Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / mmc / core / block.c
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45
46 #include <linux/uaccess.h>
47
48 #include "queue.h"
49 #include "block.h"
50 #include "core.h"
51 #include "card.h"
52 #include "host.h"
53 #include "bus.h"
54 #include "mmc_ops.h"
55 #include "quirks.h"
56 #include "sd_ops.h"
57
58 MODULE_ALIAS("mmc:block");
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "mmcblk."
63
64 #define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
65 #define MMC_SANITIZE_REQ_TIMEOUT 240000
66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
67
68 #define mmc_req_rel_wr(req)     ((req->cmd_flags & REQ_FUA) && \
69                                   (rq_data_dir(req) == WRITE))
70 static DEFINE_MUTEX(block_mutex);
71
72 /*
73  * The defaults come from config options but can be overriden by module
74  * or bootarg options.
75  */
76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
77
78 /*
79  * We've only got one major, so number of mmcblk devices is
80  * limited to (1 << 20) / number of minors per device.  It is also
81  * limited by the MAX_DEVICES below.
82  */
83 static int max_devices;
84
85 #define MAX_DEVICES 256
86
87 static DEFINE_IDA(mmc_blk_ida);
88
89 /*
90  * There is one mmc_blk_data per slot.
91  */
92 struct mmc_blk_data {
93         spinlock_t      lock;
94         struct device   *parent;
95         struct gendisk  *disk;
96         struct mmc_queue queue;
97         struct list_head part;
98
99         unsigned int    flags;
100 #define MMC_BLK_CMD23   (1 << 0)        /* Can do SET_BLOCK_COUNT for multiblock */
101 #define MMC_BLK_REL_WR  (1 << 1)        /* MMC Reliable write support */
102
103         unsigned int    usage;
104         unsigned int    read_only;
105         unsigned int    part_type;
106         unsigned int    reset_done;
107 #define MMC_BLK_READ            BIT(0)
108 #define MMC_BLK_WRITE           BIT(1)
109 #define MMC_BLK_DISCARD         BIT(2)
110 #define MMC_BLK_SECDISCARD      BIT(3)
111
112         /*
113          * Only set in main mmc_blk_data associated
114          * with mmc_card with dev_set_drvdata, and keeps
115          * track of the current selected device partition.
116          */
117         unsigned int    part_curr;
118         struct device_attribute force_ro;
119         struct device_attribute power_ro_lock;
120         int     area_type;
121 };
122
123 static DEFINE_MUTEX(open_lock);
124
125 module_param(perdev_minors, int, 0444);
126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
127
128 static inline int mmc_blk_part_switch(struct mmc_card *card,
129                                       struct mmc_blk_data *md);
130
131 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
132 {
133         struct mmc_blk_data *md;
134
135         mutex_lock(&open_lock);
136         md = disk->private_data;
137         if (md && md->usage == 0)
138                 md = NULL;
139         if (md)
140                 md->usage++;
141         mutex_unlock(&open_lock);
142
143         return md;
144 }
145
146 static inline int mmc_get_devidx(struct gendisk *disk)
147 {
148         int devidx = disk->first_minor / perdev_minors;
149         return devidx;
150 }
151
152 static void mmc_blk_put(struct mmc_blk_data *md)
153 {
154         mutex_lock(&open_lock);
155         md->usage--;
156         if (md->usage == 0) {
157                 int devidx = mmc_get_devidx(md->disk);
158                 blk_cleanup_queue(md->queue.queue);
159                 ida_simple_remove(&mmc_blk_ida, devidx);
160                 put_disk(md->disk);
161                 kfree(md);
162         }
163         mutex_unlock(&open_lock);
164 }
165
166 static ssize_t power_ro_lock_show(struct device *dev,
167                 struct device_attribute *attr, char *buf)
168 {
169         int ret;
170         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
171         struct mmc_card *card = md->queue.card;
172         int locked = 0;
173
174         if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
175                 locked = 2;
176         else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
177                 locked = 1;
178
179         ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
180
181         mmc_blk_put(md);
182
183         return ret;
184 }
185
186 static ssize_t power_ro_lock_store(struct device *dev,
187                 struct device_attribute *attr, const char *buf, size_t count)
188 {
189         int ret;
190         struct mmc_blk_data *md, *part_md;
191         struct mmc_card *card;
192         struct mmc_queue *mq;
193         struct request *req;
194         unsigned long set;
195
196         if (kstrtoul(buf, 0, &set))
197                 return -EINVAL;
198
199         if (set != 1)
200                 return count;
201
202         md = mmc_blk_get(dev_to_disk(dev));
203         mq = &md->queue;
204         card = md->queue.card;
205
206         /* Dispatch locking to the block layer */
207         req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
208         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
209         blk_execute_rq(mq->queue, NULL, req, 0);
210         ret = req_to_mmc_queue_req(req)->drv_op_result;
211
212         if (!ret) {
213                 pr_info("%s: Locking boot partition ro until next power on\n",
214                         md->disk->disk_name);
215                 set_disk_ro(md->disk, 1);
216
217                 list_for_each_entry(part_md, &md->part, part)
218                         if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
219                                 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
220                                 set_disk_ro(part_md->disk, 1);
221                         }
222         }
223
224         mmc_blk_put(md);
225         return count;
226 }
227
228 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
229                              char *buf)
230 {
231         int ret;
232         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
233
234         ret = snprintf(buf, PAGE_SIZE, "%d\n",
235                        get_disk_ro(dev_to_disk(dev)) ^
236                        md->read_only);
237         mmc_blk_put(md);
238         return ret;
239 }
240
241 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
242                               const char *buf, size_t count)
243 {
244         int ret;
245         char *end;
246         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
247         unsigned long set = simple_strtoul(buf, &end, 0);
248         if (end == buf) {
249                 ret = -EINVAL;
250                 goto out;
251         }
252
253         set_disk_ro(dev_to_disk(dev), set || md->read_only);
254         ret = count;
255 out:
256         mmc_blk_put(md);
257         return ret;
258 }
259
260 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
261 {
262         struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
263         int ret = -ENXIO;
264
265         mutex_lock(&block_mutex);
266         if (md) {
267                 if (md->usage == 2)
268                         check_disk_change(bdev);
269                 ret = 0;
270
271                 if ((mode & FMODE_WRITE) && md->read_only) {
272                         mmc_blk_put(md);
273                         ret = -EROFS;
274                 }
275         }
276         mutex_unlock(&block_mutex);
277
278         return ret;
279 }
280
281 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
282 {
283         struct mmc_blk_data *md = disk->private_data;
284
285         mutex_lock(&block_mutex);
286         mmc_blk_put(md);
287         mutex_unlock(&block_mutex);
288 }
289
290 static int
291 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
292 {
293         geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
294         geo->heads = 4;
295         geo->sectors = 16;
296         return 0;
297 }
298
299 struct mmc_blk_ioc_data {
300         struct mmc_ioc_cmd ic;
301         unsigned char *buf;
302         u64 buf_bytes;
303 };
304
305 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
306         struct mmc_ioc_cmd __user *user)
307 {
308         struct mmc_blk_ioc_data *idata;
309         int err;
310
311         idata = kmalloc(sizeof(*idata), GFP_KERNEL);
312         if (!idata) {
313                 err = -ENOMEM;
314                 goto out;
315         }
316
317         if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
318                 err = -EFAULT;
319                 goto idata_err;
320         }
321
322         idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
323         if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
324                 err = -EOVERFLOW;
325                 goto idata_err;
326         }
327
328         if (!idata->buf_bytes) {
329                 idata->buf = NULL;
330                 return idata;
331         }
332
333         idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
334         if (!idata->buf) {
335                 err = -ENOMEM;
336                 goto idata_err;
337         }
338
339         if (copy_from_user(idata->buf, (void __user *)(unsigned long)
340                                         idata->ic.data_ptr, idata->buf_bytes)) {
341                 err = -EFAULT;
342                 goto copy_err;
343         }
344
345         return idata;
346
347 copy_err:
348         kfree(idata->buf);
349 idata_err:
350         kfree(idata);
351 out:
352         return ERR_PTR(err);
353 }
354
355 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
356                                       struct mmc_blk_ioc_data *idata)
357 {
358         struct mmc_ioc_cmd *ic = &idata->ic;
359
360         if (copy_to_user(&(ic_ptr->response), ic->response,
361                          sizeof(ic->response)))
362                 return -EFAULT;
363
364         if (!idata->ic.write_flag) {
365                 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
366                                  idata->buf, idata->buf_bytes))
367                         return -EFAULT;
368         }
369
370         return 0;
371 }
372
373 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
374                                        u32 retries_max)
375 {
376         int err;
377         u32 retry_count = 0;
378
379         if (!status || !retries_max)
380                 return -EINVAL;
381
382         do {
383                 err = __mmc_send_status(card, status, 5);
384                 if (err)
385                         break;
386
387                 if (!R1_STATUS(*status) &&
388                                 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
389                         break; /* RPMB programming operation complete */
390
391                 /*
392                  * Rechedule to give the MMC device a chance to continue
393                  * processing the previous command without being polled too
394                  * frequently.
395                  */
396                 usleep_range(1000, 5000);
397         } while (++retry_count < retries_max);
398
399         if (retry_count == retries_max)
400                 err = -EPERM;
401
402         return err;
403 }
404
405 static int ioctl_do_sanitize(struct mmc_card *card)
406 {
407         int err;
408
409         if (!mmc_can_sanitize(card)) {
410                         pr_warn("%s: %s - SANITIZE is not supported\n",
411                                 mmc_hostname(card->host), __func__);
412                         err = -EOPNOTSUPP;
413                         goto out;
414         }
415
416         pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
417                 mmc_hostname(card->host), __func__);
418
419         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
420                                         EXT_CSD_SANITIZE_START, 1,
421                                         MMC_SANITIZE_REQ_TIMEOUT);
422
423         if (err)
424                 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
425                        mmc_hostname(card->host), __func__, err);
426
427         pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
428                                              __func__);
429 out:
430         return err;
431 }
432
433 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
434                                struct mmc_blk_ioc_data *idata)
435 {
436         struct mmc_command cmd = {};
437         struct mmc_data data = {};
438         struct mmc_request mrq = {};
439         struct scatterlist sg;
440         int err;
441         bool is_rpmb = false;
442         u32 status = 0;
443
444         if (!card || !md || !idata)
445                 return -EINVAL;
446
447         if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
448                 is_rpmb = true;
449
450         cmd.opcode = idata->ic.opcode;
451         cmd.arg = idata->ic.arg;
452         cmd.flags = idata->ic.flags;
453
454         if (idata->buf_bytes) {
455                 data.sg = &sg;
456                 data.sg_len = 1;
457                 data.blksz = idata->ic.blksz;
458                 data.blocks = idata->ic.blocks;
459
460                 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
461
462                 if (idata->ic.write_flag)
463                         data.flags = MMC_DATA_WRITE;
464                 else
465                         data.flags = MMC_DATA_READ;
466
467                 /* data.flags must already be set before doing this. */
468                 mmc_set_data_timeout(&data, card);
469
470                 /* Allow overriding the timeout_ns for empirical tuning. */
471                 if (idata->ic.data_timeout_ns)
472                         data.timeout_ns = idata->ic.data_timeout_ns;
473
474                 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
475                         /*
476                          * Pretend this is a data transfer and rely on the
477                          * host driver to compute timeout.  When all host
478                          * drivers support cmd.cmd_timeout for R1B, this
479                          * can be changed to:
480                          *
481                          *     mrq.data = NULL;
482                          *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
483                          */
484                         data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
485                 }
486
487                 mrq.data = &data;
488         }
489
490         mrq.cmd = &cmd;
491
492         err = mmc_blk_part_switch(card, md);
493         if (err)
494                 return err;
495
496         if (idata->ic.is_acmd) {
497                 err = mmc_app_cmd(card->host, card);
498                 if (err)
499                         return err;
500         }
501
502         if (is_rpmb) {
503                 err = mmc_set_blockcount(card, data.blocks,
504                         idata->ic.write_flag & (1 << 31));
505                 if (err)
506                         return err;
507         }
508
509         if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
510             (cmd.opcode == MMC_SWITCH)) {
511                 err = ioctl_do_sanitize(card);
512
513                 if (err)
514                         pr_err("%s: ioctl_do_sanitize() failed. err = %d",
515                                __func__, err);
516
517                 return err;
518         }
519
520         mmc_wait_for_req(card->host, &mrq);
521
522         if (cmd.error) {
523                 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
524                                                 __func__, cmd.error);
525                 return cmd.error;
526         }
527         if (data.error) {
528                 dev_err(mmc_dev(card->host), "%s: data error %d\n",
529                                                 __func__, data.error);
530                 return data.error;
531         }
532
533         /*
534          * According to the SD specs, some commands require a delay after
535          * issuing the command.
536          */
537         if (idata->ic.postsleep_min_us)
538                 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
539
540         memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
541
542         if (is_rpmb) {
543                 /*
544                  * Ensure RPMB command has completed by polling CMD13
545                  * "Send Status".
546                  */
547                 err = ioctl_rpmb_card_status_poll(card, &status, 5);
548                 if (err)
549                         dev_err(mmc_dev(card->host),
550                                         "%s: Card Status=0x%08X, error %d\n",
551                                         __func__, status, err);
552         }
553
554         return err;
555 }
556
557 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
558                              struct mmc_ioc_cmd __user *ic_ptr)
559 {
560         struct mmc_blk_ioc_data *idata;
561         struct mmc_blk_ioc_data *idatas[1];
562         struct mmc_blk_data *md;
563         struct mmc_queue *mq;
564         struct mmc_card *card;
565         int err = 0, ioc_err = 0;
566         struct request *req;
567
568         /*
569          * The caller must have CAP_SYS_RAWIO, and must be calling this on the
570          * whole block device, not on a partition.  This prevents overspray
571          * between sibling partitions.
572          */
573         if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
574                 return -EPERM;
575
576         idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
577         if (IS_ERR(idata))
578                 return PTR_ERR(idata);
579
580         md = mmc_blk_get(bdev->bd_disk);
581         if (!md) {
582                 err = -EINVAL;
583                 goto cmd_err;
584         }
585
586         card = md->queue.card;
587         if (IS_ERR(card)) {
588                 err = PTR_ERR(card);
589                 goto cmd_done;
590         }
591
592         /*
593          * Dispatch the ioctl() into the block request queue.
594          */
595         mq = &md->queue;
596         req = blk_get_request(mq->queue,
597                 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
598                 __GFP_RECLAIM);
599         idatas[0] = idata;
600         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
601         req_to_mmc_queue_req(req)->idata = idatas;
602         req_to_mmc_queue_req(req)->ioc_count = 1;
603         blk_execute_rq(mq->queue, NULL, req, 0);
604         ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
605         err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
606         blk_put_request(req);
607
608 cmd_done:
609         mmc_blk_put(md);
610 cmd_err:
611         kfree(idata->buf);
612         kfree(idata);
613         return ioc_err ? ioc_err : err;
614 }
615
616 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
617                                    struct mmc_ioc_multi_cmd __user *user)
618 {
619         struct mmc_blk_ioc_data **idata = NULL;
620         struct mmc_ioc_cmd __user *cmds = user->cmds;
621         struct mmc_card *card;
622         struct mmc_blk_data *md;
623         struct mmc_queue *mq;
624         int i, err = 0, ioc_err = 0;
625         __u64 num_of_cmds;
626         struct request *req;
627
628         /*
629          * The caller must have CAP_SYS_RAWIO, and must be calling this on the
630          * whole block device, not on a partition.  This prevents overspray
631          * between sibling partitions.
632          */
633         if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
634                 return -EPERM;
635
636         if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
637                            sizeof(num_of_cmds)))
638                 return -EFAULT;
639
640         if (!num_of_cmds)
641                 return 0;
642
643         if (num_of_cmds > MMC_IOC_MAX_CMDS)
644                 return -EINVAL;
645
646         idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
647         if (!idata)
648                 return -ENOMEM;
649
650         for (i = 0; i < num_of_cmds; i++) {
651                 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
652                 if (IS_ERR(idata[i])) {
653                         err = PTR_ERR(idata[i]);
654                         num_of_cmds = i;
655                         goto cmd_err;
656                 }
657         }
658
659         md = mmc_blk_get(bdev->bd_disk);
660         if (!md) {
661                 err = -EINVAL;
662                 goto cmd_err;
663         }
664
665         card = md->queue.card;
666         if (IS_ERR(card)) {
667                 err = PTR_ERR(card);
668                 goto cmd_done;
669         }
670
671
672         /*
673          * Dispatch the ioctl()s into the block request queue.
674          */
675         mq = &md->queue;
676         req = blk_get_request(mq->queue,
677                 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
678                 __GFP_RECLAIM);
679         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
680         req_to_mmc_queue_req(req)->idata = idata;
681         req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
682         blk_execute_rq(mq->queue, NULL, req, 0);
683         ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
684
685         /* copy to user if data and response */
686         for (i = 0; i < num_of_cmds && !err; i++)
687                 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
688
689         blk_put_request(req);
690
691 cmd_done:
692         mmc_blk_put(md);
693 cmd_err:
694         for (i = 0; i < num_of_cmds; i++) {
695                 kfree(idata[i]->buf);
696                 kfree(idata[i]);
697         }
698         kfree(idata);
699         return ioc_err ? ioc_err : err;
700 }
701
702 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
703         unsigned int cmd, unsigned long arg)
704 {
705         switch (cmd) {
706         case MMC_IOC_CMD:
707                 return mmc_blk_ioctl_cmd(bdev,
708                                 (struct mmc_ioc_cmd __user *)arg);
709         case MMC_IOC_MULTI_CMD:
710                 return mmc_blk_ioctl_multi_cmd(bdev,
711                                 (struct mmc_ioc_multi_cmd __user *)arg);
712         default:
713                 return -EINVAL;
714         }
715 }
716
717 #ifdef CONFIG_COMPAT
718 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
719         unsigned int cmd, unsigned long arg)
720 {
721         return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
722 }
723 #endif
724
725 static const struct block_device_operations mmc_bdops = {
726         .open                   = mmc_blk_open,
727         .release                = mmc_blk_release,
728         .getgeo                 = mmc_blk_getgeo,
729         .owner                  = THIS_MODULE,
730         .ioctl                  = mmc_blk_ioctl,
731 #ifdef CONFIG_COMPAT
732         .compat_ioctl           = mmc_blk_compat_ioctl,
733 #endif
734 };
735
736 static int mmc_blk_part_switch_pre(struct mmc_card *card,
737                                    unsigned int part_type)
738 {
739         int ret = 0;
740
741         if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
742                 if (card->ext_csd.cmdq_en) {
743                         ret = mmc_cmdq_disable(card);
744                         if (ret)
745                                 return ret;
746                 }
747                 mmc_retune_pause(card->host);
748         }
749
750         return ret;
751 }
752
753 static int mmc_blk_part_switch_post(struct mmc_card *card,
754                                     unsigned int part_type)
755 {
756         int ret = 0;
757
758         if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
759                 mmc_retune_unpause(card->host);
760                 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
761                         ret = mmc_cmdq_enable(card);
762         }
763
764         return ret;
765 }
766
767 static inline int mmc_blk_part_switch(struct mmc_card *card,
768                                       struct mmc_blk_data *md)
769 {
770         int ret = 0;
771         struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
772
773         if (main_md->part_curr == md->part_type)
774                 return 0;
775
776         if (mmc_card_mmc(card)) {
777                 u8 part_config = card->ext_csd.part_config;
778
779                 ret = mmc_blk_part_switch_pre(card, md->part_type);
780                 if (ret)
781                         return ret;
782
783                 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
784                 part_config |= md->part_type;
785
786                 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
787                                  EXT_CSD_PART_CONFIG, part_config,
788                                  card->ext_csd.part_time);
789                 if (ret) {
790                         mmc_blk_part_switch_post(card, md->part_type);
791                         return ret;
792                 }
793
794                 card->ext_csd.part_config = part_config;
795
796                 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
797         }
798
799         main_md->part_curr = md->part_type;
800         return ret;
801 }
802
803 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
804 {
805         int err;
806         u32 result;
807         __be32 *blocks;
808
809         struct mmc_request mrq = {};
810         struct mmc_command cmd = {};
811         struct mmc_data data = {};
812
813         struct scatterlist sg;
814
815         cmd.opcode = MMC_APP_CMD;
816         cmd.arg = card->rca << 16;
817         cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
818
819         err = mmc_wait_for_cmd(card->host, &cmd, 0);
820         if (err)
821                 return err;
822         if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
823                 return -EIO;
824
825         memset(&cmd, 0, sizeof(struct mmc_command));
826
827         cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
828         cmd.arg = 0;
829         cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
830
831         data.blksz = 4;
832         data.blocks = 1;
833         data.flags = MMC_DATA_READ;
834         data.sg = &sg;
835         data.sg_len = 1;
836         mmc_set_data_timeout(&data, card);
837
838         mrq.cmd = &cmd;
839         mrq.data = &data;
840
841         blocks = kmalloc(4, GFP_KERNEL);
842         if (!blocks)
843                 return -ENOMEM;
844
845         sg_init_one(&sg, blocks, 4);
846
847         mmc_wait_for_req(card->host, &mrq);
848
849         result = ntohl(*blocks);
850         kfree(blocks);
851
852         if (cmd.error || data.error)
853                 return -EIO;
854
855         *written_blocks = result;
856
857         return 0;
858 }
859
860 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
861                 bool hw_busy_detect, struct request *req, bool *gen_err)
862 {
863         unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
864         int err = 0;
865         u32 status;
866
867         do {
868                 err = __mmc_send_status(card, &status, 5);
869                 if (err) {
870                         pr_err("%s: error %d requesting status\n",
871                                req->rq_disk->disk_name, err);
872                         return err;
873                 }
874
875                 if (status & R1_ERROR) {
876                         pr_err("%s: %s: error sending status cmd, status %#x\n",
877                                 req->rq_disk->disk_name, __func__, status);
878                         *gen_err = true;
879                 }
880
881                 /* We may rely on the host hw to handle busy detection.*/
882                 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
883                         hw_busy_detect)
884                         break;
885
886                 /*
887                  * Timeout if the device never becomes ready for data and never
888                  * leaves the program state.
889                  */
890                 if (time_after(jiffies, timeout)) {
891                         pr_err("%s: Card stuck in programming state! %s %s\n",
892                                 mmc_hostname(card->host),
893                                 req->rq_disk->disk_name, __func__);
894                         return -ETIMEDOUT;
895                 }
896
897                 /*
898                  * Some cards mishandle the status bits,
899                  * so make sure to check both the busy
900                  * indication and the card state.
901                  */
902         } while (!(status & R1_READY_FOR_DATA) ||
903                  (R1_CURRENT_STATE(status) == R1_STATE_PRG));
904
905         return err;
906 }
907
908 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
909                 struct request *req, bool *gen_err, u32 *stop_status)
910 {
911         struct mmc_host *host = card->host;
912         struct mmc_command cmd = {};
913         int err;
914         bool use_r1b_resp = rq_data_dir(req) == WRITE;
915
916         /*
917          * Normally we use R1B responses for WRITE, but in cases where the host
918          * has specified a max_busy_timeout we need to validate it. A failure
919          * means we need to prevent the host from doing hw busy detection, which
920          * is done by converting to a R1 response instead.
921          */
922         if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
923                 use_r1b_resp = false;
924
925         cmd.opcode = MMC_STOP_TRANSMISSION;
926         if (use_r1b_resp) {
927                 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
928                 cmd.busy_timeout = timeout_ms;
929         } else {
930                 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
931         }
932
933         err = mmc_wait_for_cmd(host, &cmd, 5);
934         if (err)
935                 return err;
936
937         *stop_status = cmd.resp[0];
938
939         /* No need to check card status in case of READ. */
940         if (rq_data_dir(req) == READ)
941                 return 0;
942
943         if (!mmc_host_is_spi(host) &&
944                 (*stop_status & R1_ERROR)) {
945                 pr_err("%s: %s: general error sending stop command, resp %#x\n",
946                         req->rq_disk->disk_name, __func__, *stop_status);
947                 *gen_err = true;
948         }
949
950         return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
951 }
952
953 #define ERR_NOMEDIUM    3
954 #define ERR_RETRY       2
955 #define ERR_ABORT       1
956 #define ERR_CONTINUE    0
957
958 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
959         bool status_valid, u32 status)
960 {
961         switch (error) {
962         case -EILSEQ:
963                 /* response crc error, retry the r/w cmd */
964                 pr_err("%s: %s sending %s command, card status %#x\n",
965                         req->rq_disk->disk_name, "response CRC error",
966                         name, status);
967                 return ERR_RETRY;
968
969         case -ETIMEDOUT:
970                 pr_err("%s: %s sending %s command, card status %#x\n",
971                         req->rq_disk->disk_name, "timed out", name, status);
972
973                 /* If the status cmd initially failed, retry the r/w cmd */
974                 if (!status_valid) {
975                         pr_err("%s: status not valid, retrying timeout\n",
976                                 req->rq_disk->disk_name);
977                         return ERR_RETRY;
978                 }
979
980                 /*
981                  * If it was a r/w cmd crc error, or illegal command
982                  * (eg, issued in wrong state) then retry - we should
983                  * have corrected the state problem above.
984                  */
985                 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
986                         pr_err("%s: command error, retrying timeout\n",
987                                 req->rq_disk->disk_name);
988                         return ERR_RETRY;
989                 }
990
991                 /* Otherwise abort the command */
992                 return ERR_ABORT;
993
994         default:
995                 /* We don't understand the error code the driver gave us */
996                 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
997                        req->rq_disk->disk_name, error, status);
998                 return ERR_ABORT;
999         }
1000 }
1001
1002 /*
1003  * Initial r/w and stop cmd error recovery.
1004  * We don't know whether the card received the r/w cmd or not, so try to
1005  * restore things back to a sane state.  Essentially, we do this as follows:
1006  * - Obtain card status.  If the first attempt to obtain card status fails,
1007  *   the status word will reflect the failed status cmd, not the failed
1008  *   r/w cmd.  If we fail to obtain card status, it suggests we can no
1009  *   longer communicate with the card.
1010  * - Check the card state.  If the card received the cmd but there was a
1011  *   transient problem with the response, it might still be in a data transfer
1012  *   mode.  Try to send it a stop command.  If this fails, we can't recover.
1013  * - If the r/w cmd failed due to a response CRC error, it was probably
1014  *   transient, so retry the cmd.
1015  * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1016  * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1017  *   illegal cmd, retry.
1018  * Otherwise we don't understand what happened, so abort.
1019  */
1020 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1021         struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
1022 {
1023         bool prev_cmd_status_valid = true;
1024         u32 status, stop_status = 0;
1025         int err, retry;
1026
1027         if (mmc_card_removed(card))
1028                 return ERR_NOMEDIUM;
1029
1030         /*
1031          * Try to get card status which indicates both the card state
1032          * and why there was no response.  If the first attempt fails,
1033          * we can't be sure the returned status is for the r/w command.
1034          */
1035         for (retry = 2; retry >= 0; retry--) {
1036                 err = __mmc_send_status(card, &status, 0);
1037                 if (!err)
1038                         break;
1039
1040                 /* Re-tune if needed */
1041                 mmc_retune_recheck(card->host);
1042
1043                 prev_cmd_status_valid = false;
1044                 pr_err("%s: error %d sending status command, %sing\n",
1045                        req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1046         }
1047
1048         /* We couldn't get a response from the card.  Give up. */
1049         if (err) {
1050                 /* Check if the card is removed */
1051                 if (mmc_detect_card_removed(card->host))
1052                         return ERR_NOMEDIUM;
1053                 return ERR_ABORT;
1054         }
1055
1056         /* Flag ECC errors */
1057         if ((status & R1_CARD_ECC_FAILED) ||
1058             (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1059             (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1060                 *ecc_err = true;
1061
1062         /* Flag General errors */
1063         if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1064                 if ((status & R1_ERROR) ||
1065                         (brq->stop.resp[0] & R1_ERROR)) {
1066                         pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1067                                req->rq_disk->disk_name, __func__,
1068                                brq->stop.resp[0], status);
1069                         *gen_err = true;
1070                 }
1071
1072         /*
1073          * Check the current card state.  If it is in some data transfer
1074          * mode, tell it to stop (and hopefully transition back to TRAN.)
1075          */
1076         if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1077             R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1078                 err = send_stop(card,
1079                         DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1080                         req, gen_err, &stop_status);
1081                 if (err) {
1082                         pr_err("%s: error %d sending stop command\n",
1083                                req->rq_disk->disk_name, err);
1084                         /*
1085                          * If the stop cmd also timed out, the card is probably
1086                          * not present, so abort. Other errors are bad news too.
1087                          */
1088                         return ERR_ABORT;
1089                 }
1090
1091                 if (stop_status & R1_CARD_ECC_FAILED)
1092                         *ecc_err = true;
1093         }
1094
1095         /* Check for set block count errors */
1096         if (brq->sbc.error)
1097                 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1098                                 prev_cmd_status_valid, status);
1099
1100         /* Check for r/w command errors */
1101         if (brq->cmd.error)
1102                 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1103                                 prev_cmd_status_valid, status);
1104
1105         /* Data errors */
1106         if (!brq->stop.error)
1107                 return ERR_CONTINUE;
1108
1109         /* Now for stop errors.  These aren't fatal to the transfer. */
1110         pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1111                req->rq_disk->disk_name, brq->stop.error,
1112                brq->cmd.resp[0], status);
1113
1114         /*
1115          * Subsitute in our own stop status as this will give the error
1116          * state which happened during the execution of the r/w command.
1117          */
1118         if (stop_status) {
1119                 brq->stop.resp[0] = stop_status;
1120                 brq->stop.error = 0;
1121         }
1122         return ERR_CONTINUE;
1123 }
1124
1125 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1126                          int type)
1127 {
1128         int err;
1129
1130         if (md->reset_done & type)
1131                 return -EEXIST;
1132
1133         md->reset_done |= type;
1134         err = mmc_hw_reset(host);
1135         /* Ensure we switch back to the correct partition */
1136         if (err != -EOPNOTSUPP) {
1137                 struct mmc_blk_data *main_md =
1138                         dev_get_drvdata(&host->card->dev);
1139                 int part_err;
1140
1141                 main_md->part_curr = main_md->part_type;
1142                 part_err = mmc_blk_part_switch(host->card, md);
1143                 if (part_err) {
1144                         /*
1145                          * We have failed to get back into the correct
1146                          * partition, so we need to abort the whole request.
1147                          */
1148                         return -ENODEV;
1149                 }
1150         }
1151         return err;
1152 }
1153
1154 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1155 {
1156         md->reset_done &= ~type;
1157 }
1158
1159 int mmc_access_rpmb(struct mmc_queue *mq)
1160 {
1161         struct mmc_blk_data *md = mq->blkdata;
1162         /*
1163          * If this is a RPMB partition access, return ture
1164          */
1165         if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1166                 return true;
1167
1168         return false;
1169 }
1170
1171 /*
1172  * The non-block commands come back from the block layer after it queued it and
1173  * processed it with all other requests and then they get issued in this
1174  * function.
1175  */
1176 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1177 {
1178         struct mmc_queue_req *mq_rq;
1179         struct mmc_card *card = mq->card;
1180         struct mmc_blk_data *md = mq->blkdata;
1181         int ret;
1182         int i;
1183
1184         mq_rq = req_to_mmc_queue_req(req);
1185
1186         switch (mq_rq->drv_op) {
1187         case MMC_DRV_OP_IOCTL:
1188                 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1189                         ret = __mmc_blk_ioctl_cmd(card, md, mq_rq->idata[i]);
1190                         if (ret)
1191                                 break;
1192                 }
1193                 /* Always switch back to main area after RPMB access */
1194                 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
1195                         mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
1196                 break;
1197         case MMC_DRV_OP_BOOT_WP:
1198                 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1199                                  card->ext_csd.boot_ro_lock |
1200                                  EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1201                                  card->ext_csd.part_time);
1202                 if (ret)
1203                         pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1204                                md->disk->disk_name, ret);
1205                 else
1206                         card->ext_csd.boot_ro_lock |=
1207                                 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1208                 break;
1209         default:
1210                 pr_err("%s: unknown driver specific operation\n",
1211                        md->disk->disk_name);
1212                 ret = -EINVAL;
1213                 break;
1214         }
1215         mq_rq->drv_op_result = ret;
1216         blk_end_request_all(req, ret);
1217 }
1218
1219 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1220 {
1221         struct mmc_blk_data *md = mq->blkdata;
1222         struct mmc_card *card = md->queue.card;
1223         unsigned int from, nr, arg;
1224         int err = 0, type = MMC_BLK_DISCARD;
1225         blk_status_t status = BLK_STS_OK;
1226
1227         if (!mmc_can_erase(card)) {
1228                 status = BLK_STS_NOTSUPP;
1229                 goto fail;
1230         }
1231
1232         from = blk_rq_pos(req);
1233         nr = blk_rq_sectors(req);
1234
1235         if (mmc_can_discard(card))
1236                 arg = MMC_DISCARD_ARG;
1237         else if (mmc_can_trim(card))
1238                 arg = MMC_TRIM_ARG;
1239         else
1240                 arg = MMC_ERASE_ARG;
1241         do {
1242                 err = 0;
1243                 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1244                         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1245                                          INAND_CMD38_ARG_EXT_CSD,
1246                                          arg == MMC_TRIM_ARG ?
1247                                          INAND_CMD38_ARG_TRIM :
1248                                          INAND_CMD38_ARG_ERASE,
1249                                          0);
1250                 }
1251                 if (!err)
1252                         err = mmc_erase(card, from, nr, arg);
1253         } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1254         if (err)
1255                 status = BLK_STS_IOERR;
1256         else
1257                 mmc_blk_reset_success(md, type);
1258 fail:
1259         blk_end_request(req, status, blk_rq_bytes(req));
1260 }
1261
1262 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1263                                        struct request *req)
1264 {
1265         struct mmc_blk_data *md = mq->blkdata;
1266         struct mmc_card *card = md->queue.card;
1267         unsigned int from, nr, arg;
1268         int err = 0, type = MMC_BLK_SECDISCARD;
1269         blk_status_t status = BLK_STS_OK;
1270
1271         if (!(mmc_can_secure_erase_trim(card))) {
1272                 status = BLK_STS_NOTSUPP;
1273                 goto out;
1274         }
1275
1276         from = blk_rq_pos(req);
1277         nr = blk_rq_sectors(req);
1278
1279         if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1280                 arg = MMC_SECURE_TRIM1_ARG;
1281         else
1282                 arg = MMC_SECURE_ERASE_ARG;
1283
1284 retry:
1285         if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1286                 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1287                                  INAND_CMD38_ARG_EXT_CSD,
1288                                  arg == MMC_SECURE_TRIM1_ARG ?
1289                                  INAND_CMD38_ARG_SECTRIM1 :
1290                                  INAND_CMD38_ARG_SECERASE,
1291                                  0);
1292                 if (err)
1293                         goto out_retry;
1294         }
1295
1296         err = mmc_erase(card, from, nr, arg);
1297         if (err == -EIO)
1298                 goto out_retry;
1299         if (err) {
1300                 status = BLK_STS_IOERR;
1301                 goto out;
1302         }
1303
1304         if (arg == MMC_SECURE_TRIM1_ARG) {
1305                 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1306                         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1307                                          INAND_CMD38_ARG_EXT_CSD,
1308                                          INAND_CMD38_ARG_SECTRIM2,
1309                                          0);
1310                         if (err)
1311                                 goto out_retry;
1312                 }
1313
1314                 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1315                 if (err == -EIO)
1316                         goto out_retry;
1317                 if (err) {
1318                         status = BLK_STS_IOERR;
1319                         goto out;
1320                 }
1321         }
1322
1323 out_retry:
1324         if (err && !mmc_blk_reset(md, card->host, type))
1325                 goto retry;
1326         if (!err)
1327                 mmc_blk_reset_success(md, type);
1328 out:
1329         blk_end_request(req, status, blk_rq_bytes(req));
1330 }
1331
1332 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1333 {
1334         struct mmc_blk_data *md = mq->blkdata;
1335         struct mmc_card *card = md->queue.card;
1336         int ret = 0;
1337
1338         ret = mmc_flush_cache(card);
1339         blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1340 }
1341
1342 /*
1343  * Reformat current write as a reliable write, supporting
1344  * both legacy and the enhanced reliable write MMC cards.
1345  * In each transfer we'll handle only as much as a single
1346  * reliable write can handle, thus finish the request in
1347  * partial completions.
1348  */
1349 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1350                                     struct mmc_card *card,
1351                                     struct request *req)
1352 {
1353         if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1354                 /* Legacy mode imposes restrictions on transfers. */
1355                 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1356                         brq->data.blocks = 1;
1357
1358                 if (brq->data.blocks > card->ext_csd.rel_sectors)
1359                         brq->data.blocks = card->ext_csd.rel_sectors;
1360                 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1361                         brq->data.blocks = 1;
1362         }
1363 }
1364
1365 #define CMD_ERRORS                                                      \
1366         (R1_OUT_OF_RANGE |      /* Command argument out of range */     \
1367          R1_ADDRESS_ERROR |     /* Misaligned address */                \
1368          R1_BLOCK_LEN_ERROR |   /* Transferred block length incorrect */\
1369          R1_WP_VIOLATION |      /* Tried to write to protected block */ \
1370          R1_CARD_ECC_FAILED |   /* Card ECC failed */                   \
1371          R1_CC_ERROR |          /* Card controller error */             \
1372          R1_ERROR)              /* General/unknown error */
1373
1374 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1375 {
1376         u32 val;
1377
1378         /*
1379          * Per the SD specification(physical layer version 4.10)[1],
1380          * section 4.3.3, it explicitly states that "When the last
1381          * block of user area is read using CMD18, the host should
1382          * ignore OUT_OF_RANGE error that may occur even the sequence
1383          * is correct". And JESD84-B51 for eMMC also has a similar
1384          * statement on section 6.8.3.
1385          *
1386          * Multiple block read/write could be done by either predefined
1387          * method, namely CMD23, or open-ending mode. For open-ending mode,
1388          * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1389          *
1390          * However the spec[1] doesn't tell us whether we should also
1391          * ignore that for predefined method. But per the spec[1], section
1392          * 4.15 Set Block Count Command, it says"If illegal block count
1393          * is set, out of range error will be indicated during read/write
1394          * operation (For example, data transfer is stopped at user area
1395          * boundary)." In another word, we could expect a out of range error
1396          * in the response for the following CMD18/25. And if argument of
1397          * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1398          * we could also expect to get a -ETIMEDOUT or any error number from
1399          * the host drivers due to missing data response(for write)/data(for
1400          * read), as the cards will stop the data transfer by itself per the
1401          * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1402          */
1403
1404         if (!brq->stop.error) {
1405                 bool oor_with_open_end;
1406                 /* If there is no error yet, check R1 response */
1407
1408                 val = brq->stop.resp[0] & CMD_ERRORS;
1409                 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1410
1411                 if (val && !oor_with_open_end)
1412                         brq->stop.error = -EIO;
1413         }
1414 }
1415
1416 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1417                                              struct mmc_async_req *areq)
1418 {
1419         struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1420                                                     areq);
1421         struct mmc_blk_request *brq = &mq_mrq->brq;
1422         struct request *req = mmc_queue_req_to_req(mq_mrq);
1423         int need_retune = card->host->need_retune;
1424         bool ecc_err = false;
1425         bool gen_err = false;
1426
1427         /*
1428          * sbc.error indicates a problem with the set block count
1429          * command.  No data will have been transferred.
1430          *
1431          * cmd.error indicates a problem with the r/w command.  No
1432          * data will have been transferred.
1433          *
1434          * stop.error indicates a problem with the stop command.  Data
1435          * may have been transferred, or may still be transferring.
1436          */
1437
1438         mmc_blk_eval_resp_error(brq);
1439
1440         if (brq->sbc.error || brq->cmd.error ||
1441             brq->stop.error || brq->data.error) {
1442                 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1443                 case ERR_RETRY:
1444                         return MMC_BLK_RETRY;
1445                 case ERR_ABORT:
1446                         return MMC_BLK_ABORT;
1447                 case ERR_NOMEDIUM:
1448                         return MMC_BLK_NOMEDIUM;
1449                 case ERR_CONTINUE:
1450                         break;
1451                 }
1452         }
1453
1454         /*
1455          * Check for errors relating to the execution of the
1456          * initial command - such as address errors.  No data
1457          * has been transferred.
1458          */
1459         if (brq->cmd.resp[0] & CMD_ERRORS) {
1460                 pr_err("%s: r/w command failed, status = %#x\n",
1461                        req->rq_disk->disk_name, brq->cmd.resp[0]);
1462                 return MMC_BLK_ABORT;
1463         }
1464
1465         /*
1466          * Everything else is either success, or a data error of some
1467          * kind.  If it was a write, we may have transitioned to
1468          * program mode, which we have to wait for it to complete.
1469          */
1470         if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1471                 int err;
1472
1473                 /* Check stop command response */
1474                 if (brq->stop.resp[0] & R1_ERROR) {
1475                         pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1476                                req->rq_disk->disk_name, __func__,
1477                                brq->stop.resp[0]);
1478                         gen_err = true;
1479                 }
1480
1481                 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1482                                         &gen_err);
1483                 if (err)
1484                         return MMC_BLK_CMD_ERR;
1485         }
1486
1487         /* if general error occurs, retry the write operation. */
1488         if (gen_err) {
1489                 pr_warn("%s: retrying write for general error\n",
1490                                 req->rq_disk->disk_name);
1491                 return MMC_BLK_RETRY;
1492         }
1493
1494         /* Some errors (ECC) are flagged on the next commmand, so check stop, too */
1495         if (brq->data.error || brq->stop.error) {
1496                 if (need_retune && !brq->retune_retry_done) {
1497                         pr_debug("%s: retrying because a re-tune was needed\n",
1498                                  req->rq_disk->disk_name);
1499                         brq->retune_retry_done = 1;
1500                         return MMC_BLK_RETRY;
1501                 }
1502                 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1503                        req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
1504                        (unsigned)blk_rq_pos(req),
1505                        (unsigned)blk_rq_sectors(req),
1506                        brq->cmd.resp[0], brq->stop.resp[0]);
1507
1508                 if (rq_data_dir(req) == READ) {
1509                         if (ecc_err)
1510                                 return MMC_BLK_ECC_ERR;
1511                         return MMC_BLK_DATA_ERR;
1512                 } else {
1513                         return MMC_BLK_CMD_ERR;
1514                 }
1515         }
1516
1517         if (!brq->data.bytes_xfered)
1518                 return MMC_BLK_RETRY;
1519
1520         if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1521                 return MMC_BLK_PARTIAL;
1522
1523         return MMC_BLK_SUCCESS;
1524 }
1525
1526 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1527                               int disable_multi, bool *do_rel_wr,
1528                               bool *do_data_tag)
1529 {
1530         struct mmc_blk_data *md = mq->blkdata;
1531         struct mmc_card *card = md->queue.card;
1532         struct mmc_blk_request *brq = &mqrq->brq;
1533         struct request *req = mmc_queue_req_to_req(mqrq);
1534
1535         /*
1536          * Reliable writes are used to implement Forced Unit Access and
1537          * are supported only on MMCs.
1538          */
1539         *do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1540                      rq_data_dir(req) == WRITE &&
1541                      (md->flags & MMC_BLK_REL_WR);
1542
1543         memset(brq, 0, sizeof(struct mmc_blk_request));
1544
1545         brq->mrq.data = &brq->data;
1546
1547         brq->stop.opcode = MMC_STOP_TRANSMISSION;
1548         brq->stop.arg = 0;
1549
1550         if (rq_data_dir(req) == READ) {
1551                 brq->data.flags = MMC_DATA_READ;
1552                 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1553         } else {
1554                 brq->data.flags = MMC_DATA_WRITE;
1555                 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1556         }
1557
1558         brq->data.blksz = 512;
1559         brq->data.blocks = blk_rq_sectors(req);
1560
1561         /*
1562          * The block layer doesn't support all sector count
1563          * restrictions, so we need to be prepared for too big
1564          * requests.
1565          */
1566         if (brq->data.blocks > card->host->max_blk_count)
1567                 brq->data.blocks = card->host->max_blk_count;
1568
1569         if (brq->data.blocks > 1) {
1570                 /*
1571                  * After a read error, we redo the request one sector
1572                  * at a time in order to accurately determine which
1573                  * sectors can be read successfully.
1574                  */
1575                 if (disable_multi)
1576                         brq->data.blocks = 1;
1577
1578                 /*
1579                  * Some controllers have HW issues while operating
1580                  * in multiple I/O mode
1581                  */
1582                 if (card->host->ops->multi_io_quirk)
1583                         brq->data.blocks = card->host->ops->multi_io_quirk(card,
1584                                                 (rq_data_dir(req) == READ) ?
1585                                                 MMC_DATA_READ : MMC_DATA_WRITE,
1586                                                 brq->data.blocks);
1587         }
1588
1589         if (*do_rel_wr)
1590                 mmc_apply_rel_rw(brq, card, req);
1591
1592         /*
1593          * Data tag is used only during writing meta data to speed
1594          * up write and any subsequent read of this meta data
1595          */
1596         *do_data_tag = card->ext_csd.data_tag_unit_size &&
1597                        (req->cmd_flags & REQ_META) &&
1598                        (rq_data_dir(req) == WRITE) &&
1599                        ((brq->data.blocks * brq->data.blksz) >=
1600                         card->ext_csd.data_tag_unit_size);
1601
1602         mmc_set_data_timeout(&brq->data, card);
1603
1604         brq->data.sg = mqrq->sg;
1605         brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1606
1607         /*
1608          * Adjust the sg list so it is the same size as the
1609          * request.
1610          */
1611         if (brq->data.blocks != blk_rq_sectors(req)) {
1612                 int i, data_size = brq->data.blocks << 9;
1613                 struct scatterlist *sg;
1614
1615                 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1616                         data_size -= sg->length;
1617                         if (data_size <= 0) {
1618                                 sg->length += data_size;
1619                                 i++;
1620                                 break;
1621                         }
1622                 }
1623                 brq->data.sg_len = i;
1624         }
1625
1626         mqrq->areq.mrq = &brq->mrq;
1627
1628         mmc_queue_bounce_pre(mqrq);
1629 }
1630
1631 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1632                                struct mmc_card *card,
1633                                int disable_multi,
1634                                struct mmc_queue *mq)
1635 {
1636         u32 readcmd, writecmd;
1637         struct mmc_blk_request *brq = &mqrq->brq;
1638         struct request *req = mmc_queue_req_to_req(mqrq);
1639         struct mmc_blk_data *md = mq->blkdata;
1640         bool do_rel_wr, do_data_tag;
1641
1642         mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1643
1644         brq->mrq.cmd = &brq->cmd;
1645
1646         brq->cmd.arg = blk_rq_pos(req);
1647         if (!mmc_card_blockaddr(card))
1648                 brq->cmd.arg <<= 9;
1649         brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1650
1651         if (brq->data.blocks > 1 || do_rel_wr) {
1652                 /* SPI multiblock writes terminate using a special
1653                  * token, not a STOP_TRANSMISSION request.
1654                  */
1655                 if (!mmc_host_is_spi(card->host) ||
1656                     rq_data_dir(req) == READ)
1657                         brq->mrq.stop = &brq->stop;
1658                 readcmd = MMC_READ_MULTIPLE_BLOCK;
1659                 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1660         } else {
1661                 brq->mrq.stop = NULL;
1662                 readcmd = MMC_READ_SINGLE_BLOCK;
1663                 writecmd = MMC_WRITE_BLOCK;
1664         }
1665         brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1666
1667         /*
1668          * Pre-defined multi-block transfers are preferable to
1669          * open ended-ones (and necessary for reliable writes).
1670          * However, it is not sufficient to just send CMD23,
1671          * and avoid the final CMD12, as on an error condition
1672          * CMD12 (stop) needs to be sent anyway. This, coupled
1673          * with Auto-CMD23 enhancements provided by some
1674          * hosts, means that the complexity of dealing
1675          * with this is best left to the host. If CMD23 is
1676          * supported by card and host, we'll fill sbc in and let
1677          * the host deal with handling it correctly. This means
1678          * that for hosts that don't expose MMC_CAP_CMD23, no
1679          * change of behavior will be observed.
1680          *
1681          * N.B: Some MMC cards experience perf degradation.
1682          * We'll avoid using CMD23-bounded multiblock writes for
1683          * these, while retaining features like reliable writes.
1684          */
1685         if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1686             (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1687              do_data_tag)) {
1688                 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1689                 brq->sbc.arg = brq->data.blocks |
1690                         (do_rel_wr ? (1 << 31) : 0) |
1691                         (do_data_tag ? (1 << 29) : 0);
1692                 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1693                 brq->mrq.sbc = &brq->sbc;
1694         }
1695
1696         mqrq->areq.err_check = mmc_blk_err_check;
1697 }
1698
1699 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1700                                struct mmc_blk_request *brq, struct request *req,
1701                                bool old_req_pending)
1702 {
1703         bool req_pending;
1704
1705         /*
1706          * If this is an SD card and we're writing, we can first
1707          * mark the known good sectors as ok.
1708          *
1709          * If the card is not SD, we can still ok written sectors
1710          * as reported by the controller (which might be less than
1711          * the real number of written sectors, but never more).
1712          */
1713         if (mmc_card_sd(card)) {
1714                 u32 blocks;
1715                 int err;
1716
1717                 err = mmc_sd_num_wr_blocks(card, &blocks);
1718                 if (err)
1719                         req_pending = old_req_pending;
1720                 else
1721                         req_pending = blk_end_request(req, 0, blocks << 9);
1722         } else {
1723                 req_pending = blk_end_request(req, 0, brq->data.bytes_xfered);
1724         }
1725         return req_pending;
1726 }
1727
1728 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
1729                                  struct request *req,
1730                                  struct mmc_queue_req *mqrq)
1731 {
1732         if (mmc_card_removed(card))
1733                 req->rq_flags |= RQF_QUIET;
1734         while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
1735         mq->qcnt--;
1736 }
1737
1738 /**
1739  * mmc_blk_rw_try_restart() - tries to restart the current async request
1740  * @mq: the queue with the card and host to restart
1741  * @req: a new request that want to be started after the current one
1742  */
1743 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
1744                                    struct mmc_queue_req *mqrq)
1745 {
1746         if (!req)
1747                 return;
1748
1749         /*
1750          * If the card was removed, just cancel everything and return.
1751          */
1752         if (mmc_card_removed(mq->card)) {
1753                 req->rq_flags |= RQF_QUIET;
1754                 blk_end_request_all(req, BLK_STS_IOERR);
1755                 mq->qcnt--; /* FIXME: just set to 0? */
1756                 return;
1757         }
1758         /* Else proceed and try to restart the current async request */
1759         mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1760         mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
1761 }
1762
1763 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1764 {
1765         struct mmc_blk_data *md = mq->blkdata;
1766         struct mmc_card *card = md->queue.card;
1767         struct mmc_blk_request *brq;
1768         int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1769         enum mmc_blk_status status;
1770         struct mmc_queue_req *mqrq_cur = NULL;
1771         struct mmc_queue_req *mq_rq;
1772         struct request *old_req;
1773         struct mmc_async_req *new_areq;
1774         struct mmc_async_req *old_areq;
1775         bool req_pending = true;
1776
1777         if (new_req) {
1778                 mqrq_cur = req_to_mmc_queue_req(new_req);
1779                 mq->qcnt++;
1780         }
1781
1782         if (!mq->qcnt)
1783                 return;
1784
1785         do {
1786                 if (new_req) {
1787                         /*
1788                          * When 4KB native sector is enabled, only 8 blocks
1789                          * multiple read or write is allowed
1790                          */
1791                         if (mmc_large_sector(card) &&
1792                                 !IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1793                                 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1794                                         new_req->rq_disk->disk_name);
1795                                 mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
1796                                 return;
1797                         }
1798
1799                         mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
1800                         new_areq = &mqrq_cur->areq;
1801                 } else
1802                         new_areq = NULL;
1803
1804                 old_areq = mmc_start_areq(card->host, new_areq, &status);
1805                 if (!old_areq) {
1806                         /*
1807                          * We have just put the first request into the pipeline
1808                          * and there is nothing more to do until it is
1809                          * complete.
1810                          */
1811                         return;
1812                 }
1813
1814                 /*
1815                  * An asynchronous request has been completed and we proceed
1816                  * to handle the result of it.
1817                  */
1818                 mq_rq = container_of(old_areq, struct mmc_queue_req, areq);
1819                 brq = &mq_rq->brq;
1820                 old_req = mmc_queue_req_to_req(mq_rq);
1821                 type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1822                 mmc_queue_bounce_post(mq_rq);
1823
1824                 switch (status) {
1825                 case MMC_BLK_SUCCESS:
1826                 case MMC_BLK_PARTIAL:
1827                         /*
1828                          * A block was successfully transferred.
1829                          */
1830                         mmc_blk_reset_success(md, type);
1831
1832                         req_pending = blk_end_request(old_req, BLK_STS_OK,
1833                                                       brq->data.bytes_xfered);
1834                         /*
1835                          * If the blk_end_request function returns non-zero even
1836                          * though all data has been transferred and no errors
1837                          * were returned by the host controller, it's a bug.
1838                          */
1839                         if (status == MMC_BLK_SUCCESS && req_pending) {
1840                                 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1841                                        __func__, blk_rq_bytes(old_req),
1842                                        brq->data.bytes_xfered);
1843                                 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1844                                 return;
1845                         }
1846                         break;
1847                 case MMC_BLK_CMD_ERR:
1848                         req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1849                         if (mmc_blk_reset(md, card->host, type)) {
1850                                 if (req_pending)
1851                                         mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1852                                 else
1853                                         mq->qcnt--;
1854                                 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1855                                 return;
1856                         }
1857                         if (!req_pending) {
1858                                 mq->qcnt--;
1859                                 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1860                                 return;
1861                         }
1862                         break;
1863                 case MMC_BLK_RETRY:
1864                         retune_retry_done = brq->retune_retry_done;
1865                         if (retry++ < 5)
1866                                 break;
1867                         /* Fall through */
1868                 case MMC_BLK_ABORT:
1869                         if (!mmc_blk_reset(md, card->host, type))
1870                                 break;
1871                         mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1872                         mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1873                         return;
1874                 case MMC_BLK_DATA_ERR: {
1875                         int err;
1876
1877                         err = mmc_blk_reset(md, card->host, type);
1878                         if (!err)
1879                                 break;
1880                         if (err == -ENODEV) {
1881                                 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1882                                 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1883                                 return;
1884                         }
1885                         /* Fall through */
1886                 }
1887                 case MMC_BLK_ECC_ERR:
1888                         if (brq->data.blocks > 1) {
1889                                 /* Redo read one sector at a time */
1890                                 pr_warn("%s: retrying using single block read\n",
1891                                         old_req->rq_disk->disk_name);
1892                                 disable_multi = 1;
1893                                 break;
1894                         }
1895                         /*
1896                          * After an error, we redo I/O one sector at a
1897                          * time, so we only reach here after trying to
1898                          * read a single sector.
1899                          */
1900                         req_pending = blk_end_request(old_req, BLK_STS_IOERR,
1901                                                       brq->data.blksz);
1902                         if (!req_pending) {
1903                                 mq->qcnt--;
1904                                 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1905                                 return;
1906                         }
1907                         break;
1908                 case MMC_BLK_NOMEDIUM:
1909                         mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1910                         mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1911                         return;
1912                 default:
1913                         pr_err("%s: Unhandled return value (%d)",
1914                                         old_req->rq_disk->disk_name, status);
1915                         mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1916                         mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1917                         return;
1918                 }
1919
1920                 if (req_pending) {
1921                         /*
1922                          * In case of a incomplete request
1923                          * prepare it again and resend.
1924                          */
1925                         mmc_blk_rw_rq_prep(mq_rq, card,
1926                                         disable_multi, mq);
1927                         mmc_start_areq(card->host,
1928                                         &mq_rq->areq, NULL);
1929                         mq_rq->brq.retune_retry_done = retune_retry_done;
1930                 }
1931         } while (req_pending);
1932
1933         mq->qcnt--;
1934 }
1935
1936 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1937 {
1938         int ret;
1939         struct mmc_blk_data *md = mq->blkdata;
1940         struct mmc_card *card = md->queue.card;
1941
1942         if (req && !mq->qcnt)
1943                 /* claim host only for the first request */
1944                 mmc_get_card(card);
1945
1946         ret = mmc_blk_part_switch(card, md);
1947         if (ret) {
1948                 if (req) {
1949                         blk_end_request_all(req, BLK_STS_IOERR);
1950                 }
1951                 goto out;
1952         }
1953
1954         if (req) {
1955                 switch (req_op(req)) {
1956                 case REQ_OP_DRV_IN:
1957                 case REQ_OP_DRV_OUT:
1958                         /*
1959                          * Complete ongoing async transfer before issuing
1960                          * ioctl()s
1961                          */
1962                         if (mq->qcnt)
1963                                 mmc_blk_issue_rw_rq(mq, NULL);
1964                         mmc_blk_issue_drv_op(mq, req);
1965                         break;
1966                 case REQ_OP_DISCARD:
1967                         /*
1968                          * Complete ongoing async transfer before issuing
1969                          * discard.
1970                          */
1971                         if (mq->qcnt)
1972                                 mmc_blk_issue_rw_rq(mq, NULL);
1973                         mmc_blk_issue_discard_rq(mq, req);
1974                         break;
1975                 case REQ_OP_SECURE_ERASE:
1976                         /*
1977                          * Complete ongoing async transfer before issuing
1978                          * secure erase.
1979                          */
1980                         if (mq->qcnt)
1981                                 mmc_blk_issue_rw_rq(mq, NULL);
1982                         mmc_blk_issue_secdiscard_rq(mq, req);
1983                         break;
1984                 case REQ_OP_FLUSH:
1985                         /*
1986                          * Complete ongoing async transfer before issuing
1987                          * flush.
1988                          */
1989                         if (mq->qcnt)
1990                                 mmc_blk_issue_rw_rq(mq, NULL);
1991                         mmc_blk_issue_flush(mq, req);
1992                         break;
1993                 default:
1994                         /* Normal request, just issue it */
1995                         mmc_blk_issue_rw_rq(mq, req);
1996                         card->host->context_info.is_waiting_last_req = false;
1997                         break;
1998                 }
1999         } else {
2000                 /* No request, flushing the pipeline with NULL */
2001                 mmc_blk_issue_rw_rq(mq, NULL);
2002                 card->host->context_info.is_waiting_last_req = false;
2003         }
2004
2005 out:
2006         if (!mq->qcnt)
2007                 mmc_put_card(card);
2008 }
2009
2010 static inline int mmc_blk_readonly(struct mmc_card *card)
2011 {
2012         return mmc_card_readonly(card) ||
2013                !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2014 }
2015
2016 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2017                                               struct device *parent,
2018                                               sector_t size,
2019                                               bool default_ro,
2020                                               const char *subname,
2021                                               int area_type)
2022 {
2023         struct mmc_blk_data *md;
2024         int devidx, ret;
2025
2026         devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2027         if (devidx < 0)
2028                 return ERR_PTR(devidx);
2029
2030         md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2031         if (!md) {
2032                 ret = -ENOMEM;
2033                 goto out;
2034         }
2035
2036         md->area_type = area_type;
2037
2038         /*
2039          * Set the read-only status based on the supported commands
2040          * and the write protect switch.
2041          */
2042         md->read_only = mmc_blk_readonly(card);
2043
2044         md->disk = alloc_disk(perdev_minors);
2045         if (md->disk == NULL) {
2046                 ret = -ENOMEM;
2047                 goto err_kfree;
2048         }
2049
2050         spin_lock_init(&md->lock);
2051         INIT_LIST_HEAD(&md->part);
2052         md->usage = 1;
2053
2054         ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2055         if (ret)
2056                 goto err_putdisk;
2057
2058         md->queue.blkdata = md;
2059
2060         md->disk->major = MMC_BLOCK_MAJOR;
2061         md->disk->first_minor = devidx * perdev_minors;
2062         md->disk->fops = &mmc_bdops;
2063         md->disk->private_data = md;
2064         md->disk->queue = md->queue.queue;
2065         md->parent = parent;
2066         set_disk_ro(md->disk, md->read_only || default_ro);
2067         md->disk->flags = GENHD_FL_EXT_DEVT;
2068         if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2069                 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2070
2071         /*
2072          * As discussed on lkml, GENHD_FL_REMOVABLE should:
2073          *
2074          * - be set for removable media with permanent block devices
2075          * - be unset for removable block devices with permanent media
2076          *
2077          * Since MMC block devices clearly fall under the second
2078          * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2079          * should use the block device creation/destruction hotplug
2080          * messages to tell when the card is present.
2081          */
2082
2083         snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2084                  "mmcblk%u%s", card->host->index, subname ? subname : "");
2085
2086         if (mmc_card_mmc(card))
2087                 blk_queue_logical_block_size(md->queue.queue,
2088                                              card->ext_csd.data_sector_size);
2089         else
2090                 blk_queue_logical_block_size(md->queue.queue, 512);
2091
2092         set_capacity(md->disk, size);
2093
2094         if (mmc_host_cmd23(card->host)) {
2095                 if ((mmc_card_mmc(card) &&
2096                      card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2097                     (mmc_card_sd(card) &&
2098                      card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2099                         md->flags |= MMC_BLK_CMD23;
2100         }
2101
2102         if (mmc_card_mmc(card) &&
2103             md->flags & MMC_BLK_CMD23 &&
2104             ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2105              card->ext_csd.rel_sectors)) {
2106                 md->flags |= MMC_BLK_REL_WR;
2107                 blk_queue_write_cache(md->queue.queue, true, true);
2108         }
2109
2110         return md;
2111
2112  err_putdisk:
2113         put_disk(md->disk);
2114  err_kfree:
2115         kfree(md);
2116  out:
2117         ida_simple_remove(&mmc_blk_ida, devidx);
2118         return ERR_PTR(ret);
2119 }
2120
2121 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2122 {
2123         sector_t size;
2124
2125         if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2126                 /*
2127                  * The EXT_CSD sector count is in number or 512 byte
2128                  * sectors.
2129                  */
2130                 size = card->ext_csd.sectors;
2131         } else {
2132                 /*
2133                  * The CSD capacity field is in units of read_blkbits.
2134                  * set_capacity takes units of 512 bytes.
2135                  */
2136                 size = (typeof(sector_t))card->csd.capacity
2137                         << (card->csd.read_blkbits - 9);
2138         }
2139
2140         return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2141                                         MMC_BLK_DATA_AREA_MAIN);
2142 }
2143
2144 static int mmc_blk_alloc_part(struct mmc_card *card,
2145                               struct mmc_blk_data *md,
2146                               unsigned int part_type,
2147                               sector_t size,
2148                               bool default_ro,
2149                               const char *subname,
2150                               int area_type)
2151 {
2152         char cap_str[10];
2153         struct mmc_blk_data *part_md;
2154
2155         part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2156                                     subname, area_type);
2157         if (IS_ERR(part_md))
2158                 return PTR_ERR(part_md);
2159         part_md->part_type = part_type;
2160         list_add(&part_md->part, &md->part);
2161
2162         string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2163                         cap_str, sizeof(cap_str));
2164         pr_info("%s: %s %s partition %u %s\n",
2165                part_md->disk->disk_name, mmc_card_id(card),
2166                mmc_card_name(card), part_md->part_type, cap_str);
2167         return 0;
2168 }
2169
2170 /* MMC Physical partitions consist of two boot partitions and
2171  * up to four general purpose partitions.
2172  * For each partition enabled in EXT_CSD a block device will be allocatedi
2173  * to provide access to the partition.
2174  */
2175
2176 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2177 {
2178         int idx, ret = 0;
2179
2180         if (!mmc_card_mmc(card))
2181                 return 0;
2182
2183         for (idx = 0; idx < card->nr_parts; idx++) {
2184                 if (card->part[idx].size) {
2185                         ret = mmc_blk_alloc_part(card, md,
2186                                 card->part[idx].part_cfg,
2187                                 card->part[idx].size >> 9,
2188                                 card->part[idx].force_ro,
2189                                 card->part[idx].name,
2190                                 card->part[idx].area_type);
2191                         if (ret)
2192                                 return ret;
2193                 }
2194         }
2195
2196         return ret;
2197 }
2198
2199 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2200 {
2201         struct mmc_card *card;
2202
2203         if (md) {
2204                 /*
2205                  * Flush remaining requests and free queues. It
2206                  * is freeing the queue that stops new requests
2207                  * from being accepted.
2208                  */
2209                 card = md->queue.card;
2210                 spin_lock_irq(md->queue.queue->queue_lock);
2211                 queue_flag_set(QUEUE_FLAG_BYPASS, md->queue.queue);
2212                 spin_unlock_irq(md->queue.queue->queue_lock);
2213                 blk_set_queue_dying(md->queue.queue);
2214                 mmc_cleanup_queue(&md->queue);
2215                 if (md->disk->flags & GENHD_FL_UP) {
2216                         device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2217                         if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2218                                         card->ext_csd.boot_ro_lockable)
2219                                 device_remove_file(disk_to_dev(md->disk),
2220                                         &md->power_ro_lock);
2221
2222                         del_gendisk(md->disk);
2223                 }
2224                 mmc_blk_put(md);
2225         }
2226 }
2227
2228 static void mmc_blk_remove_parts(struct mmc_card *card,
2229                                  struct mmc_blk_data *md)
2230 {
2231         struct list_head *pos, *q;
2232         struct mmc_blk_data *part_md;
2233
2234         list_for_each_safe(pos, q, &md->part) {
2235                 part_md = list_entry(pos, struct mmc_blk_data, part);
2236                 list_del(pos);
2237                 mmc_blk_remove_req(part_md);
2238         }
2239 }
2240
2241 static int mmc_add_disk(struct mmc_blk_data *md)
2242 {
2243         int ret;
2244         struct mmc_card *card = md->queue.card;
2245
2246         device_add_disk(md->parent, md->disk);
2247         md->force_ro.show = force_ro_show;
2248         md->force_ro.store = force_ro_store;
2249         sysfs_attr_init(&md->force_ro.attr);
2250         md->force_ro.attr.name = "force_ro";
2251         md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2252         ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2253         if (ret)
2254                 goto force_ro_fail;
2255
2256         if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2257              card->ext_csd.boot_ro_lockable) {
2258                 umode_t mode;
2259
2260                 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2261                         mode = S_IRUGO;
2262                 else
2263                         mode = S_IRUGO | S_IWUSR;
2264
2265                 md->power_ro_lock.show = power_ro_lock_show;
2266                 md->power_ro_lock.store = power_ro_lock_store;
2267                 sysfs_attr_init(&md->power_ro_lock.attr);
2268                 md->power_ro_lock.attr.mode = mode;
2269                 md->power_ro_lock.attr.name =
2270                                         "ro_lock_until_next_power_on";
2271                 ret = device_create_file(disk_to_dev(md->disk),
2272                                 &md->power_ro_lock);
2273                 if (ret)
2274                         goto power_ro_lock_fail;
2275         }
2276         return ret;
2277
2278 power_ro_lock_fail:
2279         device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2280 force_ro_fail:
2281         del_gendisk(md->disk);
2282
2283         return ret;
2284 }
2285
2286 static int mmc_blk_probe(struct mmc_card *card)
2287 {
2288         struct mmc_blk_data *md, *part_md;
2289         char cap_str[10];
2290
2291         /*
2292          * Check that the card supports the command class(es) we need.
2293          */
2294         if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2295                 return -ENODEV;
2296
2297         mmc_fixup_device(card, mmc_blk_fixups);
2298
2299         md = mmc_blk_alloc(card);
2300         if (IS_ERR(md))
2301                 return PTR_ERR(md);
2302
2303         string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2304                         cap_str, sizeof(cap_str));
2305         pr_info("%s: %s %s %s %s\n",
2306                 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2307                 cap_str, md->read_only ? "(ro)" : "");
2308
2309         if (mmc_blk_alloc_parts(card, md))
2310                 goto out;
2311
2312         dev_set_drvdata(&card->dev, md);
2313
2314         if (mmc_add_disk(md))
2315                 goto out;
2316
2317         list_for_each_entry(part_md, &md->part, part) {
2318                 if (mmc_add_disk(part_md))
2319                         goto out;
2320         }
2321
2322         pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2323         pm_runtime_use_autosuspend(&card->dev);
2324
2325         /*
2326          * Don't enable runtime PM for SD-combo cards here. Leave that
2327          * decision to be taken during the SDIO init sequence instead.
2328          */
2329         if (card->type != MMC_TYPE_SD_COMBO) {
2330                 pm_runtime_set_active(&card->dev);
2331                 pm_runtime_enable(&card->dev);
2332         }
2333
2334         return 0;
2335
2336  out:
2337         mmc_blk_remove_parts(card, md);
2338         mmc_blk_remove_req(md);
2339         return 0;
2340 }
2341
2342 static void mmc_blk_remove(struct mmc_card *card)
2343 {
2344         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2345
2346         mmc_blk_remove_parts(card, md);
2347         pm_runtime_get_sync(&card->dev);
2348         mmc_claim_host(card->host);
2349         mmc_blk_part_switch(card, md);
2350         mmc_release_host(card->host);
2351         if (card->type != MMC_TYPE_SD_COMBO)
2352                 pm_runtime_disable(&card->dev);
2353         pm_runtime_put_noidle(&card->dev);
2354         mmc_blk_remove_req(md);
2355         dev_set_drvdata(&card->dev, NULL);
2356 }
2357
2358 static int _mmc_blk_suspend(struct mmc_card *card)
2359 {
2360         struct mmc_blk_data *part_md;
2361         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2362
2363         if (md) {
2364                 mmc_queue_suspend(&md->queue);
2365                 list_for_each_entry(part_md, &md->part, part) {
2366                         mmc_queue_suspend(&part_md->queue);
2367                 }
2368         }
2369         return 0;
2370 }
2371
2372 static void mmc_blk_shutdown(struct mmc_card *card)
2373 {
2374         _mmc_blk_suspend(card);
2375 }
2376
2377 #ifdef CONFIG_PM_SLEEP
2378 static int mmc_blk_suspend(struct device *dev)
2379 {
2380         struct mmc_card *card = mmc_dev_to_card(dev);
2381
2382         return _mmc_blk_suspend(card);
2383 }
2384
2385 static int mmc_blk_resume(struct device *dev)
2386 {
2387         struct mmc_blk_data *part_md;
2388         struct mmc_blk_data *md = dev_get_drvdata(dev);
2389
2390         if (md) {
2391                 /*
2392                  * Resume involves the card going into idle state,
2393                  * so current partition is always the main one.
2394                  */
2395                 md->part_curr = md->part_type;
2396                 mmc_queue_resume(&md->queue);
2397                 list_for_each_entry(part_md, &md->part, part) {
2398                         mmc_queue_resume(&part_md->queue);
2399                 }
2400         }
2401         return 0;
2402 }
2403 #endif
2404
2405 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2406
2407 static struct mmc_driver mmc_driver = {
2408         .drv            = {
2409                 .name   = "mmcblk",
2410                 .pm     = &mmc_blk_pm_ops,
2411         },
2412         .probe          = mmc_blk_probe,
2413         .remove         = mmc_blk_remove,
2414         .shutdown       = mmc_blk_shutdown,
2415 };
2416
2417 static int __init mmc_blk_init(void)
2418 {
2419         int res;
2420
2421         if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2422                 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2423
2424         max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2425
2426         res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2427         if (res)
2428                 goto out;
2429
2430         res = mmc_register_driver(&mmc_driver);
2431         if (res)
2432                 goto out2;
2433
2434         return 0;
2435  out2:
2436         unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2437  out:
2438         return res;
2439 }
2440
2441 static void __exit mmc_blk_exit(void)
2442 {
2443         mmc_unregister_driver(&mmc_driver);
2444         unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2445 }
2446
2447 module_init(mmc_blk_init);
2448 module_exit(mmc_blk_exit);
2449
2450 MODULE_LICENSE("GPL");
2451 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2452