Merge tag 'sound-4.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / drivers / mtd / nand / nand_micron.c
1 /*
2  * Copyright (C) 2017 Free Electrons
3  * Copyright (C) 2017 NextThing Co
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/mtd/rawnand.h>
19
20 /*
21  * Special Micron status bit that indicates when the block has been
22  * corrected by on-die ECC and should be rewritten
23  */
24 #define NAND_STATUS_WRITE_RECOMMENDED   BIT(3)
25
26 struct nand_onfi_vendor_micron {
27         u8 two_plane_read;
28         u8 read_cache;
29         u8 read_unique_id;
30         u8 dq_imped;
31         u8 dq_imped_num_settings;
32         u8 dq_imped_feat_addr;
33         u8 rb_pulldown_strength;
34         u8 rb_pulldown_strength_feat_addr;
35         u8 rb_pulldown_strength_num_settings;
36         u8 otp_mode;
37         u8 otp_page_start;
38         u8 otp_data_prot_addr;
39         u8 otp_num_pages;
40         u8 otp_feat_addr;
41         u8 read_retry_options;
42         u8 reserved[72];
43         u8 param_revision;
44 } __packed;
45
46 static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
47 {
48         struct nand_chip *chip = mtd_to_nand(mtd);
49         u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
50
51         return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
52                                        feature);
53 }
54
55 /*
56  * Configure chip properties from Micron vendor-specific ONFI table
57  */
58 static int micron_nand_onfi_init(struct nand_chip *chip)
59 {
60         struct nand_onfi_params *p = &chip->onfi_params;
61         struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
62
63         if (!chip->onfi_version)
64                 return 0;
65
66         if (le16_to_cpu(p->vendor_revision) < 1)
67                 return 0;
68
69         chip->read_retries = micron->read_retry_options;
70         chip->setup_read_retry = micron_nand_setup_read_retry;
71
72         return 0;
73 }
74
75 static int micron_nand_on_die_ooblayout_ecc(struct mtd_info *mtd, int section,
76                                             struct mtd_oob_region *oobregion)
77 {
78         if (section >= 4)
79                 return -ERANGE;
80
81         oobregion->offset = (section * 16) + 8;
82         oobregion->length = 8;
83
84         return 0;
85 }
86
87 static int micron_nand_on_die_ooblayout_free(struct mtd_info *mtd, int section,
88                                              struct mtd_oob_region *oobregion)
89 {
90         if (section >= 4)
91                 return -ERANGE;
92
93         oobregion->offset = (section * 16) + 2;
94         oobregion->length = 6;
95
96         return 0;
97 }
98
99 static const struct mtd_ooblayout_ops micron_nand_on_die_ooblayout_ops = {
100         .ecc = micron_nand_on_die_ooblayout_ecc,
101         .free = micron_nand_on_die_ooblayout_free,
102 };
103
104 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
105 {
106         u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
107
108         if (enable)
109                 feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
110
111         return chip->onfi_set_features(nand_to_mtd(chip), chip,
112                                        ONFI_FEATURE_ON_DIE_ECC, feature);
113 }
114
115 static int
116 micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
117                                  uint8_t *buf, int oob_required,
118                                  int page)
119 {
120         int status;
121         int max_bitflips = 0;
122
123         micron_nand_on_die_ecc_setup(chip, true);
124
125         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
126         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
127         status = chip->read_byte(mtd);
128         if (status & NAND_STATUS_FAIL)
129                 mtd->ecc_stats.failed++;
130         /*
131          * The internal ECC doesn't tell us the number of bitflips
132          * that have been corrected, but tells us if it recommends to
133          * rewrite the block. If it's the case, then we pretend we had
134          * a number of bitflips equal to the ECC strength, which will
135          * hint the NAND core to rewrite the block.
136          */
137         else if (status & NAND_STATUS_WRITE_RECOMMENDED)
138                 max_bitflips = chip->ecc.strength;
139
140         chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
141
142         nand_read_page_raw(mtd, chip, buf, oob_required, page);
143
144         micron_nand_on_die_ecc_setup(chip, false);
145
146         return max_bitflips;
147 }
148
149 static int
150 micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
151                                   const uint8_t *buf, int oob_required,
152                                   int page)
153 {
154         int status;
155
156         micron_nand_on_die_ecc_setup(chip, true);
157
158         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
159         nand_write_page_raw(mtd, chip, buf, oob_required, page);
160         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
161         status = chip->waitfunc(mtd, chip);
162
163         micron_nand_on_die_ecc_setup(chip, false);
164
165         return status & NAND_STATUS_FAIL ? -EIO : 0;
166 }
167
168 static int
169 micron_nand_read_page_raw_on_die_ecc(struct mtd_info *mtd,
170                                      struct nand_chip *chip,
171                                      uint8_t *buf, int oob_required,
172                                      int page)
173 {
174         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
175         nand_read_page_raw(mtd, chip, buf, oob_required, page);
176
177         return 0;
178 }
179
180 static int
181 micron_nand_write_page_raw_on_die_ecc(struct mtd_info *mtd,
182                                       struct nand_chip *chip,
183                                       const uint8_t *buf, int oob_required,
184                                       int page)
185 {
186         int status;
187
188         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
189         nand_write_page_raw(mtd, chip, buf, oob_required, page);
190         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
191         status = chip->waitfunc(mtd, chip);
192
193         return status & NAND_STATUS_FAIL ? -EIO : 0;
194 }
195
196 enum {
197         /* The NAND flash doesn't support on-die ECC */
198         MICRON_ON_DIE_UNSUPPORTED,
199
200         /*
201          * The NAND flash supports on-die ECC and it can be
202          * enabled/disabled by a set features command.
203          */
204         MICRON_ON_DIE_SUPPORTED,
205
206         /*
207          * The NAND flash supports on-die ECC, and it cannot be
208          * disabled.
209          */
210         MICRON_ON_DIE_MANDATORY,
211 };
212
213 /*
214  * Try to detect if the NAND support on-die ECC. To do this, we enable
215  * the feature, and read back if it has been enabled as expected. We
216  * also check if it can be disabled, because some Micron NANDs do not
217  * allow disabling the on-die ECC and we don't support such NANDs for
218  * now.
219  *
220  * This function also has the side effect of disabling on-die ECC if
221  * it had been left enabled by the firmware/bootloader.
222  */
223 static int micron_supports_on_die_ecc(struct nand_chip *chip)
224 {
225         u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
226         int ret;
227
228         if (chip->onfi_version == 0)
229                 return MICRON_ON_DIE_UNSUPPORTED;
230
231         if (chip->bits_per_cell != 1)
232                 return MICRON_ON_DIE_UNSUPPORTED;
233
234         ret = micron_nand_on_die_ecc_setup(chip, true);
235         if (ret)
236                 return MICRON_ON_DIE_UNSUPPORTED;
237
238         chip->onfi_get_features(nand_to_mtd(chip), chip,
239                                 ONFI_FEATURE_ON_DIE_ECC, feature);
240         if ((feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) == 0)
241                 return MICRON_ON_DIE_UNSUPPORTED;
242
243         ret = micron_nand_on_die_ecc_setup(chip, false);
244         if (ret)
245                 return MICRON_ON_DIE_UNSUPPORTED;
246
247         chip->onfi_get_features(nand_to_mtd(chip), chip,
248                                 ONFI_FEATURE_ON_DIE_ECC, feature);
249         if (feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN)
250                 return MICRON_ON_DIE_MANDATORY;
251
252         /*
253          * Some Micron NANDs have an on-die ECC of 4/512, some other
254          * 8/512. We only support the former.
255          */
256         if (chip->onfi_params.ecc_bits != 4)
257                 return MICRON_ON_DIE_UNSUPPORTED;
258
259         return MICRON_ON_DIE_SUPPORTED;
260 }
261
262 static int micron_nand_init(struct nand_chip *chip)
263 {
264         struct mtd_info *mtd = nand_to_mtd(chip);
265         int ondie;
266         int ret;
267
268         ret = micron_nand_onfi_init(chip);
269         if (ret)
270                 return ret;
271
272         if (mtd->writesize == 2048)
273                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
274
275         ondie = micron_supports_on_die_ecc(chip);
276
277         if (ondie == MICRON_ON_DIE_MANDATORY) {
278                 pr_err("On-die ECC forcefully enabled, not supported\n");
279                 return -EINVAL;
280         }
281
282         if (chip->ecc.mode == NAND_ECC_ON_DIE) {
283                 if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
284                         pr_err("On-die ECC selected but not supported\n");
285                         return -EINVAL;
286                 }
287
288                 chip->ecc.options = NAND_ECC_CUSTOM_PAGE_ACCESS;
289                 chip->ecc.bytes = 8;
290                 chip->ecc.size = 512;
291                 chip->ecc.strength = 4;
292                 chip->ecc.algo = NAND_ECC_BCH;
293                 chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
294                 chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
295                 chip->ecc.read_page_raw =
296                         micron_nand_read_page_raw_on_die_ecc;
297                 chip->ecc.write_page_raw =
298                         micron_nand_write_page_raw_on_die_ecc;
299
300                 mtd_set_ooblayout(mtd, &micron_nand_on_die_ooblayout_ops);
301         }
302
303         return 0;
304 }
305
306 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
307         .init = micron_nand_init,
308 };