Merge tag 'nand/for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux...
[sfrench/cifs-2.6.git] / drivers / mtd / nand / onenand / onenand_base.c
1 /*
2  *  Copyright © 2005-2009 Samsung Electronics
3  *  Copyright © 2007 Nokia Corporation
4  *
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *
11  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
12  *      Flex-OneNAND support
13  *      Amul Kumar Saha <amul.saha at samsung.com>
14  *      OTP support
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License version 2 as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/jiffies.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/onenand.h>
31 #include <linux/mtd/partitions.h>
32
33 #include <asm/io.h>
34
35 /*
36  * Multiblock erase if number of blocks to erase is 2 or more.
37  * Maximum number of blocks for simultaneous erase is 64.
38  */
39 #define MB_ERASE_MIN_BLK_COUNT 2
40 #define MB_ERASE_MAX_BLK_COUNT 64
41
42 /* Default Flex-OneNAND boundary and lock respectively */
43 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
44
45 module_param_array(flex_bdry, int, NULL, 0400);
46 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
47                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
48                                 "DIE_BDRY: SLC boundary of the die"
49                                 "LOCK: Locking information for SLC boundary"
50                                 "    : 0->Set boundary in unlocked status"
51                                 "    : 1->Set boundary in locked status");
52
53 /* Default OneNAND/Flex-OneNAND OTP options*/
54 static int otp;
55
56 module_param(otp, int, 0400);
57 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
58                         "Syntax : otp=LOCK_TYPE"
59                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
60                         "          : 0 -> Default (No Blocks Locked)"
61                         "          : 1 -> OTP Block lock"
62                         "          : 2 -> 1st Block lock"
63                         "          : 3 -> BOTH OTP Block and 1st Block lock");
64
65 /*
66  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
67  * For now, we expose only 64 out of 80 ecc bytes
68  */
69 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
70                                      struct mtd_oob_region *oobregion)
71 {
72         if (section > 7)
73                 return -ERANGE;
74
75         oobregion->offset = (section * 16) + 6;
76         oobregion->length = 10;
77
78         return 0;
79 }
80
81 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
82                                       struct mtd_oob_region *oobregion)
83 {
84         if (section > 7)
85                 return -ERANGE;
86
87         oobregion->offset = (section * 16) + 2;
88         oobregion->length = 4;
89
90         return 0;
91 }
92
93 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
94         .ecc = flexonenand_ooblayout_ecc,
95         .free = flexonenand_ooblayout_free,
96 };
97
98 /*
99  * onenand_oob_128 - oob info for OneNAND with 4KB page
100  *
101  * Based on specification:
102  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
103  *
104  */
105 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
106                                      struct mtd_oob_region *oobregion)
107 {
108         if (section > 7)
109                 return -ERANGE;
110
111         oobregion->offset = (section * 16) + 7;
112         oobregion->length = 9;
113
114         return 0;
115 }
116
117 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
118                                       struct mtd_oob_region *oobregion)
119 {
120         if (section >= 8)
121                 return -ERANGE;
122
123         /*
124          * free bytes are using the spare area fields marked as
125          * "Managed by internal ECC logic for Logical Sector Number area"
126          */
127         oobregion->offset = (section * 16) + 2;
128         oobregion->length = 3;
129
130         return 0;
131 }
132
133 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
134         .ecc = onenand_ooblayout_128_ecc,
135         .free = onenand_ooblayout_128_free,
136 };
137
138 /**
139  * onenand_oob_32_64 - oob info for large (2KB) page
140  */
141 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
142                                        struct mtd_oob_region *oobregion)
143 {
144         if (section > 3)
145                 return -ERANGE;
146
147         oobregion->offset = (section * 16) + 8;
148         oobregion->length = 5;
149
150         return 0;
151 }
152
153 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
154                                         struct mtd_oob_region *oobregion)
155 {
156         int sections = (mtd->oobsize / 32) * 2;
157
158         if (section >= sections)
159                 return -ERANGE;
160
161         if (section & 1) {
162                 oobregion->offset = ((section - 1) * 16) + 14;
163                 oobregion->length = 2;
164         } else  {
165                 oobregion->offset = (section * 16) + 2;
166                 oobregion->length = 3;
167         }
168
169         return 0;
170 }
171
172 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
173         .ecc = onenand_ooblayout_32_64_ecc,
174         .free = onenand_ooblayout_32_64_free,
175 };
176
177 static const unsigned char ffchars[] = {
178         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
179         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
180         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
181         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
182         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
183         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
184         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
185         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
186         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
187         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
188         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
189         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
190         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
191         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
192         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
193         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
194 };
195
196 /**
197  * onenand_readw - [OneNAND Interface] Read OneNAND register
198  * @param addr          address to read
199  *
200  * Read OneNAND register
201  */
202 static unsigned short onenand_readw(void __iomem *addr)
203 {
204         return readw(addr);
205 }
206
207 /**
208  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
209  * @param value         value to write
210  * @param addr          address to write
211  *
212  * Write OneNAND register with value
213  */
214 static void onenand_writew(unsigned short value, void __iomem *addr)
215 {
216         writew(value, addr);
217 }
218
219 /**
220  * onenand_block_address - [DEFAULT] Get block address
221  * @param this          onenand chip data structure
222  * @param block         the block
223  * @return              translated block address if DDP, otherwise same
224  *
225  * Setup Start Address 1 Register (F100h)
226  */
227 static int onenand_block_address(struct onenand_chip *this, int block)
228 {
229         /* Device Flash Core select, NAND Flash Block Address */
230         if (block & this->density_mask)
231                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
232
233         return block;
234 }
235
236 /**
237  * onenand_bufferram_address - [DEFAULT] Get bufferram address
238  * @param this          onenand chip data structure
239  * @param block         the block
240  * @return              set DBS value if DDP, otherwise 0
241  *
242  * Setup Start Address 2 Register (F101h) for DDP
243  */
244 static int onenand_bufferram_address(struct onenand_chip *this, int block)
245 {
246         /* Device BufferRAM Select */
247         if (block & this->density_mask)
248                 return ONENAND_DDP_CHIP1;
249
250         return ONENAND_DDP_CHIP0;
251 }
252
253 /**
254  * onenand_page_address - [DEFAULT] Get page address
255  * @param page          the page address
256  * @param sector        the sector address
257  * @return              combined page and sector address
258  *
259  * Setup Start Address 8 Register (F107h)
260  */
261 static int onenand_page_address(int page, int sector)
262 {
263         /* Flash Page Address, Flash Sector Address */
264         int fpa, fsa;
265
266         fpa = page & ONENAND_FPA_MASK;
267         fsa = sector & ONENAND_FSA_MASK;
268
269         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
270 }
271
272 /**
273  * onenand_buffer_address - [DEFAULT] Get buffer address
274  * @param dataram1      DataRAM index
275  * @param sectors       the sector address
276  * @param count         the number of sectors
277  * @return              the start buffer value
278  *
279  * Setup Start Buffer Register (F200h)
280  */
281 static int onenand_buffer_address(int dataram1, int sectors, int count)
282 {
283         int bsa, bsc;
284
285         /* BufferRAM Sector Address */
286         bsa = sectors & ONENAND_BSA_MASK;
287
288         if (dataram1)
289                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
290         else
291                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
292
293         /* BufferRAM Sector Count */
294         bsc = count & ONENAND_BSC_MASK;
295
296         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
297 }
298
299 /**
300  * flexonenand_block- For given address return block number
301  * @param this         - OneNAND device structure
302  * @param addr          - Address for which block number is needed
303  */
304 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
305 {
306         unsigned boundary, blk, die = 0;
307
308         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
309                 die = 1;
310                 addr -= this->diesize[0];
311         }
312
313         boundary = this->boundary[die];
314
315         blk = addr >> (this->erase_shift - 1);
316         if (blk > boundary)
317                 blk = (blk + boundary + 1) >> 1;
318
319         blk += die ? this->density_mask : 0;
320         return blk;
321 }
322
323 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
324 {
325         if (!FLEXONENAND(this))
326                 return addr >> this->erase_shift;
327         return flexonenand_block(this, addr);
328 }
329
330 /**
331  * flexonenand_addr - Return address of the block
332  * @this:               OneNAND device structure
333  * @block:              Block number on Flex-OneNAND
334  *
335  * Return address of the block
336  */
337 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
338 {
339         loff_t ofs = 0;
340         int die = 0, boundary;
341
342         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
343                 block -= this->density_mask;
344                 die = 1;
345                 ofs = this->diesize[0];
346         }
347
348         boundary = this->boundary[die];
349         ofs += (loff_t)block << (this->erase_shift - 1);
350         if (block > (boundary + 1))
351                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
352         return ofs;
353 }
354
355 loff_t onenand_addr(struct onenand_chip *this, int block)
356 {
357         if (!FLEXONENAND(this))
358                 return (loff_t)block << this->erase_shift;
359         return flexonenand_addr(this, block);
360 }
361 EXPORT_SYMBOL(onenand_addr);
362
363 /**
364  * onenand_get_density - [DEFAULT] Get OneNAND density
365  * @param dev_id        OneNAND device ID
366  *
367  * Get OneNAND density from device ID
368  */
369 static inline int onenand_get_density(int dev_id)
370 {
371         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
372         return (density & ONENAND_DEVICE_DENSITY_MASK);
373 }
374
375 /**
376  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
377  * @param mtd           MTD device structure
378  * @param addr          address whose erase region needs to be identified
379  */
380 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
381 {
382         int i;
383
384         for (i = 0; i < mtd->numeraseregions; i++)
385                 if (addr < mtd->eraseregions[i].offset)
386                         break;
387         return i - 1;
388 }
389 EXPORT_SYMBOL(flexonenand_region);
390
391 /**
392  * onenand_command - [DEFAULT] Send command to OneNAND device
393  * @param mtd           MTD device structure
394  * @param cmd           the command to be sent
395  * @param addr          offset to read from or write to
396  * @param len           number of bytes to read or write
397  *
398  * Send command to OneNAND device. This function is used for middle/large page
399  * devices (1KB/2KB Bytes per page)
400  */
401 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
402 {
403         struct onenand_chip *this = mtd->priv;
404         int value, block, page;
405
406         /* Address translation */
407         switch (cmd) {
408         case ONENAND_CMD_UNLOCK:
409         case ONENAND_CMD_LOCK:
410         case ONENAND_CMD_LOCK_TIGHT:
411         case ONENAND_CMD_UNLOCK_ALL:
412                 block = -1;
413                 page = -1;
414                 break;
415
416         case FLEXONENAND_CMD_PI_ACCESS:
417                 /* addr contains die index */
418                 block = addr * this->density_mask;
419                 page = -1;
420                 break;
421
422         case ONENAND_CMD_ERASE:
423         case ONENAND_CMD_MULTIBLOCK_ERASE:
424         case ONENAND_CMD_ERASE_VERIFY:
425         case ONENAND_CMD_BUFFERRAM:
426         case ONENAND_CMD_OTP_ACCESS:
427                 block = onenand_block(this, addr);
428                 page = -1;
429                 break;
430
431         case FLEXONENAND_CMD_READ_PI:
432                 cmd = ONENAND_CMD_READ;
433                 block = addr * this->density_mask;
434                 page = 0;
435                 break;
436
437         default:
438                 block = onenand_block(this, addr);
439                 if (FLEXONENAND(this))
440                         page = (int) (addr - onenand_addr(this, block))>>\
441                                 this->page_shift;
442                 else
443                         page = (int) (addr >> this->page_shift);
444                 if (ONENAND_IS_2PLANE(this)) {
445                         /* Make the even block number */
446                         block &= ~1;
447                         /* Is it the odd plane? */
448                         if (addr & this->writesize)
449                                 block++;
450                         page >>= 1;
451                 }
452                 page &= this->page_mask;
453                 break;
454         }
455
456         /* NOTE: The setting order of the registers is very important! */
457         if (cmd == ONENAND_CMD_BUFFERRAM) {
458                 /* Select DataRAM for DDP */
459                 value = onenand_bufferram_address(this, block);
460                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
461
462                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
463                         /* It is always BufferRAM0 */
464                         ONENAND_SET_BUFFERRAM0(this);
465                 else
466                         /* Switch to the next data buffer */
467                         ONENAND_SET_NEXT_BUFFERRAM(this);
468
469                 return 0;
470         }
471
472         if (block != -1) {
473                 /* Write 'DFS, FBA' of Flash */
474                 value = onenand_block_address(this, block);
475                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
476
477                 /* Select DataRAM for DDP */
478                 value = onenand_bufferram_address(this, block);
479                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
480         }
481
482         if (page != -1) {
483                 /* Now we use page size operation */
484                 int sectors = 0, count = 0;
485                 int dataram;
486
487                 switch (cmd) {
488                 case FLEXONENAND_CMD_RECOVER_LSB:
489                 case ONENAND_CMD_READ:
490                 case ONENAND_CMD_READOOB:
491                         if (ONENAND_IS_4KB_PAGE(this))
492                                 /* It is always BufferRAM0 */
493                                 dataram = ONENAND_SET_BUFFERRAM0(this);
494                         else
495                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
496                         break;
497
498                 default:
499                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
500                                 cmd = ONENAND_CMD_2X_PROG;
501                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
502                         break;
503                 }
504
505                 /* Write 'FPA, FSA' of Flash */
506                 value = onenand_page_address(page, sectors);
507                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
508
509                 /* Write 'BSA, BSC' of DataRAM */
510                 value = onenand_buffer_address(dataram, sectors, count);
511                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
512         }
513
514         /* Interrupt clear */
515         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
516
517         /* Write command */
518         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
519
520         return 0;
521 }
522
523 /**
524  * onenand_read_ecc - return ecc status
525  * @param this          onenand chip structure
526  */
527 static inline int onenand_read_ecc(struct onenand_chip *this)
528 {
529         int ecc, i, result = 0;
530
531         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
532                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
533
534         for (i = 0; i < 4; i++) {
535                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
536                 if (likely(!ecc))
537                         continue;
538                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
539                         return ONENAND_ECC_2BIT_ALL;
540                 else
541                         result = ONENAND_ECC_1BIT_ALL;
542         }
543
544         return result;
545 }
546
547 /**
548  * onenand_wait - [DEFAULT] wait until the command is done
549  * @param mtd           MTD device structure
550  * @param state         state to select the max. timeout value
551  *
552  * Wait for command done. This applies to all OneNAND command
553  * Read can take up to 30us, erase up to 2ms and program up to 350us
554  * according to general OneNAND specs
555  */
556 static int onenand_wait(struct mtd_info *mtd, int state)
557 {
558         struct onenand_chip * this = mtd->priv;
559         unsigned long timeout;
560         unsigned int flags = ONENAND_INT_MASTER;
561         unsigned int interrupt = 0;
562         unsigned int ctrl;
563
564         /* The 20 msec is enough */
565         timeout = jiffies + msecs_to_jiffies(20);
566         while (time_before(jiffies, timeout)) {
567                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
568
569                 if (interrupt & flags)
570                         break;
571
572                 if (state != FL_READING && state != FL_PREPARING_ERASE)
573                         cond_resched();
574         }
575         /* To get correct interrupt status in timeout case */
576         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
577
578         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
579
580         /*
581          * In the Spec. it checks the controller status first
582          * However if you get the correct information in case of
583          * power off recovery (POR) test, it should read ECC status first
584          */
585         if (interrupt & ONENAND_INT_READ) {
586                 int ecc = onenand_read_ecc(this);
587                 if (ecc) {
588                         if (ecc & ONENAND_ECC_2BIT_ALL) {
589                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
590                                         __func__, ecc);
591                                 mtd->ecc_stats.failed++;
592                                 return -EBADMSG;
593                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
594                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
595                                         __func__, ecc);
596                                 mtd->ecc_stats.corrected++;
597                         }
598                 }
599         } else if (state == FL_READING) {
600                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
601                         __func__, ctrl, interrupt);
602                 return -EIO;
603         }
604
605         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
606                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
607                        __func__, ctrl, interrupt);
608                 return -EIO;
609         }
610
611         if (!(interrupt & ONENAND_INT_MASTER)) {
612                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
613                        __func__, ctrl, interrupt);
614                 return -EIO;
615         }
616
617         /* If there's controller error, it's a real error */
618         if (ctrl & ONENAND_CTRL_ERROR) {
619                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
620                         __func__, ctrl);
621                 if (ctrl & ONENAND_CTRL_LOCK)
622                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
623                 return -EIO;
624         }
625
626         return 0;
627 }
628
629 /*
630  * onenand_interrupt - [DEFAULT] onenand interrupt handler
631  * @param irq           onenand interrupt number
632  * @param dev_id        interrupt data
633  *
634  * complete the work
635  */
636 static irqreturn_t onenand_interrupt(int irq, void *data)
637 {
638         struct onenand_chip *this = data;
639
640         /* To handle shared interrupt */
641         if (!this->complete.done)
642                 complete(&this->complete);
643
644         return IRQ_HANDLED;
645 }
646
647 /*
648  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
649  * @param mtd           MTD device structure
650  * @param state         state to select the max. timeout value
651  *
652  * Wait for command done.
653  */
654 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
655 {
656         struct onenand_chip *this = mtd->priv;
657
658         wait_for_completion(&this->complete);
659
660         return onenand_wait(mtd, state);
661 }
662
663 /*
664  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
665  * @param mtd           MTD device structure
666  * @param state         state to select the max. timeout value
667  *
668  * Try interrupt based wait (It is used one-time)
669  */
670 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
671 {
672         struct onenand_chip *this = mtd->priv;
673         unsigned long remain, timeout;
674
675         /* We use interrupt wait first */
676         this->wait = onenand_interrupt_wait;
677
678         timeout = msecs_to_jiffies(100);
679         remain = wait_for_completion_timeout(&this->complete, timeout);
680         if (!remain) {
681                 printk(KERN_INFO "OneNAND: There's no interrupt. "
682                                 "We use the normal wait\n");
683
684                 /* Release the irq */
685                 free_irq(this->irq, this);
686
687                 this->wait = onenand_wait;
688         }
689
690         return onenand_wait(mtd, state);
691 }
692
693 /*
694  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
695  * @param mtd           MTD device structure
696  *
697  * There's two method to wait onenand work
698  * 1. polling - read interrupt status register
699  * 2. interrupt - use the kernel interrupt method
700  */
701 static void onenand_setup_wait(struct mtd_info *mtd)
702 {
703         struct onenand_chip *this = mtd->priv;
704         int syscfg;
705
706         init_completion(&this->complete);
707
708         if (this->irq <= 0) {
709                 this->wait = onenand_wait;
710                 return;
711         }
712
713         if (request_irq(this->irq, &onenand_interrupt,
714                                 IRQF_SHARED, "onenand", this)) {
715                 /* If we can't get irq, use the normal wait */
716                 this->wait = onenand_wait;
717                 return;
718         }
719
720         /* Enable interrupt */
721         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
722         syscfg |= ONENAND_SYS_CFG1_IOBE;
723         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
724
725         this->wait = onenand_try_interrupt_wait;
726 }
727
728 /**
729  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
730  * @param mtd           MTD data structure
731  * @param area          BufferRAM area
732  * @return              offset given area
733  *
734  * Return BufferRAM offset given area
735  */
736 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
737 {
738         struct onenand_chip *this = mtd->priv;
739
740         if (ONENAND_CURRENT_BUFFERRAM(this)) {
741                 /* Note: the 'this->writesize' is a real page size */
742                 if (area == ONENAND_DATARAM)
743                         return this->writesize;
744                 if (area == ONENAND_SPARERAM)
745                         return mtd->oobsize;
746         }
747
748         return 0;
749 }
750
751 /**
752  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
753  * @param mtd           MTD data structure
754  * @param area          BufferRAM area
755  * @param buffer        the databuffer to put/get data
756  * @param offset        offset to read from or write to
757  * @param count         number of bytes to read/write
758  *
759  * Read the BufferRAM area
760  */
761 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
762                 unsigned char *buffer, int offset, size_t count)
763 {
764         struct onenand_chip *this = mtd->priv;
765         void __iomem *bufferram;
766
767         bufferram = this->base + area;
768
769         bufferram += onenand_bufferram_offset(mtd, area);
770
771         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
772                 unsigned short word;
773
774                 /* Align with word(16-bit) size */
775                 count--;
776
777                 /* Read word and save byte */
778                 word = this->read_word(bufferram + offset + count);
779                 buffer[count] = (word & 0xff);
780         }
781
782         memcpy(buffer, bufferram + offset, count);
783
784         return 0;
785 }
786
787 /**
788  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
789  * @param mtd           MTD data structure
790  * @param area          BufferRAM area
791  * @param buffer        the databuffer to put/get data
792  * @param offset        offset to read from or write to
793  * @param count         number of bytes to read/write
794  *
795  * Read the BufferRAM area with Sync. Burst Mode
796  */
797 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
798                 unsigned char *buffer, int offset, size_t count)
799 {
800         struct onenand_chip *this = mtd->priv;
801         void __iomem *bufferram;
802
803         bufferram = this->base + area;
804
805         bufferram += onenand_bufferram_offset(mtd, area);
806
807         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
808
809         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
810                 unsigned short word;
811
812                 /* Align with word(16-bit) size */
813                 count--;
814
815                 /* Read word and save byte */
816                 word = this->read_word(bufferram + offset + count);
817                 buffer[count] = (word & 0xff);
818         }
819
820         memcpy(buffer, bufferram + offset, count);
821
822         this->mmcontrol(mtd, 0);
823
824         return 0;
825 }
826
827 /**
828  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
829  * @param mtd           MTD data structure
830  * @param area          BufferRAM area
831  * @param buffer        the databuffer to put/get data
832  * @param offset        offset to read from or write to
833  * @param count         number of bytes to read/write
834  *
835  * Write the BufferRAM area
836  */
837 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
838                 const unsigned char *buffer, int offset, size_t count)
839 {
840         struct onenand_chip *this = mtd->priv;
841         void __iomem *bufferram;
842
843         bufferram = this->base + area;
844
845         bufferram += onenand_bufferram_offset(mtd, area);
846
847         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
848                 unsigned short word;
849                 int byte_offset;
850
851                 /* Align with word(16-bit) size */
852                 count--;
853
854                 /* Calculate byte access offset */
855                 byte_offset = offset + count;
856
857                 /* Read word and save byte */
858                 word = this->read_word(bufferram + byte_offset);
859                 word = (word & ~0xff) | buffer[count];
860                 this->write_word(word, bufferram + byte_offset);
861         }
862
863         memcpy(bufferram + offset, buffer, count);
864
865         return 0;
866 }
867
868 /**
869  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
870  * @param mtd           MTD data structure
871  * @param addr          address to check
872  * @return              blockpage address
873  *
874  * Get blockpage address at 2x program mode
875  */
876 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
877 {
878         struct onenand_chip *this = mtd->priv;
879         int blockpage, block, page;
880
881         /* Calculate the even block number */
882         block = (int) (addr >> this->erase_shift) & ~1;
883         /* Is it the odd plane? */
884         if (addr & this->writesize)
885                 block++;
886         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
887         blockpage = (block << 7) | page;
888
889         return blockpage;
890 }
891
892 /**
893  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
894  * @param mtd           MTD data structure
895  * @param addr          address to check
896  * @return              1 if there are valid data, otherwise 0
897  *
898  * Check bufferram if there is data we required
899  */
900 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
901 {
902         struct onenand_chip *this = mtd->priv;
903         int blockpage, found = 0;
904         unsigned int i;
905
906         if (ONENAND_IS_2PLANE(this))
907                 blockpage = onenand_get_2x_blockpage(mtd, addr);
908         else
909                 blockpage = (int) (addr >> this->page_shift);
910
911         /* Is there valid data? */
912         i = ONENAND_CURRENT_BUFFERRAM(this);
913         if (this->bufferram[i].blockpage == blockpage)
914                 found = 1;
915         else {
916                 /* Check another BufferRAM */
917                 i = ONENAND_NEXT_BUFFERRAM(this);
918                 if (this->bufferram[i].blockpage == blockpage) {
919                         ONENAND_SET_NEXT_BUFFERRAM(this);
920                         found = 1;
921                 }
922         }
923
924         if (found && ONENAND_IS_DDP(this)) {
925                 /* Select DataRAM for DDP */
926                 int block = onenand_block(this, addr);
927                 int value = onenand_bufferram_address(this, block);
928                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
929         }
930
931         return found;
932 }
933
934 /**
935  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
936  * @param mtd           MTD data structure
937  * @param addr          address to update
938  * @param valid         valid flag
939  *
940  * Update BufferRAM information
941  */
942 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
943                 int valid)
944 {
945         struct onenand_chip *this = mtd->priv;
946         int blockpage;
947         unsigned int i;
948
949         if (ONENAND_IS_2PLANE(this))
950                 blockpage = onenand_get_2x_blockpage(mtd, addr);
951         else
952                 blockpage = (int) (addr >> this->page_shift);
953
954         /* Invalidate another BufferRAM */
955         i = ONENAND_NEXT_BUFFERRAM(this);
956         if (this->bufferram[i].blockpage == blockpage)
957                 this->bufferram[i].blockpage = -1;
958
959         /* Update BufferRAM */
960         i = ONENAND_CURRENT_BUFFERRAM(this);
961         if (valid)
962                 this->bufferram[i].blockpage = blockpage;
963         else
964                 this->bufferram[i].blockpage = -1;
965 }
966
967 /**
968  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
969  * @param mtd           MTD data structure
970  * @param addr          start address to invalidate
971  * @param len           length to invalidate
972  *
973  * Invalidate BufferRAM information
974  */
975 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
976                 unsigned int len)
977 {
978         struct onenand_chip *this = mtd->priv;
979         int i;
980         loff_t end_addr = addr + len;
981
982         /* Invalidate BufferRAM */
983         for (i = 0; i < MAX_BUFFERRAM; i++) {
984                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
985                 if (buf_addr >= addr && buf_addr < end_addr)
986                         this->bufferram[i].blockpage = -1;
987         }
988 }
989
990 /**
991  * onenand_get_device - [GENERIC] Get chip for selected access
992  * @param mtd           MTD device structure
993  * @param new_state     the state which is requested
994  *
995  * Get the device and lock it for exclusive access
996  */
997 static int onenand_get_device(struct mtd_info *mtd, int new_state)
998 {
999         struct onenand_chip *this = mtd->priv;
1000         DECLARE_WAITQUEUE(wait, current);
1001
1002         /*
1003          * Grab the lock and see if the device is available
1004          */
1005         while (1) {
1006                 spin_lock(&this->chip_lock);
1007                 if (this->state == FL_READY) {
1008                         this->state = new_state;
1009                         spin_unlock(&this->chip_lock);
1010                         if (new_state != FL_PM_SUSPENDED && this->enable)
1011                                 this->enable(mtd);
1012                         break;
1013                 }
1014                 if (new_state == FL_PM_SUSPENDED) {
1015                         spin_unlock(&this->chip_lock);
1016                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1017                 }
1018                 set_current_state(TASK_UNINTERRUPTIBLE);
1019                 add_wait_queue(&this->wq, &wait);
1020                 spin_unlock(&this->chip_lock);
1021                 schedule();
1022                 remove_wait_queue(&this->wq, &wait);
1023         }
1024
1025         return 0;
1026 }
1027
1028 /**
1029  * onenand_release_device - [GENERIC] release chip
1030  * @param mtd           MTD device structure
1031  *
1032  * Deselect, release chip lock and wake up anyone waiting on the device
1033  */
1034 static void onenand_release_device(struct mtd_info *mtd)
1035 {
1036         struct onenand_chip *this = mtd->priv;
1037
1038         if (this->state != FL_PM_SUSPENDED && this->disable)
1039                 this->disable(mtd);
1040         /* Release the chip */
1041         spin_lock(&this->chip_lock);
1042         this->state = FL_READY;
1043         wake_up(&this->wq);
1044         spin_unlock(&this->chip_lock);
1045 }
1046
1047 /**
1048  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1049  * @param mtd           MTD device structure
1050  * @param buf           destination address
1051  * @param column        oob offset to read from
1052  * @param thislen       oob length to read
1053  */
1054 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1055                                 int thislen)
1056 {
1057         struct onenand_chip *this = mtd->priv;
1058         int ret;
1059
1060         this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1061                              mtd->oobsize);
1062         ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1063                                           column, thislen);
1064         if (ret)
1065                 return ret;
1066
1067         return 0;
1068 }
1069
1070 /**
1071  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1072  * @param mtd           MTD device structure
1073  * @param addr          address to recover
1074  * @param status        return value from onenand_wait / onenand_bbt_wait
1075  *
1076  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1077  * lower page address and MSB page has higher page address in paired pages.
1078  * If power off occurs during MSB page program, the paired LSB page data can
1079  * become corrupt. LSB page recovery read is a way to read LSB page though page
1080  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1081  * read after power up, issue LSB page recovery read.
1082  */
1083 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1084 {
1085         struct onenand_chip *this = mtd->priv;
1086         int i;
1087
1088         /* Recovery is only for Flex-OneNAND */
1089         if (!FLEXONENAND(this))
1090                 return status;
1091
1092         /* check if we failed due to uncorrectable error */
1093         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1094                 return status;
1095
1096         /* check if address lies in MLC region */
1097         i = flexonenand_region(mtd, addr);
1098         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1099                 return status;
1100
1101         /* We are attempting to reread, so decrement stats.failed
1102          * which was incremented by onenand_wait due to read failure
1103          */
1104         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1105                 __func__);
1106         mtd->ecc_stats.failed--;
1107
1108         /* Issue the LSB page recovery command */
1109         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1110         return this->wait(mtd, FL_READING);
1111 }
1112
1113 /**
1114  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1115  * @param mtd           MTD device structure
1116  * @param from          offset to read from
1117  * @param ops:          oob operation description structure
1118  *
1119  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1120  * So, read-while-load is not present.
1121  */
1122 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1123                                 struct mtd_oob_ops *ops)
1124 {
1125         struct onenand_chip *this = mtd->priv;
1126         struct mtd_ecc_stats stats;
1127         size_t len = ops->len;
1128         size_t ooblen = ops->ooblen;
1129         u_char *buf = ops->datbuf;
1130         u_char *oobbuf = ops->oobbuf;
1131         int read = 0, column, thislen;
1132         int oobread = 0, oobcolumn, thisooblen, oobsize;
1133         int ret = 0;
1134         int writesize = this->writesize;
1135
1136         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1137                         (int)len);
1138
1139         oobsize = mtd_oobavail(mtd, ops);
1140         oobcolumn = from & (mtd->oobsize - 1);
1141
1142         /* Do not allow reads past end of device */
1143         if (from + len > mtd->size) {
1144                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1145                         __func__);
1146                 ops->retlen = 0;
1147                 ops->oobretlen = 0;
1148                 return -EINVAL;
1149         }
1150
1151         stats = mtd->ecc_stats;
1152
1153         while (read < len) {
1154                 cond_resched();
1155
1156                 thislen = min_t(int, writesize, len - read);
1157
1158                 column = from & (writesize - 1);
1159                 if (column + thislen > writesize)
1160                         thislen = writesize - column;
1161
1162                 if (!onenand_check_bufferram(mtd, from)) {
1163                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1164
1165                         ret = this->wait(mtd, FL_READING);
1166                         if (unlikely(ret))
1167                                 ret = onenand_recover_lsb(mtd, from, ret);
1168                         onenand_update_bufferram(mtd, from, !ret);
1169                         if (mtd_is_eccerr(ret))
1170                                 ret = 0;
1171                         if (ret)
1172                                 break;
1173                 }
1174
1175                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1176                 if (oobbuf) {
1177                         thisooblen = oobsize - oobcolumn;
1178                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1179
1180                         if (ops->mode == MTD_OPS_AUTO_OOB)
1181                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1182                         else
1183                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1184                         oobread += thisooblen;
1185                         oobbuf += thisooblen;
1186                         oobcolumn = 0;
1187                 }
1188
1189                 read += thislen;
1190                 if (read == len)
1191                         break;
1192
1193                 from += thislen;
1194                 buf += thislen;
1195         }
1196
1197         /*
1198          * Return success, if no ECC failures, else -EBADMSG
1199          * fs driver will take care of that, because
1200          * retlen == desired len and result == -EBADMSG
1201          */
1202         ops->retlen = read;
1203         ops->oobretlen = oobread;
1204
1205         if (ret)
1206                 return ret;
1207
1208         if (mtd->ecc_stats.failed - stats.failed)
1209                 return -EBADMSG;
1210
1211         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1212         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1213 }
1214
1215 /**
1216  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1217  * @param mtd           MTD device structure
1218  * @param from          offset to read from
1219  * @param ops:          oob operation description structure
1220  *
1221  * OneNAND read main and/or out-of-band data
1222  */
1223 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1224                                 struct mtd_oob_ops *ops)
1225 {
1226         struct onenand_chip *this = mtd->priv;
1227         struct mtd_ecc_stats stats;
1228         size_t len = ops->len;
1229         size_t ooblen = ops->ooblen;
1230         u_char *buf = ops->datbuf;
1231         u_char *oobbuf = ops->oobbuf;
1232         int read = 0, column, thislen;
1233         int oobread = 0, oobcolumn, thisooblen, oobsize;
1234         int ret = 0, boundary = 0;
1235         int writesize = this->writesize;
1236
1237         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1238                         (int)len);
1239
1240         oobsize = mtd_oobavail(mtd, ops);
1241         oobcolumn = from & (mtd->oobsize - 1);
1242
1243         /* Do not allow reads past end of device */
1244         if ((from + len) > mtd->size) {
1245                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1246                         __func__);
1247                 ops->retlen = 0;
1248                 ops->oobretlen = 0;
1249                 return -EINVAL;
1250         }
1251
1252         stats = mtd->ecc_stats;
1253
1254         /* Read-while-load method */
1255
1256         /* Do first load to bufferRAM */
1257         if (read < len) {
1258                 if (!onenand_check_bufferram(mtd, from)) {
1259                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1260                         ret = this->wait(mtd, FL_READING);
1261                         onenand_update_bufferram(mtd, from, !ret);
1262                         if (mtd_is_eccerr(ret))
1263                                 ret = 0;
1264                 }
1265         }
1266
1267         thislen = min_t(int, writesize, len - read);
1268         column = from & (writesize - 1);
1269         if (column + thislen > writesize)
1270                 thislen = writesize - column;
1271
1272         while (!ret) {
1273                 /* If there is more to load then start next load */
1274                 from += thislen;
1275                 if (read + thislen < len) {
1276                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1277                         /*
1278                          * Chip boundary handling in DDP
1279                          * Now we issued chip 1 read and pointed chip 1
1280                          * bufferram so we have to point chip 0 bufferram.
1281                          */
1282                         if (ONENAND_IS_DDP(this) &&
1283                             unlikely(from == (this->chipsize >> 1))) {
1284                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1285                                 boundary = 1;
1286                         } else
1287                                 boundary = 0;
1288                         ONENAND_SET_PREV_BUFFERRAM(this);
1289                 }
1290                 /* While load is going, read from last bufferRAM */
1291                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1292
1293                 /* Read oob area if needed */
1294                 if (oobbuf) {
1295                         thisooblen = oobsize - oobcolumn;
1296                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1297
1298                         if (ops->mode == MTD_OPS_AUTO_OOB)
1299                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1300                         else
1301                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1302                         oobread += thisooblen;
1303                         oobbuf += thisooblen;
1304                         oobcolumn = 0;
1305                 }
1306
1307                 /* See if we are done */
1308                 read += thislen;
1309                 if (read == len)
1310                         break;
1311                 /* Set up for next read from bufferRAM */
1312                 if (unlikely(boundary))
1313                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1314                 ONENAND_SET_NEXT_BUFFERRAM(this);
1315                 buf += thislen;
1316                 thislen = min_t(int, writesize, len - read);
1317                 column = 0;
1318                 cond_resched();
1319                 /* Now wait for load */
1320                 ret = this->wait(mtd, FL_READING);
1321                 onenand_update_bufferram(mtd, from, !ret);
1322                 if (mtd_is_eccerr(ret))
1323                         ret = 0;
1324         }
1325
1326         /*
1327          * Return success, if no ECC failures, else -EBADMSG
1328          * fs driver will take care of that, because
1329          * retlen == desired len and result == -EBADMSG
1330          */
1331         ops->retlen = read;
1332         ops->oobretlen = oobread;
1333
1334         if (ret)
1335                 return ret;
1336
1337         if (mtd->ecc_stats.failed - stats.failed)
1338                 return -EBADMSG;
1339
1340         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1341         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1342 }
1343
1344 /**
1345  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1346  * @param mtd           MTD device structure
1347  * @param from          offset to read from
1348  * @param ops:          oob operation description structure
1349  *
1350  * OneNAND read out-of-band data from the spare area
1351  */
1352 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1353                         struct mtd_oob_ops *ops)
1354 {
1355         struct onenand_chip *this = mtd->priv;
1356         struct mtd_ecc_stats stats;
1357         int read = 0, thislen, column, oobsize;
1358         size_t len = ops->ooblen;
1359         unsigned int mode = ops->mode;
1360         u_char *buf = ops->oobbuf;
1361         int ret = 0, readcmd;
1362
1363         from += ops->ooboffs;
1364
1365         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1366                         (int)len);
1367
1368         /* Initialize return length value */
1369         ops->oobretlen = 0;
1370
1371         if (mode == MTD_OPS_AUTO_OOB)
1372                 oobsize = mtd->oobavail;
1373         else
1374                 oobsize = mtd->oobsize;
1375
1376         column = from & (mtd->oobsize - 1);
1377
1378         if (unlikely(column >= oobsize)) {
1379                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1380                         __func__);
1381                 return -EINVAL;
1382         }
1383
1384         stats = mtd->ecc_stats;
1385
1386         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1387
1388         while (read < len) {
1389                 cond_resched();
1390
1391                 thislen = oobsize - column;
1392                 thislen = min_t(int, thislen, len);
1393
1394                 this->command(mtd, readcmd, from, mtd->oobsize);
1395
1396                 onenand_update_bufferram(mtd, from, 0);
1397
1398                 ret = this->wait(mtd, FL_READING);
1399                 if (unlikely(ret))
1400                         ret = onenand_recover_lsb(mtd, from, ret);
1401
1402                 if (ret && !mtd_is_eccerr(ret)) {
1403                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1404                                 __func__, ret);
1405                         break;
1406                 }
1407
1408                 if (mode == MTD_OPS_AUTO_OOB)
1409                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1410                 else
1411                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1412
1413                 read += thislen;
1414
1415                 if (read == len)
1416                         break;
1417
1418                 buf += thislen;
1419
1420                 /* Read more? */
1421                 if (read < len) {
1422                         /* Page size */
1423                         from += mtd->writesize;
1424                         column = 0;
1425                 }
1426         }
1427
1428         ops->oobretlen = read;
1429
1430         if (ret)
1431                 return ret;
1432
1433         if (mtd->ecc_stats.failed - stats.failed)
1434                 return -EBADMSG;
1435
1436         return 0;
1437 }
1438
1439 /**
1440  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1441  * @param mtd:          MTD device structure
1442  * @param from:         offset to read from
1443  * @param ops:          oob operation description structure
1444
1445  * Read main and/or out-of-band
1446  */
1447 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1448                             struct mtd_oob_ops *ops)
1449 {
1450         struct onenand_chip *this = mtd->priv;
1451         int ret;
1452
1453         switch (ops->mode) {
1454         case MTD_OPS_PLACE_OOB:
1455         case MTD_OPS_AUTO_OOB:
1456                 break;
1457         case MTD_OPS_RAW:
1458                 /* Not implemented yet */
1459         default:
1460                 return -EINVAL;
1461         }
1462
1463         onenand_get_device(mtd, FL_READING);
1464         if (ops->datbuf)
1465                 ret = ONENAND_IS_4KB_PAGE(this) ?
1466                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1467                         onenand_read_ops_nolock(mtd, from, ops);
1468         else
1469                 ret = onenand_read_oob_nolock(mtd, from, ops);
1470         onenand_release_device(mtd);
1471
1472         return ret;
1473 }
1474
1475 /**
1476  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1477  * @param mtd           MTD device structure
1478  * @param state         state to select the max. timeout value
1479  *
1480  * Wait for command done.
1481  */
1482 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1483 {
1484         struct onenand_chip *this = mtd->priv;
1485         unsigned long timeout;
1486         unsigned int interrupt, ctrl, ecc, addr1, addr8;
1487
1488         /* The 20 msec is enough */
1489         timeout = jiffies + msecs_to_jiffies(20);
1490         while (time_before(jiffies, timeout)) {
1491                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1492                 if (interrupt & ONENAND_INT_MASTER)
1493                         break;
1494         }
1495         /* To get correct interrupt status in timeout case */
1496         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1497         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1498         addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1499         addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1500
1501         if (interrupt & ONENAND_INT_READ) {
1502                 ecc = onenand_read_ecc(this);
1503                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1504                         printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1505                                "intr 0x%04x addr1 %#x addr8 %#x\n",
1506                                __func__, ecc, ctrl, interrupt, addr1, addr8);
1507                         return ONENAND_BBT_READ_ECC_ERROR;
1508                 }
1509         } else {
1510                 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1511                        "intr 0x%04x addr1 %#x addr8 %#x\n",
1512                        __func__, ctrl, interrupt, addr1, addr8);
1513                 return ONENAND_BBT_READ_FATAL_ERROR;
1514         }
1515
1516         /* Initial bad block case: 0x2400 or 0x0400 */
1517         if (ctrl & ONENAND_CTRL_ERROR) {
1518                 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1519                        "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1520                 return ONENAND_BBT_READ_ERROR;
1521         }
1522
1523         return 0;
1524 }
1525
1526 /**
1527  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1528  * @param mtd           MTD device structure
1529  * @param from          offset to read from
1530  * @param ops           oob operation description structure
1531  *
1532  * OneNAND read out-of-band data from the spare area for bbt scan
1533  */
1534 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1535                             struct mtd_oob_ops *ops)
1536 {
1537         struct onenand_chip *this = mtd->priv;
1538         int read = 0, thislen, column;
1539         int ret = 0, readcmd;
1540         size_t len = ops->ooblen;
1541         u_char *buf = ops->oobbuf;
1542
1543         pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1544                         len);
1545
1546         /* Initialize return value */
1547         ops->oobretlen = 0;
1548
1549         /* Do not allow reads past end of device */
1550         if (unlikely((from + len) > mtd->size)) {
1551                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1552                         __func__);
1553                 return ONENAND_BBT_READ_FATAL_ERROR;
1554         }
1555
1556         /* Grab the lock and see if the device is available */
1557         onenand_get_device(mtd, FL_READING);
1558
1559         column = from & (mtd->oobsize - 1);
1560
1561         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1562
1563         while (read < len) {
1564                 cond_resched();
1565
1566                 thislen = mtd->oobsize - column;
1567                 thislen = min_t(int, thislen, len);
1568
1569                 this->command(mtd, readcmd, from, mtd->oobsize);
1570
1571                 onenand_update_bufferram(mtd, from, 0);
1572
1573                 ret = this->bbt_wait(mtd, FL_READING);
1574                 if (unlikely(ret))
1575                         ret = onenand_recover_lsb(mtd, from, ret);
1576
1577                 if (ret)
1578                         break;
1579
1580                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1581                 read += thislen;
1582                 if (read == len)
1583                         break;
1584
1585                 buf += thislen;
1586
1587                 /* Read more? */
1588                 if (read < len) {
1589                         /* Update Page size */
1590                         from += this->writesize;
1591                         column = 0;
1592                 }
1593         }
1594
1595         /* Deselect and wake up anyone waiting on the device */
1596         onenand_release_device(mtd);
1597
1598         ops->oobretlen = read;
1599         return ret;
1600 }
1601
1602 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1603 /**
1604  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1605  * @param mtd           MTD device structure
1606  * @param buf           the databuffer to verify
1607  * @param to            offset to read from
1608  */
1609 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1610 {
1611         struct onenand_chip *this = mtd->priv;
1612         u_char *oob_buf = this->oob_buf;
1613         int status, i, readcmd;
1614
1615         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1616
1617         this->command(mtd, readcmd, to, mtd->oobsize);
1618         onenand_update_bufferram(mtd, to, 0);
1619         status = this->wait(mtd, FL_READING);
1620         if (status)
1621                 return status;
1622
1623         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1624         for (i = 0; i < mtd->oobsize; i++)
1625                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1626                         return -EBADMSG;
1627
1628         return 0;
1629 }
1630
1631 /**
1632  * onenand_verify - [GENERIC] verify the chip contents after a write
1633  * @param mtd          MTD device structure
1634  * @param buf          the databuffer to verify
1635  * @param addr         offset to read from
1636  * @param len          number of bytes to read and compare
1637  */
1638 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1639 {
1640         struct onenand_chip *this = mtd->priv;
1641         int ret = 0;
1642         int thislen, column;
1643
1644         column = addr & (this->writesize - 1);
1645
1646         while (len != 0) {
1647                 thislen = min_t(int, this->writesize - column, len);
1648
1649                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1650
1651                 onenand_update_bufferram(mtd, addr, 0);
1652
1653                 ret = this->wait(mtd, FL_READING);
1654                 if (ret)
1655                         return ret;
1656
1657                 onenand_update_bufferram(mtd, addr, 1);
1658
1659                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1660
1661                 if (memcmp(buf, this->verify_buf + column, thislen))
1662                         return -EBADMSG;
1663
1664                 len -= thislen;
1665                 buf += thislen;
1666                 addr += thislen;
1667                 column = 0;
1668         }
1669
1670         return 0;
1671 }
1672 #else
1673 #define onenand_verify(...)             (0)
1674 #define onenand_verify_oob(...)         (0)
1675 #endif
1676
1677 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1678
1679 static void onenand_panic_wait(struct mtd_info *mtd)
1680 {
1681         struct onenand_chip *this = mtd->priv;
1682         unsigned int interrupt;
1683         int i;
1684         
1685         for (i = 0; i < 2000; i++) {
1686                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1687                 if (interrupt & ONENAND_INT_MASTER)
1688                         break;
1689                 udelay(10);
1690         }
1691 }
1692
1693 /**
1694  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1695  * @param mtd           MTD device structure
1696  * @param to            offset to write to
1697  * @param len           number of bytes to write
1698  * @param retlen        pointer to variable to store the number of written bytes
1699  * @param buf           the data to write
1700  *
1701  * Write with ECC
1702  */
1703 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1704                          size_t *retlen, const u_char *buf)
1705 {
1706         struct onenand_chip *this = mtd->priv;
1707         int column, subpage;
1708         int written = 0;
1709
1710         if (this->state == FL_PM_SUSPENDED)
1711                 return -EBUSY;
1712
1713         /* Wait for any existing operation to clear */
1714         onenand_panic_wait(mtd);
1715
1716         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1717                         (int)len);
1718
1719         /* Reject writes, which are not page aligned */
1720         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1721                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1722                         __func__);
1723                 return -EINVAL;
1724         }
1725
1726         column = to & (mtd->writesize - 1);
1727
1728         /* Loop until all data write */
1729         while (written < len) {
1730                 int thislen = min_t(int, mtd->writesize - column, len - written);
1731                 u_char *wbuf = (u_char *) buf;
1732
1733                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1734
1735                 /* Partial page write */
1736                 subpage = thislen < mtd->writesize;
1737                 if (subpage) {
1738                         memset(this->page_buf, 0xff, mtd->writesize);
1739                         memcpy(this->page_buf + column, buf, thislen);
1740                         wbuf = this->page_buf;
1741                 }
1742
1743                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1744                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1745
1746                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1747
1748                 onenand_panic_wait(mtd);
1749
1750                 /* In partial page write we don't update bufferram */
1751                 onenand_update_bufferram(mtd, to, !subpage);
1752                 if (ONENAND_IS_2PLANE(this)) {
1753                         ONENAND_SET_BUFFERRAM1(this);
1754                         onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1755                 }
1756
1757                 written += thislen;
1758
1759                 if (written == len)
1760                         break;
1761
1762                 column = 0;
1763                 to += thislen;
1764                 buf += thislen;
1765         }
1766
1767         *retlen = written;
1768         return 0;
1769 }
1770
1771 /**
1772  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1773  * @param mtd           MTD device structure
1774  * @param oob_buf       oob buffer
1775  * @param buf           source address
1776  * @param column        oob offset to write to
1777  * @param thislen       oob length to write
1778  */
1779 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1780                                   const u_char *buf, int column, int thislen)
1781 {
1782         return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1783 }
1784
1785 /**
1786  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1787  * @param mtd           MTD device structure
1788  * @param to            offset to write to
1789  * @param ops           oob operation description structure
1790  *
1791  * Write main and/or oob with ECC
1792  */
1793 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1794                                 struct mtd_oob_ops *ops)
1795 {
1796         struct onenand_chip *this = mtd->priv;
1797         int written = 0, column, thislen = 0, subpage = 0;
1798         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1799         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1800         size_t len = ops->len;
1801         size_t ooblen = ops->ooblen;
1802         const u_char *buf = ops->datbuf;
1803         const u_char *oob = ops->oobbuf;
1804         u_char *oobbuf;
1805         int ret = 0, cmd;
1806
1807         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1808                         (int)len);
1809
1810         /* Initialize retlen, in case of early exit */
1811         ops->retlen = 0;
1812         ops->oobretlen = 0;
1813
1814         /* Reject writes, which are not page aligned */
1815         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1816                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1817                         __func__);
1818                 return -EINVAL;
1819         }
1820
1821         /* Check zero length */
1822         if (!len)
1823                 return 0;
1824         oobsize = mtd_oobavail(mtd, ops);
1825         oobcolumn = to & (mtd->oobsize - 1);
1826
1827         column = to & (mtd->writesize - 1);
1828
1829         /* Loop until all data write */
1830         while (1) {
1831                 if (written < len) {
1832                         u_char *wbuf = (u_char *) buf;
1833
1834                         thislen = min_t(int, mtd->writesize - column, len - written);
1835                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1836
1837                         cond_resched();
1838
1839                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1840
1841                         /* Partial page write */
1842                         subpage = thislen < mtd->writesize;
1843                         if (subpage) {
1844                                 memset(this->page_buf, 0xff, mtd->writesize);
1845                                 memcpy(this->page_buf + column, buf, thislen);
1846                                 wbuf = this->page_buf;
1847                         }
1848
1849                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1850
1851                         if (oob) {
1852                                 oobbuf = this->oob_buf;
1853
1854                                 /* We send data to spare ram with oobsize
1855                                  * to prevent byte access */
1856                                 memset(oobbuf, 0xff, mtd->oobsize);
1857                                 if (ops->mode == MTD_OPS_AUTO_OOB)
1858                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1859                                 else
1860                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1861
1862                                 oobwritten += thisooblen;
1863                                 oob += thisooblen;
1864                                 oobcolumn = 0;
1865                         } else
1866                                 oobbuf = (u_char *) ffchars;
1867
1868                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1869                 } else
1870                         ONENAND_SET_NEXT_BUFFERRAM(this);
1871
1872                 /*
1873                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1874                  * write-while-program feature.
1875                  */
1876                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1877                         ONENAND_SET_PREV_BUFFERRAM(this);
1878
1879                         ret = this->wait(mtd, FL_WRITING);
1880
1881                         /* In partial page write we don't update bufferram */
1882                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1883                         if (ret) {
1884                                 written -= prevlen;
1885                                 printk(KERN_ERR "%s: write failed %d\n",
1886                                         __func__, ret);
1887                                 break;
1888                         }
1889
1890                         if (written == len) {
1891                                 /* Only check verify write turn on */
1892                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1893                                 if (ret)
1894                                         printk(KERN_ERR "%s: verify failed %d\n",
1895                                                 __func__, ret);
1896                                 break;
1897                         }
1898
1899                         ONENAND_SET_NEXT_BUFFERRAM(this);
1900                 }
1901
1902                 this->ongoing = 0;
1903                 cmd = ONENAND_CMD_PROG;
1904
1905                 /* Exclude 1st OTP and OTP blocks for cache program feature */
1906                 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1907                     likely(onenand_block(this, to) != 0) &&
1908                     ONENAND_IS_4KB_PAGE(this) &&
1909                     ((written + thislen) < len)) {
1910                         cmd = ONENAND_CMD_2X_CACHE_PROG;
1911                         this->ongoing = 1;
1912                 }
1913
1914                 this->command(mtd, cmd, to, mtd->writesize);
1915
1916                 /*
1917                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1918                  */
1919                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1920                         ret = this->wait(mtd, FL_WRITING);
1921
1922                         /* In partial page write we don't update bufferram */
1923                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1924                         if (ret) {
1925                                 printk(KERN_ERR "%s: write failed %d\n",
1926                                         __func__, ret);
1927                                 break;
1928                         }
1929
1930                         /* Only check verify write turn on */
1931                         ret = onenand_verify(mtd, buf, to, thislen);
1932                         if (ret) {
1933                                 printk(KERN_ERR "%s: verify failed %d\n",
1934                                         __func__, ret);
1935                                 break;
1936                         }
1937
1938                         written += thislen;
1939
1940                         if (written == len)
1941                                 break;
1942
1943                 } else
1944                         written += thislen;
1945
1946                 column = 0;
1947                 prev_subpage = subpage;
1948                 prev = to;
1949                 prevlen = thislen;
1950                 to += thislen;
1951                 buf += thislen;
1952                 first = 0;
1953         }
1954
1955         /* In error case, clear all bufferrams */
1956         if (written != len)
1957                 onenand_invalidate_bufferram(mtd, 0, -1);
1958
1959         ops->retlen = written;
1960         ops->oobretlen = oobwritten;
1961
1962         return ret;
1963 }
1964
1965
1966 /**
1967  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1968  * @param mtd           MTD device structure
1969  * @param to            offset to write to
1970  * @param len           number of bytes to write
1971  * @param retlen        pointer to variable to store the number of written bytes
1972  * @param buf           the data to write
1973  * @param mode          operation mode
1974  *
1975  * OneNAND write out-of-band
1976  */
1977 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1978                                     struct mtd_oob_ops *ops)
1979 {
1980         struct onenand_chip *this = mtd->priv;
1981         int column, ret = 0, oobsize;
1982         int written = 0, oobcmd;
1983         u_char *oobbuf;
1984         size_t len = ops->ooblen;
1985         const u_char *buf = ops->oobbuf;
1986         unsigned int mode = ops->mode;
1987
1988         to += ops->ooboffs;
1989
1990         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1991                         (int)len);
1992
1993         /* Initialize retlen, in case of early exit */
1994         ops->oobretlen = 0;
1995
1996         if (mode == MTD_OPS_AUTO_OOB)
1997                 oobsize = mtd->oobavail;
1998         else
1999                 oobsize = mtd->oobsize;
2000
2001         column = to & (mtd->oobsize - 1);
2002
2003         if (unlikely(column >= oobsize)) {
2004                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2005                         __func__);
2006                 return -EINVAL;
2007         }
2008
2009         /* For compatibility with NAND: Do not allow write past end of page */
2010         if (unlikely(column + len > oobsize)) {
2011                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2012                         __func__);
2013                 return -EINVAL;
2014         }
2015
2016         oobbuf = this->oob_buf;
2017
2018         oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2019
2020         /* Loop until all data write */
2021         while (written < len) {
2022                 int thislen = min_t(int, oobsize, len - written);
2023
2024                 cond_resched();
2025
2026                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2027
2028                 /* We send data to spare ram with oobsize
2029                  * to prevent byte access */
2030                 memset(oobbuf, 0xff, mtd->oobsize);
2031                 if (mode == MTD_OPS_AUTO_OOB)
2032                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2033                 else
2034                         memcpy(oobbuf + column, buf, thislen);
2035                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2036
2037                 if (ONENAND_IS_4KB_PAGE(this)) {
2038                         /* Set main area of DataRAM to 0xff*/
2039                         memset(this->page_buf, 0xff, mtd->writesize);
2040                         this->write_bufferram(mtd, ONENAND_DATARAM,
2041                                          this->page_buf, 0, mtd->writesize);
2042                 }
2043
2044                 this->command(mtd, oobcmd, to, mtd->oobsize);
2045
2046                 onenand_update_bufferram(mtd, to, 0);
2047                 if (ONENAND_IS_2PLANE(this)) {
2048                         ONENAND_SET_BUFFERRAM1(this);
2049                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2050                 }
2051
2052                 ret = this->wait(mtd, FL_WRITING);
2053                 if (ret) {
2054                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2055                         break;
2056                 }
2057
2058                 ret = onenand_verify_oob(mtd, oobbuf, to);
2059                 if (ret) {
2060                         printk(KERN_ERR "%s: verify failed %d\n",
2061                                 __func__, ret);
2062                         break;
2063                 }
2064
2065                 written += thislen;
2066                 if (written == len)
2067                         break;
2068
2069                 to += mtd->writesize;
2070                 buf += thislen;
2071                 column = 0;
2072         }
2073
2074         ops->oobretlen = written;
2075
2076         return ret;
2077 }
2078
2079 /**
2080  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2081  * @param mtd:          MTD device structure
2082  * @param to:           offset to write
2083  * @param ops:          oob operation description structure
2084  */
2085 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2086                              struct mtd_oob_ops *ops)
2087 {
2088         int ret;
2089
2090         switch (ops->mode) {
2091         case MTD_OPS_PLACE_OOB:
2092         case MTD_OPS_AUTO_OOB:
2093                 break;
2094         case MTD_OPS_RAW:
2095                 /* Not implemented yet */
2096         default:
2097                 return -EINVAL;
2098         }
2099
2100         onenand_get_device(mtd, FL_WRITING);
2101         if (ops->datbuf)
2102                 ret = onenand_write_ops_nolock(mtd, to, ops);
2103         else
2104                 ret = onenand_write_oob_nolock(mtd, to, ops);
2105         onenand_release_device(mtd);
2106
2107         return ret;
2108 }
2109
2110 /**
2111  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2112  * @param mtd           MTD device structure
2113  * @param ofs           offset from device start
2114  * @param allowbbt      1, if its allowed to access the bbt area
2115  *
2116  * Check, if the block is bad. Either by reading the bad block table or
2117  * calling of the scan function.
2118  */
2119 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2120 {
2121         struct onenand_chip *this = mtd->priv;
2122         struct bbm_info *bbm = this->bbm;
2123
2124         /* Return info from the table */
2125         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2126 }
2127
2128
2129 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2130                                            struct erase_info *instr)
2131 {
2132         struct onenand_chip *this = mtd->priv;
2133         loff_t addr = instr->addr;
2134         int len = instr->len;
2135         unsigned int block_size = (1 << this->erase_shift);
2136         int ret = 0;
2137
2138         while (len) {
2139                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2140                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2141                 if (ret) {
2142                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2143                                __func__, onenand_block(this, addr));
2144                         instr->fail_addr = addr;
2145                         return -1;
2146                 }
2147                 len -= block_size;
2148                 addr += block_size;
2149         }
2150         return 0;
2151 }
2152
2153 /**
2154  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2155  * @param mtd           MTD device structure
2156  * @param instr         erase instruction
2157  * @param region        erase region
2158  *
2159  * Erase one or more blocks up to 64 block at a time
2160  */
2161 static int onenand_multiblock_erase(struct mtd_info *mtd,
2162                                     struct erase_info *instr,
2163                                     unsigned int block_size)
2164 {
2165         struct onenand_chip *this = mtd->priv;
2166         loff_t addr = instr->addr;
2167         int len = instr->len;
2168         int eb_count = 0;
2169         int ret = 0;
2170         int bdry_block = 0;
2171
2172         if (ONENAND_IS_DDP(this)) {
2173                 loff_t bdry_addr = this->chipsize >> 1;
2174                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2175                         bdry_block = bdry_addr >> this->erase_shift;
2176         }
2177
2178         /* Pre-check bbs */
2179         while (len) {
2180                 /* Check if we have a bad block, we do not erase bad blocks */
2181                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2182                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2183                                "at addr 0x%012llx\n",
2184                                __func__, (unsigned long long) addr);
2185                         return -EIO;
2186                 }
2187                 len -= block_size;
2188                 addr += block_size;
2189         }
2190
2191         len = instr->len;
2192         addr = instr->addr;
2193
2194         /* loop over 64 eb batches */
2195         while (len) {
2196                 struct erase_info verify_instr = *instr;
2197                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2198
2199                 verify_instr.addr = addr;
2200                 verify_instr.len = 0;
2201
2202                 /* do not cross chip boundary */
2203                 if (bdry_block) {
2204                         int this_block = (addr >> this->erase_shift);
2205
2206                         if (this_block < bdry_block) {
2207                                 max_eb_count = min(max_eb_count,
2208                                                    (bdry_block - this_block));
2209                         }
2210                 }
2211
2212                 eb_count = 0;
2213
2214                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2215                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2216                                       addr, block_size);
2217                         onenand_invalidate_bufferram(mtd, addr, block_size);
2218
2219                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2220                         if (ret) {
2221                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2222                                        "block %d\n", __func__,
2223                                        onenand_block(this, addr));
2224                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2225                                 return -EIO;
2226                         }
2227
2228                         len -= block_size;
2229                         addr += block_size;
2230                         eb_count++;
2231                 }
2232
2233                 /* last block of 64-eb series */
2234                 cond_resched();
2235                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2236                 onenand_invalidate_bufferram(mtd, addr, block_size);
2237
2238                 ret = this->wait(mtd, FL_ERASING);
2239                 /* Check if it is write protected */
2240                 if (ret) {
2241                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2242                                __func__, onenand_block(this, addr));
2243                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2244                         return -EIO;
2245                 }
2246
2247                 len -= block_size;
2248                 addr += block_size;
2249                 eb_count++;
2250
2251                 /* verify */
2252                 verify_instr.len = eb_count * block_size;
2253                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2254                         instr->fail_addr = verify_instr.fail_addr;
2255                         return -EIO;
2256                 }
2257
2258         }
2259         return 0;
2260 }
2261
2262
2263 /**
2264  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2265  * @param mtd           MTD device structure
2266  * @param instr         erase instruction
2267  * @param region        erase region
2268  * @param block_size    erase block size
2269  *
2270  * Erase one or more blocks one block at a time
2271  */
2272 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2273                                         struct erase_info *instr,
2274                                         struct mtd_erase_region_info *region,
2275                                         unsigned int block_size)
2276 {
2277         struct onenand_chip *this = mtd->priv;
2278         loff_t addr = instr->addr;
2279         int len = instr->len;
2280         loff_t region_end = 0;
2281         int ret = 0;
2282
2283         if (region) {
2284                 /* region is set for Flex-OneNAND */
2285                 region_end = region->offset + region->erasesize * region->numblocks;
2286         }
2287
2288         /* Loop through the blocks */
2289         while (len) {
2290                 cond_resched();
2291
2292                 /* Check if we have a bad block, we do not erase bad blocks */
2293                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2294                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2295                                         "at addr 0x%012llx\n",
2296                                         __func__, (unsigned long long) addr);
2297                         return -EIO;
2298                 }
2299
2300                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2301
2302                 onenand_invalidate_bufferram(mtd, addr, block_size);
2303
2304                 ret = this->wait(mtd, FL_ERASING);
2305                 /* Check, if it is write protected */
2306                 if (ret) {
2307                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2308                                 __func__, onenand_block(this, addr));
2309                         instr->fail_addr = addr;
2310                         return -EIO;
2311                 }
2312
2313                 len -= block_size;
2314                 addr += block_size;
2315
2316                 if (region && addr == region_end) {
2317                         if (!len)
2318                                 break;
2319                         region++;
2320
2321                         block_size = region->erasesize;
2322                         region_end = region->offset + region->erasesize * region->numblocks;
2323
2324                         if (len & (block_size - 1)) {
2325                                 /* FIXME: This should be handled at MTD partitioning level. */
2326                                 printk(KERN_ERR "%s: Unaligned address\n",
2327                                         __func__);
2328                                 return -EIO;
2329                         }
2330                 }
2331         }
2332         return 0;
2333 }
2334
2335 /**
2336  * onenand_erase - [MTD Interface] erase block(s)
2337  * @param mtd           MTD device structure
2338  * @param instr         erase instruction
2339  *
2340  * Erase one or more blocks
2341  */
2342 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2343 {
2344         struct onenand_chip *this = mtd->priv;
2345         unsigned int block_size;
2346         loff_t addr = instr->addr;
2347         loff_t len = instr->len;
2348         int ret = 0;
2349         struct mtd_erase_region_info *region = NULL;
2350         loff_t region_offset = 0;
2351
2352         pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2353                         (unsigned long long)instr->addr,
2354                         (unsigned long long)instr->len);
2355
2356         if (FLEXONENAND(this)) {
2357                 /* Find the eraseregion of this address */
2358                 int i = flexonenand_region(mtd, addr);
2359
2360                 region = &mtd->eraseregions[i];
2361                 block_size = region->erasesize;
2362
2363                 /* Start address within region must align on block boundary.
2364                  * Erase region's start offset is always block start address.
2365                  */
2366                 region_offset = region->offset;
2367         } else
2368                 block_size = 1 << this->erase_shift;
2369
2370         /* Start address must align on block boundary */
2371         if (unlikely((addr - region_offset) & (block_size - 1))) {
2372                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2373                 return -EINVAL;
2374         }
2375
2376         /* Length must align on block boundary */
2377         if (unlikely(len & (block_size - 1))) {
2378                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2379                 return -EINVAL;
2380         }
2381
2382         /* Grab the lock and see if the device is available */
2383         onenand_get_device(mtd, FL_ERASING);
2384
2385         if (ONENAND_IS_4KB_PAGE(this) || region ||
2386             instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2387                 /* region is set for Flex-OneNAND (no mb erase) */
2388                 ret = onenand_block_by_block_erase(mtd, instr,
2389                                                    region, block_size);
2390         } else {
2391                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2392         }
2393
2394         /* Deselect and wake up anyone waiting on the device */
2395         onenand_release_device(mtd);
2396
2397         return ret;
2398 }
2399
2400 /**
2401  * onenand_sync - [MTD Interface] sync
2402  * @param mtd           MTD device structure
2403  *
2404  * Sync is actually a wait for chip ready function
2405  */
2406 static void onenand_sync(struct mtd_info *mtd)
2407 {
2408         pr_debug("%s: called\n", __func__);
2409
2410         /* Grab the lock and see if the device is available */
2411         onenand_get_device(mtd, FL_SYNCING);
2412
2413         /* Release it and go back */
2414         onenand_release_device(mtd);
2415 }
2416
2417 /**
2418  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2419  * @param mtd           MTD device structure
2420  * @param ofs           offset relative to mtd start
2421  *
2422  * Check whether the block is bad
2423  */
2424 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2425 {
2426         int ret;
2427
2428         onenand_get_device(mtd, FL_READING);
2429         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2430         onenand_release_device(mtd);
2431         return ret;
2432 }
2433
2434 /**
2435  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2436  * @param mtd           MTD device structure
2437  * @param ofs           offset from device start
2438  *
2439  * This is the default implementation, which can be overridden by
2440  * a hardware specific driver.
2441  */
2442 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2443 {
2444         struct onenand_chip *this = mtd->priv;
2445         struct bbm_info *bbm = this->bbm;
2446         u_char buf[2] = {0, 0};
2447         struct mtd_oob_ops ops = {
2448                 .mode = MTD_OPS_PLACE_OOB,
2449                 .ooblen = 2,
2450                 .oobbuf = buf,
2451                 .ooboffs = 0,
2452         };
2453         int block;
2454
2455         /* Get block number */
2456         block = onenand_block(this, ofs);
2457         if (bbm->bbt)
2458                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2459
2460         /* We write two bytes, so we don't have to mess with 16-bit access */
2461         ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2462         /* FIXME : What to do when marking SLC block in partition
2463          *         with MLC erasesize? For now, it is not advisable to
2464          *         create partitions containing both SLC and MLC regions.
2465          */
2466         return onenand_write_oob_nolock(mtd, ofs, &ops);
2467 }
2468
2469 /**
2470  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2471  * @param mtd           MTD device structure
2472  * @param ofs           offset relative to mtd start
2473  *
2474  * Mark the block as bad
2475  */
2476 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2477 {
2478         struct onenand_chip *this = mtd->priv;
2479         int ret;
2480
2481         ret = onenand_block_isbad(mtd, ofs);
2482         if (ret) {
2483                 /* If it was bad already, return success and do nothing */
2484                 if (ret > 0)
2485                         return 0;
2486                 return ret;
2487         }
2488
2489         onenand_get_device(mtd, FL_WRITING);
2490         ret = this->block_markbad(mtd, ofs);
2491         onenand_release_device(mtd);
2492         return ret;
2493 }
2494
2495 /**
2496  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2497  * @param mtd           MTD device structure
2498  * @param ofs           offset relative to mtd start
2499  * @param len           number of bytes to lock or unlock
2500  * @param cmd           lock or unlock command
2501  *
2502  * Lock or unlock one or more blocks
2503  */
2504 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2505 {
2506         struct onenand_chip *this = mtd->priv;
2507         int start, end, block, value, status;
2508         int wp_status_mask;
2509
2510         start = onenand_block(this, ofs);
2511         end = onenand_block(this, ofs + len) - 1;
2512
2513         if (cmd == ONENAND_CMD_LOCK)
2514                 wp_status_mask = ONENAND_WP_LS;
2515         else
2516                 wp_status_mask = ONENAND_WP_US;
2517
2518         /* Continuous lock scheme */
2519         if (this->options & ONENAND_HAS_CONT_LOCK) {
2520                 /* Set start block address */
2521                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2522                 /* Set end block address */
2523                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2524                 /* Write lock command */
2525                 this->command(mtd, cmd, 0, 0);
2526
2527                 /* There's no return value */
2528                 this->wait(mtd, FL_LOCKING);
2529
2530                 /* Sanity check */
2531                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2532                     & ONENAND_CTRL_ONGO)
2533                         continue;
2534
2535                 /* Check lock status */
2536                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2537                 if (!(status & wp_status_mask))
2538                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2539                                 __func__, status);
2540
2541                 return 0;
2542         }
2543
2544         /* Block lock scheme */
2545         for (block = start; block < end + 1; block++) {
2546                 /* Set block address */
2547                 value = onenand_block_address(this, block);
2548                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2549                 /* Select DataRAM for DDP */
2550                 value = onenand_bufferram_address(this, block);
2551                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2552                 /* Set start block address */
2553                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2554                 /* Write lock command */
2555                 this->command(mtd, cmd, 0, 0);
2556
2557                 /* There's no return value */
2558                 this->wait(mtd, FL_LOCKING);
2559
2560                 /* Sanity check */
2561                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2562                     & ONENAND_CTRL_ONGO)
2563                         continue;
2564
2565                 /* Check lock status */
2566                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2567                 if (!(status & wp_status_mask))
2568                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2569                                 __func__, block, status);
2570         }
2571
2572         return 0;
2573 }
2574
2575 /**
2576  * onenand_lock - [MTD Interface] Lock block(s)
2577  * @param mtd           MTD device structure
2578  * @param ofs           offset relative to mtd start
2579  * @param len           number of bytes to unlock
2580  *
2581  * Lock one or more blocks
2582  */
2583 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2584 {
2585         int ret;
2586
2587         onenand_get_device(mtd, FL_LOCKING);
2588         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2589         onenand_release_device(mtd);
2590         return ret;
2591 }
2592
2593 /**
2594  * onenand_unlock - [MTD Interface] Unlock block(s)
2595  * @param mtd           MTD device structure
2596  * @param ofs           offset relative to mtd start
2597  * @param len           number of bytes to unlock
2598  *
2599  * Unlock one or more blocks
2600  */
2601 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2602 {
2603         int ret;
2604
2605         onenand_get_device(mtd, FL_LOCKING);
2606         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2607         onenand_release_device(mtd);
2608         return ret;
2609 }
2610
2611 /**
2612  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2613  * @param this          onenand chip data structure
2614  *
2615  * Check lock status
2616  */
2617 static int onenand_check_lock_status(struct onenand_chip *this)
2618 {
2619         unsigned int value, block, status;
2620         unsigned int end;
2621
2622         end = this->chipsize >> this->erase_shift;
2623         for (block = 0; block < end; block++) {
2624                 /* Set block address */
2625                 value = onenand_block_address(this, block);
2626                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2627                 /* Select DataRAM for DDP */
2628                 value = onenand_bufferram_address(this, block);
2629                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2630                 /* Set start block address */
2631                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2632
2633                 /* Check lock status */
2634                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2635                 if (!(status & ONENAND_WP_US)) {
2636                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2637                                 __func__, block, status);
2638                         return 0;
2639                 }
2640         }
2641
2642         return 1;
2643 }
2644
2645 /**
2646  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2647  * @param mtd           MTD device structure
2648  *
2649  * Unlock all blocks
2650  */
2651 static void onenand_unlock_all(struct mtd_info *mtd)
2652 {
2653         struct onenand_chip *this = mtd->priv;
2654         loff_t ofs = 0;
2655         loff_t len = mtd->size;
2656
2657         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2658                 /* Set start block address */
2659                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2660                 /* Write unlock command */
2661                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2662
2663                 /* There's no return value */
2664                 this->wait(mtd, FL_LOCKING);
2665
2666                 /* Sanity check */
2667                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2668                     & ONENAND_CTRL_ONGO)
2669                         continue;
2670
2671                 /* Don't check lock status */
2672                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2673                         return;
2674
2675                 /* Check lock status */
2676                 if (onenand_check_lock_status(this))
2677                         return;
2678
2679                 /* Workaround for all block unlock in DDP */
2680                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2681                         /* All blocks on another chip */
2682                         ofs = this->chipsize >> 1;
2683                         len = this->chipsize >> 1;
2684                 }
2685         }
2686
2687         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2688 }
2689
2690 #ifdef CONFIG_MTD_ONENAND_OTP
2691
2692 /**
2693  * onenand_otp_command - Send OTP specific command to OneNAND device
2694  * @param mtd    MTD device structure
2695  * @param cmd    the command to be sent
2696  * @param addr   offset to read from or write to
2697  * @param len    number of bytes to read or write
2698  */
2699 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2700                                 size_t len)
2701 {
2702         struct onenand_chip *this = mtd->priv;
2703         int value, block, page;
2704
2705         /* Address translation */
2706         switch (cmd) {
2707         case ONENAND_CMD_OTP_ACCESS:
2708                 block = (int) (addr >> this->erase_shift);
2709                 page = -1;
2710                 break;
2711
2712         default:
2713                 block = (int) (addr >> this->erase_shift);
2714                 page = (int) (addr >> this->page_shift);
2715
2716                 if (ONENAND_IS_2PLANE(this)) {
2717                         /* Make the even block number */
2718                         block &= ~1;
2719                         /* Is it the odd plane? */
2720                         if (addr & this->writesize)
2721                                 block++;
2722                         page >>= 1;
2723                 }
2724                 page &= this->page_mask;
2725                 break;
2726         }
2727
2728         if (block != -1) {
2729                 /* Write 'DFS, FBA' of Flash */
2730                 value = onenand_block_address(this, block);
2731                 this->write_word(value, this->base +
2732                                 ONENAND_REG_START_ADDRESS1);
2733         }
2734
2735         if (page != -1) {
2736                 /* Now we use page size operation */
2737                 int sectors = 4, count = 4;
2738                 int dataram;
2739
2740                 switch (cmd) {
2741                 default:
2742                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2743                                 cmd = ONENAND_CMD_2X_PROG;
2744                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2745                         break;
2746                 }
2747
2748                 /* Write 'FPA, FSA' of Flash */
2749                 value = onenand_page_address(page, sectors);
2750                 this->write_word(value, this->base +
2751                                 ONENAND_REG_START_ADDRESS8);
2752
2753                 /* Write 'BSA, BSC' of DataRAM */
2754                 value = onenand_buffer_address(dataram, sectors, count);
2755                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2756         }
2757
2758         /* Interrupt clear */
2759         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2760
2761         /* Write command */
2762         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2763
2764         return 0;
2765 }
2766
2767 /**
2768  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2769  * @param mtd           MTD device structure
2770  * @param to            offset to write to
2771  * @param len           number of bytes to write
2772  * @param retlen        pointer to variable to store the number of written bytes
2773  * @param buf           the data to write
2774  *
2775  * OneNAND write out-of-band only for OTP
2776  */
2777 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2778                                     struct mtd_oob_ops *ops)
2779 {
2780         struct onenand_chip *this = mtd->priv;
2781         int column, ret = 0, oobsize;
2782         int written = 0;
2783         u_char *oobbuf;
2784         size_t len = ops->ooblen;
2785         const u_char *buf = ops->oobbuf;
2786         int block, value, status;
2787
2788         to += ops->ooboffs;
2789
2790         /* Initialize retlen, in case of early exit */
2791         ops->oobretlen = 0;
2792
2793         oobsize = mtd->oobsize;
2794
2795         column = to & (mtd->oobsize - 1);
2796
2797         oobbuf = this->oob_buf;
2798
2799         /* Loop until all data write */
2800         while (written < len) {
2801                 int thislen = min_t(int, oobsize, len - written);
2802
2803                 cond_resched();
2804
2805                 block = (int) (to >> this->erase_shift);
2806                 /*
2807                  * Write 'DFS, FBA' of Flash
2808                  * Add: F100h DQ=DFS, FBA
2809                  */
2810
2811                 value = onenand_block_address(this, block);
2812                 this->write_word(value, this->base +
2813                                 ONENAND_REG_START_ADDRESS1);
2814
2815                 /*
2816                  * Select DataRAM for DDP
2817                  * Add: F101h DQ=DBS
2818                  */
2819
2820                 value = onenand_bufferram_address(this, block);
2821                 this->write_word(value, this->base +
2822                                 ONENAND_REG_START_ADDRESS2);
2823                 ONENAND_SET_NEXT_BUFFERRAM(this);
2824
2825                 /*
2826                  * Enter OTP access mode
2827                  */
2828                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2829                 this->wait(mtd, FL_OTPING);
2830
2831                 /* We send data to spare ram with oobsize
2832                  * to prevent byte access */
2833                 memcpy(oobbuf + column, buf, thislen);
2834
2835                 /*
2836                  * Write Data into DataRAM
2837                  * Add: 8th Word
2838                  * in sector0/spare/page0
2839                  * DQ=XXFCh
2840                  */
2841                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2842                                         oobbuf, 0, mtd->oobsize);
2843
2844                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2845                 onenand_update_bufferram(mtd, to, 0);
2846                 if (ONENAND_IS_2PLANE(this)) {
2847                         ONENAND_SET_BUFFERRAM1(this);
2848                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2849                 }
2850
2851                 ret = this->wait(mtd, FL_WRITING);
2852                 if (ret) {
2853                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2854                         break;
2855                 }
2856
2857                 /* Exit OTP access mode */
2858                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2859                 this->wait(mtd, FL_RESETING);
2860
2861                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2862                 status &= 0x60;
2863
2864                 if (status == 0x60) {
2865                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2866                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2867                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2868                 } else if (status == 0x20) {
2869                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2870                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2871                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2872                 } else if (status == 0x40) {
2873                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2874                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2875                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2876                 } else {
2877                         printk(KERN_DEBUG "Reboot to check\n");
2878                 }
2879
2880                 written += thislen;
2881                 if (written == len)
2882                         break;
2883
2884                 to += mtd->writesize;
2885                 buf += thislen;
2886                 column = 0;
2887         }
2888
2889         ops->oobretlen = written;
2890
2891         return ret;
2892 }
2893
2894 /* Internal OTP operation */
2895 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2896                 size_t *retlen, u_char *buf);
2897
2898 /**
2899  * do_otp_read - [DEFAULT] Read OTP block area
2900  * @param mtd           MTD device structure
2901  * @param from          The offset to read
2902  * @param len           number of bytes to read
2903  * @param retlen        pointer to variable to store the number of readbytes
2904  * @param buf           the databuffer to put/get data
2905  *
2906  * Read OTP block area.
2907  */
2908 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2909                 size_t *retlen, u_char *buf)
2910 {
2911         struct onenand_chip *this = mtd->priv;
2912         struct mtd_oob_ops ops = {
2913                 .len    = len,
2914                 .ooblen = 0,
2915                 .datbuf = buf,
2916                 .oobbuf = NULL,
2917         };
2918         int ret;
2919
2920         /* Enter OTP access mode */
2921         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2922         this->wait(mtd, FL_OTPING);
2923
2924         ret = ONENAND_IS_4KB_PAGE(this) ?
2925                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2926                 onenand_read_ops_nolock(mtd, from, &ops);
2927
2928         /* Exit OTP access mode */
2929         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2930         this->wait(mtd, FL_RESETING);
2931
2932         return ret;
2933 }
2934
2935 /**
2936  * do_otp_write - [DEFAULT] Write OTP block area
2937  * @param mtd           MTD device structure
2938  * @param to            The offset to write
2939  * @param len           number of bytes to write
2940  * @param retlen        pointer to variable to store the number of write bytes
2941  * @param buf           the databuffer to put/get data
2942  *
2943  * Write OTP block area.
2944  */
2945 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2946                 size_t *retlen, u_char *buf)
2947 {
2948         struct onenand_chip *this = mtd->priv;
2949         unsigned char *pbuf = buf;
2950         int ret;
2951         struct mtd_oob_ops ops;
2952
2953         /* Force buffer page aligned */
2954         if (len < mtd->writesize) {
2955                 memcpy(this->page_buf, buf, len);
2956                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2957                 pbuf = this->page_buf;
2958                 len = mtd->writesize;
2959         }
2960
2961         /* Enter OTP access mode */
2962         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2963         this->wait(mtd, FL_OTPING);
2964
2965         ops.len = len;
2966         ops.ooblen = 0;
2967         ops.datbuf = pbuf;
2968         ops.oobbuf = NULL;
2969         ret = onenand_write_ops_nolock(mtd, to, &ops);
2970         *retlen = ops.retlen;
2971
2972         /* Exit OTP access mode */
2973         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2974         this->wait(mtd, FL_RESETING);
2975
2976         return ret;
2977 }
2978
2979 /**
2980  * do_otp_lock - [DEFAULT] Lock OTP block area
2981  * @param mtd           MTD device structure
2982  * @param from          The offset to lock
2983  * @param len           number of bytes to lock
2984  * @param retlen        pointer to variable to store the number of lock bytes
2985  * @param buf           the databuffer to put/get data
2986  *
2987  * Lock OTP block area.
2988  */
2989 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2990                 size_t *retlen, u_char *buf)
2991 {
2992         struct onenand_chip *this = mtd->priv;
2993         struct mtd_oob_ops ops;
2994         int ret;
2995
2996         if (FLEXONENAND(this)) {
2997
2998                 /* Enter OTP access mode */
2999                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3000                 this->wait(mtd, FL_OTPING);
3001                 /*
3002                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3003                  * main area of page 49.
3004                  */
3005                 ops.len = mtd->writesize;
3006                 ops.ooblen = 0;
3007                 ops.datbuf = buf;
3008                 ops.oobbuf = NULL;
3009                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3010                 *retlen = ops.retlen;
3011
3012                 /* Exit OTP access mode */
3013                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3014                 this->wait(mtd, FL_RESETING);
3015         } else {
3016                 ops.mode = MTD_OPS_PLACE_OOB;
3017                 ops.ooblen = len;
3018                 ops.oobbuf = buf;
3019                 ops.ooboffs = 0;
3020                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3021                 *retlen = ops.oobretlen;
3022         }
3023
3024         return ret;
3025 }
3026
3027 /**
3028  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3029  * @param mtd           MTD device structure
3030  * @param from          The offset to read/write
3031  * @param len           number of bytes to read/write
3032  * @param retlen        pointer to variable to store the number of read bytes
3033  * @param buf           the databuffer to put/get data
3034  * @param action        do given action
3035  * @param mode          specify user and factory
3036  *
3037  * Handle OTP operation.
3038  */
3039 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3040                         size_t *retlen, u_char *buf,
3041                         otp_op_t action, int mode)
3042 {
3043         struct onenand_chip *this = mtd->priv;
3044         int otp_pages;
3045         int density;
3046         int ret = 0;
3047
3048         *retlen = 0;
3049
3050         density = onenand_get_density(this->device_id);
3051         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3052                 otp_pages = 20;
3053         else
3054                 otp_pages = 50;
3055
3056         if (mode == MTD_OTP_FACTORY) {
3057                 from += mtd->writesize * otp_pages;
3058                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3059         }
3060
3061         /* Check User/Factory boundary */
3062         if (mode == MTD_OTP_USER) {
3063                 if (mtd->writesize * otp_pages < from + len)
3064                         return 0;
3065         } else {
3066                 if (mtd->writesize * otp_pages <  len)
3067                         return 0;
3068         }
3069
3070         onenand_get_device(mtd, FL_OTPING);
3071         while (len > 0 && otp_pages > 0) {
3072                 if (!action) {  /* OTP Info functions */
3073                         struct otp_info *otpinfo;
3074
3075                         len -= sizeof(struct otp_info);
3076                         if (len <= 0) {
3077                                 ret = -ENOSPC;
3078                                 break;
3079                         }
3080
3081                         otpinfo = (struct otp_info *) buf;
3082                         otpinfo->start = from;
3083                         otpinfo->length = mtd->writesize;
3084                         otpinfo->locked = 0;
3085
3086                         from += mtd->writesize;
3087                         buf += sizeof(struct otp_info);
3088                         *retlen += sizeof(struct otp_info);
3089                 } else {
3090                         size_t tmp_retlen;
3091
3092                         ret = action(mtd, from, len, &tmp_retlen, buf);
3093                         if (ret)
3094                                 break;
3095
3096                         buf += tmp_retlen;
3097                         len -= tmp_retlen;
3098                         *retlen += tmp_retlen;
3099
3100                 }
3101                 otp_pages--;
3102         }
3103         onenand_release_device(mtd);
3104
3105         return ret;
3106 }
3107
3108 /**
3109  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3110  * @param mtd           MTD device structure
3111  * @param len           number of bytes to read
3112  * @param retlen        pointer to variable to store the number of read bytes
3113  * @param buf           the databuffer to put/get data
3114  *
3115  * Read factory OTP info.
3116  */
3117 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3118                                       size_t *retlen, struct otp_info *buf)
3119 {
3120         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3121                                 MTD_OTP_FACTORY);
3122 }
3123
3124 /**
3125  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3126  * @param mtd           MTD device structure
3127  * @param from          The offset to read
3128  * @param len           number of bytes to read
3129  * @param retlen        pointer to variable to store the number of read bytes
3130  * @param buf           the databuffer to put/get data
3131  *
3132  * Read factory OTP area.
3133  */
3134 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3135                         size_t len, size_t *retlen, u_char *buf)
3136 {
3137         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3138 }
3139
3140 /**
3141  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3142  * @param mtd           MTD device structure
3143  * @param retlen        pointer to variable to store the number of read bytes
3144  * @param len           number of bytes to read
3145  * @param buf           the databuffer to put/get data
3146  *
3147  * Read user OTP info.
3148  */
3149 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3150                                       size_t *retlen, struct otp_info *buf)
3151 {
3152         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3153                                 MTD_OTP_USER);
3154 }
3155
3156 /**
3157  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3158  * @param mtd           MTD device structure
3159  * @param from          The offset to read
3160  * @param len           number of bytes to read
3161  * @param retlen        pointer to variable to store the number of read bytes
3162  * @param buf           the databuffer to put/get data
3163  *
3164  * Read user OTP area.
3165  */
3166 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3167                         size_t len, size_t *retlen, u_char *buf)
3168 {
3169         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3170 }
3171
3172 /**
3173  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3174  * @param mtd           MTD device structure
3175  * @param from          The offset to write
3176  * @param len           number of bytes to write
3177  * @param retlen        pointer to variable to store the number of write bytes
3178  * @param buf           the databuffer to put/get data
3179  *
3180  * Write user OTP area.
3181  */
3182 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3183                         size_t len, size_t *retlen, u_char *buf)
3184 {
3185         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3186 }
3187
3188 /**
3189  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3190  * @param mtd           MTD device structure
3191  * @param from          The offset to lock
3192  * @param len           number of bytes to unlock
3193  *
3194  * Write lock mark on spare area in page 0 in OTP block
3195  */
3196 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3197                         size_t len)
3198 {
3199         struct onenand_chip *this = mtd->priv;
3200         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3201         size_t retlen;
3202         int ret;
3203         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3204
3205         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3206                                                  : mtd->oobsize);
3207         /*
3208          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3209          * We write 16 bytes spare area instead of 2 bytes.
3210          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3211          * main area of page 49.
3212          */
3213
3214         from = 0;
3215         len = FLEXONENAND(this) ? mtd->writesize : 16;
3216
3217         /*
3218          * Note: OTP lock operation
3219          *       OTP block : 0xXXFC                     XX 1111 1100
3220          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3221          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3222          */
3223         if (FLEXONENAND(this))
3224                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3225
3226         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3227         if (otp == 1)
3228                 buf[otp_lock_offset] = 0xFC;
3229         else if (otp == 2)
3230                 buf[otp_lock_offset] = 0xF3;
3231         else if (otp == 3)
3232                 buf[otp_lock_offset] = 0xF0;
3233         else if (otp != 0)
3234                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3235
3236         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3237
3238         return ret ? : retlen;
3239 }
3240
3241 #endif  /* CONFIG_MTD_ONENAND_OTP */
3242
3243 /**
3244  * onenand_check_features - Check and set OneNAND features
3245  * @param mtd           MTD data structure
3246  *
3247  * Check and set OneNAND features
3248  * - lock scheme
3249  * - two plane
3250  */
3251 static void onenand_check_features(struct mtd_info *mtd)
3252 {
3253         struct onenand_chip *this = mtd->priv;
3254         unsigned int density, process, numbufs;
3255
3256         /* Lock scheme depends on density and process */
3257         density = onenand_get_density(this->device_id);
3258         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3259         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3260
3261         /* Lock scheme */
3262         switch (density) {
3263         case ONENAND_DEVICE_DENSITY_8Gb:
3264                 this->options |= ONENAND_HAS_NOP_1;
3265         case ONENAND_DEVICE_DENSITY_4Gb:
3266                 if (ONENAND_IS_DDP(this))
3267                         this->options |= ONENAND_HAS_2PLANE;
3268                 else if (numbufs == 1) {
3269                         this->options |= ONENAND_HAS_4KB_PAGE;
3270                         this->options |= ONENAND_HAS_CACHE_PROGRAM;
3271                         /*
3272                          * There are two different 4KiB pagesize chips
3273                          * and no way to detect it by H/W config values.
3274                          *
3275                          * To detect the correct NOP for each chips,
3276                          * It should check the version ID as workaround.
3277                          *
3278                          * Now it has as following
3279                          * KFM4G16Q4M has NOP 4 with version ID 0x0131
3280                          * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3281                          */
3282                         if ((this->version_id & 0xf) == 0xe)
3283                                 this->options |= ONENAND_HAS_NOP_1;
3284                 }
3285                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3286                 break;
3287
3288         case ONENAND_DEVICE_DENSITY_2Gb:
3289                 /* 2Gb DDP does not have 2 plane */
3290                 if (!ONENAND_IS_DDP(this))
3291                         this->options |= ONENAND_HAS_2PLANE;
3292                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3293                 break;
3294
3295         case ONENAND_DEVICE_DENSITY_1Gb:
3296                 /* A-Die has all block unlock */
3297                 if (process)
3298                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3299                 break;
3300
3301         default:
3302                 /* Some OneNAND has continuous lock scheme */
3303                 if (!process)
3304                         this->options |= ONENAND_HAS_CONT_LOCK;
3305                 break;
3306         }
3307
3308         /* The MLC has 4KiB pagesize. */
3309         if (ONENAND_IS_MLC(this))
3310                 this->options |= ONENAND_HAS_4KB_PAGE;
3311
3312         if (ONENAND_IS_4KB_PAGE(this))
3313                 this->options &= ~ONENAND_HAS_2PLANE;
3314
3315         if (FLEXONENAND(this)) {
3316                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3317                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3318         }
3319
3320         if (this->options & ONENAND_HAS_CONT_LOCK)
3321                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3322         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3323                 printk(KERN_DEBUG "Chip support all block unlock\n");
3324         if (this->options & ONENAND_HAS_2PLANE)
3325                 printk(KERN_DEBUG "Chip has 2 plane\n");
3326         if (this->options & ONENAND_HAS_4KB_PAGE)
3327                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3328         if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3329                 printk(KERN_DEBUG "Chip has cache program feature\n");
3330 }
3331
3332 /**
3333  * onenand_print_device_info - Print device & version ID
3334  * @param device        device ID
3335  * @param version       version ID
3336  *
3337  * Print device & version ID
3338  */
3339 static void onenand_print_device_info(int device, int version)
3340 {
3341         int vcc, demuxed, ddp, density, flexonenand;
3342
3343         vcc = device & ONENAND_DEVICE_VCC_MASK;
3344         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3345         ddp = device & ONENAND_DEVICE_IS_DDP;
3346         density = onenand_get_density(device);
3347         flexonenand = device & DEVICE_IS_FLEXONENAND;
3348         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3349                 demuxed ? "" : "Muxed ",
3350                 flexonenand ? "Flex-" : "",
3351                 ddp ? "(DDP)" : "",
3352                 (16 << density),
3353                 vcc ? "2.65/3.3" : "1.8",
3354                 device);
3355         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3356 }
3357
3358 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3359         {ONENAND_MFR_SAMSUNG, "Samsung"},
3360         {ONENAND_MFR_NUMONYX, "Numonyx"},
3361 };
3362
3363 /**
3364  * onenand_check_maf - Check manufacturer ID
3365  * @param manuf         manufacturer ID
3366  *
3367  * Check manufacturer ID
3368  */
3369 static int onenand_check_maf(int manuf)
3370 {
3371         int size = ARRAY_SIZE(onenand_manuf_ids);
3372         char *name;
3373         int i;
3374
3375         for (i = 0; i < size; i++)
3376                 if (manuf == onenand_manuf_ids[i].id)
3377                         break;
3378
3379         if (i < size)
3380                 name = onenand_manuf_ids[i].name;
3381         else
3382                 name = "Unknown";
3383
3384         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3385
3386         return (i == size);
3387 }
3388
3389 /**
3390 * flexonenand_get_boundary      - Reads the SLC boundary
3391 * @param onenand_info           - onenand info structure
3392 **/
3393 static int flexonenand_get_boundary(struct mtd_info *mtd)
3394 {
3395         struct onenand_chip *this = mtd->priv;
3396         unsigned die, bdry;
3397         int syscfg, locked;
3398
3399         /* Disable ECC */
3400         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3401         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3402
3403         for (die = 0; die < this->dies; die++) {
3404                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3405                 this->wait(mtd, FL_SYNCING);
3406
3407                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3408                 this->wait(mtd, FL_READING);
3409
3410                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3411                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3412                         locked = 0;
3413                 else
3414                         locked = 1;
3415                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3416
3417                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3418                 this->wait(mtd, FL_RESETING);
3419
3420                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3421                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3422         }
3423
3424         /* Enable ECC */
3425         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3426         return 0;
3427 }
3428
3429 /**
3430  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3431  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3432  * @param mtd           - MTD device structure
3433  */
3434 static void flexonenand_get_size(struct mtd_info *mtd)
3435 {
3436         struct onenand_chip *this = mtd->priv;
3437         int die, i, eraseshift, density;
3438         int blksperdie, maxbdry;
3439         loff_t ofs;
3440
3441         density = onenand_get_density(this->device_id);
3442         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3443         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3444         maxbdry = blksperdie - 1;
3445         eraseshift = this->erase_shift - 1;
3446
3447         mtd->numeraseregions = this->dies << 1;
3448
3449         /* This fills up the device boundary */
3450         flexonenand_get_boundary(mtd);
3451         die = ofs = 0;
3452         i = -1;
3453         for (; die < this->dies; die++) {
3454                 if (!die || this->boundary[die-1] != maxbdry) {
3455                         i++;
3456                         mtd->eraseregions[i].offset = ofs;
3457                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3458                         mtd->eraseregions[i].numblocks =
3459                                                         this->boundary[die] + 1;
3460                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3461                         eraseshift++;
3462                 } else {
3463                         mtd->numeraseregions -= 1;
3464                         mtd->eraseregions[i].numblocks +=
3465                                                         this->boundary[die] + 1;
3466                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3467                 }
3468                 if (this->boundary[die] != maxbdry) {
3469                         i++;
3470                         mtd->eraseregions[i].offset = ofs;
3471                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3472                         mtd->eraseregions[i].numblocks = maxbdry ^
3473                                                          this->boundary[die];
3474                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3475                         eraseshift--;
3476                 } else
3477                         mtd->numeraseregions -= 1;
3478         }
3479
3480         /* Expose MLC erase size except when all blocks are SLC */
3481         mtd->erasesize = 1 << this->erase_shift;
3482         if (mtd->numeraseregions == 1)
3483                 mtd->erasesize >>= 1;
3484
3485         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3486         for (i = 0; i < mtd->numeraseregions; i++)
3487                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3488                         " numblocks: %04u]\n",
3489                         (unsigned int) mtd->eraseregions[i].offset,
3490                         mtd->eraseregions[i].erasesize,
3491                         mtd->eraseregions[i].numblocks);
3492
3493         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3494                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3495                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3496                                                  << (this->erase_shift - 1);
3497                 mtd->size += this->diesize[die];
3498         }
3499 }
3500
3501 /**
3502  * flexonenand_check_blocks_erased - Check if blocks are erased
3503  * @param mtd_info      - mtd info structure
3504  * @param start         - first erase block to check
3505  * @param end           - last erase block to check
3506  *
3507  * Converting an unerased block from MLC to SLC
3508  * causes byte values to change. Since both data and its ECC
3509  * have changed, reads on the block give uncorrectable error.
3510  * This might lead to the block being detected as bad.
3511  *
3512  * Avoid this by ensuring that the block to be converted is
3513  * erased.
3514  */
3515 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3516 {
3517         struct onenand_chip *this = mtd->priv;
3518         int i, ret;
3519         int block;
3520         struct mtd_oob_ops ops = {
3521                 .mode = MTD_OPS_PLACE_OOB,
3522                 .ooboffs = 0,
3523                 .ooblen = mtd->oobsize,
3524                 .datbuf = NULL,
3525                 .oobbuf = this->oob_buf,
3526         };
3527         loff_t addr;
3528
3529         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3530
3531         for (block = start; block <= end; block++) {
3532                 addr = flexonenand_addr(this, block);
3533                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3534                         continue;
3535
3536                 /*
3537                  * Since main area write results in ECC write to spare,
3538                  * it is sufficient to check only ECC bytes for change.
3539                  */
3540                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3541                 if (ret)
3542                         return ret;
3543
3544                 for (i = 0; i < mtd->oobsize; i++)
3545                         if (this->oob_buf[i] != 0xff)
3546                                 break;
3547
3548                 if (i != mtd->oobsize) {
3549                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3550                                 __func__, block);
3551                         return 1;
3552                 }
3553         }
3554
3555         return 0;
3556 }
3557
3558 /**
3559  * flexonenand_set_boundary     - Writes the SLC boundary
3560  * @param mtd                   - mtd info structure
3561  */
3562 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3563                                     int boundary, int lock)
3564 {
3565         struct onenand_chip *this = mtd->priv;
3566         int ret, density, blksperdie, old, new, thisboundary;
3567         loff_t addr;
3568
3569         /* Change only once for SDP Flex-OneNAND */
3570         if (die && (!ONENAND_IS_DDP(this)))
3571                 return 0;
3572
3573         /* boundary value of -1 indicates no required change */
3574         if (boundary < 0 || boundary == this->boundary[die])
3575                 return 0;
3576
3577         density = onenand_get_density(this->device_id);
3578         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3579         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3580
3581         if (boundary >= blksperdie) {
3582                 printk(KERN_ERR "%s: Invalid boundary value. "
3583                                 "Boundary not changed.\n", __func__);
3584                 return -EINVAL;
3585         }
3586
3587         /* Check if converting blocks are erased */
3588         old = this->boundary[die] + (die * this->density_mask);
3589         new = boundary + (die * this->density_mask);
3590         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3591         if (ret) {
3592                 printk(KERN_ERR "%s: Please erase blocks "
3593                                 "before boundary change\n", __func__);
3594                 return ret;
3595         }
3596
3597         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3598         this->wait(mtd, FL_SYNCING);
3599
3600         /* Check is boundary is locked */
3601         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3602         this->wait(mtd, FL_READING);
3603
3604         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3605         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3606                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3607                 ret = 1;
3608                 goto out;
3609         }
3610
3611         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3612                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3613
3614         addr = die ? this->diesize[0] : 0;
3615
3616         boundary &= FLEXONENAND_PI_MASK;
3617         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3618
3619         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3620         ret = this->wait(mtd, FL_ERASING);
3621         if (ret) {
3622                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3623                        __func__, die);
3624                 goto out;
3625         }
3626
3627         this->write_word(boundary, this->base + ONENAND_DATARAM);
3628         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3629         ret = this->wait(mtd, FL_WRITING);
3630         if (ret) {
3631                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3632                         __func__, die);
3633                 goto out;
3634         }
3635
3636         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3637         ret = this->wait(mtd, FL_WRITING);
3638 out:
3639         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3640         this->wait(mtd, FL_RESETING);
3641         if (!ret)
3642                 /* Recalculate device size on boundary change*/
3643                 flexonenand_get_size(mtd);
3644
3645         return ret;
3646 }
3647
3648 /**
3649  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3650  * @param mtd           MTD device structure
3651  *
3652  * OneNAND detection method:
3653  *   Compare the values from command with ones from register
3654  */
3655 static int onenand_chip_probe(struct mtd_info *mtd)
3656 {
3657         struct onenand_chip *this = mtd->priv;
3658         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3659         int syscfg;
3660
3661         /* Save system configuration 1 */
3662         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3663         /* Clear Sync. Burst Read mode to read BootRAM */
3664         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3665
3666         /* Send the command for reading device ID from BootRAM */
3667         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3668
3669         /* Read manufacturer and device IDs from BootRAM */
3670         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3671         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3672
3673         /* Reset OneNAND to read default register values */
3674         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3675         /* Wait reset */
3676         this->wait(mtd, FL_RESETING);
3677
3678         /* Restore system configuration 1 */
3679         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3680
3681         /* Check manufacturer ID */
3682         if (onenand_check_maf(bram_maf_id))
3683                 return -ENXIO;
3684
3685         /* Read manufacturer and device IDs from Register */
3686         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3687         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3688
3689         /* Check OneNAND device */
3690         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3691                 return -ENXIO;
3692
3693         return 0;
3694 }
3695
3696 /**
3697  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3698  * @param mtd           MTD device structure
3699  */
3700 static int onenand_probe(struct mtd_info *mtd)
3701 {
3702         struct onenand_chip *this = mtd->priv;
3703         int dev_id, ver_id;
3704         int density;
3705         int ret;
3706
3707         ret = this->chip_probe(mtd);
3708         if (ret)
3709                 return ret;
3710
3711         /* Device and version IDs from Register */
3712         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3713         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3714         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3715
3716         /* Flash device information */
3717         onenand_print_device_info(dev_id, ver_id);
3718         this->device_id = dev_id;
3719         this->version_id = ver_id;
3720
3721         /* Check OneNAND features */
3722         onenand_check_features(mtd);
3723
3724         density = onenand_get_density(dev_id);
3725         if (FLEXONENAND(this)) {
3726                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3727                 /* Maximum possible erase regions */
3728                 mtd->numeraseregions = this->dies << 1;
3729                 mtd->eraseregions =
3730                         kcalloc(this->dies << 1,
3731                                 sizeof(struct mtd_erase_region_info),
3732                                 GFP_KERNEL);
3733                 if (!mtd->eraseregions)
3734                         return -ENOMEM;
3735         }
3736
3737         /*
3738          * For Flex-OneNAND, chipsize represents maximum possible device size.
3739          * mtd->size represents the actual device size.
3740          */
3741         this->chipsize = (16 << density) << 20;
3742
3743         /* OneNAND page size & block size */
3744         /* The data buffer size is equal to page size */
3745         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3746         /* We use the full BufferRAM */
3747         if (ONENAND_IS_4KB_PAGE(this))
3748                 mtd->writesize <<= 1;
3749
3750         mtd->oobsize = mtd->writesize >> 5;
3751         /* Pages per a block are always 64 in OneNAND */
3752         mtd->erasesize = mtd->writesize << 6;
3753         /*
3754          * Flex-OneNAND SLC area has 64 pages per block.
3755          * Flex-OneNAND MLC area has 128 pages per block.
3756          * Expose MLC erase size to find erase_shift and page_mask.
3757          */
3758         if (FLEXONENAND(this))
3759                 mtd->erasesize <<= 1;
3760
3761         this->erase_shift = ffs(mtd->erasesize) - 1;
3762         this->page_shift = ffs(mtd->writesize) - 1;
3763         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3764         /* Set density mask. it is used for DDP */
3765         if (ONENAND_IS_DDP(this))
3766                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3767         /* It's real page size */
3768         this->writesize = mtd->writesize;
3769
3770         /* REVISIT: Multichip handling */
3771
3772         if (FLEXONENAND(this))
3773                 flexonenand_get_size(mtd);
3774         else
3775                 mtd->size = this->chipsize;
3776
3777         /*
3778          * We emulate the 4KiB page and 256KiB erase block size
3779          * But oobsize is still 64 bytes.
3780          * It is only valid if you turn on 2X program support,
3781          * Otherwise it will be ignored by compiler.
3782          */
3783         if (ONENAND_IS_2PLANE(this)) {
3784                 mtd->writesize <<= 1;
3785                 mtd->erasesize <<= 1;
3786         }
3787
3788         return 0;
3789 }
3790
3791 /**
3792  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3793  * @param mtd           MTD device structure
3794  */
3795 static int onenand_suspend(struct mtd_info *mtd)
3796 {
3797         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3798 }
3799
3800 /**
3801  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3802  * @param mtd           MTD device structure
3803  */
3804 static void onenand_resume(struct mtd_info *mtd)
3805 {
3806         struct onenand_chip *this = mtd->priv;
3807
3808         if (this->state == FL_PM_SUSPENDED)
3809                 onenand_release_device(mtd);
3810         else
3811                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3812                                 "in suspended state\n", __func__);
3813 }
3814
3815 /**
3816  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3817  * @param mtd           MTD device structure
3818  * @param maxchips      Number of chips to scan for
3819  *
3820  * This fills out all the not initialized function pointers
3821  * with the defaults.
3822  * The flash ID is read and the mtd/chip structures are
3823  * filled with the appropriate values.
3824  */
3825 int onenand_scan(struct mtd_info *mtd, int maxchips)
3826 {
3827         int i, ret;
3828         struct onenand_chip *this = mtd->priv;
3829
3830         if (!this->read_word)
3831                 this->read_word = onenand_readw;
3832         if (!this->write_word)
3833                 this->write_word = onenand_writew;
3834
3835         if (!this->command)
3836                 this->command = onenand_command;
3837         if (!this->wait)
3838                 onenand_setup_wait(mtd);
3839         if (!this->bbt_wait)
3840                 this->bbt_wait = onenand_bbt_wait;
3841         if (!this->unlock_all)
3842                 this->unlock_all = onenand_unlock_all;
3843
3844         if (!this->chip_probe)
3845                 this->chip_probe = onenand_chip_probe;
3846
3847         if (!this->read_bufferram)
3848                 this->read_bufferram = onenand_read_bufferram;
3849         if (!this->write_bufferram)
3850                 this->write_bufferram = onenand_write_bufferram;
3851
3852         if (!this->block_markbad)
3853                 this->block_markbad = onenand_default_block_markbad;
3854         if (!this->scan_bbt)
3855                 this->scan_bbt = onenand_default_bbt;
3856
3857         if (onenand_probe(mtd))
3858                 return -ENXIO;
3859
3860         /* Set Sync. Burst Read after probing */
3861         if (this->mmcontrol) {
3862                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3863                 this->read_bufferram = onenand_sync_read_bufferram;
3864         }
3865
3866         /* Allocate buffers, if necessary */
3867         if (!this->page_buf) {
3868                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3869                 if (!this->page_buf)
3870                         return -ENOMEM;
3871 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3872                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3873                 if (!this->verify_buf) {
3874                         kfree(this->page_buf);
3875                         return -ENOMEM;
3876                 }
3877 #endif
3878                 this->options |= ONENAND_PAGEBUF_ALLOC;
3879         }
3880         if (!this->oob_buf) {
3881                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3882                 if (!this->oob_buf) {
3883                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
3884                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3885                                 kfree(this->page_buf);
3886                         }
3887                         return -ENOMEM;
3888                 }
3889                 this->options |= ONENAND_OOBBUF_ALLOC;
3890         }
3891
3892         this->state = FL_READY;
3893         init_waitqueue_head(&this->wq);
3894         spin_lock_init(&this->chip_lock);
3895
3896         /*
3897          * Allow subpage writes up to oobsize.
3898          */
3899         switch (mtd->oobsize) {
3900         case 128:
3901                 if (FLEXONENAND(this)) {
3902                         mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3903                         mtd->subpage_sft = 0;
3904                 } else {
3905                         mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3906                         mtd->subpage_sft = 2;
3907                 }
3908                 if (ONENAND_IS_NOP_1(this))
3909                         mtd->subpage_sft = 0;
3910                 break;
3911         case 64:
3912                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3913                 mtd->subpage_sft = 2;
3914                 break;
3915
3916         case 32:
3917                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3918                 mtd->subpage_sft = 1;
3919                 break;
3920
3921         default:
3922                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3923                         __func__, mtd->oobsize);
3924                 mtd->subpage_sft = 0;
3925                 /* To prevent kernel oops */
3926                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3927                 break;
3928         }
3929
3930         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3931
3932         /*
3933          * The number of bytes available for a client to place data into
3934          * the out of band area
3935          */
3936         ret = mtd_ooblayout_count_freebytes(mtd);
3937         if (ret < 0)
3938                 ret = 0;
3939
3940         mtd->oobavail = ret;
3941
3942         mtd->ecc_strength = 1;
3943
3944         /* Fill in remaining MTD driver data */
3945         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3946         mtd->flags = MTD_CAP_NANDFLASH;
3947         mtd->_erase = onenand_erase;
3948         mtd->_point = NULL;
3949         mtd->_unpoint = NULL;
3950         mtd->_read_oob = onenand_read_oob;
3951         mtd->_write_oob = onenand_write_oob;
3952         mtd->_panic_write = onenand_panic_write;
3953 #ifdef CONFIG_MTD_ONENAND_OTP
3954         mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3955         mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3956         mtd->_get_user_prot_info = onenand_get_user_prot_info;
3957         mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3958         mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3959         mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3960 #endif
3961         mtd->_sync = onenand_sync;
3962         mtd->_lock = onenand_lock;
3963         mtd->_unlock = onenand_unlock;
3964         mtd->_suspend = onenand_suspend;
3965         mtd->_resume = onenand_resume;
3966         mtd->_block_isbad = onenand_block_isbad;
3967         mtd->_block_markbad = onenand_block_markbad;
3968         mtd->owner = THIS_MODULE;
3969         mtd->writebufsize = mtd->writesize;
3970
3971         /* Unlock whole block */
3972         if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3973                 this->unlock_all(mtd);
3974
3975         /* Set the bad block marker position */
3976         this->badblockpos = ONENAND_BADBLOCK_POS;
3977
3978         ret = this->scan_bbt(mtd);
3979         if ((!FLEXONENAND(this)) || ret)
3980                 return ret;
3981
3982         /* Change Flex-OneNAND boundaries if required */
3983         for (i = 0; i < MAX_DIES; i++)
3984                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3985                                                  flex_bdry[(2 * i) + 1]);
3986
3987         return 0;
3988 }
3989
3990 /**
3991  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3992  * @param mtd           MTD device structure
3993  */
3994 void onenand_release(struct mtd_info *mtd)
3995 {
3996         struct onenand_chip *this = mtd->priv;
3997
3998         /* Deregister partitions */
3999         mtd_device_unregister(mtd);
4000
4001         /* Free bad block table memory, if allocated */
4002         if (this->bbm) {
4003                 struct bbm_info *bbm = this->bbm;
4004                 kfree(bbm->bbt);
4005                 kfree(this->bbm);
4006         }
4007         /* Buffers allocated by onenand_scan */
4008         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4009                 kfree(this->page_buf);
4010 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4011                 kfree(this->verify_buf);
4012 #endif
4013         }
4014         if (this->options & ONENAND_OOBBUF_ALLOC)
4015                 kfree(this->oob_buf);
4016         kfree(mtd->eraseregions);
4017 }
4018
4019 EXPORT_SYMBOL_GPL(onenand_scan);
4020 EXPORT_SYMBOL_GPL(onenand_release);
4021
4022 MODULE_LICENSE("GPL");
4023 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4024 MODULE_DESCRIPTION("Generic OneNAND flash driver code");