->regs + REG_RX_CFG),
2744                readl(cp->regs + REG_MAC_RX_STATUS),
2745                readl(cp->regs + REG_MAC_RX_CFG));
2746
2747         printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2748                dev->name,
2749                readl(cp->regs + REG_HP_STATE_MACHINE),
2750                readl(cp->regs + REG_HP_STATUS0),
2751                readl(cp->regs + REG_HP_STATUS1),
2752                readl(cp->regs + REG_HP_STATUS2));
2753
2754 #if 1
2755         atomic_inc(&cp->reset_task_pending);
2756         atomic_inc(&cp->reset_task_pending_all);
2757         schedule_work(&cp->reset_task);
2758 #else
2759         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2760         schedule_work(&cp->reset_task);
2761 #endif
2762 }
2763
2764 static inline int cas_intme(int ring, int entry)
2765 {
2766         /* Algorithm: IRQ every 1/2 of descriptors. */
2767         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2768                 return 1;
2769         return 0;
2770 }
2771
2772
2773 static void cas_write_txd(struct cas *cp, int ring, int entry,
2774                           dma_addr_t mapping, int len, u64 ctrl, int last)
2775 {
2776         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2777
2778         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2779         if (cas_intme(ring, entry))
2780                 ctrl |= TX_DESC_INTME;
2781         if (last)
2782                 ctrl |= TX_DESC_EOF;
2783         txd->control = cpu_to_le64(ctrl);
2784         txd->buffer = cpu_to_le64(mapping);
2785 }
2786
2787 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 
2788                                 const int entry)
2789 {
2790         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2791 }
2792
2793 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 
2794                                      const int entry, const int tentry)
2795 {
2796         cp->tx_tiny_use[ring][tentry].nbufs++;
2797         cp->tx_tiny_use[ring][entry].used = 1;
2798         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2799 }
2800
2801 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 
2802                                     struct sk_buff *skb)
2803 {
2804         struct net_device *dev = cp->dev;
2805         int entry, nr_frags, frag, tabort, tentry;
2806         dma_addr_t mapping;
2807         unsigned long flags;
2808         u64 ctrl;
2809         u32 len;
2810
2811         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2812
2813         /* This is a hard error, log it. */
2814         if (TX_BUFFS_AVAIL(cp, ring) <= 
2815             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2816                 netif_stop_queue(dev);
2817                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2818                 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2819                        "queue awake!\n", dev->name);
2820                 return 1;
2821         }
2822
2823         ctrl = 0;
2824         if (skb->ip_summed == CHECKSUM_HW) {
2825                 u64 csum_start_off, csum_stuff_off;
2826
2827                 csum_start_off = (u64) (skb->h.raw - skb->data);
2828                 csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
2829
2830                 ctrl =  TX_DESC_CSUM_EN | 
2831                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2832                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2833         }
2834
2835         entry = cp->tx_new[ring];
2836         cp->tx_skbs[ring][entry] = skb;
2837
2838         nr_frags = skb_shinfo(skb)->nr_frags;
2839         len = skb_headlen(skb);
2840         mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2841                                offset_in_page(skb->data), len,
2842                                PCI_DMA_TODEVICE);
2843
2844         tentry = entry;
2845         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2846         if (unlikely(tabort)) {
2847                 /* NOTE: len is always >  tabort */
2848                 cas_write_txd(cp, ring, entry, mapping, len - tabort, 
2849                               ctrl | TX_DESC_SOF, 0);
2850                 entry = TX_DESC_NEXT(ring, entry);
2851
2852                 memcpy(tx_tiny_buf(cp, ring, entry), skb->data + 
2853                        len - tabort, tabort);
2854                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2855                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2856                               (nr_frags == 0));
2857         } else {
2858                 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 
2859                               TX_DESC_SOF, (nr_frags == 0));
2860         }
2861         entry = TX_DESC_NEXT(ring, entry);
2862
2863         for (frag = 0; frag < nr_frags; frag++) {
2864                 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2865
2866                 len = fragp->size;
2867                 mapping = pci_map_page(cp->pdev, fragp->page,
2868                                        fragp->page_offset, len,
2869                                        PCI_DMA_TODEVICE);
2870
2871                 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2872                 if (unlikely(tabort)) {
2873                         void *addr;
2874
2875                         /* NOTE: len is always > tabort */
2876                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2877                                       ctrl, 0);
2878                         entry = TX_DESC_NEXT(ring, entry);
2879                         
2880                         addr = cas_page_map(fragp->page);
2881                         memcpy(tx_tiny_buf(cp, ring, entry),
2882                                addr + fragp->page_offset + len - tabort, 
2883                                tabort);
2884                         cas_page_unmap(addr);
2885                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2886                         len     = tabort;
2887                 }
2888
2889                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2890                               (frag + 1 == nr_frags));
2891                 entry = TX_DESC_NEXT(ring, entry);
2892         }
2893
2894         cp->tx_new[ring] = entry;
2895         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2896                 netif_stop_queue(dev);
2897
2898         if (netif_msg_tx_queued(cp))
2899                 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2900                        "avail %d\n",
2901                        dev->name, ring, entry, skb->len, 
2902                        TX_BUFFS_AVAIL(cp, ring));
2903         writel(entry, cp->regs + REG_TX_KICKN(ring));
2904         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2905         return 0;
2906
2907
2908 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2909 {
2910         struct cas *cp = netdev_priv(dev);
2911
2912         /* this is only used as a load-balancing hint, so it doesn't
2913          * need to be SMP safe
2914          */
2915         static int ring; 
2916
2917         skb = skb_padto(skb, cp->min_frame_size);
2918         if (!skb)
2919                 return 0;
2920
2921         /* XXX: we need some higher-level QoS hooks to steer packets to
2922          *      individual queues.
2923          */
2924         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2925                 return 1;
2926         dev->trans_start = jiffies;
2927         return 0;
2928 }
2929
2930 static void cas_init_tx_dma(struct cas *cp)
2931 {
2932         u64 desc_dma = cp->block_dvma;
2933         unsigned long off;
2934         u32 val;
2935         int i;
2936
2937         /* set up tx completion writeback registers. must be 8-byte aligned */
2938 #ifdef USE_TX_COMPWB
2939         off = offsetof(struct cas_init_block, tx_compwb);
2940         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2941         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2942 #endif
2943
2944         /* enable completion writebacks, enable paced mode,
2945          * disable read pipe, and disable pre-interrupt compwbs
2946          */
2947         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 
2948                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2949                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 
2950                 TX_CFG_INTR_COMPWB_DIS;
2951
2952         /* write out tx ring info and tx desc bases */
2953         for (i = 0; i < MAX_TX_RINGS; i++) {
2954                 off = (unsigned long) cp->init_txds[i] - 
2955                         (unsigned long) cp->init_block;
2956
2957                 val |= CAS_TX_RINGN_BASE(i);
2958                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2959                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2960                        REG_TX_DBN_LOW(i));
2961                 /* don't zero out the kick register here as the system
2962                  * will wedge
2963                  */
2964         }
2965         writel(val, cp->regs + REG_TX_CFG);
2966
2967         /* program max burst sizes. these numbers should be different
2968          * if doing QoS.
2969          */
2970 #ifdef USE_QOS
2971         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2972         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2973         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2974         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2975 #else
2976         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2977         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2978         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2979         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2980 #endif
2981 }
2982
2983 /* Must be invoked under cp->lock. */
2984 static inline void cas_init_dma(struct cas *cp)
2985 {
2986         cas_init_tx_dma(cp);
2987         cas_init_rx_dma(cp);
2988 }
2989
2990 /* Must be invoked under cp->lock. */
2991 static u32 cas_setup_multicast(struct cas *cp)
2992 {
2993         u32 rxcfg = 0;
2994         int i;
2995         
2996         if (cp->dev->flags & IFF_PROMISC) {
2997                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2998
2999         } else if (cp->dev->flags & IFF_ALLMULTI) {
3000                 for (i=0; i < 16; i++)
3001                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3002                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3003
3004         } else {
3005                 u16 hash_table[16];
3006                 u32 crc;
3007                 struct dev_mc_list *dmi = cp->dev->mc_list;
3008                 int i;
3009
3010                 /* use the alternate mac address registers for the
3011                  * first 15 multicast addresses
3012                  */
3013                 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3014                         if (!dmi) {
3015                                 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3016                                 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3017                                 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3018                                 continue;
3019                         }
3020                         writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5], 
3021                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
3022                         writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3], 
3023                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
3024                         writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1], 
3025                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
3026                         dmi = dmi->next;
3027                 }
3028
3029                 /* use hw hash table for the next series of 
3030                  * multicast addresses
3031                  */
3032                 memset(hash_table, 0, sizeof(hash_table));
3033                 while (dmi) {
3034                         crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3035                         crc >>= 24;
3036                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3037                         dmi = dmi->next;
3038                 }
3039                 for (i=0; i < 16; i++)
3040                         writel(hash_table[i], cp->regs + 
3041                                REG_MAC_HASH_TABLEN(i));
3042                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3043         }
3044
3045         return rxcfg;
3046 }
3047
3048 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3049 static void cas_clear_mac_err(struct cas *cp)
3050 {
3051         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3052         writel(0, cp->regs + REG_MAC_COLL_FIRST);
3053         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3054         writel(0, cp->regs + REG_MAC_COLL_LATE);
3055         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3056         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3057         writel(0, cp->regs + REG_MAC_RECV_FRAME);
3058         writel(0, cp->regs + REG_MAC_LEN_ERR);
3059         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3060         writel(0, cp->regs + REG_MAC_FCS_ERR);
3061         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3062 }
3063
3064
3065 static void cas_mac_reset(struct cas *cp)
3066 {
3067         int i;
3068
3069         /* do both TX and RX reset */
3070         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3071         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3072
3073         /* wait for TX */
3074         i = STOP_TRIES;
3075         while (i-- > 0) {
3076                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3077                         break;
3078                 udelay(10);
3079         }
3080
3081         /* wait for RX */
3082         i = STOP_TRIES;
3083         while (i-- > 0) {
3084                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3085                         break;
3086                 udelay(10);
3087         }
3088
3089         if (readl(cp->regs + REG_MAC_TX_RESET) |
3090             readl(cp->regs + REG_MAC_RX_RESET))
3091                 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3092                        cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3093                        readl(cp->regs + REG_MAC_RX_RESET),
3094                        readl(cp->regs + REG_MAC_STATE_MACHINE));
3095 }
3096
3097
3098 /* Must be invoked under cp->lock. */
3099 static void cas_init_mac(struct cas *cp)
3100 {
3101         unsigned char *e = &cp->dev->dev_addr[0];
3102         int i;
3103 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3104         u32 rxcfg;
3105 #endif
3106         cas_mac_reset(cp);
3107
3108         /* setup core arbitration weight register */
3109         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3110
3111         /* XXX Use pci_dma_burst_advice() */
3112 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3113         /* set the infinite burst register for chips that don't have
3114          * pci issues.
3115          */
3116         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3117                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3118 #endif
3119
3120         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3121
3122         writel(0x00, cp->regs + REG_MAC_IPG0);
3123         writel(0x08, cp->regs + REG_MAC_IPG1);
3124         writel(0x04, cp->regs + REG_MAC_IPG2);
3125         
3126         /* change later for 802.3z */
3127         writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 
3128
3129         /* min frame + FCS */
3130         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3131
3132         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3133          * specify the maximum frame size to prevent RX tag errors on 
3134          * oversized frames.
3135          */
3136         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3137                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 
3138                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 
3139                cp->regs + REG_MAC_FRAMESIZE_MAX);
3140
3141         /* NOTE: crc_size is used as a surrogate for half-duplex. 
3142          * workaround saturn half-duplex issue by increasing preamble
3143          * size to 65 bytes.
3144          */
3145         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3146                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3147         else
3148                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3149         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3150         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3151         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3152
3153         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3154
3155         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3156         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3157         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3158         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3159         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3160
3161         /* setup mac address in perfect filter array */
3162         for (i = 0; i < 45; i++)
3163                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3164
3165         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3166         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3167         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3168
3169         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3170         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3171         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3172
3173 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3174         cp->mac_rx_cfg = cas_setup_multicast(cp);
3175 #else
3176         /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3177          * a writel does not seem to be necessary because Cassini
3178          * seems to preserve the configuration when we do the reset.
3179          * If the chip is in trouble, though, it is not clear if we
3180          * can really count on this behavior. cas_set_multicast uses
3181          * spin_lock_irqsave, but we are called only in cas_init_hw and
3182          * cas_init_hw is protected by cas_lock_all, which calls
3183          * spin_lock_irq (so it doesn't need to save the flags, and
3184          * we should be OK for the writel, as that is the only 
3185          * difference).
3186          */
3187         cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3188         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3189 #endif
3190         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3191         cas_clear_mac_err(cp);
3192         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3193
3194         /* Setup MAC interrupts.  We want to get all of the interesting
3195          * counter expiration events, but we do not want to hear about
3196          * normal rx/tx as the DMA engine tells us that.
3197          */
3198         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3199         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3200
3201         /* Don't enable even the PAUSE interrupts for now, we
3202          * make no use of those events other than to record them.
3203          */
3204         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3205 }
3206
3207 /* Must be invoked under cp->lock. */
3208 static void cas_init_pause_thresholds(struct cas *cp)
3209 {
3210         /* Calculate pause thresholds.  Setting the OFF threshold to the
3211          * full RX fifo size effectively disables PAUSE generation
3212          */
3213         if (cp->rx_fifo_size <= (2 * 1024)) {
3214                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3215         } else {
3216                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3217                 if (max_frame * 3 > cp->rx_fifo_size) {
3218                         cp->rx_pause_off = 7104;
3219                         cp->rx_pause_on  = 960;
3220                 } else {
3221                         int off = (cp->rx_fifo_size - (max_frame * 2));
3222                         int on = off - max_frame;
3223                         cp->rx_pause_off = off;
3224                         cp->rx_pause_on = on;
3225                 }
3226         }
3227 }
3228
3229 static int cas_vpd_match(const void __iomem *p, const char *str)
3230 {
3231         int len = strlen(str) + 1;
3232         int i;
3233         
3234         for (i = 0; i < len; i++) {
3235                 if (readb(p + i) != str[i])
3236                         return 0;
3237         }
3238         return 1;
3239 }
3240
3241
3242 /* get the mac address by reading the vpd information in the rom.
3243  * also get the phy type and determine if there's an entropy generator.
3244  * NOTE: this is a bit convoluted for the following reasons:
3245  *  1) vpd info has order-dependent mac addresses for multinic cards
3246  *  2) the only way to determine the nic order is to use the slot
3247  *     number.
3248  *  3) fiber cards don't have bridges, so their slot numbers don't
3249  *     mean anything.
3250  *  4) we don't actually know we have a fiber card until after 
3251  *     the mac addresses are parsed.
3252  */
3253 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3254                             const int offset)
3255 {
3256         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3257         void __iomem *base, *kstart;
3258         int i, len;
3259         int found = 0;
3260 #define VPD_FOUND_MAC        0x01
3261 #define VPD_FOUND_PHY        0x02
3262
3263         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3264         int mac_off  = 0;
3265
3266         /* give us access to the PROM */
3267         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3268                cp->regs + REG_BIM_LOCAL_DEV_EN);
3269
3270         /* check for an expansion rom */
3271         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3272                 goto use_random_mac_addr;
3273
3274         /* search for beginning of vpd */
3275         base = NULL;
3276         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3277                 /* check for PCIR */
3278                 if ((readb(p + i + 0) == 0x50) &&
3279                     (readb(p + i + 1) == 0x43) &&
3280                     (readb(p + i + 2) == 0x49) &&
3281                     (readb(p + i + 3) == 0x52)) {
3282                         base = p + (readb(p + i + 8) | 
3283                                     (readb(p + i + 9) << 8));
3284                         break;
3285                 }               
3286         }
3287
3288         if (!base || (readb(base) != 0x82))
3289                 goto use_random_mac_addr;
3290         
3291         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3292         while (i < EXPANSION_ROM_SIZE) {
3293                 if (readb(base + i) != 0x90) /* no vpd found */
3294                         goto use_random_mac_addr;
3295
3296                 /* found a vpd field */
3297                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3298
3299                 /* extract keywords */
3300                 kstart = base + i + 3;
3301                 p = kstart;
3302                 while ((p - kstart) < len) {
3303                         int klen = readb(p + 2);
3304                         int j;
3305                         char type;
3306
3307                         p += 3;
3308                         
3309                         /* look for the following things:
3310                          * -- correct length == 29
3311                          * 3 (type) + 2 (size) + 
3312                          * 18 (strlen("local-mac-address") + 1) + 
3313                          * 6 (mac addr) 
3314                          * -- VPD Instance 'I'
3315                          * -- VPD Type Bytes 'B'
3316                          * -- VPD data length == 6
3317                          * -- property string == local-mac-address
3318                          * 
3319                          * -- correct length == 24
3320                          * 3 (type) + 2 (size) + 
3321                          * 12 (strlen("entropy-dev") + 1) + 
3322                          * 7 (strlen("vms110") + 1)
3323                          * -- VPD Instance 'I'
3324                          * -- VPD Type String 'B'
3325                          * -- VPD data length == 7
3326                          * -- property string == entropy-dev
3327                          *
3328                          * -- correct length == 18
3329                          * 3 (type) + 2 (size) + 
3330                          * 9 (strlen("phy-type") + 1) + 
3331                          * 4 (strlen("pcs") + 1)
3332                          * -- VPD Instance 'I'
3333                          * -- VPD Type String 'S'
3334                          * -- VPD data length == 4
3335                          * -- property string == phy-type
3336                          * 
3337                          * -- correct length == 23
3338                          * 3 (type) + 2 (size) + 
3339                          * 14 (strlen("phy-interface") + 1) + 
3340                          * 4 (strlen("pcs") + 1)
3341                          * -- VPD Instance 'I'
3342                          * -- VPD Type String 'S'
3343                          * -- VPD data length == 4
3344                          * -- property string == phy-interface
3345                          */
3346                         if (readb(p) != 'I')
3347                                 goto next;
3348
3349                         /* finally, check string and length */
3350                         type = readb(p + 3);
3351                         if (type == 'B') {
3352                                 if ((klen == 29) && readb(p + 4) == 6 &&
3353                                     cas_vpd_match(p + 5, 
3354                                                   "local-mac-address")) {
3355                                         if (mac_off++ > offset) 
3356                                                 goto next;
3357
3358                                         /* set mac address */
3359                                         for (j = 0; j < 6; j++) 
3360                                                 dev_addr[j] = 
3361                                                         readb(p + 23 + j);
3362                                         goto found_mac;
3363                                 }
3364                         }
3365
3366                         if (type != 'S')
3367                                 goto next;
3368
3369 #ifdef USE_ENTROPY_DEV
3370                         if ((klen == 24) && 
3371                             cas_vpd_match(p + 5, "entropy-dev") &&
3372                             cas_vpd_match(p + 17, "vms110")) {
3373                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3374                                 goto next;
3375                         }
3376 #endif
3377
3378                         if (found & VPD_FOUND_PHY)
3379                                 goto next;
3380
3381                         if ((klen == 18) && readb(p + 4) == 4 &&
3382                             cas_vpd_match(p + 5, "phy-type")) {
3383                                 if (cas_vpd_match(p + 14, "pcs")) {
3384                                         phy_type = CAS_PHY_SERDES;
3385                                         goto found_phy;
3386                                 }
3387                         }
3388                         
3389                         if ((klen == 23) && readb(p + 4) == 4 &&
3390                             cas_vpd_match(p + 5, "phy-interface")) {
3391                                 if (cas_vpd_match(p + 19, "pcs")) {
3392                                         phy_type = CAS_PHY_SERDES;
3393                                         goto found_phy;
3394                                 }
3395                         }
3396 found_mac:
3397                         found |= VPD_FOUND_MAC;
3398                         goto next;
3399
3400 found_phy:
3401                         found |= VPD_FOUND_PHY;
3402
3403 next:
3404                         p += klen;
3405                 }
3406                 i += len + 3;
3407         }
3408
3409 use_random_mac_addr:
3410         if (found & VPD_FOUND_MAC)
3411                 goto done;
3412
3413         /* Sun MAC prefix then 3 random bytes. */
3414         printk(PFX "MAC address not found in ROM VPD\n");
3415         dev_addr[0] = 0x08;
3416         dev_addr[1] = 0x00;
3417         dev_addr[2] = 0x20;
3418         get_random_bytes(dev_addr + 3, 3);
3419
3420 done:
3421         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3422         return phy_type;
3423 }
3424
3425 /* check pci invariants */
3426 static void cas_check_pci_invariants(struct cas *cp)
3427 {
3428         struct pci_dev *pdev = cp->pdev;
3429         u8 rev;
3430
3431         cp->cas_flags = 0;
3432         pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
3433         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3434             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3435                 if (rev >= CAS_ID_REVPLUS)
3436                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3437                 if (rev < CAS_ID_REVPLUS02u)
3438                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3439
3440                 /* Original Cassini supports HW CSUM, but it's not
3441                  * enabled by default as it can trigger TX hangs.
3442                  */
3443                 if (rev < CAS_ID_REV2)
3444                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3445         } else {
3446                 /* Only sun has original cassini chips.  */
3447                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3448
3449                 /* We use a flag because the same phy might be externally
3450                  * connected.
3451                  */
3452                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3453                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3454                         cp->cas_flags |= CAS_FLAG_SATURN;
3455         }
3456 }
3457
3458
3459 static int cas_check_invariants(struct cas *cp)
3460 {
3461         struct pci_dev *pdev = cp->pdev;
3462         u32 cfg;
3463         int i;
3464
3465         /* get page size for rx buffers. */
3466         cp->page_order = 0; 
3467 #ifdef USE_PAGE_ORDER
3468         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3469                 /* see if we can allocate larger pages */
3470                 struct page *page = alloc_pages(GFP_ATOMIC, 
3471                                                 CAS_JUMBO_PAGE_SHIFT - 
3472                                                 PAGE_SHIFT);
3473                 if (page) {
3474                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3475                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3476                 } else {
3477                         printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3478                 }
3479         }
3480 #endif
3481         cp->page_size = (PAGE_SIZE << cp->page_order);
3482
3483         /* Fetch the FIFO configurations. */
3484         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3485         cp->rx_fifo_size = RX_FIFO_SIZE;
3486
3487         /* finish phy determination. MDIO1 takes precedence over MDIO0 if 
3488          * they're both connected.
3489          */
3490         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 
3491                                         PCI_SLOT(pdev->devfn));
3492         if (cp->phy_type & CAS_PHY_SERDES) {
3493                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3494                 return 0; /* no more checking needed */
3495         } 
3496
3497         /* MII */
3498         cfg = readl(cp->regs + REG_MIF_CFG);
3499         if (cfg & MIF_CFG_MDIO_1) {
3500                 cp->phy_type = CAS_PHY_MII_MDIO1;
3501         } else if (cfg & MIF_CFG_MDIO_0) {
3502                 cp->phy_type = CAS_PHY_MII_MDIO0;
3503         }
3504
3505         cas_mif_poll(cp, 0);
3506         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3507
3508         for (i = 0; i < 32; i++) {
3509                 u32 phy_id;
3510                 int j;
3511
3512                 for (j = 0; j < 3; j++) {
3513                         cp->phy_addr = i;
3514                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3515                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3516                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3517                                 cp->phy_id = phy_id;
3518                                 goto done;
3519                         }
3520                 }
3521         }
3522         printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3523                readl(cp->regs + REG_MIF_STATE_MACHINE));
3524         return -1;
3525
3526 done:
3527         /* see if we can do gigabit */
3528         cfg = cas_phy_read(cp, MII_BMSR);
3529         if ((cfg & CAS_BMSR_1000_EXTEND) && 
3530             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3531                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3532         return 0;
3533 }
3534
3535 /* Must be invoked under cp->lock. */
3536 static inline void cas_start_dma(struct cas *cp)
3537 {
3538         int i;
3539         u32 val;
3540         int txfailed = 0;
3541         
3542         /* enable dma */
3543         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3544         writel(val, cp->regs + REG_TX_CFG);
3545         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3546         writel(val, cp->regs + REG_RX_CFG);
3547
3548         /* enable the mac */
3549         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3550         writel(val, cp->regs + REG_MAC_TX_CFG);
3551         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3552         writel(val, cp->regs + REG_MAC_RX_CFG);
3553
3554         i = STOP_TRIES;
3555         while (i-- > 0) {
3556                 val = readl(cp->regs + REG_MAC_TX_CFG);
3557                 if ((val & MAC_TX_CFG_EN))
3558                         break;
3559                 udelay(10);
3560         }
3561         if (i < 0) txfailed = 1;
3562         i = STOP_TRIES;
3563         while (i-- > 0) {
3564                 val = readl(cp->regs + REG_MAC_RX_CFG);
3565                 if ((val & MAC_RX_CFG_EN)) {
3566                         if (txfailed) {
3567                           printk(KERN_ERR 
3568                                  "%s: enabling mac failed [tx:%08x:%08x].\n", 
3569                                  cp->dev->name,
3570                                  readl(cp->regs + REG_MIF_STATE_MACHINE),
3571                                  readl(cp->regs + REG_MAC_STATE_MACHINE));
3572                         }
3573                         goto enable_rx_done;
3574                 }
3575                 udelay(10);
3576         }
3577         printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n", 
3578                cp->dev->name,
3579                (txfailed? "tx,rx":"rx"),
3580                readl(cp->regs + REG_MIF_STATE_MACHINE),
3581                readl(cp->regs + REG_MAC_STATE_MACHINE));
3582
3583 enable_rx_done:
3584         cas_unmask_intr(cp); /* enable interrupts */
3585         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3586         writel(0, cp->regs + REG_RX_COMP_TAIL);
3587
3588         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3589                 if (N_RX_DESC_RINGS > 1) 
3590                         writel(RX_DESC_RINGN_SIZE(1) - 4, 
3591                                cp->regs + REG_PLUS_RX_KICK1);
3592
3593                 for (i = 1; i < N_RX_COMP_RINGS; i++) 
3594                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3595         }
3596 }
3597
3598 /* Must be invoked under cp->lock. */
3599 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3600                                    int *pause)
3601 {
3602         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3603         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3604         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3605         if (val & PCS_MII_LPA_ASYM_PAUSE)
3606                 *pause |= 0x10;
3607         *spd = 1000;
3608 }
3609
3610 /* Must be invoked under cp->lock. */
3611 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3612                                    int *pause)
3613 {
3614         u32 val;
3615
3616         *fd = 0;
3617         *spd = 10;
3618         *pause = 0;
3619         
3620         /* use GMII registers */
3621         val = cas_phy_read(cp, MII_LPA);
3622         if (val & CAS_LPA_PAUSE)
3623                 *pause = 0x01;
3624
3625         if (val & CAS_LPA_ASYM_PAUSE)
3626                 *pause |= 0x10;
3627
3628         if (val & LPA_DUPLEX)
3629                 *fd = 1;
3630         if (val & LPA_100)
3631                 *spd = 100;
3632
3633         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3634                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3635                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3636                         *spd = 1000;
3637                 if (val & CAS_LPA_1000FULL)
3638                         *fd = 1;
3639         }
3640 }
3641
3642 /* A link-up condition has occurred, initialize and enable the
3643  * rest of the chip.
3644  *
3645  * Must be invoked under cp->lock.
3646  */
3647 static void cas_set_link_modes(struct cas *cp)
3648 {
3649         u32 val;
3650         int full_duplex, speed, pause;
3651
3652         full_duplex = 0;
3653         speed = 10;
3654         pause = 0;
3655
3656         if (CAS_PHY_MII(cp->phy_type)) {
3657                 cas_mif_poll(cp, 0);
3658                 val = cas_phy_read(cp, MII_BMCR);
3659                 if (val & BMCR_ANENABLE) {
3660                         cas_read_mii_link_mode(cp, &full_duplex, &speed, 
3661                                                &pause);
3662                 } else {
3663                         if (val & BMCR_FULLDPLX)
3664                                 full_duplex = 1;
3665
3666                         if (val & BMCR_SPEED100)
3667                                 speed = 100;
3668                         else if (val & CAS_BMCR_SPEED1000)
3669                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3670                                         1000 : 100;
3671                 }
3672                 cas_mif_poll(cp, 1);
3673
3674         } else {
3675                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3676                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3677                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3678                         if (val & PCS_MII_CTRL_DUPLEX)
3679                                 full_duplex = 1;
3680                 }
3681         }
3682
3683         if (netif_msg_link(cp))
3684                 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3685                        cp->dev->name, speed, (full_duplex ? "full" : "half"));
3686
3687         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3688         if (CAS_PHY_MII(cp->phy_type)) {
3689                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3690                 if (!full_duplex)
3691                         val |= MAC_XIF_DISABLE_ECHO;
3692         }
3693         if (full_duplex) 
3694                 val |= MAC_XIF_FDPLX_LED;
3695         if (speed == 1000)
3696                 val |= MAC_XIF_GMII_MODE;
3697         writel(val, cp->regs + REG_MAC_XIF_CFG);
3698
3699         /* deal with carrier and collision detect. */
3700         val = MAC_TX_CFG_IPG_EN;
3701         if (full_duplex) {
3702                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3703                 val |= MAC_TX_CFG_IGNORE_COLL;
3704         } else {
3705 #ifndef USE_CSMA_CD_PROTO
3706                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3707                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3708 #endif
3709         }
3710         /* val now set up for REG_MAC_TX_CFG */
3711
3712         /* If gigabit and half-duplex, enable carrier extension
3713          * mode.  increase slot time to 512 bytes as well. 
3714          * else, disable it and make sure slot time is 64 bytes.
3715          * also activate checksum bug workaround
3716          */
3717         if ((speed == 1000) && !full_duplex) {
3718                 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 
3719                        cp->regs + REG_MAC_TX_CFG);
3720
3721                 val = readl(cp->regs + REG_MAC_RX_CFG);
3722                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3723                 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 
3724                        cp->regs + REG_MAC_RX_CFG);
3725
3726                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3727
3728                 cp->crc_size = 4;
3729                 /* minimum size gigabit frame at half duplex */
3730                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3731
3732         } else {
3733                 writel(val, cp->regs + REG_MAC_TX_CFG);
3734
3735                 /* checksum bug workaround. don't strip FCS when in 
3736                  * half-duplex mode
3737                  */
3738                 val = readl(cp->regs + REG_MAC_RX_CFG);
3739                 if (full_duplex) {
3740                         val |= MAC_RX_CFG_STRIP_FCS;
3741                         cp->crc_size = 0;
3742                         cp->min_frame_size = CAS_MIN_MTU;
3743                 } else {
3744                         val &= ~MAC_RX_CFG_STRIP_FCS;
3745                         cp->crc_size = 4;
3746                         cp->min_frame_size = CAS_MIN_FRAME;
3747                 }
3748                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 
3749                        cp->regs + REG_MAC_RX_CFG);
3750                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3751         }
3752
3753         if (netif_msg_link(cp)) {
3754                 if (pause & 0x01) {
3755                         printk(KERN_INFO "%s: Pause is enabled "
3756                                "(rxfifo: %d off: %d on: %d)\n",
3757                                cp->dev->name,
3758                                cp->rx_fifo_size,
3759                                cp->rx_pause_off,
3760                                cp->rx_pause_on);
3761                 } else if (pause & 0x10) {
3762                         printk(KERN_INFO "%s: TX pause enabled\n",
3763                                cp->dev->name);
3764                 } else {
3765                         printk(KERN_INFO "%s: Pause is disabled\n",
3766                                cp->dev->name);
3767                 }
3768         }
3769
3770         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3771         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3772         if (pause) { /* symmetric or asymmetric pause */
3773                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3774                 if (pause & 0x01) { /* symmetric pause */
3775                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3776                 } 
3777         }
3778         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3779         cas_start_dma(cp);
3780 }
3781
3782 /* Must be invoked under cp->lock. */
3783 static void cas_init_hw(struct cas *cp, int restart_link)
3784 {
3785         if (restart_link)
3786                 cas_phy_init(cp);
3787
3788         cas_init_pause_thresholds(cp);
3789         cas_init_mac(cp);
3790         cas_init_dma(cp);
3791
3792         if (restart_link) {
3793                 /* Default aneg parameters */
3794                 cp->timer_ticks = 0;
3795                 cas_begin_auto_negotiation(cp, NULL);
3796         } else if (cp->lstate == link_up) {
3797                 cas_set_link_modes(cp);
3798                 netif_carrier_on(cp->dev);
3799         }
3800 }
3801
3802 /* Must be invoked under cp->lock. on earlier cassini boards,
3803  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3804  * let it settle out, and then restore pci state.
3805  */
3806 static void cas_hard_reset(struct cas *cp)
3807 {
3808         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 
3809         udelay(20);
3810         pci_restore_state(cp->pdev);
3811 }
3812
3813
3814 static void cas_global_reset(struct cas *cp, int blkflag)
3815 {
3816         int limit;
3817
3818         /* issue a global reset. don't use RSTOUT. */
3819         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3820                 /* For PCS, when the blkflag is set, we should set the
3821                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3822                  * the last autonegotiation from being cleared.  We'll
3823                  * need some special handling if the chip is set into a
3824                  * loopback mode.
3825                  */
3826                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 
3827                        cp->regs + REG_SW_RESET);
3828         } else {
3829                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3830         }
3831
3832         /* need to wait at least 3ms before polling register */
3833         mdelay(3);
3834
3835         limit = STOP_TRIES;
3836         while (limit-- > 0) {
3837                 u32 val = readl(cp->regs + REG_SW_RESET);
3838                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3839                         goto done;
3840                 udelay(10);
3841         }
3842         printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3843
3844 done:
3845         /* enable various BIM interrupts */
3846         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 
3847                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3848
3849         /* clear out pci error status mask for handled errors.
3850          * we don't deal with DMA counter overflows as they happen
3851          * all the time.
3852          */
3853         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 
3854                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 
3855                                PCI_ERR_BIM_DMA_READ), cp->regs + 
3856                REG_PCI_ERR_STATUS_MASK);
3857
3858         /* set up for MII by default to address mac rx reset timeout
3859          * issue
3860          */
3861         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3862 }
3863
3864 static void cas_reset(struct cas *cp, int blkflag)
3865 {
3866         u32 val;
3867
3868         cas_mask_intr(cp);
3869         cas_global_reset(cp, blkflag);
3870         cas_mac_reset(cp);
3871         cas_entropy_reset(cp);
3872
3873         /* disable dma engines. */
3874         val = readl(cp->regs + REG_TX_CFG);
3875         val &= ~TX_CFG_DMA_EN;
3876         writel(val, cp->regs + REG_TX_CFG);
3877
3878         val = readl(cp->regs + REG_RX_CFG);
3879         val &= ~RX_CFG_DMA_EN;
3880         writel(val, cp->regs + REG_RX_CFG);
3881
3882         /* program header parser */
3883         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3884             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3885                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3886         } else {
3887                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3888         }
3889
3890         /* clear out error registers */
3891         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3892         cas_clear_mac_err(cp);
3893         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3894 }
3895
3896 /* Shut down the chip, must be called with pm_mutex held.  */
3897 static void cas_shutdown(struct cas *cp)
3898 {
3899         unsigned long flags;
3900
3901         /* Make us not-running to avoid timers respawning */
3902         cp->hw_running = 0;
3903
3904         del_timer_sync(&cp->link_timer);
3905
3906         /* Stop the reset task */
3907 #if 0
3908         while (atomic_read(&cp->reset_task_pending_mtu) ||
3909                atomic_read(&cp->reset_task_pending_spare) ||
3910                atomic_read(&cp->reset_task_pending_all))
3911                 schedule();
3912
3913 #else
3914         while (atomic_read(&cp->reset_task_pending))
3915                 schedule();
3916 #endif  
3917         /* Actually stop the chip */
3918         cas_lock_all_save(cp, flags);
3919         cas_reset(cp, 0);
3920         if (cp->cas_flags & CAS_FLAG_SATURN)
3921                 cas_phy_powerdown(cp);
3922         cas_unlock_all_restore(cp, flags);
3923 }
3924
3925 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3926 {
3927         struct cas *cp = netdev_priv(dev);
3928
3929         if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3930                 return -EINVAL;
3931
3932         dev->mtu = new_mtu;
3933         if (!netif_running(dev) || !netif_device_present(dev))
3934                 return 0;
3935
3936         /* let the reset task handle it */
3937 #if 1
3938         atomic_inc(&cp->reset_task_pending);
3939         if ((cp->phy_type & CAS_PHY_SERDES)) {
3940                 atomic_inc(&cp->reset_task_pending_all);
3941         } else {
3942                 atomic_inc(&cp->reset_task_pending_mtu);
3943         }
3944         schedule_work(&cp->reset_task);
3945 #else
3946         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 
3947                    CAS_RESET_ALL : CAS_RESET_MTU);
3948         printk(KERN_ERR "reset called in cas_change_mtu\n");
3949         schedule_work(&cp->reset_task);
3950 #endif
3951
3952         flush_scheduled_work();
3953         return 0;
3954 }
3955
3956 static void cas_clean_txd(struct cas *cp, int ring)
3957 {
3958         struct cas_tx_desc *txd = cp->init_txds[ring];
3959         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3960         u64 daddr, dlen;
3961         int i, size;
3962
3963         size = TX_DESC_RINGN_SIZE(ring);
3964         for (i = 0; i < size; i++) {
3965                 int frag;
3966
3967                 if (skbs[i] == NULL)
3968                         continue;
3969
3970                 skb = skbs[i];
3971                 skbs[i] = NULL;
3972
3973                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3974                         int ent = i & (size - 1);
3975
3976                         /* first buffer is never a tiny buffer and so
3977                          * needs to be unmapped.
3978                          */
3979                         daddr = le64_to_cpu(txd[ent].buffer);
3980                         dlen  =  CAS_VAL(TX_DESC_BUFLEN, 
3981                                          le64_to_cpu(txd[ent].control));
3982                         pci_unmap_page(cp->pdev, daddr, dlen,
3983                                        PCI_DMA_TODEVICE);
3984
3985                         if (frag != skb_shinfo(skb)->nr_frags) {
3986                                 i++;
3987
3988                                 /* next buffer might by a tiny buffer.
3989                                  * skip past it.
3990                                  */
3991                                 ent = i & (size - 1);
3992                                 if (cp->tx_tiny_use[ring][ent].used)
3993                                         i++;
3994                         }
3995                 }
3996                 dev_kfree_skb_any(skb);
3997         }
3998
3999         /* zero out tiny buf usage */
4000         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
4001 }
4002
4003 /* freed on close */
4004 static inline void cas_free_rx_desc(struct cas *cp, int ring)
4005 {
4006         cas_page_t **page = cp->rx_pages[ring];
4007         int i, size;
4008
4009         size = RX_DESC_RINGN_SIZE(ring);
4010         for (i = 0; i < size; i++) {
4011                 if (page[i]) {
4012                         cas_page_free(cp, page[i]);
4013                         page[i] = NULL;
4014                 }
4015         }
4016 }
4017
4018 static void cas_free_rxds(struct cas *cp)
4019 {
4020         int i;
4021
4022         for (i = 0; i < N_RX_DESC_RINGS; i++)
4023                 cas_free_rx_desc(cp, i);
4024 }
4025
4026 /* Must be invoked under cp->lock. */
4027 static void cas_clean_rings(struct cas *cp)
4028 {
4029         int i;
4030
4031         /* need to clean all tx rings */
4032         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4033         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4034         for (i = 0; i < N_TX_RINGS; i++)
4035                 cas_clean_txd(cp, i);
4036
4037         /* zero out init block */
4038         memset(cp->init_block, 0, sizeof(struct cas_init_block));
4039         cas_clean_rxds(cp);
4040         cas_clean_rxcs(cp);
4041 }
4042
4043 /* allocated on open */
4044 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4045 {
4046         cas_page_t **page = cp->rx_pages[ring];
4047         int size, i = 0;
4048
4049         size = RX_DESC_RINGN_SIZE(ring);
4050         for (i = 0; i < size; i++) {
4051                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 
4052                         return -1;
4053         }
4054         return 0;
4055 }
4056
4057 static int cas_alloc_rxds(struct cas *cp)
4058 {
4059         int i;
4060
4061         for (i = 0; i < N_RX_DESC_RINGS; i++) {
4062                 if (cas_alloc_rx_desc(cp, i) < 0) {
4063                         cas_free_rxds(cp);
4064                         return -1;
4065                 }
4066         }
4067         return 0;
4068 }
4069
4070 static void cas_reset_task(void *data)
4071 {
4072         struct cas *cp = (struct cas *) data;
4073 #if 0
4074         int pending = atomic_read(&cp->reset_task_pending);
4075 #else
4076         int pending_all = atomic_read(&cp->reset_task_pending_all);
4077         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4078         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4079
4080         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4081                 /* We can have more tasks scheduled than actually
4082                  * needed.
4083                  */
4084                 atomic_dec(&cp->reset_task_pending);
4085                 return;
4086         }
4087 #endif
4088         /* The link went down, we reset the ring, but keep
4089          * DMA stopped. Use this function for reset
4090          * on error as well.
4091          */
4092         if (cp->hw_running) {
4093                 unsigned long flags;
4094
4095                 /* Make sure we don't get interrupts or tx packets */
4096                 netif_device_detach(cp->dev);
4097                 cas_lock_all_save(cp, flags);
4098
4099                 if (cp->opened) {
4100                         /* We call cas_spare_recover when we call cas_open.
4101                          * but we do not initialize the lists cas_spare_recover
4102                          * uses until cas_open is called.
4103                          */
4104                         cas_spare_recover(cp, GFP_ATOMIC);
4105                 }
4106 #if 1
4107                 /* test => only pending_spare set */
4108                 if (!pending_all && !pending_mtu)
4109                         goto done;
4110 #else
4111                 if (pending == CAS_RESET_SPARE)
4112                         goto done;
4113 #endif
4114                 /* when pending == CAS_RESET_ALL, the following
4115                  * call to cas_init_hw will restart auto negotiation.
4116                  * Setting the second argument of cas_reset to
4117                  * !(pending == CAS_RESET_ALL) will set this argument
4118                  * to 1 (avoiding reinitializing the PHY for the normal 
4119                  * PCS case) when auto negotiation is not restarted.
4120                  */
4121 #if 1
4122                 cas_reset(cp, !(pending_all > 0));
4123                 if (cp->opened)
4124                         cas_clean_rings(cp);
4125                 cas_init_hw(cp, (pending_all > 0));
4126 #else
4127                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4128                 if (cp->opened)
4129                         cas_clean_rings(cp);
4130                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4131 #endif
4132
4133 done:
4134                 cas_unlock_all_restore(cp, flags);
4135                 netif_device_attach(cp->dev);
4136         }
4137 #if 1
4138         atomic_sub(pending_all, &cp->reset_task_pending_all);
4139         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4140         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4141         atomic_dec(&cp->reset_task_pending);
4142 #else
4143         atomic_set(&cp->reset_task_pending, 0);
4144 #endif
4145 }
4146
4147 static void cas_link_timer(unsigned long data)
4148 {
4149         struct cas *cp = (struct cas *) data;
4150         int mask, pending = 0, reset = 0;
4151         unsigned long flags;
4152
4153         if (link_transition_timeout != 0 &&
4154             cp->link_transition_jiffies_valid &&
4155             ((jiffies - cp->link_transition_jiffies) > 
4156               (link_transition_timeout))) {
4157                 /* One-second counter so link-down workaround doesn't 
4158                  * cause resets to occur so fast as to fool the switch
4159                  * into thinking the link is down.
4160                  */
4161                 cp->link_transition_jiffies_valid = 0;
4162         }
4163
4164         if (!cp->hw_running)
4165                 return;
4166
4167         spin_lock_irqsave(&cp->lock, flags);
4168         cas_lock_tx(cp);
4169         cas_entropy_gather(cp);
4170
4171         /* If the link task is still pending, we just
4172          * reschedule the link timer
4173          */
4174 #if 1
4175         if (atomic_read(&cp->reset_task_pending_all) ||
4176             atomic_read(&cp->reset_task_pending_spare) ||
4177             atomic_read(&cp->reset_task_pending_mtu)) 
4178                 goto done;
4179 #else
4180         if (atomic_read(&cp->reset_task_pending)) 
4181                 goto done;
4182 #endif
4183
4184         /* check for rx cleaning */
4185         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4186                 int i, rmask;
4187
4188                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4189                         rmask = CAS_FLAG_RXD_POST(i);
4190                         if ((mask & rmask) == 0)
4191                                 continue;
4192
4193                         /* post_rxds will do a mod_timer */
4194                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4195                                 pending = 1;
4196                                 continue;
4197                         }
4198                         cp->cas_flags &= ~rmask;
4199                 }
4200         }
4201
4202         if (CAS_PHY_MII(cp->phy_type)) {
4203                 u16 bmsr;
4204                 cas_mif_poll(cp, 0);
4205                 bmsr = cas_phy_read(cp, MII_BMSR);
4206                 /* WTZ: Solaris driver reads this twice, but that
4207                  * may be due to the PCS case and the use of a
4208                  * common implementation. Read it twice here to be
4209                  * safe.
4210                  */
4211                 bmsr = cas_phy_read(cp, MII_BMSR);
4212                 cas_mif_poll(cp, 1);
4213                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4214                 reset = cas_mii_link_check(cp, bmsr);
4215         } else {
4216                 reset = cas_pcs_link_check(cp);
4217         }
4218
4219         if (reset)
4220                 goto done;
4221
4222         /* check for tx state machine confusion */
4223         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4224                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4225                 u32 wptr, rptr;
4226                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4227
4228                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4229                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4230                         if (netif_msg_tx_err(cp))
4231                                 printk(KERN_DEBUG "%s: tx err: "
4232                                        "MAC_STATE[%08x]\n",
4233                                        cp->dev->name, val);
4234                         reset = 1;
4235                         goto done;
4236                 }
4237
4238                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4239                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4240                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4241                 if ((val == 0) && (wptr != rptr)) {
4242                         if (netif_msg_tx_err(cp))
4243                                 printk(KERN_DEBUG "%s: tx err: "
4244                                        "TX_FIFO[%08x:%08x:%08x]\n",
4245                                        cp->dev->name, val, wptr, rptr);
4246                         reset = 1;
4247                 }
4248
4249                 if (reset)
4250                         cas_hard_reset(cp);
4251         }
4252
4253 done:
4254         if (reset) {
4255 #if 1
4256                 atomic_inc(&cp->reset_task_pending);
4257                 atomic_inc(&cp->reset_task_pending_all);
4258                 schedule_work(&cp->reset_task);
4259 #else
4260                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4261                 printk(KERN_ERR "reset called in cas_link_timer\n");
4262                 schedule_work(&cp->reset_task);
4263 #endif
4264         }
4265
4266         if (!pending)
4267                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4268         cas_unlock_tx(cp);
4269         spin_unlock_irqrestore(&cp->lock, flags);
4270 }
4271
4272 /* tiny buffers are used to avoid target abort issues with 
4273  * older cassini's
4274  */
4275 static void cas_tx_tiny_free(struct cas *cp)
4276 {
4277         struct pci_dev *pdev = cp->pdev;
4278         int i;
4279
4280         for (i = 0; i < N_TX_RINGS; i++) {
4281                 if (!cp->tx_tiny_bufs[i])
4282                         continue;
4283
4284                 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, 
4285                                     cp->tx_tiny_bufs[i],
4286                                     cp->tx_tiny_dvma[i]);
4287                 cp->tx_tiny_bufs[i] = NULL;
4288         }
4289 }
4290
4291 static int cas_tx_tiny_alloc(struct cas *cp)
4292 {
4293         struct pci_dev *pdev = cp->pdev;
4294         int i;
4295
4296         for (i = 0; i < N_TX_RINGS; i++) {
4297                 cp->tx_tiny_bufs[i] = 
4298                         pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4299                                              &cp->tx_tiny_dvma[i]);
4300                 if (!cp->tx_tiny_bufs[i]) {
4301                         cas_tx_tiny_free(cp);
4302                         return -1;
4303                 }
4304         }
4305         return 0;
4306 }
4307
4308
4309 static int cas_open(struct net_device *dev)
4310 {
4311         struct cas *cp = netdev_priv(dev);
4312         int hw_was_up, err;
4313         unsigned long flags;
4314
4315         mutex_lock(&cp->pm_mutex);
4316
4317         hw_was_up = cp->hw_running;
4318
4319         /* The power-management mutex protects the hw_running
4320          * etc. state so it is safe to do this bit without cp->lock
4321          */
4322         if (!cp->hw_running) {
4323                 /* Reset the chip */
4324                 cas_lock_all_save(cp, flags);
4325                 /* We set the second arg to cas_reset to zero
4326                  * because cas_init_hw below will have its second 
4327                  * argument set to non-zero, which will force
4328                  * autonegotiation to start.
4329                  */
4330                 cas_reset(cp, 0);
4331                 cp->hw_running = 1;
4332                 cas_unlock_all_restore(cp, flags);
4333         }
4334
4335         if (cas_tx_tiny_alloc(cp) < 0)
4336                 return -ENOMEM;
4337
4338         /* alloc rx descriptors */
4339         err = -ENOMEM;
4340         if (cas_alloc_rxds(cp) < 0)
4341                 goto err_tx_tiny;
4342         
4343         /* allocate spares */
4344         cas_spare_init(cp);
4345         cas_spare_recover(cp, GFP_KERNEL);
4346
4347         /* We can now request the interrupt as we know it's masked
4348          * on the controller. cassini+ has up to 4 interrupts
4349          * that can be used, but you need to do explicit pci interrupt 
4350          * mapping to expose them
4351          */
4352         if (request_irq(cp->pdev->irq, cas_interrupt,
4353                         SA_SHIRQ, dev->name, (void *) dev)) {
4354                 printk(KERN_ERR "%s: failed to request irq !\n", 
4355                        cp->dev->name);
4356                 err = -EAGAIN;
4357                 goto err_spare;
4358         }
4359
4360         /* init hw */
4361         cas_lock_all_save(cp, flags);
4362         cas_clean_rings(cp);
4363         cas_init_hw(cp, !hw_was_up);
4364         cp->opened = 1;
4365         cas_unlock_all_restore(cp, flags);
4366
4367         netif_start_queue(dev);
4368         mutex_unlock(&cp->pm_mutex);
4369         return 0;
4370
4371 err_spare:
4372         cas_spare_free(cp);
4373         cas_free_rxds(cp);
4374 err_tx_tiny:
4375         cas_tx_tiny_free(cp);
4376         mutex_unlock(&cp->pm_mutex);
4377         return err;
4378 }
4379
4380 static int cas_close(struct net_device *dev)
4381 {
4382         unsigned long flags;
4383         struct cas *cp = netdev_priv(dev);
4384
4385         /* Make sure we don't get distracted by suspend/resume */
4386         mutex_lock(&cp->pm_mutex);
4387
4388         netif_stop_queue(dev);
4389
4390         /* Stop traffic, mark us closed */
4391         cas_lock_all_save(cp, flags);
4392         cp->opened = 0; 
4393         cas_reset(cp, 0);
4394         cas_phy_init(cp); 
4395         cas_begin_auto_negotiation(cp, NULL);
4396         cas_clean_rings(cp);
4397         cas_unlock_all_restore(cp, flags);
4398
4399         free_irq(cp->pdev->irq, (void *) dev);
4400         cas_spare_free(cp);
4401         cas_free_rxds(cp);
4402         cas_tx_tiny_free(cp);
4403         mutex_unlock(&cp->pm_mutex);
4404         return 0;
4405 }
4406
4407 static struct {
4408         const char name[ETH_GSTRING_LEN];
4409 } ethtool_cassini_statnames[] = {
4410         {"collisions"},
4411         {"rx_bytes"},
4412         {"rx_crc_errors"},
4413         {"rx_dropped"},
4414         {"rx_errors"},
4415         {"rx_fifo_errors"},
4416         {"rx_frame_errors"},
4417         {"rx_length_errors"},
4418         {"rx_over_errors"},
4419         {"rx_packets"},
4420         {"tx_aborted_errors"},
4421         {"tx_bytes"},
4422         {"tx_dropped"},
4423         {"tx_errors"},
4424         {"tx_fifo_errors"},
4425         {"tx_packets"}
4426 };
4427 #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4428
4429 static struct {
4430         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4431 } ethtool_register_table[] = {
4432         {-MII_BMSR},
4433         {-MII_BMCR},
4434         {REG_CAWR},
4435         {REG_INF_BURST},
4436         {REG_BIM_CFG},
4437         {REG_RX_CFG},
4438         {REG_HP_CFG},
4439         {REG_MAC_TX_CFG},
4440         {REG_MAC_RX_CFG},
4441         {REG_MAC_CTRL_CFG},
4442         {REG_MAC_XIF_CFG},
4443         {REG_MIF_CFG},
4444         {REG_PCS_CFG},
4445         {REG_SATURN_PCFG},
4446         {REG_PCS_MII_STATUS},
4447         {REG_PCS_STATE_MACHINE},
4448         {REG_MAC_COLL_EXCESS},
4449         {REG_MAC_COLL_LATE}
4450 };
4451 #define CAS_REG_LEN     (sizeof(ethtool_register_table)/sizeof(int))
4452 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4453
4454 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4455 {
4456         u8 *p;
4457         int i;
4458         unsigned long flags;
4459
4460         spin_lock_irqsave(&cp->lock, flags);
4461         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4462                 u16 hval;
4463                 u32 val;
4464                 if (ethtool_register_table[i].offsets < 0) {
4465                         hval = cas_phy_read(cp,
4466                                     -ethtool_register_table[i].offsets);
4467                         val = hval;
4468                 } else {
4469                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4470                 }
4471                 memcpy(p, (u8 *)&val, sizeof(u32));
4472         }
4473         spin_unlock_irqrestore(&cp->lock, flags);
4474 }
4475
4476 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4477 {
4478         struct cas *cp = netdev_priv(dev);
4479         struct net_device_stats *stats = cp->net_stats;
4480         unsigned long flags;
4481         int i;
4482         unsigned long tmp;
4483
4484         /* we collate all of the stats into net_stats[N_TX_RING] */
4485         if (!cp->hw_running)
4486                 return stats + N_TX_RINGS;
4487         
4488         /* collect outstanding stats */
4489         /* WTZ: the Cassini spec gives these as 16 bit counters but
4490          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4491          * in case the chip somehow puts any garbage in the other bits.
4492          * Also, counter usage didn't seem to mach what Adrian did
4493          * in the parts of the code that set these quantities. Made
4494          * that consistent.
4495          */
4496         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4497         stats[N_TX_RINGS].rx_crc_errors += 
4498           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4499         stats[N_TX_RINGS].rx_frame_errors += 
4500                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4501         stats[N_TX_RINGS].rx_length_errors += 
4502                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4503 #if 1
4504         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4505                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4506         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4507         stats[N_TX_RINGS].collisions +=
4508           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4509 #else
4510         stats[N_TX_RINGS].tx_aborted_errors += 
4511                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4512         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4513                 readl(cp->regs + REG_MAC_COLL_LATE);
4514 #endif
4515         cas_clear_mac_err(cp);
4516
4517         /* saved bits that are unique to ring 0 */
4518         spin_lock(&cp->stat_lock[0]);
4519         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4520         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4521         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4522         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4523         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4524         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4525         spin_unlock(&cp->stat_lock[0]);
4526
4527         for (i = 0; i < N_TX_RINGS; i++) {
4528                 spin_lock(&cp->stat_lock[i]);
4529                 stats[N_TX_RINGS].rx_length_errors += 
4530                         stats[i].rx_length_errors;
4531                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4532                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4533                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4534                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4535                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4536                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4537                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4538                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4539                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4540                 memset(stats + i, 0, sizeof(struct net_device_stats));
4541                 spin_unlock(&cp->stat_lock[i]);
4542         }
4543         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4544         return stats + N_TX_RINGS;
4545 }
4546
4547
4548 static void cas_set_multicast(struct net_device *dev)
4549 {
4550         struct cas *cp = netdev_priv(dev);
4551         u32 rxcfg, rxcfg_new;
4552         unsigned long flags;
4553         int limit = STOP_TRIES;
4554         
4555         if (!cp->hw_running)
4556                 return;
4557                 
4558         spin_lock_irqsave(&cp->lock, flags);
4559         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4560
4561         /* disable RX MAC and wait for completion */
4562         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4563         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4564                 if (!limit--)
4565                         break;
4566                 udelay(10);
4567         }
4568
4569         /* disable hash filter and wait for completion */
4570         limit = STOP_TRIES;
4571         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4572         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4573         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4574                 if (!limit--)
4575                         break;
4576                 udelay(10);
4577         }
4578
4579         /* program hash filters */
4580         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4581         rxcfg |= rxcfg_new;
4582         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4583         spin_unlock_irqrestore(&cp->lock, flags);
4584 }
4585
4586 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4587 {
4588         struct cas *cp = netdev_priv(dev);
4589         strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4590         strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4591         info->fw_version[0] = '\0';
4592         strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4593         info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4594                 cp->casreg_len : CAS_MAX_REGS;
4595         info->n_stats = CAS_NUM_STAT_KEYS;
4596 }
4597
4598 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4599 {
4600         struct cas *cp = netdev_priv(dev);
4601         u16 bmcr;
4602         int full_duplex, speed, pause;
4603         unsigned long flags;
4604         enum link_state linkstate = link_up;
4605
4606         cmd->advertising = 0;
4607         cmd->supported = SUPPORTED_Autoneg;
4608         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4609                 cmd->supported |= SUPPORTED_1000baseT_Full;
4610                 cmd->advertising |= ADVERTISED_1000baseT_Full;
4611         }
4612
4613         /* Record PHY settings if HW is on. */
4614         spin_lock_irqsave(&cp->lock, flags);
4615         bmcr = 0;
4616         linkstate = cp->lstate;
4617         if (CAS_PHY_MII(cp->phy_type)) {
4618                 cmd->port = PORT_MII;
4619                 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4620                         XCVR_INTERNAL : XCVR_EXTERNAL;
4621                 cmd->phy_address = cp->phy_addr;
4622                 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4623                         ADVERTISED_10baseT_Half | 
4624                         ADVERTISED_10baseT_Full | 
4625                         ADVERTISED_100baseT_Half | 
4626                         ADVERTISED_100baseT_Full;
4627
4628                 cmd->supported |=
4629                         (SUPPORTED_10baseT_Half | 
4630                          SUPPORTED_10baseT_Full |
4631                          SUPPORTED_100baseT_Half | 
4632                          SUPPORTED_100baseT_Full |
4633                          SUPPORTED_TP | SUPPORTED_MII);
4634
4635                 if (cp->hw_running) {
4636                         cas_mif_poll(cp, 0);
4637                         bmcr = cas_phy_read(cp, MII_BMCR);
4638                         cas_read_mii_link_mode(cp, &full_duplex, 
4639                                                &speed, &pause);
4640                         cas_mif_poll(cp, 1);
4641                 }
4642
4643         } else {
4644                 cmd->port = PORT_FIBRE;
4645                 cmd->transceiver = XCVR_INTERNAL;
4646                 cmd->phy_address = 0;
4647                 cmd->supported   |= SUPPORTED_FIBRE;
4648                 cmd->advertising |= ADVERTISED_FIBRE;
4649
4650                 if (cp->hw_running) {
4651                         /* pcs uses the same bits as mii */ 
4652                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4653                         cas_read_pcs_link_mode(cp, &full_duplex, 
4654                                                &speed, &pause);
4655                 }
4656         }
4657         spin_unlock_irqrestore(&cp->lock, flags);
4658
4659         if (bmcr & BMCR_ANENABLE) {
4660                 cmd->advertising |= ADVERTISED_Autoneg;
4661                 cmd->autoneg = AUTONEG_ENABLE;
4662                 cmd->speed = ((speed == 10) ?
4663                               SPEED_10 :
4664                               ((speed == 1000) ?
4665                                SPEED_1000 : SPEED_100));
4666                 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4667         } else {
4668                 cmd->autoneg = AUTONEG_DISABLE;
4669                 cmd->speed =
4670                         (bmcr & CAS_BMCR_SPEED1000) ?
4671                         SPEED_1000 : 
4672                         ((bmcr & BMCR_SPEED100) ? SPEED_100: 
4673                          SPEED_10);
4674                 cmd->duplex =
4675                         (bmcr & BMCR_FULLDPLX) ?
4676                         DUPLEX_FULL : DUPLEX_HALF;
4677         }
4678         if (linkstate != link_up) {
4679                 /* Force these to "unknown" if the link is not up and
4680                  * autonogotiation in enabled. We can set the link 
4681                  * speed to 0, but not cmd->duplex,
4682                  * because its legal values are 0 and 1.  Ethtool will
4683                  * print the value reported in parentheses after the
4684                  * word "Unknown" for unrecognized values.
4685                  *
4686                  * If in forced mode, we report the speed and duplex
4687                  * settings that we configured.
4688                  */
4689                 if (cp->link_cntl & BMCR_ANENABLE) {
4690                         cmd->speed = 0;
4691                         cmd->duplex = 0xff;
4692                 } else {
4693                         cmd->speed = SPEED_10;
4694                         if (cp->link_cntl & BMCR_SPEED100) {
4695                                 cmd->speed = SPEED_100;
4696                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4697                                 cmd->speed = SPEED_1000;
4698                         }
4699                         cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4700                                 DUPLEX_FULL : DUPLEX_HALF;
4701                 }
4702         }
4703         return 0;
4704 }
4705
4706 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4707 {
4708         struct cas *cp = netdev_priv(dev);
4709         unsigned long flags;
4710
4711         /* Verify the settings we care about. */
4712         if (cmd->autoneg != AUTONEG_ENABLE &&
4713             cmd->autoneg != AUTONEG_DISABLE)
4714                 return -EINVAL;
4715
4716         if (cmd->autoneg == AUTONEG_DISABLE &&
4717             ((cmd->speed != SPEED_1000 &&
4718               cmd->speed != SPEED_100 &&
4719               cmd->speed != SPEED_10) ||
4720              (cmd->duplex != DUPLEX_HALF &&
4721               cmd->duplex != DUPLEX_FULL)))
4722                 return -EINVAL;
4723
4724         /* Apply settings and restart link process. */
4725         spin_lock_irqsave(&cp->lock, flags);
4726         cas_begin_auto_negotiation(cp, cmd);
4727         spin_unlock_irqrestore(&cp->lock, flags);
4728         return 0;
4729 }
4730
4731 static int cas_nway_reset(struct net_device *dev)
4732 {
4733         struct cas *cp = netdev_priv(dev);
4734         unsigned long flags;
4735
4736         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4737                 return -EINVAL;
4738
4739         /* Restart link process. */
4740         spin_lock_irqsave(&cp->lock, flags);
4741         cas_begin_auto_negotiation(cp, NULL);
4742         spin_unlock_irqrestore(&cp->lock, flags);
4743
4744         return 0;
4745 }
4746
4747 static u32 cas_get_link(struct net_device *dev)
4748 {
4749         struct cas *cp = netdev_priv(dev);
4750         return cp->lstate == link_up;
4751 }
4752
4753 static u32 cas_get_msglevel(struct net_device *dev)
4754 {
4755         struct cas *cp = netdev_priv(dev);
4756         return cp->msg_enable;
4757 }
4758
4759 static void cas_set_msglevel(struct net_device *dev, u32 value)
4760 {
4761         struct cas *cp = netdev_priv(dev);
4762         cp->msg_enable = value;
4763 }
4764
4765 static int cas_get_regs_len(struct net_device *dev)
4766 {
4767         struct cas *cp = netdev_priv(dev);
4768         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4769 }
4770
4771 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4772                              void *p)
4773 {
4774         struct cas *cp = netdev_priv(dev);
4775         regs->version = 0;
4776         /* cas_read_regs handles locks (cp->lock).  */
4777         cas_read_regs(cp, p, regs->len / sizeof(u32));
4778 }
4779
4780 static int cas_get_stats_count(struct net_device *dev)
4781 {
4782         return CAS_NUM_STAT_KEYS;
4783 }
4784
4785 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4786 {
4787          memcpy(data, &ethtool_cassini_statnames, 
4788                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4789 }
4790
4791 static void cas_get_ethtool_stats(struct net_device *dev,
4792                                       struct ethtool_stats *estats, u64 *data)
4793 {
4794         struct cas *cp = netdev_priv(dev);
4795         struct net_device_stats *stats = cas_get_stats(cp->dev);
4796         int i = 0;
4797         data[i++] = stats->collisions;
4798         data[i++] = stats->rx_bytes;
4799         data[i++] = stats->rx_crc_errors;
4800         data[i++] = stats->rx_dropped;
4801         data[i++] = stats->rx_errors;
4802         data[i++] = stats->rx_fifo_errors;
4803         data[i++] = stats->rx_frame_errors;
4804         data[i++] = stats->rx_length_errors;
4805         data[i++] = stats->rx_over_errors;
4806         data[i++] = stats->rx_packets;
4807         data[i++] = stats->tx_aborted_errors;
4808         data[i++] = stats->tx_bytes;
4809         data[i++] = stats->tx_dropped;
4810         data[i++] = stats->tx_errors;
4811         data[i++] = stats->tx_fifo_errors;
4812         data[i++] = stats->tx_packets;
4813         BUG_ON(i != CAS_NUM_STAT_KEYS);
4814 }
4815
4816 static struct ethtool_ops cas_ethtool_ops = {
4817         .get_drvinfo            = cas_get_drvinfo,
4818         .get_settings           = cas_get_settings,
4819         .set_settings           = cas_set_settings,
4820         .nway_reset             = cas_nway_reset,
4821         .get_link               = cas_get_link,
4822         .get_msglevel           = cas_get_msglevel,
4823         .set_msglevel           = cas_set_msglevel,
4824         .get_regs_len           = cas_get_regs_len,
4825         .get_regs               = cas_get_regs,
4826         .get_stats_count        = cas_get_stats_count,
4827         .get_strings            = cas_get_strings,
4828         .get_ethtool_stats      = cas_get_ethtool_stats,
4829 };
4830
4831 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4832 {
4833         struct cas *cp = netdev_priv(dev);
4834         struct mii_ioctl_data *data = if_mii(ifr);
4835         unsigned long flags;
4836         int rc = -EOPNOTSUPP;
4837         
4838         /* Hold the PM mutex while doing ioctl's or we may collide
4839          * with open/close and power management and oops.
4840          */
4841         mutex_lock(&cp->pm_mutex);
4842         switch (cmd) {
4843         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4844                 data->phy_id = cp->phy_addr;
4845                 /* Fallthrough... */
4846
4847         case SIOCGMIIREG:               /* Read MII PHY register. */
4848                 spin_lock_irqsave(&cp->lock, flags);
4849                 cas_mif_poll(cp, 0);
4850                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4851                 cas_mif_poll(cp, 1);
4852                 spin_unlock_irqrestore(&cp->lock, flags);
4853                 rc = 0;
4854                 break;
4855
4856         case SIOCSMIIREG:               /* Write MII PHY register. */
4857                 if (!capable(CAP_NET_ADMIN)) {
4858                         rc = -EPERM;
4859                         break;
4860                 }
4861                 spin_lock_irqsave(&cp->lock, flags);
4862                 cas_mif_poll(cp, 0);
4863                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4864                 cas_mif_poll(cp, 1);
4865                 spin_unlock_irqrestore(&cp->lock, flags);
4866                 break;
4867         default:
4868                 break;
4869         };
4870
4871         mutex_unlock(&cp->pm_mutex);
4872         return rc;
4873 }
4874
4875 static int __devinit cas_init_one(struct pci_dev *pdev,
4876                                   const struct pci_device_id *ent)
4877 {
4878         static int cas_version_printed = 0;
4879         unsigned long casreg_base, casreg_len;
4880         struct net_device *dev;
4881         struct cas *cp;
4882         int i, err, pci_using_dac;
4883         u16 pci_cmd;
4884         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4885
4886         if (cas_version_printed++ == 0)
4887                 printk(KERN_INFO "%s", version);
4888
4889         err = pci_enable_device(pdev);
4890         if (err) {
4891                 printk(KERN_ERR PFX "Cannot enable PCI device, "
4892                        "aborting.\n");
4893                 return err;
4894         }
4895
4896         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4897                 printk(KERN_ERR PFX "Cannot find proper PCI device "
4898                        "base address, aborting.\n");
4899                 err = -ENODEV;
4900                 goto err_out_disable_pdev;
4901         }
4902
4903         dev = alloc_etherdev(sizeof(*cp));
4904         if (!dev) {
4905                 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
4906                 err = -ENOMEM;
4907                 goto err_out_disable_pdev;
4908         }
4909         SET_MODULE_OWNER(dev);
4910         SET_NETDEV_DEV(dev, &pdev->dev);
4911
4912         err = pci_request_regions(pdev, dev->name);
4913         if (err) {
4914                 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
4915                        "aborting.\n");
4916                 goto err_out_free_netdev;
4917         }
4918         pci_set_master(pdev);
4919
4920         /* we must always turn on parity response or else parity
4921          * doesn't get generated properly. disable SERR/PERR as well.
4922          * in addition, we want to turn MWI on.
4923          */
4924         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4925         pci_cmd &= ~PCI_COMMAND_SERR;
4926         pci_cmd |= PCI_COMMAND_PARITY;
4927         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4928         pci_set_mwi(pdev);
4929         /*
4930          * On some architectures, the default cache line size set
4931          * by pci_set_mwi reduces perforamnce.  We have to increase
4932          * it for this case.  To start, we'll print some configuration
4933          * data.
4934          */
4935 #if 1
4936         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4937                              &orig_cacheline_size);
4938         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4939                 cas_cacheline_size = 
4940                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 
4941                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4942                 if (pci_write_config_byte(pdev, 
4943                                           PCI_CACHE_LINE_SIZE, 
4944                                           cas_cacheline_size)) {
4945                         printk(KERN_ERR PFX "Could not set PCI cache "
4946                                "line size\n");
4947                         goto err_write_cacheline;
4948                 }
4949         }
4950 #endif
4951
4952
4953         /* Configure DMA attributes. */
4954         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
4955                 pci_using_dac = 1;
4956                 err = pci_set_consistent_dma_mask(pdev,
4957                                                   DMA_64BIT_MASK);
4958                 if (err < 0) {
4959                         printk(KERN_ERR PFX "Unable to obtain 64-bit DMA "
4960                                "for consistent allocations\n");
4961                         goto err_out_free_res;
4962                 }
4963
4964         } else {
4965                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4966                 if (err) {
4967                         printk(KERN_ERR PFX "No usable DMA configuration, "
4968                                "aborting.\n");
4969                         goto err_out_free_res;
4970                 }
4971                 pci_using_dac = 0;
4972         }
4973
4974         casreg_base = pci_resource_start(pdev, 0);
4975         casreg_len = pci_resource_len(pdev, 0);
4976
4977         cp = netdev_priv(dev);
4978         cp->pdev = pdev;
4979 #if 1
4980         /* A value of 0 indicates we never explicitly set it */
4981         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4982 #endif
4983         cp->dev = dev;
4984         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 
4985           cassini_debug;
4986
4987         cp->link_transition = LINK_TRANSITION_UNKNOWN;
4988         cp->link_transition_jiffies_valid = 0;
4989
4990         spin_lock_init(&cp->lock);
4991         spin_lock_init(&cp->rx_inuse_lock);
4992         spin_lock_init(&cp->rx_spare_lock);
4993         for (i = 0; i < N_TX_RINGS; i++) {
4994                 spin_lock_init(&cp->stat_lock[i]);
4995                 spin_lock_init(&cp->tx_lock[i]);
4996         }
4997         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4998         mutex_init(&cp->pm_mutex);
4999
5000         init_timer(&cp->link_timer);
5001         cp->link_timer.function = cas_link_timer;
5002         cp->link_timer.data = (unsigned long) cp;
5003
5004 #if 1
5005         /* Just in case the implementation of atomic operations
5006          * change so that an explicit initialization is necessary.
5007          */
5008         atomic_set(&cp->reset_task_pending, 0);
5009         atomic_set(&cp->reset_task_pending_all, 0);
5010         atomic_set(&cp->reset_task_pending_spare, 0);
5011         atomic_set(&cp->reset_task_pending_mtu, 0);
5012 #endif
5013         INIT_WORK(&cp->reset_task, cas_reset_task, cp);
5014
5015         /* Default link parameters */
5016         if (link_mode >= 0 && link_mode <= 6)
5017                 cp->link_cntl = link_modes[link_mode];
5018         else
5019                 cp->link_cntl = BMCR_ANENABLE;
5020         cp->lstate = link_down;
5021         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5022         netif_carrier_off(cp->dev);
5023         cp->timer_ticks = 0;
5024
5025         /* give us access to cassini registers */
5026         cp->regs = ioremap(casreg_base, casreg_len);
5027         if (cp->regs == 0UL) {
5028                 printk(KERN_ERR PFX "Cannot map device registers, "
5029                        "aborting.\n");
5030                 goto err_out_free_res;
5031         }
5032         cp->casreg_len = casreg_len;
5033
5034         pci_save_state(pdev);
5035         cas_check_pci_invariants(cp);
5036         cas_hard_reset(cp);
5037         cas_reset(cp, 0);
5038         if (cas_check_invariants(cp))
5039                 goto err_out_iounmap;
5040
5041         cp->init_block = (struct cas_init_block *)
5042                 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5043                                      &cp->block_dvma);
5044         if (!cp->init_block) {
5045                 printk(KERN_ERR PFX "Cannot allocate init block, "
5046                        "aborting.\n");
5047                 goto err_out_iounmap;
5048         }
5049
5050         for (i = 0; i < N_TX_RINGS; i++) 
5051                 cp->init_txds[i] = cp->init_block->txds[i];
5052
5053         for (i = 0; i < N_RX_DESC_RINGS; i++) 
5054                 cp->init_rxds[i] = cp->init_block->rxds[i];
5055
5056         for (i = 0; i < N_RX_COMP_RINGS; i++) 
5057                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5058
5059         for (i = 0; i < N_RX_FLOWS; i++)
5060                 skb_queue_head_init(&cp->rx_flows[i]);
5061
5062         dev->open = cas_open;
5063         dev->stop = cas_close;
5064         dev->hard_start_xmit = cas_start_xmit;
5065         dev->get_stats = cas_get_stats;
5066         dev->set_multicast_list = cas_set_multicast;
5067         dev->do_ioctl = cas_ioctl;
5068         dev->ethtool_ops = &cas_ethtool_ops;
5069         dev->tx_timeout = cas_tx_timeout;
5070         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5071         dev->change_mtu = cas_change_mtu;
5072 #ifdef USE_NAPI
5073         dev->poll = cas_poll;
5074         dev->weight = 64;
5075 #endif
5076 #ifdef CONFIG_NET_POLL_CONTROLLER
5077         dev->poll_controller = cas_netpoll;
5078 #endif
5079         dev->irq = pdev->irq;
5080         dev->dma = 0;
5081
5082         /* Cassini features. */
5083         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5084                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5085
5086         if (pci_using_dac)
5087                 dev->features |= NETIF_F_HIGHDMA;
5088
5089         if (register_netdev(dev)) {
5090                 printk(KERN_ERR PFX "Cannot register net device, "
5091                        "aborting.\n");
5092                 goto err_out_free_consistent;
5093         }
5094
5095         i = readl(cp->regs + REG_BIM_CFG);
5096         printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5097                "Ethernet[%d] ",  dev->name, 
5098                (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 
5099                (i & BIM_CFG_32BIT) ? "32" : "64",
5100                (i & BIM_CFG_66MHZ) ? "66" : "33",
5101                (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq); 
5102
5103         for (i = 0; i < 6; i++)
5104                 printk("%2.2x%c", dev->dev_addr[i],
5105                        i == 5 ? ' ' : ':');
5106         printk("\n");
5107
5108         pci_set_drvdata(pdev, dev);
5109         cp->hw_running = 1;
5110         cas_entropy_reset(cp);
5111         cas_phy_init(cp);
5112         cas_begin_auto_negotiation(cp, NULL);
5113         return 0;
5114
5115 err_out_free_consistent:
5116         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5117                             cp->init_block, cp->block_dvma);
5118
5119 err_out_iounmap:
5120         mutex_lock(&cp->pm_mutex);
5121         if (cp->hw_running)
5122                 cas_shutdown(cp);
5123         mutex_unlock(&cp->pm_mutex);
5124
5125         iounmap(cp->regs);
5126
5127
5128 err_out_free_res:
5129         pci_release_regions(pdev);
5130
5131 err_write_cacheline:
5132         /* Try to restore it in case the error occured after we
5133          * set it. 
5134          */
5135         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5136
5137 err_out_free_netdev:
5138         free_netdev(dev);
5139
5140 err_out_disable_pdev:
5141         pci_disable_device(pdev);
5142         pci_set_drvdata(pdev, NULL);
5143         return -ENODEV;
5144 }
5145
5146 static void __devexit cas_remove_one(struct pci_dev *pdev)
5147 {
5148         struct net_device *dev = pci_get_drvdata(pdev);
5149         struct cas *cp;
5150         if (!dev)
5151                 return;
5152
5153         cp = netdev_priv(dev);
5154         unregister_netdev(dev);
5155
5156         mutex_lock(&cp->pm_mutex);
5157         flush_scheduled_work();
5158         if (cp->hw_running)
5159                 cas_shutdown(cp);
5160         mutex_unlock(&cp->pm_mutex);
5161
5162 #if 1
5163         if (cp->orig_cacheline_size) {
5164                 /* Restore the cache line size if we had modified
5165                  * it.
5166                  */
5167                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 
5168                                       cp->orig_cacheline_size);
5169         }
5170 #endif
5171         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5172                             cp->init_block, cp->block_dvma);
5173         iounmap(cp->regs);
5174         free_netdev(dev);
5175         pci_release_regions(pdev);
5176         pci_disable_device(pdev);
5177         pci_set_drvdata(pdev, NULL);
5178 }
5179
5180 #ifdef CONFIG_PM
5181 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5182 {
5183         struct net_device *dev = pci_get_drvdata(pdev);
5184         struct cas *cp = netdev_priv(dev);
5185         unsigned long flags;
5186
5187         mutex_lock(&cp->pm_mutex);
5188         
5189         /* If the driver is opened, we stop the DMA */
5190         if (cp->opened) {
5191                 netif_device_detach(dev);
5192
5193                 cas_lock_all_save(cp, flags);
5194
5195                 /* We can set the second arg of cas_reset to 0
5196                  * because on resume, we'll call cas_init_hw with
5197                  * its second arg set so that autonegotiation is
5198                  * restarted.
5199                  */
5200                 cas_reset(cp, 0);
5201                 cas_clean_rings(cp);
5202                 cas_unlock_all_restore(cp, flags);
5203         }
5204
5205         if (cp->hw_running)
5206                 cas_shutdown(cp);
5207         mutex_unlock(&cp->pm_mutex);
5208
5209         return 0;
5210 }
5211
5212 static int cas_resume(struct pci_dev *pdev)
5213 {
5214         struct net_device *dev = pci_get_drvdata(pdev);
5215         struct cas *cp = netdev_priv(dev);
5216
5217         printk(KERN_INFO "%s: resuming\n", dev->name);
5218
5219         mutex_lock(&cp->pm_mutex);
5220         cas_hard_reset(cp);
5221         if (cp->opened) {
5222                 unsigned long flags;
5223                 cas_lock_all_save(cp, flags);
5224                 cas_reset(cp, 0);
5225                 cp->hw_running = 1;
5226                 cas_clean_rings(cp);
5227                 cas_init_hw(cp, 1);
5228                 cas_unlock_all_restore(cp, flags);
5229
5230                 netif_device_attach(dev);
5231         }
5232         mutex_unlock(&cp->pm_mutex);
5233         return 0;
5234 }
5235 #endif /* CONFIG_PM */
5236
5237 static struct pci_driver cas_driver = {
5238         .name           = DRV_MODULE_NAME,
5239         .id_table       = cas_pci_tbl,
5240         .probe          = cas_init_one,
5241         .remove         = __devexit_p(cas_remove_one),
5242 #ifdef CONFIG_PM
5243         .suspend        = cas_suspend,
5244         .resume         = cas_resume
5245 #endif
5246 };
5247
5248 static int __init cas_init(void)
5249 {
5250         if (linkdown_timeout > 0)
5251                 link_transition_timeout = linkdown_timeout * HZ;
5252         else
5253                 link_transition_timeout = 0;
5254
5255         return pci_module_init(&cas_driver);
5256 }
5257
5258 static void __exit cas_cleanup(void)
5259 {
5260         pci_unregister_driver(&cas_driver);
5261 }
5262
5263 module_init(cas_init);
5264 module_exit(cas_cleanup);