Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / lpc32xx_mlc.c
1 /*
2  * Driver for NAND MLC Controller in LPC32xx
3  *
4  * Author: Roland Stigge <stigge@antcom.de>
5  *
6  * Copyright © 2011 WORK Microwave GmbH
7  * Copyright © 2011, 2012 Roland Stigge
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  *
20  * NAND Flash Controller Operation:
21  * - Read: Auto Decode
22  * - Write: Auto Encode
23  * - Tested Page Sizes: 2048, 4096
24  */
25
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/rawnand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/clk.h>
33 #include <linux/err.h>
34 #include <linux/delay.h>
35 #include <linux/completion.h>
36 #include <linux/interrupt.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mtd/lpc32xx_mlc.h>
40 #include <linux/io.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dmaengine.h>
44 #include <linux/mtd/nand_ecc.h>
45
46 #define DRV_NAME "lpc32xx_mlc"
47
48 /**********************************************************************
49 * MLC NAND controller register offsets
50 **********************************************************************/
51
52 #define MLC_BUFF(x)                     (x + 0x00000)
53 #define MLC_DATA(x)                     (x + 0x08000)
54 #define MLC_CMD(x)                      (x + 0x10000)
55 #define MLC_ADDR(x)                     (x + 0x10004)
56 #define MLC_ECC_ENC_REG(x)              (x + 0x10008)
57 #define MLC_ECC_DEC_REG(x)              (x + 0x1000C)
58 #define MLC_ECC_AUTO_ENC_REG(x)         (x + 0x10010)
59 #define MLC_ECC_AUTO_DEC_REG(x)         (x + 0x10014)
60 #define MLC_RPR(x)                      (x + 0x10018)
61 #define MLC_WPR(x)                      (x + 0x1001C)
62 #define MLC_RUBP(x)                     (x + 0x10020)
63 #define MLC_ROBP(x)                     (x + 0x10024)
64 #define MLC_SW_WP_ADD_LOW(x)            (x + 0x10028)
65 #define MLC_SW_WP_ADD_HIG(x)            (x + 0x1002C)
66 #define MLC_ICR(x)                      (x + 0x10030)
67 #define MLC_TIME_REG(x)                 (x + 0x10034)
68 #define MLC_IRQ_MR(x)                   (x + 0x10038)
69 #define MLC_IRQ_SR(x)                   (x + 0x1003C)
70 #define MLC_LOCK_PR(x)                  (x + 0x10044)
71 #define MLC_ISR(x)                      (x + 0x10048)
72 #define MLC_CEH(x)                      (x + 0x1004C)
73
74 /**********************************************************************
75 * MLC_CMD bit definitions
76 **********************************************************************/
77 #define MLCCMD_RESET                    0xFF
78
79 /**********************************************************************
80 * MLC_ICR bit definitions
81 **********************************************************************/
82 #define MLCICR_WPROT                    (1 << 3)
83 #define MLCICR_LARGEBLOCK               (1 << 2)
84 #define MLCICR_LONGADDR                 (1 << 1)
85 #define MLCICR_16BIT                    (1 << 0)  /* unsupported by LPC32x0! */
86
87 /**********************************************************************
88 * MLC_TIME_REG bit definitions
89 **********************************************************************/
90 #define MLCTIMEREG_TCEA_DELAY(n)        (((n) & 0x03) << 24)
91 #define MLCTIMEREG_BUSY_DELAY(n)        (((n) & 0x1F) << 19)
92 #define MLCTIMEREG_NAND_TA(n)           (((n) & 0x07) << 16)
93 #define MLCTIMEREG_RD_HIGH(n)           (((n) & 0x0F) << 12)
94 #define MLCTIMEREG_RD_LOW(n)            (((n) & 0x0F) << 8)
95 #define MLCTIMEREG_WR_HIGH(n)           (((n) & 0x0F) << 4)
96 #define MLCTIMEREG_WR_LOW(n)            (((n) & 0x0F) << 0)
97
98 /**********************************************************************
99 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
100 **********************************************************************/
101 #define MLCIRQ_NAND_READY               (1 << 5)
102 #define MLCIRQ_CONTROLLER_READY         (1 << 4)
103 #define MLCIRQ_DECODE_FAILURE           (1 << 3)
104 #define MLCIRQ_DECODE_ERROR             (1 << 2)
105 #define MLCIRQ_ECC_READY                (1 << 1)
106 #define MLCIRQ_WRPROT_FAULT             (1 << 0)
107
108 /**********************************************************************
109 * MLC_LOCK_PR bit definitions
110 **********************************************************************/
111 #define MLCLOCKPR_MAGIC                 0xA25E
112
113 /**********************************************************************
114 * MLC_ISR bit definitions
115 **********************************************************************/
116 #define MLCISR_DECODER_FAILURE          (1 << 6)
117 #define MLCISR_ERRORS                   ((1 << 4) | (1 << 5))
118 #define MLCISR_ERRORS_DETECTED          (1 << 3)
119 #define MLCISR_ECC_READY                (1 << 2)
120 #define MLCISR_CONTROLLER_READY         (1 << 1)
121 #define MLCISR_NAND_READY               (1 << 0)
122
123 /**********************************************************************
124 * MLC_CEH bit definitions
125 **********************************************************************/
126 #define MLCCEH_NORMAL                   (1 << 0)
127
128 struct lpc32xx_nand_cfg_mlc {
129         uint32_t tcea_delay;
130         uint32_t busy_delay;
131         uint32_t nand_ta;
132         uint32_t rd_high;
133         uint32_t rd_low;
134         uint32_t wr_high;
135         uint32_t wr_low;
136         int wp_gpio;
137         struct mtd_partition *parts;
138         unsigned num_parts;
139 };
140
141 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
142                                  struct mtd_oob_region *oobregion)
143 {
144         struct nand_chip *nand_chip = mtd_to_nand(mtd);
145
146         if (section >= nand_chip->ecc.steps)
147                 return -ERANGE;
148
149         oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
150         oobregion->length = nand_chip->ecc.bytes;
151
152         return 0;
153 }
154
155 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
156                                   struct mtd_oob_region *oobregion)
157 {
158         struct nand_chip *nand_chip = mtd_to_nand(mtd);
159
160         if (section >= nand_chip->ecc.steps)
161                 return -ERANGE;
162
163         oobregion->offset = 16 * section;
164         oobregion->length = 16 - nand_chip->ecc.bytes;
165
166         return 0;
167 }
168
169 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
170         .ecc = lpc32xx_ooblayout_ecc,
171         .free = lpc32xx_ooblayout_free,
172 };
173
174 static struct nand_bbt_descr lpc32xx_nand_bbt = {
175         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
176                    NAND_BBT_WRITE,
177         .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
178 };
179
180 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
181         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
182                    NAND_BBT_WRITE,
183         .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
184 };
185
186 struct lpc32xx_nand_host {
187         struct platform_device  *pdev;
188         struct nand_chip        nand_chip;
189         struct lpc32xx_mlc_platform_data *pdata;
190         struct clk              *clk;
191         void __iomem            *io_base;
192         int                     irq;
193         struct lpc32xx_nand_cfg_mlc     *ncfg;
194         struct completion       comp_nand;
195         struct completion       comp_controller;
196         uint32_t llptr;
197         /*
198          * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
199          */
200         dma_addr_t              oob_buf_phy;
201         /*
202          * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
203          */
204         uint8_t                 *oob_buf;
205         /* Physical address of DMA base address */
206         dma_addr_t              io_base_phy;
207
208         struct completion       comp_dma;
209         struct dma_chan         *dma_chan;
210         struct dma_slave_config dma_slave_config;
211         struct scatterlist      sgl;
212         uint8_t                 *dma_buf;
213         uint8_t                 *dummy_buf;
214         int                     mlcsubpages; /* number of 512bytes-subpages */
215 };
216
217 /*
218  * Activate/Deactivate DMA Operation:
219  *
220  * Using the PL080 DMA Controller for transferring the 512 byte subpages
221  * instead of doing readl() / writel() in a loop slows it down significantly.
222  * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
223  *
224  * - readl() of 128 x 32 bits in a loop: ~20us
225  * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
226  * - DMA read of 512 bytes (32 bit, no bursts): ~100us
227  *
228  * This applies to the transfer itself. In the DMA case: only the
229  * wait_for_completion() (DMA setup _not_ included).
230  *
231  * Note that the 512 bytes subpage transfer is done directly from/to a
232  * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
233  * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
234  * controller transferring data between its internal buffer to/from the NAND
235  * chip.)
236  *
237  * Therefore, using the PL080 DMA is disabled by default, for now.
238  *
239  */
240 static int use_dma;
241
242 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
243 {
244         uint32_t clkrate, tmp;
245
246         /* Reset MLC controller */
247         writel(MLCCMD_RESET, MLC_CMD(host->io_base));
248         udelay(1000);
249
250         /* Get base clock for MLC block */
251         clkrate = clk_get_rate(host->clk);
252         if (clkrate == 0)
253                 clkrate = 104000000;
254
255         /* Unlock MLC_ICR
256          * (among others, will be locked again automatically) */
257         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
258
259         /* Configure MLC Controller: Large Block, 5 Byte Address */
260         tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
261         writel(tmp, MLC_ICR(host->io_base));
262
263         /* Unlock MLC_TIME_REG
264          * (among others, will be locked again automatically) */
265         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
266
267         /* Compute clock setup values, see LPC and NAND manual */
268         tmp = 0;
269         tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
270         tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
271         tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
272         tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
273         tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
274         tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
275         tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
276         writel(tmp, MLC_TIME_REG(host->io_base));
277
278         /* Enable IRQ for CONTROLLER_READY and NAND_READY */
279         writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
280                         MLC_IRQ_MR(host->io_base));
281
282         /* Normal nCE operation: nCE controlled by controller */
283         writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
284 }
285
286 /*
287  * Hardware specific access to control lines
288  */
289 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
290                                   unsigned int ctrl)
291 {
292         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
293
294         if (cmd != NAND_CMD_NONE) {
295                 if (ctrl & NAND_CLE)
296                         writel(cmd, MLC_CMD(host->io_base));
297                 else
298                         writel(cmd, MLC_ADDR(host->io_base));
299         }
300 }
301
302 /*
303  * Read Device Ready (NAND device _and_ controller ready)
304  */
305 static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
306 {
307         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
308
309         if ((readb(MLC_ISR(host->io_base)) &
310              (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
311             (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
312                 return  1;
313
314         return 0;
315 }
316
317 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
318 {
319         uint8_t sr;
320
321         /* Clear interrupt flag by reading status */
322         sr = readb(MLC_IRQ_SR(host->io_base));
323         if (sr & MLCIRQ_NAND_READY)
324                 complete(&host->comp_nand);
325         if (sr & MLCIRQ_CONTROLLER_READY)
326                 complete(&host->comp_controller);
327
328         return IRQ_HANDLED;
329 }
330
331 static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
332 {
333         struct mtd_info *mtd = nand_to_mtd(chip);
334         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
335
336         if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
337                 goto exit;
338
339         wait_for_completion(&host->comp_nand);
340
341         while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
342                 /* Seems to be delayed sometimes by controller */
343                 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
344                 cpu_relax();
345         }
346
347 exit:
348         return NAND_STATUS_READY;
349 }
350
351 static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
352 {
353         struct mtd_info *mtd = nand_to_mtd(chip);
354         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
355
356         if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
357                 goto exit;
358
359         wait_for_completion(&host->comp_controller);
360
361         while (!(readb(MLC_ISR(host->io_base)) &
362                  MLCISR_CONTROLLER_READY)) {
363                 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
364                 cpu_relax();
365         }
366
367 exit:
368         return NAND_STATUS_READY;
369 }
370
371 static int lpc32xx_waitfunc(struct nand_chip *chip)
372 {
373         lpc32xx_waitfunc_nand(chip);
374         lpc32xx_waitfunc_controller(chip);
375
376         return NAND_STATUS_READY;
377 }
378
379 /*
380  * Enable NAND write protect
381  */
382 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
383 {
384         if (gpio_is_valid(host->ncfg->wp_gpio))
385                 gpio_set_value(host->ncfg->wp_gpio, 0);
386 }
387
388 /*
389  * Disable NAND write protect
390  */
391 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
392 {
393         if (gpio_is_valid(host->ncfg->wp_gpio))
394                 gpio_set_value(host->ncfg->wp_gpio, 1);
395 }
396
397 static void lpc32xx_dma_complete_func(void *completion)
398 {
399         complete(completion);
400 }
401
402 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
403                             enum dma_transfer_direction dir)
404 {
405         struct nand_chip *chip = mtd_to_nand(mtd);
406         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
407         struct dma_async_tx_descriptor *desc;
408         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
409         int res;
410
411         sg_init_one(&host->sgl, mem, len);
412
413         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
414                          DMA_BIDIRECTIONAL);
415         if (res != 1) {
416                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
417                 return -ENXIO;
418         }
419         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
420                                        flags);
421         if (!desc) {
422                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
423                 goto out1;
424         }
425
426         init_completion(&host->comp_dma);
427         desc->callback = lpc32xx_dma_complete_func;
428         desc->callback_param = &host->comp_dma;
429
430         dmaengine_submit(desc);
431         dma_async_issue_pending(host->dma_chan);
432
433         wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
434
435         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
436                      DMA_BIDIRECTIONAL);
437         return 0;
438 out1:
439         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
440                      DMA_BIDIRECTIONAL);
441         return -ENXIO;
442 }
443
444 static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
445                              int oob_required, int page)
446 {
447         struct mtd_info *mtd = nand_to_mtd(chip);
448         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
449         int i, j;
450         uint8_t *oobbuf = chip->oob_poi;
451         uint32_t mlc_isr;
452         int res;
453         uint8_t *dma_buf;
454         bool dma_mapped;
455
456         if ((void *)buf <= high_memory) {
457                 dma_buf = buf;
458                 dma_mapped = true;
459         } else {
460                 dma_buf = host->dma_buf;
461                 dma_mapped = false;
462         }
463
464         /* Writing Command and Address */
465         nand_read_page_op(chip, page, 0, NULL, 0);
466
467         /* For all sub-pages */
468         for (i = 0; i < host->mlcsubpages; i++) {
469                 /* Start Auto Decode Command */
470                 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
471
472                 /* Wait for Controller Ready */
473                 lpc32xx_waitfunc_controller(chip);
474
475                 /* Check ECC Error status */
476                 mlc_isr = readl(MLC_ISR(host->io_base));
477                 if (mlc_isr & MLCISR_DECODER_FAILURE) {
478                         mtd->ecc_stats.failed++;
479                         dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
480                 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
481                         mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
482                 }
483
484                 /* Read 512 + 16 Bytes */
485                 if (use_dma) {
486                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
487                                                DMA_DEV_TO_MEM);
488                         if (res)
489                                 return res;
490                 } else {
491                         for (j = 0; j < (512 >> 2); j++) {
492                                 *((uint32_t *)(buf)) =
493                                         readl(MLC_BUFF(host->io_base));
494                                 buf += 4;
495                         }
496                 }
497                 for (j = 0; j < (16 >> 2); j++) {
498                         *((uint32_t *)(oobbuf)) =
499                                 readl(MLC_BUFF(host->io_base));
500                         oobbuf += 4;
501                 }
502         }
503
504         if (use_dma && !dma_mapped)
505                 memcpy(buf, dma_buf, mtd->writesize);
506
507         return 0;
508 }
509
510 static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
511                                        const uint8_t *buf, int oob_required,
512                                        int page)
513 {
514         struct mtd_info *mtd = nand_to_mtd(chip);
515         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
516         const uint8_t *oobbuf = chip->oob_poi;
517         uint8_t *dma_buf = (uint8_t *)buf;
518         int res;
519         int i, j;
520
521         if (use_dma && (void *)buf >= high_memory) {
522                 dma_buf = host->dma_buf;
523                 memcpy(dma_buf, buf, mtd->writesize);
524         }
525
526         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
527
528         for (i = 0; i < host->mlcsubpages; i++) {
529                 /* Start Encode */
530                 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
531
532                 /* Write 512 + 6 Bytes to Buffer */
533                 if (use_dma) {
534                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
535                                                DMA_MEM_TO_DEV);
536                         if (res)
537                                 return res;
538                 } else {
539                         for (j = 0; j < (512 >> 2); j++) {
540                                 writel(*((uint32_t *)(buf)),
541                                        MLC_BUFF(host->io_base));
542                                 buf += 4;
543                         }
544                 }
545                 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
546                 oobbuf += 4;
547                 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
548                 oobbuf += 12;
549
550                 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
551                 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
552
553                 /* Wait for Controller Ready */
554                 lpc32xx_waitfunc_controller(chip);
555         }
556
557         return nand_prog_page_end_op(chip);
558 }
559
560 static int lpc32xx_read_oob(struct nand_chip *chip, int page)
561 {
562         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
563
564         /* Read whole page - necessary with MLC controller! */
565         lpc32xx_read_page(chip, host->dummy_buf, 1, page);
566
567         return 0;
568 }
569
570 static int lpc32xx_write_oob(struct nand_chip *chip, int page)
571 {
572         /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
573         return 0;
574 }
575
576 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
577 static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
578 {
579         /* Always enabled! */
580 }
581
582 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
583 {
584         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
585         dma_cap_mask_t mask;
586
587         if (!host->pdata || !host->pdata->dma_filter) {
588                 dev_err(mtd->dev.parent, "no DMA platform data\n");
589                 return -ENOENT;
590         }
591
592         dma_cap_zero(mask);
593         dma_cap_set(DMA_SLAVE, mask);
594         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
595                                              "nand-mlc");
596         if (!host->dma_chan) {
597                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
598                 return -EBUSY;
599         }
600
601         /*
602          * Set direction to a sensible value even if the dmaengine driver
603          * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
604          * driver criticizes it as "alien transfer direction".
605          */
606         host->dma_slave_config.direction = DMA_DEV_TO_MEM;
607         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
608         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
609         host->dma_slave_config.src_maxburst = 128;
610         host->dma_slave_config.dst_maxburst = 128;
611         /* DMA controller does flow control: */
612         host->dma_slave_config.device_fc = false;
613         host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
614         host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
615         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
616                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
617                 goto out1;
618         }
619
620         return 0;
621 out1:
622         dma_release_channel(host->dma_chan);
623         return -ENXIO;
624 }
625
626 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
627 {
628         struct lpc32xx_nand_cfg_mlc *ncfg;
629         struct device_node *np = dev->of_node;
630
631         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
632         if (!ncfg)
633                 return NULL;
634
635         of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
636         of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
637         of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
638         of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
639         of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
640         of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
641         of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
642
643         if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
644             !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
645             !ncfg->wr_low) {
646                 dev_err(dev, "chip parameters not specified correctly\n");
647                 return NULL;
648         }
649
650         ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
651
652         return ncfg;
653 }
654
655 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
656 {
657         struct mtd_info *mtd = nand_to_mtd(chip);
658         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
659         struct device *dev = &host->pdev->dev;
660
661         host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
662         if (!host->dma_buf)
663                 return -ENOMEM;
664
665         host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
666         if (!host->dummy_buf)
667                 return -ENOMEM;
668
669         chip->ecc.mode = NAND_ECC_HW;
670         chip->ecc.size = 512;
671         mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
672         host->mlcsubpages = mtd->writesize / 512;
673
674         return 0;
675 }
676
677 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
678         .attach_chip = lpc32xx_nand_attach_chip,
679 };
680
681 /*
682  * Probe for NAND controller
683  */
684 static int lpc32xx_nand_probe(struct platform_device *pdev)
685 {
686         struct lpc32xx_nand_host *host;
687         struct mtd_info *mtd;
688         struct nand_chip *nand_chip;
689         struct resource *rc;
690         int res;
691
692         /* Allocate memory for the device structure (and zero it) */
693         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
694         if (!host)
695                 return -ENOMEM;
696
697         host->pdev = pdev;
698
699         rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
700         host->io_base = devm_ioremap_resource(&pdev->dev, rc);
701         if (IS_ERR(host->io_base))
702                 return PTR_ERR(host->io_base);
703
704         host->io_base_phy = rc->start;
705
706         nand_chip = &host->nand_chip;
707         mtd = nand_to_mtd(nand_chip);
708         if (pdev->dev.of_node)
709                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
710         if (!host->ncfg) {
711                 dev_err(&pdev->dev,
712                         "Missing or bad NAND config from device tree\n");
713                 return -ENOENT;
714         }
715         if (host->ncfg->wp_gpio == -EPROBE_DEFER)
716                 return -EPROBE_DEFER;
717         if (gpio_is_valid(host->ncfg->wp_gpio) &&
718                         gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
719                 dev_err(&pdev->dev, "GPIO not available\n");
720                 return -EBUSY;
721         }
722         lpc32xx_wp_disable(host);
723
724         host->pdata = dev_get_platdata(&pdev->dev);
725
726         /* link the private data structures */
727         nand_set_controller_data(nand_chip, host);
728         nand_set_flash_node(nand_chip, pdev->dev.of_node);
729         mtd->dev.parent = &pdev->dev;
730
731         /* Get NAND clock */
732         host->clk = clk_get(&pdev->dev, NULL);
733         if (IS_ERR(host->clk)) {
734                 dev_err(&pdev->dev, "Clock initialization failure\n");
735                 res = -ENOENT;
736                 goto free_gpio;
737         }
738         res = clk_prepare_enable(host->clk);
739         if (res)
740                 goto put_clk;
741
742         nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
743         nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
744         nand_chip->legacy.chip_delay = 25; /* us */
745         nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
746         nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
747
748         /* Init NAND controller */
749         lpc32xx_nand_setup(host);
750
751         platform_set_drvdata(pdev, host);
752
753         /* Initialize function pointers */
754         nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
755         nand_chip->ecc.read_page_raw = lpc32xx_read_page;
756         nand_chip->ecc.read_page = lpc32xx_read_page;
757         nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
758         nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
759         nand_chip->ecc.write_oob = lpc32xx_write_oob;
760         nand_chip->ecc.read_oob = lpc32xx_read_oob;
761         nand_chip->ecc.strength = 4;
762         nand_chip->ecc.bytes = 10;
763         nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
764
765         nand_chip->options = NAND_NO_SUBPAGE_WRITE;
766         nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
767         nand_chip->bbt_td = &lpc32xx_nand_bbt;
768         nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
769
770         if (use_dma) {
771                 res = lpc32xx_dma_setup(host);
772                 if (res) {
773                         res = -EIO;
774                         goto unprepare_clk;
775                 }
776         }
777
778         /* initially clear interrupt status */
779         readb(MLC_IRQ_SR(host->io_base));
780
781         init_completion(&host->comp_nand);
782         init_completion(&host->comp_controller);
783
784         host->irq = platform_get_irq(pdev, 0);
785         if (host->irq < 0) {
786                 dev_err(&pdev->dev, "failed to get platform irq\n");
787                 res = -EINVAL;
788                 goto release_dma_chan;
789         }
790
791         if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
792                         IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
793                 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
794                 res = -ENXIO;
795                 goto release_dma_chan;
796         }
797
798         /*
799          * Scan to find existence of the device and get the type of NAND device:
800          * SMALL block or LARGE block.
801          */
802         nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
803         res = nand_scan(nand_chip, 1);
804         if (res)
805                 goto free_irq;
806
807         mtd->name = DRV_NAME;
808
809         res = mtd_device_register(mtd, host->ncfg->parts,
810                                   host->ncfg->num_parts);
811         if (res)
812                 goto cleanup_nand;
813
814         return 0;
815
816 cleanup_nand:
817         nand_cleanup(nand_chip);
818 free_irq:
819         free_irq(host->irq, host);
820 release_dma_chan:
821         if (use_dma)
822                 dma_release_channel(host->dma_chan);
823 unprepare_clk:
824         clk_disable_unprepare(host->clk);
825 put_clk:
826         clk_put(host->clk);
827 free_gpio:
828         lpc32xx_wp_enable(host);
829         gpio_free(host->ncfg->wp_gpio);
830
831         return res;
832 }
833
834 /*
835  * Remove NAND device
836  */
837 static int lpc32xx_nand_remove(struct platform_device *pdev)
838 {
839         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
840
841         nand_release(&host->nand_chip);
842         free_irq(host->irq, host);
843         if (use_dma)
844                 dma_release_channel(host->dma_chan);
845
846         clk_disable_unprepare(host->clk);
847         clk_put(host->clk);
848
849         lpc32xx_wp_enable(host);
850         gpio_free(host->ncfg->wp_gpio);
851
852         return 0;
853 }
854
855 #ifdef CONFIG_PM
856 static int lpc32xx_nand_resume(struct platform_device *pdev)
857 {
858         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
859         int ret;
860
861         /* Re-enable NAND clock */
862         ret = clk_prepare_enable(host->clk);
863         if (ret)
864                 return ret;
865
866         /* Fresh init of NAND controller */
867         lpc32xx_nand_setup(host);
868
869         /* Disable write protect */
870         lpc32xx_wp_disable(host);
871
872         return 0;
873 }
874
875 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
876 {
877         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
878
879         /* Enable write protect for safety */
880         lpc32xx_wp_enable(host);
881
882         /* Disable clock */
883         clk_disable_unprepare(host->clk);
884         return 0;
885 }
886
887 #else
888 #define lpc32xx_nand_resume NULL
889 #define lpc32xx_nand_suspend NULL
890 #endif
891
892 static const struct of_device_id lpc32xx_nand_match[] = {
893         { .compatible = "nxp,lpc3220-mlc" },
894         { /* sentinel */ },
895 };
896 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
897
898 static struct platform_driver lpc32xx_nand_driver = {
899         .probe          = lpc32xx_nand_probe,
900         .remove         = lpc32xx_nand_remove,
901         .resume         = lpc32xx_nand_resume,
902         .suspend        = lpc32xx_nand_suspend,
903         .driver         = {
904                 .name   = DRV_NAME,
905                 .of_match_table = lpc32xx_nand_match,
906         },
907 };
908
909 module_platform_driver(lpc32xx_nand_driver);
910
911 MODULE_LICENSE("GPL");
912 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
913 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");