Merge tag 'v3.16-rc5' into timers/core
[sfrench/cifs-2.6.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *
8  *      Additional technical information is available on
9  *      http://www.linux-mtd.infradead.org/doc/nand.html
10  *
11  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
13  *
14  *  Credits:
15  *      David Woodhouse for adding multichip support
16  *
17  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18  *      rework for 2K page size chips
19  *
20  *  TODO:
21  *      Enable cached programming for 2k page size chips
22  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
23  *      if we have HW ECC support.
24  *      BBT table is not serialized, has to be fixed
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License version 2 as
28  * published by the Free Software Foundation.
29  *
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/mm.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54         .eccbytes = 3,
55         .eccpos = {0, 1, 2},
56         .oobfree = {
57                 {.offset = 3,
58                  .length = 2},
59                 {.offset = 6,
60                  .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64         .eccbytes = 6,
65         .eccpos = {0, 1, 2, 3, 6, 7},
66         .oobfree = {
67                 {.offset = 8,
68                  . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72         .eccbytes = 24,
73         .eccpos = {
74                    40, 41, 42, 43, 44, 45, 46, 47,
75                    48, 49, 50, 51, 52, 53, 54, 55,
76                    56, 57, 58, 59, 60, 61, 62, 63},
77         .oobfree = {
78                 {.offset = 2,
79                  .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83         .eccbytes = 48,
84         .eccpos = {
85                    80, 81, 82, 83, 84, 85, 86, 87,
86                    88, 89, 90, 91, 92, 93, 94, 95,
87                    96, 97, 98, 99, 100, 101, 102, 103,
88                    104, 105, 106, 107, 108, 109, 110, 111,
89                    112, 113, 114, 115, 116, 117, 118, 119,
90                    120, 121, 122, 123, 124, 125, 126, 127},
91         .oobfree = {
92                 {.offset = 2,
93                  .length = 78} }
94 };
95
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
97
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99                              struct mtd_oob_ops *ops);
100
101 /*
102  * For devices which display every fart in the system on a separate LED. Is
103  * compiled away when LED support is disabled.
104  */
105 DEFINE_LED_TRIGGER(nand_led_trigger);
106
107 static int check_offs_len(struct mtd_info *mtd,
108                                         loff_t ofs, uint64_t len)
109 {
110         struct nand_chip *chip = mtd->priv;
111         int ret = 0;
112
113         /* Start address must align on block boundary */
114         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
115                 pr_debug("%s: unaligned address\n", __func__);
116                 ret = -EINVAL;
117         }
118
119         /* Length must align on block boundary */
120         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
121                 pr_debug("%s: length not block aligned\n", __func__);
122                 ret = -EINVAL;
123         }
124
125         return ret;
126 }
127
128 /**
129  * nand_release_device - [GENERIC] release chip
130  * @mtd: MTD device structure
131  *
132  * Release chip lock and wake up anyone waiting on the device.
133  */
134 static void nand_release_device(struct mtd_info *mtd)
135 {
136         struct nand_chip *chip = mtd->priv;
137
138         /* Release the controller and the chip */
139         spin_lock(&chip->controller->lock);
140         chip->controller->active = NULL;
141         chip->state = FL_READY;
142         wake_up(&chip->controller->wq);
143         spin_unlock(&chip->controller->lock);
144 }
145
146 /**
147  * nand_read_byte - [DEFAULT] read one byte from the chip
148  * @mtd: MTD device structure
149  *
150  * Default read function for 8bit buswidth
151  */
152 static uint8_t nand_read_byte(struct mtd_info *mtd)
153 {
154         struct nand_chip *chip = mtd->priv;
155         return readb(chip->IO_ADDR_R);
156 }
157
158 /**
159  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
161  * @mtd: MTD device structure
162  *
163  * Default read function for 16bit buswidth with endianness conversion.
164  *
165  */
166 static uint8_t nand_read_byte16(struct mtd_info *mtd)
167 {
168         struct nand_chip *chip = mtd->priv;
169         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
170 }
171
172 /**
173  * nand_read_word - [DEFAULT] read one word from the chip
174  * @mtd: MTD device structure
175  *
176  * Default read function for 16bit buswidth without endianness conversion.
177  */
178 static u16 nand_read_word(struct mtd_info *mtd)
179 {
180         struct nand_chip *chip = mtd->priv;
181         return readw(chip->IO_ADDR_R);
182 }
183
184 /**
185  * nand_select_chip - [DEFAULT] control CE line
186  * @mtd: MTD device structure
187  * @chipnr: chipnumber to select, -1 for deselect
188  *
189  * Default select function for 1 chip devices.
190  */
191 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
192 {
193         struct nand_chip *chip = mtd->priv;
194
195         switch (chipnr) {
196         case -1:
197                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
198                 break;
199         case 0:
200                 break;
201
202         default:
203                 BUG();
204         }
205 }
206
207 /**
208  * nand_write_byte - [DEFAULT] write single byte to chip
209  * @mtd: MTD device structure
210  * @byte: value to write
211  *
212  * Default function to write a byte to I/O[7:0]
213  */
214 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
215 {
216         struct nand_chip *chip = mtd->priv;
217
218         chip->write_buf(mtd, &byte, 1);
219 }
220
221 /**
222  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
223  * @mtd: MTD device structure
224  * @byte: value to write
225  *
226  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
227  */
228 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
229 {
230         struct nand_chip *chip = mtd->priv;
231         uint16_t word = byte;
232
233         /*
234          * It's not entirely clear what should happen to I/O[15:8] when writing
235          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
236          *
237          *    When the host supports a 16-bit bus width, only data is
238          *    transferred at the 16-bit width. All address and command line
239          *    transfers shall use only the lower 8-bits of the data bus. During
240          *    command transfers, the host may place any value on the upper
241          *    8-bits of the data bus. During address transfers, the host shall
242          *    set the upper 8-bits of the data bus to 00h.
243          *
244          * One user of the write_byte callback is nand_onfi_set_features. The
245          * four parameters are specified to be written to I/O[7:0], but this is
246          * neither an address nor a command transfer. Let's assume a 0 on the
247          * upper I/O lines is OK.
248          */
249         chip->write_buf(mtd, (uint8_t *)&word, 2);
250 }
251
252 /**
253  * nand_write_buf - [DEFAULT] write buffer to chip
254  * @mtd: MTD device structure
255  * @buf: data buffer
256  * @len: number of bytes to write
257  *
258  * Default write function for 8bit buswidth.
259  */
260 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
261 {
262         struct nand_chip *chip = mtd->priv;
263
264         iowrite8_rep(chip->IO_ADDR_W, buf, len);
265 }
266
267 /**
268  * nand_read_buf - [DEFAULT] read chip data into buffer
269  * @mtd: MTD device structure
270  * @buf: buffer to store date
271  * @len: number of bytes to read
272  *
273  * Default read function for 8bit buswidth.
274  */
275 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
276 {
277         struct nand_chip *chip = mtd->priv;
278
279         ioread8_rep(chip->IO_ADDR_R, buf, len);
280 }
281
282 /**
283  * nand_write_buf16 - [DEFAULT] write buffer to chip
284  * @mtd: MTD device structure
285  * @buf: data buffer
286  * @len: number of bytes to write
287  *
288  * Default write function for 16bit buswidth.
289  */
290 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
291 {
292         struct nand_chip *chip = mtd->priv;
293         u16 *p = (u16 *) buf;
294
295         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
296 }
297
298 /**
299  * nand_read_buf16 - [DEFAULT] read chip data into buffer
300  * @mtd: MTD device structure
301  * @buf: buffer to store date
302  * @len: number of bytes to read
303  *
304  * Default read function for 16bit buswidth.
305  */
306 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
307 {
308         struct nand_chip *chip = mtd->priv;
309         u16 *p = (u16 *) buf;
310
311         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
312 }
313
314 /**
315  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
316  * @mtd: MTD device structure
317  * @ofs: offset from device start
318  * @getchip: 0, if the chip is already selected
319  *
320  * Check, if the block is bad.
321  */
322 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
323 {
324         int page, chipnr, res = 0, i = 0;
325         struct nand_chip *chip = mtd->priv;
326         u16 bad;
327
328         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
329                 ofs += mtd->erasesize - mtd->writesize;
330
331         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
332
333         if (getchip) {
334                 chipnr = (int)(ofs >> chip->chip_shift);
335
336                 nand_get_device(mtd, FL_READING);
337
338                 /* Select the NAND device */
339                 chip->select_chip(mtd, chipnr);
340         }
341
342         do {
343                 if (chip->options & NAND_BUSWIDTH_16) {
344                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
345                                         chip->badblockpos & 0xFE, page);
346                         bad = cpu_to_le16(chip->read_word(mtd));
347                         if (chip->badblockpos & 0x1)
348                                 bad >>= 8;
349                         else
350                                 bad &= 0xFF;
351                 } else {
352                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
353                                         page);
354                         bad = chip->read_byte(mtd);
355                 }
356
357                 if (likely(chip->badblockbits == 8))
358                         res = bad != 0xFF;
359                 else
360                         res = hweight8(bad) < chip->badblockbits;
361                 ofs += mtd->writesize;
362                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
363                 i++;
364         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
365
366         if (getchip) {
367                 chip->select_chip(mtd, -1);
368                 nand_release_device(mtd);
369         }
370
371         return res;
372 }
373
374 /**
375  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
376  * @mtd: MTD device structure
377  * @ofs: offset from device start
378  *
379  * This is the default implementation, which can be overridden by a hardware
380  * specific driver. It provides the details for writing a bad block marker to a
381  * block.
382  */
383 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
384 {
385         struct nand_chip *chip = mtd->priv;
386         struct mtd_oob_ops ops;
387         uint8_t buf[2] = { 0, 0 };
388         int ret = 0, res, i = 0;
389
390         ops.datbuf = NULL;
391         ops.oobbuf = buf;
392         ops.ooboffs = chip->badblockpos;
393         if (chip->options & NAND_BUSWIDTH_16) {
394                 ops.ooboffs &= ~0x01;
395                 ops.len = ops.ooblen = 2;
396         } else {
397                 ops.len = ops.ooblen = 1;
398         }
399         ops.mode = MTD_OPS_PLACE_OOB;
400
401         /* Write to first/last page(s) if necessary */
402         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
403                 ofs += mtd->erasesize - mtd->writesize;
404         do {
405                 res = nand_do_write_oob(mtd, ofs, &ops);
406                 if (!ret)
407                         ret = res;
408
409                 i++;
410                 ofs += mtd->writesize;
411         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
412
413         return ret;
414 }
415
416 /**
417  * nand_block_markbad_lowlevel - mark a block bad
418  * @mtd: MTD device structure
419  * @ofs: offset from device start
420  *
421  * This function performs the generic NAND bad block marking steps (i.e., bad
422  * block table(s) and/or marker(s)). We only allow the hardware driver to
423  * specify how to write bad block markers to OOB (chip->block_markbad).
424  *
425  * We try operations in the following order:
426  *  (1) erase the affected block, to allow OOB marker to be written cleanly
427  *  (2) write bad block marker to OOB area of affected block (unless flag
428  *      NAND_BBT_NO_OOB_BBM is present)
429  *  (3) update the BBT
430  * Note that we retain the first error encountered in (2) or (3), finish the
431  * procedures, and dump the error in the end.
432 */
433 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
434 {
435         struct nand_chip *chip = mtd->priv;
436         int res, ret = 0;
437
438         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
439                 struct erase_info einfo;
440
441                 /* Attempt erase before marking OOB */
442                 memset(&einfo, 0, sizeof(einfo));
443                 einfo.mtd = mtd;
444                 einfo.addr = ofs;
445                 einfo.len = 1ULL << chip->phys_erase_shift;
446                 nand_erase_nand(mtd, &einfo, 0);
447
448                 /* Write bad block marker to OOB */
449                 nand_get_device(mtd, FL_WRITING);
450                 ret = chip->block_markbad(mtd, ofs);
451                 nand_release_device(mtd);
452         }
453
454         /* Mark block bad in BBT */
455         if (chip->bbt) {
456                 res = nand_markbad_bbt(mtd, ofs);
457                 if (!ret)
458                         ret = res;
459         }
460
461         if (!ret)
462                 mtd->ecc_stats.badblocks++;
463
464         return ret;
465 }
466
467 /**
468  * nand_check_wp - [GENERIC] check if the chip is write protected
469  * @mtd: MTD device structure
470  *
471  * Check, if the device is write protected. The function expects, that the
472  * device is already selected.
473  */
474 static int nand_check_wp(struct mtd_info *mtd)
475 {
476         struct nand_chip *chip = mtd->priv;
477
478         /* Broken xD cards report WP despite being writable */
479         if (chip->options & NAND_BROKEN_XD)
480                 return 0;
481
482         /* Check the WP bit */
483         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
484         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
485 }
486
487 /**
488  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
489  * @mtd: MTD device structure
490  * @ofs: offset from device start
491  * @getchip: 0, if the chip is already selected
492  * @allowbbt: 1, if its allowed to access the bbt area
493  *
494  * Check, if the block is bad. Either by reading the bad block table or
495  * calling of the scan function.
496  */
497 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
498                                int allowbbt)
499 {
500         struct nand_chip *chip = mtd->priv;
501
502         if (!chip->bbt)
503                 return chip->block_bad(mtd, ofs, getchip);
504
505         /* Return info from the table */
506         return nand_isbad_bbt(mtd, ofs, allowbbt);
507 }
508
509 /**
510  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
511  * @mtd: MTD device structure
512  * @timeo: Timeout
513  *
514  * Helper function for nand_wait_ready used when needing to wait in interrupt
515  * context.
516  */
517 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
518 {
519         struct nand_chip *chip = mtd->priv;
520         int i;
521
522         /* Wait for the device to get ready */
523         for (i = 0; i < timeo; i++) {
524                 if (chip->dev_ready(mtd))
525                         break;
526                 touch_softlockup_watchdog();
527                 mdelay(1);
528         }
529 }
530
531 /* Wait for the ready pin, after a command. The timeout is caught later. */
532 void nand_wait_ready(struct mtd_info *mtd)
533 {
534         struct nand_chip *chip = mtd->priv;
535         unsigned long timeo = jiffies + msecs_to_jiffies(20);
536
537         /* 400ms timeout */
538         if (in_interrupt() || oops_in_progress)
539                 return panic_nand_wait_ready(mtd, 400);
540
541         led_trigger_event(nand_led_trigger, LED_FULL);
542         /* Wait until command is processed or timeout occurs */
543         do {
544                 if (chip->dev_ready(mtd))
545                         break;
546                 touch_softlockup_watchdog();
547         } while (time_before(jiffies, timeo));
548         led_trigger_event(nand_led_trigger, LED_OFF);
549 }
550 EXPORT_SYMBOL_GPL(nand_wait_ready);
551
552 /**
553  * nand_command - [DEFAULT] Send command to NAND device
554  * @mtd: MTD device structure
555  * @command: the command to be sent
556  * @column: the column address for this command, -1 if none
557  * @page_addr: the page address for this command, -1 if none
558  *
559  * Send command to NAND device. This function is used for small page devices
560  * (512 Bytes per page).
561  */
562 static void nand_command(struct mtd_info *mtd, unsigned int command,
563                          int column, int page_addr)
564 {
565         register struct nand_chip *chip = mtd->priv;
566         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
567
568         /* Write out the command to the device */
569         if (command == NAND_CMD_SEQIN) {
570                 int readcmd;
571
572                 if (column >= mtd->writesize) {
573                         /* OOB area */
574                         column -= mtd->writesize;
575                         readcmd = NAND_CMD_READOOB;
576                 } else if (column < 256) {
577                         /* First 256 bytes --> READ0 */
578                         readcmd = NAND_CMD_READ0;
579                 } else {
580                         column -= 256;
581                         readcmd = NAND_CMD_READ1;
582                 }
583                 chip->cmd_ctrl(mtd, readcmd, ctrl);
584                 ctrl &= ~NAND_CTRL_CHANGE;
585         }
586         chip->cmd_ctrl(mtd, command, ctrl);
587
588         /* Address cycle, when necessary */
589         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
590         /* Serially input address */
591         if (column != -1) {
592                 /* Adjust columns for 16 bit buswidth */
593                 if (chip->options & NAND_BUSWIDTH_16 &&
594                                 !nand_opcode_8bits(command))
595                         column >>= 1;
596                 chip->cmd_ctrl(mtd, column, ctrl);
597                 ctrl &= ~NAND_CTRL_CHANGE;
598         }
599         if (page_addr != -1) {
600                 chip->cmd_ctrl(mtd, page_addr, ctrl);
601                 ctrl &= ~NAND_CTRL_CHANGE;
602                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
603                 /* One more address cycle for devices > 32MiB */
604                 if (chip->chipsize > (32 << 20))
605                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
606         }
607         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
608
609         /*
610          * Program and erase have their own busy handlers status and sequential
611          * in needs no delay
612          */
613         switch (command) {
614
615         case NAND_CMD_PAGEPROG:
616         case NAND_CMD_ERASE1:
617         case NAND_CMD_ERASE2:
618         case NAND_CMD_SEQIN:
619         case NAND_CMD_STATUS:
620                 return;
621
622         case NAND_CMD_RESET:
623                 if (chip->dev_ready)
624                         break;
625                 udelay(chip->chip_delay);
626                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
627                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
628                 chip->cmd_ctrl(mtd,
629                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
630                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
631                                 ;
632                 return;
633
634                 /* This applies to read commands */
635         default:
636                 /*
637                  * If we don't have access to the busy pin, we apply the given
638                  * command delay
639                  */
640                 if (!chip->dev_ready) {
641                         udelay(chip->chip_delay);
642                         return;
643                 }
644         }
645         /*
646          * Apply this short delay always to ensure that we do wait tWB in
647          * any case on any machine.
648          */
649         ndelay(100);
650
651         nand_wait_ready(mtd);
652 }
653
654 /**
655  * nand_command_lp - [DEFAULT] Send command to NAND large page device
656  * @mtd: MTD device structure
657  * @command: the command to be sent
658  * @column: the column address for this command, -1 if none
659  * @page_addr: the page address for this command, -1 if none
660  *
661  * Send command to NAND device. This is the version for the new large page
662  * devices. We don't have the separate regions as we have in the small page
663  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
664  */
665 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
666                             int column, int page_addr)
667 {
668         register struct nand_chip *chip = mtd->priv;
669
670         /* Emulate NAND_CMD_READOOB */
671         if (command == NAND_CMD_READOOB) {
672                 column += mtd->writesize;
673                 command = NAND_CMD_READ0;
674         }
675
676         /* Command latch cycle */
677         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
678
679         if (column != -1 || page_addr != -1) {
680                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
681
682                 /* Serially input address */
683                 if (column != -1) {
684                         /* Adjust columns for 16 bit buswidth */
685                         if (chip->options & NAND_BUSWIDTH_16 &&
686                                         !nand_opcode_8bits(command))
687                                 column >>= 1;
688                         chip->cmd_ctrl(mtd, column, ctrl);
689                         ctrl &= ~NAND_CTRL_CHANGE;
690                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
691                 }
692                 if (page_addr != -1) {
693                         chip->cmd_ctrl(mtd, page_addr, ctrl);
694                         chip->cmd_ctrl(mtd, page_addr >> 8,
695                                        NAND_NCE | NAND_ALE);
696                         /* One more address cycle for devices > 128MiB */
697                         if (chip->chipsize > (128 << 20))
698                                 chip->cmd_ctrl(mtd, page_addr >> 16,
699                                                NAND_NCE | NAND_ALE);
700                 }
701         }
702         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
703
704         /*
705          * Program and erase have their own busy handlers status, sequential
706          * in, and deplete1 need no delay.
707          */
708         switch (command) {
709
710         case NAND_CMD_CACHEDPROG:
711         case NAND_CMD_PAGEPROG:
712         case NAND_CMD_ERASE1:
713         case NAND_CMD_ERASE2:
714         case NAND_CMD_SEQIN:
715         case NAND_CMD_RNDIN:
716         case NAND_CMD_STATUS:
717                 return;
718
719         case NAND_CMD_RESET:
720                 if (chip->dev_ready)
721                         break;
722                 udelay(chip->chip_delay);
723                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
724                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
725                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
726                                NAND_NCE | NAND_CTRL_CHANGE);
727                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
728                                 ;
729                 return;
730
731         case NAND_CMD_RNDOUT:
732                 /* No ready / busy check necessary */
733                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
734                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736                                NAND_NCE | NAND_CTRL_CHANGE);
737                 return;
738
739         case NAND_CMD_READ0:
740                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
741                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
742                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
743                                NAND_NCE | NAND_CTRL_CHANGE);
744
745                 /* This applies to read commands */
746         default:
747                 /*
748                  * If we don't have access to the busy pin, we apply the given
749                  * command delay.
750                  */
751                 if (!chip->dev_ready) {
752                         udelay(chip->chip_delay);
753                         return;
754                 }
755         }
756
757         /*
758          * Apply this short delay always to ensure that we do wait tWB in
759          * any case on any machine.
760          */
761         ndelay(100);
762
763         nand_wait_ready(mtd);
764 }
765
766 /**
767  * panic_nand_get_device - [GENERIC] Get chip for selected access
768  * @chip: the nand chip descriptor
769  * @mtd: MTD device structure
770  * @new_state: the state which is requested
771  *
772  * Used when in panic, no locks are taken.
773  */
774 static void panic_nand_get_device(struct nand_chip *chip,
775                       struct mtd_info *mtd, int new_state)
776 {
777         /* Hardware controller shared among independent devices */
778         chip->controller->active = chip;
779         chip->state = new_state;
780 }
781
782 /**
783  * nand_get_device - [GENERIC] Get chip for selected access
784  * @mtd: MTD device structure
785  * @new_state: the state which is requested
786  *
787  * Get the device and lock it for exclusive access
788  */
789 static int
790 nand_get_device(struct mtd_info *mtd, int new_state)
791 {
792         struct nand_chip *chip = mtd->priv;
793         spinlock_t *lock = &chip->controller->lock;
794         wait_queue_head_t *wq = &chip->controller->wq;
795         DECLARE_WAITQUEUE(wait, current);
796 retry:
797         spin_lock(lock);
798
799         /* Hardware controller shared among independent devices */
800         if (!chip->controller->active)
801                 chip->controller->active = chip;
802
803         if (chip->controller->active == chip && chip->state == FL_READY) {
804                 chip->state = new_state;
805                 spin_unlock(lock);
806                 return 0;
807         }
808         if (new_state == FL_PM_SUSPENDED) {
809                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
810                         chip->state = FL_PM_SUSPENDED;
811                         spin_unlock(lock);
812                         return 0;
813                 }
814         }
815         set_current_state(TASK_UNINTERRUPTIBLE);
816         add_wait_queue(wq, &wait);
817         spin_unlock(lock);
818         schedule();
819         remove_wait_queue(wq, &wait);
820         goto retry;
821 }
822
823 /**
824  * panic_nand_wait - [GENERIC] wait until the command is done
825  * @mtd: MTD device structure
826  * @chip: NAND chip structure
827  * @timeo: timeout
828  *
829  * Wait for command done. This is a helper function for nand_wait used when
830  * we are in interrupt context. May happen when in panic and trying to write
831  * an oops through mtdoops.
832  */
833 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
834                             unsigned long timeo)
835 {
836         int i;
837         for (i = 0; i < timeo; i++) {
838                 if (chip->dev_ready) {
839                         if (chip->dev_ready(mtd))
840                                 break;
841                 } else {
842                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
843                                 break;
844                 }
845                 mdelay(1);
846         }
847 }
848
849 /**
850  * nand_wait - [DEFAULT] wait until the command is done
851  * @mtd: MTD device structure
852  * @chip: NAND chip structure
853  *
854  * Wait for command done. This applies to erase and program only. Erase can
855  * take up to 400ms and program up to 20ms according to general NAND and
856  * SmartMedia specs.
857  */
858 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
859 {
860
861         int status, state = chip->state;
862         unsigned long timeo = (state == FL_ERASING ? 400 : 20);
863
864         led_trigger_event(nand_led_trigger, LED_FULL);
865
866         /*
867          * Apply this short delay always to ensure that we do wait tWB in any
868          * case on any machine.
869          */
870         ndelay(100);
871
872         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
873
874         if (in_interrupt() || oops_in_progress)
875                 panic_nand_wait(mtd, chip, timeo);
876         else {
877                 timeo = jiffies + msecs_to_jiffies(timeo);
878                 while (time_before(jiffies, timeo)) {
879                         if (chip->dev_ready) {
880                                 if (chip->dev_ready(mtd))
881                                         break;
882                         } else {
883                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
884                                         break;
885                         }
886                         cond_resched();
887                 }
888         }
889         led_trigger_event(nand_led_trigger, LED_OFF);
890
891         status = (int)chip->read_byte(mtd);
892         /* This can happen if in case of timeout or buggy dev_ready */
893         WARN_ON(!(status & NAND_STATUS_READY));
894         return status;
895 }
896
897 /**
898  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
899  * @mtd: mtd info
900  * @ofs: offset to start unlock from
901  * @len: length to unlock
902  * @invert: when = 0, unlock the range of blocks within the lower and
903  *                    upper boundary address
904  *          when = 1, unlock the range of blocks outside the boundaries
905  *                    of the lower and upper boundary address
906  *
907  * Returs unlock status.
908  */
909 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
910                                         uint64_t len, int invert)
911 {
912         int ret = 0;
913         int status, page;
914         struct nand_chip *chip = mtd->priv;
915
916         /* Submit address of first page to unlock */
917         page = ofs >> chip->page_shift;
918         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
919
920         /* Submit address of last page to unlock */
921         page = (ofs + len) >> chip->page_shift;
922         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
923                                 (page | invert) & chip->pagemask);
924
925         /* Call wait ready function */
926         status = chip->waitfunc(mtd, chip);
927         /* See if device thinks it succeeded */
928         if (status & NAND_STATUS_FAIL) {
929                 pr_debug("%s: error status = 0x%08x\n",
930                                         __func__, status);
931                 ret = -EIO;
932         }
933
934         return ret;
935 }
936
937 /**
938  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
939  * @mtd: mtd info
940  * @ofs: offset to start unlock from
941  * @len: length to unlock
942  *
943  * Returns unlock status.
944  */
945 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
946 {
947         int ret = 0;
948         int chipnr;
949         struct nand_chip *chip = mtd->priv;
950
951         pr_debug("%s: start = 0x%012llx, len = %llu\n",
952                         __func__, (unsigned long long)ofs, len);
953
954         if (check_offs_len(mtd, ofs, len))
955                 ret = -EINVAL;
956
957         /* Align to last block address if size addresses end of the device */
958         if (ofs + len == mtd->size)
959                 len -= mtd->erasesize;
960
961         nand_get_device(mtd, FL_UNLOCKING);
962
963         /* Shift to get chip number */
964         chipnr = ofs >> chip->chip_shift;
965
966         chip->select_chip(mtd, chipnr);
967
968         /* Check, if it is write protected */
969         if (nand_check_wp(mtd)) {
970                 pr_debug("%s: device is write protected!\n",
971                                         __func__);
972                 ret = -EIO;
973                 goto out;
974         }
975
976         ret = __nand_unlock(mtd, ofs, len, 0);
977
978 out:
979         chip->select_chip(mtd, -1);
980         nand_release_device(mtd);
981
982         return ret;
983 }
984 EXPORT_SYMBOL(nand_unlock);
985
986 /**
987  * nand_lock - [REPLACEABLE] locks all blocks present in the device
988  * @mtd: mtd info
989  * @ofs: offset to start unlock from
990  * @len: length to unlock
991  *
992  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
993  * have this feature, but it allows only to lock all blocks, not for specified
994  * range for block. Implementing 'lock' feature by making use of 'unlock', for
995  * now.
996  *
997  * Returns lock status.
998  */
999 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1000 {
1001         int ret = 0;
1002         int chipnr, status, page;
1003         struct nand_chip *chip = mtd->priv;
1004
1005         pr_debug("%s: start = 0x%012llx, len = %llu\n",
1006                         __func__, (unsigned long long)ofs, len);
1007
1008         if (check_offs_len(mtd, ofs, len))
1009                 ret = -EINVAL;
1010
1011         nand_get_device(mtd, FL_LOCKING);
1012
1013         /* Shift to get chip number */
1014         chipnr = ofs >> chip->chip_shift;
1015
1016         chip->select_chip(mtd, chipnr);
1017
1018         /* Check, if it is write protected */
1019         if (nand_check_wp(mtd)) {
1020                 pr_debug("%s: device is write protected!\n",
1021                                         __func__);
1022                 status = MTD_ERASE_FAILED;
1023                 ret = -EIO;
1024                 goto out;
1025         }
1026
1027         /* Submit address of first page to lock */
1028         page = ofs >> chip->page_shift;
1029         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1030
1031         /* Call wait ready function */
1032         status = chip->waitfunc(mtd, chip);
1033         /* See if device thinks it succeeded */
1034         if (status & NAND_STATUS_FAIL) {
1035                 pr_debug("%s: error status = 0x%08x\n",
1036                                         __func__, status);
1037                 ret = -EIO;
1038                 goto out;
1039         }
1040
1041         ret = __nand_unlock(mtd, ofs, len, 0x1);
1042
1043 out:
1044         chip->select_chip(mtd, -1);
1045         nand_release_device(mtd);
1046
1047         return ret;
1048 }
1049 EXPORT_SYMBOL(nand_lock);
1050
1051 /**
1052  * nand_read_page_raw - [INTERN] read raw page data without ecc
1053  * @mtd: mtd info structure
1054  * @chip: nand chip info structure
1055  * @buf: buffer to store read data
1056  * @oob_required: caller requires OOB data read to chip->oob_poi
1057  * @page: page number to read
1058  *
1059  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1060  */
1061 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1062                               uint8_t *buf, int oob_required, int page)
1063 {
1064         chip->read_buf(mtd, buf, mtd->writesize);
1065         if (oob_required)
1066                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1067         return 0;
1068 }
1069
1070 /**
1071  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1072  * @mtd: mtd info structure
1073  * @chip: nand chip info structure
1074  * @buf: buffer to store read data
1075  * @oob_required: caller requires OOB data read to chip->oob_poi
1076  * @page: page number to read
1077  *
1078  * We need a special oob layout and handling even when OOB isn't used.
1079  */
1080 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1081                                        struct nand_chip *chip, uint8_t *buf,
1082                                        int oob_required, int page)
1083 {
1084         int eccsize = chip->ecc.size;
1085         int eccbytes = chip->ecc.bytes;
1086         uint8_t *oob = chip->oob_poi;
1087         int steps, size;
1088
1089         for (steps = chip->ecc.steps; steps > 0; steps--) {
1090                 chip->read_buf(mtd, buf, eccsize);
1091                 buf += eccsize;
1092
1093                 if (chip->ecc.prepad) {
1094                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1095                         oob += chip->ecc.prepad;
1096                 }
1097
1098                 chip->read_buf(mtd, oob, eccbytes);
1099                 oob += eccbytes;
1100
1101                 if (chip->ecc.postpad) {
1102                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1103                         oob += chip->ecc.postpad;
1104                 }
1105         }
1106
1107         size = mtd->oobsize - (oob - chip->oob_poi);
1108         if (size)
1109                 chip->read_buf(mtd, oob, size);
1110
1111         return 0;
1112 }
1113
1114 /**
1115  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1116  * @mtd: mtd info structure
1117  * @chip: nand chip info structure
1118  * @buf: buffer to store read data
1119  * @oob_required: caller requires OOB data read to chip->oob_poi
1120  * @page: page number to read
1121  */
1122 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1123                                 uint8_t *buf, int oob_required, int page)
1124 {
1125         int i, eccsize = chip->ecc.size;
1126         int eccbytes = chip->ecc.bytes;
1127         int eccsteps = chip->ecc.steps;
1128         uint8_t *p = buf;
1129         uint8_t *ecc_calc = chip->buffers->ecccalc;
1130         uint8_t *ecc_code = chip->buffers->ecccode;
1131         uint32_t *eccpos = chip->ecc.layout->eccpos;
1132         unsigned int max_bitflips = 0;
1133
1134         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1135
1136         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1137                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1138
1139         for (i = 0; i < chip->ecc.total; i++)
1140                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1141
1142         eccsteps = chip->ecc.steps;
1143         p = buf;
1144
1145         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1146                 int stat;
1147
1148                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1149                 if (stat < 0) {
1150                         mtd->ecc_stats.failed++;
1151                 } else {
1152                         mtd->ecc_stats.corrected += stat;
1153                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1154                 }
1155         }
1156         return max_bitflips;
1157 }
1158
1159 /**
1160  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1161  * @mtd: mtd info structure
1162  * @chip: nand chip info structure
1163  * @data_offs: offset of requested data within the page
1164  * @readlen: data length
1165  * @bufpoi: buffer to store read data
1166  * @page: page number to read
1167  */
1168 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1169                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1170                         int page)
1171 {
1172         int start_step, end_step, num_steps;
1173         uint32_t *eccpos = chip->ecc.layout->eccpos;
1174         uint8_t *p;
1175         int data_col_addr, i, gaps = 0;
1176         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1177         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1178         int index;
1179         unsigned int max_bitflips = 0;
1180
1181         /* Column address within the page aligned to ECC size (256bytes) */
1182         start_step = data_offs / chip->ecc.size;
1183         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1184         num_steps = end_step - start_step + 1;
1185         index = start_step * chip->ecc.bytes;
1186
1187         /* Data size aligned to ECC ecc.size */
1188         datafrag_len = num_steps * chip->ecc.size;
1189         eccfrag_len = num_steps * chip->ecc.bytes;
1190
1191         data_col_addr = start_step * chip->ecc.size;
1192         /* If we read not a page aligned data */
1193         if (data_col_addr != 0)
1194                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1195
1196         p = bufpoi + data_col_addr;
1197         chip->read_buf(mtd, p, datafrag_len);
1198
1199         /* Calculate ECC */
1200         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1201                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1202
1203         /*
1204          * The performance is faster if we position offsets according to
1205          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1206          */
1207         for (i = 0; i < eccfrag_len - 1; i++) {
1208                 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1209                         gaps = 1;
1210                         break;
1211                 }
1212         }
1213         if (gaps) {
1214                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1215                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1216         } else {
1217                 /*
1218                  * Send the command to read the particular ECC bytes take care
1219                  * about buswidth alignment in read_buf.
1220                  */
1221                 aligned_pos = eccpos[index] & ~(busw - 1);
1222                 aligned_len = eccfrag_len;
1223                 if (eccpos[index] & (busw - 1))
1224                         aligned_len++;
1225                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1226                         aligned_len++;
1227
1228                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1229                                         mtd->writesize + aligned_pos, -1);
1230                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1231         }
1232
1233         for (i = 0; i < eccfrag_len; i++)
1234                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1235
1236         p = bufpoi + data_col_addr;
1237         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1238                 int stat;
1239
1240                 stat = chip->ecc.correct(mtd, p,
1241                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1242                 if (stat < 0) {
1243                         mtd->ecc_stats.failed++;
1244                 } else {
1245                         mtd->ecc_stats.corrected += stat;
1246                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1247                 }
1248         }
1249         return max_bitflips;
1250 }
1251
1252 /**
1253  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1254  * @mtd: mtd info structure
1255  * @chip: nand chip info structure
1256  * @buf: buffer to store read data
1257  * @oob_required: caller requires OOB data read to chip->oob_poi
1258  * @page: page number to read
1259  *
1260  * Not for syndrome calculating ECC controllers which need a special oob layout.
1261  */
1262 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1263                                 uint8_t *buf, int oob_required, int page)
1264 {
1265         int i, eccsize = chip->ecc.size;
1266         int eccbytes = chip->ecc.bytes;
1267         int eccsteps = chip->ecc.steps;
1268         uint8_t *p = buf;
1269         uint8_t *ecc_calc = chip->buffers->ecccalc;
1270         uint8_t *ecc_code = chip->buffers->ecccode;
1271         uint32_t *eccpos = chip->ecc.layout->eccpos;
1272         unsigned int max_bitflips = 0;
1273
1274         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1275                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1276                 chip->read_buf(mtd, p, eccsize);
1277                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1278         }
1279         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1280
1281         for (i = 0; i < chip->ecc.total; i++)
1282                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1283
1284         eccsteps = chip->ecc.steps;
1285         p = buf;
1286
1287         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1288                 int stat;
1289
1290                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1291                 if (stat < 0) {
1292                         mtd->ecc_stats.failed++;
1293                 } else {
1294                         mtd->ecc_stats.corrected += stat;
1295                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1296                 }
1297         }
1298         return max_bitflips;
1299 }
1300
1301 /**
1302  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1303  * @mtd: mtd info structure
1304  * @chip: nand chip info structure
1305  * @buf: buffer to store read data
1306  * @oob_required: caller requires OOB data read to chip->oob_poi
1307  * @page: page number to read
1308  *
1309  * Hardware ECC for large page chips, require OOB to be read first. For this
1310  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1311  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1312  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1313  * the data area, by overwriting the NAND manufacturer bad block markings.
1314  */
1315 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1316         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1317 {
1318         int i, eccsize = chip->ecc.size;
1319         int eccbytes = chip->ecc.bytes;
1320         int eccsteps = chip->ecc.steps;
1321         uint8_t *p = buf;
1322         uint8_t *ecc_code = chip->buffers->ecccode;
1323         uint32_t *eccpos = chip->ecc.layout->eccpos;
1324         uint8_t *ecc_calc = chip->buffers->ecccalc;
1325         unsigned int max_bitflips = 0;
1326
1327         /* Read the OOB area first */
1328         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1329         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1330         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1331
1332         for (i = 0; i < chip->ecc.total; i++)
1333                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1334
1335         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1336                 int stat;
1337
1338                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1339                 chip->read_buf(mtd, p, eccsize);
1340                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1341
1342                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1343                 if (stat < 0) {
1344                         mtd->ecc_stats.failed++;
1345                 } else {
1346                         mtd->ecc_stats.corrected += stat;
1347                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1348                 }
1349         }
1350         return max_bitflips;
1351 }
1352
1353 /**
1354  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1355  * @mtd: mtd info structure
1356  * @chip: nand chip info structure
1357  * @buf: buffer to store read data
1358  * @oob_required: caller requires OOB data read to chip->oob_poi
1359  * @page: page number to read
1360  *
1361  * The hw generator calculates the error syndrome automatically. Therefore we
1362  * need a special oob layout and handling.
1363  */
1364 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1365                                    uint8_t *buf, int oob_required, int page)
1366 {
1367         int i, eccsize = chip->ecc.size;
1368         int eccbytes = chip->ecc.bytes;
1369         int eccsteps = chip->ecc.steps;
1370         uint8_t *p = buf;
1371         uint8_t *oob = chip->oob_poi;
1372         unsigned int max_bitflips = 0;
1373
1374         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1375                 int stat;
1376
1377                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1378                 chip->read_buf(mtd, p, eccsize);
1379
1380                 if (chip->ecc.prepad) {
1381                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1382                         oob += chip->ecc.prepad;
1383                 }
1384
1385                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1386                 chip->read_buf(mtd, oob, eccbytes);
1387                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1388
1389                 if (stat < 0) {
1390                         mtd->ecc_stats.failed++;
1391                 } else {
1392                         mtd->ecc_stats.corrected += stat;
1393                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1394                 }
1395
1396                 oob += eccbytes;
1397
1398                 if (chip->ecc.postpad) {
1399                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1400                         oob += chip->ecc.postpad;
1401                 }
1402         }
1403
1404         /* Calculate remaining oob bytes */
1405         i = mtd->oobsize - (oob - chip->oob_poi);
1406         if (i)
1407                 chip->read_buf(mtd, oob, i);
1408
1409         return max_bitflips;
1410 }
1411
1412 /**
1413  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1414  * @chip: nand chip structure
1415  * @oob: oob destination address
1416  * @ops: oob ops structure
1417  * @len: size of oob to transfer
1418  */
1419 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1420                                   struct mtd_oob_ops *ops, size_t len)
1421 {
1422         switch (ops->mode) {
1423
1424         case MTD_OPS_PLACE_OOB:
1425         case MTD_OPS_RAW:
1426                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1427                 return oob + len;
1428
1429         case MTD_OPS_AUTO_OOB: {
1430                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1431                 uint32_t boffs = 0, roffs = ops->ooboffs;
1432                 size_t bytes = 0;
1433
1434                 for (; free->length && len; free++, len -= bytes) {
1435                         /* Read request not from offset 0? */
1436                         if (unlikely(roffs)) {
1437                                 if (roffs >= free->length) {
1438                                         roffs -= free->length;
1439                                         continue;
1440                                 }
1441                                 boffs = free->offset + roffs;
1442                                 bytes = min_t(size_t, len,
1443                                               (free->length - roffs));
1444                                 roffs = 0;
1445                         } else {
1446                                 bytes = min_t(size_t, len, free->length);
1447                                 boffs = free->offset;
1448                         }
1449                         memcpy(oob, chip->oob_poi + boffs, bytes);
1450                         oob += bytes;
1451                 }
1452                 return oob;
1453         }
1454         default:
1455                 BUG();
1456         }
1457         return NULL;
1458 }
1459
1460 /**
1461  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1462  * @mtd: MTD device structure
1463  * @retry_mode: the retry mode to use
1464  *
1465  * Some vendors supply a special command to shift the Vt threshold, to be used
1466  * when there are too many bitflips in a page (i.e., ECC error). After setting
1467  * a new threshold, the host should retry reading the page.
1468  */
1469 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1470 {
1471         struct nand_chip *chip = mtd->priv;
1472
1473         pr_debug("setting READ RETRY mode %d\n", retry_mode);
1474
1475         if (retry_mode >= chip->read_retries)
1476                 return -EINVAL;
1477
1478         if (!chip->setup_read_retry)
1479                 return -EOPNOTSUPP;
1480
1481         return chip->setup_read_retry(mtd, retry_mode);
1482 }
1483
1484 /**
1485  * nand_do_read_ops - [INTERN] Read data with ECC
1486  * @mtd: MTD device structure
1487  * @from: offset to read from
1488  * @ops: oob ops structure
1489  *
1490  * Internal function. Called with chip held.
1491  */
1492 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1493                             struct mtd_oob_ops *ops)
1494 {
1495         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1496         struct nand_chip *chip = mtd->priv;
1497         int ret = 0;
1498         uint32_t readlen = ops->len;
1499         uint32_t oobreadlen = ops->ooblen;
1500         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1501                 mtd->oobavail : mtd->oobsize;
1502
1503         uint8_t *bufpoi, *oob, *buf;
1504         int use_bufpoi;
1505         unsigned int max_bitflips = 0;
1506         int retry_mode = 0;
1507         bool ecc_fail = false;
1508
1509         chipnr = (int)(from >> chip->chip_shift);
1510         chip->select_chip(mtd, chipnr);
1511
1512         realpage = (int)(from >> chip->page_shift);
1513         page = realpage & chip->pagemask;
1514
1515         col = (int)(from & (mtd->writesize - 1));
1516
1517         buf = ops->datbuf;
1518         oob = ops->oobbuf;
1519         oob_required = oob ? 1 : 0;
1520
1521         while (1) {
1522                 unsigned int ecc_failures = mtd->ecc_stats.failed;
1523
1524                 bytes = min(mtd->writesize - col, readlen);
1525                 aligned = (bytes == mtd->writesize);
1526
1527                 if (!aligned)
1528                         use_bufpoi = 1;
1529                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1530                         use_bufpoi = !virt_addr_valid(buf);
1531                 else
1532                         use_bufpoi = 0;
1533
1534                 /* Is the current page in the buffer? */
1535                 if (realpage != chip->pagebuf || oob) {
1536                         bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1537
1538                         if (use_bufpoi && aligned)
1539                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
1540                                                  __func__, buf);
1541
1542 read_retry:
1543                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1544
1545                         /*
1546                          * Now read the page into the buffer.  Absent an error,
1547                          * the read methods return max bitflips per ecc step.
1548                          */
1549                         if (unlikely(ops->mode == MTD_OPS_RAW))
1550                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1551                                                               oob_required,
1552                                                               page);
1553                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1554                                  !oob)
1555                                 ret = chip->ecc.read_subpage(mtd, chip,
1556                                                         col, bytes, bufpoi,
1557                                                         page);
1558                         else
1559                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1560                                                           oob_required, page);
1561                         if (ret < 0) {
1562                                 if (use_bufpoi)
1563                                         /* Invalidate page cache */
1564                                         chip->pagebuf = -1;
1565                                 break;
1566                         }
1567
1568                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1569
1570                         /* Transfer not aligned data */
1571                         if (use_bufpoi) {
1572                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1573                                     !(mtd->ecc_stats.failed - ecc_failures) &&
1574                                     (ops->mode != MTD_OPS_RAW)) {
1575                                         chip->pagebuf = realpage;
1576                                         chip->pagebuf_bitflips = ret;
1577                                 } else {
1578                                         /* Invalidate page cache */
1579                                         chip->pagebuf = -1;
1580                                 }
1581                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1582                         }
1583
1584                         if (unlikely(oob)) {
1585                                 int toread = min(oobreadlen, max_oobsize);
1586
1587                                 if (toread) {
1588                                         oob = nand_transfer_oob(chip,
1589                                                 oob, ops, toread);
1590                                         oobreadlen -= toread;
1591                                 }
1592                         }
1593
1594                         if (chip->options & NAND_NEED_READRDY) {
1595                                 /* Apply delay or wait for ready/busy pin */
1596                                 if (!chip->dev_ready)
1597                                         udelay(chip->chip_delay);
1598                                 else
1599                                         nand_wait_ready(mtd);
1600                         }
1601
1602                         if (mtd->ecc_stats.failed - ecc_failures) {
1603                                 if (retry_mode + 1 < chip->read_retries) {
1604                                         retry_mode++;
1605                                         ret = nand_setup_read_retry(mtd,
1606                                                         retry_mode);
1607                                         if (ret < 0)
1608                                                 break;
1609
1610                                         /* Reset failures; retry */
1611                                         mtd->ecc_stats.failed = ecc_failures;
1612                                         goto read_retry;
1613                                 } else {
1614                                         /* No more retry modes; real failure */
1615                                         ecc_fail = true;
1616                                 }
1617                         }
1618
1619                         buf += bytes;
1620                 } else {
1621                         memcpy(buf, chip->buffers->databuf + col, bytes);
1622                         buf += bytes;
1623                         max_bitflips = max_t(unsigned int, max_bitflips,
1624                                              chip->pagebuf_bitflips);
1625                 }
1626
1627                 readlen -= bytes;
1628
1629                 /* Reset to retry mode 0 */
1630                 if (retry_mode) {
1631                         ret = nand_setup_read_retry(mtd, 0);
1632                         if (ret < 0)
1633                                 break;
1634                         retry_mode = 0;
1635                 }
1636
1637                 if (!readlen)
1638                         break;
1639
1640                 /* For subsequent reads align to page boundary */
1641                 col = 0;
1642                 /* Increment page address */
1643                 realpage++;
1644
1645                 page = realpage & chip->pagemask;
1646                 /* Check, if we cross a chip boundary */
1647                 if (!page) {
1648                         chipnr++;
1649                         chip->select_chip(mtd, -1);
1650                         chip->select_chip(mtd, chipnr);
1651                 }
1652         }
1653         chip->select_chip(mtd, -1);
1654
1655         ops->retlen = ops->len - (size_t) readlen;
1656         if (oob)
1657                 ops->oobretlen = ops->ooblen - oobreadlen;
1658
1659         if (ret < 0)
1660                 return ret;
1661
1662         if (ecc_fail)
1663                 return -EBADMSG;
1664
1665         return max_bitflips;
1666 }
1667
1668 /**
1669  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1670  * @mtd: MTD device structure
1671  * @from: offset to read from
1672  * @len: number of bytes to read
1673  * @retlen: pointer to variable to store the number of read bytes
1674  * @buf: the databuffer to put data
1675  *
1676  * Get hold of the chip and call nand_do_read.
1677  */
1678 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1679                      size_t *retlen, uint8_t *buf)
1680 {
1681         struct mtd_oob_ops ops;
1682         int ret;
1683
1684         nand_get_device(mtd, FL_READING);
1685         ops.len = len;
1686         ops.datbuf = buf;
1687         ops.oobbuf = NULL;
1688         ops.mode = MTD_OPS_PLACE_OOB;
1689         ret = nand_do_read_ops(mtd, from, &ops);
1690         *retlen = ops.retlen;
1691         nand_release_device(mtd);
1692         return ret;
1693 }
1694
1695 /**
1696  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1697  * @mtd: mtd info structure
1698  * @chip: nand chip info structure
1699  * @page: page number to read
1700  */
1701 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1702                              int page)
1703 {
1704         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1705         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1706         return 0;
1707 }
1708
1709 /**
1710  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1711  *                          with syndromes
1712  * @mtd: mtd info structure
1713  * @chip: nand chip info structure
1714  * @page: page number to read
1715  */
1716 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1717                                   int page)
1718 {
1719         uint8_t *buf = chip->oob_poi;
1720         int length = mtd->oobsize;
1721         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1722         int eccsize = chip->ecc.size;
1723         uint8_t *bufpoi = buf;
1724         int i, toread, sndrnd = 0, pos;
1725
1726         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1727         for (i = 0; i < chip->ecc.steps; i++) {
1728                 if (sndrnd) {
1729                         pos = eccsize + i * (eccsize + chunk);
1730                         if (mtd->writesize > 512)
1731                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1732                         else
1733                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1734                 } else
1735                         sndrnd = 1;
1736                 toread = min_t(int, length, chunk);
1737                 chip->read_buf(mtd, bufpoi, toread);
1738                 bufpoi += toread;
1739                 length -= toread;
1740         }
1741         if (length > 0)
1742                 chip->read_buf(mtd, bufpoi, length);
1743
1744         return 0;
1745 }
1746
1747 /**
1748  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1749  * @mtd: mtd info structure
1750  * @chip: nand chip info structure
1751  * @page: page number to write
1752  */
1753 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1754                               int page)
1755 {
1756         int status = 0;
1757         const uint8_t *buf = chip->oob_poi;
1758         int length = mtd->oobsize;
1759
1760         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1761         chip->write_buf(mtd, buf, length);
1762         /* Send command to program the OOB data */
1763         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1764
1765         status = chip->waitfunc(mtd, chip);
1766
1767         return status & NAND_STATUS_FAIL ? -EIO : 0;
1768 }
1769
1770 /**
1771  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1772  *                           with syndrome - only for large page flash
1773  * @mtd: mtd info structure
1774  * @chip: nand chip info structure
1775  * @page: page number to write
1776  */
1777 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1778                                    struct nand_chip *chip, int page)
1779 {
1780         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1781         int eccsize = chip->ecc.size, length = mtd->oobsize;
1782         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1783         const uint8_t *bufpoi = chip->oob_poi;
1784
1785         /*
1786          * data-ecc-data-ecc ... ecc-oob
1787          * or
1788          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1789          */
1790         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1791                 pos = steps * (eccsize + chunk);
1792                 steps = 0;
1793         } else
1794                 pos = eccsize;
1795
1796         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1797         for (i = 0; i < steps; i++) {
1798                 if (sndcmd) {
1799                         if (mtd->writesize <= 512) {
1800                                 uint32_t fill = 0xFFFFFFFF;
1801
1802                                 len = eccsize;
1803                                 while (len > 0) {
1804                                         int num = min_t(int, len, 4);
1805                                         chip->write_buf(mtd, (uint8_t *)&fill,
1806                                                         num);
1807                                         len -= num;
1808                                 }
1809                         } else {
1810                                 pos = eccsize + i * (eccsize + chunk);
1811                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1812                         }
1813                 } else
1814                         sndcmd = 1;
1815                 len = min_t(int, length, chunk);
1816                 chip->write_buf(mtd, bufpoi, len);
1817                 bufpoi += len;
1818                 length -= len;
1819         }
1820         if (length > 0)
1821                 chip->write_buf(mtd, bufpoi, length);
1822
1823         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1824         status = chip->waitfunc(mtd, chip);
1825
1826         return status & NAND_STATUS_FAIL ? -EIO : 0;
1827 }
1828
1829 /**
1830  * nand_do_read_oob - [INTERN] NAND read out-of-band
1831  * @mtd: MTD device structure
1832  * @from: offset to read from
1833  * @ops: oob operations description structure
1834  *
1835  * NAND read out-of-band data from the spare area.
1836  */
1837 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1838                             struct mtd_oob_ops *ops)
1839 {
1840         int page, realpage, chipnr;
1841         struct nand_chip *chip = mtd->priv;
1842         struct mtd_ecc_stats stats;
1843         int readlen = ops->ooblen;
1844         int len;
1845         uint8_t *buf = ops->oobbuf;
1846         int ret = 0;
1847
1848         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1849                         __func__, (unsigned long long)from, readlen);
1850
1851         stats = mtd->ecc_stats;
1852
1853         if (ops->mode == MTD_OPS_AUTO_OOB)
1854                 len = chip->ecc.layout->oobavail;
1855         else
1856                 len = mtd->oobsize;
1857
1858         if (unlikely(ops->ooboffs >= len)) {
1859                 pr_debug("%s: attempt to start read outside oob\n",
1860                                 __func__);
1861                 return -EINVAL;
1862         }
1863
1864         /* Do not allow reads past end of device */
1865         if (unlikely(from >= mtd->size ||
1866                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1867                                         (from >> chip->page_shift)) * len)) {
1868                 pr_debug("%s: attempt to read beyond end of device\n",
1869                                 __func__);
1870                 return -EINVAL;
1871         }
1872
1873         chipnr = (int)(from >> chip->chip_shift);
1874         chip->select_chip(mtd, chipnr);
1875
1876         /* Shift to get page */
1877         realpage = (int)(from >> chip->page_shift);
1878         page = realpage & chip->pagemask;
1879
1880         while (1) {
1881                 if (ops->mode == MTD_OPS_RAW)
1882                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1883                 else
1884                         ret = chip->ecc.read_oob(mtd, chip, page);
1885
1886                 if (ret < 0)
1887                         break;
1888
1889                 len = min(len, readlen);
1890                 buf = nand_transfer_oob(chip, buf, ops, len);
1891
1892                 if (chip->options & NAND_NEED_READRDY) {
1893                         /* Apply delay or wait for ready/busy pin */
1894                         if (!chip->dev_ready)
1895                                 udelay(chip->chip_delay);
1896                         else
1897                                 nand_wait_ready(mtd);
1898                 }
1899
1900                 readlen -= len;
1901                 if (!readlen)
1902                         break;
1903
1904                 /* Increment page address */
1905                 realpage++;
1906
1907                 page = realpage & chip->pagemask;
1908                 /* Check, if we cross a chip boundary */
1909                 if (!page) {
1910                         chipnr++;
1911                         chip->select_chip(mtd, -1);
1912                         chip->select_chip(mtd, chipnr);
1913                 }
1914         }
1915         chip->select_chip(mtd, -1);
1916
1917         ops->oobretlen = ops->ooblen - readlen;
1918
1919         if (ret < 0)
1920                 return ret;
1921
1922         if (mtd->ecc_stats.failed - stats.failed)
1923                 return -EBADMSG;
1924
1925         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1926 }
1927
1928 /**
1929  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1930  * @mtd: MTD device structure
1931  * @from: offset to read from
1932  * @ops: oob operation description structure
1933  *
1934  * NAND read data and/or out-of-band data.
1935  */
1936 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1937                          struct mtd_oob_ops *ops)
1938 {
1939         int ret = -ENOTSUPP;
1940
1941         ops->retlen = 0;
1942
1943         /* Do not allow reads past end of device */
1944         if (ops->datbuf && (from + ops->len) > mtd->size) {
1945                 pr_debug("%s: attempt to read beyond end of device\n",
1946                                 __func__);
1947                 return -EINVAL;
1948         }
1949
1950         nand_get_device(mtd, FL_READING);
1951
1952         switch (ops->mode) {
1953         case MTD_OPS_PLACE_OOB:
1954         case MTD_OPS_AUTO_OOB:
1955         case MTD_OPS_RAW:
1956                 break;
1957
1958         default:
1959                 goto out;
1960         }
1961
1962         if (!ops->datbuf)
1963                 ret = nand_do_read_oob(mtd, from, ops);
1964         else
1965                 ret = nand_do_read_ops(mtd, from, ops);
1966
1967 out:
1968         nand_release_device(mtd);
1969         return ret;
1970 }
1971
1972
1973 /**
1974  * nand_write_page_raw - [INTERN] raw page write function
1975  * @mtd: mtd info structure
1976  * @chip: nand chip info structure
1977  * @buf: data buffer
1978  * @oob_required: must write chip->oob_poi to OOB
1979  *
1980  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1981  */
1982 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1983                                 const uint8_t *buf, int oob_required)
1984 {
1985         chip->write_buf(mtd, buf, mtd->writesize);
1986         if (oob_required)
1987                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1988
1989         return 0;
1990 }
1991
1992 /**
1993  * nand_write_page_raw_syndrome - [INTERN] raw page write function
1994  * @mtd: mtd info structure
1995  * @chip: nand chip info structure
1996  * @buf: data buffer
1997  * @oob_required: must write chip->oob_poi to OOB
1998  *
1999  * We need a special oob layout and handling even when ECC isn't checked.
2000  */
2001 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2002                                         struct nand_chip *chip,
2003                                         const uint8_t *buf, int oob_required)
2004 {
2005         int eccsize = chip->ecc.size;
2006         int eccbytes = chip->ecc.bytes;
2007         uint8_t *oob = chip->oob_poi;
2008         int steps, size;
2009
2010         for (steps = chip->ecc.steps; steps > 0; steps--) {
2011                 chip->write_buf(mtd, buf, eccsize);
2012                 buf += eccsize;
2013
2014                 if (chip->ecc.prepad) {
2015                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2016                         oob += chip->ecc.prepad;
2017                 }
2018
2019                 chip->write_buf(mtd, oob, eccbytes);
2020                 oob += eccbytes;
2021
2022                 if (chip->ecc.postpad) {
2023                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2024                         oob += chip->ecc.postpad;
2025                 }
2026         }
2027
2028         size = mtd->oobsize - (oob - chip->oob_poi);
2029         if (size)
2030                 chip->write_buf(mtd, oob, size);
2031
2032         return 0;
2033 }
2034 /**
2035  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2036  * @mtd: mtd info structure
2037  * @chip: nand chip info structure
2038  * @buf: data buffer
2039  * @oob_required: must write chip->oob_poi to OOB
2040  */
2041 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2042                                   const uint8_t *buf, int oob_required)
2043 {
2044         int i, eccsize = chip->ecc.size;
2045         int eccbytes = chip->ecc.bytes;
2046         int eccsteps = chip->ecc.steps;
2047         uint8_t *ecc_calc = chip->buffers->ecccalc;
2048         const uint8_t *p = buf;
2049         uint32_t *eccpos = chip->ecc.layout->eccpos;
2050
2051         /* Software ECC calculation */
2052         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2053                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2054
2055         for (i = 0; i < chip->ecc.total; i++)
2056                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2057
2058         return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2059 }
2060
2061 /**
2062  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2063  * @mtd: mtd info structure
2064  * @chip: nand chip info structure
2065  * @buf: data buffer
2066  * @oob_required: must write chip->oob_poi to OOB
2067  */
2068 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2069                                   const uint8_t *buf, int oob_required)
2070 {
2071         int i, eccsize = chip->ecc.size;
2072         int eccbytes = chip->ecc.bytes;
2073         int eccsteps = chip->ecc.steps;
2074         uint8_t *ecc_calc = chip->buffers->ecccalc;
2075         const uint8_t *p = buf;
2076         uint32_t *eccpos = chip->ecc.layout->eccpos;
2077
2078         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2079                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2080                 chip->write_buf(mtd, p, eccsize);
2081                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2082         }
2083
2084         for (i = 0; i < chip->ecc.total; i++)
2085                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2086
2087         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2088
2089         return 0;
2090 }
2091
2092
2093 /**
2094  * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2095  * @mtd:        mtd info structure
2096  * @chip:       nand chip info structure
2097  * @offset:     column address of subpage within the page
2098  * @data_len:   data length
2099  * @buf:        data buffer
2100  * @oob_required: must write chip->oob_poi to OOB
2101  */
2102 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2103                                 struct nand_chip *chip, uint32_t offset,
2104                                 uint32_t data_len, const uint8_t *buf,
2105                                 int oob_required)
2106 {
2107         uint8_t *oob_buf  = chip->oob_poi;
2108         uint8_t *ecc_calc = chip->buffers->ecccalc;
2109         int ecc_size      = chip->ecc.size;
2110         int ecc_bytes     = chip->ecc.bytes;
2111         int ecc_steps     = chip->ecc.steps;
2112         uint32_t *eccpos  = chip->ecc.layout->eccpos;
2113         uint32_t start_step = offset / ecc_size;
2114         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2115         int oob_bytes       = mtd->oobsize / ecc_steps;
2116         int step, i;
2117
2118         for (step = 0; step < ecc_steps; step++) {
2119                 /* configure controller for WRITE access */
2120                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2121
2122                 /* write data (untouched subpages already masked by 0xFF) */
2123                 chip->write_buf(mtd, buf, ecc_size);
2124
2125                 /* mask ECC of un-touched subpages by padding 0xFF */
2126                 if ((step < start_step) || (step > end_step))
2127                         memset(ecc_calc, 0xff, ecc_bytes);
2128                 else
2129                         chip->ecc.calculate(mtd, buf, ecc_calc);
2130
2131                 /* mask OOB of un-touched subpages by padding 0xFF */
2132                 /* if oob_required, preserve OOB metadata of written subpage */
2133                 if (!oob_required || (step < start_step) || (step > end_step))
2134                         memset(oob_buf, 0xff, oob_bytes);
2135
2136                 buf += ecc_size;
2137                 ecc_calc += ecc_bytes;
2138                 oob_buf  += oob_bytes;
2139         }
2140
2141         /* copy calculated ECC for whole page to chip->buffer->oob */
2142         /* this include masked-value(0xFF) for unwritten subpages */
2143         ecc_calc = chip->buffers->ecccalc;
2144         for (i = 0; i < chip->ecc.total; i++)
2145                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2146
2147         /* write OOB buffer to NAND device */
2148         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2149
2150         return 0;
2151 }
2152
2153
2154 /**
2155  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2156  * @mtd: mtd info structure
2157  * @chip: nand chip info structure
2158  * @buf: data buffer
2159  * @oob_required: must write chip->oob_poi to OOB
2160  *
2161  * The hw generator calculates the error syndrome automatically. Therefore we
2162  * need a special oob layout and handling.
2163  */
2164 static int nand_write_page_syndrome(struct mtd_info *mtd,
2165                                     struct nand_chip *chip,
2166                                     const uint8_t *buf, int oob_required)
2167 {
2168         int i, eccsize = chip->ecc.size;
2169         int eccbytes = chip->ecc.bytes;
2170         int eccsteps = chip->ecc.steps;
2171         const uint8_t *p = buf;
2172         uint8_t *oob = chip->oob_poi;
2173
2174         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2175
2176                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2177                 chip->write_buf(mtd, p, eccsize);
2178
2179                 if (chip->ecc.prepad) {
2180                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2181                         oob += chip->ecc.prepad;
2182                 }
2183
2184                 chip->ecc.calculate(mtd, p, oob);
2185                 chip->write_buf(mtd, oob, eccbytes);
2186                 oob += eccbytes;
2187
2188                 if (chip->ecc.postpad) {
2189                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2190                         oob += chip->ecc.postpad;
2191                 }
2192         }
2193
2194         /* Calculate remaining oob bytes */
2195         i = mtd->oobsize - (oob - chip->oob_poi);
2196         if (i)
2197                 chip->write_buf(mtd, oob, i);
2198
2199         return 0;
2200 }
2201
2202 /**
2203  * nand_write_page - [REPLACEABLE] write one page
2204  * @mtd: MTD device structure
2205  * @chip: NAND chip descriptor
2206  * @offset: address offset within the page
2207  * @data_len: length of actual data to be written
2208  * @buf: the data to write
2209  * @oob_required: must write chip->oob_poi to OOB
2210  * @page: page number to write
2211  * @cached: cached programming
2212  * @raw: use _raw version of write_page
2213  */
2214 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2215                 uint32_t offset, int data_len, const uint8_t *buf,
2216                 int oob_required, int page, int cached, int raw)
2217 {
2218         int status, subpage;
2219
2220         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2221                 chip->ecc.write_subpage)
2222                 subpage = offset || (data_len < mtd->writesize);
2223         else
2224                 subpage = 0;
2225
2226         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2227
2228         if (unlikely(raw))
2229                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2230                                                         oob_required);
2231         else if (subpage)
2232                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2233                                                          buf, oob_required);
2234         else
2235                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2236
2237         if (status < 0)
2238                 return status;
2239
2240         /*
2241          * Cached progamming disabled for now. Not sure if it's worth the
2242          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2243          */
2244         cached = 0;
2245
2246         if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2247
2248                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2249                 status = chip->waitfunc(mtd, chip);
2250                 /*
2251                  * See if operation failed and additional status checks are
2252                  * available.
2253                  */
2254                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2255                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2256                                                page);
2257
2258                 if (status & NAND_STATUS_FAIL)
2259                         return -EIO;
2260         } else {
2261                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2262                 status = chip->waitfunc(mtd, chip);
2263         }
2264
2265         return 0;
2266 }
2267
2268 /**
2269  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2270  * @mtd: MTD device structure
2271  * @oob: oob data buffer
2272  * @len: oob data write length
2273  * @ops: oob ops structure
2274  */
2275 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2276                               struct mtd_oob_ops *ops)
2277 {
2278         struct nand_chip *chip = mtd->priv;
2279
2280         /*
2281          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2282          * data from a previous OOB read.
2283          */
2284         memset(chip->oob_poi, 0xff, mtd->oobsize);
2285
2286         switch (ops->mode) {
2287
2288         case MTD_OPS_PLACE_OOB:
2289         case MTD_OPS_RAW:
2290                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2291                 return oob + len;
2292
2293         case MTD_OPS_AUTO_OOB: {
2294                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2295                 uint32_t boffs = 0, woffs = ops->ooboffs;
2296                 size_t bytes = 0;
2297
2298                 for (; free->length && len; free++, len -= bytes) {
2299                         /* Write request not from offset 0? */
2300                         if (unlikely(woffs)) {
2301                                 if (woffs >= free->length) {
2302                                         woffs -= free->length;
2303                                         continue;
2304                                 }
2305                                 boffs = free->offset + woffs;
2306                                 bytes = min_t(size_t, len,
2307                                               (free->length - woffs));
2308                                 woffs = 0;
2309                         } else {
2310                                 bytes = min_t(size_t, len, free->length);
2311                                 boffs = free->offset;
2312                         }
2313                         memcpy(chip->oob_poi + boffs, oob, bytes);
2314                         oob += bytes;
2315                 }
2316                 return oob;
2317         }
2318         default:
2319                 BUG();
2320         }
2321         return NULL;
2322 }
2323
2324 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2325
2326 /**
2327  * nand_do_write_ops - [INTERN] NAND write with ECC
2328  * @mtd: MTD device structure
2329  * @to: offset to write to
2330  * @ops: oob operations description structure
2331  *
2332  * NAND write with ECC.
2333  */
2334 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2335                              struct mtd_oob_ops *ops)
2336 {
2337         int chipnr, realpage, page, blockmask, column;
2338         struct nand_chip *chip = mtd->priv;
2339         uint32_t writelen = ops->len;
2340
2341         uint32_t oobwritelen = ops->ooblen;
2342         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2343                                 mtd->oobavail : mtd->oobsize;
2344
2345         uint8_t *oob = ops->oobbuf;
2346         uint8_t *buf = ops->datbuf;
2347         int ret;
2348         int oob_required = oob ? 1 : 0;
2349
2350         ops->retlen = 0;
2351         if (!writelen)
2352                 return 0;
2353
2354         /* Reject writes, which are not page aligned */
2355         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2356                 pr_notice("%s: attempt to write non page aligned data\n",
2357                            __func__);
2358                 return -EINVAL;
2359         }
2360
2361         column = to & (mtd->writesize - 1);
2362
2363         chipnr = (int)(to >> chip->chip_shift);
2364         chip->select_chip(mtd, chipnr);
2365
2366         /* Check, if it is write protected */
2367         if (nand_check_wp(mtd)) {
2368                 ret = -EIO;
2369                 goto err_out;
2370         }
2371
2372         realpage = (int)(to >> chip->page_shift);
2373         page = realpage & chip->pagemask;
2374         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2375
2376         /* Invalidate the page cache, when we write to the cached page */
2377         if (to <= (chip->pagebuf << chip->page_shift) &&
2378             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2379                 chip->pagebuf = -1;
2380
2381         /* Don't allow multipage oob writes with offset */
2382         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2383                 ret = -EINVAL;
2384                 goto err_out;
2385         }
2386
2387         while (1) {
2388                 int bytes = mtd->writesize;
2389                 int cached = writelen > bytes && page != blockmask;
2390                 uint8_t *wbuf = buf;
2391                 int use_bufpoi;
2392                 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2393
2394                 if (part_pagewr)
2395                         use_bufpoi = 1;
2396                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2397                         use_bufpoi = !virt_addr_valid(buf);
2398                 else
2399                         use_bufpoi = 0;
2400
2401                 /* Partial page write?, or need to use bounce buffer */
2402                 if (use_bufpoi) {
2403                         pr_debug("%s: using write bounce buffer for buf@%p\n",
2404                                          __func__, buf);
2405                         cached = 0;
2406                         if (part_pagewr)
2407                                 bytes = min_t(int, bytes - column, writelen);
2408                         chip->pagebuf = -1;
2409                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2410                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2411                         wbuf = chip->buffers->databuf;
2412                 }
2413
2414                 if (unlikely(oob)) {
2415                         size_t len = min(oobwritelen, oobmaxlen);
2416                         oob = nand_fill_oob(mtd, oob, len, ops);
2417                         oobwritelen -= len;
2418                 } else {
2419                         /* We still need to erase leftover OOB data */
2420                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2421                 }
2422                 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2423                                         oob_required, page, cached,
2424                                         (ops->mode == MTD_OPS_RAW));
2425                 if (ret)
2426                         break;
2427
2428                 writelen -= bytes;
2429                 if (!writelen)
2430                         break;
2431
2432                 column = 0;
2433                 buf += bytes;
2434                 realpage++;
2435
2436                 page = realpage & chip->pagemask;
2437                 /* Check, if we cross a chip boundary */
2438                 if (!page) {
2439                         chipnr++;
2440                         chip->select_chip(mtd, -1);
2441                         chip->select_chip(mtd, chipnr);
2442                 }
2443         }
2444
2445         ops->retlen = ops->len - writelen;
2446         if (unlikely(oob))
2447                 ops->oobretlen = ops->ooblen;
2448
2449 err_out:
2450         chip->select_chip(mtd, -1);
2451         return ret;
2452 }
2453
2454 /**
2455  * panic_nand_write - [MTD Interface] NAND write with ECC
2456  * @mtd: MTD device structure
2457  * @to: offset to write to
2458  * @len: number of bytes to write
2459  * @retlen: pointer to variable to store the number of written bytes
2460  * @buf: the data to write
2461  *
2462  * NAND write with ECC. Used when performing writes in interrupt context, this
2463  * may for example be called by mtdoops when writing an oops while in panic.
2464  */
2465 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2466                             size_t *retlen, const uint8_t *buf)
2467 {
2468         struct nand_chip *chip = mtd->priv;
2469         struct mtd_oob_ops ops;
2470         int ret;
2471
2472         /* Wait for the device to get ready */
2473         panic_nand_wait(mtd, chip, 400);
2474
2475         /* Grab the device */
2476         panic_nand_get_device(chip, mtd, FL_WRITING);
2477
2478         ops.len = len;
2479         ops.datbuf = (uint8_t *)buf;
2480         ops.oobbuf = NULL;
2481         ops.mode = MTD_OPS_PLACE_OOB;
2482
2483         ret = nand_do_write_ops(mtd, to, &ops);
2484
2485         *retlen = ops.retlen;
2486         return ret;
2487 }
2488
2489 /**
2490  * nand_write - [MTD Interface] NAND write with ECC
2491  * @mtd: MTD device structure
2492  * @to: offset to write to
2493  * @len: number of bytes to write
2494  * @retlen: pointer to variable to store the number of written bytes
2495  * @buf: the data to write
2496  *
2497  * NAND write with ECC.
2498  */
2499 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2500                           size_t *retlen, const uint8_t *buf)
2501 {
2502         struct mtd_oob_ops ops;
2503         int ret;
2504
2505         nand_get_device(mtd, FL_WRITING);
2506         ops.len = len;
2507         ops.datbuf = (uint8_t *)buf;
2508         ops.oobbuf = NULL;
2509         ops.mode = MTD_OPS_PLACE_OOB;
2510         ret = nand_do_write_ops(mtd, to, &ops);
2511         *retlen = ops.retlen;
2512         nand_release_device(mtd);
2513         return ret;
2514 }
2515
2516 /**
2517  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2518  * @mtd: MTD device structure
2519  * @to: offset to write to
2520  * @ops: oob operation description structure
2521  *
2522  * NAND write out-of-band.
2523  */
2524 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2525                              struct mtd_oob_ops *ops)
2526 {
2527         int chipnr, page, status, len;
2528         struct nand_chip *chip = mtd->priv;
2529
2530         pr_debug("%s: to = 0x%08x, len = %i\n",
2531                          __func__, (unsigned int)to, (int)ops->ooblen);
2532
2533         if (ops->mode == MTD_OPS_AUTO_OOB)
2534                 len = chip->ecc.layout->oobavail;
2535         else
2536                 len = mtd->oobsize;
2537
2538         /* Do not allow write past end of page */
2539         if ((ops->ooboffs + ops->ooblen) > len) {
2540                 pr_debug("%s: attempt to write past end of page\n",
2541                                 __func__);
2542                 return -EINVAL;
2543         }
2544
2545         if (unlikely(ops->ooboffs >= len)) {
2546                 pr_debug("%s: attempt to start write outside oob\n",
2547                                 __func__);
2548                 return -EINVAL;
2549         }
2550
2551         /* Do not allow write past end of device */
2552         if (unlikely(to >= mtd->size ||
2553                      ops->ooboffs + ops->ooblen >
2554                         ((mtd->size >> chip->page_shift) -
2555                          (to >> chip->page_shift)) * len)) {
2556                 pr_debug("%s: attempt to write beyond end of device\n",
2557                                 __func__);
2558                 return -EINVAL;
2559         }
2560
2561         chipnr = (int)(to >> chip->chip_shift);
2562         chip->select_chip(mtd, chipnr);
2563
2564         /* Shift to get page */
2565         page = (int)(to >> chip->page_shift);
2566
2567         /*
2568          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2569          * of my DiskOnChip 2000 test units) will clear the whole data page too
2570          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2571          * it in the doc2000 driver in August 1999.  dwmw2.
2572          */
2573         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2574
2575         /* Check, if it is write protected */
2576         if (nand_check_wp(mtd)) {
2577                 chip->select_chip(mtd, -1);
2578                 return -EROFS;
2579         }
2580
2581         /* Invalidate the page cache, if we write to the cached page */
2582         if (page == chip->pagebuf)
2583                 chip->pagebuf = -1;
2584
2585         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2586
2587         if (ops->mode == MTD_OPS_RAW)
2588                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2589         else
2590                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2591
2592         chip->select_chip(mtd, -1);
2593
2594         if (status)
2595                 return status;
2596
2597         ops->oobretlen = ops->ooblen;
2598
2599         return 0;
2600 }
2601
2602 /**
2603  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2604  * @mtd: MTD device structure
2605  * @to: offset to write to
2606  * @ops: oob operation description structure
2607  */
2608 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2609                           struct mtd_oob_ops *ops)
2610 {
2611         int ret = -ENOTSUPP;
2612
2613         ops->retlen = 0;
2614
2615         /* Do not allow writes past end of device */
2616         if (ops->datbuf && (to + ops->len) > mtd->size) {
2617                 pr_debug("%s: attempt to write beyond end of device\n",
2618                                 __func__);
2619                 return -EINVAL;
2620         }
2621
2622         nand_get_device(mtd, FL_WRITING);
2623
2624         switch (ops->mode) {
2625         case MTD_OPS_PLACE_OOB:
2626         case MTD_OPS_AUTO_OOB:
2627         case MTD_OPS_RAW:
2628                 break;
2629
2630         default:
2631                 goto out;
2632         }
2633
2634         if (!ops->datbuf)
2635                 ret = nand_do_write_oob(mtd, to, ops);
2636         else
2637                 ret = nand_do_write_ops(mtd, to, ops);
2638
2639 out:
2640         nand_release_device(mtd);
2641         return ret;
2642 }
2643
2644 /**
2645  * single_erase - [GENERIC] NAND standard block erase command function
2646  * @mtd: MTD device structure
2647  * @page: the page address of the block which will be erased
2648  *
2649  * Standard erase command for NAND chips. Returns NAND status.
2650  */
2651 static int single_erase(struct mtd_info *mtd, int page)
2652 {
2653         struct nand_chip *chip = mtd->priv;
2654         /* Send commands to erase a block */
2655         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2656         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2657
2658         return chip->waitfunc(mtd, chip);
2659 }
2660
2661 /**
2662  * nand_erase - [MTD Interface] erase block(s)
2663  * @mtd: MTD device structure
2664  * @instr: erase instruction
2665  *
2666  * Erase one ore more blocks.
2667  */
2668 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2669 {
2670         return nand_erase_nand(mtd, instr, 0);
2671 }
2672
2673 /**
2674  * nand_erase_nand - [INTERN] erase block(s)
2675  * @mtd: MTD device structure
2676  * @instr: erase instruction
2677  * @allowbbt: allow erasing the bbt area
2678  *
2679  * Erase one ore more blocks.
2680  */
2681 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2682                     int allowbbt)
2683 {
2684         int page, status, pages_per_block, ret, chipnr;
2685         struct nand_chip *chip = mtd->priv;
2686         loff_t len;
2687
2688         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2689                         __func__, (unsigned long long)instr->addr,
2690                         (unsigned long long)instr->len);
2691
2692         if (check_offs_len(mtd, instr->addr, instr->len))
2693                 return -EINVAL;
2694
2695         /* Grab the lock and see if the device is available */
2696         nand_get_device(mtd, FL_ERASING);
2697
2698         /* Shift to get first page */
2699         page = (int)(instr->addr >> chip->page_shift);
2700         chipnr = (int)(instr->addr >> chip->chip_shift);
2701
2702         /* Calculate pages in each block */
2703         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2704
2705         /* Select the NAND device */
2706         chip->select_chip(mtd, chipnr);
2707
2708         /* Check, if it is write protected */
2709         if (nand_check_wp(mtd)) {
2710                 pr_debug("%s: device is write protected!\n",
2711                                 __func__);
2712                 instr->state = MTD_ERASE_FAILED;
2713                 goto erase_exit;
2714         }
2715
2716         /* Loop through the pages */
2717         len = instr->len;
2718
2719         instr->state = MTD_ERASING;
2720
2721         while (len) {
2722                 /* Check if we have a bad block, we do not erase bad blocks! */
2723                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2724                                         chip->page_shift, 0, allowbbt)) {
2725                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2726                                     __func__, page);
2727                         instr->state = MTD_ERASE_FAILED;
2728                         goto erase_exit;
2729                 }
2730
2731                 /*
2732                  * Invalidate the page cache, if we erase the block which
2733                  * contains the current cached page.
2734                  */
2735                 if (page <= chip->pagebuf && chip->pagebuf <
2736                     (page + pages_per_block))
2737                         chip->pagebuf = -1;
2738
2739                 status = chip->erase(mtd, page & chip->pagemask);
2740
2741                 /*
2742                  * See if operation failed and additional status checks are
2743                  * available
2744                  */
2745                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2746                         status = chip->errstat(mtd, chip, FL_ERASING,
2747                                                status, page);
2748
2749                 /* See if block erase succeeded */
2750                 if (status & NAND_STATUS_FAIL) {
2751                         pr_debug("%s: failed erase, page 0x%08x\n",
2752                                         __func__, page);
2753                         instr->state = MTD_ERASE_FAILED;
2754                         instr->fail_addr =
2755                                 ((loff_t)page << chip->page_shift);
2756                         goto erase_exit;
2757                 }
2758
2759                 /* Increment page address and decrement length */
2760                 len -= (1ULL << chip->phys_erase_shift);
2761                 page += pages_per_block;
2762
2763                 /* Check, if we cross a chip boundary */
2764                 if (len && !(page & chip->pagemask)) {
2765                         chipnr++;
2766                         chip->select_chip(mtd, -1);
2767                         chip->select_chip(mtd, chipnr);
2768                 }
2769         }
2770         instr->state = MTD_ERASE_DONE;
2771
2772 erase_exit:
2773
2774         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2775
2776         /* Deselect and wake up anyone waiting on the device */
2777         chip->select_chip(mtd, -1);
2778         nand_release_device(mtd);
2779
2780         /* Do call back function */
2781         if (!ret)
2782                 mtd_erase_callback(instr);
2783
2784         /* Return more or less happy */
2785         return ret;
2786 }
2787
2788 /**
2789  * nand_sync - [MTD Interface] sync
2790  * @mtd: MTD device structure
2791  *
2792  * Sync is actually a wait for chip ready function.
2793  */
2794 static void nand_sync(struct mtd_info *mtd)
2795 {
2796         pr_debug("%s: called\n", __func__);
2797
2798         /* Grab the lock and see if the device is available */
2799         nand_get_device(mtd, FL_SYNCING);
2800         /* Release it and go back */
2801         nand_release_device(mtd);
2802 }
2803
2804 /**
2805  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2806  * @mtd: MTD device structure
2807  * @offs: offset relative to mtd start
2808  */
2809 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2810 {
2811         return nand_block_checkbad(mtd, offs, 1, 0);
2812 }
2813
2814 /**
2815  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2816  * @mtd: MTD device structure
2817  * @ofs: offset relative to mtd start
2818  */
2819 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2820 {
2821         int ret;
2822
2823         ret = nand_block_isbad(mtd, ofs);
2824         if (ret) {
2825                 /* If it was bad already, return success and do nothing */
2826                 if (ret > 0)
2827                         return 0;
2828                 return ret;
2829         }
2830
2831         return nand_block_markbad_lowlevel(mtd, ofs);
2832 }
2833
2834 /**
2835  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2836  * @mtd: MTD device structure
2837  * @chip: nand chip info structure
2838  * @addr: feature address.
2839  * @subfeature_param: the subfeature parameters, a four bytes array.
2840  */
2841 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2842                         int addr, uint8_t *subfeature_param)
2843 {
2844         int status;
2845         int i;
2846
2847         if (!chip->onfi_version ||
2848             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2849               & ONFI_OPT_CMD_SET_GET_FEATURES))
2850                 return -EINVAL;
2851
2852         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2853         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2854                 chip->write_byte(mtd, subfeature_param[i]);
2855
2856         status = chip->waitfunc(mtd, chip);
2857         if (status & NAND_STATUS_FAIL)
2858                 return -EIO;
2859         return 0;
2860 }
2861
2862 /**
2863  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2864  * @mtd: MTD device structure
2865  * @chip: nand chip info structure
2866  * @addr: feature address.
2867  * @subfeature_param: the subfeature parameters, a four bytes array.
2868  */
2869 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2870                         int addr, uint8_t *subfeature_param)
2871 {
2872         int i;
2873
2874         if (!chip->onfi_version ||
2875             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2876               & ONFI_OPT_CMD_SET_GET_FEATURES))
2877                 return -EINVAL;
2878
2879         /* clear the sub feature parameters */
2880         memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2881
2882         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2883         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2884                 *subfeature_param++ = chip->read_byte(mtd);
2885         return 0;
2886 }
2887
2888 /**
2889  * nand_suspend - [MTD Interface] Suspend the NAND flash
2890  * @mtd: MTD device structure
2891  */
2892 static int nand_suspend(struct mtd_info *mtd)
2893 {
2894         return nand_get_device(mtd, FL_PM_SUSPENDED);
2895 }
2896
2897 /**
2898  * nand_resume - [MTD Interface] Resume the NAND flash
2899  * @mtd: MTD device structure
2900  */
2901 static void nand_resume(struct mtd_info *mtd)
2902 {
2903         struct nand_chip *chip = mtd->priv;
2904
2905         if (chip->state == FL_PM_SUSPENDED)
2906                 nand_release_device(mtd);
2907         else
2908                 pr_err("%s called for a chip which is not in suspended state\n",
2909                         __func__);
2910 }
2911
2912 /* Set default functions */
2913 static void nand_set_defaults(struct nand_chip *chip, int busw)
2914 {
2915         /* check for proper chip_delay setup, set 20us if not */
2916         if (!chip->chip_delay)
2917                 chip->chip_delay = 20;
2918
2919         /* check, if a user supplied command function given */
2920         if (chip->cmdfunc == NULL)
2921                 chip->cmdfunc = nand_command;
2922
2923         /* check, if a user supplied wait function given */
2924         if (chip->waitfunc == NULL)
2925                 chip->waitfunc = nand_wait;
2926
2927         if (!chip->select_chip)
2928                 chip->select_chip = nand_select_chip;
2929
2930         /* set for ONFI nand */
2931         if (!chip->onfi_set_features)
2932                 chip->onfi_set_features = nand_onfi_set_features;
2933         if (!chip->onfi_get_features)
2934                 chip->onfi_get_features = nand_onfi_get_features;
2935
2936         /* If called twice, pointers that depend on busw may need to be reset */
2937         if (!chip->read_byte || chip->read_byte == nand_read_byte)
2938                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2939         if (!chip->read_word)
2940                 chip->read_word = nand_read_word;
2941         if (!chip->block_bad)
2942                 chip->block_bad = nand_block_bad;
2943         if (!chip->block_markbad)
2944                 chip->block_markbad = nand_default_block_markbad;
2945         if (!chip->write_buf || chip->write_buf == nand_write_buf)
2946                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2947         if (!chip->write_byte || chip->write_byte == nand_write_byte)
2948                 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2949         if (!chip->read_buf || chip->read_buf == nand_read_buf)
2950                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2951         if (!chip->scan_bbt)
2952                 chip->scan_bbt = nand_default_bbt;
2953
2954         if (!chip->controller) {
2955                 chip->controller = &chip->hwcontrol;
2956                 spin_lock_init(&chip->controller->lock);
2957                 init_waitqueue_head(&chip->controller->wq);
2958         }
2959
2960 }
2961
2962 /* Sanitize ONFI strings so we can safely print them */
2963 static void sanitize_string(uint8_t *s, size_t len)
2964 {
2965         ssize_t i;
2966
2967         /* Null terminate */
2968         s[len - 1] = 0;
2969
2970         /* Remove non printable chars */
2971         for (i = 0; i < len - 1; i++) {
2972                 if (s[i] < ' ' || s[i] > 127)
2973                         s[i] = '?';
2974         }
2975
2976         /* Remove trailing spaces */
2977         strim(s);
2978 }
2979
2980 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2981 {
2982         int i;
2983         while (len--) {
2984                 crc ^= *p++ << 8;
2985                 for (i = 0; i < 8; i++)
2986                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2987         }
2988
2989         return crc;
2990 }
2991
2992 /* Parse the Extended Parameter Page. */
2993 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2994                 struct nand_chip *chip, struct nand_onfi_params *p)
2995 {
2996         struct onfi_ext_param_page *ep;
2997         struct onfi_ext_section *s;
2998         struct onfi_ext_ecc_info *ecc;
2999         uint8_t *cursor;
3000         int ret = -EINVAL;
3001         int len;
3002         int i;
3003
3004         len = le16_to_cpu(p->ext_param_page_length) * 16;
3005         ep = kmalloc(len, GFP_KERNEL);
3006         if (!ep)
3007                 return -ENOMEM;
3008
3009         /* Send our own NAND_CMD_PARAM. */
3010         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3011
3012         /* Use the Change Read Column command to skip the ONFI param pages. */
3013         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3014                         sizeof(*p) * p->num_of_param_pages , -1);
3015
3016         /* Read out the Extended Parameter Page. */
3017         chip->read_buf(mtd, (uint8_t *)ep, len);
3018         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3019                 != le16_to_cpu(ep->crc))) {
3020                 pr_debug("fail in the CRC.\n");
3021                 goto ext_out;
3022         }
3023
3024         /*
3025          * Check the signature.
3026          * Do not strictly follow the ONFI spec, maybe changed in future.
3027          */
3028         if (strncmp(ep->sig, "EPPS", 4)) {
3029                 pr_debug("The signature is invalid.\n");
3030                 goto ext_out;
3031         }
3032
3033         /* find the ECC section. */
3034         cursor = (uint8_t *)(ep + 1);
3035         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3036                 s = ep->sections + i;
3037                 if (s->type == ONFI_SECTION_TYPE_2)
3038                         break;
3039                 cursor += s->length * 16;
3040         }
3041         if (i == ONFI_EXT_SECTION_MAX) {
3042                 pr_debug("We can not find the ECC section.\n");
3043                 goto ext_out;
3044         }
3045
3046         /* get the info we want. */
3047         ecc = (struct onfi_ext_ecc_info *)cursor;
3048
3049         if (!ecc->codeword_size) {
3050                 pr_debug("Invalid codeword size\n");
3051                 goto ext_out;
3052         }
3053
3054         chip->ecc_strength_ds = ecc->ecc_bits;
3055         chip->ecc_step_ds = 1 << ecc->codeword_size;
3056         ret = 0;
3057
3058 ext_out:
3059         kfree(ep);
3060         return ret;
3061 }
3062
3063 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3064 {
3065         struct nand_chip *chip = mtd->priv;
3066         uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3067
3068         return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3069                         feature);
3070 }
3071
3072 /*
3073  * Configure chip properties from Micron vendor-specific ONFI table
3074  */
3075 static void nand_onfi_detect_micron(struct nand_chip *chip,
3076                 struct nand_onfi_params *p)
3077 {
3078         struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3079
3080         if (le16_to_cpu(p->vendor_revision) < 1)
3081                 return;
3082
3083         chip->read_retries = micron->read_retry_options;
3084         chip->setup_read_retry = nand_setup_read_retry_micron;
3085 }
3086
3087 /*
3088  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3089  */
3090 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3091                                         int *busw)
3092 {
3093         struct nand_onfi_params *p = &chip->onfi_params;
3094         int i, j;
3095         int val;
3096
3097         /* Try ONFI for unknown chip or LP */
3098         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3099         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3100                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3101                 return 0;
3102
3103         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3104         for (i = 0; i < 3; i++) {
3105                 for (j = 0; j < sizeof(*p); j++)
3106                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3107                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3108                                 le16_to_cpu(p->crc)) {
3109                         break;
3110                 }
3111         }
3112
3113         if (i == 3) {
3114                 pr_err("Could not find valid ONFI parameter page; aborting\n");
3115                 return 0;
3116         }
3117
3118         /* Check version */
3119         val = le16_to_cpu(p->revision);
3120         if (val & (1 << 5))
3121                 chip->onfi_version = 23;
3122         else if (val & (1 << 4))
3123                 chip->onfi_version = 22;
3124         else if (val & (1 << 3))
3125                 chip->onfi_version = 21;
3126         else if (val & (1 << 2))
3127                 chip->onfi_version = 20;
3128         else if (val & (1 << 1))
3129                 chip->onfi_version = 10;
3130
3131         if (!chip->onfi_version) {
3132                 pr_info("unsupported ONFI version: %d\n", val);
3133                 return 0;
3134         }
3135
3136         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3137         sanitize_string(p->model, sizeof(p->model));
3138         if (!mtd->name)
3139                 mtd->name = p->model;
3140
3141         mtd->writesize = le32_to_cpu(p->byte_per_page);
3142
3143         /*
3144          * pages_per_block and blocks_per_lun may not be a power-of-2 size
3145          * (don't ask me who thought of this...). MTD assumes that these
3146          * dimensions will be power-of-2, so just truncate the remaining area.
3147          */
3148         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3149         mtd->erasesize *= mtd->writesize;
3150
3151         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3152
3153         /* See erasesize comment */
3154         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3155         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3156         chip->bits_per_cell = p->bits_per_cell;
3157
3158         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3159                 *busw = NAND_BUSWIDTH_16;
3160         else
3161                 *busw = 0;
3162
3163         if (p->ecc_bits != 0xff) {
3164                 chip->ecc_strength_ds = p->ecc_bits;
3165                 chip->ecc_step_ds = 512;
3166         } else if (chip->onfi_version >= 21 &&
3167                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3168
3169                 /*
3170                  * The nand_flash_detect_ext_param_page() uses the
3171                  * Change Read Column command which maybe not supported
3172                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3173                  * now. We do not replace user supplied command function.
3174                  */
3175                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3176                         chip->cmdfunc = nand_command_lp;
3177
3178                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3179                 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3180                         pr_warn("Failed to detect ONFI extended param page\n");
3181         } else {
3182                 pr_warn("Could not retrieve ONFI ECC requirements\n");
3183         }
3184
3185         if (p->jedec_id == NAND_MFR_MICRON)
3186                 nand_onfi_detect_micron(chip, p);
3187
3188         return 1;
3189 }
3190
3191 /*
3192  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3193  */
3194 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3195                                         int *busw)
3196 {
3197         struct nand_jedec_params *p = &chip->jedec_params;
3198         struct jedec_ecc_info *ecc;
3199         int val;
3200         int i, j;
3201
3202         /* Try JEDEC for unknown chip or LP */
3203         chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3204         if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3205                 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3206                 chip->read_byte(mtd) != 'C')
3207                 return 0;
3208
3209         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3210         for (i = 0; i < 3; i++) {
3211                 for (j = 0; j < sizeof(*p); j++)
3212                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3213
3214                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3215                                 le16_to_cpu(p->crc))
3216                         break;
3217         }
3218
3219         if (i == 3) {
3220                 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3221                 return 0;
3222         }
3223
3224         /* Check version */
3225         val = le16_to_cpu(p->revision);
3226         if (val & (1 << 2))
3227                 chip->jedec_version = 10;
3228         else if (val & (1 << 1))
3229                 chip->jedec_version = 1; /* vendor specific version */
3230
3231         if (!chip->jedec_version) {
3232                 pr_info("unsupported JEDEC version: %d\n", val);
3233                 return 0;
3234         }
3235
3236         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3237         sanitize_string(p->model, sizeof(p->model));
3238         if (!mtd->name)
3239                 mtd->name = p->model;
3240
3241         mtd->writesize = le32_to_cpu(p->byte_per_page);
3242
3243         /* Please reference to the comment for nand_flash_detect_onfi. */
3244         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3245         mtd->erasesize *= mtd->writesize;
3246
3247         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3248
3249         /* Please reference to the comment for nand_flash_detect_onfi. */
3250         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3251         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3252         chip->bits_per_cell = p->bits_per_cell;
3253
3254         if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3255                 *busw = NAND_BUSWIDTH_16;
3256         else
3257                 *busw = 0;
3258
3259         /* ECC info */
3260         ecc = &p->ecc_info[0];
3261
3262         if (ecc->codeword_size >= 9) {
3263                 chip->ecc_strength_ds = ecc->ecc_bits;
3264                 chip->ecc_step_ds = 1 << ecc->codeword_size;
3265         } else {
3266                 pr_warn("Invalid codeword size\n");
3267         }
3268
3269         return 1;
3270 }
3271
3272 /*
3273  * nand_id_has_period - Check if an ID string has a given wraparound period
3274  * @id_data: the ID string
3275  * @arrlen: the length of the @id_data array
3276  * @period: the period of repitition
3277  *
3278  * Check if an ID string is repeated within a given sequence of bytes at
3279  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3280  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3281  * if the repetition has a period of @period; otherwise, returns zero.
3282  */
3283 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3284 {
3285         int i, j;
3286         for (i = 0; i < period; i++)
3287                 for (j = i + period; j < arrlen; j += period)
3288                         if (id_data[i] != id_data[j])
3289                                 return 0;
3290         return 1;
3291 }
3292
3293 /*
3294  * nand_id_len - Get the length of an ID string returned by CMD_READID
3295  * @id_data: the ID string
3296  * @arrlen: the length of the @id_data array
3297
3298  * Returns the length of the ID string, according to known wraparound/trailing
3299  * zero patterns. If no pattern exists, returns the length of the array.
3300  */
3301 static int nand_id_len(u8 *id_data, int arrlen)
3302 {
3303         int last_nonzero, period;
3304
3305         /* Find last non-zero byte */
3306         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3307                 if (id_data[last_nonzero])
3308                         break;
3309
3310         /* All zeros */
3311         if (last_nonzero < 0)
3312                 return 0;
3313
3314         /* Calculate wraparound period */
3315         for (period = 1; period < arrlen; period++)
3316                 if (nand_id_has_period(id_data, arrlen, period))
3317                         break;
3318
3319         /* There's a repeated pattern */
3320         if (period < arrlen)
3321                 return period;
3322
3323         /* There are trailing zeros */
3324         if (last_nonzero < arrlen - 1)
3325                 return last_nonzero + 1;
3326
3327         /* No pattern detected */
3328         return arrlen;
3329 }
3330
3331 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3332 static int nand_get_bits_per_cell(u8 cellinfo)
3333 {
3334         int bits;
3335
3336         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3337         bits >>= NAND_CI_CELLTYPE_SHIFT;
3338         return bits + 1;
3339 }
3340
3341 /*
3342  * Many new NAND share similar device ID codes, which represent the size of the
3343  * chip. The rest of the parameters must be decoded according to generic or
3344  * manufacturer-specific "extended ID" decoding patterns.
3345  */
3346 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3347                                 u8 id_data[8], int *busw)
3348 {
3349         int extid, id_len;
3350         /* The 3rd id byte holds MLC / multichip data */
3351         chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3352         /* The 4th id byte is the important one */
3353         extid = id_data[3];
3354
3355         id_len = nand_id_len(id_data, 8);
3356
3357         /*
3358          * Field definitions are in the following datasheets:
3359          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3360          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3361          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3362          *
3363          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3364          * ID to decide what to do.
3365          */
3366         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3367                         !nand_is_slc(chip) && id_data[5] != 0x00) {
3368                 /* Calc pagesize */
3369                 mtd->writesize = 2048 << (extid & 0x03);
3370                 extid >>= 2;
3371                 /* Calc oobsize */
3372                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3373                 case 1:
3374                         mtd->oobsize = 128;
3375                         break;
3376                 case 2:
3377                         mtd->oobsize = 218;
3378                         break;
3379                 case 3:
3380                         mtd->oobsize = 400;
3381                         break;
3382                 case 4:
3383                         mtd->oobsize = 436;
3384                         break;
3385                 case 5:
3386                         mtd->oobsize = 512;
3387                         break;
3388                 case 6:
3389                         mtd->oobsize = 640;
3390                         break;
3391                 case 7:
3392                 default: /* Other cases are "reserved" (unknown) */
3393                         mtd->oobsize = 1024;
3394                         break;
3395                 }
3396                 extid >>= 2;
3397                 /* Calc blocksize */
3398                 mtd->erasesize = (128 * 1024) <<
3399                         (((extid >> 1) & 0x04) | (extid & 0x03));
3400                 *busw = 0;
3401         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3402                         !nand_is_slc(chip)) {
3403                 unsigned int tmp;
3404
3405                 /* Calc pagesize */
3406                 mtd->writesize = 2048 << (extid & 0x03);
3407                 extid >>= 2;
3408                 /* Calc oobsize */
3409                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3410                 case 0:
3411                         mtd->oobsize = 128;
3412                         break;
3413                 case 1:
3414                         mtd->oobsize = 224;
3415                         break;
3416                 case 2:
3417                         mtd->oobsize = 448;
3418                         break;
3419                 case 3:
3420                         mtd->oobsize = 64;
3421                         break;
3422                 case 4:
3423                         mtd->oobsize = 32;
3424                         break;
3425                 case 5:
3426                         mtd->oobsize = 16;
3427                         break;
3428                 default:
3429                         mtd->oobsize = 640;
3430                         break;
3431                 }
3432                 extid >>= 2;
3433                 /* Calc blocksize */
3434                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3435                 if (tmp < 0x03)
3436                         mtd->erasesize = (128 * 1024) << tmp;
3437                 else if (tmp == 0x03)
3438                         mtd->erasesize = 768 * 1024;
3439                 else
3440                         mtd->erasesize = (64 * 1024) << tmp;
3441                 *busw = 0;
3442         } else {
3443                 /* Calc pagesize */
3444                 mtd->writesize = 1024 << (extid & 0x03);
3445                 extid >>= 2;
3446                 /* Calc oobsize */
3447                 mtd->oobsize = (8 << (extid & 0x01)) *
3448                         (mtd->writesize >> 9);
3449                 extid >>= 2;
3450                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3451                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3452                 extid >>= 2;
3453                 /* Get buswidth information */
3454                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3455
3456                 /*
3457                  * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3458                  * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3459                  * follows:
3460                  * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3461                  *                         110b -> 24nm
3462                  * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3463                  */
3464                 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3465                                 nand_is_slc(chip) &&
3466                                 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3467                                 !(id_data[4] & 0x80) /* !BENAND */) {
3468                         mtd->oobsize = 32 * mtd->writesize >> 9;
3469                 }
3470
3471         }
3472 }
3473
3474 /*
3475  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3476  * decodes a matching ID table entry and assigns the MTD size parameters for
3477  * the chip.
3478  */
3479 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3480                                 struct nand_flash_dev *type, u8 id_data[8],
3481                                 int *busw)
3482 {
3483         int maf_id = id_data[0];
3484
3485         mtd->erasesize = type->erasesize;
3486         mtd->writesize = type->pagesize;
3487         mtd->oobsize = mtd->writesize / 32;
3488         *busw = type->options & NAND_BUSWIDTH_16;
3489
3490         /* All legacy ID NAND are small-page, SLC */
3491         chip->bits_per_cell = 1;
3492
3493         /*
3494          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3495          * some Spansion chips have erasesize that conflicts with size
3496          * listed in nand_ids table.
3497          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3498          */
3499         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3500                         && id_data[6] == 0x00 && id_data[7] == 0x00
3501                         && mtd->writesize == 512) {
3502                 mtd->erasesize = 128 * 1024;
3503                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3504         }
3505 }
3506
3507 /*
3508  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3509  * heuristic patterns using various detected parameters (e.g., manufacturer,
3510  * page size, cell-type information).
3511  */
3512 static void nand_decode_bbm_options(struct mtd_info *mtd,
3513                                     struct nand_chip *chip, u8 id_data[8])
3514 {
3515         int maf_id = id_data[0];
3516
3517         /* Set the bad block position */
3518         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3519                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3520         else
3521                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3522
3523         /*
3524          * Bad block marker is stored in the last page of each block on Samsung
3525          * and Hynix MLC devices; stored in first two pages of each block on
3526          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3527          * AMD/Spansion, and Macronix.  All others scan only the first page.
3528          */
3529         if (!nand_is_slc(chip) &&
3530                         (maf_id == NAND_MFR_SAMSUNG ||
3531                          maf_id == NAND_MFR_HYNIX))
3532                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3533         else if ((nand_is_slc(chip) &&
3534                                 (maf_id == NAND_MFR_SAMSUNG ||
3535                                  maf_id == NAND_MFR_HYNIX ||
3536                                  maf_id == NAND_MFR_TOSHIBA ||
3537                                  maf_id == NAND_MFR_AMD ||
3538                                  maf_id == NAND_MFR_MACRONIX)) ||
3539                         (mtd->writesize == 2048 &&
3540                          maf_id == NAND_MFR_MICRON))
3541                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3542 }
3543
3544 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3545 {
3546         return type->id_len;
3547 }
3548
3549 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3550                    struct nand_flash_dev *type, u8 *id_data, int *busw)
3551 {
3552         if (!strncmp(type->id, id_data, type->id_len)) {
3553                 mtd->writesize = type->pagesize;
3554                 mtd->erasesize = type->erasesize;
3555                 mtd->oobsize = type->oobsize;
3556
3557                 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3558                 chip->chipsize = (uint64_t)type->chipsize << 20;
3559                 chip->options |= type->options;
3560                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3561                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3562
3563                 *busw = type->options & NAND_BUSWIDTH_16;
3564
3565                 if (!mtd->name)
3566                         mtd->name = type->name;
3567
3568                 return true;
3569         }
3570         return false;
3571 }
3572
3573 /*
3574  * Get the flash and manufacturer id and lookup if the type is supported.
3575  */
3576 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3577                                                   struct nand_chip *chip,
3578                                                   int *maf_id, int *dev_id,
3579                                                   struct nand_flash_dev *type)
3580 {
3581         int busw;
3582         int i, maf_idx;
3583         u8 id_data[8];
3584
3585         /* Select the device */
3586         chip->select_chip(mtd, 0);
3587
3588         /*
3589          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3590          * after power-up.
3591          */
3592         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3593
3594         /* Send the command for reading device ID */
3595         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3596
3597         /* Read manufacturer and device IDs */
3598         *maf_id = chip->read_byte(mtd);
3599         *dev_id = chip->read_byte(mtd);
3600
3601         /*
3602          * Try again to make sure, as some systems the bus-hold or other
3603          * interface concerns can cause random data which looks like a
3604          * possibly credible NAND flash to appear. If the two results do
3605          * not match, ignore the device completely.
3606          */
3607
3608         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3609
3610         /* Read entire ID string */
3611         for (i = 0; i < 8; i++)
3612                 id_data[i] = chip->read_byte(mtd);
3613
3614         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3615                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3616                         *maf_id, *dev_id, id_data[0], id_data[1]);
3617                 return ERR_PTR(-ENODEV);
3618         }
3619
3620         if (!type)
3621                 type = nand_flash_ids;
3622
3623         for (; type->name != NULL; type++) {
3624                 if (is_full_id_nand(type)) {
3625                         if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3626                                 goto ident_done;
3627                 } else if (*dev_id == type->dev_id) {
3628                                 break;
3629                 }
3630         }
3631
3632         chip->onfi_version = 0;
3633         if (!type->name || !type->pagesize) {
3634                 /* Check if the chip is ONFI compliant */
3635                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3636                         goto ident_done;
3637
3638                 /* Check if the chip is JEDEC compliant */
3639                 if (nand_flash_detect_jedec(mtd, chip, &busw))
3640                         goto ident_done;
3641         }
3642
3643         if (!type->name)
3644                 return ERR_PTR(-ENODEV);
3645
3646         if (!mtd->name)
3647                 mtd->name = type->name;
3648
3649         chip->chipsize = (uint64_t)type->chipsize << 20;
3650
3651         if (!type->pagesize && chip->init_size) {
3652                 /* Set the pagesize, oobsize, erasesize by the driver */
3653                 busw = chip->init_size(mtd, chip, id_data);
3654         } else if (!type->pagesize) {
3655                 /* Decode parameters from extended ID */
3656                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3657         } else {
3658                 nand_decode_id(mtd, chip, type, id_data, &busw);
3659         }
3660         /* Get chip options */
3661         chip->options |= type->options;
3662
3663         /*
3664          * Check if chip is not a Samsung device. Do not clear the
3665          * options for chips which do not have an extended id.
3666          */
3667         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3668                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3669 ident_done:
3670
3671         /* Try to identify manufacturer */
3672         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3673                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3674                         break;
3675         }
3676
3677         if (chip->options & NAND_BUSWIDTH_AUTO) {
3678                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3679                 chip->options |= busw;
3680                 nand_set_defaults(chip, busw);
3681         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3682                 /*
3683                  * Check, if buswidth is correct. Hardware drivers should set
3684                  * chip correct!
3685                  */
3686                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3687                         *maf_id, *dev_id);
3688                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3689                 pr_warn("bus width %d instead %d bit\n",
3690                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3691                            busw ? 16 : 8);
3692                 return ERR_PTR(-EINVAL);
3693         }
3694
3695         nand_decode_bbm_options(mtd, chip, id_data);
3696
3697         /* Calculate the address shift from the page size */
3698         chip->page_shift = ffs(mtd->writesize) - 1;
3699         /* Convert chipsize to number of pages per chip -1 */
3700         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3701
3702         chip->bbt_erase_shift = chip->phys_erase_shift =
3703                 ffs(mtd->erasesize) - 1;
3704         if (chip->chipsize & 0xffffffff)
3705                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3706         else {
3707                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3708                 chip->chip_shift += 32 - 1;
3709         }
3710
3711         chip->badblockbits = 8;
3712         chip->erase = single_erase;
3713
3714         /* Do not replace user supplied command function! */
3715         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3716                 chip->cmdfunc = nand_command_lp;
3717
3718         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3719                 *maf_id, *dev_id);
3720
3721         if (chip->onfi_version)
3722                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3723                                 chip->onfi_params.model);
3724         else if (chip->jedec_version)
3725                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3726                                 chip->jedec_params.model);
3727         else
3728                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3729                                 type->name);
3730
3731         pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3732                 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3733                 mtd->writesize, mtd->oobsize);
3734         return type;
3735 }
3736
3737 /**
3738  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3739  * @mtd: MTD device structure
3740  * @maxchips: number of chips to scan for
3741  * @table: alternative NAND ID table
3742  *
3743  * This is the first phase of the normal nand_scan() function. It reads the
3744  * flash ID and sets up MTD fields accordingly.
3745  *
3746  * The mtd->owner field must be set to the module of the caller.
3747  */
3748 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3749                     struct nand_flash_dev *table)
3750 {
3751         int i, nand_maf_id, nand_dev_id;
3752         struct nand_chip *chip = mtd->priv;
3753         struct nand_flash_dev *type;
3754
3755         /* Set the default functions */
3756         nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3757
3758         /* Read the flash type */
3759         type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3760                                    &nand_dev_id, table);
3761
3762         if (IS_ERR(type)) {
3763                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3764                         pr_warn("No NAND device found\n");
3765                 chip->select_chip(mtd, -1);
3766                 return PTR_ERR(type);
3767         }
3768
3769         chip->select_chip(mtd, -1);
3770
3771         /* Check for a chip array */
3772         for (i = 1; i < maxchips; i++) {
3773                 chip->select_chip(mtd, i);
3774                 /* See comment in nand_get_flash_type for reset */
3775                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3776                 /* Send the command for reading device ID */
3777                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3778                 /* Read manufacturer and device IDs */
3779                 if (nand_maf_id != chip->read_byte(mtd) ||
3780                     nand_dev_id != chip->read_byte(mtd)) {
3781                         chip->select_chip(mtd, -1);
3782                         break;
3783                 }
3784                 chip->select_chip(mtd, -1);
3785         }
3786         if (i > 1)
3787                 pr_info("%d chips detected\n", i);
3788
3789         /* Store the number of chips and calc total size for mtd */
3790         chip->numchips = i;
3791         mtd->size = i * chip->chipsize;
3792
3793         return 0;
3794 }
3795 EXPORT_SYMBOL(nand_scan_ident);
3796
3797 /*
3798  * Check if the chip configuration meet the datasheet requirements.
3799
3800  * If our configuration corrects A bits per B bytes and the minimum
3801  * required correction level is X bits per Y bytes, then we must ensure
3802  * both of the following are true:
3803  *
3804  * (1) A / B >= X / Y
3805  * (2) A >= X
3806  *
3807  * Requirement (1) ensures we can correct for the required bitflip density.
3808  * Requirement (2) ensures we can correct even when all bitflips are clumped
3809  * in the same sector.
3810  */
3811 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3812 {
3813         struct nand_chip *chip = mtd->priv;
3814         struct nand_ecc_ctrl *ecc = &chip->ecc;
3815         int corr, ds_corr;
3816
3817         if (ecc->size == 0 || chip->ecc_step_ds == 0)
3818                 /* Not enough information */
3819                 return true;
3820
3821         /*
3822          * We get the number of corrected bits per page to compare
3823          * the correction density.
3824          */
3825         corr = (mtd->writesize * ecc->strength) / ecc->size;
3826         ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3827
3828         return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3829 }
3830
3831 /**
3832  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3833  * @mtd: MTD device structure
3834  *
3835  * This is the second phase of the normal nand_scan() function. It fills out
3836  * all the uninitialized function pointers with the defaults and scans for a
3837  * bad block table if appropriate.
3838  */
3839 int nand_scan_tail(struct mtd_info *mtd)
3840 {
3841         int i;
3842         struct nand_chip *chip = mtd->priv;
3843         struct nand_ecc_ctrl *ecc = &chip->ecc;
3844         struct nand_buffers *nbuf;
3845
3846         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3847         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3848                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3849
3850         if (!(chip->options & NAND_OWN_BUFFERS)) {
3851                 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3852                                 + mtd->oobsize * 3, GFP_KERNEL);
3853                 if (!nbuf)
3854                         return -ENOMEM;
3855                 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3856                 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3857                 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3858
3859                 chip->buffers = nbuf;
3860         } else {
3861                 if (!chip->buffers)
3862                         return -ENOMEM;
3863         }
3864
3865         /* Set the internal oob buffer location, just after the page data */
3866         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3867
3868         /*
3869          * If no default placement scheme is given, select an appropriate one.
3870          */
3871         if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3872                 switch (mtd->oobsize) {
3873                 case 8:
3874                         ecc->layout = &nand_oob_8;
3875                         break;
3876                 case 16:
3877                         ecc->layout = &nand_oob_16;
3878                         break;
3879                 case 64:
3880                         ecc->layout = &nand_oob_64;
3881                         break;
3882                 case 128:
3883                         ecc->layout = &nand_oob_128;
3884                         break;
3885                 default:
3886                         pr_warn("No oob scheme defined for oobsize %d\n",
3887                                    mtd->oobsize);
3888                         BUG();
3889                 }
3890         }
3891
3892         if (!chip->write_page)
3893                 chip->write_page = nand_write_page;
3894
3895         /*
3896          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3897          * selected and we have 256 byte pagesize fallback to software ECC
3898          */
3899
3900         switch (ecc->mode) {
3901         case NAND_ECC_HW_OOB_FIRST:
3902                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3903                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3904                         pr_warn("No ECC functions supplied; "
3905                                    "hardware ECC not possible\n");
3906                         BUG();
3907                 }
3908                 if (!ecc->read_page)
3909                         ecc->read_page = nand_read_page_hwecc_oob_first;
3910
3911         case NAND_ECC_HW:
3912                 /* Use standard hwecc read page function? */
3913                 if (!ecc->read_page)
3914                         ecc->read_page = nand_read_page_hwecc;
3915                 if (!ecc->write_page)
3916                         ecc->write_page = nand_write_page_hwecc;
3917                 if (!ecc->read_page_raw)
3918                         ecc->read_page_raw = nand_read_page_raw;
3919                 if (!ecc->write_page_raw)
3920                         ecc->write_page_raw = nand_write_page_raw;
3921                 if (!ecc->read_oob)
3922                         ecc->read_oob = nand_read_oob_std;
3923                 if (!ecc->write_oob)
3924                         ecc->write_oob = nand_write_oob_std;
3925                 if (!ecc->read_subpage)
3926                         ecc->read_subpage = nand_read_subpage;
3927                 if (!ecc->write_subpage)
3928                         ecc->write_subpage = nand_write_subpage_hwecc;
3929
3930         case NAND_ECC_HW_SYNDROME:
3931                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3932                     (!ecc->read_page ||
3933                      ecc->read_page == nand_read_page_hwecc ||
3934                      !ecc->write_page ||
3935                      ecc->write_page == nand_write_page_hwecc)) {
3936                         pr_warn("No ECC functions supplied; "
3937                                    "hardware ECC not possible\n");
3938                         BUG();
3939                 }
3940                 /* Use standard syndrome read/write page function? */
3941                 if (!ecc->read_page)
3942                         ecc->read_page = nand_read_page_syndrome;
3943                 if (!ecc->write_page)
3944                         ecc->write_page = nand_write_page_syndrome;
3945                 if (!ecc->read_page_raw)
3946                         ecc->read_page_raw = nand_read_page_raw_syndrome;
3947                 if (!ecc->write_page_raw)
3948                         ecc->write_page_raw = nand_write_page_raw_syndrome;
3949                 if (!ecc->read_oob)
3950                         ecc->read_oob = nand_read_oob_syndrome;
3951                 if (!ecc->write_oob)
3952                         ecc->write_oob = nand_write_oob_syndrome;
3953
3954                 if (mtd->writesize >= ecc->size) {
3955                         if (!ecc->strength) {
3956                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3957                                 BUG();
3958                         }
3959                         break;
3960                 }
3961                 pr_warn("%d byte HW ECC not possible on "
3962                            "%d byte page size, fallback to SW ECC\n",
3963                            ecc->size, mtd->writesize);
3964                 ecc->mode = NAND_ECC_SOFT;
3965
3966         case NAND_ECC_SOFT:
3967                 ecc->calculate = nand_calculate_ecc;
3968                 ecc->correct = nand_correct_data;
3969                 ecc->read_page = nand_read_page_swecc;
3970                 ecc->read_subpage = nand_read_subpage;
3971                 ecc->write_page = nand_write_page_swecc;
3972                 ecc->read_page_raw = nand_read_page_raw;
3973                 ecc->write_page_raw = nand_write_page_raw;
3974                 ecc->read_oob = nand_read_oob_std;
3975                 ecc->write_oob = nand_write_oob_std;
3976                 if (!ecc->size)
3977                         ecc->size = 256;
3978                 ecc->bytes = 3;
3979                 ecc->strength = 1;
3980                 break;
3981
3982         case NAND_ECC_SOFT_BCH:
3983                 if (!mtd_nand_has_bch()) {
3984                         pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
3985                         BUG();
3986                 }
3987                 ecc->calculate = nand_bch_calculate_ecc;
3988                 ecc->correct = nand_bch_correct_data;
3989                 ecc->read_page = nand_read_page_swecc;
3990                 ecc->read_subpage = nand_read_subpage;
3991                 ecc->write_page = nand_write_page_swecc;
3992                 ecc->read_page_raw = nand_read_page_raw;
3993                 ecc->write_page_raw = nand_write_page_raw;
3994                 ecc->read_oob = nand_read_oob_std;
3995                 ecc->write_oob = nand_write_oob_std;
3996                 /*
3997                  * Board driver should supply ecc.size and ecc.bytes values to
3998                  * select how many bits are correctable; see nand_bch_init()
3999                  * for details. Otherwise, default to 4 bits for large page
4000                  * devices.
4001                  */
4002                 if (!ecc->size && (mtd->oobsize >= 64)) {
4003                         ecc->size = 512;
4004                         ecc->bytes = 7;
4005                 }
4006                 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4007                                                &ecc->layout);
4008                 if (!ecc->priv) {
4009                         pr_warn("BCH ECC initialization failed!\n");
4010                         BUG();
4011                 }
4012                 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
4013                 break;
4014
4015         case NAND_ECC_NONE:
4016                 pr_warn("NAND_ECC_NONE selected by board driver. "
4017                            "This is not recommended!\n");
4018                 ecc->read_page = nand_read_page_raw;
4019                 ecc->write_page = nand_write_page_raw;
4020                 ecc->read_oob = nand_read_oob_std;
4021                 ecc->read_page_raw = nand_read_page_raw;
4022                 ecc->write_page_raw = nand_write_page_raw;
4023                 ecc->write_oob = nand_write_oob_std;
4024                 ecc->size = mtd->writesize;
4025                 ecc->bytes = 0;
4026                 ecc->strength = 0;
4027                 break;
4028
4029         default:
4030                 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4031                 BUG();
4032         }
4033
4034         /* For many systems, the standard OOB write also works for raw */
4035         if (!ecc->read_oob_raw)
4036                 ecc->read_oob_raw = ecc->read_oob;
4037         if (!ecc->write_oob_raw)
4038                 ecc->write_oob_raw = ecc->write_oob;
4039
4040         /*
4041          * The number of bytes available for a client to place data into
4042          * the out of band area.
4043          */
4044         ecc->layout->oobavail = 0;
4045         for (i = 0; ecc->layout->oobfree[i].length
4046                         && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4047                 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4048         mtd->oobavail = ecc->layout->oobavail;
4049
4050         /* ECC sanity check: warn noisily if it's too weak */
4051         WARN_ON(!nand_ecc_strength_good(mtd));
4052
4053         /*
4054          * Set the number of read / write steps for one page depending on ECC
4055          * mode.
4056          */
4057         ecc->steps = mtd->writesize / ecc->size;
4058         if (ecc->steps * ecc->size != mtd->writesize) {
4059                 pr_warn("Invalid ECC parameters\n");
4060                 BUG();
4061         }
4062         ecc->total = ecc->steps * ecc->bytes;
4063
4064         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4065         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4066                 switch (ecc->steps) {
4067                 case 2:
4068                         mtd->subpage_sft = 1;
4069                         break;
4070                 case 4:
4071                 case 8:
4072                 case 16:
4073                         mtd->subpage_sft = 2;
4074                         break;
4075                 }
4076         }
4077         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4078
4079         /* Initialize state */
4080         chip->state = FL_READY;
4081
4082         /* Invalidate the pagebuffer reference */
4083         chip->pagebuf = -1;
4084
4085         /* Large page NAND with SOFT_ECC should support subpage reads */
4086         switch (ecc->mode) {
4087         case NAND_ECC_SOFT:
4088         case NAND_ECC_SOFT_BCH:
4089                 if (chip->page_shift > 9)
4090                         chip->options |= NAND_SUBPAGE_READ;
4091                 break;
4092
4093         default:
4094                 break;
4095         }
4096
4097         /* Fill in remaining MTD driver data */
4098         mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4099         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4100                                                 MTD_CAP_NANDFLASH;
4101         mtd->_erase = nand_erase;
4102         mtd->_point = NULL;
4103         mtd->_unpoint = NULL;
4104         mtd->_read = nand_read;
4105         mtd->_write = nand_write;
4106         mtd->_panic_write = panic_nand_write;
4107         mtd->_read_oob = nand_read_oob;
4108         mtd->_write_oob = nand_write_oob;
4109         mtd->_sync = nand_sync;
4110         mtd->_lock = NULL;
4111         mtd->_unlock = NULL;
4112         mtd->_suspend = nand_suspend;
4113         mtd->_resume = nand_resume;
4114         mtd->_block_isbad = nand_block_isbad;
4115         mtd->_block_markbad = nand_block_markbad;
4116         mtd->writebufsize = mtd->writesize;
4117
4118         /* propagate ecc info to mtd_info */
4119         mtd->ecclayout = ecc->layout;
4120         mtd->ecc_strength = ecc->strength;
4121         mtd->ecc_step_size = ecc->size;
4122         /*
4123          * Initialize bitflip_threshold to its default prior scan_bbt() call.
4124          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4125          * properly set.
4126          */
4127         if (!mtd->bitflip_threshold)
4128                 mtd->bitflip_threshold = mtd->ecc_strength;
4129
4130         /* Check, if we should skip the bad block table scan */
4131         if (chip->options & NAND_SKIP_BBTSCAN)
4132                 return 0;
4133
4134         /* Build bad block table */
4135         return chip->scan_bbt(mtd);
4136 }
4137 EXPORT_SYMBOL(nand_scan_tail);
4138
4139 /*
4140  * is_module_text_address() isn't exported, and it's mostly a pointless
4141  * test if this is a module _anyway_ -- they'd have to try _really_ hard
4142  * to call us from in-kernel code if the core NAND support is modular.
4143  */
4144 #ifdef MODULE
4145 #define caller_is_module() (1)
4146 #else
4147 #define caller_is_module() \
4148         is_module_text_address((unsigned long)__builtin_return_address(0))
4149 #endif
4150
4151 /**
4152  * nand_scan - [NAND Interface] Scan for the NAND device
4153  * @mtd: MTD device structure
4154  * @maxchips: number of chips to scan for
4155  *
4156  * This fills out all the uninitialized function pointers with the defaults.
4157  * The flash ID is read and the mtd/chip structures are filled with the
4158  * appropriate values. The mtd->owner field must be set to the module of the
4159  * caller.
4160  */
4161 int nand_scan(struct mtd_info *mtd, int maxchips)
4162 {
4163         int ret;
4164
4165         /* Many callers got this wrong, so check for it for a while... */
4166         if (!mtd->owner && caller_is_module()) {
4167                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4168                 BUG();
4169         }
4170
4171         ret = nand_scan_ident(mtd, maxchips, NULL);
4172         if (!ret)
4173                 ret = nand_scan_tail(mtd);
4174         return ret;
4175 }
4176 EXPORT_SYMBOL(nand_scan);
4177
4178 /**
4179  * nand_release - [NAND Interface] Free resources held by the NAND device
4180  * @mtd: MTD device structure
4181  */
4182 void nand_release(struct mtd_info *mtd)
4183 {
4184         struct nand_chip *chip = mtd->priv;
4185
4186         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4187                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4188
4189         mtd_device_unregister(mtd);
4190
4191         /* Free bad block table memory */
4192         kfree(chip->bbt);
4193         if (!(chip->options & NAND_OWN_BUFFERS))
4194                 kfree(chip->buffers);
4195
4196         /* Free bad block descriptor memory */
4197         if (chip->badblock_pattern && chip->badblock_pattern->options
4198                         & NAND_BBT_DYNAMICSTRUCT)
4199                 kfree(chip->badblock_pattern);
4200 }
4201 EXPORT_SYMBOL_GPL(nand_release);
4202
4203 static int __init nand_base_init(void)
4204 {
4205         led_trigger_register_simple("nand-disk", &nand_led_trigger);
4206         return 0;
4207 }
4208
4209 static void __exit nand_base_exit(void)
4210 {
4211         led_trigger_unregister_simple(nand_led_trigger);
4212 }
4213
4214 module_init(nand_base_init);
4215 module_exit(nand_base_exit);
4216
4217 MODULE_LICENSE("GPL");
4218 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4219 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4220 MODULE_DESCRIPTION("Generic NAND flash driver code");