e823aafce276eaf382e1c7f7db1f6aff5fcaabf2
[sfrench/cifs-2.6.git] / drivers / media / tuners / xc5000.c
1 /*
2  *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3  *
4  *  Copyright (c) 2007 Xceive Corporation
5  *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6  *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *
17  *  GNU General Public License for more details.
18  */
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/videodev2.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/dvb/frontend.h>
26 #include <linux/i2c.h>
27
28 #include "dvb_frontend.h"
29
30 #include "xc5000.h"
31 #include "tuner-i2c.h"
32
33 static int debug;
34 module_param(debug, int, 0644);
35 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
36
37 static int no_poweroff;
38 module_param(no_poweroff, int, 0644);
39 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
40         "\t\t1 keep device energized and with tuner ready all the times.\n"
41         "\t\tFaster, but consumes more power and keeps the device hotter");
42
43 static DEFINE_MUTEX(xc5000_list_mutex);
44 static LIST_HEAD(hybrid_tuner_instance_list);
45
46 #define dprintk(level, fmt, arg...) if (debug >= level) \
47         printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
48
49 struct xc5000_priv {
50         struct tuner_i2c_props i2c_props;
51         struct list_head hybrid_tuner_instance_list;
52
53         u32 if_khz;
54         u16 xtal_khz;
55         u32 freq_hz, freq_offset;
56         u32 bandwidth;
57         u8  video_standard;
58         unsigned int mode;
59         u8  rf_mode;
60         u8  radio_input;
61         u16  output_amp;
62
63         int chip_id;
64         u16 pll_register_no;
65         u8 init_status_supported;
66         u8 fw_checksum_supported;
67
68         struct dvb_frontend *fe;
69         struct delayed_work timer_sleep;
70
71         const struct firmware   *firmware;
72 };
73
74 /* Misc Defines */
75 #define MAX_TV_STANDARD                 24
76 #define XC_MAX_I2C_WRITE_LENGTH         64
77
78 /* Time to suspend after the .sleep callback is called */
79 #define XC5000_SLEEP_TIME               5000 /* ms */
80
81 /* Signal Types */
82 #define XC_RF_MODE_AIR                  0
83 #define XC_RF_MODE_CABLE                1
84
85 /* Product id */
86 #define XC_PRODUCT_ID_FW_NOT_LOADED     0x2000
87 #define XC_PRODUCT_ID_FW_LOADED 0x1388
88
89 /* Registers */
90 #define XREG_INIT         0x00
91 #define XREG_VIDEO_MODE   0x01
92 #define XREG_AUDIO_MODE   0x02
93 #define XREG_RF_FREQ      0x03
94 #define XREG_D_CODE       0x04
95 #define XREG_IF_OUT       0x05
96 #define XREG_SEEK_MODE    0x07
97 #define XREG_POWER_DOWN   0x0A /* Obsolete */
98 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
99 #define XREG_OUTPUT_AMP   0x0B
100 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
101 #define XREG_SMOOTHEDCVBS 0x0E
102 #define XREG_XTALFREQ     0x0F
103 #define XREG_FINERFREQ    0x10
104 #define XREG_DDIMODE      0x11
105
106 #define XREG_ADC_ENV      0x00
107 #define XREG_QUALITY      0x01
108 #define XREG_FRAME_LINES  0x02
109 #define XREG_HSYNC_FREQ   0x03
110 #define XREG_LOCK         0x04
111 #define XREG_FREQ_ERROR   0x05
112 #define XREG_SNR          0x06
113 #define XREG_VERSION      0x07
114 #define XREG_PRODUCT_ID   0x08
115 #define XREG_BUSY         0x09
116 #define XREG_BUILD        0x0D
117 #define XREG_TOTALGAIN    0x0F
118 #define XREG_FW_CHECKSUM  0x12
119 #define XREG_INIT_STATUS  0x13
120
121 /*
122    Basic firmware description. This will remain with
123    the driver for documentation purposes.
124
125    This represents an I2C firmware file encoded as a
126    string of unsigned char. Format is as follows:
127
128    char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
129    char[1  ]=len0_LSB  -> length of first write transaction
130    char[2  ]=data0 -> first byte to be sent
131    char[3  ]=data1
132    char[4  ]=data2
133    char[   ]=...
134    char[M  ]=dataN  -> last byte to be sent
135    char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
136    char[M+2]=len1_LSB  -> length of second write transaction
137    char[M+3]=data0
138    char[M+4]=data1
139    ...
140    etc.
141
142    The [len] value should be interpreted as follows:
143
144    len= len_MSB _ len_LSB
145    len=1111_1111_1111_1111   : End of I2C_SEQUENCE
146    len=0000_0000_0000_0000   : Reset command: Do hardware reset
147    len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
148    len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms
149
150    For the RESET and WAIT commands, the two following bytes will contain
151    immediately the length of the following transaction.
152
153 */
154 struct XC_TV_STANDARD {
155         char *name;
156         u16 audio_mode;
157         u16 video_mode;
158 };
159
160 /* Tuner standards */
161 #define MN_NTSC_PAL_BTSC        0
162 #define MN_NTSC_PAL_A2          1
163 #define MN_NTSC_PAL_EIAJ        2
164 #define MN_NTSC_PAL_MONO        3
165 #define BG_PAL_A2               4
166 #define BG_PAL_NICAM            5
167 #define BG_PAL_MONO             6
168 #define I_PAL_NICAM             7
169 #define I_PAL_NICAM_MONO        8
170 #define DK_PAL_A2               9
171 #define DK_PAL_NICAM            10
172 #define DK_PAL_MONO             11
173 #define DK_SECAM_A2DK1          12
174 #define DK_SECAM_A2LDK3         13
175 #define DK_SECAM_A2MONO         14
176 #define L_SECAM_NICAM           15
177 #define LC_SECAM_NICAM          16
178 #define DTV6                    17
179 #define DTV8                    18
180 #define DTV7_8                  19
181 #define DTV7                    20
182 #define FM_RADIO_INPUT2         21
183 #define FM_RADIO_INPUT1         22
184 #define FM_RADIO_INPUT1_MONO    23
185
186 static struct XC_TV_STANDARD xc5000_standard[MAX_TV_STANDARD] = {
187         {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
188         {"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
189         {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
190         {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
191         {"B/G-PAL-A2",        0x0A00, 0x8049},
192         {"B/G-PAL-NICAM",     0x0C04, 0x8049},
193         {"B/G-PAL-MONO",      0x0878, 0x8059},
194         {"I-PAL-NICAM",       0x1080, 0x8009},
195         {"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
196         {"D/K-PAL-A2",        0x1600, 0x8009},
197         {"D/K-PAL-NICAM",     0x0E80, 0x8009},
198         {"D/K-PAL-MONO",      0x1478, 0x8009},
199         {"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
200         {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
201         {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
202         {"L-SECAM-NICAM",     0x8E82, 0x0009},
203         {"L'-SECAM-NICAM",    0x8E82, 0x4009},
204         {"DTV6",              0x00C0, 0x8002},
205         {"DTV8",              0x00C0, 0x800B},
206         {"DTV7/8",            0x00C0, 0x801B},
207         {"DTV7",              0x00C0, 0x8007},
208         {"FM Radio-INPUT2",   0x9802, 0x9002},
209         {"FM Radio-INPUT1",   0x0208, 0x9002},
210         {"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
211 };
212
213
214 struct xc5000_fw_cfg {
215         char *name;
216         u16 size;
217         u16 pll_reg;
218         u8 init_status_supported;
219         u8 fw_checksum_supported;
220 };
221
222 #define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
223 static const struct xc5000_fw_cfg xc5000a_1_6_114 = {
224         .name = XC5000A_FIRMWARE,
225         .size = 12401,
226         .pll_reg = 0x806c,
227 };
228
229 #define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw"
230 static const struct xc5000_fw_cfg xc5000c_41_024_5 = {
231         .name = XC5000C_FIRMWARE,
232         .size = 16497,
233         .pll_reg = 0x13,
234         .init_status_supported = 1,
235         .fw_checksum_supported = 1,
236 };
237
238 static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id)
239 {
240         switch (chip_id) {
241         default:
242         case XC5000A:
243                 return &xc5000a_1_6_114;
244         case XC5000C:
245                 return &xc5000c_41_024_5;
246         }
247 }
248
249 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force);
250 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
251 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
252 static int xc5000_tuner_reset(struct dvb_frontend *fe);
253
254 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
255 {
256         struct i2c_msg msg = { .addr = priv->i2c_props.addr,
257                                .flags = 0, .buf = buf, .len = len };
258
259         if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
260                 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
261                 return -EREMOTEIO;
262         }
263         return 0;
264 }
265
266 #if 0
267 /* This routine is never used because the only time we read data from the
268    i2c bus is when we read registers, and we want that to be an atomic i2c
269    transaction in case we are on a multi-master bus */
270 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
271 {
272         struct i2c_msg msg = { .addr = priv->i2c_props.addr,
273                 .flags = I2C_M_RD, .buf = buf, .len = len };
274
275         if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
276                 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
277                 return -EREMOTEIO;
278         }
279         return 0;
280 }
281 #endif
282
283 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
284 {
285         u8 buf[2] = { reg >> 8, reg & 0xff };
286         u8 bval[2] = { 0, 0 };
287         struct i2c_msg msg[2] = {
288                 { .addr = priv->i2c_props.addr,
289                         .flags = 0, .buf = &buf[0], .len = 2 },
290                 { .addr = priv->i2c_props.addr,
291                         .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
292         };
293
294         if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
295                 printk(KERN_WARNING "xc5000: I2C read failed\n");
296                 return -EREMOTEIO;
297         }
298
299         *val = (bval[0] << 8) | bval[1];
300         return 0;
301 }
302
303 static int xc5000_tuner_reset(struct dvb_frontend *fe)
304 {
305         struct xc5000_priv *priv = fe->tuner_priv;
306         int ret;
307
308         dprintk(1, "%s()\n", __func__);
309
310         if (fe->callback) {
311                 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
312                                            fe->dvb->priv :
313                                            priv->i2c_props.adap->algo_data,
314                                            DVB_FRONTEND_COMPONENT_TUNER,
315                                            XC5000_TUNER_RESET, 0);
316                 if (ret) {
317                         printk(KERN_ERR "xc5000: reset failed\n");
318                         return ret;
319                 }
320         } else {
321                 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
322                 return -EINVAL;
323         }
324         return 0;
325 }
326
327 static int xc_write_reg(struct xc5000_priv *priv, u16 reg_addr, u16 i2c_data)
328 {
329         u8 buf[4];
330         int watch_dog_timer = 100;
331         int result;
332
333         buf[0] = (reg_addr >> 8) & 0xFF;
334         buf[1] = reg_addr & 0xFF;
335         buf[2] = (i2c_data >> 8) & 0xFF;
336         buf[3] = i2c_data & 0xFF;
337         result = xc_send_i2c_data(priv, buf, 4);
338         if (result == 0) {
339                 /* wait for busy flag to clear */
340                 while ((watch_dog_timer > 0) && (result == 0)) {
341                         result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
342                         if (result == 0) {
343                                 if ((buf[0] == 0) && (buf[1] == 0)) {
344                                         /* busy flag cleared */
345                                         break;
346                                 } else {
347                                         msleep(5); /* wait 5 ms */
348                                         watch_dog_timer--;
349                                 }
350                         }
351                 }
352         }
353         if (watch_dog_timer <= 0)
354                 result = -EREMOTEIO;
355
356         return result;
357 }
358
359 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
360 {
361         struct xc5000_priv *priv = fe->tuner_priv;
362
363         int i, nbytes_to_send, result;
364         unsigned int len, pos, index;
365         u8 buf[XC_MAX_I2C_WRITE_LENGTH];
366
367         index = 0;
368         while ((i2c_sequence[index] != 0xFF) ||
369                 (i2c_sequence[index + 1] != 0xFF)) {
370                 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
371                 if (len == 0x0000) {
372                         /* RESET command */
373                         result = xc5000_tuner_reset(fe);
374                         index += 2;
375                         if (result != 0)
376                                 return result;
377                 } else if (len & 0x8000) {
378                         /* WAIT command */
379                         msleep(len & 0x7FFF);
380                         index += 2;
381                 } else {
382                         /* Send i2c data whilst ensuring individual transactions
383                          * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
384                          */
385                         index += 2;
386                         buf[0] = i2c_sequence[index];
387                         buf[1] = i2c_sequence[index + 1];
388                         pos = 2;
389                         while (pos < len) {
390                                 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
391                                         nbytes_to_send =
392                                                 XC_MAX_I2C_WRITE_LENGTH;
393                                 else
394                                         nbytes_to_send = (len - pos + 2);
395                                 for (i = 2; i < nbytes_to_send; i++) {
396                                         buf[i] = i2c_sequence[index + pos +
397                                                 i - 2];
398                                 }
399                                 result = xc_send_i2c_data(priv, buf,
400                                         nbytes_to_send);
401
402                                 if (result != 0)
403                                         return result;
404
405                                 pos += nbytes_to_send - 2;
406                         }
407                         index += len;
408                 }
409         }
410         return 0;
411 }
412
413 static int xc_initialize(struct xc5000_priv *priv)
414 {
415         dprintk(1, "%s()\n", __func__);
416         return xc_write_reg(priv, XREG_INIT, 0);
417 }
418
419 static int xc_set_tv_standard(struct xc5000_priv *priv,
420         u16 video_mode, u16 audio_mode, u8 radio_mode)
421 {
422         int ret;
423         dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
424         if (radio_mode) {
425                 dprintk(1, "%s() Standard = %s\n",
426                         __func__,
427                         xc5000_standard[radio_mode].name);
428         } else {
429                 dprintk(1, "%s() Standard = %s\n",
430                         __func__,
431                         xc5000_standard[priv->video_standard].name);
432         }
433
434         ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
435         if (ret == 0)
436                 ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
437
438         return ret;
439 }
440
441 static int xc_set_signal_source(struct xc5000_priv *priv, u16 rf_mode)
442 {
443         dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
444                 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
445
446         if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
447                 rf_mode = XC_RF_MODE_CABLE;
448                 printk(KERN_ERR
449                         "%s(), Invalid mode, defaulting to CABLE",
450                         __func__);
451         }
452         return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
453 }
454
455 static const struct dvb_tuner_ops xc5000_tuner_ops;
456
457 static int xc_set_rf_frequency(struct xc5000_priv *priv, u32 freq_hz)
458 {
459         u16 freq_code;
460
461         dprintk(1, "%s(%u)\n", __func__, freq_hz);
462
463         if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
464                 (freq_hz < xc5000_tuner_ops.info.frequency_min))
465                 return -EINVAL;
466
467         freq_code = (u16)(freq_hz / 15625);
468
469         /* Starting in firmware version 1.1.44, Xceive recommends using the
470            FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
471            only be used for fast scanning for channel lock) */
472         return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
473 }
474
475
476 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
477 {
478         u32 freq_code = (freq_khz * 1024)/1000;
479         dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
480                 __func__, freq_khz, freq_code);
481
482         return xc_write_reg(priv, XREG_IF_OUT, freq_code);
483 }
484
485
486 static int xc_get_adc_envelope(struct xc5000_priv *priv, u16 *adc_envelope)
487 {
488         return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
489 }
490
491 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
492 {
493         int result;
494         u16 reg_data;
495         u32 tmp;
496
497         result = xc5000_readreg(priv, XREG_FREQ_ERROR, &reg_data);
498         if (result != 0)
499                 return result;
500
501         tmp = (u32)reg_data;
502         (*freq_error_hz) = (tmp * 15625) / 1000;
503         return result;
504 }
505
506 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
507 {
508         return xc5000_readreg(priv, XREG_LOCK, lock_status);
509 }
510
511 static int xc_get_version(struct xc5000_priv *priv,
512         u8 *hw_majorversion, u8 *hw_minorversion,
513         u8 *fw_majorversion, u8 *fw_minorversion)
514 {
515         u16 data;
516         int result;
517
518         result = xc5000_readreg(priv, XREG_VERSION, &data);
519         if (result != 0)
520                 return result;
521
522         (*hw_majorversion) = (data >> 12) & 0x0F;
523         (*hw_minorversion) = (data >>  8) & 0x0F;
524         (*fw_majorversion) = (data >>  4) & 0x0F;
525         (*fw_minorversion) = data & 0x0F;
526
527         return 0;
528 }
529
530 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
531 {
532         return xc5000_readreg(priv, XREG_BUILD, buildrev);
533 }
534
535 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
536 {
537         u16 reg_data;
538         int result;
539
540         result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &reg_data);
541         if (result != 0)
542                 return result;
543
544         (*hsync_freq_hz) = ((reg_data & 0x0fff) * 763)/100;
545         return result;
546 }
547
548 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
549 {
550         return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
551 }
552
553 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
554 {
555         return xc5000_readreg(priv, XREG_QUALITY, quality);
556 }
557
558 static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr)
559 {
560         return xc5000_readreg(priv, XREG_SNR, snr);
561 }
562
563 static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain)
564 {
565         return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain);
566 }
567
568 static u16 wait_for_lock(struct xc5000_priv *priv)
569 {
570         u16 lock_state = 0;
571         int watch_dog_count = 40;
572
573         while ((lock_state == 0) && (watch_dog_count > 0)) {
574                 xc_get_lock_status(priv, &lock_state);
575                 if (lock_state != 1) {
576                         msleep(5);
577                         watch_dog_count--;
578                 }
579         }
580         return lock_state;
581 }
582
583 #define XC_TUNE_ANALOG  0
584 #define XC_TUNE_DIGITAL 1
585 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
586 {
587         int found = 0;
588
589         dprintk(1, "%s(%u)\n", __func__, freq_hz);
590
591         if (xc_set_rf_frequency(priv, freq_hz) != 0)
592                 return 0;
593
594         if (mode == XC_TUNE_ANALOG) {
595                 if (wait_for_lock(priv) == 1)
596                         found = 1;
597         }
598
599         return found;
600 }
601
602 static int xc_set_xtal(struct dvb_frontend *fe)
603 {
604         struct xc5000_priv *priv = fe->tuner_priv;
605         int ret = 0;
606
607         switch (priv->chip_id) {
608         default:
609         case XC5000A:
610                 /* 32.000 MHz xtal is default */
611                 break;
612         case XC5000C:
613                 switch (priv->xtal_khz) {
614                 default:
615                 case 32000:
616                         /* 32.000 MHz xtal is default */
617                         break;
618                 case 31875:
619                         /* 31.875 MHz xtal configuration */
620                         ret = xc_write_reg(priv, 0x000f, 0x8081);
621                         break;
622                 }
623                 break;
624         }
625         return ret;
626 }
627
628 static int xc5000_fwupload(struct dvb_frontend *fe,
629                            const struct xc5000_fw_cfg *desired_fw,
630                            const struct firmware *fw)
631 {
632         struct xc5000_priv *priv = fe->tuner_priv;
633         int ret;
634
635         /* request the firmware, this will block and timeout */
636         dprintk(1, "waiting for firmware upload (%s)...\n",
637                 desired_fw->name);
638
639         priv->pll_register_no = desired_fw->pll_reg;
640         priv->init_status_supported = desired_fw->init_status_supported;
641         priv->fw_checksum_supported = desired_fw->fw_checksum_supported;
642
643
644         dprintk(1, "firmware uploading...\n");
645         ret = xc_load_i2c_sequence(fe,  fw->data);
646         if (!ret) {
647                 ret = xc_set_xtal(fe);
648                 dprintk(1, "Firmware upload complete...\n");
649         } else
650                 printk(KERN_ERR "xc5000: firmware upload failed...\n");
651
652         return ret;
653 }
654
655 static void xc_debug_dump(struct xc5000_priv *priv)
656 {
657         u16 adc_envelope;
658         u32 freq_error_hz = 0;
659         u16 lock_status;
660         u32 hsync_freq_hz = 0;
661         u16 frame_lines;
662         u16 quality;
663         u16 snr;
664         u16 totalgain;
665         u8 hw_majorversion = 0, hw_minorversion = 0;
666         u8 fw_majorversion = 0, fw_minorversion = 0;
667         u16 fw_buildversion = 0;
668         u16 regval;
669
670         /* Wait for stats to stabilize.
671          * Frame Lines needs two frame times after initial lock
672          * before it is valid.
673          */
674         msleep(100);
675
676         xc_get_adc_envelope(priv,  &adc_envelope);
677         dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
678
679         xc_get_frequency_error(priv, &freq_error_hz);
680         dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
681
682         xc_get_lock_status(priv,  &lock_status);
683         dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
684                 lock_status);
685
686         xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
687                 &fw_majorversion, &fw_minorversion);
688         xc_get_buildversion(priv,  &fw_buildversion);
689         dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n",
690                 hw_majorversion, hw_minorversion,
691                 fw_majorversion, fw_minorversion, fw_buildversion);
692
693         xc_get_hsync_freq(priv,  &hsync_freq_hz);
694         dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
695
696         xc_get_frame_lines(priv,  &frame_lines);
697         dprintk(1, "*** Frame lines = %d\n", frame_lines);
698
699         xc_get_quality(priv,  &quality);
700         dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07);
701
702         xc_get_analogsnr(priv,  &snr);
703         dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f);
704
705         xc_get_totalgain(priv,  &totalgain);
706         dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256,
707                 (totalgain % 256) * 100 / 256);
708
709         if (priv->pll_register_no) {
710                 xc5000_readreg(priv, priv->pll_register_no, &regval);
711                 dprintk(1, "*** PLL lock status = 0x%04x\n", regval);
712         }
713 }
714
715 static int xc5000_tune_digital(struct dvb_frontend *fe)
716 {
717         struct xc5000_priv *priv = fe->tuner_priv;
718         int ret;
719         u32 bw = fe->dtv_property_cache.bandwidth_hz;
720
721         ret = xc_set_signal_source(priv, priv->rf_mode);
722         if (ret != 0) {
723                 printk(KERN_ERR
724                         "xc5000: xc_set_signal_source(%d) failed\n",
725                         priv->rf_mode);
726                 return -EREMOTEIO;
727         }
728
729         ret = xc_set_tv_standard(priv,
730                 xc5000_standard[priv->video_standard].video_mode,
731                 xc5000_standard[priv->video_standard].audio_mode, 0);
732         if (ret != 0) {
733                 printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
734                 return -EREMOTEIO;
735         }
736
737         ret = xc_set_IF_frequency(priv, priv->if_khz);
738         if (ret != 0) {
739                 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
740                        priv->if_khz);
741                 return -EIO;
742         }
743
744         dprintk(1, "%s() setting OUTPUT_AMP to 0x%x\n",
745                 __func__, priv->output_amp);
746         xc_write_reg(priv, XREG_OUTPUT_AMP, priv->output_amp);
747
748         xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
749
750         if (debug)
751                 xc_debug_dump(priv);
752
753         priv->bandwidth = bw;
754
755         return 0;
756 }
757
758 static int xc5000_set_digital_params(struct dvb_frontend *fe)
759 {
760         int b;
761         struct xc5000_priv *priv = fe->tuner_priv;
762         u32 bw = fe->dtv_property_cache.bandwidth_hz;
763         u32 freq = fe->dtv_property_cache.frequency;
764         u32 delsys  = fe->dtv_property_cache.delivery_system;
765
766         if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
767                 dprintk(1, "Unable to load firmware and init tuner\n");
768                 return -EINVAL;
769         }
770
771         dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
772
773         switch (delsys) {
774         case SYS_ATSC:
775                 dprintk(1, "%s() VSB modulation\n", __func__);
776                 priv->rf_mode = XC_RF_MODE_AIR;
777                 priv->freq_offset = 1750000;
778                 priv->video_standard = DTV6;
779                 break;
780         case SYS_DVBC_ANNEX_B:
781                 dprintk(1, "%s() QAM modulation\n", __func__);
782                 priv->rf_mode = XC_RF_MODE_CABLE;
783                 priv->freq_offset = 1750000;
784                 priv->video_standard = DTV6;
785                 break;
786         case SYS_ISDBT:
787                 /* All ISDB-T are currently for 6 MHz bw */
788                 if (!bw)
789                         bw = 6000000;
790                 /* fall to OFDM handling */
791         case SYS_DMBTH:
792         case SYS_DVBT:
793         case SYS_DVBT2:
794                 dprintk(1, "%s() OFDM\n", __func__);
795                 switch (bw) {
796                 case 6000000:
797                         priv->video_standard = DTV6;
798                         priv->freq_offset = 1750000;
799                         break;
800                 case 7000000:
801                         priv->video_standard = DTV7;
802                         priv->freq_offset = 2250000;
803                         break;
804                 case 8000000:
805                         priv->video_standard = DTV8;
806                         priv->freq_offset = 2750000;
807                         break;
808                 default:
809                         printk(KERN_ERR "xc5000 bandwidth not set!\n");
810                         return -EINVAL;
811                 }
812                 priv->rf_mode = XC_RF_MODE_AIR;
813                 break;
814         case SYS_DVBC_ANNEX_A:
815         case SYS_DVBC_ANNEX_C:
816                 dprintk(1, "%s() QAM modulation\n", __func__);
817                 priv->rf_mode = XC_RF_MODE_CABLE;
818                 if (bw <= 6000000) {
819                         priv->video_standard = DTV6;
820                         priv->freq_offset = 1750000;
821                         b = 6;
822                 } else if (bw <= 7000000) {
823                         priv->video_standard = DTV7;
824                         priv->freq_offset = 2250000;
825                         b = 7;
826                 } else {
827                         priv->video_standard = DTV7_8;
828                         priv->freq_offset = 2750000;
829                         b = 8;
830                 }
831                 dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
832                         b, bw);
833                 break;
834         default:
835                 printk(KERN_ERR "xc5000: delivery system is not supported!\n");
836                 return -EINVAL;
837         }
838
839         priv->freq_hz = freq - priv->freq_offset;
840         priv->mode = V4L2_TUNER_DIGITAL_TV;
841
842         dprintk(1, "%s() frequency=%d (compensated to %d)\n",
843                 __func__, freq, priv->freq_hz);
844
845         return xc5000_tune_digital(fe);
846 }
847
848 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
849 {
850         struct xc5000_priv *priv = fe->tuner_priv;
851         int ret;
852         u16 id;
853
854         ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
855         if (ret == 0) {
856                 if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
857                         ret = -ENOENT;
858                 else
859                         ret = 0;
860         }
861
862         dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
863                 ret == 0 ? "True" : "False", id);
864         return ret;
865 }
866
867 static void xc5000_config_tv(struct dvb_frontend *fe,
868                              struct analog_parameters *params)
869 {
870         struct xc5000_priv *priv = fe->tuner_priv;
871
872         dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
873                 __func__, params->frequency);
874
875         /* Fix me: it could be air. */
876         priv->rf_mode = params->mode;
877         if (params->mode > XC_RF_MODE_CABLE)
878                 priv->rf_mode = XC_RF_MODE_CABLE;
879
880         /* params->frequency is in units of 62.5khz */
881         priv->freq_hz = params->frequency * 62500;
882
883         /* FIX ME: Some video standards may have several possible audio
884                    standards. We simply default to one of them here.
885          */
886         if (params->std & V4L2_STD_MN) {
887                 /* default to BTSC audio standard */
888                 priv->video_standard = MN_NTSC_PAL_BTSC;
889                 return;
890         }
891
892         if (params->std & V4L2_STD_PAL_BG) {
893                 /* default to NICAM audio standard */
894                 priv->video_standard = BG_PAL_NICAM;
895                 return;
896         }
897
898         if (params->std & V4L2_STD_PAL_I) {
899                 /* default to NICAM audio standard */
900                 priv->video_standard = I_PAL_NICAM;
901                 return;
902         }
903
904         if (params->std & V4L2_STD_PAL_DK) {
905                 /* default to NICAM audio standard */
906                 priv->video_standard = DK_PAL_NICAM;
907                 return;
908         }
909
910         if (params->std & V4L2_STD_SECAM_DK) {
911                 /* default to A2 DK1 audio standard */
912                 priv->video_standard = DK_SECAM_A2DK1;
913                 return;
914         }
915
916         if (params->std & V4L2_STD_SECAM_L) {
917                 priv->video_standard = L_SECAM_NICAM;
918                 return;
919         }
920
921         if (params->std & V4L2_STD_SECAM_LC) {
922                 priv->video_standard = LC_SECAM_NICAM;
923                 return;
924         }
925 }
926
927 static int xc5000_set_tv_freq(struct dvb_frontend *fe)
928 {
929         struct xc5000_priv *priv = fe->tuner_priv;
930         u16 pll_lock_status;
931         int ret;
932
933 tune_channel:
934         ret = xc_set_signal_source(priv, priv->rf_mode);
935         if (ret != 0) {
936                 printk(KERN_ERR
937                         "xc5000: xc_set_signal_source(%d) failed\n",
938                         priv->rf_mode);
939                 return -EREMOTEIO;
940         }
941
942         ret = xc_set_tv_standard(priv,
943                 xc5000_standard[priv->video_standard].video_mode,
944                 xc5000_standard[priv->video_standard].audio_mode, 0);
945         if (ret != 0) {
946                 printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
947                 return -EREMOTEIO;
948         }
949
950         xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
951
952         xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
953
954         if (debug)
955                 xc_debug_dump(priv);
956
957         if (priv->pll_register_no != 0) {
958                 msleep(20);
959                 xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status);
960                 if (pll_lock_status > 63) {
961                         /* PLL is unlocked, force reload of the firmware */
962                         dprintk(1, "xc5000: PLL not locked (0x%x).  Reloading...\n",
963                                 pll_lock_status);
964                         if (xc_load_fw_and_init_tuner(fe, 1) != 0) {
965                                 printk(KERN_ERR "xc5000: Unable to reload fw\n");
966                                 return -EREMOTEIO;
967                         }
968                         goto tune_channel;
969                 }
970         }
971
972         return 0;
973 }
974
975 static int xc5000_config_radio(struct dvb_frontend *fe,
976                                struct analog_parameters *params)
977
978 {
979         struct xc5000_priv *priv = fe->tuner_priv;
980
981         dprintk(1, "%s() frequency=%d (in units of khz)\n",
982                 __func__, params->frequency);
983
984         if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
985                 dprintk(1, "%s() radio input not configured\n", __func__);
986                 return -EINVAL;
987         }
988
989         priv->freq_hz = params->frequency * 125 / 2;
990         priv->rf_mode = XC_RF_MODE_AIR;
991
992         return 0;
993 }
994
995 static int xc5000_set_radio_freq(struct dvb_frontend *fe)
996 {
997         struct xc5000_priv *priv = fe->tuner_priv;
998         int ret;
999         u8 radio_input;
1000
1001         if (priv->radio_input == XC5000_RADIO_FM1)
1002                 radio_input = FM_RADIO_INPUT1;
1003         else if  (priv->radio_input == XC5000_RADIO_FM2)
1004                 radio_input = FM_RADIO_INPUT2;
1005         else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
1006                 radio_input = FM_RADIO_INPUT1_MONO;
1007         else {
1008                 dprintk(1, "%s() unknown radio input %d\n", __func__,
1009                         priv->radio_input);
1010                 return -EINVAL;
1011         }
1012
1013         ret = xc_set_tv_standard(priv, xc5000_standard[radio_input].video_mode,
1014                                xc5000_standard[radio_input].audio_mode, radio_input);
1015
1016         if (ret != 0) {
1017                 printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
1018                 return -EREMOTEIO;
1019         }
1020
1021         ret = xc_set_signal_source(priv, priv->rf_mode);
1022         if (ret != 0) {
1023                 printk(KERN_ERR
1024                         "xc5000: xc_set_signal_source(%d) failed\n",
1025                         priv->rf_mode);
1026                 return -EREMOTEIO;
1027         }
1028
1029         if ((priv->radio_input == XC5000_RADIO_FM1) ||
1030                                 (priv->radio_input == XC5000_RADIO_FM2))
1031                 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
1032         else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
1033                 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
1034
1035         xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
1036
1037         return 0;
1038 }
1039
1040 static int xc5000_set_params(struct dvb_frontend *fe)
1041 {
1042         struct xc5000_priv *priv = fe->tuner_priv;
1043
1044         if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
1045                 dprintk(1, "Unable to load firmware and init tuner\n");
1046                 return -EINVAL;
1047         }
1048
1049         switch (priv->mode) {
1050         case V4L2_TUNER_RADIO:
1051                 return xc5000_set_radio_freq(fe);
1052         case V4L2_TUNER_ANALOG_TV:
1053                 return xc5000_set_tv_freq(fe);
1054         case V4L2_TUNER_DIGITAL_TV:
1055                 return xc5000_tune_digital(fe);
1056         }
1057
1058         return 0;
1059 }
1060
1061 static int xc5000_set_analog_params(struct dvb_frontend *fe,
1062                              struct analog_parameters *params)
1063 {
1064         struct xc5000_priv *priv = fe->tuner_priv;
1065         int ret;
1066
1067         if (priv->i2c_props.adap == NULL)
1068                 return -EINVAL;
1069
1070         switch (params->mode) {
1071         case V4L2_TUNER_RADIO:
1072                 ret = xc5000_config_radio(fe, params);
1073                 if (ret)
1074                         return ret;
1075                 break;
1076         case V4L2_TUNER_ANALOG_TV:
1077                 xc5000_config_tv(fe, params);
1078                 break;
1079         default:
1080                 break;
1081         }
1082         priv->mode = params->mode;
1083
1084         return xc5000_set_params(fe);
1085 }
1086
1087 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
1088 {
1089         struct xc5000_priv *priv = fe->tuner_priv;
1090         dprintk(1, "%s()\n", __func__);
1091         *freq = priv->freq_hz + priv->freq_offset;
1092         return 0;
1093 }
1094
1095 static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
1096 {
1097         struct xc5000_priv *priv = fe->tuner_priv;
1098         dprintk(1, "%s()\n", __func__);
1099         *freq = priv->if_khz * 1000;
1100         return 0;
1101 }
1102
1103 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
1104 {
1105         struct xc5000_priv *priv = fe->tuner_priv;
1106         dprintk(1, "%s()\n", __func__);
1107
1108         *bw = priv->bandwidth;
1109         return 0;
1110 }
1111
1112 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
1113 {
1114         struct xc5000_priv *priv = fe->tuner_priv;
1115         u16 lock_status = 0;
1116
1117         xc_get_lock_status(priv, &lock_status);
1118
1119         dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
1120
1121         *status = lock_status;
1122
1123         return 0;
1124 }
1125
1126 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force)
1127 {
1128         struct xc5000_priv *priv = fe->tuner_priv;
1129         const struct xc5000_fw_cfg *desired_fw = xc5000_assign_firmware(priv->chip_id);
1130         const struct firmware *fw;
1131         int ret, i;
1132         u16 pll_lock_status;
1133         u16 fw_ck;
1134
1135         cancel_delayed_work(&priv->timer_sleep);
1136
1137         if (!force && xc5000_is_firmware_loaded(fe) == 0)
1138                 return 0;
1139
1140         if (!priv->firmware) {
1141                 ret = request_firmware(&fw, desired_fw->name,
1142                                         priv->i2c_props.adap->dev.parent);
1143                 if (ret) {
1144                         pr_err("xc5000: Upload failed. rc %d\n", ret);
1145                         return ret;
1146                 }
1147                 dprintk(1, "firmware read %zu bytes.\n", fw->size);
1148
1149                 if (fw->size != desired_fw->size) {
1150                         pr_err("xc5000: Firmware file with incorrect size\n");
1151                         release_firmware(fw);
1152                         return -EINVAL;
1153                 }
1154                 priv->firmware = fw;
1155         } else
1156                 fw = priv->firmware;
1157
1158         /* Try up to 5 times to load firmware */
1159         for (i = 0; i < 5; i++) {
1160                 if (i)
1161                         printk(KERN_CONT " - retrying to upload firmware.\n");
1162
1163                 ret = xc5000_fwupload(fe, desired_fw, fw);
1164                 if (ret != 0)
1165                         goto err;
1166
1167                 msleep(20);
1168
1169                 if (priv->fw_checksum_supported) {
1170                         if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)) {
1171                                 printk(KERN_ERR
1172                                        "xc5000: FW checksum reading failed.");
1173                                 continue;
1174                         }
1175
1176                         if (!fw_ck) {
1177                                 printk(KERN_ERR
1178                                        "xc5000: FW checksum failed = 0x%04x.",
1179                                        fw_ck);
1180                                 continue;
1181                         }
1182                 }
1183
1184                 /* Start the tuner self-calibration process */
1185                 ret = xc_initialize(priv);
1186                 if (ret) {
1187                         printk(KERN_ERR "xc5000: Can't request self-calibration.");
1188                         continue;
1189                 }
1190
1191                 /* Wait for calibration to complete.
1192                  * We could continue but XC5000 will clock stretch subsequent
1193                  * I2C transactions until calibration is complete.  This way we
1194                  * don't have to rely on clock stretching working.
1195                  */
1196                 msleep(100);
1197
1198                 if (priv->init_status_supported) {
1199                         if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck)) {
1200                                 printk(KERN_ERR
1201                                        "xc5000: FW failed reading init status.");
1202                                 continue;
1203                         }
1204
1205                         if (!fw_ck) {
1206                                 printk(KERN_ERR
1207                                        "xc5000: FW init status failed = 0x%04x.",
1208                                        fw_ck);
1209                                 continue;
1210                         }
1211                 }
1212
1213                 if (priv->pll_register_no) {
1214                         xc5000_readreg(priv, priv->pll_register_no,
1215                                        &pll_lock_status);
1216                         if (pll_lock_status > 63) {
1217                                 /* PLL is unlocked, force reload of the firmware */
1218                                 printk(KERN_ERR
1219                                        "xc5000: PLL not running after fwload.");
1220                                 continue;
1221                         }
1222                 }
1223
1224                 /* Default to "CABLE" mode */
1225                 ret = xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
1226                 if (!ret)
1227                         break;
1228                 printk(KERN_ERR "xc5000: can't set to cable mode.");
1229         }
1230
1231 err:
1232         if (!ret)
1233                 printk(KERN_INFO "xc5000: Firmware %s loaded and running.\n",
1234                        desired_fw->name);
1235         else
1236                 printk(KERN_CONT " - too many retries. Giving up\n");
1237
1238         return ret;
1239 }
1240
1241 static void xc5000_do_timer_sleep(struct work_struct *timer_sleep)
1242 {
1243         struct xc5000_priv *priv =container_of(timer_sleep, struct xc5000_priv,
1244                                                timer_sleep.work);
1245         struct dvb_frontend *fe = priv->fe;
1246         int ret;
1247
1248         dprintk(1, "%s()\n", __func__);
1249
1250         /* According to Xceive technical support, the "powerdown" register
1251            was removed in newer versions of the firmware.  The "supported"
1252            way to sleep the tuner is to pull the reset pin low for 10ms */
1253         ret = xc5000_tuner_reset(fe);
1254         if (ret != 0)
1255                 printk(KERN_ERR
1256                         "xc5000: %s() unable to shutdown tuner\n",
1257                         __func__);
1258 }
1259
1260 static int xc5000_sleep(struct dvb_frontend *fe)
1261 {
1262         struct xc5000_priv *priv = fe->tuner_priv;
1263
1264         dprintk(1, "%s()\n", __func__);
1265
1266         /* Avoid firmware reload on slow devices */
1267         if (no_poweroff)
1268                 return 0;
1269
1270         schedule_delayed_work(&priv->timer_sleep,
1271                               msecs_to_jiffies(XC5000_SLEEP_TIME));
1272
1273         return 0;
1274 }
1275
1276 static int xc5000_suspend(struct dvb_frontend *fe)
1277 {
1278         struct xc5000_priv *priv = fe->tuner_priv;
1279         int ret;
1280
1281         dprintk(1, "%s()\n", __func__);
1282
1283         cancel_delayed_work(&priv->timer_sleep);
1284
1285         ret = xc5000_tuner_reset(fe);
1286         if (ret != 0)
1287                 printk(KERN_ERR
1288                         "xc5000: %s() unable to shutdown tuner\n",
1289                         __func__);
1290
1291         return 0;
1292 }
1293
1294 static int xc5000_resume(struct dvb_frontend *fe)
1295 {
1296         struct xc5000_priv *priv = fe->tuner_priv;
1297
1298         dprintk(1, "%s()\n", __func__);
1299
1300         /* suspended before firmware is loaded.
1301            Avoid firmware load in resume path. */
1302         if (!priv->firmware)
1303                 return 0;
1304
1305         return xc5000_set_params(fe);
1306 }
1307
1308 static int xc5000_init(struct dvb_frontend *fe)
1309 {
1310         struct xc5000_priv *priv = fe->tuner_priv;
1311         dprintk(1, "%s()\n", __func__);
1312
1313         if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
1314                 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1315                 return -EREMOTEIO;
1316         }
1317
1318         if (debug)
1319                 xc_debug_dump(priv);
1320
1321         return 0;
1322 }
1323
1324 static void xc5000_release(struct dvb_frontend *fe)
1325 {
1326         struct xc5000_priv *priv = fe->tuner_priv;
1327
1328         dprintk(1, "%s()\n", __func__);
1329
1330         mutex_lock(&xc5000_list_mutex);
1331
1332         if (priv) {
1333                 cancel_delayed_work(&priv->timer_sleep);
1334                 if (priv->firmware) {
1335                         release_firmware(priv->firmware);
1336                         priv->firmware = NULL;
1337                 }
1338                 hybrid_tuner_release_state(priv);
1339         }
1340
1341         mutex_unlock(&xc5000_list_mutex);
1342
1343         fe->tuner_priv = NULL;
1344 }
1345
1346 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
1347 {
1348         struct xc5000_priv *priv = fe->tuner_priv;
1349         struct xc5000_config *p = priv_cfg;
1350
1351         dprintk(1, "%s()\n", __func__);
1352
1353         if (p->if_khz)
1354                 priv->if_khz = p->if_khz;
1355
1356         if (p->radio_input)
1357                 priv->radio_input = p->radio_input;
1358
1359         if (p->output_amp)
1360                 priv->output_amp = p->output_amp;
1361
1362         return 0;
1363 }
1364
1365
1366 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1367         .info = {
1368                 .name           = "Xceive XC5000",
1369                 .frequency_min  =    1000000,
1370                 .frequency_max  = 1023000000,
1371                 .frequency_step =      50000,
1372         },
1373
1374         .release           = xc5000_release,
1375         .init              = xc5000_init,
1376         .sleep             = xc5000_sleep,
1377         .suspend           = xc5000_suspend,
1378         .resume            = xc5000_resume,
1379
1380         .set_config        = xc5000_set_config,
1381         .set_params        = xc5000_set_digital_params,
1382         .set_analog_params = xc5000_set_analog_params,
1383         .get_frequency     = xc5000_get_frequency,
1384         .get_if_frequency  = xc5000_get_if_frequency,
1385         .get_bandwidth     = xc5000_get_bandwidth,
1386         .get_status        = xc5000_get_status
1387 };
1388
1389 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1390                                    struct i2c_adapter *i2c,
1391                                    const struct xc5000_config *cfg)
1392 {
1393         struct xc5000_priv *priv = NULL;
1394         int instance;
1395         u16 id = 0;
1396
1397         dprintk(1, "%s(%d-%04x)\n", __func__,
1398                 i2c ? i2c_adapter_id(i2c) : -1,
1399                 cfg ? cfg->i2c_address : -1);
1400
1401         mutex_lock(&xc5000_list_mutex);
1402
1403         instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1404                                               hybrid_tuner_instance_list,
1405                                               i2c, cfg->i2c_address, "xc5000");
1406         switch (instance) {
1407         case 0:
1408                 goto fail;
1409         case 1:
1410                 /* new tuner instance */
1411                 priv->bandwidth = 6000000;
1412                 fe->tuner_priv = priv;
1413                 priv->fe = fe;
1414                 INIT_DELAYED_WORK(&priv->timer_sleep, xc5000_do_timer_sleep);
1415                 break;
1416         default:
1417                 /* existing tuner instance */
1418                 fe->tuner_priv = priv;
1419                 break;
1420         }
1421
1422         if (priv->if_khz == 0) {
1423                 /* If the IF hasn't been set yet, use the value provided by
1424                    the caller (occurs in hybrid devices where the analog
1425                    call to xc5000_attach occurs before the digital side) */
1426                 priv->if_khz = cfg->if_khz;
1427         }
1428
1429         if (priv->xtal_khz == 0)
1430                 priv->xtal_khz = cfg->xtal_khz;
1431
1432         if (priv->radio_input == 0)
1433                 priv->radio_input = cfg->radio_input;
1434
1435         /* don't override chip id if it's already been set
1436            unless explicitly specified */
1437         if ((priv->chip_id == 0) || (cfg->chip_id))
1438                 /* use default chip id if none specified, set to 0 so
1439                    it can be overridden if this is a hybrid driver */
1440                 priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0;
1441
1442         /* don't override output_amp if it's already been set
1443            unless explicitly specified */
1444         if ((priv->output_amp == 0) || (cfg->output_amp))
1445                 /* use default output_amp value if none specified */
1446                 priv->output_amp = (cfg->output_amp) ? cfg->output_amp : 0x8a;
1447
1448         /* Check if firmware has been loaded. It is possible that another
1449            instance of the driver has loaded the firmware.
1450          */
1451         if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
1452                 goto fail;
1453
1454         switch (id) {
1455         case XC_PRODUCT_ID_FW_LOADED:
1456                 printk(KERN_INFO
1457                         "xc5000: Successfully identified at address 0x%02x\n",
1458                         cfg->i2c_address);
1459                 printk(KERN_INFO
1460                         "xc5000: Firmware has been loaded previously\n");
1461                 break;
1462         case XC_PRODUCT_ID_FW_NOT_LOADED:
1463                 printk(KERN_INFO
1464                         "xc5000: Successfully identified at address 0x%02x\n",
1465                         cfg->i2c_address);
1466                 printk(KERN_INFO
1467                         "xc5000: Firmware has not been loaded previously\n");
1468                 break;
1469         default:
1470                 printk(KERN_ERR
1471                         "xc5000: Device not found at addr 0x%02x (0x%x)\n",
1472                         cfg->i2c_address, id);
1473                 goto fail;
1474         }
1475
1476         mutex_unlock(&xc5000_list_mutex);
1477
1478         memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1479                 sizeof(struct dvb_tuner_ops));
1480
1481         return fe;
1482 fail:
1483         mutex_unlock(&xc5000_list_mutex);
1484
1485         xc5000_release(fe);
1486         return NULL;
1487 }
1488 EXPORT_SYMBOL(xc5000_attach);
1489
1490 MODULE_AUTHOR("Steven Toth");
1491 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1492 MODULE_LICENSE("GPL");
1493 MODULE_FIRMWARE(XC5000A_FIRMWARE);
1494 MODULE_FIRMWARE(XC5000C_FIRMWARE);