Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[sfrench/cifs-2.6.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if {
134         struct mutex __mutex;   /* Protects the queue. */
135         struct mutex *mutex;    /* Shared by producer and consumer queues. */
136         size_t num_pages;       /* Number of pages incl. header. */
137         bool host;              /* Host or guest? */
138         union {
139                 struct {
140                         dma_addr_t *pas;
141                         void **vas;
142                 } g;            /* Used by the guest. */
143                 struct {
144                         struct page **page;
145                         struct page **header_page;
146                 } h;            /* Used by the host. */
147         } u;
148 };
149
150 /*
151  * This structure is opaque to the clients.
152  */
153 struct vmci_qp {
154         struct vmci_handle handle;
155         struct vmci_queue *produce_q;
156         struct vmci_queue *consume_q;
157         u64 produce_q_size;
158         u64 consume_q_size;
159         u32 peer;
160         u32 flags;
161         u32 priv_flags;
162         bool guest_endpoint;
163         unsigned int blocked;
164         unsigned int generation;
165         wait_queue_head_t event;
166 };
167
168 enum qp_broker_state {
169         VMCIQPB_NEW,
170         VMCIQPB_CREATED_NO_MEM,
171         VMCIQPB_CREATED_MEM,
172         VMCIQPB_ATTACHED_NO_MEM,
173         VMCIQPB_ATTACHED_MEM,
174         VMCIQPB_SHUTDOWN_NO_MEM,
175         VMCIQPB_SHUTDOWN_MEM,
176         VMCIQPB_GONE
177 };
178
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
181                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
182
183 /*
184  * In the queue pair broker, we always use the guest point of view for
185  * the produce and consume queue values and references, e.g., the
186  * produce queue size stored is the guests produce queue size. The
187  * host endpoint will need to swap these around. The only exception is
188  * the local queue pairs on the host, in which case the host endpoint
189  * that creates the queue pair will have the right orientation, and
190  * the attaching host endpoint will need to swap.
191  */
192 struct qp_entry {
193         struct list_head list_item;
194         struct vmci_handle handle;
195         u32 peer;
196         u32 flags;
197         u64 produce_size;
198         u64 consume_size;
199         u32 ref_count;
200 };
201
202 struct qp_broker_entry {
203         struct vmci_resource resource;
204         struct qp_entry qp;
205         u32 create_id;
206         u32 attach_id;
207         enum qp_broker_state state;
208         bool require_trusted_attach;
209         bool created_by_trusted;
210         bool vmci_page_files;   /* Created by VMX using VMCI page files */
211         struct vmci_queue *produce_q;
212         struct vmci_queue *consume_q;
213         struct vmci_queue_header saved_produce_q;
214         struct vmci_queue_header saved_consume_q;
215         vmci_event_release_cb wakeup_cb;
216         void *client_data;
217         void *local_mem;        /* Kernel memory for local queue pair */
218 };
219
220 struct qp_guest_endpoint {
221         struct vmci_resource resource;
222         struct qp_entry qp;
223         u64 num_ppns;
224         void *produce_q;
225         void *consume_q;
226         struct ppn_set ppn_set;
227 };
228
229 struct qp_list {
230         struct list_head head;
231         struct mutex mutex;     /* Protect queue list. */
232 };
233
234 static struct qp_list qp_broker_list = {
235         .head = LIST_HEAD_INIT(qp_broker_list.head),
236         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
237 };
238
239 static struct qp_list qp_guest_endpoints = {
240         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
241         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
242 };
243
244 #define INVALID_VMCI_GUEST_MEM_ID  0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
248
249
250 /*
251  * Frees kernel VA space for a given queue and its queue header, and
252  * frees physical data pages.
253  */
254 static void qp_free_queue(void *q, u64 size)
255 {
256         struct vmci_queue *queue = q;
257
258         if (queue) {
259                 u64 i;
260
261                 /* Given size does not include header, so add in a page here. */
262                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
263                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
264                                           queue->kernel_if->u.g.vas[i],
265                                           queue->kernel_if->u.g.pas[i]);
266                 }
267
268                 vfree(queue);
269         }
270 }
271
272 /*
273  * Allocates kernel queue pages of specified size with IOMMU mappings,
274  * plus space for the queue structure/kernel interface and the queue
275  * header.
276  */
277 static void *qp_alloc_queue(u64 size, u32 flags)
278 {
279         u64 i;
280         struct vmci_queue *queue;
281         size_t pas_size;
282         size_t vas_size;
283         size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
284         u64 num_pages;
285
286         if (size > SIZE_MAX - PAGE_SIZE)
287                 return NULL;
288         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
289         if (num_pages >
290                  (SIZE_MAX - queue_size) /
291                  (sizeof(*queue->kernel_if->u.g.pas) +
292                   sizeof(*queue->kernel_if->u.g.vas)))
293                 return NULL;
294
295         pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
296         vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
297         queue_size += pas_size + vas_size;
298
299         queue = vmalloc(queue_size);
300         if (!queue)
301                 return NULL;
302
303         queue->q_header = NULL;
304         queue->saved_header = NULL;
305         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
306         queue->kernel_if->mutex = NULL;
307         queue->kernel_if->num_pages = num_pages;
308         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
309         queue->kernel_if->u.g.vas =
310                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
311         queue->kernel_if->host = false;
312
313         for (i = 0; i < num_pages; i++) {
314                 queue->kernel_if->u.g.vas[i] =
315                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
316                                            &queue->kernel_if->u.g.pas[i],
317                                            GFP_KERNEL);
318                 if (!queue->kernel_if->u.g.vas[i]) {
319                         /* Size excl. the header. */
320                         qp_free_queue(queue, i * PAGE_SIZE);
321                         return NULL;
322                 }
323         }
324
325         /* Queue header is the first page. */
326         queue->q_header = queue->kernel_if->u.g.vas[0];
327
328         return queue;
329 }
330
331 /*
332  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
333  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334  * by traversing the offset -> page translation structure for the queue.
335  * Assumes that offset + size does not wrap around in the queue.
336  */
337 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
338                                   u64 queue_offset,
339                                   struct iov_iter *from,
340                                   size_t size)
341 {
342         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
343         size_t bytes_copied = 0;
344
345         while (bytes_copied < size) {
346                 const u64 page_index =
347                         (queue_offset + bytes_copied) / PAGE_SIZE;
348                 const size_t page_offset =
349                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
350                 void *va;
351                 size_t to_copy;
352
353                 if (kernel_if->host)
354                         va = kmap(kernel_if->u.h.page[page_index]);
355                 else
356                         va = kernel_if->u.g.vas[page_index + 1];
357                         /* Skip header. */
358
359                 if (size - bytes_copied > PAGE_SIZE - page_offset)
360                         /* Enough payload to fill up from this page. */
361                         to_copy = PAGE_SIZE - page_offset;
362                 else
363                         to_copy = size - bytes_copied;
364
365                 if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
366                                          from)) {
367                         if (kernel_if->host)
368                                 kunmap(kernel_if->u.h.page[page_index]);
369                         return VMCI_ERROR_INVALID_ARGS;
370                 }
371                 bytes_copied += to_copy;
372                 if (kernel_if->host)
373                         kunmap(kernel_if->u.h.page[page_index]);
374         }
375
376         return VMCI_SUCCESS;
377 }
378
379 /*
380  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
381  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382  * by traversing the offset -> page translation structure for the queue.
383  * Assumes that offset + size does not wrap around in the queue.
384  */
385 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
386                                     const struct vmci_queue *queue,
387                                     u64 queue_offset, size_t size)
388 {
389         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
390         size_t bytes_copied = 0;
391
392         while (bytes_copied < size) {
393                 const u64 page_index =
394                         (queue_offset + bytes_copied) / PAGE_SIZE;
395                 const size_t page_offset =
396                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
397                 void *va;
398                 size_t to_copy;
399                 int err;
400
401                 if (kernel_if->host)
402                         va = kmap(kernel_if->u.h.page[page_index]);
403                 else
404                         va = kernel_if->u.g.vas[page_index + 1];
405                         /* Skip header. */
406
407                 if (size - bytes_copied > PAGE_SIZE - page_offset)
408                         /* Enough payload to fill up this page. */
409                         to_copy = PAGE_SIZE - page_offset;
410                 else
411                         to_copy = size - bytes_copied;
412
413                 err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
414                 if (err != to_copy) {
415                         if (kernel_if->host)
416                                 kunmap(kernel_if->u.h.page[page_index]);
417                         return VMCI_ERROR_INVALID_ARGS;
418                 }
419                 bytes_copied += to_copy;
420                 if (kernel_if->host)
421                         kunmap(kernel_if->u.h.page[page_index]);
422         }
423
424         return VMCI_SUCCESS;
425 }
426
427 /*
428  * Allocates two list of PPNs --- one for the pages in the produce queue,
429  * and the other for the pages in the consume queue. Intializes the list
430  * of PPNs with the page frame numbers of the KVA for the two queues (and
431  * the queue headers).
432  */
433 static int qp_alloc_ppn_set(void *prod_q,
434                             u64 num_produce_pages,
435                             void *cons_q,
436                             u64 num_consume_pages, struct ppn_set *ppn_set)
437 {
438         u32 *produce_ppns;
439         u32 *consume_ppns;
440         struct vmci_queue *produce_q = prod_q;
441         struct vmci_queue *consume_q = cons_q;
442         u64 i;
443
444         if (!produce_q || !num_produce_pages || !consume_q ||
445             !num_consume_pages || !ppn_set)
446                 return VMCI_ERROR_INVALID_ARGS;
447
448         if (ppn_set->initialized)
449                 return VMCI_ERROR_ALREADY_EXISTS;
450
451         produce_ppns =
452             kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
453         if (!produce_ppns)
454                 return VMCI_ERROR_NO_MEM;
455
456         consume_ppns =
457             kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
458         if (!consume_ppns) {
459                 kfree(produce_ppns);
460                 return VMCI_ERROR_NO_MEM;
461         }
462
463         for (i = 0; i < num_produce_pages; i++) {
464                 unsigned long pfn;
465
466                 produce_ppns[i] =
467                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
468                 pfn = produce_ppns[i];
469
470                 /* Fail allocation if PFN isn't supported by hypervisor. */
471                 if (sizeof(pfn) > sizeof(*produce_ppns)
472                     && pfn != produce_ppns[i])
473                         goto ppn_error;
474         }
475
476         for (i = 0; i < num_consume_pages; i++) {
477                 unsigned long pfn;
478
479                 consume_ppns[i] =
480                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
481                 pfn = consume_ppns[i];
482
483                 /* Fail allocation if PFN isn't supported by hypervisor. */
484                 if (sizeof(pfn) > sizeof(*consume_ppns)
485                     && pfn != consume_ppns[i])
486                         goto ppn_error;
487         }
488
489         ppn_set->num_produce_pages = num_produce_pages;
490         ppn_set->num_consume_pages = num_consume_pages;
491         ppn_set->produce_ppns = produce_ppns;
492         ppn_set->consume_ppns = consume_ppns;
493         ppn_set->initialized = true;
494         return VMCI_SUCCESS;
495
496  ppn_error:
497         kfree(produce_ppns);
498         kfree(consume_ppns);
499         return VMCI_ERROR_INVALID_ARGS;
500 }
501
502 /*
503  * Frees the two list of PPNs for a queue pair.
504  */
505 static void qp_free_ppn_set(struct ppn_set *ppn_set)
506 {
507         if (ppn_set->initialized) {
508                 /* Do not call these functions on NULL inputs. */
509                 kfree(ppn_set->produce_ppns);
510                 kfree(ppn_set->consume_ppns);
511         }
512         memset(ppn_set, 0, sizeof(*ppn_set));
513 }
514
515 /*
516  * Populates the list of PPNs in the hypercall structure with the PPNS
517  * of the produce queue and the consume queue.
518  */
519 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
520 {
521         memcpy(call_buf, ppn_set->produce_ppns,
522                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
523         memcpy(call_buf +
524                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
525                ppn_set->consume_ppns,
526                ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
527
528         return VMCI_SUCCESS;
529 }
530
531 /*
532  * Allocates kernel VA space of specified size plus space for the queue
533  * and kernel interface.  This is different from the guest queue allocator,
534  * because we do not allocate our own queue header/data pages here but
535  * share those of the guest.
536  */
537 static struct vmci_queue *qp_host_alloc_queue(u64 size)
538 {
539         struct vmci_queue *queue;
540         size_t queue_page_size;
541         u64 num_pages;
542         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
543
544         if (size > SIZE_MAX - PAGE_SIZE)
545                 return NULL;
546         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
547         if (num_pages > (SIZE_MAX - queue_size) /
548                  sizeof(*queue->kernel_if->u.h.page))
549                 return NULL;
550
551         queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
552
553         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
554         if (queue) {
555                 queue->q_header = NULL;
556                 queue->saved_header = NULL;
557                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
558                 queue->kernel_if->host = true;
559                 queue->kernel_if->mutex = NULL;
560                 queue->kernel_if->num_pages = num_pages;
561                 queue->kernel_if->u.h.header_page =
562                     (struct page **)((u8 *)queue + queue_size);
563                 queue->kernel_if->u.h.page =
564                         &queue->kernel_if->u.h.header_page[1];
565         }
566
567         return queue;
568 }
569
570 /*
571  * Frees kernel memory for a given queue (header plus translation
572  * structure).
573  */
574 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
575 {
576         kfree(queue);
577 }
578
579 /*
580  * Initialize the mutex for the pair of queues.  This mutex is used to
581  * protect the q_header and the buffer from changing out from under any
582  * users of either queue.  Of course, it's only any good if the mutexes
583  * are actually acquired.  Queue structure must lie on non-paged memory
584  * or we cannot guarantee access to the mutex.
585  */
586 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
587                                 struct vmci_queue *consume_q)
588 {
589         /*
590          * Only the host queue has shared state - the guest queues do not
591          * need to synchronize access using a queue mutex.
592          */
593
594         if (produce_q->kernel_if->host) {
595                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
596                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
597                 mutex_init(produce_q->kernel_if->mutex);
598         }
599 }
600
601 /*
602  * Cleans up the mutex for the pair of queues.
603  */
604 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
605                                    struct vmci_queue *consume_q)
606 {
607         if (produce_q->kernel_if->host) {
608                 produce_q->kernel_if->mutex = NULL;
609                 consume_q->kernel_if->mutex = NULL;
610         }
611 }
612
613 /*
614  * Acquire the mutex for the queue.  Note that the produce_q and
615  * the consume_q share a mutex.  So, only one of the two need to
616  * be passed in to this routine.  Either will work just fine.
617  */
618 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
619 {
620         if (queue->kernel_if->host)
621                 mutex_lock(queue->kernel_if->mutex);
622 }
623
624 /*
625  * Release the mutex for the queue.  Note that the produce_q and
626  * the consume_q share a mutex.  So, only one of the two need to
627  * be passed in to this routine.  Either will work just fine.
628  */
629 static void qp_release_queue_mutex(struct vmci_queue *queue)
630 {
631         if (queue->kernel_if->host)
632                 mutex_unlock(queue->kernel_if->mutex);
633 }
634
635 /*
636  * Helper function to release pages in the PageStoreAttachInfo
637  * previously obtained using get_user_pages.
638  */
639 static void qp_release_pages(struct page **pages,
640                              u64 num_pages, bool dirty)
641 {
642         int i;
643
644         for (i = 0; i < num_pages; i++) {
645                 if (dirty)
646                         set_page_dirty(pages[i]);
647
648                 put_page(pages[i]);
649                 pages[i] = NULL;
650         }
651 }
652
653 /*
654  * Lock the user pages referenced by the {produce,consume}Buffer
655  * struct into memory and populate the {produce,consume}Pages
656  * arrays in the attach structure with them.
657  */
658 static int qp_host_get_user_memory(u64 produce_uva,
659                                    u64 consume_uva,
660                                    struct vmci_queue *produce_q,
661                                    struct vmci_queue *consume_q)
662 {
663         int retval;
664         int err = VMCI_SUCCESS;
665
666         retval = get_user_pages_fast((uintptr_t) produce_uva,
667                                      produce_q->kernel_if->num_pages, 1,
668                                      produce_q->kernel_if->u.h.header_page);
669         if (retval < produce_q->kernel_if->num_pages) {
670                 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
671                         retval);
672                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
673                                  retval, false);
674                 err = VMCI_ERROR_NO_MEM;
675                 goto out;
676         }
677
678         retval = get_user_pages_fast((uintptr_t) consume_uva,
679                                      consume_q->kernel_if->num_pages, 1,
680                                      consume_q->kernel_if->u.h.header_page);
681         if (retval < consume_q->kernel_if->num_pages) {
682                 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
683                         retval);
684                 qp_release_pages(consume_q->kernel_if->u.h.header_page,
685                                  retval, false);
686                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
687                                  produce_q->kernel_if->num_pages, false);
688                 err = VMCI_ERROR_NO_MEM;
689         }
690
691  out:
692         return err;
693 }
694
695 /*
696  * Registers the specification of the user pages used for backing a queue
697  * pair. Enough information to map in pages is stored in the OS specific
698  * part of the struct vmci_queue structure.
699  */
700 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
701                                         struct vmci_queue *produce_q,
702                                         struct vmci_queue *consume_q)
703 {
704         u64 produce_uva;
705         u64 consume_uva;
706
707         /*
708          * The new style and the old style mapping only differs in
709          * that we either get a single or two UVAs, so we split the
710          * single UVA range at the appropriate spot.
711          */
712         produce_uva = page_store->pages;
713         consume_uva = page_store->pages +
714             produce_q->kernel_if->num_pages * PAGE_SIZE;
715         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
716                                        consume_q);
717 }
718
719 /*
720  * Releases and removes the references to user pages stored in the attach
721  * struct.  Pages are released from the page cache and may become
722  * swappable again.
723  */
724 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
725                                            struct vmci_queue *consume_q)
726 {
727         qp_release_pages(produce_q->kernel_if->u.h.header_page,
728                          produce_q->kernel_if->num_pages, true);
729         memset(produce_q->kernel_if->u.h.header_page, 0,
730                sizeof(*produce_q->kernel_if->u.h.header_page) *
731                produce_q->kernel_if->num_pages);
732         qp_release_pages(consume_q->kernel_if->u.h.header_page,
733                          consume_q->kernel_if->num_pages, true);
734         memset(consume_q->kernel_if->u.h.header_page, 0,
735                sizeof(*consume_q->kernel_if->u.h.header_page) *
736                consume_q->kernel_if->num_pages);
737 }
738
739 /*
740  * Once qp_host_register_user_memory has been performed on a
741  * queue, the queue pair headers can be mapped into the
742  * kernel. Once mapped, they must be unmapped with
743  * qp_host_unmap_queues prior to calling
744  * qp_host_unregister_user_memory.
745  * Pages are pinned.
746  */
747 static int qp_host_map_queues(struct vmci_queue *produce_q,
748                               struct vmci_queue *consume_q)
749 {
750         int result;
751
752         if (!produce_q->q_header || !consume_q->q_header) {
753                 struct page *headers[2];
754
755                 if (produce_q->q_header != consume_q->q_header)
756                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
757
758                 if (produce_q->kernel_if->u.h.header_page == NULL ||
759                     *produce_q->kernel_if->u.h.header_page == NULL)
760                         return VMCI_ERROR_UNAVAILABLE;
761
762                 headers[0] = *produce_q->kernel_if->u.h.header_page;
763                 headers[1] = *consume_q->kernel_if->u.h.header_page;
764
765                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
766                 if (produce_q->q_header != NULL) {
767                         consume_q->q_header =
768                             (struct vmci_queue_header *)((u8 *)
769                                                          produce_q->q_header +
770                                                          PAGE_SIZE);
771                         result = VMCI_SUCCESS;
772                 } else {
773                         pr_warn("vmap failed\n");
774                         result = VMCI_ERROR_NO_MEM;
775                 }
776         } else {
777                 result = VMCI_SUCCESS;
778         }
779
780         return result;
781 }
782
783 /*
784  * Unmaps previously mapped queue pair headers from the kernel.
785  * Pages are unpinned.
786  */
787 static int qp_host_unmap_queues(u32 gid,
788                                 struct vmci_queue *produce_q,
789                                 struct vmci_queue *consume_q)
790 {
791         if (produce_q->q_header) {
792                 if (produce_q->q_header < consume_q->q_header)
793                         vunmap(produce_q->q_header);
794                 else
795                         vunmap(consume_q->q_header);
796
797                 produce_q->q_header = NULL;
798                 consume_q->q_header = NULL;
799         }
800
801         return VMCI_SUCCESS;
802 }
803
804 /*
805  * Finds the entry in the list corresponding to a given handle. Assumes
806  * that the list is locked.
807  */
808 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
809                                      struct vmci_handle handle)
810 {
811         struct qp_entry *entry;
812
813         if (vmci_handle_is_invalid(handle))
814                 return NULL;
815
816         list_for_each_entry(entry, &qp_list->head, list_item) {
817                 if (vmci_handle_is_equal(entry->handle, handle))
818                         return entry;
819         }
820
821         return NULL;
822 }
823
824 /*
825  * Finds the entry in the list corresponding to a given handle.
826  */
827 static struct qp_guest_endpoint *
828 qp_guest_handle_to_entry(struct vmci_handle handle)
829 {
830         struct qp_guest_endpoint *entry;
831         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
832
833         entry = qp ? container_of(
834                 qp, struct qp_guest_endpoint, qp) : NULL;
835         return entry;
836 }
837
838 /*
839  * Finds the entry in the list corresponding to a given handle.
840  */
841 static struct qp_broker_entry *
842 qp_broker_handle_to_entry(struct vmci_handle handle)
843 {
844         struct qp_broker_entry *entry;
845         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
846
847         entry = qp ? container_of(
848                 qp, struct qp_broker_entry, qp) : NULL;
849         return entry;
850 }
851
852 /*
853  * Dispatches a queue pair event message directly into the local event
854  * queue.
855  */
856 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
857 {
858         u32 context_id = vmci_get_context_id();
859         struct vmci_event_qp ev;
860
861         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
862         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
863                                           VMCI_CONTEXT_RESOURCE_ID);
864         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
865         ev.msg.event_data.event =
866             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
867         ev.payload.peer_id = context_id;
868         ev.payload.handle = handle;
869
870         return vmci_event_dispatch(&ev.msg.hdr);
871 }
872
873 /*
874  * Allocates and initializes a qp_guest_endpoint structure.
875  * Allocates a queue_pair rid (and handle) iff the given entry has
876  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
877  * are reserved handles.  Assumes that the QP list mutex is held
878  * by the caller.
879  */
880 static struct qp_guest_endpoint *
881 qp_guest_endpoint_create(struct vmci_handle handle,
882                          u32 peer,
883                          u32 flags,
884                          u64 produce_size,
885                          u64 consume_size,
886                          void *produce_q,
887                          void *consume_q)
888 {
889         int result;
890         struct qp_guest_endpoint *entry;
891         /* One page each for the queue headers. */
892         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
893             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
894
895         if (vmci_handle_is_invalid(handle)) {
896                 u32 context_id = vmci_get_context_id();
897
898                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
899         }
900
901         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
902         if (entry) {
903                 entry->qp.peer = peer;
904                 entry->qp.flags = flags;
905                 entry->qp.produce_size = produce_size;
906                 entry->qp.consume_size = consume_size;
907                 entry->qp.ref_count = 0;
908                 entry->num_ppns = num_ppns;
909                 entry->produce_q = produce_q;
910                 entry->consume_q = consume_q;
911                 INIT_LIST_HEAD(&entry->qp.list_item);
912
913                 /* Add resource obj */
914                 result = vmci_resource_add(&entry->resource,
915                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
916                                            handle);
917                 entry->qp.handle = vmci_resource_handle(&entry->resource);
918                 if ((result != VMCI_SUCCESS) ||
919                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
920                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
921                                 handle.context, handle.resource, result);
922                         kfree(entry);
923                         entry = NULL;
924                 }
925         }
926         return entry;
927 }
928
929 /*
930  * Frees a qp_guest_endpoint structure.
931  */
932 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
933 {
934         qp_free_ppn_set(&entry->ppn_set);
935         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
936         qp_free_queue(entry->produce_q, entry->qp.produce_size);
937         qp_free_queue(entry->consume_q, entry->qp.consume_size);
938         /* Unlink from resource hash table and free callback */
939         vmci_resource_remove(&entry->resource);
940
941         kfree(entry);
942 }
943
944 /*
945  * Helper to make a queue_pairAlloc hypercall when the driver is
946  * supporting a guest device.
947  */
948 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
949 {
950         struct vmci_qp_alloc_msg *alloc_msg;
951         size_t msg_size;
952         int result;
953
954         if (!entry || entry->num_ppns <= 2)
955                 return VMCI_ERROR_INVALID_ARGS;
956
957         msg_size = sizeof(*alloc_msg) +
958             (size_t) entry->num_ppns * sizeof(u32);
959         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
960         if (!alloc_msg)
961                 return VMCI_ERROR_NO_MEM;
962
963         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
964                                               VMCI_QUEUEPAIR_ALLOC);
965         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
966         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
967         alloc_msg->handle = entry->qp.handle;
968         alloc_msg->peer = entry->qp.peer;
969         alloc_msg->flags = entry->qp.flags;
970         alloc_msg->produce_size = entry->qp.produce_size;
971         alloc_msg->consume_size = entry->qp.consume_size;
972         alloc_msg->num_ppns = entry->num_ppns;
973
974         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
975                                      &entry->ppn_set);
976         if (result == VMCI_SUCCESS)
977                 result = vmci_send_datagram(&alloc_msg->hdr);
978
979         kfree(alloc_msg);
980
981         return result;
982 }
983
984 /*
985  * Helper to make a queue_pairDetach hypercall when the driver is
986  * supporting a guest device.
987  */
988 static int qp_detatch_hypercall(struct vmci_handle handle)
989 {
990         struct vmci_qp_detach_msg detach_msg;
991
992         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
993                                               VMCI_QUEUEPAIR_DETACH);
994         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
995         detach_msg.hdr.payload_size = sizeof(handle);
996         detach_msg.handle = handle;
997
998         return vmci_send_datagram(&detach_msg.hdr);
999 }
1000
1001 /*
1002  * Adds the given entry to the list. Assumes that the list is locked.
1003  */
1004 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1005 {
1006         if (entry)
1007                 list_add(&entry->list_item, &qp_list->head);
1008 }
1009
1010 /*
1011  * Removes the given entry from the list. Assumes that the list is locked.
1012  */
1013 static void qp_list_remove_entry(struct qp_list *qp_list,
1014                                  struct qp_entry *entry)
1015 {
1016         if (entry)
1017                 list_del(&entry->list_item);
1018 }
1019
1020 /*
1021  * Helper for VMCI queue_pair detach interface. Frees the physical
1022  * pages for the queue pair.
1023  */
1024 static int qp_detatch_guest_work(struct vmci_handle handle)
1025 {
1026         int result;
1027         struct qp_guest_endpoint *entry;
1028         u32 ref_count = ~0;     /* To avoid compiler warning below */
1029
1030         mutex_lock(&qp_guest_endpoints.mutex);
1031
1032         entry = qp_guest_handle_to_entry(handle);
1033         if (!entry) {
1034                 mutex_unlock(&qp_guest_endpoints.mutex);
1035                 return VMCI_ERROR_NOT_FOUND;
1036         }
1037
1038         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1039                 result = VMCI_SUCCESS;
1040
1041                 if (entry->qp.ref_count > 1) {
1042                         result = qp_notify_peer_local(false, handle);
1043                         /*
1044                          * We can fail to notify a local queuepair
1045                          * because we can't allocate.  We still want
1046                          * to release the entry if that happens, so
1047                          * don't bail out yet.
1048                          */
1049                 }
1050         } else {
1051                 result = qp_detatch_hypercall(handle);
1052                 if (result < VMCI_SUCCESS) {
1053                         /*
1054                          * We failed to notify a non-local queuepair.
1055                          * That other queuepair might still be
1056                          * accessing the shared memory, so don't
1057                          * release the entry yet.  It will get cleaned
1058                          * up by VMCIqueue_pair_Exit() if necessary
1059                          * (assuming we are going away, otherwise why
1060                          * did this fail?).
1061                          */
1062
1063                         mutex_unlock(&qp_guest_endpoints.mutex);
1064                         return result;
1065                 }
1066         }
1067
1068         /*
1069          * If we get here then we either failed to notify a local queuepair, or
1070          * we succeeded in all cases.  Release the entry if required.
1071          */
1072
1073         entry->qp.ref_count--;
1074         if (entry->qp.ref_count == 0)
1075                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1076
1077         /* If we didn't remove the entry, this could change once we unlock. */
1078         if (entry)
1079                 ref_count = entry->qp.ref_count;
1080
1081         mutex_unlock(&qp_guest_endpoints.mutex);
1082
1083         if (ref_count == 0)
1084                 qp_guest_endpoint_destroy(entry);
1085
1086         return result;
1087 }
1088
1089 /*
1090  * This functions handles the actual allocation of a VMCI queue
1091  * pair guest endpoint. Allocates physical pages for the queue
1092  * pair. It makes OS dependent calls through generic wrappers.
1093  */
1094 static int qp_alloc_guest_work(struct vmci_handle *handle,
1095                                struct vmci_queue **produce_q,
1096                                u64 produce_size,
1097                                struct vmci_queue **consume_q,
1098                                u64 consume_size,
1099                                u32 peer,
1100                                u32 flags,
1101                                u32 priv_flags)
1102 {
1103         const u64 num_produce_pages =
1104             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1105         const u64 num_consume_pages =
1106             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1107         void *my_produce_q = NULL;
1108         void *my_consume_q = NULL;
1109         int result;
1110         struct qp_guest_endpoint *queue_pair_entry = NULL;
1111
1112         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1113                 return VMCI_ERROR_NO_ACCESS;
1114
1115         mutex_lock(&qp_guest_endpoints.mutex);
1116
1117         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1118         if (queue_pair_entry) {
1119                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1120                         /* Local attach case. */
1121                         if (queue_pair_entry->qp.ref_count > 1) {
1122                                 pr_devel("Error attempting to attach more than once\n");
1123                                 result = VMCI_ERROR_UNAVAILABLE;
1124                                 goto error_keep_entry;
1125                         }
1126
1127                         if (queue_pair_entry->qp.produce_size != consume_size ||
1128                             queue_pair_entry->qp.consume_size !=
1129                             produce_size ||
1130                             queue_pair_entry->qp.flags !=
1131                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1132                                 pr_devel("Error mismatched queue pair in local attach\n");
1133                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1134                                 goto error_keep_entry;
1135                         }
1136
1137                         /*
1138                          * Do a local attach.  We swap the consume and
1139                          * produce queues for the attacher and deliver
1140                          * an attach event.
1141                          */
1142                         result = qp_notify_peer_local(true, *handle);
1143                         if (result < VMCI_SUCCESS)
1144                                 goto error_keep_entry;
1145
1146                         my_produce_q = queue_pair_entry->consume_q;
1147                         my_consume_q = queue_pair_entry->produce_q;
1148                         goto out;
1149                 }
1150
1151                 result = VMCI_ERROR_ALREADY_EXISTS;
1152                 goto error_keep_entry;
1153         }
1154
1155         my_produce_q = qp_alloc_queue(produce_size, flags);
1156         if (!my_produce_q) {
1157                 pr_warn("Error allocating pages for produce queue\n");
1158                 result = VMCI_ERROR_NO_MEM;
1159                 goto error;
1160         }
1161
1162         my_consume_q = qp_alloc_queue(consume_size, flags);
1163         if (!my_consume_q) {
1164                 pr_warn("Error allocating pages for consume queue\n");
1165                 result = VMCI_ERROR_NO_MEM;
1166                 goto error;
1167         }
1168
1169         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1170                                                     produce_size, consume_size,
1171                                                     my_produce_q, my_consume_q);
1172         if (!queue_pair_entry) {
1173                 pr_warn("Error allocating memory in %s\n", __func__);
1174                 result = VMCI_ERROR_NO_MEM;
1175                 goto error;
1176         }
1177
1178         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1179                                   num_consume_pages,
1180                                   &queue_pair_entry->ppn_set);
1181         if (result < VMCI_SUCCESS) {
1182                 pr_warn("qp_alloc_ppn_set failed\n");
1183                 goto error;
1184         }
1185
1186         /*
1187          * It's only necessary to notify the host if this queue pair will be
1188          * attached to from another context.
1189          */
1190         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1191                 /* Local create case. */
1192                 u32 context_id = vmci_get_context_id();
1193
1194                 /*
1195                  * Enforce similar checks on local queue pairs as we
1196                  * do for regular ones.  The handle's context must
1197                  * match the creator or attacher context id (here they
1198                  * are both the current context id) and the
1199                  * attach-only flag cannot exist during create.  We
1200                  * also ensure specified peer is this context or an
1201                  * invalid one.
1202                  */
1203                 if (queue_pair_entry->qp.handle.context != context_id ||
1204                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1205                      queue_pair_entry->qp.peer != context_id)) {
1206                         result = VMCI_ERROR_NO_ACCESS;
1207                         goto error;
1208                 }
1209
1210                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1211                         result = VMCI_ERROR_NOT_FOUND;
1212                         goto error;
1213                 }
1214         } else {
1215                 result = qp_alloc_hypercall(queue_pair_entry);
1216                 if (result < VMCI_SUCCESS) {
1217                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1218                         goto error;
1219                 }
1220         }
1221
1222         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1223                             (struct vmci_queue *)my_consume_q);
1224
1225         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1226
1227  out:
1228         queue_pair_entry->qp.ref_count++;
1229         *handle = queue_pair_entry->qp.handle;
1230         *produce_q = (struct vmci_queue *)my_produce_q;
1231         *consume_q = (struct vmci_queue *)my_consume_q;
1232
1233         /*
1234          * We should initialize the queue pair header pages on a local
1235          * queue pair create.  For non-local queue pairs, the
1236          * hypervisor initializes the header pages in the create step.
1237          */
1238         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1239             queue_pair_entry->qp.ref_count == 1) {
1240                 vmci_q_header_init((*produce_q)->q_header, *handle);
1241                 vmci_q_header_init((*consume_q)->q_header, *handle);
1242         }
1243
1244         mutex_unlock(&qp_guest_endpoints.mutex);
1245
1246         return VMCI_SUCCESS;
1247
1248  error:
1249         mutex_unlock(&qp_guest_endpoints.mutex);
1250         if (queue_pair_entry) {
1251                 /* The queues will be freed inside the destroy routine. */
1252                 qp_guest_endpoint_destroy(queue_pair_entry);
1253         } else {
1254                 qp_free_queue(my_produce_q, produce_size);
1255                 qp_free_queue(my_consume_q, consume_size);
1256         }
1257         return result;
1258
1259  error_keep_entry:
1260         /* This path should only be used when an existing entry was found. */
1261         mutex_unlock(&qp_guest_endpoints.mutex);
1262         return result;
1263 }
1264
1265 /*
1266  * The first endpoint issuing a queue pair allocation will create the state
1267  * of the queue pair in the queue pair broker.
1268  *
1269  * If the creator is a guest, it will associate a VMX virtual address range
1270  * with the queue pair as specified by the page_store. For compatibility with
1271  * older VMX'en, that would use a separate step to set the VMX virtual
1272  * address range, the virtual address range can be registered later using
1273  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1274  * used.
1275  *
1276  * If the creator is the host, a page_store of NULL should be used as well,
1277  * since the host is not able to supply a page store for the queue pair.
1278  *
1279  * For older VMX and host callers, the queue pair will be created in the
1280  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1281  * created in VMCOQPB_CREATED_MEM state.
1282  */
1283 static int qp_broker_create(struct vmci_handle handle,
1284                             u32 peer,
1285                             u32 flags,
1286                             u32 priv_flags,
1287                             u64 produce_size,
1288                             u64 consume_size,
1289                             struct vmci_qp_page_store *page_store,
1290                             struct vmci_ctx *context,
1291                             vmci_event_release_cb wakeup_cb,
1292                             void *client_data, struct qp_broker_entry **ent)
1293 {
1294         struct qp_broker_entry *entry = NULL;
1295         const u32 context_id = vmci_ctx_get_id(context);
1296         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1297         int result;
1298         u64 guest_produce_size;
1299         u64 guest_consume_size;
1300
1301         /* Do not create if the caller asked not to. */
1302         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1303                 return VMCI_ERROR_NOT_FOUND;
1304
1305         /*
1306          * Creator's context ID should match handle's context ID or the creator
1307          * must allow the context in handle's context ID as the "peer".
1308          */
1309         if (handle.context != context_id && handle.context != peer)
1310                 return VMCI_ERROR_NO_ACCESS;
1311
1312         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1313                 return VMCI_ERROR_DST_UNREACHABLE;
1314
1315         /*
1316          * Creator's context ID for local queue pairs should match the
1317          * peer, if a peer is specified.
1318          */
1319         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1320                 return VMCI_ERROR_NO_ACCESS;
1321
1322         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1323         if (!entry)
1324                 return VMCI_ERROR_NO_MEM;
1325
1326         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1327                 /*
1328                  * The queue pair broker entry stores values from the guest
1329                  * point of view, so a creating host side endpoint should swap
1330                  * produce and consume values -- unless it is a local queue
1331                  * pair, in which case no swapping is necessary, since the local
1332                  * attacher will swap queues.
1333                  */
1334
1335                 guest_produce_size = consume_size;
1336                 guest_consume_size = produce_size;
1337         } else {
1338                 guest_produce_size = produce_size;
1339                 guest_consume_size = consume_size;
1340         }
1341
1342         entry->qp.handle = handle;
1343         entry->qp.peer = peer;
1344         entry->qp.flags = flags;
1345         entry->qp.produce_size = guest_produce_size;
1346         entry->qp.consume_size = guest_consume_size;
1347         entry->qp.ref_count = 1;
1348         entry->create_id = context_id;
1349         entry->attach_id = VMCI_INVALID_ID;
1350         entry->state = VMCIQPB_NEW;
1351         entry->require_trusted_attach =
1352             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1353         entry->created_by_trusted =
1354             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1355         entry->vmci_page_files = false;
1356         entry->wakeup_cb = wakeup_cb;
1357         entry->client_data = client_data;
1358         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1359         if (entry->produce_q == NULL) {
1360                 result = VMCI_ERROR_NO_MEM;
1361                 goto error;
1362         }
1363         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1364         if (entry->consume_q == NULL) {
1365                 result = VMCI_ERROR_NO_MEM;
1366                 goto error;
1367         }
1368
1369         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1370
1371         INIT_LIST_HEAD(&entry->qp.list_item);
1372
1373         if (is_local) {
1374                 u8 *tmp;
1375
1376                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1377                                            PAGE_SIZE, GFP_KERNEL);
1378                 if (entry->local_mem == NULL) {
1379                         result = VMCI_ERROR_NO_MEM;
1380                         goto error;
1381                 }
1382                 entry->state = VMCIQPB_CREATED_MEM;
1383                 entry->produce_q->q_header = entry->local_mem;
1384                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1385                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1386                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1387         } else if (page_store) {
1388                 /*
1389                  * The VMX already initialized the queue pair headers, so no
1390                  * need for the kernel side to do that.
1391                  */
1392                 result = qp_host_register_user_memory(page_store,
1393                                                       entry->produce_q,
1394                                                       entry->consume_q);
1395                 if (result < VMCI_SUCCESS)
1396                         goto error;
1397
1398                 entry->state = VMCIQPB_CREATED_MEM;
1399         } else {
1400                 /*
1401                  * A create without a page_store may be either a host
1402                  * side create (in which case we are waiting for the
1403                  * guest side to supply the memory) or an old style
1404                  * queue pair create (in which case we will expect a
1405                  * set page store call as the next step).
1406                  */
1407                 entry->state = VMCIQPB_CREATED_NO_MEM;
1408         }
1409
1410         qp_list_add_entry(&qp_broker_list, &entry->qp);
1411         if (ent != NULL)
1412                 *ent = entry;
1413
1414         /* Add to resource obj */
1415         result = vmci_resource_add(&entry->resource,
1416                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1417                                    handle);
1418         if (result != VMCI_SUCCESS) {
1419                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1420                         handle.context, handle.resource, result);
1421                 goto error;
1422         }
1423
1424         entry->qp.handle = vmci_resource_handle(&entry->resource);
1425         if (is_local) {
1426                 vmci_q_header_init(entry->produce_q->q_header,
1427                                    entry->qp.handle);
1428                 vmci_q_header_init(entry->consume_q->q_header,
1429                                    entry->qp.handle);
1430         }
1431
1432         vmci_ctx_qp_create(context, entry->qp.handle);
1433
1434         return VMCI_SUCCESS;
1435
1436  error:
1437         if (entry != NULL) {
1438                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1439                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1440                 kfree(entry);
1441         }
1442
1443         return result;
1444 }
1445
1446 /*
1447  * Enqueues an event datagram to notify the peer VM attached to
1448  * the given queue pair handle about attach/detach event by the
1449  * given VM.  Returns Payload size of datagram enqueued on
1450  * success, error code otherwise.
1451  */
1452 static int qp_notify_peer(bool attach,
1453                           struct vmci_handle handle,
1454                           u32 my_id,
1455                           u32 peer_id)
1456 {
1457         int rv;
1458         struct vmci_event_qp ev;
1459
1460         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1461             peer_id == VMCI_INVALID_ID)
1462                 return VMCI_ERROR_INVALID_ARGS;
1463
1464         /*
1465          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1466          * number of pending events from the hypervisor to a given VM
1467          * otherwise a rogue VM could do an arbitrary number of attach
1468          * and detach operations causing memory pressure in the host
1469          * kernel.
1470          */
1471
1472         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1473         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1474                                           VMCI_CONTEXT_RESOURCE_ID);
1475         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1476         ev.msg.event_data.event = attach ?
1477             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1478         ev.payload.handle = handle;
1479         ev.payload.peer_id = my_id;
1480
1481         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1482                                     &ev.msg.hdr, false);
1483         if (rv < VMCI_SUCCESS)
1484                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1485                         attach ? "ATTACH" : "DETACH", peer_id);
1486
1487         return rv;
1488 }
1489
1490 /*
1491  * The second endpoint issuing a queue pair allocation will attach to
1492  * the queue pair registered with the queue pair broker.
1493  *
1494  * If the attacher is a guest, it will associate a VMX virtual address
1495  * range with the queue pair as specified by the page_store. At this
1496  * point, the already attach host endpoint may start using the queue
1497  * pair, and an attach event is sent to it. For compatibility with
1498  * older VMX'en, that used a separate step to set the VMX virtual
1499  * address range, the virtual address range can be registered later
1500  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1501  * NULL should be used, and the attach event will be generated once
1502  * the actual page store has been set.
1503  *
1504  * If the attacher is the host, a page_store of NULL should be used as
1505  * well, since the page store information is already set by the guest.
1506  *
1507  * For new VMX and host callers, the queue pair will be moved to the
1508  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1509  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1510  */
1511 static int qp_broker_attach(struct qp_broker_entry *entry,
1512                             u32 peer,
1513                             u32 flags,
1514                             u32 priv_flags,
1515                             u64 produce_size,
1516                             u64 consume_size,
1517                             struct vmci_qp_page_store *page_store,
1518                             struct vmci_ctx *context,
1519                             vmci_event_release_cb wakeup_cb,
1520                             void *client_data,
1521                             struct qp_broker_entry **ent)
1522 {
1523         const u32 context_id = vmci_ctx_get_id(context);
1524         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1525         int result;
1526
1527         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1528             entry->state != VMCIQPB_CREATED_MEM)
1529                 return VMCI_ERROR_UNAVAILABLE;
1530
1531         if (is_local) {
1532                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1533                     context_id != entry->create_id) {
1534                         return VMCI_ERROR_INVALID_ARGS;
1535                 }
1536         } else if (context_id == entry->create_id ||
1537                    context_id == entry->attach_id) {
1538                 return VMCI_ERROR_ALREADY_EXISTS;
1539         }
1540
1541         if (VMCI_CONTEXT_IS_VM(context_id) &&
1542             VMCI_CONTEXT_IS_VM(entry->create_id))
1543                 return VMCI_ERROR_DST_UNREACHABLE;
1544
1545         /*
1546          * If we are attaching from a restricted context then the queuepair
1547          * must have been created by a trusted endpoint.
1548          */
1549         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1550             !entry->created_by_trusted)
1551                 return VMCI_ERROR_NO_ACCESS;
1552
1553         /*
1554          * If we are attaching to a queuepair that was created by a restricted
1555          * context then we must be trusted.
1556          */
1557         if (entry->require_trusted_attach &&
1558             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1559                 return VMCI_ERROR_NO_ACCESS;
1560
1561         /*
1562          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1563          * control check is not performed.
1564          */
1565         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1566                 return VMCI_ERROR_NO_ACCESS;
1567
1568         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1569                 /*
1570                  * Do not attach if the caller doesn't support Host Queue Pairs
1571                  * and a host created this queue pair.
1572                  */
1573
1574                 if (!vmci_ctx_supports_host_qp(context))
1575                         return VMCI_ERROR_INVALID_RESOURCE;
1576
1577         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1578                 struct vmci_ctx *create_context;
1579                 bool supports_host_qp;
1580
1581                 /*
1582                  * Do not attach a host to a user created queue pair if that
1583                  * user doesn't support host queue pair end points.
1584                  */
1585
1586                 create_context = vmci_ctx_get(entry->create_id);
1587                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1588                 vmci_ctx_put(create_context);
1589
1590                 if (!supports_host_qp)
1591                         return VMCI_ERROR_INVALID_RESOURCE;
1592         }
1593
1594         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1595                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1596
1597         if (context_id != VMCI_HOST_CONTEXT_ID) {
1598                 /*
1599                  * The queue pair broker entry stores values from the guest
1600                  * point of view, so an attaching guest should match the values
1601                  * stored in the entry.
1602                  */
1603
1604                 if (entry->qp.produce_size != produce_size ||
1605                     entry->qp.consume_size != consume_size) {
1606                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1607                 }
1608         } else if (entry->qp.produce_size != consume_size ||
1609                    entry->qp.consume_size != produce_size) {
1610                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1611         }
1612
1613         if (context_id != VMCI_HOST_CONTEXT_ID) {
1614                 /*
1615                  * If a guest attached to a queue pair, it will supply
1616                  * the backing memory.  If this is a pre NOVMVM vmx,
1617                  * the backing memory will be supplied by calling
1618                  * vmci_qp_broker_set_page_store() following the
1619                  * return of the vmci_qp_broker_alloc() call. If it is
1620                  * a vmx of version NOVMVM or later, the page store
1621                  * must be supplied as part of the
1622                  * vmci_qp_broker_alloc call.  Under all circumstances
1623                  * must the initially created queue pair not have any
1624                  * memory associated with it already.
1625                  */
1626
1627                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1628                         return VMCI_ERROR_INVALID_ARGS;
1629
1630                 if (page_store != NULL) {
1631                         /*
1632                          * Patch up host state to point to guest
1633                          * supplied memory. The VMX already
1634                          * initialized the queue pair headers, so no
1635                          * need for the kernel side to do that.
1636                          */
1637
1638                         result = qp_host_register_user_memory(page_store,
1639                                                               entry->produce_q,
1640                                                               entry->consume_q);
1641                         if (result < VMCI_SUCCESS)
1642                                 return result;
1643
1644                         entry->state = VMCIQPB_ATTACHED_MEM;
1645                 } else {
1646                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1647                 }
1648         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1649                 /*
1650                  * The host side is attempting to attach to a queue
1651                  * pair that doesn't have any memory associated with
1652                  * it. This must be a pre NOVMVM vmx that hasn't set
1653                  * the page store information yet, or a quiesced VM.
1654                  */
1655
1656                 return VMCI_ERROR_UNAVAILABLE;
1657         } else {
1658                 /* The host side has successfully attached to a queue pair. */
1659                 entry->state = VMCIQPB_ATTACHED_MEM;
1660         }
1661
1662         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1663                 result =
1664                     qp_notify_peer(true, entry->qp.handle, context_id,
1665                                    entry->create_id);
1666                 if (result < VMCI_SUCCESS)
1667                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1668                                 entry->create_id, entry->qp.handle.context,
1669                                 entry->qp.handle.resource);
1670         }
1671
1672         entry->attach_id = context_id;
1673         entry->qp.ref_count++;
1674         if (wakeup_cb) {
1675                 entry->wakeup_cb = wakeup_cb;
1676                 entry->client_data = client_data;
1677         }
1678
1679         /*
1680          * When attaching to local queue pairs, the context already has
1681          * an entry tracking the queue pair, so don't add another one.
1682          */
1683         if (!is_local)
1684                 vmci_ctx_qp_create(context, entry->qp.handle);
1685
1686         if (ent != NULL)
1687                 *ent = entry;
1688
1689         return VMCI_SUCCESS;
1690 }
1691
1692 /*
1693  * queue_pair_Alloc for use when setting up queue pair endpoints
1694  * on the host.
1695  */
1696 static int qp_broker_alloc(struct vmci_handle handle,
1697                            u32 peer,
1698                            u32 flags,
1699                            u32 priv_flags,
1700                            u64 produce_size,
1701                            u64 consume_size,
1702                            struct vmci_qp_page_store *page_store,
1703                            struct vmci_ctx *context,
1704                            vmci_event_release_cb wakeup_cb,
1705                            void *client_data,
1706                            struct qp_broker_entry **ent,
1707                            bool *swap)
1708 {
1709         const u32 context_id = vmci_ctx_get_id(context);
1710         bool create;
1711         struct qp_broker_entry *entry = NULL;
1712         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1713         int result;
1714
1715         if (vmci_handle_is_invalid(handle) ||
1716             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1717             !(produce_size || consume_size) ||
1718             !context || context_id == VMCI_INVALID_ID ||
1719             handle.context == VMCI_INVALID_ID) {
1720                 return VMCI_ERROR_INVALID_ARGS;
1721         }
1722
1723         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1724                 return VMCI_ERROR_INVALID_ARGS;
1725
1726         /*
1727          * In the initial argument check, we ensure that non-vmkernel hosts
1728          * are not allowed to create local queue pairs.
1729          */
1730
1731         mutex_lock(&qp_broker_list.mutex);
1732
1733         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1734                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1735                          context_id, handle.context, handle.resource);
1736                 mutex_unlock(&qp_broker_list.mutex);
1737                 return VMCI_ERROR_ALREADY_EXISTS;
1738         }
1739
1740         if (handle.resource != VMCI_INVALID_ID)
1741                 entry = qp_broker_handle_to_entry(handle);
1742
1743         if (!entry) {
1744                 create = true;
1745                 result =
1746                     qp_broker_create(handle, peer, flags, priv_flags,
1747                                      produce_size, consume_size, page_store,
1748                                      context, wakeup_cb, client_data, ent);
1749         } else {
1750                 create = false;
1751                 result =
1752                     qp_broker_attach(entry, peer, flags, priv_flags,
1753                                      produce_size, consume_size, page_store,
1754                                      context, wakeup_cb, client_data, ent);
1755         }
1756
1757         mutex_unlock(&qp_broker_list.mutex);
1758
1759         if (swap)
1760                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1761                     !(create && is_local);
1762
1763         return result;
1764 }
1765
1766 /*
1767  * This function implements the kernel API for allocating a queue
1768  * pair.
1769  */
1770 static int qp_alloc_host_work(struct vmci_handle *handle,
1771                               struct vmci_queue **produce_q,
1772                               u64 produce_size,
1773                               struct vmci_queue **consume_q,
1774                               u64 consume_size,
1775                               u32 peer,
1776                               u32 flags,
1777                               u32 priv_flags,
1778                               vmci_event_release_cb wakeup_cb,
1779                               void *client_data)
1780 {
1781         struct vmci_handle new_handle;
1782         struct vmci_ctx *context;
1783         struct qp_broker_entry *entry;
1784         int result;
1785         bool swap;
1786
1787         if (vmci_handle_is_invalid(*handle)) {
1788                 new_handle = vmci_make_handle(
1789                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1790         } else
1791                 new_handle = *handle;
1792
1793         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1794         entry = NULL;
1795         result =
1796             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1797                             produce_size, consume_size, NULL, context,
1798                             wakeup_cb, client_data, &entry, &swap);
1799         if (result == VMCI_SUCCESS) {
1800                 if (swap) {
1801                         /*
1802                          * If this is a local queue pair, the attacher
1803                          * will swap around produce and consume
1804                          * queues.
1805                          */
1806
1807                         *produce_q = entry->consume_q;
1808                         *consume_q = entry->produce_q;
1809                 } else {
1810                         *produce_q = entry->produce_q;
1811                         *consume_q = entry->consume_q;
1812                 }
1813
1814                 *handle = vmci_resource_handle(&entry->resource);
1815         } else {
1816                 *handle = VMCI_INVALID_HANDLE;
1817                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1818                          result);
1819         }
1820         vmci_ctx_put(context);
1821         return result;
1822 }
1823
1824 /*
1825  * Allocates a VMCI queue_pair. Only checks validity of input
1826  * arguments. The real work is done in the host or guest
1827  * specific function.
1828  */
1829 int vmci_qp_alloc(struct vmci_handle *handle,
1830                   struct vmci_queue **produce_q,
1831                   u64 produce_size,
1832                   struct vmci_queue **consume_q,
1833                   u64 consume_size,
1834                   u32 peer,
1835                   u32 flags,
1836                   u32 priv_flags,
1837                   bool guest_endpoint,
1838                   vmci_event_release_cb wakeup_cb,
1839                   void *client_data)
1840 {
1841         if (!handle || !produce_q || !consume_q ||
1842             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1843                 return VMCI_ERROR_INVALID_ARGS;
1844
1845         if (guest_endpoint) {
1846                 return qp_alloc_guest_work(handle, produce_q,
1847                                            produce_size, consume_q,
1848                                            consume_size, peer,
1849                                            flags, priv_flags);
1850         } else {
1851                 return qp_alloc_host_work(handle, produce_q,
1852                                           produce_size, consume_q,
1853                                           consume_size, peer, flags,
1854                                           priv_flags, wakeup_cb, client_data);
1855         }
1856 }
1857
1858 /*
1859  * This function implements the host kernel API for detaching from
1860  * a queue pair.
1861  */
1862 static int qp_detatch_host_work(struct vmci_handle handle)
1863 {
1864         int result;
1865         struct vmci_ctx *context;
1866
1867         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1868
1869         result = vmci_qp_broker_detach(handle, context);
1870
1871         vmci_ctx_put(context);
1872         return result;
1873 }
1874
1875 /*
1876  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1877  * Real work is done in the host or guest specific function.
1878  */
1879 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1880 {
1881         if (vmci_handle_is_invalid(handle))
1882                 return VMCI_ERROR_INVALID_ARGS;
1883
1884         if (guest_endpoint)
1885                 return qp_detatch_guest_work(handle);
1886         else
1887                 return qp_detatch_host_work(handle);
1888 }
1889
1890 /*
1891  * Returns the entry from the head of the list. Assumes that the list is
1892  * locked.
1893  */
1894 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1895 {
1896         if (!list_empty(&qp_list->head)) {
1897                 struct qp_entry *entry =
1898                     list_first_entry(&qp_list->head, struct qp_entry,
1899                                      list_item);
1900                 return entry;
1901         }
1902
1903         return NULL;
1904 }
1905
1906 void vmci_qp_broker_exit(void)
1907 {
1908         struct qp_entry *entry;
1909         struct qp_broker_entry *be;
1910
1911         mutex_lock(&qp_broker_list.mutex);
1912
1913         while ((entry = qp_list_get_head(&qp_broker_list))) {
1914                 be = (struct qp_broker_entry *)entry;
1915
1916                 qp_list_remove_entry(&qp_broker_list, entry);
1917                 kfree(be);
1918         }
1919
1920         mutex_unlock(&qp_broker_list.mutex);
1921 }
1922
1923 /*
1924  * Requests that a queue pair be allocated with the VMCI queue
1925  * pair broker. Allocates a queue pair entry if one does not
1926  * exist. Attaches to one if it exists, and retrieves the page
1927  * files backing that queue_pair.  Assumes that the queue pair
1928  * broker lock is held.
1929  */
1930 int vmci_qp_broker_alloc(struct vmci_handle handle,
1931                          u32 peer,
1932                          u32 flags,
1933                          u32 priv_flags,
1934                          u64 produce_size,
1935                          u64 consume_size,
1936                          struct vmci_qp_page_store *page_store,
1937                          struct vmci_ctx *context)
1938 {
1939         return qp_broker_alloc(handle, peer, flags, priv_flags,
1940                                produce_size, consume_size,
1941                                page_store, context, NULL, NULL, NULL, NULL);
1942 }
1943
1944 /*
1945  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1946  * step to add the UVAs of the VMX mapping of the queue pair. This function
1947  * provides backwards compatibility with such VMX'en, and takes care of
1948  * registering the page store for a queue pair previously allocated by the
1949  * VMX during create or attach. This function will move the queue pair state
1950  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1951  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1952  * attached state with memory, the queue pair is ready to be used by the
1953  * host peer, and an attached event will be generated.
1954  *
1955  * Assumes that the queue pair broker lock is held.
1956  *
1957  * This function is only used by the hosted platform, since there is no
1958  * issue with backwards compatibility for vmkernel.
1959  */
1960 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1961                                   u64 produce_uva,
1962                                   u64 consume_uva,
1963                                   struct vmci_ctx *context)
1964 {
1965         struct qp_broker_entry *entry;
1966         int result;
1967         const u32 context_id = vmci_ctx_get_id(context);
1968
1969         if (vmci_handle_is_invalid(handle) || !context ||
1970             context_id == VMCI_INVALID_ID)
1971                 return VMCI_ERROR_INVALID_ARGS;
1972
1973         /*
1974          * We only support guest to host queue pairs, so the VMX must
1975          * supply UVAs for the mapped page files.
1976          */
1977
1978         if (produce_uva == 0 || consume_uva == 0)
1979                 return VMCI_ERROR_INVALID_ARGS;
1980
1981         mutex_lock(&qp_broker_list.mutex);
1982
1983         if (!vmci_ctx_qp_exists(context, handle)) {
1984                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1985                         context_id, handle.context, handle.resource);
1986                 result = VMCI_ERROR_NOT_FOUND;
1987                 goto out;
1988         }
1989
1990         entry = qp_broker_handle_to_entry(handle);
1991         if (!entry) {
1992                 result = VMCI_ERROR_NOT_FOUND;
1993                 goto out;
1994         }
1995
1996         /*
1997          * If I'm the owner then I can set the page store.
1998          *
1999          * Or, if a host created the queue_pair and I'm the attached peer
2000          * then I can set the page store.
2001          */
2002         if (entry->create_id != context_id &&
2003             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2004              entry->attach_id != context_id)) {
2005                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2006                 goto out;
2007         }
2008
2009         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2010             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2011                 result = VMCI_ERROR_UNAVAILABLE;
2012                 goto out;
2013         }
2014
2015         result = qp_host_get_user_memory(produce_uva, consume_uva,
2016                                          entry->produce_q, entry->consume_q);
2017         if (result < VMCI_SUCCESS)
2018                 goto out;
2019
2020         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2021         if (result < VMCI_SUCCESS) {
2022                 qp_host_unregister_user_memory(entry->produce_q,
2023                                                entry->consume_q);
2024                 goto out;
2025         }
2026
2027         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2028                 entry->state = VMCIQPB_CREATED_MEM;
2029         else
2030                 entry->state = VMCIQPB_ATTACHED_MEM;
2031
2032         entry->vmci_page_files = true;
2033
2034         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2035                 result =
2036                     qp_notify_peer(true, handle, context_id, entry->create_id);
2037                 if (result < VMCI_SUCCESS) {
2038                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2039                                 entry->create_id, entry->qp.handle.context,
2040                                 entry->qp.handle.resource);
2041                 }
2042         }
2043
2044         result = VMCI_SUCCESS;
2045  out:
2046         mutex_unlock(&qp_broker_list.mutex);
2047         return result;
2048 }
2049
2050 /*
2051  * Resets saved queue headers for the given QP broker
2052  * entry. Should be used when guest memory becomes available
2053  * again, or the guest detaches.
2054  */
2055 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2056 {
2057         entry->produce_q->saved_header = NULL;
2058         entry->consume_q->saved_header = NULL;
2059 }
2060
2061 /*
2062  * The main entry point for detaching from a queue pair registered with the
2063  * queue pair broker. If more than one endpoint is attached to the queue
2064  * pair, the first endpoint will mainly decrement a reference count and
2065  * generate a notification to its peer. The last endpoint will clean up
2066  * the queue pair state registered with the broker.
2067  *
2068  * When a guest endpoint detaches, it will unmap and unregister the guest
2069  * memory backing the queue pair. If the host is still attached, it will
2070  * no longer be able to access the queue pair content.
2071  *
2072  * If the queue pair is already in a state where there is no memory
2073  * registered for the queue pair (any *_NO_MEM state), it will transition to
2074  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2075  * endpoint is the first of two endpoints to detach. If the host endpoint is
2076  * the first out of two to detach, the queue pair will move to the
2077  * VMCIQPB_SHUTDOWN_MEM state.
2078  */
2079 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2080 {
2081         struct qp_broker_entry *entry;
2082         const u32 context_id = vmci_ctx_get_id(context);
2083         u32 peer_id;
2084         bool is_local = false;
2085         int result;
2086
2087         if (vmci_handle_is_invalid(handle) || !context ||
2088             context_id == VMCI_INVALID_ID) {
2089                 return VMCI_ERROR_INVALID_ARGS;
2090         }
2091
2092         mutex_lock(&qp_broker_list.mutex);
2093
2094         if (!vmci_ctx_qp_exists(context, handle)) {
2095                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2096                          context_id, handle.context, handle.resource);
2097                 result = VMCI_ERROR_NOT_FOUND;
2098                 goto out;
2099         }
2100
2101         entry = qp_broker_handle_to_entry(handle);
2102         if (!entry) {
2103                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2104                          context_id, handle.context, handle.resource);
2105                 result = VMCI_ERROR_NOT_FOUND;
2106                 goto out;
2107         }
2108
2109         if (context_id != entry->create_id && context_id != entry->attach_id) {
2110                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2111                 goto out;
2112         }
2113
2114         if (context_id == entry->create_id) {
2115                 peer_id = entry->attach_id;
2116                 entry->create_id = VMCI_INVALID_ID;
2117         } else {
2118                 peer_id = entry->create_id;
2119                 entry->attach_id = VMCI_INVALID_ID;
2120         }
2121         entry->qp.ref_count--;
2122
2123         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2124
2125         if (context_id != VMCI_HOST_CONTEXT_ID) {
2126                 bool headers_mapped;
2127
2128                 /*
2129                  * Pre NOVMVM vmx'en may detach from a queue pair
2130                  * before setting the page store, and in that case
2131                  * there is no user memory to detach from. Also, more
2132                  * recent VMX'en may detach from a queue pair in the
2133                  * quiesced state.
2134                  */
2135
2136                 qp_acquire_queue_mutex(entry->produce_q);
2137                 headers_mapped = entry->produce_q->q_header ||
2138                     entry->consume_q->q_header;
2139                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2140                         result =
2141                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2142                                                  entry->produce_q,
2143                                                  entry->consume_q);
2144                         if (result < VMCI_SUCCESS)
2145                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2146                                         handle.context, handle.resource,
2147                                         result);
2148
2149                         qp_host_unregister_user_memory(entry->produce_q,
2150                                                        entry->consume_q);
2151
2152                 }
2153
2154                 if (!headers_mapped)
2155                         qp_reset_saved_headers(entry);
2156
2157                 qp_release_queue_mutex(entry->produce_q);
2158
2159                 if (!headers_mapped && entry->wakeup_cb)
2160                         entry->wakeup_cb(entry->client_data);
2161
2162         } else {
2163                 if (entry->wakeup_cb) {
2164                         entry->wakeup_cb = NULL;
2165                         entry->client_data = NULL;
2166                 }
2167         }
2168
2169         if (entry->qp.ref_count == 0) {
2170                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2171
2172                 if (is_local)
2173                         kfree(entry->local_mem);
2174
2175                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2176                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2177                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2178                 /* Unlink from resource hash table and free callback */
2179                 vmci_resource_remove(&entry->resource);
2180
2181                 kfree(entry);
2182
2183                 vmci_ctx_qp_destroy(context, handle);
2184         } else {
2185                 qp_notify_peer(false, handle, context_id, peer_id);
2186                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2187                     QPBROKERSTATE_HAS_MEM(entry)) {
2188                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2189                 } else {
2190                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2191                 }
2192
2193                 if (!is_local)
2194                         vmci_ctx_qp_destroy(context, handle);
2195
2196         }
2197         result = VMCI_SUCCESS;
2198  out:
2199         mutex_unlock(&qp_broker_list.mutex);
2200         return result;
2201 }
2202
2203 /*
2204  * Establishes the necessary mappings for a queue pair given a
2205  * reference to the queue pair guest memory. This is usually
2206  * called when a guest is unquiesced and the VMX is allowed to
2207  * map guest memory once again.
2208  */
2209 int vmci_qp_broker_map(struct vmci_handle handle,
2210                        struct vmci_ctx *context,
2211                        u64 guest_mem)
2212 {
2213         struct qp_broker_entry *entry;
2214         const u32 context_id = vmci_ctx_get_id(context);
2215         bool is_local = false;
2216         int result;
2217
2218         if (vmci_handle_is_invalid(handle) || !context ||
2219             context_id == VMCI_INVALID_ID)
2220                 return VMCI_ERROR_INVALID_ARGS;
2221
2222         mutex_lock(&qp_broker_list.mutex);
2223
2224         if (!vmci_ctx_qp_exists(context, handle)) {
2225                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2226                          context_id, handle.context, handle.resource);
2227                 result = VMCI_ERROR_NOT_FOUND;
2228                 goto out;
2229         }
2230
2231         entry = qp_broker_handle_to_entry(handle);
2232         if (!entry) {
2233                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2234                          context_id, handle.context, handle.resource);
2235                 result = VMCI_ERROR_NOT_FOUND;
2236                 goto out;
2237         }
2238
2239         if (context_id != entry->create_id && context_id != entry->attach_id) {
2240                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2241                 goto out;
2242         }
2243
2244         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2245         result = VMCI_SUCCESS;
2246
2247         if (context_id != VMCI_HOST_CONTEXT_ID) {
2248                 struct vmci_qp_page_store page_store;
2249
2250                 page_store.pages = guest_mem;
2251                 page_store.len = QPE_NUM_PAGES(entry->qp);
2252
2253                 qp_acquire_queue_mutex(entry->produce_q);
2254                 qp_reset_saved_headers(entry);
2255                 result =
2256                     qp_host_register_user_memory(&page_store,
2257                                                  entry->produce_q,
2258                                                  entry->consume_q);
2259                 qp_release_queue_mutex(entry->produce_q);
2260                 if (result == VMCI_SUCCESS) {
2261                         /* Move state from *_NO_MEM to *_MEM */
2262
2263                         entry->state++;
2264
2265                         if (entry->wakeup_cb)
2266                                 entry->wakeup_cb(entry->client_data);
2267                 }
2268         }
2269
2270  out:
2271         mutex_unlock(&qp_broker_list.mutex);
2272         return result;
2273 }
2274
2275 /*
2276  * Saves a snapshot of the queue headers for the given QP broker
2277  * entry. Should be used when guest memory is unmapped.
2278  * Results:
2279  * VMCI_SUCCESS on success, appropriate error code if guest memory
2280  * can't be accessed..
2281  */
2282 static int qp_save_headers(struct qp_broker_entry *entry)
2283 {
2284         int result;
2285
2286         if (entry->produce_q->saved_header != NULL &&
2287             entry->consume_q->saved_header != NULL) {
2288                 /*
2289                  *  If the headers have already been saved, we don't need to do
2290                  *  it again, and we don't want to map in the headers
2291                  *  unnecessarily.
2292                  */
2293
2294                 return VMCI_SUCCESS;
2295         }
2296
2297         if (NULL == entry->produce_q->q_header ||
2298             NULL == entry->consume_q->q_header) {
2299                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2300                 if (result < VMCI_SUCCESS)
2301                         return result;
2302         }
2303
2304         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2305                sizeof(entry->saved_produce_q));
2306         entry->produce_q->saved_header = &entry->saved_produce_q;
2307         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2308                sizeof(entry->saved_consume_q));
2309         entry->consume_q->saved_header = &entry->saved_consume_q;
2310
2311         return VMCI_SUCCESS;
2312 }
2313
2314 /*
2315  * Removes all references to the guest memory of a given queue pair, and
2316  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2317  * called when a VM is being quiesced where access to guest memory should
2318  * avoided.
2319  */
2320 int vmci_qp_broker_unmap(struct vmci_handle handle,
2321                          struct vmci_ctx *context,
2322                          u32 gid)
2323 {
2324         struct qp_broker_entry *entry;
2325         const u32 context_id = vmci_ctx_get_id(context);
2326         bool is_local = false;
2327         int result;
2328
2329         if (vmci_handle_is_invalid(handle) || !context ||
2330             context_id == VMCI_INVALID_ID)
2331                 return VMCI_ERROR_INVALID_ARGS;
2332
2333         mutex_lock(&qp_broker_list.mutex);
2334
2335         if (!vmci_ctx_qp_exists(context, handle)) {
2336                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2337                          context_id, handle.context, handle.resource);
2338                 result = VMCI_ERROR_NOT_FOUND;
2339                 goto out;
2340         }
2341
2342         entry = qp_broker_handle_to_entry(handle);
2343         if (!entry) {
2344                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2345                          context_id, handle.context, handle.resource);
2346                 result = VMCI_ERROR_NOT_FOUND;
2347                 goto out;
2348         }
2349
2350         if (context_id != entry->create_id && context_id != entry->attach_id) {
2351                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2352                 goto out;
2353         }
2354
2355         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2356
2357         if (context_id != VMCI_HOST_CONTEXT_ID) {
2358                 qp_acquire_queue_mutex(entry->produce_q);
2359                 result = qp_save_headers(entry);
2360                 if (result < VMCI_SUCCESS)
2361                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2362                                 handle.context, handle.resource, result);
2363
2364                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2365
2366                 /*
2367                  * On hosted, when we unmap queue pairs, the VMX will also
2368                  * unmap the guest memory, so we invalidate the previously
2369                  * registered memory. If the queue pair is mapped again at a
2370                  * later point in time, we will need to reregister the user
2371                  * memory with a possibly new user VA.
2372                  */
2373                 qp_host_unregister_user_memory(entry->produce_q,
2374                                                entry->consume_q);
2375
2376                 /*
2377                  * Move state from *_MEM to *_NO_MEM.
2378                  */
2379                 entry->state--;
2380
2381                 qp_release_queue_mutex(entry->produce_q);
2382         }
2383
2384         result = VMCI_SUCCESS;
2385
2386  out:
2387         mutex_unlock(&qp_broker_list.mutex);
2388         return result;
2389 }
2390
2391 /*
2392  * Destroys all guest queue pair endpoints. If active guest queue
2393  * pairs still exist, hypercalls to attempt detach from these
2394  * queue pairs will be made. Any failure to detach is silently
2395  * ignored.
2396  */
2397 void vmci_qp_guest_endpoints_exit(void)
2398 {
2399         struct qp_entry *entry;
2400         struct qp_guest_endpoint *ep;
2401
2402         mutex_lock(&qp_guest_endpoints.mutex);
2403
2404         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2405                 ep = (struct qp_guest_endpoint *)entry;
2406
2407                 /* Don't make a hypercall for local queue_pairs. */
2408                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2409                         qp_detatch_hypercall(entry->handle);
2410
2411                 /* We cannot fail the exit, so let's reset ref_count. */
2412                 entry->ref_count = 0;
2413                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2414
2415                 qp_guest_endpoint_destroy(ep);
2416         }
2417
2418         mutex_unlock(&qp_guest_endpoints.mutex);
2419 }
2420
2421 /*
2422  * Helper routine that will lock the queue pair before subsequent
2423  * operations.
2424  * Note: Non-blocking on the host side is currently only implemented in ESX.
2425  * Since non-blocking isn't yet implemented on the host personality we
2426  * have no reason to acquire a spin lock.  So to avoid the use of an
2427  * unnecessary lock only acquire the mutex if we can block.
2428  */
2429 static void qp_lock(const struct vmci_qp *qpair)
2430 {
2431         qp_acquire_queue_mutex(qpair->produce_q);
2432 }
2433
2434 /*
2435  * Helper routine that unlocks the queue pair after calling
2436  * qp_lock.
2437  */
2438 static void qp_unlock(const struct vmci_qp *qpair)
2439 {
2440         qp_release_queue_mutex(qpair->produce_q);
2441 }
2442
2443 /*
2444  * The queue headers may not be mapped at all times. If a queue is
2445  * currently not mapped, it will be attempted to do so.
2446  */
2447 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2448                                 struct vmci_queue *consume_q)
2449 {
2450         int result;
2451
2452         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2453                 result = qp_host_map_queues(produce_q, consume_q);
2454                 if (result < VMCI_SUCCESS)
2455                         return (produce_q->saved_header &&
2456                                 consume_q->saved_header) ?
2457                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2458                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2459         }
2460
2461         return VMCI_SUCCESS;
2462 }
2463
2464 /*
2465  * Helper routine that will retrieve the produce and consume
2466  * headers of a given queue pair. If the guest memory of the
2467  * queue pair is currently not available, the saved queue headers
2468  * will be returned, if these are available.
2469  */
2470 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2471                                 struct vmci_queue_header **produce_q_header,
2472                                 struct vmci_queue_header **consume_q_header)
2473 {
2474         int result;
2475
2476         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2477         if (result == VMCI_SUCCESS) {
2478                 *produce_q_header = qpair->produce_q->q_header;
2479                 *consume_q_header = qpair->consume_q->q_header;
2480         } else if (qpair->produce_q->saved_header &&
2481                    qpair->consume_q->saved_header) {
2482                 *produce_q_header = qpair->produce_q->saved_header;
2483                 *consume_q_header = qpair->consume_q->saved_header;
2484                 result = VMCI_SUCCESS;
2485         }
2486
2487         return result;
2488 }
2489
2490 /*
2491  * Callback from VMCI queue pair broker indicating that a queue
2492  * pair that was previously not ready, now either is ready or
2493  * gone forever.
2494  */
2495 static int qp_wakeup_cb(void *client_data)
2496 {
2497         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2498
2499         qp_lock(qpair);
2500         while (qpair->blocked > 0) {
2501                 qpair->blocked--;
2502                 qpair->generation++;
2503                 wake_up(&qpair->event);
2504         }
2505         qp_unlock(qpair);
2506
2507         return VMCI_SUCCESS;
2508 }
2509
2510 /*
2511  * Makes the calling thread wait for the queue pair to become
2512  * ready for host side access.  Returns true when thread is
2513  * woken up after queue pair state change, false otherwise.
2514  */
2515 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2516 {
2517         unsigned int generation;
2518
2519         qpair->blocked++;
2520         generation = qpair->generation;
2521         qp_unlock(qpair);
2522         wait_event(qpair->event, generation != qpair->generation);
2523         qp_lock(qpair);
2524
2525         return true;
2526 }
2527
2528 /*
2529  * Enqueues a given buffer to the produce queue using the provided
2530  * function. As many bytes as possible (space available in the queue)
2531  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2532  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2533  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2534  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2535  * an error occured when accessing the buffer,
2536  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2537  * available.  Otherwise, the number of bytes written to the queue is
2538  * returned.  Updates the tail pointer of the produce queue.
2539  */
2540 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2541                                  struct vmci_queue *consume_q,
2542                                  const u64 produce_q_size,
2543                                  struct iov_iter *from)
2544 {
2545         s64 free_space;
2546         u64 tail;
2547         size_t buf_size = iov_iter_count(from);
2548         size_t written;
2549         ssize_t result;
2550
2551         result = qp_map_queue_headers(produce_q, consume_q);
2552         if (unlikely(result != VMCI_SUCCESS))
2553                 return result;
2554
2555         free_space = vmci_q_header_free_space(produce_q->q_header,
2556                                               consume_q->q_header,
2557                                               produce_q_size);
2558         if (free_space == 0)
2559                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2560
2561         if (free_space < VMCI_SUCCESS)
2562                 return (ssize_t) free_space;
2563
2564         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2565         tail = vmci_q_header_producer_tail(produce_q->q_header);
2566         if (likely(tail + written < produce_q_size)) {
2567                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2568         } else {
2569                 /* Tail pointer wraps around. */
2570
2571                 const size_t tmp = (size_t) (produce_q_size - tail);
2572
2573                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2574                 if (result >= VMCI_SUCCESS)
2575                         result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2576                                                  written - tmp);
2577         }
2578
2579         if (result < VMCI_SUCCESS)
2580                 return result;
2581
2582         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2583                                         produce_q_size);
2584         return written;
2585 }
2586
2587 /*
2588  * Dequeues data (if available) from the given consume queue. Writes data
2589  * to the user provided buffer using the provided function.
2590  * Assumes the queue->mutex has been acquired.
2591  * Results:
2592  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2593  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2594  * (as defined by the queue size).
2595  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2596  * Otherwise the number of bytes dequeued is returned.
2597  * Side effects:
2598  * Updates the head pointer of the consume queue.
2599  */
2600 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2601                                  struct vmci_queue *consume_q,
2602                                  const u64 consume_q_size,
2603                                  struct iov_iter *to,
2604                                  bool update_consumer)
2605 {
2606         size_t buf_size = iov_iter_count(to);
2607         s64 buf_ready;
2608         u64 head;
2609         size_t read;
2610         ssize_t result;
2611
2612         result = qp_map_queue_headers(produce_q, consume_q);
2613         if (unlikely(result != VMCI_SUCCESS))
2614                 return result;
2615
2616         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2617                                             produce_q->q_header,
2618                                             consume_q_size);
2619         if (buf_ready == 0)
2620                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2621
2622         if (buf_ready < VMCI_SUCCESS)
2623                 return (ssize_t) buf_ready;
2624
2625         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2626         head = vmci_q_header_consumer_head(produce_q->q_header);
2627         if (likely(head + read < consume_q_size)) {
2628                 result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2629         } else {
2630                 /* Head pointer wraps around. */
2631
2632                 const size_t tmp = (size_t) (consume_q_size - head);
2633
2634                 result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2635                 if (result >= VMCI_SUCCESS)
2636                         result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2637                                                    read - tmp);
2638
2639         }
2640
2641         if (result < VMCI_SUCCESS)
2642                 return result;
2643
2644         if (update_consumer)
2645                 vmci_q_header_add_consumer_head(produce_q->q_header,
2646                                                 read, consume_q_size);
2647
2648         return read;
2649 }
2650
2651 /*
2652  * vmci_qpair_alloc() - Allocates a queue pair.
2653  * @qpair:      Pointer for the new vmci_qp struct.
2654  * @handle:     Handle to track the resource.
2655  * @produce_qsize:      Desired size of the producer queue.
2656  * @consume_qsize:      Desired size of the consumer queue.
2657  * @peer:       ContextID of the peer.
2658  * @flags:      VMCI flags.
2659  * @priv_flags: VMCI priviledge flags.
2660  *
2661  * This is the client interface for allocating the memory for a
2662  * vmci_qp structure and then attaching to the underlying
2663  * queue.  If an error occurs allocating the memory for the
2664  * vmci_qp structure no attempt is made to attach.  If an
2665  * error occurs attaching, then the structure is freed.
2666  */
2667 int vmci_qpair_alloc(struct vmci_qp **qpair,
2668                      struct vmci_handle *handle,
2669                      u64 produce_qsize,
2670                      u64 consume_qsize,
2671                      u32 peer,
2672                      u32 flags,
2673                      u32 priv_flags)
2674 {
2675         struct vmci_qp *my_qpair;
2676         int retval;
2677         struct vmci_handle src = VMCI_INVALID_HANDLE;
2678         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2679         enum vmci_route route;
2680         vmci_event_release_cb wakeup_cb;
2681         void *client_data;
2682
2683         /*
2684          * Restrict the size of a queuepair.  The device already
2685          * enforces a limit on the total amount of memory that can be
2686          * allocated to queuepairs for a guest.  However, we try to
2687          * allocate this memory before we make the queuepair
2688          * allocation hypercall.  On Linux, we allocate each page
2689          * separately, which means rather than fail, the guest will
2690          * thrash while it tries to allocate, and will become
2691          * increasingly unresponsive to the point where it appears to
2692          * be hung.  So we place a limit on the size of an individual
2693          * queuepair here, and leave the device to enforce the
2694          * restriction on total queuepair memory.  (Note that this
2695          * doesn't prevent all cases; a user with only this much
2696          * physical memory could still get into trouble.)  The error
2697          * used by the device is NO_RESOURCES, so use that here too.
2698          */
2699
2700         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2701             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2702                 return VMCI_ERROR_NO_RESOURCES;
2703
2704         retval = vmci_route(&src, &dst, false, &route);
2705         if (retval < VMCI_SUCCESS)
2706                 route = vmci_guest_code_active() ?
2707                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2708
2709         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2710                 pr_devel("NONBLOCK OR PINNED set");
2711                 return VMCI_ERROR_INVALID_ARGS;
2712         }
2713
2714         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2715         if (!my_qpair)
2716                 return VMCI_ERROR_NO_MEM;
2717
2718         my_qpair->produce_q_size = produce_qsize;
2719         my_qpair->consume_q_size = consume_qsize;
2720         my_qpair->peer = peer;
2721         my_qpair->flags = flags;
2722         my_qpair->priv_flags = priv_flags;
2723
2724         wakeup_cb = NULL;
2725         client_data = NULL;
2726
2727         if (VMCI_ROUTE_AS_HOST == route) {
2728                 my_qpair->guest_endpoint = false;
2729                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2730                         my_qpair->blocked = 0;
2731                         my_qpair->generation = 0;
2732                         init_waitqueue_head(&my_qpair->event);
2733                         wakeup_cb = qp_wakeup_cb;
2734                         client_data = (void *)my_qpair;
2735                 }
2736         } else {
2737                 my_qpair->guest_endpoint = true;
2738         }
2739
2740         retval = vmci_qp_alloc(handle,
2741                                &my_qpair->produce_q,
2742                                my_qpair->produce_q_size,
2743                                &my_qpair->consume_q,
2744                                my_qpair->consume_q_size,
2745                                my_qpair->peer,
2746                                my_qpair->flags,
2747                                my_qpair->priv_flags,
2748                                my_qpair->guest_endpoint,
2749                                wakeup_cb, client_data);
2750
2751         if (retval < VMCI_SUCCESS) {
2752                 kfree(my_qpair);
2753                 return retval;
2754         }
2755
2756         *qpair = my_qpair;
2757         my_qpair->handle = *handle;
2758
2759         return retval;
2760 }
2761 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2762
2763 /*
2764  * vmci_qpair_detach() - Detatches the client from a queue pair.
2765  * @qpair:      Reference of a pointer to the qpair struct.
2766  *
2767  * This is the client interface for detaching from a VMCIQPair.
2768  * Note that this routine will free the memory allocated for the
2769  * vmci_qp structure too.
2770  */
2771 int vmci_qpair_detach(struct vmci_qp **qpair)
2772 {
2773         int result;
2774         struct vmci_qp *old_qpair;
2775
2776         if (!qpair || !(*qpair))
2777                 return VMCI_ERROR_INVALID_ARGS;
2778
2779         old_qpair = *qpair;
2780         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2781
2782         /*
2783          * The guest can fail to detach for a number of reasons, and
2784          * if it does so, it will cleanup the entry (if there is one).
2785          * The host can fail too, but it won't cleanup the entry
2786          * immediately, it will do that later when the context is
2787          * freed.  Either way, we need to release the qpair struct
2788          * here; there isn't much the caller can do, and we don't want
2789          * to leak.
2790          */
2791
2792         memset(old_qpair, 0, sizeof(*old_qpair));
2793         old_qpair->handle = VMCI_INVALID_HANDLE;
2794         old_qpair->peer = VMCI_INVALID_ID;
2795         kfree(old_qpair);
2796         *qpair = NULL;
2797
2798         return result;
2799 }
2800 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2801
2802 /*
2803  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2804  * @qpair:      Pointer to the queue pair struct.
2805  * @producer_tail:      Reference used for storing producer tail index.
2806  * @consumer_head:      Reference used for storing the consumer head index.
2807  *
2808  * This is the client interface for getting the current indexes of the
2809  * QPair from the point of the view of the caller as the producer.
2810  */
2811 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2812                                    u64 *producer_tail,
2813                                    u64 *consumer_head)
2814 {
2815         struct vmci_queue_header *produce_q_header;
2816         struct vmci_queue_header *consume_q_header;
2817         int result;
2818
2819         if (!qpair)
2820                 return VMCI_ERROR_INVALID_ARGS;
2821
2822         qp_lock(qpair);
2823         result =
2824             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2825         if (result == VMCI_SUCCESS)
2826                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2827                                            producer_tail, consumer_head);
2828         qp_unlock(qpair);
2829
2830         if (result == VMCI_SUCCESS &&
2831             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2832              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2833                 return VMCI_ERROR_INVALID_SIZE;
2834
2835         return result;
2836 }
2837 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2838
2839 /*
2840  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2841  * @qpair:      Pointer to the queue pair struct.
2842  * @consumer_tail:      Reference used for storing consumer tail index.
2843  * @producer_head:      Reference used for storing the producer head index.
2844  *
2845  * This is the client interface for getting the current indexes of the
2846  * QPair from the point of the view of the caller as the consumer.
2847  */
2848 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2849                                    u64 *consumer_tail,
2850                                    u64 *producer_head)
2851 {
2852         struct vmci_queue_header *produce_q_header;
2853         struct vmci_queue_header *consume_q_header;
2854         int result;
2855
2856         if (!qpair)
2857                 return VMCI_ERROR_INVALID_ARGS;
2858
2859         qp_lock(qpair);
2860         result =
2861             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2862         if (result == VMCI_SUCCESS)
2863                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2864                                            consumer_tail, producer_head);
2865         qp_unlock(qpair);
2866
2867         if (result == VMCI_SUCCESS &&
2868             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2869              (producer_head && *producer_head >= qpair->consume_q_size)))
2870                 return VMCI_ERROR_INVALID_SIZE;
2871
2872         return result;
2873 }
2874 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2875
2876 /*
2877  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2878  * @qpair:      Pointer to the queue pair struct.
2879  *
2880  * This is the client interface for getting the amount of free
2881  * space in the QPair from the point of the view of the caller as
2882  * the producer which is the common case.  Returns < 0 if err, else
2883  * available bytes into which data can be enqueued if > 0.
2884  */
2885 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2886 {
2887         struct vmci_queue_header *produce_q_header;
2888         struct vmci_queue_header *consume_q_header;
2889         s64 result;
2890
2891         if (!qpair)
2892                 return VMCI_ERROR_INVALID_ARGS;
2893
2894         qp_lock(qpair);
2895         result =
2896             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2897         if (result == VMCI_SUCCESS)
2898                 result = vmci_q_header_free_space(produce_q_header,
2899                                                   consume_q_header,
2900                                                   qpair->produce_q_size);
2901         else
2902                 result = 0;
2903
2904         qp_unlock(qpair);
2905
2906         return result;
2907 }
2908 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2909
2910 /*
2911  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2912  * @qpair:      Pointer to the queue pair struct.
2913  *
2914  * This is the client interface for getting the amount of free
2915  * space in the QPair from the point of the view of the caller as
2916  * the consumer which is not the common case.  Returns < 0 if err, else
2917  * available bytes into which data can be enqueued if > 0.
2918  */
2919 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2920 {
2921         struct vmci_queue_header *produce_q_header;
2922         struct vmci_queue_header *consume_q_header;
2923         s64 result;
2924
2925         if (!qpair)
2926                 return VMCI_ERROR_INVALID_ARGS;
2927
2928         qp_lock(qpair);
2929         result =
2930             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2931         if (result == VMCI_SUCCESS)
2932                 result = vmci_q_header_free_space(consume_q_header,
2933                                                   produce_q_header,
2934                                                   qpair->consume_q_size);
2935         else
2936                 result = 0;
2937
2938         qp_unlock(qpair);
2939
2940         return result;
2941 }
2942 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2943
2944 /*
2945  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2946  * producer queue.
2947  * @qpair:      Pointer to the queue pair struct.
2948  *
2949  * This is the client interface for getting the amount of
2950  * enqueued data in the QPair from the point of the view of the
2951  * caller as the producer which is not the common case.  Returns < 0 if err,
2952  * else available bytes that may be read.
2953  */
2954 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2955 {
2956         struct vmci_queue_header *produce_q_header;
2957         struct vmci_queue_header *consume_q_header;
2958         s64 result;
2959
2960         if (!qpair)
2961                 return VMCI_ERROR_INVALID_ARGS;
2962
2963         qp_lock(qpair);
2964         result =
2965             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2966         if (result == VMCI_SUCCESS)
2967                 result = vmci_q_header_buf_ready(produce_q_header,
2968                                                  consume_q_header,
2969                                                  qpair->produce_q_size);
2970         else
2971                 result = 0;
2972
2973         qp_unlock(qpair);
2974
2975         return result;
2976 }
2977 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2978
2979 /*
2980  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2981  * consumer queue.
2982  * @qpair:      Pointer to the queue pair struct.
2983  *
2984  * This is the client interface for getting the amount of
2985  * enqueued data in the QPair from the point of the view of the
2986  * caller as the consumer which is the normal case.  Returns < 0 if err,
2987  * else available bytes that may be read.
2988  */
2989 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2990 {
2991         struct vmci_queue_header *produce_q_header;
2992         struct vmci_queue_header *consume_q_header;
2993         s64 result;
2994
2995         if (!qpair)
2996                 return VMCI_ERROR_INVALID_ARGS;
2997
2998         qp_lock(qpair);
2999         result =
3000             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3001         if (result == VMCI_SUCCESS)
3002                 result = vmci_q_header_buf_ready(consume_q_header,
3003                                                  produce_q_header,
3004                                                  qpair->consume_q_size);
3005         else
3006                 result = 0;
3007
3008         qp_unlock(qpair);
3009
3010         return result;
3011 }
3012 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3013
3014 /*
3015  * vmci_qpair_enqueue() - Throw data on the queue.
3016  * @qpair:      Pointer to the queue pair struct.
3017  * @buf:        Pointer to buffer containing data
3018  * @buf_size:   Length of buffer.
3019  * @buf_type:   Buffer type (Unused).
3020  *
3021  * This is the client interface for enqueueing data into the queue.
3022  * Returns number of bytes enqueued or < 0 on error.
3023  */
3024 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3025                            const void *buf,
3026                            size_t buf_size,
3027                            int buf_type)
3028 {
3029         ssize_t result;
3030         struct iov_iter from;
3031         struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3032
3033         if (!qpair || !buf)
3034                 return VMCI_ERROR_INVALID_ARGS;
3035
3036         iov_iter_kvec(&from, WRITE | ITER_KVEC, &v, 1, buf_size);
3037
3038         qp_lock(qpair);
3039
3040         do {
3041                 result = qp_enqueue_locked(qpair->produce_q,
3042                                            qpair->consume_q,
3043                                            qpair->produce_q_size,
3044                                            &from);
3045
3046                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3047                     !qp_wait_for_ready_queue(qpair))
3048                         result = VMCI_ERROR_WOULD_BLOCK;
3049
3050         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3051
3052         qp_unlock(qpair);
3053
3054         return result;
3055 }
3056 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3057
3058 /*
3059  * vmci_qpair_dequeue() - Get data from the queue.
3060  * @qpair:      Pointer to the queue pair struct.
3061  * @buf:        Pointer to buffer for the data
3062  * @buf_size:   Length of buffer.
3063  * @buf_type:   Buffer type (Unused).
3064  *
3065  * This is the client interface for dequeueing data from the queue.
3066  * Returns number of bytes dequeued or < 0 on error.
3067  */
3068 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3069                            void *buf,
3070                            size_t buf_size,
3071                            int buf_type)
3072 {
3073         ssize_t result;
3074         struct iov_iter to;
3075         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3076
3077         if (!qpair || !buf)
3078                 return VMCI_ERROR_INVALID_ARGS;
3079
3080         iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3081
3082         qp_lock(qpair);
3083
3084         do {
3085                 result = qp_dequeue_locked(qpair->produce_q,
3086                                            qpair->consume_q,
3087                                            qpair->consume_q_size,
3088                                            &to, true);
3089
3090                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3091                     !qp_wait_for_ready_queue(qpair))
3092                         result = VMCI_ERROR_WOULD_BLOCK;
3093
3094         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3095
3096         qp_unlock(qpair);
3097
3098         return result;
3099 }
3100 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3101
3102 /*
3103  * vmci_qpair_peek() - Peek at the data in the queue.
3104  * @qpair:      Pointer to the queue pair struct.
3105  * @buf:        Pointer to buffer for the data
3106  * @buf_size:   Length of buffer.
3107  * @buf_type:   Buffer type (Unused on Linux).
3108  *
3109  * This is the client interface for peeking into a queue.  (I.e.,
3110  * copy data from the queue without updating the head pointer.)
3111  * Returns number of bytes dequeued or < 0 on error.
3112  */
3113 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3114                         void *buf,
3115                         size_t buf_size,
3116                         int buf_type)
3117 {
3118         struct iov_iter to;
3119         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3120         ssize_t result;
3121
3122         if (!qpair || !buf)
3123                 return VMCI_ERROR_INVALID_ARGS;
3124
3125         iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3126
3127         qp_lock(qpair);
3128
3129         do {
3130                 result = qp_dequeue_locked(qpair->produce_q,
3131                                            qpair->consume_q,
3132                                            qpair->consume_q_size,
3133                                            &to, false);
3134
3135                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3136                     !qp_wait_for_ready_queue(qpair))
3137                         result = VMCI_ERROR_WOULD_BLOCK;
3138
3139         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3140
3141         qp_unlock(qpair);
3142
3143         return result;
3144 }
3145 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3146
3147 /*
3148  * vmci_qpair_enquev() - Throw data on the queue using iov.
3149  * @qpair:      Pointer to the queue pair struct.
3150  * @iov:        Pointer to buffer containing data
3151  * @iov_size:   Length of buffer.
3152  * @buf_type:   Buffer type (Unused).
3153  *
3154  * This is the client interface for enqueueing data into the queue.
3155  * This function uses IO vectors to handle the work. Returns number
3156  * of bytes enqueued or < 0 on error.
3157  */
3158 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3159                           struct msghdr *msg,
3160                           size_t iov_size,
3161                           int buf_type)
3162 {
3163         ssize_t result;
3164
3165         if (!qpair)
3166                 return VMCI_ERROR_INVALID_ARGS;
3167
3168         qp_lock(qpair);
3169
3170         do {
3171                 result = qp_enqueue_locked(qpair->produce_q,
3172                                            qpair->consume_q,
3173                                            qpair->produce_q_size,
3174                                            &msg->msg_iter);
3175
3176                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3177                     !qp_wait_for_ready_queue(qpair))
3178                         result = VMCI_ERROR_WOULD_BLOCK;
3179
3180         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3181
3182         qp_unlock(qpair);
3183
3184         return result;
3185 }
3186 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3187
3188 /*
3189  * vmci_qpair_dequev() - Get data from the queue using iov.
3190  * @qpair:      Pointer to the queue pair struct.
3191  * @iov:        Pointer to buffer for the data
3192  * @iov_size:   Length of buffer.
3193  * @buf_type:   Buffer type (Unused).
3194  *
3195  * This is the client interface for dequeueing data from the queue.
3196  * This function uses IO vectors to handle the work. Returns number
3197  * of bytes dequeued or < 0 on error.
3198  */
3199 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3200                           struct msghdr *msg,
3201                           size_t iov_size,
3202                           int buf_type)
3203 {
3204         ssize_t result;
3205
3206         if (!qpair)
3207                 return VMCI_ERROR_INVALID_ARGS;
3208
3209         qp_lock(qpair);
3210
3211         do {
3212                 result = qp_dequeue_locked(qpair->produce_q,
3213                                            qpair->consume_q,
3214                                            qpair->consume_q_size,
3215                                            &msg->msg_iter, true);
3216
3217                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3218                     !qp_wait_for_ready_queue(qpair))
3219                         result = VMCI_ERROR_WOULD_BLOCK;
3220
3221         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3222
3223         qp_unlock(qpair);
3224
3225         return result;
3226 }
3227 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3228
3229 /*
3230  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3231  * @qpair:      Pointer to the queue pair struct.
3232  * @iov:        Pointer to buffer for the data
3233  * @iov_size:   Length of buffer.
3234  * @buf_type:   Buffer type (Unused on Linux).
3235  *
3236  * This is the client interface for peeking into a queue.  (I.e.,
3237  * copy data from the queue without updating the head pointer.)
3238  * This function uses IO vectors to handle the work. Returns number
3239  * of bytes peeked or < 0 on error.
3240  */
3241 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3242                          struct msghdr *msg,
3243                          size_t iov_size,
3244                          int buf_type)
3245 {
3246         ssize_t result;
3247
3248         if (!qpair)
3249                 return VMCI_ERROR_INVALID_ARGS;
3250
3251         qp_lock(qpair);
3252
3253         do {
3254                 result = qp_dequeue_locked(qpair->produce_q,
3255                                            qpair->consume_q,
3256                                            qpair->consume_q_size,
3257                                            &msg->msg_iter, false);
3258
3259                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3260                     !qp_wait_for_ready_queue(qpair))
3261                         result = VMCI_ERROR_WOULD_BLOCK;
3262
3263         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3264
3265         qp_unlock(qpair);
3266         return result;
3267 }
3268 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);