Merge commit 'v2.6.35-rc1' into amd-iommu/2.6.35
[sfrench/cifs-2.6.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <asm/io.h>
50
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
53 #endif
54
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8 = {
57         .eccbytes = 3,
58         .eccpos = {0, 1, 2},
59         .oobfree = {
60                 {.offset = 3,
61                  .length = 2},
62                 {.offset = 6,
63                  .length = 2}}
64 };
65
66 static struct nand_ecclayout nand_oob_16 = {
67         .eccbytes = 6,
68         .eccpos = {0, 1, 2, 3, 6, 7},
69         .oobfree = {
70                 {.offset = 8,
71                  . length = 8}}
72 };
73
74 static struct nand_ecclayout nand_oob_64 = {
75         .eccbytes = 24,
76         .eccpos = {
77                    40, 41, 42, 43, 44, 45, 46, 47,
78                    48, 49, 50, 51, 52, 53, 54, 55,
79                    56, 57, 58, 59, 60, 61, 62, 63},
80         .oobfree = {
81                 {.offset = 2,
82                  .length = 38}}
83 };
84
85 static struct nand_ecclayout nand_oob_128 = {
86         .eccbytes = 48,
87         .eccpos = {
88                    80, 81, 82, 83, 84, 85, 86, 87,
89                    88, 89, 90, 91, 92, 93, 94, 95,
90                    96, 97, 98, 99, 100, 101, 102, 103,
91                    104, 105, 106, 107, 108, 109, 110, 111,
92                    112, 113, 114, 115, 116, 117, 118, 119,
93                    120, 121, 122, 123, 124, 125, 126, 127},
94         .oobfree = {
95                 {.offset = 2,
96                  .length = 78}}
97 };
98
99 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
100                            int new_state);
101
102 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
103                              struct mtd_oob_ops *ops);
104
105 /*
106  * For devices which display every fart in the system on a separate LED. Is
107  * compiled away when LED support is disabled.
108  */
109 DEFINE_LED_TRIGGER(nand_led_trigger);
110
111 static int check_offs_len(struct mtd_info *mtd,
112                                         loff_t ofs, uint64_t len)
113 {
114         struct nand_chip *chip = mtd->priv;
115         int ret = 0;
116
117         /* Start address must align on block boundary */
118         if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
119                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
120                 ret = -EINVAL;
121         }
122
123         /* Length must align on block boundary */
124         if (len & ((1 << chip->phys_erase_shift) - 1)) {
125                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
126                                         __func__);
127                 ret = -EINVAL;
128         }
129
130         /* Do not allow past end of device */
131         if (ofs + len > mtd->size) {
132                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
133                                         __func__);
134                 ret = -EINVAL;
135         }
136
137         return ret;
138 }
139
140 /**
141  * nand_release_device - [GENERIC] release chip
142  * @mtd:        MTD device structure
143  *
144  * Deselect, release chip lock and wake up anyone waiting on the device
145  */
146 static void nand_release_device(struct mtd_info *mtd)
147 {
148         struct nand_chip *chip = mtd->priv;
149
150         /* De-select the NAND device */
151         chip->select_chip(mtd, -1);
152
153         /* Release the controller and the chip */
154         spin_lock(&chip->controller->lock);
155         chip->controller->active = NULL;
156         chip->state = FL_READY;
157         wake_up(&chip->controller->wq);
158         spin_unlock(&chip->controller->lock);
159 }
160
161 /**
162  * nand_read_byte - [DEFAULT] read one byte from the chip
163  * @mtd:        MTD device structure
164  *
165  * Default read function for 8bit buswith
166  */
167 static uint8_t nand_read_byte(struct mtd_info *mtd)
168 {
169         struct nand_chip *chip = mtd->priv;
170         return readb(chip->IO_ADDR_R);
171 }
172
173 /**
174  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
175  * @mtd:        MTD device structure
176  *
177  * Default read function for 16bit buswith with
178  * endianess conversion
179  */
180 static uint8_t nand_read_byte16(struct mtd_info *mtd)
181 {
182         struct nand_chip *chip = mtd->priv;
183         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
184 }
185
186 /**
187  * nand_read_word - [DEFAULT] read one word from the chip
188  * @mtd:        MTD device structure
189  *
190  * Default read function for 16bit buswith without
191  * endianess conversion
192  */
193 static u16 nand_read_word(struct mtd_info *mtd)
194 {
195         struct nand_chip *chip = mtd->priv;
196         return readw(chip->IO_ADDR_R);
197 }
198
199 /**
200  * nand_select_chip - [DEFAULT] control CE line
201  * @mtd:        MTD device structure
202  * @chipnr:     chipnumber to select, -1 for deselect
203  *
204  * Default select function for 1 chip devices.
205  */
206 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
207 {
208         struct nand_chip *chip = mtd->priv;
209
210         switch (chipnr) {
211         case -1:
212                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
213                 break;
214         case 0:
215                 break;
216
217         default:
218                 BUG();
219         }
220 }
221
222 /**
223  * nand_write_buf - [DEFAULT] write buffer to chip
224  * @mtd:        MTD device structure
225  * @buf:        data buffer
226  * @len:        number of bytes to write
227  *
228  * Default write function for 8bit buswith
229  */
230 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
231 {
232         int i;
233         struct nand_chip *chip = mtd->priv;
234
235         for (i = 0; i < len; i++)
236                 writeb(buf[i], chip->IO_ADDR_W);
237 }
238
239 /**
240  * nand_read_buf - [DEFAULT] read chip data into buffer
241  * @mtd:        MTD device structure
242  * @buf:        buffer to store date
243  * @len:        number of bytes to read
244  *
245  * Default read function for 8bit buswith
246  */
247 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
248 {
249         int i;
250         struct nand_chip *chip = mtd->priv;
251
252         for (i = 0; i < len; i++)
253                 buf[i] = readb(chip->IO_ADDR_R);
254 }
255
256 /**
257  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
258  * @mtd:        MTD device structure
259  * @buf:        buffer containing the data to compare
260  * @len:        number of bytes to compare
261  *
262  * Default verify function for 8bit buswith
263  */
264 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
265 {
266         int i;
267         struct nand_chip *chip = mtd->priv;
268
269         for (i = 0; i < len; i++)
270                 if (buf[i] != readb(chip->IO_ADDR_R))
271                         return -EFAULT;
272         return 0;
273 }
274
275 /**
276  * nand_write_buf16 - [DEFAULT] write buffer to chip
277  * @mtd:        MTD device structure
278  * @buf:        data buffer
279  * @len:        number of bytes to write
280  *
281  * Default write function for 16bit buswith
282  */
283 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
284 {
285         int i;
286         struct nand_chip *chip = mtd->priv;
287         u16 *p = (u16 *) buf;
288         len >>= 1;
289
290         for (i = 0; i < len; i++)
291                 writew(p[i], chip->IO_ADDR_W);
292
293 }
294
295 /**
296  * nand_read_buf16 - [DEFAULT] read chip data into buffer
297  * @mtd:        MTD device structure
298  * @buf:        buffer to store date
299  * @len:        number of bytes to read
300  *
301  * Default read function for 16bit buswith
302  */
303 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
304 {
305         int i;
306         struct nand_chip *chip = mtd->priv;
307         u16 *p = (u16 *) buf;
308         len >>= 1;
309
310         for (i = 0; i < len; i++)
311                 p[i] = readw(chip->IO_ADDR_R);
312 }
313
314 /**
315  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
316  * @mtd:        MTD device structure
317  * @buf:        buffer containing the data to compare
318  * @len:        number of bytes to compare
319  *
320  * Default verify function for 16bit buswith
321  */
322 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
323 {
324         int i;
325         struct nand_chip *chip = mtd->priv;
326         u16 *p = (u16 *) buf;
327         len >>= 1;
328
329         for (i = 0; i < len; i++)
330                 if (p[i] != readw(chip->IO_ADDR_R))
331                         return -EFAULT;
332
333         return 0;
334 }
335
336 /**
337  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
338  * @mtd:        MTD device structure
339  * @ofs:        offset from device start
340  * @getchip:    0, if the chip is already selected
341  *
342  * Check, if the block is bad.
343  */
344 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
345 {
346         int page, chipnr, res = 0;
347         struct nand_chip *chip = mtd->priv;
348         u16 bad;
349
350         if (chip->options & NAND_BB_LAST_PAGE)
351                 ofs += mtd->erasesize - mtd->writesize;
352
353         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
354
355         if (getchip) {
356                 chipnr = (int)(ofs >> chip->chip_shift);
357
358                 nand_get_device(chip, mtd, FL_READING);
359
360                 /* Select the NAND device */
361                 chip->select_chip(mtd, chipnr);
362         }
363
364         if (chip->options & NAND_BUSWIDTH_16) {
365                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
366                               page);
367                 bad = cpu_to_le16(chip->read_word(mtd));
368                 if (chip->badblockpos & 0x1)
369                         bad >>= 8;
370                 else
371                         bad &= 0xFF;
372         } else {
373                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
374                 bad = chip->read_byte(mtd);
375         }
376
377         if (likely(chip->badblockbits == 8))
378                 res = bad != 0xFF;
379         else
380                 res = hweight8(bad) < chip->badblockbits;
381
382         if (getchip)
383                 nand_release_device(mtd);
384
385         return res;
386 }
387
388 /**
389  * nand_default_block_markbad - [DEFAULT] mark a block bad
390  * @mtd:        MTD device structure
391  * @ofs:        offset from device start
392  *
393  * This is the default implementation, which can be overridden by
394  * a hardware specific driver.
395 */
396 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
397 {
398         struct nand_chip *chip = mtd->priv;
399         uint8_t buf[2] = { 0, 0 };
400         int block, ret;
401
402         if (chip->options & NAND_BB_LAST_PAGE)
403                 ofs += mtd->erasesize - mtd->writesize;
404
405         /* Get block number */
406         block = (int)(ofs >> chip->bbt_erase_shift);
407         if (chip->bbt)
408                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
409
410         /* Do we have a flash based bad block table ? */
411         if (chip->options & NAND_USE_FLASH_BBT)
412                 ret = nand_update_bbt(mtd, ofs);
413         else {
414                 /* We write two bytes, so we dont have to mess with 16 bit
415                  * access
416                  */
417                 nand_get_device(chip, mtd, FL_WRITING);
418                 ofs += mtd->oobsize;
419                 chip->ops.len = chip->ops.ooblen = 2;
420                 chip->ops.datbuf = NULL;
421                 chip->ops.oobbuf = buf;
422                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
423
424                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
425                 nand_release_device(mtd);
426         }
427         if (!ret)
428                 mtd->ecc_stats.badblocks++;
429
430         return ret;
431 }
432
433 /**
434  * nand_check_wp - [GENERIC] check if the chip is write protected
435  * @mtd:        MTD device structure
436  * Check, if the device is write protected
437  *
438  * The function expects, that the device is already selected
439  */
440 static int nand_check_wp(struct mtd_info *mtd)
441 {
442         struct nand_chip *chip = mtd->priv;
443
444         /* broken xD cards report WP despite being writable */
445         if (chip->options & NAND_BROKEN_XD)
446                 return 0;
447
448         /* Check the WP bit */
449         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
450         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
451 }
452
453 /**
454  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
455  * @mtd:        MTD device structure
456  * @ofs:        offset from device start
457  * @getchip:    0, if the chip is already selected
458  * @allowbbt:   1, if its allowed to access the bbt area
459  *
460  * Check, if the block is bad. Either by reading the bad block table or
461  * calling of the scan function.
462  */
463 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
464                                int allowbbt)
465 {
466         struct nand_chip *chip = mtd->priv;
467
468         if (!chip->bbt)
469                 return chip->block_bad(mtd, ofs, getchip);
470
471         /* Return info from the table */
472         return nand_isbad_bbt(mtd, ofs, allowbbt);
473 }
474
475 /**
476  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
477  * @mtd:        MTD device structure
478  * @timeo:      Timeout
479  *
480  * Helper function for nand_wait_ready used when needing to wait in interrupt
481  * context.
482  */
483 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
484 {
485         struct nand_chip *chip = mtd->priv;
486         int i;
487
488         /* Wait for the device to get ready */
489         for (i = 0; i < timeo; i++) {
490                 if (chip->dev_ready(mtd))
491                         break;
492                 touch_softlockup_watchdog();
493                 mdelay(1);
494         }
495 }
496
497 /*
498  * Wait for the ready pin, after a command
499  * The timeout is catched later.
500  */
501 void nand_wait_ready(struct mtd_info *mtd)
502 {
503         struct nand_chip *chip = mtd->priv;
504         unsigned long timeo = jiffies + 2;
505
506         /* 400ms timeout */
507         if (in_interrupt() || oops_in_progress)
508                 return panic_nand_wait_ready(mtd, 400);
509
510         led_trigger_event(nand_led_trigger, LED_FULL);
511         /* wait until command is processed or timeout occures */
512         do {
513                 if (chip->dev_ready(mtd))
514                         break;
515                 touch_softlockup_watchdog();
516         } while (time_before(jiffies, timeo));
517         led_trigger_event(nand_led_trigger, LED_OFF);
518 }
519 EXPORT_SYMBOL_GPL(nand_wait_ready);
520
521 /**
522  * nand_command - [DEFAULT] Send command to NAND device
523  * @mtd:        MTD device structure
524  * @command:    the command to be sent
525  * @column:     the column address for this command, -1 if none
526  * @page_addr:  the page address for this command, -1 if none
527  *
528  * Send command to NAND device. This function is used for small page
529  * devices (256/512 Bytes per page)
530  */
531 static void nand_command(struct mtd_info *mtd, unsigned int command,
532                          int column, int page_addr)
533 {
534         register struct nand_chip *chip = mtd->priv;
535         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
536
537         /*
538          * Write out the command to the device.
539          */
540         if (command == NAND_CMD_SEQIN) {
541                 int readcmd;
542
543                 if (column >= mtd->writesize) {
544                         /* OOB area */
545                         column -= mtd->writesize;
546                         readcmd = NAND_CMD_READOOB;
547                 } else if (column < 256) {
548                         /* First 256 bytes --> READ0 */
549                         readcmd = NAND_CMD_READ0;
550                 } else {
551                         column -= 256;
552                         readcmd = NAND_CMD_READ1;
553                 }
554                 chip->cmd_ctrl(mtd, readcmd, ctrl);
555                 ctrl &= ~NAND_CTRL_CHANGE;
556         }
557         chip->cmd_ctrl(mtd, command, ctrl);
558
559         /*
560          * Address cycle, when necessary
561          */
562         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
563         /* Serially input address */
564         if (column != -1) {
565                 /* Adjust columns for 16 bit buswidth */
566                 if (chip->options & NAND_BUSWIDTH_16)
567                         column >>= 1;
568                 chip->cmd_ctrl(mtd, column, ctrl);
569                 ctrl &= ~NAND_CTRL_CHANGE;
570         }
571         if (page_addr != -1) {
572                 chip->cmd_ctrl(mtd, page_addr, ctrl);
573                 ctrl &= ~NAND_CTRL_CHANGE;
574                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
575                 /* One more address cycle for devices > 32MiB */
576                 if (chip->chipsize > (32 << 20))
577                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
578         }
579         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
580
581         /*
582          * program and erase have their own busy handlers
583          * status and sequential in needs no delay
584          */
585         switch (command) {
586
587         case NAND_CMD_PAGEPROG:
588         case NAND_CMD_ERASE1:
589         case NAND_CMD_ERASE2:
590         case NAND_CMD_SEQIN:
591         case NAND_CMD_STATUS:
592                 return;
593
594         case NAND_CMD_RESET:
595                 if (chip->dev_ready)
596                         break;
597                 udelay(chip->chip_delay);
598                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
599                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
600                 chip->cmd_ctrl(mtd,
601                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
602                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
603                 return;
604
605                 /* This applies to read commands */
606         default:
607                 /*
608                  * If we don't have access to the busy pin, we apply the given
609                  * command delay
610                  */
611                 if (!chip->dev_ready) {
612                         udelay(chip->chip_delay);
613                         return;
614                 }
615         }
616         /* Apply this short delay always to ensure that we do wait tWB in
617          * any case on any machine. */
618         ndelay(100);
619
620         nand_wait_ready(mtd);
621 }
622
623 /**
624  * nand_command_lp - [DEFAULT] Send command to NAND large page device
625  * @mtd:        MTD device structure
626  * @command:    the command to be sent
627  * @column:     the column address for this command, -1 if none
628  * @page_addr:  the page address for this command, -1 if none
629  *
630  * Send command to NAND device. This is the version for the new large page
631  * devices We dont have the separate regions as we have in the small page
632  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
633  */
634 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
635                             int column, int page_addr)
636 {
637         register struct nand_chip *chip = mtd->priv;
638
639         /* Emulate NAND_CMD_READOOB */
640         if (command == NAND_CMD_READOOB) {
641                 column += mtd->writesize;
642                 command = NAND_CMD_READ0;
643         }
644
645         /* Command latch cycle */
646         chip->cmd_ctrl(mtd, command & 0xff,
647                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
648
649         if (column != -1 || page_addr != -1) {
650                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
651
652                 /* Serially input address */
653                 if (column != -1) {
654                         /* Adjust columns for 16 bit buswidth */
655                         if (chip->options & NAND_BUSWIDTH_16)
656                                 column >>= 1;
657                         chip->cmd_ctrl(mtd, column, ctrl);
658                         ctrl &= ~NAND_CTRL_CHANGE;
659                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
660                 }
661                 if (page_addr != -1) {
662                         chip->cmd_ctrl(mtd, page_addr, ctrl);
663                         chip->cmd_ctrl(mtd, page_addr >> 8,
664                                        NAND_NCE | NAND_ALE);
665                         /* One more address cycle for devices > 128MiB */
666                         if (chip->chipsize > (128 << 20))
667                                 chip->cmd_ctrl(mtd, page_addr >> 16,
668                                                NAND_NCE | NAND_ALE);
669                 }
670         }
671         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
672
673         /*
674          * program and erase have their own busy handlers
675          * status, sequential in, and deplete1 need no delay
676          */
677         switch (command) {
678
679         case NAND_CMD_CACHEDPROG:
680         case NAND_CMD_PAGEPROG:
681         case NAND_CMD_ERASE1:
682         case NAND_CMD_ERASE2:
683         case NAND_CMD_SEQIN:
684         case NAND_CMD_RNDIN:
685         case NAND_CMD_STATUS:
686         case NAND_CMD_DEPLETE1:
687                 return;
688
689                 /*
690                  * read error status commands require only a short delay
691                  */
692         case NAND_CMD_STATUS_ERROR:
693         case NAND_CMD_STATUS_ERROR0:
694         case NAND_CMD_STATUS_ERROR1:
695         case NAND_CMD_STATUS_ERROR2:
696         case NAND_CMD_STATUS_ERROR3:
697                 udelay(chip->chip_delay);
698                 return;
699
700         case NAND_CMD_RESET:
701                 if (chip->dev_ready)
702                         break;
703                 udelay(chip->chip_delay);
704                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
705                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
706                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
707                                NAND_NCE | NAND_CTRL_CHANGE);
708                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
709                 return;
710
711         case NAND_CMD_RNDOUT:
712                 /* No ready / busy check necessary */
713                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
714                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
715                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
716                                NAND_NCE | NAND_CTRL_CHANGE);
717                 return;
718
719         case NAND_CMD_READ0:
720                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
721                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
722                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
723                                NAND_NCE | NAND_CTRL_CHANGE);
724
725                 /* This applies to read commands */
726         default:
727                 /*
728                  * If we don't have access to the busy pin, we apply the given
729                  * command delay
730                  */
731                 if (!chip->dev_ready) {
732                         udelay(chip->chip_delay);
733                         return;
734                 }
735         }
736
737         /* Apply this short delay always to ensure that we do wait tWB in
738          * any case on any machine. */
739         ndelay(100);
740
741         nand_wait_ready(mtd);
742 }
743
744 /**
745  * panic_nand_get_device - [GENERIC] Get chip for selected access
746  * @chip:       the nand chip descriptor
747  * @mtd:        MTD device structure
748  * @new_state:  the state which is requested
749  *
750  * Used when in panic, no locks are taken.
751  */
752 static void panic_nand_get_device(struct nand_chip *chip,
753                       struct mtd_info *mtd, int new_state)
754 {
755         /* Hardware controller shared among independend devices */
756         chip->controller->active = chip;
757         chip->state = new_state;
758 }
759
760 /**
761  * nand_get_device - [GENERIC] Get chip for selected access
762  * @chip:       the nand chip descriptor
763  * @mtd:        MTD device structure
764  * @new_state:  the state which is requested
765  *
766  * Get the device and lock it for exclusive access
767  */
768 static int
769 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
770 {
771         spinlock_t *lock = &chip->controller->lock;
772         wait_queue_head_t *wq = &chip->controller->wq;
773         DECLARE_WAITQUEUE(wait, current);
774  retry:
775         spin_lock(lock);
776
777         /* Hardware controller shared among independent devices */
778         if (!chip->controller->active)
779                 chip->controller->active = chip;
780
781         if (chip->controller->active == chip && chip->state == FL_READY) {
782                 chip->state = new_state;
783                 spin_unlock(lock);
784                 return 0;
785         }
786         if (new_state == FL_PM_SUSPENDED) {
787                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
788                         chip->state = FL_PM_SUSPENDED;
789                         spin_unlock(lock);
790                         return 0;
791                 }
792         }
793         set_current_state(TASK_UNINTERRUPTIBLE);
794         add_wait_queue(wq, &wait);
795         spin_unlock(lock);
796         schedule();
797         remove_wait_queue(wq, &wait);
798         goto retry;
799 }
800
801 /**
802  * panic_nand_wait - [GENERIC]  wait until the command is done
803  * @mtd:        MTD device structure
804  * @chip:       NAND chip structure
805  * @timeo:      Timeout
806  *
807  * Wait for command done. This is a helper function for nand_wait used when
808  * we are in interrupt context. May happen when in panic and trying to write
809  * an oops trough mtdoops.
810  */
811 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
812                             unsigned long timeo)
813 {
814         int i;
815         for (i = 0; i < timeo; i++) {
816                 if (chip->dev_ready) {
817                         if (chip->dev_ready(mtd))
818                                 break;
819                 } else {
820                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
821                                 break;
822                 }
823                 mdelay(1);
824         }
825 }
826
827 /**
828  * nand_wait - [DEFAULT]  wait until the command is done
829  * @mtd:        MTD device structure
830  * @chip:       NAND chip structure
831  *
832  * Wait for command done. This applies to erase and program only
833  * Erase can take up to 400ms and program up to 20ms according to
834  * general NAND and SmartMedia specs
835  */
836 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
837 {
838
839         unsigned long timeo = jiffies;
840         int status, state = chip->state;
841
842         if (state == FL_ERASING)
843                 timeo += (HZ * 400) / 1000;
844         else
845                 timeo += (HZ * 20) / 1000;
846
847         led_trigger_event(nand_led_trigger, LED_FULL);
848
849         /* Apply this short delay always to ensure that we do wait tWB in
850          * any case on any machine. */
851         ndelay(100);
852
853         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
854                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
855         else
856                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
857
858         if (in_interrupt() || oops_in_progress)
859                 panic_nand_wait(mtd, chip, timeo);
860         else {
861                 while (time_before(jiffies, timeo)) {
862                         if (chip->dev_ready) {
863                                 if (chip->dev_ready(mtd))
864                                         break;
865                         } else {
866                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
867                                         break;
868                         }
869                         cond_resched();
870                 }
871         }
872         led_trigger_event(nand_led_trigger, LED_OFF);
873
874         status = (int)chip->read_byte(mtd);
875         return status;
876 }
877
878 /**
879  * __nand_unlock - [REPLACABLE] unlocks specified locked blockes
880  *
881  * @param mtd - mtd info
882  * @param ofs - offset to start unlock from
883  * @param len - length to unlock
884  * @invert -  when = 0, unlock the range of blocks within the lower and
885  *                      upper boundary address
886  *            whne = 1, unlock the range of blocks outside the boundaries
887  *                      of the lower and upper boundary address
888  *
889  * @return - unlock status
890  */
891 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
892                                         uint64_t len, int invert)
893 {
894         int ret = 0;
895         int status, page;
896         struct nand_chip *chip = mtd->priv;
897
898         /* Submit address of first page to unlock */
899         page = ofs >> chip->page_shift;
900         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
901
902         /* Submit address of last page to unlock */
903         page = (ofs + len) >> chip->page_shift;
904         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
905                                 (page | invert) & chip->pagemask);
906
907         /* Call wait ready function */
908         status = chip->waitfunc(mtd, chip);
909         udelay(1000);
910         /* See if device thinks it succeeded */
911         if (status & 0x01) {
912                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
913                                         __func__, status);
914                 ret = -EIO;
915         }
916
917         return ret;
918 }
919
920 /**
921  * nand_unlock - [REPLACABLE] unlocks specified locked blockes
922  *
923  * @param mtd - mtd info
924  * @param ofs - offset to start unlock from
925  * @param len - length to unlock
926  *
927  * @return - unlock status
928  */
929 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
930 {
931         int ret = 0;
932         int chipnr;
933         struct nand_chip *chip = mtd->priv;
934
935         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
936                         __func__, (unsigned long long)ofs, len);
937
938         if (check_offs_len(mtd, ofs, len))
939                 ret = -EINVAL;
940
941         /* Align to last block address if size addresses end of the device */
942         if (ofs + len == mtd->size)
943                 len -= mtd->erasesize;
944
945         nand_get_device(chip, mtd, FL_UNLOCKING);
946
947         /* Shift to get chip number */
948         chipnr = ofs >> chip->chip_shift;
949
950         chip->select_chip(mtd, chipnr);
951
952         /* Check, if it is write protected */
953         if (nand_check_wp(mtd)) {
954                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
955                                         __func__);
956                 ret = -EIO;
957                 goto out;
958         }
959
960         ret = __nand_unlock(mtd, ofs, len, 0);
961
962 out:
963         /* de-select the NAND device */
964         chip->select_chip(mtd, -1);
965
966         nand_release_device(mtd);
967
968         return ret;
969 }
970
971 /**
972  * nand_lock - [REPLACABLE] locks all blockes present in the device
973  *
974  * @param mtd - mtd info
975  * @param ofs - offset to start unlock from
976  * @param len - length to unlock
977  *
978  * @return - lock status
979  *
980  * This feature is not support in many NAND parts. 'Micron' NAND parts
981  * do have this feature, but it allows only to lock all blocks not for
982  * specified range for block.
983  *
984  * Implementing 'lock' feature by making use of 'unlock', for now.
985  */
986 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
987 {
988         int ret = 0;
989         int chipnr, status, page;
990         struct nand_chip *chip = mtd->priv;
991
992         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
993                         __func__, (unsigned long long)ofs, len);
994
995         if (check_offs_len(mtd, ofs, len))
996                 ret = -EINVAL;
997
998         nand_get_device(chip, mtd, FL_LOCKING);
999
1000         /* Shift to get chip number */
1001         chipnr = ofs >> chip->chip_shift;
1002
1003         chip->select_chip(mtd, chipnr);
1004
1005         /* Check, if it is write protected */
1006         if (nand_check_wp(mtd)) {
1007                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1008                                         __func__);
1009                 status = MTD_ERASE_FAILED;
1010                 ret = -EIO;
1011                 goto out;
1012         }
1013
1014         /* Submit address of first page to lock */
1015         page = ofs >> chip->page_shift;
1016         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1017
1018         /* Call wait ready function */
1019         status = chip->waitfunc(mtd, chip);
1020         udelay(1000);
1021         /* See if device thinks it succeeded */
1022         if (status & 0x01) {
1023                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1024                                         __func__, status);
1025                 ret = -EIO;
1026                 goto out;
1027         }
1028
1029         ret = __nand_unlock(mtd, ofs, len, 0x1);
1030
1031 out:
1032         /* de-select the NAND device */
1033         chip->select_chip(mtd, -1);
1034
1035         nand_release_device(mtd);
1036
1037         return ret;
1038 }
1039
1040 /**
1041  * nand_read_page_raw - [Intern] read raw page data without ecc
1042  * @mtd:        mtd info structure
1043  * @chip:       nand chip info structure
1044  * @buf:        buffer to store read data
1045  * @page:       page number to read
1046  *
1047  * Not for syndrome calculating ecc controllers, which use a special oob layout
1048  */
1049 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1050                               uint8_t *buf, int page)
1051 {
1052         chip->read_buf(mtd, buf, mtd->writesize);
1053         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1054         return 0;
1055 }
1056
1057 /**
1058  * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1059  * @mtd:        mtd info structure
1060  * @chip:       nand chip info structure
1061  * @buf:        buffer to store read data
1062  * @page:       page number to read
1063  *
1064  * We need a special oob layout and handling even when OOB isn't used.
1065  */
1066 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1067                               uint8_t *buf, int page)
1068 {
1069         int eccsize = chip->ecc.size;
1070         int eccbytes = chip->ecc.bytes;
1071         uint8_t *oob = chip->oob_poi;
1072         int steps, size;
1073
1074         for (steps = chip->ecc.steps; steps > 0; steps--) {
1075                 chip->read_buf(mtd, buf, eccsize);
1076                 buf += eccsize;
1077
1078                 if (chip->ecc.prepad) {
1079                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1080                         oob += chip->ecc.prepad;
1081                 }
1082
1083                 chip->read_buf(mtd, oob, eccbytes);
1084                 oob += eccbytes;
1085
1086                 if (chip->ecc.postpad) {
1087                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1088                         oob += chip->ecc.postpad;
1089                 }
1090         }
1091
1092         size = mtd->oobsize - (oob - chip->oob_poi);
1093         if (size)
1094                 chip->read_buf(mtd, oob, size);
1095
1096         return 0;
1097 }
1098
1099 /**
1100  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1101  * @mtd:        mtd info structure
1102  * @chip:       nand chip info structure
1103  * @buf:        buffer to store read data
1104  * @page:       page number to read
1105  */
1106 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1107                                 uint8_t *buf, int page)
1108 {
1109         int i, eccsize = chip->ecc.size;
1110         int eccbytes = chip->ecc.bytes;
1111         int eccsteps = chip->ecc.steps;
1112         uint8_t *p = buf;
1113         uint8_t *ecc_calc = chip->buffers->ecccalc;
1114         uint8_t *ecc_code = chip->buffers->ecccode;
1115         uint32_t *eccpos = chip->ecc.layout->eccpos;
1116
1117         chip->ecc.read_page_raw(mtd, chip, buf, page);
1118
1119         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1120                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1121
1122         for (i = 0; i < chip->ecc.total; i++)
1123                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1124
1125         eccsteps = chip->ecc.steps;
1126         p = buf;
1127
1128         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1129                 int stat;
1130
1131                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1132                 if (stat < 0)
1133                         mtd->ecc_stats.failed++;
1134                 else
1135                         mtd->ecc_stats.corrected += stat;
1136         }
1137         return 0;
1138 }
1139
1140 /**
1141  * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1142  * @mtd:        mtd info structure
1143  * @chip:       nand chip info structure
1144  * @data_offs:  offset of requested data within the page
1145  * @readlen:    data length
1146  * @bufpoi:     buffer to store read data
1147  */
1148 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1149 {
1150         int start_step, end_step, num_steps;
1151         uint32_t *eccpos = chip->ecc.layout->eccpos;
1152         uint8_t *p;
1153         int data_col_addr, i, gaps = 0;
1154         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1155         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1156
1157         /* Column address wihin the page aligned to ECC size (256bytes). */
1158         start_step = data_offs / chip->ecc.size;
1159         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1160         num_steps = end_step - start_step + 1;
1161
1162         /* Data size aligned to ECC ecc.size*/
1163         datafrag_len = num_steps * chip->ecc.size;
1164         eccfrag_len = num_steps * chip->ecc.bytes;
1165
1166         data_col_addr = start_step * chip->ecc.size;
1167         /* If we read not a page aligned data */
1168         if (data_col_addr != 0)
1169                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1170
1171         p = bufpoi + data_col_addr;
1172         chip->read_buf(mtd, p, datafrag_len);
1173
1174         /* Calculate  ECC */
1175         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1176                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1177
1178         /* The performance is faster if to position offsets
1179            according to ecc.pos. Let make sure here that
1180            there are no gaps in ecc positions */
1181         for (i = 0; i < eccfrag_len - 1; i++) {
1182                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1183                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1184                         gaps = 1;
1185                         break;
1186                 }
1187         }
1188         if (gaps) {
1189                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1190                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1191         } else {
1192                 /* send the command to read the particular ecc bytes */
1193                 /* take care about buswidth alignment in read_buf */
1194                 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1195                 aligned_len = eccfrag_len;
1196                 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1197                         aligned_len++;
1198                 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1199                         aligned_len++;
1200
1201                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1202                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1203         }
1204
1205         for (i = 0; i < eccfrag_len; i++)
1206                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1207
1208         p = bufpoi + data_col_addr;
1209         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1210                 int stat;
1211
1212                 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1213                 if (stat == -1)
1214                         mtd->ecc_stats.failed++;
1215                 else
1216                         mtd->ecc_stats.corrected += stat;
1217         }
1218         return 0;
1219 }
1220
1221 /**
1222  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1223  * @mtd:        mtd info structure
1224  * @chip:       nand chip info structure
1225  * @buf:        buffer to store read data
1226  * @page:       page number to read
1227  *
1228  * Not for syndrome calculating ecc controllers which need a special oob layout
1229  */
1230 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1231                                 uint8_t *buf, int page)
1232 {
1233         int i, eccsize = chip->ecc.size;
1234         int eccbytes = chip->ecc.bytes;
1235         int eccsteps = chip->ecc.steps;
1236         uint8_t *p = buf;
1237         uint8_t *ecc_calc = chip->buffers->ecccalc;
1238         uint8_t *ecc_code = chip->buffers->ecccode;
1239         uint32_t *eccpos = chip->ecc.layout->eccpos;
1240
1241         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1242                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1243                 chip->read_buf(mtd, p, eccsize);
1244                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1245         }
1246         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1247
1248         for (i = 0; i < chip->ecc.total; i++)
1249                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1250
1251         eccsteps = chip->ecc.steps;
1252         p = buf;
1253
1254         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1255                 int stat;
1256
1257                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1258                 if (stat < 0)
1259                         mtd->ecc_stats.failed++;
1260                 else
1261                         mtd->ecc_stats.corrected += stat;
1262         }
1263         return 0;
1264 }
1265
1266 /**
1267  * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1268  * @mtd:        mtd info structure
1269  * @chip:       nand chip info structure
1270  * @buf:        buffer to store read data
1271  * @page:       page number to read
1272  *
1273  * Hardware ECC for large page chips, require OOB to be read first.
1274  * For this ECC mode, the write_page method is re-used from ECC_HW.
1275  * These methods read/write ECC from the OOB area, unlike the
1276  * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1277  * "infix ECC" scheme and reads/writes ECC from the data area, by
1278  * overwriting the NAND manufacturer bad block markings.
1279  */
1280 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1281         struct nand_chip *chip, uint8_t *buf, int page)
1282 {
1283         int i, eccsize = chip->ecc.size;
1284         int eccbytes = chip->ecc.bytes;
1285         int eccsteps = chip->ecc.steps;
1286         uint8_t *p = buf;
1287         uint8_t *ecc_code = chip->buffers->ecccode;
1288         uint32_t *eccpos = chip->ecc.layout->eccpos;
1289         uint8_t *ecc_calc = chip->buffers->ecccalc;
1290
1291         /* Read the OOB area first */
1292         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1293         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1294         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1295
1296         for (i = 0; i < chip->ecc.total; i++)
1297                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1298
1299         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1300                 int stat;
1301
1302                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1303                 chip->read_buf(mtd, p, eccsize);
1304                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1305
1306                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1307                 if (stat < 0)
1308                         mtd->ecc_stats.failed++;
1309                 else
1310                         mtd->ecc_stats.corrected += stat;
1311         }
1312         return 0;
1313 }
1314
1315 /**
1316  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1317  * @mtd:        mtd info structure
1318  * @chip:       nand chip info structure
1319  * @buf:        buffer to store read data
1320  * @page:       page number to read
1321  *
1322  * The hw generator calculates the error syndrome automatically. Therefor
1323  * we need a special oob layout and handling.
1324  */
1325 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1326                                    uint8_t *buf, int page)
1327 {
1328         int i, eccsize = chip->ecc.size;
1329         int eccbytes = chip->ecc.bytes;
1330         int eccsteps = chip->ecc.steps;
1331         uint8_t *p = buf;
1332         uint8_t *oob = chip->oob_poi;
1333
1334         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1335                 int stat;
1336
1337                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1338                 chip->read_buf(mtd, p, eccsize);
1339
1340                 if (chip->ecc.prepad) {
1341                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1342                         oob += chip->ecc.prepad;
1343                 }
1344
1345                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1346                 chip->read_buf(mtd, oob, eccbytes);
1347                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1348
1349                 if (stat < 0)
1350                         mtd->ecc_stats.failed++;
1351                 else
1352                         mtd->ecc_stats.corrected += stat;
1353
1354                 oob += eccbytes;
1355
1356                 if (chip->ecc.postpad) {
1357                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1358                         oob += chip->ecc.postpad;
1359                 }
1360         }
1361
1362         /* Calculate remaining oob bytes */
1363         i = mtd->oobsize - (oob - chip->oob_poi);
1364         if (i)
1365                 chip->read_buf(mtd, oob, i);
1366
1367         return 0;
1368 }
1369
1370 /**
1371  * nand_transfer_oob - [Internal] Transfer oob to client buffer
1372  * @chip:       nand chip structure
1373  * @oob:        oob destination address
1374  * @ops:        oob ops structure
1375  * @len:        size of oob to transfer
1376  */
1377 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1378                                   struct mtd_oob_ops *ops, size_t len)
1379 {
1380         switch(ops->mode) {
1381
1382         case MTD_OOB_PLACE:
1383         case MTD_OOB_RAW:
1384                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1385                 return oob + len;
1386
1387         case MTD_OOB_AUTO: {
1388                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1389                 uint32_t boffs = 0, roffs = ops->ooboffs;
1390                 size_t bytes = 0;
1391
1392                 for(; free->length && len; free++, len -= bytes) {
1393                         /* Read request not from offset 0 ? */
1394                         if (unlikely(roffs)) {
1395                                 if (roffs >= free->length) {
1396                                         roffs -= free->length;
1397                                         continue;
1398                                 }
1399                                 boffs = free->offset + roffs;
1400                                 bytes = min_t(size_t, len,
1401                                               (free->length - roffs));
1402                                 roffs = 0;
1403                         } else {
1404                                 bytes = min_t(size_t, len, free->length);
1405                                 boffs = free->offset;
1406                         }
1407                         memcpy(oob, chip->oob_poi + boffs, bytes);
1408                         oob += bytes;
1409                 }
1410                 return oob;
1411         }
1412         default:
1413                 BUG();
1414         }
1415         return NULL;
1416 }
1417
1418 /**
1419  * nand_do_read_ops - [Internal] Read data with ECC
1420  *
1421  * @mtd:        MTD device structure
1422  * @from:       offset to read from
1423  * @ops:        oob ops structure
1424  *
1425  * Internal function. Called with chip held.
1426  */
1427 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1428                             struct mtd_oob_ops *ops)
1429 {
1430         int chipnr, page, realpage, col, bytes, aligned;
1431         struct nand_chip *chip = mtd->priv;
1432         struct mtd_ecc_stats stats;
1433         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1434         int sndcmd = 1;
1435         int ret = 0;
1436         uint32_t readlen = ops->len;
1437         uint32_t oobreadlen = ops->ooblen;
1438         uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1439                 mtd->oobavail : mtd->oobsize;
1440
1441         uint8_t *bufpoi, *oob, *buf;
1442
1443         stats = mtd->ecc_stats;
1444
1445         chipnr = (int)(from >> chip->chip_shift);
1446         chip->select_chip(mtd, chipnr);
1447
1448         realpage = (int)(from >> chip->page_shift);
1449         page = realpage & chip->pagemask;
1450
1451         col = (int)(from & (mtd->writesize - 1));
1452
1453         buf = ops->datbuf;
1454         oob = ops->oobbuf;
1455
1456         while(1) {
1457                 bytes = min(mtd->writesize - col, readlen);
1458                 aligned = (bytes == mtd->writesize);
1459
1460                 /* Is the current page in the buffer ? */
1461                 if (realpage != chip->pagebuf || oob) {
1462                         bufpoi = aligned ? buf : chip->buffers->databuf;
1463
1464                         if (likely(sndcmd)) {
1465                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1466                                 sndcmd = 0;
1467                         }
1468
1469                         /* Now read the page into the buffer */
1470                         if (unlikely(ops->mode == MTD_OOB_RAW))
1471                                 ret = chip->ecc.read_page_raw(mtd, chip,
1472                                                               bufpoi, page);
1473                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1474                                 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1475                         else
1476                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1477                                                           page);
1478                         if (ret < 0)
1479                                 break;
1480
1481                         /* Transfer not aligned data */
1482                         if (!aligned) {
1483                                 if (!NAND_SUBPAGE_READ(chip) && !oob)
1484                                         chip->pagebuf = realpage;
1485                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1486                         }
1487
1488                         buf += bytes;
1489
1490                         if (unlikely(oob)) {
1491
1492                                 int toread = min(oobreadlen, max_oobsize);
1493
1494                                 if (toread) {
1495                                         oob = nand_transfer_oob(chip,
1496                                                 oob, ops, toread);
1497                                         oobreadlen -= toread;
1498                                 }
1499                         }
1500
1501                         if (!(chip->options & NAND_NO_READRDY)) {
1502                                 /*
1503                                  * Apply delay or wait for ready/busy pin. Do
1504                                  * this before the AUTOINCR check, so no
1505                                  * problems arise if a chip which does auto
1506                                  * increment is marked as NOAUTOINCR by the
1507                                  * board driver.
1508                                  */
1509                                 if (!chip->dev_ready)
1510                                         udelay(chip->chip_delay);
1511                                 else
1512                                         nand_wait_ready(mtd);
1513                         }
1514                 } else {
1515                         memcpy(buf, chip->buffers->databuf + col, bytes);
1516                         buf += bytes;
1517                 }
1518
1519                 readlen -= bytes;
1520
1521                 if (!readlen)
1522                         break;
1523
1524                 /* For subsequent reads align to page boundary. */
1525                 col = 0;
1526                 /* Increment page address */
1527                 realpage++;
1528
1529                 page = realpage & chip->pagemask;
1530                 /* Check, if we cross a chip boundary */
1531                 if (!page) {
1532                         chipnr++;
1533                         chip->select_chip(mtd, -1);
1534                         chip->select_chip(mtd, chipnr);
1535                 }
1536
1537                 /* Check, if the chip supports auto page increment
1538                  * or if we have hit a block boundary.
1539                  */
1540                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1541                         sndcmd = 1;
1542         }
1543
1544         ops->retlen = ops->len - (size_t) readlen;
1545         if (oob)
1546                 ops->oobretlen = ops->ooblen - oobreadlen;
1547
1548         if (ret)
1549                 return ret;
1550
1551         if (mtd->ecc_stats.failed - stats.failed)
1552                 return -EBADMSG;
1553
1554         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1555 }
1556
1557 /**
1558  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1559  * @mtd:        MTD device structure
1560  * @from:       offset to read from
1561  * @len:        number of bytes to read
1562  * @retlen:     pointer to variable to store the number of read bytes
1563  * @buf:        the databuffer to put data
1564  *
1565  * Get hold of the chip and call nand_do_read
1566  */
1567 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1568                      size_t *retlen, uint8_t *buf)
1569 {
1570         struct nand_chip *chip = mtd->priv;
1571         int ret;
1572
1573         /* Do not allow reads past end of device */
1574         if ((from + len) > mtd->size)
1575                 return -EINVAL;
1576         if (!len)
1577                 return 0;
1578
1579         nand_get_device(chip, mtd, FL_READING);
1580
1581         chip->ops.len = len;
1582         chip->ops.datbuf = buf;
1583         chip->ops.oobbuf = NULL;
1584
1585         ret = nand_do_read_ops(mtd, from, &chip->ops);
1586
1587         *retlen = chip->ops.retlen;
1588
1589         nand_release_device(mtd);
1590
1591         return ret;
1592 }
1593
1594 /**
1595  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1596  * @mtd:        mtd info structure
1597  * @chip:       nand chip info structure
1598  * @page:       page number to read
1599  * @sndcmd:     flag whether to issue read command or not
1600  */
1601 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1602                              int page, int sndcmd)
1603 {
1604         if (sndcmd) {
1605                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1606                 sndcmd = 0;
1607         }
1608         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1609         return sndcmd;
1610 }
1611
1612 /**
1613  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1614  *                          with syndromes
1615  * @mtd:        mtd info structure
1616  * @chip:       nand chip info structure
1617  * @page:       page number to read
1618  * @sndcmd:     flag whether to issue read command or not
1619  */
1620 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1621                                   int page, int sndcmd)
1622 {
1623         uint8_t *buf = chip->oob_poi;
1624         int length = mtd->oobsize;
1625         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1626         int eccsize = chip->ecc.size;
1627         uint8_t *bufpoi = buf;
1628         int i, toread, sndrnd = 0, pos;
1629
1630         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1631         for (i = 0; i < chip->ecc.steps; i++) {
1632                 if (sndrnd) {
1633                         pos = eccsize + i * (eccsize + chunk);
1634                         if (mtd->writesize > 512)
1635                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1636                         else
1637                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1638                 } else
1639                         sndrnd = 1;
1640                 toread = min_t(int, length, chunk);
1641                 chip->read_buf(mtd, bufpoi, toread);
1642                 bufpoi += toread;
1643                 length -= toread;
1644         }
1645         if (length > 0)
1646                 chip->read_buf(mtd, bufpoi, length);
1647
1648         return 1;
1649 }
1650
1651 /**
1652  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1653  * @mtd:        mtd info structure
1654  * @chip:       nand chip info structure
1655  * @page:       page number to write
1656  */
1657 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1658                               int page)
1659 {
1660         int status = 0;
1661         const uint8_t *buf = chip->oob_poi;
1662         int length = mtd->oobsize;
1663
1664         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1665         chip->write_buf(mtd, buf, length);
1666         /* Send command to program the OOB data */
1667         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1668
1669         status = chip->waitfunc(mtd, chip);
1670
1671         return status & NAND_STATUS_FAIL ? -EIO : 0;
1672 }
1673
1674 /**
1675  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1676  *                           with syndrome - only for large page flash !
1677  * @mtd:        mtd info structure
1678  * @chip:       nand chip info structure
1679  * @page:       page number to write
1680  */
1681 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1682                                    struct nand_chip *chip, int page)
1683 {
1684         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1685         int eccsize = chip->ecc.size, length = mtd->oobsize;
1686         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1687         const uint8_t *bufpoi = chip->oob_poi;
1688
1689         /*
1690          * data-ecc-data-ecc ... ecc-oob
1691          * or
1692          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1693          */
1694         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1695                 pos = steps * (eccsize + chunk);
1696                 steps = 0;
1697         } else
1698                 pos = eccsize;
1699
1700         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1701         for (i = 0; i < steps; i++) {
1702                 if (sndcmd) {
1703                         if (mtd->writesize <= 512) {
1704                                 uint32_t fill = 0xFFFFFFFF;
1705
1706                                 len = eccsize;
1707                                 while (len > 0) {
1708                                         int num = min_t(int, len, 4);
1709                                         chip->write_buf(mtd, (uint8_t *)&fill,
1710                                                         num);
1711                                         len -= num;
1712                                 }
1713                         } else {
1714                                 pos = eccsize + i * (eccsize + chunk);
1715                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1716                         }
1717                 } else
1718                         sndcmd = 1;
1719                 len = min_t(int, length, chunk);
1720                 chip->write_buf(mtd, bufpoi, len);
1721                 bufpoi += len;
1722                 length -= len;
1723         }
1724         if (length > 0)
1725                 chip->write_buf(mtd, bufpoi, length);
1726
1727         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1728         status = chip->waitfunc(mtd, chip);
1729
1730         return status & NAND_STATUS_FAIL ? -EIO : 0;
1731 }
1732
1733 /**
1734  * nand_do_read_oob - [Intern] NAND read out-of-band
1735  * @mtd:        MTD device structure
1736  * @from:       offset to read from
1737  * @ops:        oob operations description structure
1738  *
1739  * NAND read out-of-band data from the spare area
1740  */
1741 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1742                             struct mtd_oob_ops *ops)
1743 {
1744         int page, realpage, chipnr, sndcmd = 1;
1745         struct nand_chip *chip = mtd->priv;
1746         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1747         int readlen = ops->ooblen;
1748         int len;
1749         uint8_t *buf = ops->oobbuf;
1750
1751         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1752                         __func__, (unsigned long long)from, readlen);
1753
1754         if (ops->mode == MTD_OOB_AUTO)
1755                 len = chip->ecc.layout->oobavail;
1756         else
1757                 len = mtd->oobsize;
1758
1759         if (unlikely(ops->ooboffs >= len)) {
1760                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1761                                         "outside oob\n", __func__);
1762                 return -EINVAL;
1763         }
1764
1765         /* Do not allow reads past end of device */
1766         if (unlikely(from >= mtd->size ||
1767                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1768                                         (from >> chip->page_shift)) * len)) {
1769                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1770                                         "of device\n", __func__);
1771                 return -EINVAL;
1772         }
1773
1774         chipnr = (int)(from >> chip->chip_shift);
1775         chip->select_chip(mtd, chipnr);
1776
1777         /* Shift to get page */
1778         realpage = (int)(from >> chip->page_shift);
1779         page = realpage & chip->pagemask;
1780
1781         while(1) {
1782                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1783
1784                 len = min(len, readlen);
1785                 buf = nand_transfer_oob(chip, buf, ops, len);
1786
1787                 if (!(chip->options & NAND_NO_READRDY)) {
1788                         /*
1789                          * Apply delay or wait for ready/busy pin. Do this
1790                          * before the AUTOINCR check, so no problems arise if a
1791                          * chip which does auto increment is marked as
1792                          * NOAUTOINCR by the board driver.
1793                          */
1794                         if (!chip->dev_ready)
1795                                 udelay(chip->chip_delay);
1796                         else
1797                                 nand_wait_ready(mtd);
1798                 }
1799
1800                 readlen -= len;
1801                 if (!readlen)
1802                         break;
1803
1804                 /* Increment page address */
1805                 realpage++;
1806
1807                 page = realpage & chip->pagemask;
1808                 /* Check, if we cross a chip boundary */
1809                 if (!page) {
1810                         chipnr++;
1811                         chip->select_chip(mtd, -1);
1812                         chip->select_chip(mtd, chipnr);
1813                 }
1814
1815                 /* Check, if the chip supports auto page increment
1816                  * or if we have hit a block boundary.
1817                  */
1818                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1819                         sndcmd = 1;
1820         }
1821
1822         ops->oobretlen = ops->ooblen;
1823         return 0;
1824 }
1825
1826 /**
1827  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1828  * @mtd:        MTD device structure
1829  * @from:       offset to read from
1830  * @ops:        oob operation description structure
1831  *
1832  * NAND read data and/or out-of-band data
1833  */
1834 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1835                          struct mtd_oob_ops *ops)
1836 {
1837         struct nand_chip *chip = mtd->priv;
1838         int ret = -ENOTSUPP;
1839
1840         ops->retlen = 0;
1841
1842         /* Do not allow reads past end of device */
1843         if (ops->datbuf && (from + ops->len) > mtd->size) {
1844                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1845                                 "beyond end of device\n", __func__);
1846                 return -EINVAL;
1847         }
1848
1849         nand_get_device(chip, mtd, FL_READING);
1850
1851         switch(ops->mode) {
1852         case MTD_OOB_PLACE:
1853         case MTD_OOB_AUTO:
1854         case MTD_OOB_RAW:
1855                 break;
1856
1857         default:
1858                 goto out;
1859         }
1860
1861         if (!ops->datbuf)
1862                 ret = nand_do_read_oob(mtd, from, ops);
1863         else
1864                 ret = nand_do_read_ops(mtd, from, ops);
1865
1866  out:
1867         nand_release_device(mtd);
1868         return ret;
1869 }
1870
1871
1872 /**
1873  * nand_write_page_raw - [Intern] raw page write function
1874  * @mtd:        mtd info structure
1875  * @chip:       nand chip info structure
1876  * @buf:        data buffer
1877  *
1878  * Not for syndrome calculating ecc controllers, which use a special oob layout
1879  */
1880 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1881                                 const uint8_t *buf)
1882 {
1883         chip->write_buf(mtd, buf, mtd->writesize);
1884         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1885 }
1886
1887 /**
1888  * nand_write_page_raw_syndrome - [Intern] raw page write function
1889  * @mtd:        mtd info structure
1890  * @chip:       nand chip info structure
1891  * @buf:        data buffer
1892  *
1893  * We need a special oob layout and handling even when ECC isn't checked.
1894  */
1895 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1896                                 const uint8_t *buf)
1897 {
1898         int eccsize = chip->ecc.size;
1899         int eccbytes = chip->ecc.bytes;
1900         uint8_t *oob = chip->oob_poi;
1901         int steps, size;
1902
1903         for (steps = chip->ecc.steps; steps > 0; steps--) {
1904                 chip->write_buf(mtd, buf, eccsize);
1905                 buf += eccsize;
1906
1907                 if (chip->ecc.prepad) {
1908                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1909                         oob += chip->ecc.prepad;
1910                 }
1911
1912                 chip->read_buf(mtd, oob, eccbytes);
1913                 oob += eccbytes;
1914
1915                 if (chip->ecc.postpad) {
1916                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1917                         oob += chip->ecc.postpad;
1918                 }
1919         }
1920
1921         size = mtd->oobsize - (oob - chip->oob_poi);
1922         if (size)
1923                 chip->write_buf(mtd, oob, size);
1924 }
1925 /**
1926  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1927  * @mtd:        mtd info structure
1928  * @chip:       nand chip info structure
1929  * @buf:        data buffer
1930  */
1931 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1932                                   const uint8_t *buf)
1933 {
1934         int i, eccsize = chip->ecc.size;
1935         int eccbytes = chip->ecc.bytes;
1936         int eccsteps = chip->ecc.steps;
1937         uint8_t *ecc_calc = chip->buffers->ecccalc;
1938         const uint8_t *p = buf;
1939         uint32_t *eccpos = chip->ecc.layout->eccpos;
1940
1941         /* Software ecc calculation */
1942         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1943                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1944
1945         for (i = 0; i < chip->ecc.total; i++)
1946                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1947
1948         chip->ecc.write_page_raw(mtd, chip, buf);
1949 }
1950
1951 /**
1952  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1953  * @mtd:        mtd info structure
1954  * @chip:       nand chip info structure
1955  * @buf:        data buffer
1956  */
1957 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1958                                   const uint8_t *buf)
1959 {
1960         int i, eccsize = chip->ecc.size;
1961         int eccbytes = chip->ecc.bytes;
1962         int eccsteps = chip->ecc.steps;
1963         uint8_t *ecc_calc = chip->buffers->ecccalc;
1964         const uint8_t *p = buf;
1965         uint32_t *eccpos = chip->ecc.layout->eccpos;
1966
1967         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1968                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1969                 chip->write_buf(mtd, p, eccsize);
1970                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1971         }
1972
1973         for (i = 0; i < chip->ecc.total; i++)
1974                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1975
1976         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1977 }
1978
1979 /**
1980  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1981  * @mtd:        mtd info structure
1982  * @chip:       nand chip info structure
1983  * @buf:        data buffer
1984  *
1985  * The hw generator calculates the error syndrome automatically. Therefor
1986  * we need a special oob layout and handling.
1987  */
1988 static void nand_write_page_syndrome(struct mtd_info *mtd,
1989                                     struct nand_chip *chip, const uint8_t *buf)
1990 {
1991         int i, eccsize = chip->ecc.size;
1992         int eccbytes = chip->ecc.bytes;
1993         int eccsteps = chip->ecc.steps;
1994         const uint8_t *p = buf;
1995         uint8_t *oob = chip->oob_poi;
1996
1997         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1998
1999                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2000                 chip->write_buf(mtd, p, eccsize);
2001
2002                 if (chip->ecc.prepad) {
2003                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2004                         oob += chip->ecc.prepad;
2005                 }
2006
2007                 chip->ecc.calculate(mtd, p, oob);
2008                 chip->write_buf(mtd, oob, eccbytes);
2009                 oob += eccbytes;
2010
2011                 if (chip->ecc.postpad) {
2012                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2013                         oob += chip->ecc.postpad;
2014                 }
2015         }
2016
2017         /* Calculate remaining oob bytes */
2018         i = mtd->oobsize - (oob - chip->oob_poi);
2019         if (i)
2020                 chip->write_buf(mtd, oob, i);
2021 }
2022
2023 /**
2024  * nand_write_page - [REPLACEABLE] write one page
2025  * @mtd:        MTD device structure
2026  * @chip:       NAND chip descriptor
2027  * @buf:        the data to write
2028  * @page:       page number to write
2029  * @cached:     cached programming
2030  * @raw:        use _raw version of write_page
2031  */
2032 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2033                            const uint8_t *buf, int page, int cached, int raw)
2034 {
2035         int status;
2036
2037         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2038
2039         if (unlikely(raw))
2040                 chip->ecc.write_page_raw(mtd, chip, buf);
2041         else
2042                 chip->ecc.write_page(mtd, chip, buf);
2043
2044         /*
2045          * Cached progamming disabled for now, Not sure if its worth the
2046          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2047          */
2048         cached = 0;
2049
2050         if (!cached || !(chip->options & NAND_CACHEPRG)) {
2051
2052                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2053                 status = chip->waitfunc(mtd, chip);
2054                 /*
2055                  * See if operation failed and additional status checks are
2056                  * available
2057                  */
2058                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2059                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2060                                                page);
2061
2062                 if (status & NAND_STATUS_FAIL)
2063                         return -EIO;
2064         } else {
2065                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2066                 status = chip->waitfunc(mtd, chip);
2067         }
2068
2069 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2070         /* Send command to read back the data */
2071         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2072
2073         if (chip->verify_buf(mtd, buf, mtd->writesize))
2074                 return -EIO;
2075 #endif
2076         return 0;
2077 }
2078
2079 /**
2080  * nand_fill_oob - [Internal] Transfer client buffer to oob
2081  * @chip:       nand chip structure
2082  * @oob:        oob data buffer
2083  * @ops:        oob ops structure
2084  */
2085 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2086                                                 struct mtd_oob_ops *ops)
2087 {
2088         switch(ops->mode) {
2089
2090         case MTD_OOB_PLACE:
2091         case MTD_OOB_RAW:
2092                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2093                 return oob + len;
2094
2095         case MTD_OOB_AUTO: {
2096                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2097                 uint32_t boffs = 0, woffs = ops->ooboffs;
2098                 size_t bytes = 0;
2099
2100                 for(; free->length && len; free++, len -= bytes) {
2101                         /* Write request not from offset 0 ? */
2102                         if (unlikely(woffs)) {
2103                                 if (woffs >= free->length) {
2104                                         woffs -= free->length;
2105                                         continue;
2106                                 }
2107                                 boffs = free->offset + woffs;
2108                                 bytes = min_t(size_t, len,
2109                                               (free->length - woffs));
2110                                 woffs = 0;
2111                         } else {
2112                                 bytes = min_t(size_t, len, free->length);
2113                                 boffs = free->offset;
2114                         }
2115                         memcpy(chip->oob_poi + boffs, oob, bytes);
2116                         oob += bytes;
2117                 }
2118                 return oob;
2119         }
2120         default:
2121                 BUG();
2122         }
2123         return NULL;
2124 }
2125
2126 #define NOTALIGNED(x)   (x & (chip->subpagesize - 1)) != 0
2127
2128 /**
2129  * nand_do_write_ops - [Internal] NAND write with ECC
2130  * @mtd:        MTD device structure
2131  * @to:         offset to write to
2132  * @ops:        oob operations description structure
2133  *
2134  * NAND write with ECC
2135  */
2136 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2137                              struct mtd_oob_ops *ops)
2138 {
2139         int chipnr, realpage, page, blockmask, column;
2140         struct nand_chip *chip = mtd->priv;
2141         uint32_t writelen = ops->len;
2142
2143         uint32_t oobwritelen = ops->ooblen;
2144         uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2145                                 mtd->oobavail : mtd->oobsize;
2146
2147         uint8_t *oob = ops->oobbuf;
2148         uint8_t *buf = ops->datbuf;
2149         int ret, subpage;
2150
2151         ops->retlen = 0;
2152         if (!writelen)
2153                 return 0;
2154
2155         /* reject writes, which are not page aligned */
2156         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2157                 printk(KERN_NOTICE "%s: Attempt to write not "
2158                                 "page aligned data\n", __func__);
2159                 return -EINVAL;
2160         }
2161
2162         column = to & (mtd->writesize - 1);
2163         subpage = column || (writelen & (mtd->writesize - 1));
2164
2165         if (subpage && oob)
2166                 return -EINVAL;
2167
2168         chipnr = (int)(to >> chip->chip_shift);
2169         chip->select_chip(mtd, chipnr);
2170
2171         /* Check, if it is write protected */
2172         if (nand_check_wp(mtd))
2173                 return -EIO;
2174
2175         realpage = (int)(to >> chip->page_shift);
2176         page = realpage & chip->pagemask;
2177         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2178
2179         /* Invalidate the page cache, when we write to the cached page */
2180         if (to <= (chip->pagebuf << chip->page_shift) &&
2181             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2182                 chip->pagebuf = -1;
2183
2184         /* If we're not given explicit OOB data, let it be 0xFF */
2185         if (likely(!oob))
2186                 memset(chip->oob_poi, 0xff, mtd->oobsize);
2187
2188         /* Don't allow multipage oob writes with offset */
2189         if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2190                 return -EINVAL;
2191
2192         while(1) {
2193                 int bytes = mtd->writesize;
2194                 int cached = writelen > bytes && page != blockmask;
2195                 uint8_t *wbuf = buf;
2196
2197                 /* Partial page write ? */
2198                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2199                         cached = 0;
2200                         bytes = min_t(int, bytes - column, (int) writelen);
2201                         chip->pagebuf = -1;
2202                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2203                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2204                         wbuf = chip->buffers->databuf;
2205                 }
2206
2207                 if (unlikely(oob)) {
2208                         size_t len = min(oobwritelen, oobmaxlen);
2209                         oob = nand_fill_oob(chip, oob, len, ops);
2210                         oobwritelen -= len;
2211                 }
2212
2213                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2214                                        (ops->mode == MTD_OOB_RAW));
2215                 if (ret)
2216                         break;
2217
2218                 writelen -= bytes;
2219                 if (!writelen)
2220                         break;
2221
2222                 column = 0;
2223                 buf += bytes;
2224                 realpage++;
2225
2226                 page = realpage & chip->pagemask;
2227                 /* Check, if we cross a chip boundary */
2228                 if (!page) {
2229                         chipnr++;
2230                         chip->select_chip(mtd, -1);
2231                         chip->select_chip(mtd, chipnr);
2232                 }
2233         }
2234
2235         ops->retlen = ops->len - writelen;
2236         if (unlikely(oob))
2237                 ops->oobretlen = ops->ooblen;
2238         return ret;
2239 }
2240
2241 /**
2242  * panic_nand_write - [MTD Interface] NAND write with ECC
2243  * @mtd:        MTD device structure
2244  * @to:         offset to write to
2245  * @len:        number of bytes to write
2246  * @retlen:     pointer to variable to store the number of written bytes
2247  * @buf:        the data to write
2248  *
2249  * NAND write with ECC. Used when performing writes in interrupt context, this
2250  * may for example be called by mtdoops when writing an oops while in panic.
2251  */
2252 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2253                             size_t *retlen, const uint8_t *buf)
2254 {
2255         struct nand_chip *chip = mtd->priv;
2256         int ret;
2257
2258         /* Do not allow reads past end of device */
2259         if ((to + len) > mtd->size)
2260                 return -EINVAL;
2261         if (!len)
2262                 return 0;
2263
2264         /* Wait for the device to get ready.  */
2265         panic_nand_wait(mtd, chip, 400);
2266
2267         /* Grab the device.  */
2268         panic_nand_get_device(chip, mtd, FL_WRITING);
2269
2270         chip->ops.len = len;
2271         chip->ops.datbuf = (uint8_t *)buf;
2272         chip->ops.oobbuf = NULL;
2273
2274         ret = nand_do_write_ops(mtd, to, &chip->ops);
2275
2276         *retlen = chip->ops.retlen;
2277         return ret;
2278 }
2279
2280 /**
2281  * nand_write - [MTD Interface] NAND write with ECC
2282  * @mtd:        MTD device structure
2283  * @to:         offset to write to
2284  * @len:        number of bytes to write
2285  * @retlen:     pointer to variable to store the number of written bytes
2286  * @buf:        the data to write
2287  *
2288  * NAND write with ECC
2289  */
2290 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2291                           size_t *retlen, const uint8_t *buf)
2292 {
2293         struct nand_chip *chip = mtd->priv;
2294         int ret;
2295
2296         /* Do not allow reads past end of device */
2297         if ((to + len) > mtd->size)
2298                 return -EINVAL;
2299         if (!len)
2300                 return 0;
2301
2302         nand_get_device(chip, mtd, FL_WRITING);
2303
2304         chip->ops.len = len;
2305         chip->ops.datbuf = (uint8_t *)buf;
2306         chip->ops.oobbuf = NULL;
2307
2308         ret = nand_do_write_ops(mtd, to, &chip->ops);
2309
2310         *retlen = chip->ops.retlen;
2311
2312         nand_release_device(mtd);
2313
2314         return ret;
2315 }
2316
2317 /**
2318  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2319  * @mtd:        MTD device structure
2320  * @to:         offset to write to
2321  * @ops:        oob operation description structure
2322  *
2323  * NAND write out-of-band
2324  */
2325 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2326                              struct mtd_oob_ops *ops)
2327 {
2328         int chipnr, page, status, len;
2329         struct nand_chip *chip = mtd->priv;
2330
2331         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2332                          __func__, (unsigned int)to, (int)ops->ooblen);
2333
2334         if (ops->mode == MTD_OOB_AUTO)
2335                 len = chip->ecc.layout->oobavail;
2336         else
2337                 len = mtd->oobsize;
2338
2339         /* Do not allow write past end of page */
2340         if ((ops->ooboffs + ops->ooblen) > len) {
2341                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2342                                 "past end of page\n", __func__);
2343                 return -EINVAL;
2344         }
2345
2346         if (unlikely(ops->ooboffs >= len)) {
2347                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2348                                 "write outside oob\n", __func__);
2349                 return -EINVAL;
2350         }
2351
2352         /* Do not allow reads past end of device */
2353         if (unlikely(to >= mtd->size ||
2354                      ops->ooboffs + ops->ooblen >
2355                         ((mtd->size >> chip->page_shift) -
2356                          (to >> chip->page_shift)) * len)) {
2357                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2358                                 "end of device\n", __func__);
2359                 return -EINVAL;
2360         }
2361
2362         chipnr = (int)(to >> chip->chip_shift);
2363         chip->select_chip(mtd, chipnr);
2364
2365         /* Shift to get page */
2366         page = (int)(to >> chip->page_shift);
2367
2368         /*
2369          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2370          * of my DiskOnChip 2000 test units) will clear the whole data page too
2371          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2372          * it in the doc2000 driver in August 1999.  dwmw2.
2373          */
2374         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2375
2376         /* Check, if it is write protected */
2377         if (nand_check_wp(mtd))
2378                 return -EROFS;
2379
2380         /* Invalidate the page cache, if we write to the cached page */
2381         if (page == chip->pagebuf)
2382                 chip->pagebuf = -1;
2383
2384         memset(chip->oob_poi, 0xff, mtd->oobsize);
2385         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2386         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2387         memset(chip->oob_poi, 0xff, mtd->oobsize);
2388
2389         if (status)
2390                 return status;
2391
2392         ops->oobretlen = ops->ooblen;
2393
2394         return 0;
2395 }
2396
2397 /**
2398  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2399  * @mtd:        MTD device structure
2400  * @to:         offset to write to
2401  * @ops:        oob operation description structure
2402  */
2403 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2404                           struct mtd_oob_ops *ops)
2405 {
2406         struct nand_chip *chip = mtd->priv;
2407         int ret = -ENOTSUPP;
2408
2409         ops->retlen = 0;
2410
2411         /* Do not allow writes past end of device */
2412         if (ops->datbuf && (to + ops->len) > mtd->size) {
2413                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2414                                 "end of device\n", __func__);
2415                 return -EINVAL;
2416         }
2417
2418         nand_get_device(chip, mtd, FL_WRITING);
2419
2420         switch(ops->mode) {
2421         case MTD_OOB_PLACE:
2422         case MTD_OOB_AUTO:
2423         case MTD_OOB_RAW:
2424                 break;
2425
2426         default:
2427                 goto out;
2428         }
2429
2430         if (!ops->datbuf)
2431                 ret = nand_do_write_oob(mtd, to, ops);
2432         else
2433                 ret = nand_do_write_ops(mtd, to, ops);
2434
2435  out:
2436         nand_release_device(mtd);
2437         return ret;
2438 }
2439
2440 /**
2441  * single_erease_cmd - [GENERIC] NAND standard block erase command function
2442  * @mtd:        MTD device structure
2443  * @page:       the page address of the block which will be erased
2444  *
2445  * Standard erase command for NAND chips
2446  */
2447 static void single_erase_cmd(struct mtd_info *mtd, int page)
2448 {
2449         struct nand_chip *chip = mtd->priv;
2450         /* Send commands to erase a block */
2451         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2452         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2453 }
2454
2455 /**
2456  * multi_erease_cmd - [GENERIC] AND specific block erase command function
2457  * @mtd:        MTD device structure
2458  * @page:       the page address of the block which will be erased
2459  *
2460  * AND multi block erase command function
2461  * Erase 4 consecutive blocks
2462  */
2463 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2464 {
2465         struct nand_chip *chip = mtd->priv;
2466         /* Send commands to erase a block */
2467         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2468         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2469         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2470         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2471         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2472 }
2473
2474 /**
2475  * nand_erase - [MTD Interface] erase block(s)
2476  * @mtd:        MTD device structure
2477  * @instr:      erase instruction
2478  *
2479  * Erase one ore more blocks
2480  */
2481 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2482 {
2483         return nand_erase_nand(mtd, instr, 0);
2484 }
2485
2486 #define BBT_PAGE_MASK   0xffffff3f
2487 /**
2488  * nand_erase_nand - [Internal] erase block(s)
2489  * @mtd:        MTD device structure
2490  * @instr:      erase instruction
2491  * @allowbbt:   allow erasing the bbt area
2492  *
2493  * Erase one ore more blocks
2494  */
2495 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2496                     int allowbbt)
2497 {
2498         int page, status, pages_per_block, ret, chipnr;
2499         struct nand_chip *chip = mtd->priv;
2500         loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2501         unsigned int bbt_masked_page = 0xffffffff;
2502         loff_t len;
2503
2504         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2505                                 __func__, (unsigned long long)instr->addr,
2506                                 (unsigned long long)instr->len);
2507
2508         if (check_offs_len(mtd, instr->addr, instr->len))
2509                 return -EINVAL;
2510
2511         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2512
2513         /* Grab the lock and see if the device is available */
2514         nand_get_device(chip, mtd, FL_ERASING);
2515
2516         /* Shift to get first page */
2517         page = (int)(instr->addr >> chip->page_shift);
2518         chipnr = (int)(instr->addr >> chip->chip_shift);
2519
2520         /* Calculate pages in each block */
2521         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2522
2523         /* Select the NAND device */
2524         chip->select_chip(mtd, chipnr);
2525
2526         /* Check, if it is write protected */
2527         if (nand_check_wp(mtd)) {
2528                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2529                                         __func__);
2530                 instr->state = MTD_ERASE_FAILED;
2531                 goto erase_exit;
2532         }
2533
2534         /*
2535          * If BBT requires refresh, set the BBT page mask to see if the BBT
2536          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2537          * can not be matched. This is also done when the bbt is actually
2538          * erased to avoid recusrsive updates
2539          */
2540         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2541                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2542
2543         /* Loop through the pages */
2544         len = instr->len;
2545
2546         instr->state = MTD_ERASING;
2547
2548         while (len) {
2549                 /*
2550                  * heck if we have a bad block, we do not erase bad blocks !
2551                  */
2552                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2553                                         chip->page_shift, 0, allowbbt)) {
2554                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2555                                         "at page 0x%08x\n", __func__, page);
2556                         instr->state = MTD_ERASE_FAILED;
2557                         goto erase_exit;
2558                 }
2559
2560                 /*
2561                  * Invalidate the page cache, if we erase the block which
2562                  * contains the current cached page
2563                  */
2564                 if (page <= chip->pagebuf && chip->pagebuf <
2565                     (page + pages_per_block))
2566                         chip->pagebuf = -1;
2567
2568                 chip->erase_cmd(mtd, page & chip->pagemask);
2569
2570                 status = chip->waitfunc(mtd, chip);
2571
2572                 /*
2573                  * See if operation failed and additional status checks are
2574                  * available
2575                  */
2576                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2577                         status = chip->errstat(mtd, chip, FL_ERASING,
2578                                                status, page);
2579
2580                 /* See if block erase succeeded */
2581                 if (status & NAND_STATUS_FAIL) {
2582                         DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2583                                         "page 0x%08x\n", __func__, page);
2584                         instr->state = MTD_ERASE_FAILED;
2585                         instr->fail_addr =
2586                                 ((loff_t)page << chip->page_shift);
2587                         goto erase_exit;
2588                 }
2589
2590                 /*
2591                  * If BBT requires refresh, set the BBT rewrite flag to the
2592                  * page being erased
2593                  */
2594                 if (bbt_masked_page != 0xffffffff &&
2595                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2596                             rewrite_bbt[chipnr] =
2597                                         ((loff_t)page << chip->page_shift);
2598
2599                 /* Increment page address and decrement length */
2600                 len -= (1 << chip->phys_erase_shift);
2601                 page += pages_per_block;
2602
2603                 /* Check, if we cross a chip boundary */
2604                 if (len && !(page & chip->pagemask)) {
2605                         chipnr++;
2606                         chip->select_chip(mtd, -1);
2607                         chip->select_chip(mtd, chipnr);
2608
2609                         /*
2610                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2611                          * page mask to see if this BBT should be rewritten
2612                          */
2613                         if (bbt_masked_page != 0xffffffff &&
2614                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2615                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2616                                         BBT_PAGE_MASK;
2617                 }
2618         }
2619         instr->state = MTD_ERASE_DONE;
2620
2621  erase_exit:
2622
2623         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2624
2625         /* Deselect and wake up anyone waiting on the device */
2626         nand_release_device(mtd);
2627
2628         /* Do call back function */
2629         if (!ret)
2630                 mtd_erase_callback(instr);
2631
2632         /*
2633          * If BBT requires refresh and erase was successful, rewrite any
2634          * selected bad block tables
2635          */
2636         if (bbt_masked_page == 0xffffffff || ret)
2637                 return ret;
2638
2639         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2640                 if (!rewrite_bbt[chipnr])
2641                         continue;
2642                 /* update the BBT for chip */
2643                 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2644                         "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2645                         rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2646                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2647         }
2648
2649         /* Return more or less happy */
2650         return ret;
2651 }
2652
2653 /**
2654  * nand_sync - [MTD Interface] sync
2655  * @mtd:        MTD device structure
2656  *
2657  * Sync is actually a wait for chip ready function
2658  */
2659 static void nand_sync(struct mtd_info *mtd)
2660 {
2661         struct nand_chip *chip = mtd->priv;
2662
2663         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2664
2665         /* Grab the lock and see if the device is available */
2666         nand_get_device(chip, mtd, FL_SYNCING);
2667         /* Release it and go back */
2668         nand_release_device(mtd);
2669 }
2670
2671 /**
2672  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2673  * @mtd:        MTD device structure
2674  * @offs:       offset relative to mtd start
2675  */
2676 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2677 {
2678         /* Check for invalid offset */
2679         if (offs > mtd->size)
2680                 return -EINVAL;
2681
2682         return nand_block_checkbad(mtd, offs, 1, 0);
2683 }
2684
2685 /**
2686  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2687  * @mtd:        MTD device structure
2688  * @ofs:        offset relative to mtd start
2689  */
2690 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2691 {
2692         struct nand_chip *chip = mtd->priv;
2693         int ret;
2694
2695         if ((ret = nand_block_isbad(mtd, ofs))) {
2696                 /* If it was bad already, return success and do nothing. */
2697                 if (ret > 0)
2698                         return 0;
2699                 return ret;
2700         }
2701
2702         return chip->block_markbad(mtd, ofs);
2703 }
2704
2705 /**
2706  * nand_suspend - [MTD Interface] Suspend the NAND flash
2707  * @mtd:        MTD device structure
2708  */
2709 static int nand_suspend(struct mtd_info *mtd)
2710 {
2711         struct nand_chip *chip = mtd->priv;
2712
2713         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2714 }
2715
2716 /**
2717  * nand_resume - [MTD Interface] Resume the NAND flash
2718  * @mtd:        MTD device structure
2719  */
2720 static void nand_resume(struct mtd_info *mtd)
2721 {
2722         struct nand_chip *chip = mtd->priv;
2723
2724         if (chip->state == FL_PM_SUSPENDED)
2725                 nand_release_device(mtd);
2726         else
2727                 printk(KERN_ERR "%s called for a chip which is not "
2728                        "in suspended state\n", __func__);
2729 }
2730
2731 /*
2732  * Set default functions
2733  */
2734 static void nand_set_defaults(struct nand_chip *chip, int busw)
2735 {
2736         /* check for proper chip_delay setup, set 20us if not */
2737         if (!chip->chip_delay)
2738                 chip->chip_delay = 20;
2739
2740         /* check, if a user supplied command function given */
2741         if (chip->cmdfunc == NULL)
2742                 chip->cmdfunc = nand_command;
2743
2744         /* check, if a user supplied wait function given */
2745         if (chip->waitfunc == NULL)
2746                 chip->waitfunc = nand_wait;
2747
2748         if (!chip->select_chip)
2749                 chip->select_chip = nand_select_chip;
2750         if (!chip->read_byte)
2751                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2752         if (!chip->read_word)
2753                 chip->read_word = nand_read_word;
2754         if (!chip->block_bad)
2755                 chip->block_bad = nand_block_bad;
2756         if (!chip->block_markbad)
2757                 chip->block_markbad = nand_default_block_markbad;
2758         if (!chip->write_buf)
2759                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2760         if (!chip->read_buf)
2761                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2762         if (!chip->verify_buf)
2763                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2764         if (!chip->scan_bbt)
2765                 chip->scan_bbt = nand_default_bbt;
2766
2767         if (!chip->controller) {
2768                 chip->controller = &chip->hwcontrol;
2769                 spin_lock_init(&chip->controller->lock);
2770                 init_waitqueue_head(&chip->controller->wq);
2771         }
2772
2773 }
2774
2775 /*
2776  * Get the flash and manufacturer id and lookup if the type is supported
2777  */
2778 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2779                                                   struct nand_chip *chip,
2780                                                   int busw, int *maf_id,
2781                                                   struct nand_flash_dev *type)
2782 {
2783         int i, dev_id, maf_idx;
2784         u8 id_data[8];
2785
2786         /* Select the device */
2787         chip->select_chip(mtd, 0);
2788
2789         /*
2790          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2791          * after power-up
2792          */
2793         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2794
2795         /* Send the command for reading device ID */
2796         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2797
2798         /* Read manufacturer and device IDs */
2799         *maf_id = chip->read_byte(mtd);
2800         dev_id = chip->read_byte(mtd);
2801
2802         /* Try again to make sure, as some systems the bus-hold or other
2803          * interface concerns can cause random data which looks like a
2804          * possibly credible NAND flash to appear. If the two results do
2805          * not match, ignore the device completely.
2806          */
2807
2808         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2809
2810         /* Read entire ID string */
2811
2812         for (i = 0; i < 8; i++)
2813                 id_data[i] = chip->read_byte(mtd);
2814
2815         if (id_data[0] != *maf_id || id_data[1] != dev_id) {
2816                 printk(KERN_INFO "%s: second ID read did not match "
2817                        "%02x,%02x against %02x,%02x\n", __func__,
2818                        *maf_id, dev_id, id_data[0], id_data[1]);
2819                 return ERR_PTR(-ENODEV);
2820         }
2821
2822         if (!type)
2823                 type = nand_flash_ids;
2824
2825         for (; type->name != NULL; type++)
2826                 if (dev_id == type->id)
2827                         break;
2828
2829         if (!type->name)
2830                 return ERR_PTR(-ENODEV);
2831
2832         if (!mtd->name)
2833                 mtd->name = type->name;
2834
2835         chip->chipsize = (uint64_t)type->chipsize << 20;
2836
2837         /* Newer devices have all the information in additional id bytes */
2838         if (!type->pagesize) {
2839                 int extid;
2840                 /* The 3rd id byte holds MLC / multichip data */
2841                 chip->cellinfo = id_data[2];
2842                 /* The 4th id byte is the important one */
2843                 extid = id_data[3];
2844
2845                 /*
2846                  * Field definitions are in the following datasheets:
2847                  * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2848                  * New style   (6 byte ID): Samsung K9GAG08U0D (p.40)
2849                  *
2850                  * Check for wraparound + Samsung ID + nonzero 6th byte
2851                  * to decide what to do.
2852                  */
2853                 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2854                                 id_data[0] == NAND_MFR_SAMSUNG &&
2855                                 id_data[5] != 0x00) {
2856                         /* Calc pagesize */
2857                         mtd->writesize = 2048 << (extid & 0x03);
2858                         extid >>= 2;
2859                         /* Calc oobsize */
2860                         mtd->oobsize = (extid & 0x03) == 0x01 ? 128 : 218;
2861                         extid >>= 2;
2862                         /* Calc blocksize */
2863                         mtd->erasesize = (128 * 1024) <<
2864                                 (((extid >> 1) & 0x04) | (extid & 0x03));
2865                         busw = 0;
2866                 } else {
2867                         /* Calc pagesize */
2868                         mtd->writesize = 1024 << (extid & 0x03);
2869                         extid >>= 2;
2870                         /* Calc oobsize */
2871                         mtd->oobsize = (8 << (extid & 0x01)) *
2872                                 (mtd->writesize >> 9);
2873                         extid >>= 2;
2874                         /* Calc blocksize. Blocksize is multiples of 64KiB */
2875                         mtd->erasesize = (64 * 1024) << (extid & 0x03);
2876                         extid >>= 2;
2877                         /* Get buswidth information */
2878                         busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2879                 }
2880         } else {
2881                 /*
2882                  * Old devices have chip data hardcoded in the device id table
2883                  */
2884                 mtd->erasesize = type->erasesize;
2885                 mtd->writesize = type->pagesize;
2886                 mtd->oobsize = mtd->writesize / 32;
2887                 busw = type->options & NAND_BUSWIDTH_16;
2888         }
2889
2890         /* Try to identify manufacturer */
2891         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2892                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2893                         break;
2894         }
2895
2896         /*
2897          * Check, if buswidth is correct. Hardware drivers should set
2898          * chip correct !
2899          */
2900         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2901                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2902                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2903                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2904                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2905                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2906                        busw ? 16 : 8);
2907                 return ERR_PTR(-EINVAL);
2908         }
2909
2910         /* Calculate the address shift from the page size */
2911         chip->page_shift = ffs(mtd->writesize) - 1;
2912         /* Convert chipsize to number of pages per chip -1. */
2913         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2914
2915         chip->bbt_erase_shift = chip->phys_erase_shift =
2916                 ffs(mtd->erasesize) - 1;
2917         if (chip->chipsize & 0xffffffff)
2918                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2919         else
2920                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2921
2922         /* Set the bad block position */
2923         chip->badblockpos = mtd->writesize > 512 ?
2924                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2925         chip->badblockbits = 8;
2926
2927         /* Get chip options, preserve non chip based options */
2928         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2929         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2930
2931         /*
2932          * Set chip as a default. Board drivers can override it, if necessary
2933          */
2934         chip->options |= NAND_NO_AUTOINCR;
2935
2936         /* Check if chip is a not a samsung device. Do not clear the
2937          * options for chips which are not having an extended id.
2938          */
2939         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2940                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2941
2942         /*
2943          * Bad block marker is stored in the last page of each block
2944          * on Samsung and Hynix MLC devices
2945          */
2946         if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2947                         (*maf_id == NAND_MFR_SAMSUNG ||
2948                          *maf_id == NAND_MFR_HYNIX))
2949                 chip->options |= NAND_BB_LAST_PAGE;
2950
2951         /* Check for AND chips with 4 page planes */
2952         if (chip->options & NAND_4PAGE_ARRAY)
2953                 chip->erase_cmd = multi_erase_cmd;
2954         else
2955                 chip->erase_cmd = single_erase_cmd;
2956
2957         /* Do not replace user supplied command function ! */
2958         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2959                 chip->cmdfunc = nand_command_lp;
2960
2961         printk(KERN_INFO "NAND device: Manufacturer ID:"
2962                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2963                nand_manuf_ids[maf_idx].name, type->name);
2964
2965         return type;
2966 }
2967
2968 /**
2969  * nand_scan_ident - [NAND Interface] Scan for the NAND device
2970  * @mtd:             MTD device structure
2971  * @maxchips:        Number of chips to scan for
2972  * @table:           Alternative NAND ID table
2973  *
2974  * This is the first phase of the normal nand_scan() function. It
2975  * reads the flash ID and sets up MTD fields accordingly.
2976  *
2977  * The mtd->owner field must be set to the module of the caller.
2978  */
2979 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
2980                     struct nand_flash_dev *table)
2981 {
2982         int i, busw, nand_maf_id;
2983         struct nand_chip *chip = mtd->priv;
2984         struct nand_flash_dev *type;
2985
2986         /* Get buswidth to select the correct functions */
2987         busw = chip->options & NAND_BUSWIDTH_16;
2988         /* Set the default functions */
2989         nand_set_defaults(chip, busw);
2990
2991         /* Read the flash type */
2992         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, table);
2993
2994         if (IS_ERR(type)) {
2995                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
2996                         printk(KERN_WARNING "No NAND device found.\n");
2997                 chip->select_chip(mtd, -1);
2998                 return PTR_ERR(type);
2999         }
3000
3001         /* Check for a chip array */
3002         for (i = 1; i < maxchips; i++) {
3003                 chip->select_chip(mtd, i);
3004                 /* See comment in nand_get_flash_type for reset */
3005                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3006                 /* Send the command for reading device ID */
3007                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3008                 /* Read manufacturer and device IDs */
3009                 if (nand_maf_id != chip->read_byte(mtd) ||
3010                     type->id != chip->read_byte(mtd))
3011                         break;
3012         }
3013         if (i > 1)
3014                 printk(KERN_INFO "%d NAND chips detected\n", i);
3015
3016         /* Store the number of chips and calc total size for mtd */
3017         chip->numchips = i;
3018         mtd->size = i * chip->chipsize;
3019
3020         return 0;
3021 }
3022
3023
3024 /**
3025  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3026  * @mtd:            MTD device structure
3027  *
3028  * This is the second phase of the normal nand_scan() function. It
3029  * fills out all the uninitialized function pointers with the defaults
3030  * and scans for a bad block table if appropriate.
3031  */
3032 int nand_scan_tail(struct mtd_info *mtd)
3033 {
3034         int i;
3035         struct nand_chip *chip = mtd->priv;
3036
3037         if (!(chip->options & NAND_OWN_BUFFERS))
3038                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3039         if (!chip->buffers)
3040                 return -ENOMEM;
3041
3042         /* Set the internal oob buffer location, just after the page data */
3043         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3044
3045         /*
3046          * If no default placement scheme is given, select an appropriate one
3047          */
3048         if (!chip->ecc.layout) {
3049                 switch (mtd->oobsize) {
3050                 case 8:
3051                         chip->ecc.layout = &nand_oob_8;
3052                         break;
3053                 case 16:
3054                         chip->ecc.layout = &nand_oob_16;
3055                         break;
3056                 case 64:
3057                         chip->ecc.layout = &nand_oob_64;
3058                         break;
3059                 case 128:
3060                         chip->ecc.layout = &nand_oob_128;
3061                         break;
3062                 default:
3063                         printk(KERN_WARNING "No oob scheme defined for "
3064                                "oobsize %d\n", mtd->oobsize);
3065                         BUG();
3066                 }
3067         }
3068
3069         if (!chip->write_page)
3070                 chip->write_page = nand_write_page;
3071
3072         /*
3073          * check ECC mode, default to software if 3byte/512byte hardware ECC is
3074          * selected and we have 256 byte pagesize fallback to software ECC
3075          */
3076
3077         switch (chip->ecc.mode) {
3078         case NAND_ECC_HW_OOB_FIRST:
3079                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3080                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3081                      !chip->ecc.hwctl) {
3082                         printk(KERN_WARNING "No ECC functions supplied; "
3083                                "Hardware ECC not possible\n");
3084                         BUG();
3085                 }
3086                 if (!chip->ecc.read_page)
3087                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3088
3089         case NAND_ECC_HW:
3090                 /* Use standard hwecc read page function ? */
3091                 if (!chip->ecc.read_page)
3092                         chip->ecc.read_page = nand_read_page_hwecc;
3093                 if (!chip->ecc.write_page)
3094                         chip->ecc.write_page = nand_write_page_hwecc;
3095                 if (!chip->ecc.read_page_raw)
3096                         chip->ecc.read_page_raw = nand_read_page_raw;
3097                 if (!chip->ecc.write_page_raw)
3098                         chip->ecc.write_page_raw = nand_write_page_raw;
3099                 if (!chip->ecc.read_oob)
3100                         chip->ecc.read_oob = nand_read_oob_std;
3101                 if (!chip->ecc.write_oob)
3102                         chip->ecc.write_oob = nand_write_oob_std;
3103
3104         case NAND_ECC_HW_SYNDROME:
3105                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3106                      !chip->ecc.hwctl) &&
3107                     (!chip->ecc.read_page ||
3108                      chip->ecc.read_page == nand_read_page_hwecc ||
3109                      !chip->ecc.write_page ||
3110                      chip->ecc.write_page == nand_write_page_hwecc)) {
3111                         printk(KERN_WARNING "No ECC functions supplied; "
3112                                "Hardware ECC not possible\n");
3113                         BUG();
3114                 }
3115                 /* Use standard syndrome read/write page function ? */
3116                 if (!chip->ecc.read_page)
3117                         chip->ecc.read_page = nand_read_page_syndrome;
3118                 if (!chip->ecc.write_page)
3119                         chip->ecc.write_page = nand_write_page_syndrome;
3120                 if (!chip->ecc.read_page_raw)
3121                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3122                 if (!chip->ecc.write_page_raw)
3123                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3124                 if (!chip->ecc.read_oob)
3125                         chip->ecc.read_oob = nand_read_oob_syndrome;
3126                 if (!chip->ecc.write_oob)
3127                         chip->ecc.write_oob = nand_write_oob_syndrome;
3128
3129                 if (mtd->writesize >= chip->ecc.size)
3130                         break;
3131                 printk(KERN_WARNING "%d byte HW ECC not possible on "
3132                        "%d byte page size, fallback to SW ECC\n",
3133                        chip->ecc.size, mtd->writesize);
3134                 chip->ecc.mode = NAND_ECC_SOFT;
3135
3136         case NAND_ECC_SOFT:
3137                 chip->ecc.calculate = nand_calculate_ecc;
3138                 chip->ecc.correct = nand_correct_data;
3139                 chip->ecc.read_page = nand_read_page_swecc;
3140                 chip->ecc.read_subpage = nand_read_subpage;
3141                 chip->ecc.write_page = nand_write_page_swecc;
3142                 chip->ecc.read_page_raw = nand_read_page_raw;
3143                 chip->ecc.write_page_raw = nand_write_page_raw;
3144                 chip->ecc.read_oob = nand_read_oob_std;
3145                 chip->ecc.write_oob = nand_write_oob_std;
3146                 if (!chip->ecc.size)
3147                         chip->ecc.size = 256;
3148                 chip->ecc.bytes = 3;
3149                 break;
3150
3151         case NAND_ECC_NONE:
3152                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3153                        "This is not recommended !!\n");
3154                 chip->ecc.read_page = nand_read_page_raw;
3155                 chip->ecc.write_page = nand_write_page_raw;
3156                 chip->ecc.read_oob = nand_read_oob_std;
3157                 chip->ecc.read_page_raw = nand_read_page_raw;
3158                 chip->ecc.write_page_raw = nand_write_page_raw;
3159                 chip->ecc.write_oob = nand_write_oob_std;
3160                 chip->ecc.size = mtd->writesize;
3161                 chip->ecc.bytes = 0;
3162                 break;
3163
3164         default:
3165                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3166                        chip->ecc.mode);
3167                 BUG();
3168         }
3169
3170         /*
3171          * The number of bytes available for a client to place data into
3172          * the out of band area
3173          */
3174         chip->ecc.layout->oobavail = 0;
3175         for (i = 0; chip->ecc.layout->oobfree[i].length
3176                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3177                 chip->ecc.layout->oobavail +=
3178                         chip->ecc.layout->oobfree[i].length;
3179         mtd->oobavail = chip->ecc.layout->oobavail;
3180
3181         /*
3182          * Set the number of read / write steps for one page depending on ECC
3183          * mode
3184          */
3185         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3186         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3187                 printk(KERN_WARNING "Invalid ecc parameters\n");
3188                 BUG();
3189         }
3190         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3191
3192         /*
3193          * Allow subpage writes up to ecc.steps. Not possible for MLC
3194          * FLASH.
3195          */
3196         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3197             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3198                 switch(chip->ecc.steps) {
3199                 case 2:
3200                         mtd->subpage_sft = 1;
3201                         break;
3202                 case 4:
3203                 case 8:
3204                 case 16:
3205                         mtd->subpage_sft = 2;
3206                         break;
3207                 }
3208         }
3209         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3210
3211         /* Initialize state */
3212         chip->state = FL_READY;
3213
3214         /* De-select the device */
3215         chip->select_chip(mtd, -1);
3216
3217         /* Invalidate the pagebuffer reference */
3218         chip->pagebuf = -1;
3219
3220         /* Fill in remaining MTD driver data */
3221         mtd->type = MTD_NANDFLASH;
3222         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3223                                                 MTD_CAP_NANDFLASH;
3224         mtd->erase = nand_erase;
3225         mtd->point = NULL;
3226         mtd->unpoint = NULL;
3227         mtd->read = nand_read;
3228         mtd->write = nand_write;
3229         mtd->panic_write = panic_nand_write;
3230         mtd->read_oob = nand_read_oob;
3231         mtd->write_oob = nand_write_oob;
3232         mtd->sync = nand_sync;
3233         mtd->lock = NULL;
3234         mtd->unlock = NULL;
3235         mtd->suspend = nand_suspend;
3236         mtd->resume = nand_resume;
3237         mtd->block_isbad = nand_block_isbad;
3238         mtd->block_markbad = nand_block_markbad;
3239
3240         /* propagate ecc.layout to mtd_info */
3241         mtd->ecclayout = chip->ecc.layout;
3242
3243         /* Check, if we should skip the bad block table scan */
3244         if (chip->options & NAND_SKIP_BBTSCAN)
3245                 return 0;
3246
3247         /* Build bad block table */
3248         return chip->scan_bbt(mtd);
3249 }
3250
3251 /* is_module_text_address() isn't exported, and it's mostly a pointless
3252    test if this is a module _anyway_ -- they'd have to try _really_ hard
3253    to call us from in-kernel code if the core NAND support is modular. */
3254 #ifdef MODULE
3255 #define caller_is_module() (1)
3256 #else
3257 #define caller_is_module() \
3258         is_module_text_address((unsigned long)__builtin_return_address(0))
3259 #endif
3260
3261 /**
3262  * nand_scan - [NAND Interface] Scan for the NAND device
3263  * @mtd:        MTD device structure
3264  * @maxchips:   Number of chips to scan for
3265  *
3266  * This fills out all the uninitialized function pointers
3267  * with the defaults.
3268  * The flash ID is read and the mtd/chip structures are
3269  * filled with the appropriate values.
3270  * The mtd->owner field must be set to the module of the caller
3271  *
3272  */
3273 int nand_scan(struct mtd_info *mtd, int maxchips)
3274 {
3275         int ret;
3276
3277         /* Many callers got this wrong, so check for it for a while... */
3278         if (!mtd->owner && caller_is_module()) {
3279                 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3280                                 __func__);
3281                 BUG();
3282         }
3283
3284         ret = nand_scan_ident(mtd, maxchips, NULL);
3285         if (!ret)
3286                 ret = nand_scan_tail(mtd);
3287         return ret;
3288 }
3289
3290 /**
3291  * nand_release - [NAND Interface] Free resources held by the NAND device
3292  * @mtd:        MTD device structure
3293 */
3294 void nand_release(struct mtd_info *mtd)
3295 {
3296         struct nand_chip *chip = mtd->priv;
3297
3298 #ifdef CONFIG_MTD_PARTITIONS
3299         /* Deregister partitions */
3300         del_mtd_partitions(mtd);
3301 #endif
3302         /* Deregister the device */
3303         del_mtd_device(mtd);
3304
3305         /* Free bad block table memory */
3306         kfree(chip->bbt);
3307         if (!(chip->options & NAND_OWN_BUFFERS))
3308                 kfree(chip->buffers);
3309 }
3310
3311 EXPORT_SYMBOL_GPL(nand_lock);
3312 EXPORT_SYMBOL_GPL(nand_unlock);
3313 EXPORT_SYMBOL_GPL(nand_scan);
3314 EXPORT_SYMBOL_GPL(nand_scan_ident);
3315 EXPORT_SYMBOL_GPL(nand_scan_tail);
3316 EXPORT_SYMBOL_GPL(nand_release);
3317
3318 static int __init nand_base_init(void)
3319 {
3320         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3321         return 0;
3322 }
3323
3324 static void __exit nand_base_exit(void)
3325 {
3326         led_trigger_unregister_simple(nand_led_trigger);
3327 }
3328
3329 module_init(nand_base_init);
3330 module_exit(nand_base_exit);
3331
3332 MODULE_LICENSE("GPL");
3333 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3334 MODULE_DESCRIPTION("Generic NAND flash driver code");