iwlwifi: mvm: fix an overflow in iwl_mvm_get_signal_strength
[sfrench/cifs-2.6.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95         spin_lock_irq(conf->hash_locks + hash);
96         spin_lock(&conf->device_lock);
97 }
98
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101         spin_unlock(&conf->device_lock);
102         spin_unlock_irq(conf->hash_locks + hash);
103 }
104
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107         int i;
108         local_irq_disable();
109         spin_lock(conf->hash_locks);
110         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112         spin_lock(&conf->device_lock);
113 }
114
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117         int i;
118         spin_unlock(&conf->device_lock);
119         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120                 spin_unlock(conf->hash_locks + i - 1);
121         local_irq_enable();
122 }
123
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135         int sectors = bio_sectors(bio);
136         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137                 return bio->bi_next;
138         else
139                 return NULL;
140 }
141
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149         return (atomic_read(segments) >> 16) & 0xffff;
150 }
151
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155         return atomic_sub_return(1, segments) & 0xffff;
156 }
157
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161         atomic_inc(segments);
162 }
163
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165         unsigned int cnt)
166 {
167         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168         int old, new;
169
170         do {
171                 old = atomic_read(segments);
172                 new = (old & 0xffff) | (cnt << 16);
173         } while (atomic_cmpxchg(segments, old, new) != old);
174 }
175
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179         atomic_set(segments, cnt);
180 }
181
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185         if (sh->ddf_layout)
186                 /* ddf always start from first device */
187                 return 0;
188         /* md starts just after Q block */
189         if (sh->qd_idx == sh->disks - 1)
190                 return 0;
191         else
192                 return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196         disk++;
197         return (disk < raid_disks) ? disk : 0;
198 }
199
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206                              int *count, int syndrome_disks)
207 {
208         int slot = *count;
209
210         if (sh->ddf_layout)
211                 (*count)++;
212         if (idx == sh->pd_idx)
213                 return syndrome_disks;
214         if (idx == sh->qd_idx)
215                 return syndrome_disks + 1;
216         if (!sh->ddf_layout)
217                 (*count)++;
218         return slot;
219 }
220
221 static void return_io(struct bio *return_bi)
222 {
223         struct bio *bi = return_bi;
224         while (bi) {
225
226                 return_bi = bi->bi_next;
227                 bi->bi_next = NULL;
228                 bi->bi_iter.bi_size = 0;
229                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230                                          bi, 0);
231                 bio_endio(bi, 0);
232                 bi = return_bi;
233         }
234 }
235
236 static void print_raid5_conf (struct r5conf *conf);
237
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240         return sh->check_state || sh->reconstruct_state ||
241                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247         struct r5conf *conf = sh->raid_conf;
248         struct r5worker_group *group;
249         int thread_cnt;
250         int i, cpu = sh->cpu;
251
252         if (!cpu_online(cpu)) {
253                 cpu = cpumask_any(cpu_online_mask);
254                 sh->cpu = cpu;
255         }
256
257         if (list_empty(&sh->lru)) {
258                 struct r5worker_group *group;
259                 group = conf->worker_groups + cpu_to_group(cpu);
260                 list_add_tail(&sh->lru, &group->handle_list);
261                 group->stripes_cnt++;
262                 sh->group = group;
263         }
264
265         if (conf->worker_cnt_per_group == 0) {
266                 md_wakeup_thread(conf->mddev->thread);
267                 return;
268         }
269
270         group = conf->worker_groups + cpu_to_group(sh->cpu);
271
272         group->workers[0].working = true;
273         /* at least one worker should run to avoid race */
274         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277         /* wakeup more workers */
278         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279                 if (group->workers[i].working == false) {
280                         group->workers[i].working = true;
281                         queue_work_on(sh->cpu, raid5_wq,
282                                       &group->workers[i].work);
283                         thread_cnt--;
284                 }
285         }
286 }
287
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289                               struct list_head *temp_inactive_list)
290 {
291         BUG_ON(!list_empty(&sh->lru));
292         BUG_ON(atomic_read(&conf->active_stripes)==0);
293         if (test_bit(STRIPE_HANDLE, &sh->state)) {
294                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
296                         list_add_tail(&sh->lru, &conf->delayed_list);
297                         if (atomic_read(&conf->preread_active_stripes)
298                             < IO_THRESHOLD)
299                                 md_wakeup_thread(conf->mddev->thread);
300                 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
301                            sh->bm_seq - conf->seq_write > 0)
302                         list_add_tail(&sh->lru, &conf->bitmap_list);
303                 else {
304                         clear_bit(STRIPE_DELAYED, &sh->state);
305                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
306                         if (conf->worker_cnt_per_group == 0) {
307                                 list_add_tail(&sh->lru, &conf->handle_list);
308                         } else {
309                                 raid5_wakeup_stripe_thread(sh);
310                                 return;
311                         }
312                 }
313                 md_wakeup_thread(conf->mddev->thread);
314         } else {
315                 BUG_ON(stripe_operations_active(sh));
316                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
317                         if (atomic_dec_return(&conf->preread_active_stripes)
318                             < IO_THRESHOLD)
319                                 md_wakeup_thread(conf->mddev->thread);
320                 atomic_dec(&conf->active_stripes);
321                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
322                         list_add_tail(&sh->lru, temp_inactive_list);
323         }
324 }
325
326 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
327                              struct list_head *temp_inactive_list)
328 {
329         if (atomic_dec_and_test(&sh->count))
330                 do_release_stripe(conf, sh, temp_inactive_list);
331 }
332
333 /*
334  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
335  *
336  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
337  * given time. Adding stripes only takes device lock, while deleting stripes
338  * only takes hash lock.
339  */
340 static void release_inactive_stripe_list(struct r5conf *conf,
341                                          struct list_head *temp_inactive_list,
342                                          int hash)
343 {
344         int size;
345         bool do_wakeup = false;
346         unsigned long flags;
347
348         if (hash == NR_STRIPE_HASH_LOCKS) {
349                 size = NR_STRIPE_HASH_LOCKS;
350                 hash = NR_STRIPE_HASH_LOCKS - 1;
351         } else
352                 size = 1;
353         while (size) {
354                 struct list_head *list = &temp_inactive_list[size - 1];
355
356                 /*
357                  * We don't hold any lock here yet, get_active_stripe() might
358                  * remove stripes from the list
359                  */
360                 if (!list_empty_careful(list)) {
361                         spin_lock_irqsave(conf->hash_locks + hash, flags);
362                         if (list_empty(conf->inactive_list + hash) &&
363                             !list_empty(list))
364                                 atomic_dec(&conf->empty_inactive_list_nr);
365                         list_splice_tail_init(list, conf->inactive_list + hash);
366                         do_wakeup = true;
367                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
368                 }
369                 size--;
370                 hash--;
371         }
372
373         if (do_wakeup) {
374                 wake_up(&conf->wait_for_stripe);
375                 if (conf->retry_read_aligned)
376                         md_wakeup_thread(conf->mddev->thread);
377         }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382                                struct list_head *temp_inactive_list)
383 {
384         struct stripe_head *sh;
385         int count = 0;
386         struct llist_node *head;
387
388         head = llist_del_all(&conf->released_stripes);
389         head = llist_reverse_order(head);
390         while (head) {
391                 int hash;
392
393                 sh = llist_entry(head, struct stripe_head, release_list);
394                 head = llist_next(head);
395                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396                 smp_mb();
397                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398                 /*
399                  * Don't worry the bit is set here, because if the bit is set
400                  * again, the count is always > 1. This is true for
401                  * STRIPE_ON_UNPLUG_LIST bit too.
402                  */
403                 hash = sh->hash_lock_index;
404                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405                 count++;
406         }
407
408         return count;
409 }
410
411 static void release_stripe(struct stripe_head *sh)
412 {
413         struct r5conf *conf = sh->raid_conf;
414         unsigned long flags;
415         struct list_head list;
416         int hash;
417         bool wakeup;
418
419         /* Avoid release_list until the last reference.
420          */
421         if (atomic_add_unless(&sh->count, -1, 1))
422                 return;
423
424         if (unlikely(!conf->mddev->thread) ||
425                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426                 goto slow_path;
427         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428         if (wakeup)
429                 md_wakeup_thread(conf->mddev->thread);
430         return;
431 slow_path:
432         local_irq_save(flags);
433         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435                 INIT_LIST_HEAD(&list);
436                 hash = sh->hash_lock_index;
437                 do_release_stripe(conf, sh, &list);
438                 spin_unlock(&conf->device_lock);
439                 release_inactive_stripe_list(conf, &list, hash);
440         }
441         local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446         pr_debug("remove_hash(), stripe %llu\n",
447                 (unsigned long long)sh->sector);
448
449         hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454         struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456         pr_debug("insert_hash(), stripe %llu\n",
457                 (unsigned long long)sh->sector);
458
459         hlist_add_head(&sh->hash, hp);
460 }
461
462
463 /* find an idle stripe, make sure it is unhashed, and return it. */
464 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
465 {
466         struct stripe_head *sh = NULL;
467         struct list_head *first;
468
469         if (list_empty(conf->inactive_list + hash))
470                 goto out;
471         first = (conf->inactive_list + hash)->next;
472         sh = list_entry(first, struct stripe_head, lru);
473         list_del_init(first);
474         remove_hash(sh);
475         atomic_inc(&conf->active_stripes);
476         BUG_ON(hash != sh->hash_lock_index);
477         if (list_empty(conf->inactive_list + hash))
478                 atomic_inc(&conf->empty_inactive_list_nr);
479 out:
480         return sh;
481 }
482
483 static void shrink_buffers(struct stripe_head *sh)
484 {
485         struct page *p;
486         int i;
487         int num = sh->raid_conf->pool_size;
488
489         for (i = 0; i < num ; i++) {
490                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
491                 p = sh->dev[i].page;
492                 if (!p)
493                         continue;
494                 sh->dev[i].page = NULL;
495                 put_page(p);
496         }
497 }
498
499 static int grow_buffers(struct stripe_head *sh)
500 {
501         int i;
502         int num = sh->raid_conf->pool_size;
503
504         for (i = 0; i < num; i++) {
505                 struct page *page;
506
507                 if (!(page = alloc_page(GFP_KERNEL))) {
508                         return 1;
509                 }
510                 sh->dev[i].page = page;
511                 sh->dev[i].orig_page = page;
512         }
513         return 0;
514 }
515
516 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
517 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
518                             struct stripe_head *sh);
519
520 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
521 {
522         struct r5conf *conf = sh->raid_conf;
523         int i, seq;
524
525         BUG_ON(atomic_read(&sh->count) != 0);
526         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
527         BUG_ON(stripe_operations_active(sh));
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sh->sector);
531
532         remove_hash(sh);
533 retry:
534         seq = read_seqcount_begin(&conf->gen_lock);
535         sh->generation = conf->generation - previous;
536         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537         sh->sector = sector;
538         stripe_set_idx(sector, conf, previous, sh);
539         sh->state = 0;
540
541
542         for (i = sh->disks; i--; ) {
543                 struct r5dev *dev = &sh->dev[i];
544
545                 if (dev->toread || dev->read || dev->towrite || dev->written ||
546                     test_bit(R5_LOCKED, &dev->flags)) {
547                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
548                                (unsigned long long)sh->sector, i, dev->toread,
549                                dev->read, dev->towrite, dev->written,
550                                test_bit(R5_LOCKED, &dev->flags));
551                         WARN_ON(1);
552                 }
553                 dev->flags = 0;
554                 raid5_build_block(sh, i, previous);
555         }
556         if (read_seqcount_retry(&conf->gen_lock, seq))
557                 goto retry;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560 }
561
562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
563                                          short generation)
564 {
565         struct stripe_head *sh;
566
567         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
568         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
569                 if (sh->sector == sector && sh->generation == generation)
570                         return sh;
571         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
572         return NULL;
573 }
574
575 /*
576  * Need to check if array has failed when deciding whether to:
577  *  - start an array
578  *  - remove non-faulty devices
579  *  - add a spare
580  *  - allow a reshape
581  * This determination is simple when no reshape is happening.
582  * However if there is a reshape, we need to carefully check
583  * both the before and after sections.
584  * This is because some failed devices may only affect one
585  * of the two sections, and some non-in_sync devices may
586  * be insync in the section most affected by failed devices.
587  */
588 static int calc_degraded(struct r5conf *conf)
589 {
590         int degraded, degraded2;
591         int i;
592
593         rcu_read_lock();
594         degraded = 0;
595         for (i = 0; i < conf->previous_raid_disks; i++) {
596                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
597                 if (rdev && test_bit(Faulty, &rdev->flags))
598                         rdev = rcu_dereference(conf->disks[i].replacement);
599                 if (!rdev || test_bit(Faulty, &rdev->flags))
600                         degraded++;
601                 else if (test_bit(In_sync, &rdev->flags))
602                         ;
603                 else
604                         /* not in-sync or faulty.
605                          * If the reshape increases the number of devices,
606                          * this is being recovered by the reshape, so
607                          * this 'previous' section is not in_sync.
608                          * If the number of devices is being reduced however,
609                          * the device can only be part of the array if
610                          * we are reverting a reshape, so this section will
611                          * be in-sync.
612                          */
613                         if (conf->raid_disks >= conf->previous_raid_disks)
614                                 degraded++;
615         }
616         rcu_read_unlock();
617         if (conf->raid_disks == conf->previous_raid_disks)
618                 return degraded;
619         rcu_read_lock();
620         degraded2 = 0;
621         for (i = 0; i < conf->raid_disks; i++) {
622                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
623                 if (rdev && test_bit(Faulty, &rdev->flags))
624                         rdev = rcu_dereference(conf->disks[i].replacement);
625                 if (!rdev || test_bit(Faulty, &rdev->flags))
626                         degraded2++;
627                 else if (test_bit(In_sync, &rdev->flags))
628                         ;
629                 else
630                         /* not in-sync or faulty.
631                          * If reshape increases the number of devices, this
632                          * section has already been recovered, else it
633                          * almost certainly hasn't.
634                          */
635                         if (conf->raid_disks <= conf->previous_raid_disks)
636                                 degraded2++;
637         }
638         rcu_read_unlock();
639         if (degraded2 > degraded)
640                 return degraded2;
641         return degraded;
642 }
643
644 static int has_failed(struct r5conf *conf)
645 {
646         int degraded;
647
648         if (conf->mddev->reshape_position == MaxSector)
649                 return conf->mddev->degraded > conf->max_degraded;
650
651         degraded = calc_degraded(conf);
652         if (degraded > conf->max_degraded)
653                 return 1;
654         return 0;
655 }
656
657 static struct stripe_head *
658 get_active_stripe(struct r5conf *conf, sector_t sector,
659                   int previous, int noblock, int noquiesce)
660 {
661         struct stripe_head *sh;
662         int hash = stripe_hash_locks_hash(sector);
663
664         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665
666         spin_lock_irq(conf->hash_locks + hash);
667
668         do {
669                 wait_event_lock_irq(conf->wait_for_stripe,
670                                     conf->quiesce == 0 || noquiesce,
671                                     *(conf->hash_locks + hash));
672                 sh = __find_stripe(conf, sector, conf->generation - previous);
673                 if (!sh) {
674                         if (!conf->inactive_blocked)
675                                 sh = get_free_stripe(conf, hash);
676                         if (noblock && sh == NULL)
677                                 break;
678                         if (!sh) {
679                                 conf->inactive_blocked = 1;
680                                 wait_event_lock_irq(
681                                         conf->wait_for_stripe,
682                                         !list_empty(conf->inactive_list + hash) &&
683                                         (atomic_read(&conf->active_stripes)
684                                          < (conf->max_nr_stripes * 3 / 4)
685                                          || !conf->inactive_blocked),
686                                         *(conf->hash_locks + hash));
687                                 conf->inactive_blocked = 0;
688                         } else {
689                                 init_stripe(sh, sector, previous);
690                                 atomic_inc(&sh->count);
691                         }
692                 } else if (!atomic_inc_not_zero(&sh->count)) {
693                         spin_lock(&conf->device_lock);
694                         if (!atomic_read(&sh->count)) {
695                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
696                                         atomic_inc(&conf->active_stripes);
697                                 BUG_ON(list_empty(&sh->lru) &&
698                                        !test_bit(STRIPE_EXPANDING, &sh->state));
699                                 list_del_init(&sh->lru);
700                                 if (sh->group) {
701                                         sh->group->stripes_cnt--;
702                                         sh->group = NULL;
703                                 }
704                         }
705                         atomic_inc(&sh->count);
706                         spin_unlock(&conf->device_lock);
707                 }
708         } while (sh == NULL);
709
710         spin_unlock_irq(conf->hash_locks + hash);
711         return sh;
712 }
713
714 /* Determine if 'data_offset' or 'new_data_offset' should be used
715  * in this stripe_head.
716  */
717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
718 {
719         sector_t progress = conf->reshape_progress;
720         /* Need a memory barrier to make sure we see the value
721          * of conf->generation, or ->data_offset that was set before
722          * reshape_progress was updated.
723          */
724         smp_rmb();
725         if (progress == MaxSector)
726                 return 0;
727         if (sh->generation == conf->generation - 1)
728                 return 0;
729         /* We are in a reshape, and this is a new-generation stripe,
730          * so use new_data_offset.
731          */
732         return 1;
733 }
734
735 static void
736 raid5_end_read_request(struct bio *bi, int error);
737 static void
738 raid5_end_write_request(struct bio *bi, int error);
739
740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
741 {
742         struct r5conf *conf = sh->raid_conf;
743         int i, disks = sh->disks;
744
745         might_sleep();
746
747         for (i = disks; i--; ) {
748                 int rw;
749                 int replace_only = 0;
750                 struct bio *bi, *rbi;
751                 struct md_rdev *rdev, *rrdev = NULL;
752                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
753                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
754                                 rw = WRITE_FUA;
755                         else
756                                 rw = WRITE;
757                         if (test_bit(R5_Discard, &sh->dev[i].flags))
758                                 rw |= REQ_DISCARD;
759                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
760                         rw = READ;
761                 else if (test_and_clear_bit(R5_WantReplace,
762                                             &sh->dev[i].flags)) {
763                         rw = WRITE;
764                         replace_only = 1;
765                 } else
766                         continue;
767                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
768                         rw |= REQ_SYNC;
769
770                 bi = &sh->dev[i].req;
771                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
772
773                 rcu_read_lock();
774                 rrdev = rcu_dereference(conf->disks[i].replacement);
775                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
776                 rdev = rcu_dereference(conf->disks[i].rdev);
777                 if (!rdev) {
778                         rdev = rrdev;
779                         rrdev = NULL;
780                 }
781                 if (rw & WRITE) {
782                         if (replace_only)
783                                 rdev = NULL;
784                         if (rdev == rrdev)
785                                 /* We raced and saw duplicates */
786                                 rrdev = NULL;
787                 } else {
788                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
789                                 rdev = rrdev;
790                         rrdev = NULL;
791                 }
792
793                 if (rdev && test_bit(Faulty, &rdev->flags))
794                         rdev = NULL;
795                 if (rdev)
796                         atomic_inc(&rdev->nr_pending);
797                 if (rrdev && test_bit(Faulty, &rrdev->flags))
798                         rrdev = NULL;
799                 if (rrdev)
800                         atomic_inc(&rrdev->nr_pending);
801                 rcu_read_unlock();
802
803                 /* We have already checked bad blocks for reads.  Now
804                  * need to check for writes.  We never accept write errors
805                  * on the replacement, so we don't to check rrdev.
806                  */
807                 while ((rw & WRITE) && rdev &&
808                        test_bit(WriteErrorSeen, &rdev->flags)) {
809                         sector_t first_bad;
810                         int bad_sectors;
811                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
812                                               &first_bad, &bad_sectors);
813                         if (!bad)
814                                 break;
815
816                         if (bad < 0) {
817                                 set_bit(BlockedBadBlocks, &rdev->flags);
818                                 if (!conf->mddev->external &&
819                                     conf->mddev->flags) {
820                                         /* It is very unlikely, but we might
821                                          * still need to write out the
822                                          * bad block log - better give it
823                                          * a chance*/
824                                         md_check_recovery(conf->mddev);
825                                 }
826                                 /*
827                                  * Because md_wait_for_blocked_rdev
828                                  * will dec nr_pending, we must
829                                  * increment it first.
830                                  */
831                                 atomic_inc(&rdev->nr_pending);
832                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
833                         } else {
834                                 /* Acknowledged bad block - skip the write */
835                                 rdev_dec_pending(rdev, conf->mddev);
836                                 rdev = NULL;
837                         }
838                 }
839
840                 if (rdev) {
841                         if (s->syncing || s->expanding || s->expanded
842                             || s->replacing)
843                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
844
845                         set_bit(STRIPE_IO_STARTED, &sh->state);
846
847                         bio_reset(bi);
848                         bi->bi_bdev = rdev->bdev;
849                         bi->bi_rw = rw;
850                         bi->bi_end_io = (rw & WRITE)
851                                 ? raid5_end_write_request
852                                 : raid5_end_read_request;
853                         bi->bi_private = sh;
854
855                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
856                                 __func__, (unsigned long long)sh->sector,
857                                 bi->bi_rw, i);
858                         atomic_inc(&sh->count);
859                         if (use_new_offset(conf, sh))
860                                 bi->bi_iter.bi_sector = (sh->sector
861                                                  + rdev->new_data_offset);
862                         else
863                                 bi->bi_iter.bi_sector = (sh->sector
864                                                  + rdev->data_offset);
865                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
866                                 bi->bi_rw |= REQ_NOMERGE;
867
868                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
869                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
870                         sh->dev[i].vec.bv_page = sh->dev[i].page;
871                         bi->bi_vcnt = 1;
872                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
873                         bi->bi_io_vec[0].bv_offset = 0;
874                         bi->bi_iter.bi_size = STRIPE_SIZE;
875                         /*
876                          * If this is discard request, set bi_vcnt 0. We don't
877                          * want to confuse SCSI because SCSI will replace payload
878                          */
879                         if (rw & REQ_DISCARD)
880                                 bi->bi_vcnt = 0;
881                         if (rrdev)
882                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
883
884                         if (conf->mddev->gendisk)
885                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
886                                                       bi, disk_devt(conf->mddev->gendisk),
887                                                       sh->dev[i].sector);
888                         generic_make_request(bi);
889                 }
890                 if (rrdev) {
891                         if (s->syncing || s->expanding || s->expanded
892                             || s->replacing)
893                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
894
895                         set_bit(STRIPE_IO_STARTED, &sh->state);
896
897                         bio_reset(rbi);
898                         rbi->bi_bdev = rrdev->bdev;
899                         rbi->bi_rw = rw;
900                         BUG_ON(!(rw & WRITE));
901                         rbi->bi_end_io = raid5_end_write_request;
902                         rbi->bi_private = sh;
903
904                         pr_debug("%s: for %llu schedule op %ld on "
905                                  "replacement disc %d\n",
906                                 __func__, (unsigned long long)sh->sector,
907                                 rbi->bi_rw, i);
908                         atomic_inc(&sh->count);
909                         if (use_new_offset(conf, sh))
910                                 rbi->bi_iter.bi_sector = (sh->sector
911                                                   + rrdev->new_data_offset);
912                         else
913                                 rbi->bi_iter.bi_sector = (sh->sector
914                                                   + rrdev->data_offset);
915                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
916                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
917                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
918                         rbi->bi_vcnt = 1;
919                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
920                         rbi->bi_io_vec[0].bv_offset = 0;
921                         rbi->bi_iter.bi_size = STRIPE_SIZE;
922                         /*
923                          * If this is discard request, set bi_vcnt 0. We don't
924                          * want to confuse SCSI because SCSI will replace payload
925                          */
926                         if (rw & REQ_DISCARD)
927                                 rbi->bi_vcnt = 0;
928                         if (conf->mddev->gendisk)
929                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
930                                                       rbi, disk_devt(conf->mddev->gendisk),
931                                                       sh->dev[i].sector);
932                         generic_make_request(rbi);
933                 }
934                 if (!rdev && !rrdev) {
935                         if (rw & WRITE)
936                                 set_bit(STRIPE_DEGRADED, &sh->state);
937                         pr_debug("skip op %ld on disc %d for sector %llu\n",
938                                 bi->bi_rw, i, (unsigned long long)sh->sector);
939                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
940                         set_bit(STRIPE_HANDLE, &sh->state);
941                 }
942         }
943 }
944
945 static struct dma_async_tx_descriptor *
946 async_copy_data(int frombio, struct bio *bio, struct page **page,
947         sector_t sector, struct dma_async_tx_descriptor *tx,
948         struct stripe_head *sh)
949 {
950         struct bio_vec bvl;
951         struct bvec_iter iter;
952         struct page *bio_page;
953         int page_offset;
954         struct async_submit_ctl submit;
955         enum async_tx_flags flags = 0;
956
957         if (bio->bi_iter.bi_sector >= sector)
958                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
959         else
960                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
961
962         if (frombio)
963                 flags |= ASYNC_TX_FENCE;
964         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
965
966         bio_for_each_segment(bvl, bio, iter) {
967                 int len = bvl.bv_len;
968                 int clen;
969                 int b_offset = 0;
970
971                 if (page_offset < 0) {
972                         b_offset = -page_offset;
973                         page_offset += b_offset;
974                         len -= b_offset;
975                 }
976
977                 if (len > 0 && page_offset + len > STRIPE_SIZE)
978                         clen = STRIPE_SIZE - page_offset;
979                 else
980                         clen = len;
981
982                 if (clen > 0) {
983                         b_offset += bvl.bv_offset;
984                         bio_page = bvl.bv_page;
985                         if (frombio) {
986                                 if (sh->raid_conf->skip_copy &&
987                                     b_offset == 0 && page_offset == 0 &&
988                                     clen == STRIPE_SIZE)
989                                         *page = bio_page;
990                                 else
991                                         tx = async_memcpy(*page, bio_page, page_offset,
992                                                   b_offset, clen, &submit);
993                         } else
994                                 tx = async_memcpy(bio_page, *page, b_offset,
995                                                   page_offset, clen, &submit);
996                 }
997                 /* chain the operations */
998                 submit.depend_tx = tx;
999
1000                 if (clen < len) /* hit end of page */
1001                         break;
1002                 page_offset +=  len;
1003         }
1004
1005         return tx;
1006 }
1007
1008 static void ops_complete_biofill(void *stripe_head_ref)
1009 {
1010         struct stripe_head *sh = stripe_head_ref;
1011         struct bio *return_bi = NULL;
1012         int i;
1013
1014         pr_debug("%s: stripe %llu\n", __func__,
1015                 (unsigned long long)sh->sector);
1016
1017         /* clear completed biofills */
1018         for (i = sh->disks; i--; ) {
1019                 struct r5dev *dev = &sh->dev[i];
1020
1021                 /* acknowledge completion of a biofill operation */
1022                 /* and check if we need to reply to a read request,
1023                  * new R5_Wantfill requests are held off until
1024                  * !STRIPE_BIOFILL_RUN
1025                  */
1026                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027                         struct bio *rbi, *rbi2;
1028
1029                         BUG_ON(!dev->read);
1030                         rbi = dev->read;
1031                         dev->read = NULL;
1032                         while (rbi && rbi->bi_iter.bi_sector <
1033                                 dev->sector + STRIPE_SECTORS) {
1034                                 rbi2 = r5_next_bio(rbi, dev->sector);
1035                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1036                                         rbi->bi_next = return_bi;
1037                                         return_bi = rbi;
1038                                 }
1039                                 rbi = rbi2;
1040                         }
1041                 }
1042         }
1043         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1044
1045         return_io(return_bi);
1046
1047         set_bit(STRIPE_HANDLE, &sh->state);
1048         release_stripe(sh);
1049 }
1050
1051 static void ops_run_biofill(struct stripe_head *sh)
1052 {
1053         struct dma_async_tx_descriptor *tx = NULL;
1054         struct async_submit_ctl submit;
1055         int i;
1056
1057         pr_debug("%s: stripe %llu\n", __func__,
1058                 (unsigned long long)sh->sector);
1059
1060         for (i = sh->disks; i--; ) {
1061                 struct r5dev *dev = &sh->dev[i];
1062                 if (test_bit(R5_Wantfill, &dev->flags)) {
1063                         struct bio *rbi;
1064                         spin_lock_irq(&sh->stripe_lock);
1065                         dev->read = rbi = dev->toread;
1066                         dev->toread = NULL;
1067                         spin_unlock_irq(&sh->stripe_lock);
1068                         while (rbi && rbi->bi_iter.bi_sector <
1069                                 dev->sector + STRIPE_SECTORS) {
1070                                 tx = async_copy_data(0, rbi, &dev->page,
1071                                         dev->sector, tx, sh);
1072                                 rbi = r5_next_bio(rbi, dev->sector);
1073                         }
1074                 }
1075         }
1076
1077         atomic_inc(&sh->count);
1078         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079         async_trigger_callback(&submit);
1080 }
1081
1082 static void mark_target_uptodate(struct stripe_head *sh, int target)
1083 {
1084         struct r5dev *tgt;
1085
1086         if (target < 0)
1087                 return;
1088
1089         tgt = &sh->dev[target];
1090         set_bit(R5_UPTODATE, &tgt->flags);
1091         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092         clear_bit(R5_Wantcompute, &tgt->flags);
1093 }
1094
1095 static void ops_complete_compute(void *stripe_head_ref)
1096 {
1097         struct stripe_head *sh = stripe_head_ref;
1098
1099         pr_debug("%s: stripe %llu\n", __func__,
1100                 (unsigned long long)sh->sector);
1101
1102         /* mark the computed target(s) as uptodate */
1103         mark_target_uptodate(sh, sh->ops.target);
1104         mark_target_uptodate(sh, sh->ops.target2);
1105
1106         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107         if (sh->check_state == check_state_compute_run)
1108                 sh->check_state = check_state_compute_result;
1109         set_bit(STRIPE_HANDLE, &sh->state);
1110         release_stripe(sh);
1111 }
1112
1113 /* return a pointer to the address conversion region of the scribble buffer */
1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115                                  struct raid5_percpu *percpu)
1116 {
1117         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1118 }
1119
1120 static struct dma_async_tx_descriptor *
1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1122 {
1123         int disks = sh->disks;
1124         struct page **xor_srcs = percpu->scribble;
1125         int target = sh->ops.target;
1126         struct r5dev *tgt = &sh->dev[target];
1127         struct page *xor_dest = tgt->page;
1128         int count = 0;
1129         struct dma_async_tx_descriptor *tx;
1130         struct async_submit_ctl submit;
1131         int i;
1132
1133         pr_debug("%s: stripe %llu block: %d\n",
1134                 __func__, (unsigned long long)sh->sector, target);
1135         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1136
1137         for (i = disks; i--; )
1138                 if (i != target)
1139                         xor_srcs[count++] = sh->dev[i].page;
1140
1141         atomic_inc(&sh->count);
1142
1143         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145         if (unlikely(count == 1))
1146                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1147         else
1148                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1149
1150         return tx;
1151 }
1152
1153 /* set_syndrome_sources - populate source buffers for gen_syndrome
1154  * @srcs - (struct page *) array of size sh->disks
1155  * @sh - stripe_head to parse
1156  *
1157  * Populates srcs in proper layout order for the stripe and returns the
1158  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1159  * destination buffer is recorded in srcs[count] and the Q destination
1160  * is recorded in srcs[count+1]].
1161  */
1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1163 {
1164         int disks = sh->disks;
1165         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166         int d0_idx = raid6_d0(sh);
1167         int count;
1168         int i;
1169
1170         for (i = 0; i < disks; i++)
1171                 srcs[i] = NULL;
1172
1173         count = 0;
1174         i = d0_idx;
1175         do {
1176                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1177
1178                 srcs[slot] = sh->dev[i].page;
1179                 i = raid6_next_disk(i, disks);
1180         } while (i != d0_idx);
1181
1182         return syndrome_disks;
1183 }
1184
1185 static struct dma_async_tx_descriptor *
1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1187 {
1188         int disks = sh->disks;
1189         struct page **blocks = percpu->scribble;
1190         int target;
1191         int qd_idx = sh->qd_idx;
1192         struct dma_async_tx_descriptor *tx;
1193         struct async_submit_ctl submit;
1194         struct r5dev *tgt;
1195         struct page *dest;
1196         int i;
1197         int count;
1198
1199         if (sh->ops.target < 0)
1200                 target = sh->ops.target2;
1201         else if (sh->ops.target2 < 0)
1202                 target = sh->ops.target;
1203         else
1204                 /* we should only have one valid target */
1205                 BUG();
1206         BUG_ON(target < 0);
1207         pr_debug("%s: stripe %llu block: %d\n",
1208                 __func__, (unsigned long long)sh->sector, target);
1209
1210         tgt = &sh->dev[target];
1211         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1212         dest = tgt->page;
1213
1214         atomic_inc(&sh->count);
1215
1216         if (target == qd_idx) {
1217                 count = set_syndrome_sources(blocks, sh);
1218                 blocks[count] = NULL; /* regenerating p is not necessary */
1219                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221                                   ops_complete_compute, sh,
1222                                   to_addr_conv(sh, percpu));
1223                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1224         } else {
1225                 /* Compute any data- or p-drive using XOR */
1226                 count = 0;
1227                 for (i = disks; i-- ; ) {
1228                         if (i == target || i == qd_idx)
1229                                 continue;
1230                         blocks[count++] = sh->dev[i].page;
1231                 }
1232
1233                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234                                   NULL, ops_complete_compute, sh,
1235                                   to_addr_conv(sh, percpu));
1236                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1237         }
1238
1239         return tx;
1240 }
1241
1242 static struct dma_async_tx_descriptor *
1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1244 {
1245         int i, count, disks = sh->disks;
1246         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247         int d0_idx = raid6_d0(sh);
1248         int faila = -1, failb = -1;
1249         int target = sh->ops.target;
1250         int target2 = sh->ops.target2;
1251         struct r5dev *tgt = &sh->dev[target];
1252         struct r5dev *tgt2 = &sh->dev[target2];
1253         struct dma_async_tx_descriptor *tx;
1254         struct page **blocks = percpu->scribble;
1255         struct async_submit_ctl submit;
1256
1257         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258                  __func__, (unsigned long long)sh->sector, target, target2);
1259         BUG_ON(target < 0 || target2 < 0);
1260         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1262
1263         /* we need to open-code set_syndrome_sources to handle the
1264          * slot number conversion for 'faila' and 'failb'
1265          */
1266         for (i = 0; i < disks ; i++)
1267                 blocks[i] = NULL;
1268         count = 0;
1269         i = d0_idx;
1270         do {
1271                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1272
1273                 blocks[slot] = sh->dev[i].page;
1274
1275                 if (i == target)
1276                         faila = slot;
1277                 if (i == target2)
1278                         failb = slot;
1279                 i = raid6_next_disk(i, disks);
1280         } while (i != d0_idx);
1281
1282         BUG_ON(faila == failb);
1283         if (failb < faila)
1284                 swap(faila, failb);
1285         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286                  __func__, (unsigned long long)sh->sector, faila, failb);
1287
1288         atomic_inc(&sh->count);
1289
1290         if (failb == syndrome_disks+1) {
1291                 /* Q disk is one of the missing disks */
1292                 if (faila == syndrome_disks) {
1293                         /* Missing P+Q, just recompute */
1294                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295                                           ops_complete_compute, sh,
1296                                           to_addr_conv(sh, percpu));
1297                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298                                                   STRIPE_SIZE, &submit);
1299                 } else {
1300                         struct page *dest;
1301                         int data_target;
1302                         int qd_idx = sh->qd_idx;
1303
1304                         /* Missing D+Q: recompute D from P, then recompute Q */
1305                         if (target == qd_idx)
1306                                 data_target = target2;
1307                         else
1308                                 data_target = target;
1309
1310                         count = 0;
1311                         for (i = disks; i-- ; ) {
1312                                 if (i == data_target || i == qd_idx)
1313                                         continue;
1314                                 blocks[count++] = sh->dev[i].page;
1315                         }
1316                         dest = sh->dev[data_target].page;
1317                         init_async_submit(&submit,
1318                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1319                                           NULL, NULL, NULL,
1320                                           to_addr_conv(sh, percpu));
1321                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1322                                        &submit);
1323
1324                         count = set_syndrome_sources(blocks, sh);
1325                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326                                           ops_complete_compute, sh,
1327                                           to_addr_conv(sh, percpu));
1328                         return async_gen_syndrome(blocks, 0, count+2,
1329                                                   STRIPE_SIZE, &submit);
1330                 }
1331         } else {
1332                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333                                   ops_complete_compute, sh,
1334                                   to_addr_conv(sh, percpu));
1335                 if (failb == syndrome_disks) {
1336                         /* We're missing D+P. */
1337                         return async_raid6_datap_recov(syndrome_disks+2,
1338                                                        STRIPE_SIZE, faila,
1339                                                        blocks, &submit);
1340                 } else {
1341                         /* We're missing D+D. */
1342                         return async_raid6_2data_recov(syndrome_disks+2,
1343                                                        STRIPE_SIZE, faila, failb,
1344                                                        blocks, &submit);
1345                 }
1346         }
1347 }
1348
1349
1350 static void ops_complete_prexor(void *stripe_head_ref)
1351 {
1352         struct stripe_head *sh = stripe_head_ref;
1353
1354         pr_debug("%s: stripe %llu\n", __func__,
1355                 (unsigned long long)sh->sector);
1356 }
1357
1358 static struct dma_async_tx_descriptor *
1359 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1360                struct dma_async_tx_descriptor *tx)
1361 {
1362         int disks = sh->disks;
1363         struct page **xor_srcs = percpu->scribble;
1364         int count = 0, pd_idx = sh->pd_idx, i;
1365         struct async_submit_ctl submit;
1366
1367         /* existing parity data subtracted */
1368         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1369
1370         pr_debug("%s: stripe %llu\n", __func__,
1371                 (unsigned long long)sh->sector);
1372
1373         for (i = disks; i--; ) {
1374                 struct r5dev *dev = &sh->dev[i];
1375                 /* Only process blocks that are known to be uptodate */
1376                 if (test_bit(R5_Wantdrain, &dev->flags))
1377                         xor_srcs[count++] = dev->page;
1378         }
1379
1380         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1381                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1382         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1383
1384         return tx;
1385 }
1386
1387 static struct dma_async_tx_descriptor *
1388 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1389 {
1390         int disks = sh->disks;
1391         int i;
1392
1393         pr_debug("%s: stripe %llu\n", __func__,
1394                 (unsigned long long)sh->sector);
1395
1396         for (i = disks; i--; ) {
1397                 struct r5dev *dev = &sh->dev[i];
1398                 struct bio *chosen;
1399
1400                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1401                         struct bio *wbi;
1402
1403                         spin_lock_irq(&sh->stripe_lock);
1404                         chosen = dev->towrite;
1405                         dev->towrite = NULL;
1406                         BUG_ON(dev->written);
1407                         wbi = dev->written = chosen;
1408                         spin_unlock_irq(&sh->stripe_lock);
1409                         WARN_ON(dev->page != dev->orig_page);
1410
1411                         while (wbi && wbi->bi_iter.bi_sector <
1412                                 dev->sector + STRIPE_SECTORS) {
1413                                 if (wbi->bi_rw & REQ_FUA)
1414                                         set_bit(R5_WantFUA, &dev->flags);
1415                                 if (wbi->bi_rw & REQ_SYNC)
1416                                         set_bit(R5_SyncIO, &dev->flags);
1417                                 if (wbi->bi_rw & REQ_DISCARD)
1418                                         set_bit(R5_Discard, &dev->flags);
1419                                 else {
1420                                         tx = async_copy_data(1, wbi, &dev->page,
1421                                                 dev->sector, tx, sh);
1422                                         if (dev->page != dev->orig_page) {
1423                                                 set_bit(R5_SkipCopy, &dev->flags);
1424                                                 clear_bit(R5_UPTODATE, &dev->flags);
1425                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1426                                         }
1427                                 }
1428                                 wbi = r5_next_bio(wbi, dev->sector);
1429                         }
1430                 }
1431         }
1432
1433         return tx;
1434 }
1435
1436 static void ops_complete_reconstruct(void *stripe_head_ref)
1437 {
1438         struct stripe_head *sh = stripe_head_ref;
1439         int disks = sh->disks;
1440         int pd_idx = sh->pd_idx;
1441         int qd_idx = sh->qd_idx;
1442         int i;
1443         bool fua = false, sync = false, discard = false;
1444
1445         pr_debug("%s: stripe %llu\n", __func__,
1446                 (unsigned long long)sh->sector);
1447
1448         for (i = disks; i--; ) {
1449                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1450                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1451                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1452         }
1453
1454         for (i = disks; i--; ) {
1455                 struct r5dev *dev = &sh->dev[i];
1456
1457                 if (dev->written || i == pd_idx || i == qd_idx) {
1458                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1459                                 set_bit(R5_UPTODATE, &dev->flags);
1460                         if (fua)
1461                                 set_bit(R5_WantFUA, &dev->flags);
1462                         if (sync)
1463                                 set_bit(R5_SyncIO, &dev->flags);
1464                 }
1465         }
1466
1467         if (sh->reconstruct_state == reconstruct_state_drain_run)
1468                 sh->reconstruct_state = reconstruct_state_drain_result;
1469         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1470                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1471         else {
1472                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1473                 sh->reconstruct_state = reconstruct_state_result;
1474         }
1475
1476         set_bit(STRIPE_HANDLE, &sh->state);
1477         release_stripe(sh);
1478 }
1479
1480 static void
1481 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1482                      struct dma_async_tx_descriptor *tx)
1483 {
1484         int disks = sh->disks;
1485         struct page **xor_srcs = percpu->scribble;
1486         struct async_submit_ctl submit;
1487         int count = 0, pd_idx = sh->pd_idx, i;
1488         struct page *xor_dest;
1489         int prexor = 0;
1490         unsigned long flags;
1491
1492         pr_debug("%s: stripe %llu\n", __func__,
1493                 (unsigned long long)sh->sector);
1494
1495         for (i = 0; i < sh->disks; i++) {
1496                 if (pd_idx == i)
1497                         continue;
1498                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1499                         break;
1500         }
1501         if (i >= sh->disks) {
1502                 atomic_inc(&sh->count);
1503                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1504                 ops_complete_reconstruct(sh);
1505                 return;
1506         }
1507         /* check if prexor is active which means only process blocks
1508          * that are part of a read-modify-write (written)
1509          */
1510         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1511                 prexor = 1;
1512                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1513                 for (i = disks; i--; ) {
1514                         struct r5dev *dev = &sh->dev[i];
1515                         if (dev->written)
1516                                 xor_srcs[count++] = dev->page;
1517                 }
1518         } else {
1519                 xor_dest = sh->dev[pd_idx].page;
1520                 for (i = disks; i--; ) {
1521                         struct r5dev *dev = &sh->dev[i];
1522                         if (i != pd_idx)
1523                                 xor_srcs[count++] = dev->page;
1524                 }
1525         }
1526
1527         /* 1/ if we prexor'd then the dest is reused as a source
1528          * 2/ if we did not prexor then we are redoing the parity
1529          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1530          * for the synchronous xor case
1531          */
1532         flags = ASYNC_TX_ACK |
1533                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1534
1535         atomic_inc(&sh->count);
1536
1537         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1538                           to_addr_conv(sh, percpu));
1539         if (unlikely(count == 1))
1540                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1541         else
1542                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1543 }
1544
1545 static void
1546 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1547                      struct dma_async_tx_descriptor *tx)
1548 {
1549         struct async_submit_ctl submit;
1550         struct page **blocks = percpu->scribble;
1551         int count, i;
1552
1553         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1554
1555         for (i = 0; i < sh->disks; i++) {
1556                 if (sh->pd_idx == i || sh->qd_idx == i)
1557                         continue;
1558                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1559                         break;
1560         }
1561         if (i >= sh->disks) {
1562                 atomic_inc(&sh->count);
1563                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1564                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1565                 ops_complete_reconstruct(sh);
1566                 return;
1567         }
1568
1569         count = set_syndrome_sources(blocks, sh);
1570
1571         atomic_inc(&sh->count);
1572
1573         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1574                           sh, to_addr_conv(sh, percpu));
1575         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1576 }
1577
1578 static void ops_complete_check(void *stripe_head_ref)
1579 {
1580         struct stripe_head *sh = stripe_head_ref;
1581
1582         pr_debug("%s: stripe %llu\n", __func__,
1583                 (unsigned long long)sh->sector);
1584
1585         sh->check_state = check_state_check_result;
1586         set_bit(STRIPE_HANDLE, &sh->state);
1587         release_stripe(sh);
1588 }
1589
1590 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1591 {
1592         int disks = sh->disks;
1593         int pd_idx = sh->pd_idx;
1594         int qd_idx = sh->qd_idx;
1595         struct page *xor_dest;
1596         struct page **xor_srcs = percpu->scribble;
1597         struct dma_async_tx_descriptor *tx;
1598         struct async_submit_ctl submit;
1599         int count;
1600         int i;
1601
1602         pr_debug("%s: stripe %llu\n", __func__,
1603                 (unsigned long long)sh->sector);
1604
1605         count = 0;
1606         xor_dest = sh->dev[pd_idx].page;
1607         xor_srcs[count++] = xor_dest;
1608         for (i = disks; i--; ) {
1609                 if (i == pd_idx || i == qd_idx)
1610                         continue;
1611                 xor_srcs[count++] = sh->dev[i].page;
1612         }
1613
1614         init_async_submit(&submit, 0, NULL, NULL, NULL,
1615                           to_addr_conv(sh, percpu));
1616         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1617                            &sh->ops.zero_sum_result, &submit);
1618
1619         atomic_inc(&sh->count);
1620         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1621         tx = async_trigger_callback(&submit);
1622 }
1623
1624 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1625 {
1626         struct page **srcs = percpu->scribble;
1627         struct async_submit_ctl submit;
1628         int count;
1629
1630         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1631                 (unsigned long long)sh->sector, checkp);
1632
1633         count = set_syndrome_sources(srcs, sh);
1634         if (!checkp)
1635                 srcs[count] = NULL;
1636
1637         atomic_inc(&sh->count);
1638         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1639                           sh, to_addr_conv(sh, percpu));
1640         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1641                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1642 }
1643
1644 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1645 {
1646         int overlap_clear = 0, i, disks = sh->disks;
1647         struct dma_async_tx_descriptor *tx = NULL;
1648         struct r5conf *conf = sh->raid_conf;
1649         int level = conf->level;
1650         struct raid5_percpu *percpu;
1651         unsigned long cpu;
1652
1653         cpu = get_cpu();
1654         percpu = per_cpu_ptr(conf->percpu, cpu);
1655         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1656                 ops_run_biofill(sh);
1657                 overlap_clear++;
1658         }
1659
1660         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1661                 if (level < 6)
1662                         tx = ops_run_compute5(sh, percpu);
1663                 else {
1664                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1665                                 tx = ops_run_compute6_1(sh, percpu);
1666                         else
1667                                 tx = ops_run_compute6_2(sh, percpu);
1668                 }
1669                 /* terminate the chain if reconstruct is not set to be run */
1670                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1671                         async_tx_ack(tx);
1672         }
1673
1674         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1675                 tx = ops_run_prexor(sh, percpu, tx);
1676
1677         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1678                 tx = ops_run_biodrain(sh, tx);
1679                 overlap_clear++;
1680         }
1681
1682         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1683                 if (level < 6)
1684                         ops_run_reconstruct5(sh, percpu, tx);
1685                 else
1686                         ops_run_reconstruct6(sh, percpu, tx);
1687         }
1688
1689         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1690                 if (sh->check_state == check_state_run)
1691                         ops_run_check_p(sh, percpu);
1692                 else if (sh->check_state == check_state_run_q)
1693                         ops_run_check_pq(sh, percpu, 0);
1694                 else if (sh->check_state == check_state_run_pq)
1695                         ops_run_check_pq(sh, percpu, 1);
1696                 else
1697                         BUG();
1698         }
1699
1700         if (overlap_clear)
1701                 for (i = disks; i--; ) {
1702                         struct r5dev *dev = &sh->dev[i];
1703                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1704                                 wake_up(&sh->raid_conf->wait_for_overlap);
1705                 }
1706         put_cpu();
1707 }
1708
1709 static int grow_one_stripe(struct r5conf *conf, int hash)
1710 {
1711         struct stripe_head *sh;
1712         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1713         if (!sh)
1714                 return 0;
1715
1716         sh->raid_conf = conf;
1717
1718         spin_lock_init(&sh->stripe_lock);
1719
1720         if (grow_buffers(sh)) {
1721                 shrink_buffers(sh);
1722                 kmem_cache_free(conf->slab_cache, sh);
1723                 return 0;
1724         }
1725         sh->hash_lock_index = hash;
1726         /* we just created an active stripe so... */
1727         atomic_set(&sh->count, 1);
1728         atomic_inc(&conf->active_stripes);
1729         INIT_LIST_HEAD(&sh->lru);
1730         release_stripe(sh);
1731         return 1;
1732 }
1733
1734 static int grow_stripes(struct r5conf *conf, int num)
1735 {
1736         struct kmem_cache *sc;
1737         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1738         int hash;
1739
1740         if (conf->mddev->gendisk)
1741                 sprintf(conf->cache_name[0],
1742                         "raid%d-%s", conf->level, mdname(conf->mddev));
1743         else
1744                 sprintf(conf->cache_name[0],
1745                         "raid%d-%p", conf->level, conf->mddev);
1746         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1747
1748         conf->active_name = 0;
1749         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1750                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1751                                0, 0, NULL);
1752         if (!sc)
1753                 return 1;
1754         conf->slab_cache = sc;
1755         conf->pool_size = devs;
1756         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1757         while (num--) {
1758                 if (!grow_one_stripe(conf, hash))
1759                         return 1;
1760                 conf->max_nr_stripes++;
1761                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1762         }
1763         return 0;
1764 }
1765
1766 /**
1767  * scribble_len - return the required size of the scribble region
1768  * @num - total number of disks in the array
1769  *
1770  * The size must be enough to contain:
1771  * 1/ a struct page pointer for each device in the array +2
1772  * 2/ room to convert each entry in (1) to its corresponding dma
1773  *    (dma_map_page()) or page (page_address()) address.
1774  *
1775  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1776  * calculate over all devices (not just the data blocks), using zeros in place
1777  * of the P and Q blocks.
1778  */
1779 static size_t scribble_len(int num)
1780 {
1781         size_t len;
1782
1783         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1784
1785         return len;
1786 }
1787
1788 static int resize_stripes(struct r5conf *conf, int newsize)
1789 {
1790         /* Make all the stripes able to hold 'newsize' devices.
1791          * New slots in each stripe get 'page' set to a new page.
1792          *
1793          * This happens in stages:
1794          * 1/ create a new kmem_cache and allocate the required number of
1795          *    stripe_heads.
1796          * 2/ gather all the old stripe_heads and transfer the pages across
1797          *    to the new stripe_heads.  This will have the side effect of
1798          *    freezing the array as once all stripe_heads have been collected,
1799          *    no IO will be possible.  Old stripe heads are freed once their
1800          *    pages have been transferred over, and the old kmem_cache is
1801          *    freed when all stripes are done.
1802          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1803          *    we simple return a failre status - no need to clean anything up.
1804          * 4/ allocate new pages for the new slots in the new stripe_heads.
1805          *    If this fails, we don't bother trying the shrink the
1806          *    stripe_heads down again, we just leave them as they are.
1807          *    As each stripe_head is processed the new one is released into
1808          *    active service.
1809          *
1810          * Once step2 is started, we cannot afford to wait for a write,
1811          * so we use GFP_NOIO allocations.
1812          */
1813         struct stripe_head *osh, *nsh;
1814         LIST_HEAD(newstripes);
1815         struct disk_info *ndisks;
1816         unsigned long cpu;
1817         int err;
1818         struct kmem_cache *sc;
1819         int i;
1820         int hash, cnt;
1821
1822         if (newsize <= conf->pool_size)
1823                 return 0; /* never bother to shrink */
1824
1825         err = md_allow_write(conf->mddev);
1826         if (err)
1827                 return err;
1828
1829         /* Step 1 */
1830         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1831                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1832                                0, 0, NULL);
1833         if (!sc)
1834                 return -ENOMEM;
1835
1836         for (i = conf->max_nr_stripes; i; i--) {
1837                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1838                 if (!nsh)
1839                         break;
1840
1841                 nsh->raid_conf = conf;
1842                 spin_lock_init(&nsh->stripe_lock);
1843
1844                 list_add(&nsh->lru, &newstripes);
1845         }
1846         if (i) {
1847                 /* didn't get enough, give up */
1848                 while (!list_empty(&newstripes)) {
1849                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1850                         list_del(&nsh->lru);
1851                         kmem_cache_free(sc, nsh);
1852                 }
1853                 kmem_cache_destroy(sc);
1854                 return -ENOMEM;
1855         }
1856         /* Step 2 - Must use GFP_NOIO now.
1857          * OK, we have enough stripes, start collecting inactive
1858          * stripes and copying them over
1859          */
1860         hash = 0;
1861         cnt = 0;
1862         list_for_each_entry(nsh, &newstripes, lru) {
1863                 lock_device_hash_lock(conf, hash);
1864                 wait_event_cmd(conf->wait_for_stripe,
1865                                     !list_empty(conf->inactive_list + hash),
1866                                     unlock_device_hash_lock(conf, hash),
1867                                     lock_device_hash_lock(conf, hash));
1868                 osh = get_free_stripe(conf, hash);
1869                 unlock_device_hash_lock(conf, hash);
1870                 atomic_set(&nsh->count, 1);
1871                 for(i=0; i<conf->pool_size; i++) {
1872                         nsh->dev[i].page = osh->dev[i].page;
1873                         nsh->dev[i].orig_page = osh->dev[i].page;
1874                 }
1875                 for( ; i<newsize; i++)
1876                         nsh->dev[i].page = NULL;
1877                 nsh->hash_lock_index = hash;
1878                 kmem_cache_free(conf->slab_cache, osh);
1879                 cnt++;
1880                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1881                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1882                         hash++;
1883                         cnt = 0;
1884                 }
1885         }
1886         kmem_cache_destroy(conf->slab_cache);
1887
1888         /* Step 3.
1889          * At this point, we are holding all the stripes so the array
1890          * is completely stalled, so now is a good time to resize
1891          * conf->disks and the scribble region
1892          */
1893         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1894         if (ndisks) {
1895                 for (i=0; i<conf->raid_disks; i++)
1896                         ndisks[i] = conf->disks[i];
1897                 kfree(conf->disks);
1898                 conf->disks = ndisks;
1899         } else
1900                 err = -ENOMEM;
1901
1902         get_online_cpus();
1903         conf->scribble_len = scribble_len(newsize);
1904         for_each_present_cpu(cpu) {
1905                 struct raid5_percpu *percpu;
1906                 void *scribble;
1907
1908                 percpu = per_cpu_ptr(conf->percpu, cpu);
1909                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1910
1911                 if (scribble) {
1912                         kfree(percpu->scribble);
1913                         percpu->scribble = scribble;
1914                 } else {
1915                         err = -ENOMEM;
1916                         break;
1917                 }
1918         }
1919         put_online_cpus();
1920
1921         /* Step 4, return new stripes to service */
1922         while(!list_empty(&newstripes)) {
1923                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1924                 list_del_init(&nsh->lru);
1925
1926                 for (i=conf->raid_disks; i < newsize; i++)
1927                         if (nsh->dev[i].page == NULL) {
1928                                 struct page *p = alloc_page(GFP_NOIO);
1929                                 nsh->dev[i].page = p;
1930                                 nsh->dev[i].orig_page = p;
1931                                 if (!p)
1932                                         err = -ENOMEM;
1933                         }
1934                 release_stripe(nsh);
1935         }
1936         /* critical section pass, GFP_NOIO no longer needed */
1937
1938         conf->slab_cache = sc;
1939         conf->active_name = 1-conf->active_name;
1940         conf->pool_size = newsize;
1941         return err;
1942 }
1943
1944 static int drop_one_stripe(struct r5conf *conf, int hash)
1945 {
1946         struct stripe_head *sh;
1947
1948         spin_lock_irq(conf->hash_locks + hash);
1949         sh = get_free_stripe(conf, hash);
1950         spin_unlock_irq(conf->hash_locks + hash);
1951         if (!sh)
1952                 return 0;
1953         BUG_ON(atomic_read(&sh->count));
1954         shrink_buffers(sh);
1955         kmem_cache_free(conf->slab_cache, sh);
1956         atomic_dec(&conf->active_stripes);
1957         return 1;
1958 }
1959
1960 static void shrink_stripes(struct r5conf *conf)
1961 {
1962         int hash;
1963         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1964                 while (drop_one_stripe(conf, hash))
1965                         ;
1966
1967         if (conf->slab_cache)
1968                 kmem_cache_destroy(conf->slab_cache);
1969         conf->slab_cache = NULL;
1970 }
1971
1972 static void raid5_end_read_request(struct bio * bi, int error)
1973 {
1974         struct stripe_head *sh = bi->bi_private;
1975         struct r5conf *conf = sh->raid_conf;
1976         int disks = sh->disks, i;
1977         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1978         char b[BDEVNAME_SIZE];
1979         struct md_rdev *rdev = NULL;
1980         sector_t s;
1981
1982         for (i=0 ; i<disks; i++)
1983                 if (bi == &sh->dev[i].req)
1984                         break;
1985
1986         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1987                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1988                 uptodate);
1989         if (i == disks) {
1990                 BUG();
1991                 return;
1992         }
1993         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1994                 /* If replacement finished while this request was outstanding,
1995                  * 'replacement' might be NULL already.
1996                  * In that case it moved down to 'rdev'.
1997                  * rdev is not removed until all requests are finished.
1998                  */
1999                 rdev = conf->disks[i].replacement;
2000         if (!rdev)
2001                 rdev = conf->disks[i].rdev;
2002
2003         if (use_new_offset(conf, sh))
2004                 s = sh->sector + rdev->new_data_offset;
2005         else
2006                 s = sh->sector + rdev->data_offset;
2007         if (uptodate) {
2008                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2009                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2010                         /* Note that this cannot happen on a
2011                          * replacement device.  We just fail those on
2012                          * any error
2013                          */
2014                         printk_ratelimited(
2015                                 KERN_INFO
2016                                 "md/raid:%s: read error corrected"
2017                                 " (%lu sectors at %llu on %s)\n",
2018                                 mdname(conf->mddev), STRIPE_SECTORS,
2019                                 (unsigned long long)s,
2020                                 bdevname(rdev->bdev, b));
2021                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2022                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2023                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2024                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2025                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2026
2027                 if (atomic_read(&rdev->read_errors))
2028                         atomic_set(&rdev->read_errors, 0);
2029         } else {
2030                 const char *bdn = bdevname(rdev->bdev, b);
2031                 int retry = 0;
2032                 int set_bad = 0;
2033
2034                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2035                 atomic_inc(&rdev->read_errors);
2036                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2037                         printk_ratelimited(
2038                                 KERN_WARNING
2039                                 "md/raid:%s: read error on replacement device "
2040                                 "(sector %llu on %s).\n",
2041                                 mdname(conf->mddev),
2042                                 (unsigned long long)s,
2043                                 bdn);
2044                 else if (conf->mddev->degraded >= conf->max_degraded) {
2045                         set_bad = 1;
2046                         printk_ratelimited(
2047                                 KERN_WARNING
2048                                 "md/raid:%s: read error not correctable "
2049                                 "(sector %llu on %s).\n",
2050                                 mdname(conf->mddev),
2051                                 (unsigned long long)s,
2052                                 bdn);
2053                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2054                         /* Oh, no!!! */
2055                         set_bad = 1;
2056                         printk_ratelimited(
2057                                 KERN_WARNING
2058                                 "md/raid:%s: read error NOT corrected!! "
2059                                 "(sector %llu on %s).\n",
2060                                 mdname(conf->mddev),
2061                                 (unsigned long long)s,
2062                                 bdn);
2063                 } else if (atomic_read(&rdev->read_errors)
2064                          > conf->max_nr_stripes)
2065                         printk(KERN_WARNING
2066                                "md/raid:%s: Too many read errors, failing device %s.\n",
2067                                mdname(conf->mddev), bdn);
2068                 else
2069                         retry = 1;
2070                 if (set_bad && test_bit(In_sync, &rdev->flags)
2071                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2072                         retry = 1;
2073                 if (retry)
2074                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2075                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2076                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2077                         } else
2078                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2079                 else {
2080                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2081                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2082                         if (!(set_bad
2083                               && test_bit(In_sync, &rdev->flags)
2084                               && rdev_set_badblocks(
2085                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2086                                 md_error(conf->mddev, rdev);
2087                 }
2088         }
2089         rdev_dec_pending(rdev, conf->mddev);
2090         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2091         set_bit(STRIPE_HANDLE, &sh->state);
2092         release_stripe(sh);
2093 }
2094
2095 static void raid5_end_write_request(struct bio *bi, int error)
2096 {
2097         struct stripe_head *sh = bi->bi_private;
2098         struct r5conf *conf = sh->raid_conf;
2099         int disks = sh->disks, i;
2100         struct md_rdev *uninitialized_var(rdev);
2101         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2102         sector_t first_bad;
2103         int bad_sectors;
2104         int replacement = 0;
2105
2106         for (i = 0 ; i < disks; i++) {
2107                 if (bi == &sh->dev[i].req) {
2108                         rdev = conf->disks[i].rdev;
2109                         break;
2110                 }
2111                 if (bi == &sh->dev[i].rreq) {
2112                         rdev = conf->disks[i].replacement;
2113                         if (rdev)
2114                                 replacement = 1;
2115                         else
2116                                 /* rdev was removed and 'replacement'
2117                                  * replaced it.  rdev is not removed
2118                                  * until all requests are finished.
2119                                  */
2120                                 rdev = conf->disks[i].rdev;
2121                         break;
2122                 }
2123         }
2124         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2125                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2126                 uptodate);
2127         if (i == disks) {
2128                 BUG();
2129                 return;
2130         }
2131
2132         if (replacement) {
2133                 if (!uptodate)
2134                         md_error(conf->mddev, rdev);
2135                 else if (is_badblock(rdev, sh->sector,
2136                                      STRIPE_SECTORS,
2137                                      &first_bad, &bad_sectors))
2138                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2139         } else {
2140                 if (!uptodate) {
2141                         set_bit(STRIPE_DEGRADED, &sh->state);
2142                         set_bit(WriteErrorSeen, &rdev->flags);
2143                         set_bit(R5_WriteError, &sh->dev[i].flags);
2144                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2145                                 set_bit(MD_RECOVERY_NEEDED,
2146                                         &rdev->mddev->recovery);
2147                 } else if (is_badblock(rdev, sh->sector,
2148                                        STRIPE_SECTORS,
2149                                        &first_bad, &bad_sectors)) {
2150                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2151                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2152                                 /* That was a successful write so make
2153                                  * sure it looks like we already did
2154                                  * a re-write.
2155                                  */
2156                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2157                 }
2158         }
2159         rdev_dec_pending(rdev, conf->mddev);
2160
2161         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2162                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2163         set_bit(STRIPE_HANDLE, &sh->state);
2164         release_stripe(sh);
2165 }
2166
2167 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2168
2169 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2170 {
2171         struct r5dev *dev = &sh->dev[i];
2172
2173         bio_init(&dev->req);
2174         dev->req.bi_io_vec = &dev->vec;
2175         dev->req.bi_max_vecs = 1;
2176         dev->req.bi_private = sh;
2177
2178         bio_init(&dev->rreq);
2179         dev->rreq.bi_io_vec = &dev->rvec;
2180         dev->rreq.bi_max_vecs = 1;
2181         dev->rreq.bi_private = sh;
2182
2183         dev->flags = 0;
2184         dev->sector = compute_blocknr(sh, i, previous);
2185 }
2186
2187 static void error(struct mddev *mddev, struct md_rdev *rdev)
2188 {
2189         char b[BDEVNAME_SIZE];
2190         struct r5conf *conf = mddev->private;
2191         unsigned long flags;
2192         pr_debug("raid456: error called\n");
2193
2194         spin_lock_irqsave(&conf->device_lock, flags);
2195         clear_bit(In_sync, &rdev->flags);
2196         mddev->degraded = calc_degraded(conf);
2197         spin_unlock_irqrestore(&conf->device_lock, flags);
2198         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2199
2200         set_bit(Blocked, &rdev->flags);
2201         set_bit(Faulty, &rdev->flags);
2202         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2203         printk(KERN_ALERT
2204                "md/raid:%s: Disk failure on %s, disabling device.\n"
2205                "md/raid:%s: Operation continuing on %d devices.\n",
2206                mdname(mddev),
2207                bdevname(rdev->bdev, b),
2208                mdname(mddev),
2209                conf->raid_disks - mddev->degraded);
2210 }
2211
2212 /*
2213  * Input: a 'big' sector number,
2214  * Output: index of the data and parity disk, and the sector # in them.
2215  */
2216 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2217                                      int previous, int *dd_idx,
2218                                      struct stripe_head *sh)
2219 {
2220         sector_t stripe, stripe2;
2221         sector_t chunk_number;
2222         unsigned int chunk_offset;
2223         int pd_idx, qd_idx;
2224         int ddf_layout = 0;
2225         sector_t new_sector;
2226         int algorithm = previous ? conf->prev_algo
2227                                  : conf->algorithm;
2228         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2229                                          : conf->chunk_sectors;
2230         int raid_disks = previous ? conf->previous_raid_disks
2231                                   : conf->raid_disks;
2232         int data_disks = raid_disks - conf->max_degraded;
2233
2234         /* First compute the information on this sector */
2235
2236         /*
2237          * Compute the chunk number and the sector offset inside the chunk
2238          */
2239         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2240         chunk_number = r_sector;
2241
2242         /*
2243          * Compute the stripe number
2244          */
2245         stripe = chunk_number;
2246         *dd_idx = sector_div(stripe, data_disks);
2247         stripe2 = stripe;
2248         /*
2249          * Select the parity disk based on the user selected algorithm.
2250          */
2251         pd_idx = qd_idx = -1;
2252         switch(conf->level) {
2253         case 4:
2254                 pd_idx = data_disks;
2255                 break;
2256         case 5:
2257                 switch (algorithm) {
2258                 case ALGORITHM_LEFT_ASYMMETRIC:
2259                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2260                         if (*dd_idx >= pd_idx)
2261                                 (*dd_idx)++;
2262                         break;
2263                 case ALGORITHM_RIGHT_ASYMMETRIC:
2264                         pd_idx = sector_div(stripe2, raid_disks);
2265                         if (*dd_idx >= pd_idx)
2266                                 (*dd_idx)++;
2267                         break;
2268                 case ALGORITHM_LEFT_SYMMETRIC:
2269                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2270                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2271                         break;
2272                 case ALGORITHM_RIGHT_SYMMETRIC:
2273                         pd_idx = sector_div(stripe2, raid_disks);
2274                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2275                         break;
2276                 case ALGORITHM_PARITY_0:
2277                         pd_idx = 0;
2278                         (*dd_idx)++;
2279                         break;
2280                 case ALGORITHM_PARITY_N:
2281                         pd_idx = data_disks;
2282                         break;
2283                 default:
2284                         BUG();
2285                 }
2286                 break;
2287         case 6:
2288
2289                 switch (algorithm) {
2290                 case ALGORITHM_LEFT_ASYMMETRIC:
2291                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2292                         qd_idx = pd_idx + 1;
2293                         if (pd_idx == raid_disks-1) {
2294                                 (*dd_idx)++;    /* Q D D D P */
2295                                 qd_idx = 0;
2296                         } else if (*dd_idx >= pd_idx)
2297                                 (*dd_idx) += 2; /* D D P Q D */
2298                         break;
2299                 case ALGORITHM_RIGHT_ASYMMETRIC:
2300                         pd_idx = sector_div(stripe2, raid_disks);
2301                         qd_idx = pd_idx + 1;
2302                         if (pd_idx == raid_disks-1) {
2303                                 (*dd_idx)++;    /* Q D D D P */
2304                                 qd_idx = 0;
2305                         } else if (*dd_idx >= pd_idx)
2306                                 (*dd_idx) += 2; /* D D P Q D */
2307                         break;
2308                 case ALGORITHM_LEFT_SYMMETRIC:
2309                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2310                         qd_idx = (pd_idx + 1) % raid_disks;
2311                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2312                         break;
2313                 case ALGORITHM_RIGHT_SYMMETRIC:
2314                         pd_idx = sector_div(stripe2, raid_disks);
2315                         qd_idx = (pd_idx + 1) % raid_disks;
2316                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2317                         break;
2318
2319                 case ALGORITHM_PARITY_0:
2320                         pd_idx = 0;
2321                         qd_idx = 1;
2322                         (*dd_idx) += 2;
2323                         break;
2324                 case ALGORITHM_PARITY_N:
2325                         pd_idx = data_disks;
2326                         qd_idx = data_disks + 1;
2327                         break;
2328
2329                 case ALGORITHM_ROTATING_ZERO_RESTART:
2330                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2331                          * of blocks for computing Q is different.
2332                          */
2333                         pd_idx = sector_div(stripe2, raid_disks);
2334                         qd_idx = pd_idx + 1;
2335                         if (pd_idx == raid_disks-1) {
2336                                 (*dd_idx)++;    /* Q D D D P */
2337                                 qd_idx = 0;
2338                         } else if (*dd_idx >= pd_idx)
2339                                 (*dd_idx) += 2; /* D D P Q D */
2340                         ddf_layout = 1;
2341                         break;
2342
2343                 case ALGORITHM_ROTATING_N_RESTART:
2344                         /* Same a left_asymmetric, by first stripe is
2345                          * D D D P Q  rather than
2346                          * Q D D D P
2347                          */
2348                         stripe2 += 1;
2349                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2350                         qd_idx = pd_idx + 1;
2351                         if (pd_idx == raid_disks-1) {
2352                                 (*dd_idx)++;    /* Q D D D P */
2353                                 qd_idx = 0;
2354                         } else if (*dd_idx >= pd_idx)
2355                                 (*dd_idx) += 2; /* D D P Q D */
2356                         ddf_layout = 1;
2357                         break;
2358
2359                 case ALGORITHM_ROTATING_N_CONTINUE:
2360                         /* Same as left_symmetric but Q is before P */
2361                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2362                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2363                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2364                         ddf_layout = 1;
2365                         break;
2366
2367                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2368                         /* RAID5 left_asymmetric, with Q on last device */
2369                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2370                         if (*dd_idx >= pd_idx)
2371                                 (*dd_idx)++;
2372                         qd_idx = raid_disks - 1;
2373                         break;
2374
2375                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2376                         pd_idx = sector_div(stripe2, raid_disks-1);
2377                         if (*dd_idx >= pd_idx)
2378                                 (*dd_idx)++;
2379                         qd_idx = raid_disks - 1;
2380                         break;
2381
2382                 case ALGORITHM_LEFT_SYMMETRIC_6:
2383                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2384                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2385                         qd_idx = raid_disks - 1;
2386                         break;
2387
2388                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2389                         pd_idx = sector_div(stripe2, raid_disks-1);
2390                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2391                         qd_idx = raid_disks - 1;
2392                         break;
2393
2394                 case ALGORITHM_PARITY_0_6:
2395                         pd_idx = 0;
2396                         (*dd_idx)++;
2397                         qd_idx = raid_disks - 1;
2398                         break;
2399
2400                 default:
2401                         BUG();
2402                 }
2403                 break;
2404         }
2405
2406         if (sh) {
2407                 sh->pd_idx = pd_idx;
2408                 sh->qd_idx = qd_idx;
2409                 sh->ddf_layout = ddf_layout;
2410         }
2411         /*
2412          * Finally, compute the new sector number
2413          */
2414         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2415         return new_sector;
2416 }
2417
2418
2419 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2420 {
2421         struct r5conf *conf = sh->raid_conf;
2422         int raid_disks = sh->disks;
2423         int data_disks = raid_disks - conf->max_degraded;
2424         sector_t new_sector = sh->sector, check;
2425         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2426                                          : conf->chunk_sectors;
2427         int algorithm = previous ? conf->prev_algo
2428                                  : conf->algorithm;
2429         sector_t stripe;
2430         int chunk_offset;
2431         sector_t chunk_number;
2432         int dummy1, dd_idx = i;
2433         sector_t r_sector;
2434         struct stripe_head sh2;
2435
2436
2437         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2438         stripe = new_sector;
2439
2440         if (i == sh->pd_idx)
2441                 return 0;
2442         switch(conf->level) {
2443         case 4: break;
2444         case 5:
2445                 switch (algorithm) {
2446                 case ALGORITHM_LEFT_ASYMMETRIC:
2447                 case ALGORITHM_RIGHT_ASYMMETRIC:
2448                         if (i > sh->pd_idx)
2449                                 i--;
2450                         break;
2451                 case ALGORITHM_LEFT_SYMMETRIC:
2452                 case ALGORITHM_RIGHT_SYMMETRIC:
2453                         if (i < sh->pd_idx)
2454                                 i += raid_disks;
2455                         i -= (sh->pd_idx + 1);
2456                         break;
2457                 case ALGORITHM_PARITY_0:
2458                         i -= 1;
2459                         break;
2460                 case ALGORITHM_PARITY_N:
2461                         break;
2462                 default:
2463                         BUG();
2464                 }
2465                 break;
2466         case 6:
2467                 if (i == sh->qd_idx)
2468                         return 0; /* It is the Q disk */
2469                 switch (algorithm) {
2470                 case ALGORITHM_LEFT_ASYMMETRIC:
2471                 case ALGORITHM_RIGHT_ASYMMETRIC:
2472                 case ALGORITHM_ROTATING_ZERO_RESTART:
2473                 case ALGORITHM_ROTATING_N_RESTART:
2474                         if (sh->pd_idx == raid_disks-1)
2475                                 i--;    /* Q D D D P */
2476                         else if (i > sh->pd_idx)
2477                                 i -= 2; /* D D P Q D */
2478                         break;
2479                 case ALGORITHM_LEFT_SYMMETRIC:
2480                 case ALGORITHM_RIGHT_SYMMETRIC:
2481                         if (sh->pd_idx == raid_disks-1)
2482                                 i--; /* Q D D D P */
2483                         else {
2484                                 /* D D P Q D */
2485                                 if (i < sh->pd_idx)
2486                                         i += raid_disks;
2487                                 i -= (sh->pd_idx + 2);
2488                         }
2489                         break;
2490                 case ALGORITHM_PARITY_0:
2491                         i -= 2;
2492                         break;
2493                 case ALGORITHM_PARITY_N:
2494                         break;
2495                 case ALGORITHM_ROTATING_N_CONTINUE:
2496                         /* Like left_symmetric, but P is before Q */
2497                         if (sh->pd_idx == 0)
2498                                 i--;    /* P D D D Q */
2499                         else {
2500                                 /* D D Q P D */
2501                                 if (i < sh->pd_idx)
2502                                         i += raid_disks;
2503                                 i -= (sh->pd_idx + 1);
2504                         }
2505                         break;
2506                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2507                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2508                         if (i > sh->pd_idx)
2509                                 i--;
2510                         break;
2511                 case ALGORITHM_LEFT_SYMMETRIC_6:
2512                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2513                         if (i < sh->pd_idx)
2514                                 i += data_disks + 1;
2515                         i -= (sh->pd_idx + 1);
2516                         break;
2517                 case ALGORITHM_PARITY_0_6:
2518                         i -= 1;
2519                         break;
2520                 default:
2521                         BUG();
2522                 }
2523                 break;
2524         }
2525
2526         chunk_number = stripe * data_disks + i;
2527         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2528
2529         check = raid5_compute_sector(conf, r_sector,
2530                                      previous, &dummy1, &sh2);
2531         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2532                 || sh2.qd_idx != sh->qd_idx) {
2533                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2534                        mdname(conf->mddev));
2535                 return 0;
2536         }
2537         return r_sector;
2538 }
2539
2540
2541 static void
2542 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2543                          int rcw, int expand)
2544 {
2545         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2546         struct r5conf *conf = sh->raid_conf;
2547         int level = conf->level;
2548
2549         if (rcw) {
2550
2551                 for (i = disks; i--; ) {
2552                         struct r5dev *dev = &sh->dev[i];
2553
2554                         if (dev->towrite) {
2555                                 set_bit(R5_LOCKED, &dev->flags);
2556                                 set_bit(R5_Wantdrain, &dev->flags);
2557                                 if (!expand)
2558                                         clear_bit(R5_UPTODATE, &dev->flags);
2559                                 s->locked++;
2560                         }
2561                 }
2562                 /* if we are not expanding this is a proper write request, and
2563                  * there will be bios with new data to be drained into the
2564                  * stripe cache
2565                  */
2566                 if (!expand) {
2567                         if (!s->locked)
2568                                 /* False alarm, nothing to do */
2569                                 return;
2570                         sh->reconstruct_state = reconstruct_state_drain_run;
2571                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2572                 } else
2573                         sh->reconstruct_state = reconstruct_state_run;
2574
2575                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2576
2577                 if (s->locked + conf->max_degraded == disks)
2578                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2579                                 atomic_inc(&conf->pending_full_writes);
2580         } else {
2581                 BUG_ON(level == 6);
2582                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2583                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2584
2585                 for (i = disks; i--; ) {
2586                         struct r5dev *dev = &sh->dev[i];
2587                         if (i == pd_idx)
2588                                 continue;
2589
2590                         if (dev->towrite &&
2591                             (test_bit(R5_UPTODATE, &dev->flags) ||
2592                              test_bit(R5_Wantcompute, &dev->flags))) {
2593                                 set_bit(R5_Wantdrain, &dev->flags);
2594                                 set_bit(R5_LOCKED, &dev->flags);
2595                                 clear_bit(R5_UPTODATE, &dev->flags);
2596                                 s->locked++;
2597                         }
2598                 }
2599                 if (!s->locked)
2600                         /* False alarm - nothing to do */
2601                         return;
2602                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2603                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2604                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2605                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2606         }
2607
2608         /* keep the parity disk(s) locked while asynchronous operations
2609          * are in flight
2610          */
2611         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2612         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2613         s->locked++;
2614
2615         if (level == 6) {
2616                 int qd_idx = sh->qd_idx;
2617                 struct r5dev *dev = &sh->dev[qd_idx];
2618
2619                 set_bit(R5_LOCKED, &dev->flags);
2620                 clear_bit(R5_UPTODATE, &dev->flags);
2621                 s->locked++;
2622         }
2623
2624         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2625                 __func__, (unsigned long long)sh->sector,
2626                 s->locked, s->ops_request);
2627 }
2628
2629 /*
2630  * Each stripe/dev can have one or more bion attached.
2631  * toread/towrite point to the first in a chain.
2632  * The bi_next chain must be in order.
2633  */
2634 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2635 {
2636         struct bio **bip;
2637         struct r5conf *conf = sh->raid_conf;
2638         int firstwrite=0;
2639
2640         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2641                 (unsigned long long)bi->bi_iter.bi_sector,
2642                 (unsigned long long)sh->sector);
2643
2644         /*
2645          * If several bio share a stripe. The bio bi_phys_segments acts as a
2646          * reference count to avoid race. The reference count should already be
2647          * increased before this function is called (for example, in
2648          * make_request()), so other bio sharing this stripe will not free the
2649          * stripe. If a stripe is owned by one stripe, the stripe lock will
2650          * protect it.
2651          */
2652         spin_lock_irq(&sh->stripe_lock);
2653         if (forwrite) {
2654                 bip = &sh->dev[dd_idx].towrite;
2655                 if (*bip == NULL)
2656                         firstwrite = 1;
2657         } else
2658                 bip = &sh->dev[dd_idx].toread;
2659         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2660                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2661                         goto overlap;
2662                 bip = & (*bip)->bi_next;
2663         }
2664         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2665                 goto overlap;
2666
2667         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2668         if (*bip)
2669                 bi->bi_next = *bip;
2670         *bip = bi;
2671         raid5_inc_bi_active_stripes(bi);
2672
2673         if (forwrite) {
2674                 /* check if page is covered */
2675                 sector_t sector = sh->dev[dd_idx].sector;
2676                 for (bi=sh->dev[dd_idx].towrite;
2677                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2678                              bi && bi->bi_iter.bi_sector <= sector;
2679                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2680                         if (bio_end_sector(bi) >= sector)
2681                                 sector = bio_end_sector(bi);
2682                 }
2683                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2684                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2685         }
2686
2687         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2688                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2689                 (unsigned long long)sh->sector, dd_idx);
2690         spin_unlock_irq(&sh->stripe_lock);
2691
2692         if (conf->mddev->bitmap && firstwrite) {
2693                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2694                                   STRIPE_SECTORS, 0);
2695                 sh->bm_seq = conf->seq_flush+1;
2696                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2697         }
2698         return 1;
2699
2700  overlap:
2701         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2702         spin_unlock_irq(&sh->stripe_lock);
2703         return 0;
2704 }
2705
2706 static void end_reshape(struct r5conf *conf);
2707
2708 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2709                             struct stripe_head *sh)
2710 {
2711         int sectors_per_chunk =
2712                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2713         int dd_idx;
2714         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2715         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2716
2717         raid5_compute_sector(conf,
2718                              stripe * (disks - conf->max_degraded)
2719                              *sectors_per_chunk + chunk_offset,
2720                              previous,
2721                              &dd_idx, sh);
2722 }
2723
2724 static void
2725 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2726                                 struct stripe_head_state *s, int disks,
2727                                 struct bio **return_bi)
2728 {
2729         int i;
2730         for (i = disks; i--; ) {
2731                 struct bio *bi;
2732                 int bitmap_end = 0;
2733
2734                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2735                         struct md_rdev *rdev;
2736                         rcu_read_lock();
2737                         rdev = rcu_dereference(conf->disks[i].rdev);
2738                         if (rdev && test_bit(In_sync, &rdev->flags))
2739                                 atomic_inc(&rdev->nr_pending);
2740                         else
2741                                 rdev = NULL;
2742                         rcu_read_unlock();
2743                         if (rdev) {
2744                                 if (!rdev_set_badblocks(
2745                                             rdev,
2746                                             sh->sector,
2747                                             STRIPE_SECTORS, 0))
2748                                         md_error(conf->mddev, rdev);
2749                                 rdev_dec_pending(rdev, conf->mddev);
2750                         }
2751                 }
2752                 spin_lock_irq(&sh->stripe_lock);
2753                 /* fail all writes first */
2754                 bi = sh->dev[i].towrite;
2755                 sh->dev[i].towrite = NULL;
2756                 spin_unlock_irq(&sh->stripe_lock);
2757                 if (bi)
2758                         bitmap_end = 1;
2759
2760                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2761                         wake_up(&conf->wait_for_overlap);
2762
2763                 while (bi && bi->bi_iter.bi_sector <
2764                         sh->dev[i].sector + STRIPE_SECTORS) {
2765                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2766                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2767                         if (!raid5_dec_bi_active_stripes(bi)) {
2768                                 md_write_end(conf->mddev);
2769                                 bi->bi_next = *return_bi;
2770                                 *return_bi = bi;
2771                         }
2772                         bi = nextbi;
2773                 }
2774                 if (bitmap_end)
2775                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2776                                 STRIPE_SECTORS, 0, 0);
2777                 bitmap_end = 0;
2778                 /* and fail all 'written' */
2779                 bi = sh->dev[i].written;
2780                 sh->dev[i].written = NULL;
2781                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2782                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2783                         sh->dev[i].page = sh->dev[i].orig_page;
2784                 }
2785
2786                 if (bi) bitmap_end = 1;
2787                 while (bi && bi->bi_iter.bi_sector <
2788                        sh->dev[i].sector + STRIPE_SECTORS) {
2789                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2790                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2791                         if (!raid5_dec_bi_active_stripes(bi)) {
2792                                 md_write_end(conf->mddev);
2793                                 bi->bi_next = *return_bi;
2794                                 *return_bi = bi;
2795                         }
2796                         bi = bi2;
2797                 }
2798
2799                 /* fail any reads if this device is non-operational and
2800                  * the data has not reached the cache yet.
2801                  */
2802                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2803                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2804                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2805                         spin_lock_irq(&sh->stripe_lock);
2806                         bi = sh->dev[i].toread;
2807                         sh->dev[i].toread = NULL;
2808                         spin_unlock_irq(&sh->stripe_lock);
2809                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2810                                 wake_up(&conf->wait_for_overlap);
2811                         while (bi && bi->bi_iter.bi_sector <
2812                                sh->dev[i].sector + STRIPE_SECTORS) {
2813                                 struct bio *nextbi =
2814                                         r5_next_bio(bi, sh->dev[i].sector);
2815                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2816                                 if (!raid5_dec_bi_active_stripes(bi)) {
2817                                         bi->bi_next = *return_bi;
2818                                         *return_bi = bi;
2819                                 }
2820                                 bi = nextbi;
2821                         }
2822                 }
2823                 if (bitmap_end)
2824                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2825                                         STRIPE_SECTORS, 0, 0);
2826                 /* If we were in the middle of a write the parity block might
2827                  * still be locked - so just clear all R5_LOCKED flags
2828                  */
2829                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2830         }
2831
2832         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2833                 if (atomic_dec_and_test(&conf->pending_full_writes))
2834                         md_wakeup_thread(conf->mddev->thread);
2835 }
2836
2837 static void
2838 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2839                    struct stripe_head_state *s)
2840 {
2841         int abort = 0;
2842         int i;
2843
2844         clear_bit(STRIPE_SYNCING, &sh->state);
2845         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2846                 wake_up(&conf->wait_for_overlap);
2847         s->syncing = 0;
2848         s->replacing = 0;
2849         /* There is nothing more to do for sync/check/repair.
2850          * Don't even need to abort as that is handled elsewhere
2851          * if needed, and not always wanted e.g. if there is a known
2852          * bad block here.
2853          * For recover/replace we need to record a bad block on all
2854          * non-sync devices, or abort the recovery
2855          */
2856         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2857                 /* During recovery devices cannot be removed, so
2858                  * locking and refcounting of rdevs is not needed
2859                  */
2860                 for (i = 0; i < conf->raid_disks; i++) {
2861                         struct md_rdev *rdev = conf->disks[i].rdev;
2862                         if (rdev
2863                             && !test_bit(Faulty, &rdev->flags)
2864                             && !test_bit(In_sync, &rdev->flags)
2865                             && !rdev_set_badblocks(rdev, sh->sector,
2866                                                    STRIPE_SECTORS, 0))
2867                                 abort = 1;
2868                         rdev = conf->disks[i].replacement;
2869                         if (rdev
2870                             && !test_bit(Faulty, &rdev->flags)
2871                             && !test_bit(In_sync, &rdev->flags)
2872                             && !rdev_set_badblocks(rdev, sh->sector,
2873                                                    STRIPE_SECTORS, 0))
2874                                 abort = 1;
2875                 }
2876                 if (abort)
2877                         conf->recovery_disabled =
2878                                 conf->mddev->recovery_disabled;
2879         }
2880         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2881 }
2882
2883 static int want_replace(struct stripe_head *sh, int disk_idx)
2884 {
2885         struct md_rdev *rdev;
2886         int rv = 0;
2887         /* Doing recovery so rcu locking not required */
2888         rdev = sh->raid_conf->disks[disk_idx].replacement;
2889         if (rdev
2890             && !test_bit(Faulty, &rdev->flags)
2891             && !test_bit(In_sync, &rdev->flags)
2892             && (rdev->recovery_offset <= sh->sector
2893                 || rdev->mddev->recovery_cp <= sh->sector))
2894                 rv = 1;
2895
2896         return rv;
2897 }
2898
2899 /* fetch_block - checks the given member device to see if its data needs
2900  * to be read or computed to satisfy a request.
2901  *
2902  * Returns 1 when no more member devices need to be checked, otherwise returns
2903  * 0 to tell the loop in handle_stripe_fill to continue
2904  */
2905 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2906                        int disk_idx, int disks)
2907 {
2908         struct r5dev *dev = &sh->dev[disk_idx];
2909         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2910                                   &sh->dev[s->failed_num[1]] };
2911
2912         /* is the data in this block needed, and can we get it? */
2913         if (!test_bit(R5_LOCKED, &dev->flags) &&
2914             !test_bit(R5_UPTODATE, &dev->flags) &&
2915             (dev->toread ||
2916              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2917              s->syncing || s->expanding ||
2918              (s->replacing && want_replace(sh, disk_idx)) ||
2919              (s->failed >= 1 && fdev[0]->toread) ||
2920              (s->failed >= 2 && fdev[1]->toread) ||
2921              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2922               (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2923               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2924              (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2925               s->to_write < sh->raid_conf->raid_disks - 2 &&
2926               (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2927                 /* we would like to get this block, possibly by computing it,
2928                  * otherwise read it if the backing disk is insync
2929                  */
2930                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2931                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2932                 if ((s->uptodate == disks - 1) &&
2933                     (s->failed && (disk_idx == s->failed_num[0] ||
2934                                    disk_idx == s->failed_num[1]))) {
2935                         /* have disk failed, and we're requested to fetch it;
2936                          * do compute it
2937                          */
2938                         pr_debug("Computing stripe %llu block %d\n",
2939                                (unsigned long long)sh->sector, disk_idx);
2940                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2941                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2942                         set_bit(R5_Wantcompute, &dev->flags);
2943                         sh->ops.target = disk_idx;
2944                         sh->ops.target2 = -1; /* no 2nd target */
2945                         s->req_compute = 1;
2946                         /* Careful: from this point on 'uptodate' is in the eye
2947                          * of raid_run_ops which services 'compute' operations
2948                          * before writes. R5_Wantcompute flags a block that will
2949                          * be R5_UPTODATE by the time it is needed for a
2950                          * subsequent operation.
2951                          */
2952                         s->uptodate++;
2953                         return 1;
2954                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2955                         /* Computing 2-failure is *very* expensive; only
2956                          * do it if failed >= 2
2957                          */
2958                         int other;
2959                         for (other = disks; other--; ) {
2960                                 if (other == disk_idx)
2961                                         continue;
2962                                 if (!test_bit(R5_UPTODATE,
2963                                       &sh->dev[other].flags))
2964                                         break;
2965                         }
2966                         BUG_ON(other < 0);
2967                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2968                                (unsigned long long)sh->sector,
2969                                disk_idx, other);
2970                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2971                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2972                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2973                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2974                         sh->ops.target = disk_idx;
2975                         sh->ops.target2 = other;
2976                         s->uptodate += 2;
2977                         s->req_compute = 1;
2978                         return 1;
2979                 } else if (test_bit(R5_Insync, &dev->flags)) {
2980                         set_bit(R5_LOCKED, &dev->flags);
2981                         set_bit(R5_Wantread, &dev->flags);
2982                         s->locked++;
2983                         pr_debug("Reading block %d (sync=%d)\n",
2984                                 disk_idx, s->syncing);
2985                 }
2986         }
2987
2988         return 0;
2989 }
2990
2991 /**
2992  * handle_stripe_fill - read or compute data to satisfy pending requests.
2993  */
2994 static void handle_stripe_fill(struct stripe_head *sh,
2995                                struct stripe_head_state *s,
2996                                int disks)
2997 {
2998         int i;
2999
3000         /* look for blocks to read/compute, skip this if a compute
3001          * is already in flight, or if the stripe contents are in the
3002          * midst of changing due to a write
3003          */
3004         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3005             !sh->reconstruct_state)
3006                 for (i = disks; i--; )
3007                         if (fetch_block(sh, s, i, disks))
3008                                 break;
3009         set_bit(STRIPE_HANDLE, &sh->state);
3010 }
3011
3012
3013 /* handle_stripe_clean_event
3014  * any written block on an uptodate or failed drive can be returned.
3015  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3016  * never LOCKED, so we don't need to test 'failed' directly.
3017  */
3018 static void handle_stripe_clean_event(struct r5conf *conf,
3019         struct stripe_head *sh, int disks, struct bio **return_bi)
3020 {
3021         int i;
3022         struct r5dev *dev;
3023         int discard_pending = 0;
3024
3025         for (i = disks; i--; )
3026                 if (sh->dev[i].written) {
3027                         dev = &sh->dev[i];
3028                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3029                             (test_bit(R5_UPTODATE, &dev->flags) ||
3030                              test_bit(R5_Discard, &dev->flags) ||
3031                              test_bit(R5_SkipCopy, &dev->flags))) {
3032                                 /* We can return any write requests */
3033                                 struct bio *wbi, *wbi2;
3034                                 pr_debug("Return write for disc %d\n", i);
3035                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3036                                         clear_bit(R5_UPTODATE, &dev->flags);
3037                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3038                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3039                                         dev->page = dev->orig_page;
3040                                 }
3041                                 wbi = dev->written;
3042                                 dev->written = NULL;
3043                                 while (wbi && wbi->bi_iter.bi_sector <
3044                                         dev->sector + STRIPE_SECTORS) {
3045                                         wbi2 = r5_next_bio(wbi, dev->sector);
3046                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3047                                                 md_write_end(conf->mddev);
3048                                                 wbi->bi_next = *return_bi;
3049                                                 *return_bi = wbi;
3050                                         }
3051                                         wbi = wbi2;
3052                                 }
3053                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3054                                                 STRIPE_SECTORS,
3055                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3056                                                 0);
3057                         } else if (test_bit(R5_Discard, &dev->flags))
3058                                 discard_pending = 1;
3059                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3060                         WARN_ON(dev->page != dev->orig_page);
3061                 }
3062         if (!discard_pending &&
3063             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3064                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3065                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3066                 if (sh->qd_idx >= 0) {
3067                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3068                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3069                 }
3070                 /* now that discard is done we can proceed with any sync */
3071                 clear_bit(STRIPE_DISCARD, &sh->state);
3072                 /*
3073                  * SCSI discard will change some bio fields and the stripe has
3074                  * no updated data, so remove it from hash list and the stripe
3075                  * will be reinitialized
3076                  */
3077                 spin_lock_irq(&conf->device_lock);
3078                 remove_hash(sh);
3079                 spin_unlock_irq(&conf->device_lock);
3080                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3081                         set_bit(STRIPE_HANDLE, &sh->state);
3082
3083         }
3084
3085         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3086                 if (atomic_dec_and_test(&conf->pending_full_writes))
3087                         md_wakeup_thread(conf->mddev->thread);
3088 }
3089
3090 static void handle_stripe_dirtying(struct r5conf *conf,
3091                                    struct stripe_head *sh,
3092                                    struct stripe_head_state *s,
3093                                    int disks)
3094 {
3095         int rmw = 0, rcw = 0, i;
3096         sector_t recovery_cp = conf->mddev->recovery_cp;
3097
3098         /* RAID6 requires 'rcw' in current implementation.
3099          * Otherwise, check whether resync is now happening or should start.
3100          * If yes, then the array is dirty (after unclean shutdown or
3101          * initial creation), so parity in some stripes might be inconsistent.
3102          * In this case, we need to always do reconstruct-write, to ensure
3103          * that in case of drive failure or read-error correction, we
3104          * generate correct data from the parity.
3105          */
3106         if (conf->max_degraded == 2 ||
3107             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3108                 /* Calculate the real rcw later - for now make it
3109                  * look like rcw is cheaper
3110                  */
3111                 rcw = 1; rmw = 2;
3112                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3113                          conf->max_degraded, (unsigned long long)recovery_cp,
3114                          (unsigned long long)sh->sector);
3115         } else for (i = disks; i--; ) {
3116                 /* would I have to read this buffer for read_modify_write */
3117                 struct r5dev *dev = &sh->dev[i];
3118                 if ((dev->towrite || i == sh->pd_idx) &&
3119                     !test_bit(R5_LOCKED, &dev->flags) &&
3120                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3121                       test_bit(R5_Wantcompute, &dev->flags))) {
3122                         if (test_bit(R5_Insync, &dev->flags))
3123                                 rmw++;
3124                         else
3125                                 rmw += 2*disks;  /* cannot read it */
3126                 }
3127                 /* Would I have to read this buffer for reconstruct_write */
3128                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3129                     !test_bit(R5_LOCKED, &dev->flags) &&
3130                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3131                     test_bit(R5_Wantcompute, &dev->flags))) {
3132                         if (test_bit(R5_Insync, &dev->flags))
3133                                 rcw++;
3134                         else
3135                                 rcw += 2*disks;
3136                 }
3137         }
3138         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3139                 (unsigned long long)sh->sector, rmw, rcw);
3140         set_bit(STRIPE_HANDLE, &sh->state);
3141         if (rmw < rcw && rmw > 0) {
3142                 /* prefer read-modify-write, but need to get some data */
3143                 if (conf->mddev->queue)
3144                         blk_add_trace_msg(conf->mddev->queue,
3145                                           "raid5 rmw %llu %d",
3146                                           (unsigned long long)sh->sector, rmw);
3147                 for (i = disks; i--; ) {
3148                         struct r5dev *dev = &sh->dev[i];
3149                         if ((dev->towrite || i == sh->pd_idx) &&
3150                             !test_bit(R5_LOCKED, &dev->flags) &&
3151                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3152                             test_bit(R5_Wantcompute, &dev->flags)) &&
3153                             test_bit(R5_Insync, &dev->flags)) {
3154                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3155                                              &sh->state)) {
3156                                         pr_debug("Read_old block %d for r-m-w\n",
3157                                                  i);
3158                                         set_bit(R5_LOCKED, &dev->flags);
3159                                         set_bit(R5_Wantread, &dev->flags);
3160                                         s->locked++;
3161                                 } else {
3162                                         set_bit(STRIPE_DELAYED, &sh->state);
3163                                         set_bit(STRIPE_HANDLE, &sh->state);
3164                                 }
3165                         }
3166                 }
3167         }
3168         if (rcw <= rmw && rcw > 0) {
3169                 /* want reconstruct write, but need to get some data */
3170                 int qread =0;
3171                 rcw = 0;
3172                 for (i = disks; i--; ) {
3173                         struct r5dev *dev = &sh->dev[i];
3174                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3175                             i != sh->pd_idx && i != sh->qd_idx &&
3176                             !test_bit(R5_LOCKED, &dev->flags) &&
3177                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3178                               test_bit(R5_Wantcompute, &dev->flags))) {
3179                                 rcw++;
3180                                 if (test_bit(R5_Insync, &dev->flags) &&
3181                                     test_bit(STRIPE_PREREAD_ACTIVE,
3182                                              &sh->state)) {
3183                                         pr_debug("Read_old block "
3184                                                 "%d for Reconstruct\n", i);
3185                                         set_bit(R5_LOCKED, &dev->flags);
3186                                         set_bit(R5_Wantread, &dev->flags);
3187                                         s->locked++;
3188                                         qread++;
3189                                 } else {
3190                                         set_bit(STRIPE_DELAYED, &sh->state);
3191                                         set_bit(STRIPE_HANDLE, &sh->state);
3192                                 }
3193                         }
3194                 }
3195                 if (rcw && conf->mddev->queue)
3196                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3197                                           (unsigned long long)sh->sector,
3198                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3199         }
3200         /* now if nothing is locked, and if we have enough data,
3201          * we can start a write request
3202          */
3203         /* since handle_stripe can be called at any time we need to handle the
3204          * case where a compute block operation has been submitted and then a
3205          * subsequent call wants to start a write request.  raid_run_ops only
3206          * handles the case where compute block and reconstruct are requested
3207          * simultaneously.  If this is not the case then new writes need to be
3208          * held off until the compute completes.
3209          */
3210         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3211             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3212             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3213                 schedule_reconstruction(sh, s, rcw == 0, 0);
3214 }
3215
3216 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3217                                 struct stripe_head_state *s, int disks)
3218 {
3219         struct r5dev *dev = NULL;
3220
3221         set_bit(STRIPE_HANDLE, &sh->state);
3222
3223         switch (sh->check_state) {
3224         case check_state_idle:
3225                 /* start a new check operation if there are no failures */
3226                 if (s->failed == 0) {
3227                         BUG_ON(s->uptodate != disks);
3228                         sh->check_state = check_state_run;
3229                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3230                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3231                         s->uptodate--;
3232                         break;
3233                 }
3234                 dev = &sh->dev[s->failed_num[0]];
3235                 /* fall through */
3236         case check_state_compute_result:
3237                 sh->check_state = check_state_idle;
3238                 if (!dev)
3239                         dev = &sh->dev[sh->pd_idx];
3240
3241                 /* check that a write has not made the stripe insync */
3242                 if (test_bit(STRIPE_INSYNC, &sh->state))
3243                         break;
3244
3245                 /* either failed parity check, or recovery is happening */
3246                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3247                 BUG_ON(s->uptodate != disks);
3248
3249                 set_bit(R5_LOCKED, &dev->flags);
3250                 s->locked++;
3251                 set_bit(R5_Wantwrite, &dev->flags);
3252
3253                 clear_bit(STRIPE_DEGRADED, &sh->state);
3254                 set_bit(STRIPE_INSYNC, &sh->state);
3255                 break;
3256         case check_state_run:
3257                 break; /* we will be called again upon completion */
3258         case check_state_check_result:
3259                 sh->check_state = check_state_idle;
3260
3261                 /* if a failure occurred during the check operation, leave
3262                  * STRIPE_INSYNC not set and let the stripe be handled again
3263                  */
3264                 if (s->failed)
3265                         break;
3266
3267                 /* handle a successful check operation, if parity is correct
3268                  * we are done.  Otherwise update the mismatch count and repair
3269                  * parity if !MD_RECOVERY_CHECK
3270                  */
3271                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3272                         /* parity is correct (on disc,
3273                          * not in buffer any more)
3274                          */
3275                         set_bit(STRIPE_INSYNC, &sh->state);
3276                 else {
3277                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3278                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3279                                 /* don't try to repair!! */
3280                                 set_bit(STRIPE_INSYNC, &sh->state);
3281                         else {
3282                                 sh->check_state = check_state_compute_run;
3283                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3284                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3285                                 set_bit(R5_Wantcompute,
3286                                         &sh->dev[sh->pd_idx].flags);
3287                                 sh->ops.target = sh->pd_idx;
3288                                 sh->ops.target2 = -1;
3289                                 s->uptodate++;
3290                         }
3291                 }
3292                 break;
3293         case check_state_compute_run:
3294                 break;
3295         default:
3296                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3297                        __func__, sh->check_state,
3298                        (unsigned long long) sh->sector);
3299                 BUG();
3300         }
3301 }
3302
3303
3304 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3305                                   struct stripe_head_state *s,
3306                                   int disks)
3307 {
3308         int pd_idx = sh->pd_idx;
3309         int qd_idx = sh->qd_idx;
3310         struct r5dev *dev;
3311
3312         set_bit(STRIPE_HANDLE, &sh->state);
3313
3314         BUG_ON(s->failed > 2);
3315
3316         /* Want to check and possibly repair P and Q.
3317          * However there could be one 'failed' device, in which
3318          * case we can only check one of them, possibly using the
3319          * other to generate missing data
3320          */
3321
3322         switch (sh->check_state) {
3323         case check_state_idle:
3324                 /* start a new check operation if there are < 2 failures */
3325                 if (s->failed == s->q_failed) {
3326                         /* The only possible failed device holds Q, so it
3327                          * makes sense to check P (If anything else were failed,
3328                          * we would have used P to recreate it).
3329                          */
3330                         sh->check_state = check_state_run;
3331                 }
3332                 if (!s->q_failed && s->failed < 2) {
3333                         /* Q is not failed, and we didn't use it to generate
3334                          * anything, so it makes sense to check it
3335                          */
3336                         if (sh->check_state == check_state_run)
3337                                 sh->check_state = check_state_run_pq;
3338                         else
3339                                 sh->check_state = check_state_run_q;
3340                 }
3341
3342                 /* discard potentially stale zero_sum_result */
3343                 sh->ops.zero_sum_result = 0;
3344
3345                 if (sh->check_state == check_state_run) {
3346                         /* async_xor_zero_sum destroys the contents of P */
3347                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3348                         s->uptodate--;
3349                 }
3350                 if (sh->check_state >= check_state_run &&
3351                     sh->check_state <= check_state_run_pq) {
3352                         /* async_syndrome_zero_sum preserves P and Q, so
3353                          * no need to mark them !uptodate here
3354                          */
3355                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3356                         break;
3357                 }
3358
3359                 /* we have 2-disk failure */
3360                 BUG_ON(s->failed != 2);
3361                 /* fall through */
3362         case check_state_compute_result:
3363                 sh->check_state = check_state_idle;
3364
3365                 /* check that a write has not made the stripe insync */
3366                 if (test_bit(STRIPE_INSYNC, &sh->state))
3367                         break;
3368
3369                 /* now write out any block on a failed drive,
3370                  * or P or Q if they were recomputed
3371                  */
3372                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3373                 if (s->failed == 2) {
3374                         dev = &sh->dev[s->failed_num[1]];
3375                         s->locked++;
3376                         set_bit(R5_LOCKED, &dev->flags);
3377                         set_bit(R5_Wantwrite, &dev->flags);
3378                 }
3379                 if (s->failed >= 1) {
3380                         dev = &sh->dev[s->failed_num[0]];
3381                         s->locked++;
3382                         set_bit(R5_LOCKED, &dev->flags);
3383                         set_bit(R5_Wantwrite, &dev->flags);
3384                 }
3385                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3386                         dev = &sh->dev[pd_idx];
3387                         s->locked++;
3388                         set_bit(R5_LOCKED, &dev->flags);
3389                         set_bit(R5_Wantwrite, &dev->flags);
3390                 }
3391                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3392                         dev = &sh->dev[qd_idx];
3393                         s->locked++;
3394                         set_bit(R5_LOCKED, &dev->flags);
3395                         set_bit(R5_Wantwrite, &dev->flags);
3396                 }
3397                 clear_bit(STRIPE_DEGRADED, &sh->state);
3398
3399                 set_bit(STRIPE_INSYNC, &sh->state);
3400                 break;
3401         case check_state_run:
3402         case check_state_run_q:
3403         case check_state_run_pq:
3404                 break; /* we will be called again upon completion */
3405         case check_state_check_result:
3406                 sh->check_state = check_state_idle;
3407
3408                 /* handle a successful check operation, if parity is correct
3409                  * we are done.  Otherwise update the mismatch count and repair
3410                  * parity if !MD_RECOVERY_CHECK
3411                  */
3412                 if (sh->ops.zero_sum_result == 0) {
3413                         /* both parities are correct */
3414                         if (!s->failed)
3415                                 set_bit(STRIPE_INSYNC, &sh->state);
3416                         else {
3417                                 /* in contrast to the raid5 case we can validate
3418                                  * parity, but still have a failure to write
3419                                  * back
3420                                  */
3421                                 sh->check_state = check_state_compute_result;
3422                                 /* Returning at this point means that we may go
3423                                  * off and bring p and/or q uptodate again so
3424                                  * we make sure to check zero_sum_result again
3425                                  * to verify if p or q need writeback
3426                                  */
3427                         }
3428                 } else {
3429                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3430                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3431                                 /* don't try to repair!! */
3432                                 set_bit(STRIPE_INSYNC, &sh->state);
3433                         else {
3434                                 int *target = &sh->ops.target;
3435
3436                                 sh->ops.target = -1;
3437                                 sh->ops.target2 = -1;
3438                                 sh->check_state = check_state_compute_run;
3439                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3440                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3441                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3442                                         set_bit(R5_Wantcompute,
3443                                                 &sh->dev[pd_idx].flags);
3444                                         *target = pd_idx;
3445                                         target = &sh->ops.target2;
3446                                         s->uptodate++;
3447                                 }
3448                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3449                                         set_bit(R5_Wantcompute,
3450                                                 &sh->dev[qd_idx].flags);
3451                                         *target = qd_idx;
3452                                         s->uptodate++;
3453                                 }
3454                         }
3455                 }
3456                 break;
3457         case check_state_compute_run:
3458                 break;
3459         default:
3460                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3461                        __func__, sh->check_state,
3462                        (unsigned long long) sh->sector);
3463                 BUG();
3464         }
3465 }
3466
3467 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3468 {
3469         int i;
3470
3471         /* We have read all the blocks in this stripe and now we need to
3472          * copy some of them into a target stripe for expand.
3473          */
3474         struct dma_async_tx_descriptor *tx = NULL;
3475         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3476         for (i = 0; i < sh->disks; i++)
3477                 if (i != sh->pd_idx && i != sh->qd_idx) {
3478                         int dd_idx, j;
3479                         struct stripe_head *sh2;
3480                         struct async_submit_ctl submit;
3481
3482                         sector_t bn = compute_blocknr(sh, i, 1);
3483                         sector_t s = raid5_compute_sector(conf, bn, 0,
3484                                                           &dd_idx, NULL);
3485                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3486                         if (sh2 == NULL)
3487                                 /* so far only the early blocks of this stripe
3488                                  * have been requested.  When later blocks
3489                                  * get requested, we will try again
3490                                  */
3491                                 continue;
3492                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3493                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3494                                 /* must have already done this block */
3495                                 release_stripe(sh2);
3496                                 continue;
3497                         }
3498
3499                         /* place all the copies on one channel */
3500                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3501                         tx = async_memcpy(sh2->dev[dd_idx].page,
3502                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3503                                           &submit);
3504
3505                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3506                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3507                         for (j = 0; j < conf->raid_disks; j++)
3508                                 if (j != sh2->pd_idx &&
3509                                     j != sh2->qd_idx &&
3510                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3511                                         break;
3512                         if (j == conf->raid_disks) {
3513                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3514                                 set_bit(STRIPE_HANDLE, &sh2->state);
3515                         }
3516                         release_stripe(sh2);
3517
3518                 }
3519         /* done submitting copies, wait for them to complete */
3520         async_tx_quiesce(&tx);
3521 }
3522
3523 /*
3524  * handle_stripe - do things to a stripe.
3525  *
3526  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3527  * state of various bits to see what needs to be done.
3528  * Possible results:
3529  *    return some read requests which now have data
3530  *    return some write requests which are safely on storage
3531  *    schedule a read on some buffers
3532  *    schedule a write of some buffers
3533  *    return confirmation of parity correctness
3534  *
3535  */
3536
3537 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3538 {
3539         struct r5conf *conf = sh->raid_conf;
3540         int disks = sh->disks;
3541         struct r5dev *dev;
3542         int i;
3543         int do_recovery = 0;
3544
3545         memset(s, 0, sizeof(*s));
3546
3547         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3548         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3549         s->failed_num[0] = -1;
3550         s->failed_num[1] = -1;
3551
3552         /* Now to look around and see what can be done */
3553         rcu_read_lock();
3554         for (i=disks; i--; ) {
3555                 struct md_rdev *rdev;
3556                 sector_t first_bad;
3557                 int bad_sectors;
3558                 int is_bad = 0;
3559
3560                 dev = &sh->dev[i];
3561
3562                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3563                          i, dev->flags,
3564                          dev->toread, dev->towrite, dev->written);
3565                 /* maybe we can reply to a read
3566                  *
3567                  * new wantfill requests are only permitted while
3568                  * ops_complete_biofill is guaranteed to be inactive
3569                  */
3570                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3571                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3572                         set_bit(R5_Wantfill, &dev->flags);
3573
3574                 /* now count some things */
3575                 if (test_bit(R5_LOCKED, &dev->flags))
3576                         s->locked++;
3577                 if (test_bit(R5_UPTODATE, &dev->flags))
3578                         s->uptodate++;
3579                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3580                         s->compute++;
3581                         BUG_ON(s->compute > 2);
3582                 }
3583
3584                 if (test_bit(R5_Wantfill, &dev->flags))
3585                         s->to_fill++;
3586                 else if (dev->toread)
3587                         s->to_read++;
3588                 if (dev->towrite) {
3589                         s->to_write++;
3590                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3591                                 s->non_overwrite++;
3592                 }
3593                 if (dev->written)
3594                         s->written++;
3595                 /* Prefer to use the replacement for reads, but only
3596                  * if it is recovered enough and has no bad blocks.
3597                  */
3598                 rdev = rcu_dereference(conf->disks[i].replacement);
3599                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3600                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3601                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3602                                  &first_bad, &bad_sectors))
3603                         set_bit(R5_ReadRepl, &dev->flags);
3604                 else {
3605                         if (rdev)
3606                                 set_bit(R5_NeedReplace, &dev->flags);
3607                         rdev = rcu_dereference(conf->disks[i].rdev);
3608                         clear_bit(R5_ReadRepl, &dev->flags);
3609                 }
3610                 if (rdev && test_bit(Faulty, &rdev->flags))
3611                         rdev = NULL;
3612                 if (rdev) {
3613                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3614                                              &first_bad, &bad_sectors);
3615                         if (s->blocked_rdev == NULL
3616                             && (test_bit(Blocked, &rdev->flags)
3617                                 || is_bad < 0)) {
3618                                 if (is_bad < 0)
3619                                         set_bit(BlockedBadBlocks,
3620                                                 &rdev->flags);
3621                                 s->blocked_rdev = rdev;
3622                                 atomic_inc(&rdev->nr_pending);
3623                         }
3624                 }
3625                 clear_bit(R5_Insync, &dev->flags);
3626                 if (!rdev)
3627                         /* Not in-sync */;
3628                 else if (is_bad) {
3629                         /* also not in-sync */
3630                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3631                             test_bit(R5_UPTODATE, &dev->flags)) {
3632                                 /* treat as in-sync, but with a read error
3633                                  * which we can now try to correct
3634                                  */
3635                                 set_bit(R5_Insync, &dev->flags);
3636                                 set_bit(R5_ReadError, &dev->flags);
3637                         }
3638                 } else if (test_bit(In_sync, &rdev->flags))
3639                         set_bit(R5_Insync, &dev->flags);
3640                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3641                         /* in sync if before recovery_offset */
3642                         set_bit(R5_Insync, &dev->flags);
3643                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3644                          test_bit(R5_Expanded, &dev->flags))
3645                         /* If we've reshaped into here, we assume it is Insync.
3646                          * We will shortly update recovery_offset to make
3647                          * it official.
3648                          */
3649                         set_bit(R5_Insync, &dev->flags);
3650
3651                 if (test_bit(R5_WriteError, &dev->flags)) {
3652                         /* This flag does not apply to '.replacement'
3653                          * only to .rdev, so make sure to check that*/
3654                         struct md_rdev *rdev2 = rcu_dereference(
3655                                 conf->disks[i].rdev);
3656                         if (rdev2 == rdev)
3657                                 clear_bit(R5_Insync, &dev->flags);
3658                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3659                                 s->handle_bad_blocks = 1;
3660                                 atomic_inc(&rdev2->nr_pending);
3661                         } else
3662                                 clear_bit(R5_WriteError, &dev->flags);
3663                 }
3664                 if (test_bit(R5_MadeGood, &dev->flags)) {
3665                         /* This flag does not apply to '.replacement'
3666                          * only to .rdev, so make sure to check that*/
3667                         struct md_rdev *rdev2 = rcu_dereference(
3668                                 conf->disks[i].rdev);
3669                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3670                                 s->handle_bad_blocks = 1;
3671                                 atomic_inc(&rdev2->nr_pending);
3672                         } else
3673                                 clear_bit(R5_MadeGood, &dev->flags);
3674                 }
3675                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3676                         struct md_rdev *rdev2 = rcu_dereference(
3677                                 conf->disks[i].replacement);
3678                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3679                                 s->handle_bad_blocks = 1;
3680                                 atomic_inc(&rdev2->nr_pending);
3681                         } else
3682                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3683                 }
3684                 if (!test_bit(R5_Insync, &dev->flags)) {
3685                         /* The ReadError flag will just be confusing now */
3686                         clear_bit(R5_ReadError, &dev->flags);
3687                         clear_bit(R5_ReWrite, &dev->flags);
3688                 }
3689                 if (test_bit(R5_ReadError, &dev->flags))
3690                         clear_bit(R5_Insync, &dev->flags);
3691                 if (!test_bit(R5_Insync, &dev->flags)) {
3692                         if (s->failed < 2)
3693                                 s->failed_num[s->failed] = i;
3694                         s->failed++;
3695                         if (rdev && !test_bit(Faulty, &rdev->flags))
3696                                 do_recovery = 1;
3697                 }
3698         }
3699         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3700                 /* If there is a failed device being replaced,
3701                  *     we must be recovering.
3702                  * else if we are after recovery_cp, we must be syncing
3703                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3704                  * else we can only be replacing
3705                  * sync and recovery both need to read all devices, and so
3706                  * use the same flag.
3707                  */
3708                 if (do_recovery ||
3709                     sh->sector >= conf->mddev->recovery_cp ||
3710                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3711                         s->syncing = 1;
3712                 else
3713                         s->replacing = 1;
3714         }
3715         rcu_read_unlock();
3716 }
3717
3718 static void handle_stripe(struct stripe_head *sh)
3719 {
3720         struct stripe_head_state s;
3721         struct r5conf *conf = sh->raid_conf;
3722         int i;
3723         int prexor;
3724         int disks = sh->disks;
3725         struct r5dev *pdev, *qdev;
3726
3727         clear_bit(STRIPE_HANDLE, &sh->state);
3728         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3729                 /* already being handled, ensure it gets handled
3730                  * again when current action finishes */
3731                 set_bit(STRIPE_HANDLE, &sh->state);
3732                 return;
3733         }
3734
3735         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3736                 spin_lock(&sh->stripe_lock);
3737                 /* Cannot process 'sync' concurrently with 'discard' */
3738                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3739                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3740                         set_bit(STRIPE_SYNCING, &sh->state);
3741                         clear_bit(STRIPE_INSYNC, &sh->state);
3742                         clear_bit(STRIPE_REPLACED, &sh->state);
3743                 }
3744                 spin_unlock(&sh->stripe_lock);
3745         }
3746         clear_bit(STRIPE_DELAYED, &sh->state);
3747
3748         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3749                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3750                (unsigned long long)sh->sector, sh->state,
3751                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3752                sh->check_state, sh->reconstruct_state);
3753
3754         analyse_stripe(sh, &s);
3755
3756         if (s.handle_bad_blocks) {
3757                 set_bit(STRIPE_HANDLE, &sh->state);
3758                 goto finish;
3759         }
3760
3761         if (unlikely(s.blocked_rdev)) {
3762                 if (s.syncing || s.expanding || s.expanded ||
3763                     s.replacing || s.to_write || s.written) {
3764                         set_bit(STRIPE_HANDLE, &sh->state);
3765                         goto finish;
3766                 }
3767                 /* There is nothing for the blocked_rdev to block */
3768                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3769                 s.blocked_rdev = NULL;
3770         }
3771
3772         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3773                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3774                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3775         }
3776
3777         pr_debug("locked=%d uptodate=%d to_read=%d"
3778                " to_write=%d failed=%d failed_num=%d,%d\n",
3779                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3780                s.failed_num[0], s.failed_num[1]);
3781         /* check if the array has lost more than max_degraded devices and,
3782          * if so, some requests might need to be failed.
3783          */
3784         if (s.failed > conf->max_degraded) {
3785                 sh->check_state = 0;
3786                 sh->reconstruct_state = 0;
3787                 if (s.to_read+s.to_write+s.written)
3788                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3789                 if (s.syncing + s.replacing)
3790                         handle_failed_sync(conf, sh, &s);
3791         }
3792
3793         /* Now we check to see if any write operations have recently
3794          * completed
3795          */
3796         prexor = 0;
3797         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3798                 prexor = 1;
3799         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3800             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3801                 sh->reconstruct_state = reconstruct_state_idle;
3802
3803                 /* All the 'written' buffers and the parity block are ready to
3804                  * be written back to disk
3805                  */
3806                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3807                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3808                 BUG_ON(sh->qd_idx >= 0 &&
3809                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3810                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3811                 for (i = disks; i--; ) {
3812                         struct r5dev *dev = &sh->dev[i];
3813                         if (test_bit(R5_LOCKED, &dev->flags) &&
3814                                 (i == sh->pd_idx || i == sh->qd_idx ||
3815                                  dev->written)) {
3816                                 pr_debug("Writing block %d\n", i);
3817                                 set_bit(R5_Wantwrite, &dev->flags);
3818                                 if (prexor)
3819                                         continue;
3820                                 if (!test_bit(R5_Insync, &dev->flags) ||
3821                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3822                                      s.failed == 0))
3823                                         set_bit(STRIPE_INSYNC, &sh->state);
3824                         }
3825                 }
3826                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3827                         s.dec_preread_active = 1;
3828         }
3829
3830         /*
3831          * might be able to return some write requests if the parity blocks
3832          * are safe, or on a failed drive
3833          */
3834         pdev = &sh->dev[sh->pd_idx];
3835         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3836                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3837         qdev = &sh->dev[sh->qd_idx];
3838         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3839                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3840                 || conf->level < 6;
3841
3842         if (s.written &&
3843             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3844                              && !test_bit(R5_LOCKED, &pdev->flags)
3845                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3846                                  test_bit(R5_Discard, &pdev->flags))))) &&
3847             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3848                              && !test_bit(R5_LOCKED, &qdev->flags)
3849                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3850                                  test_bit(R5_Discard, &qdev->flags))))))
3851                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3852
3853         /* Now we might consider reading some blocks, either to check/generate
3854          * parity, or to satisfy requests
3855          * or to load a block that is being partially written.
3856          */
3857         if (s.to_read || s.non_overwrite
3858             || (conf->level == 6 && s.to_write && s.failed)
3859             || (s.syncing && (s.uptodate + s.compute < disks))
3860             || s.replacing
3861             || s.expanding)
3862                 handle_stripe_fill(sh, &s, disks);
3863
3864         /* Now to consider new write requests and what else, if anything
3865          * should be read.  We do not handle new writes when:
3866          * 1/ A 'write' operation (copy+xor) is already in flight.
3867          * 2/ A 'check' operation is in flight, as it may clobber the parity
3868          *    block.
3869          */
3870         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3871                 handle_stripe_dirtying(conf, sh, &s, disks);
3872
3873         /* maybe we need to check and possibly fix the parity for this stripe
3874          * Any reads will already have been scheduled, so we just see if enough
3875          * data is available.  The parity check is held off while parity
3876          * dependent operations are in flight.
3877          */
3878         if (sh->check_state ||
3879             (s.syncing && s.locked == 0 &&
3880              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3881              !test_bit(STRIPE_INSYNC, &sh->state))) {
3882                 if (conf->level == 6)
3883                         handle_parity_checks6(conf, sh, &s, disks);
3884                 else
3885                         handle_parity_checks5(conf, sh, &s, disks);
3886         }
3887
3888         if ((s.replacing || s.syncing) && s.locked == 0
3889             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3890             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3891                 /* Write out to replacement devices where possible */
3892                 for (i = 0; i < conf->raid_disks; i++)
3893                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3894                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3895                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3896                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3897                                 s.locked++;
3898                         }
3899                 if (s.replacing)
3900                         set_bit(STRIPE_INSYNC, &sh->state);
3901                 set_bit(STRIPE_REPLACED, &sh->state);
3902         }
3903         if ((s.syncing || s.replacing) && s.locked == 0 &&
3904             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3905             test_bit(STRIPE_INSYNC, &sh->state)) {
3906                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3907                 clear_bit(STRIPE_SYNCING, &sh->state);
3908                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3909                         wake_up(&conf->wait_for_overlap);
3910         }
3911
3912         /* If the failed drives are just a ReadError, then we might need
3913          * to progress the repair/check process
3914          */
3915         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3916                 for (i = 0; i < s.failed; i++) {
3917                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3918                         if (test_bit(R5_ReadError, &dev->flags)
3919                             && !test_bit(R5_LOCKED, &dev->flags)
3920                             && test_bit(R5_UPTODATE, &dev->flags)
3921                                 ) {
3922                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3923                                         set_bit(R5_Wantwrite, &dev->flags);
3924                                         set_bit(R5_ReWrite, &dev->flags);
3925                                         set_bit(R5_LOCKED, &dev->flags);
3926                                         s.locked++;
3927                                 } else {
3928                                         /* let's read it back */
3929                                         set_bit(R5_Wantread, &dev->flags);
3930                                         set_bit(R5_LOCKED, &dev->flags);
3931                                         s.locked++;
3932                                 }
3933                         }
3934                 }
3935
3936
3937         /* Finish reconstruct operations initiated by the expansion process */
3938         if (sh->reconstruct_state == reconstruct_state_result) {
3939                 struct stripe_head *sh_src
3940                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3941                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3942                         /* sh cannot be written until sh_src has been read.
3943                          * so arrange for sh to be delayed a little
3944                          */
3945                         set_bit(STRIPE_DELAYED, &sh->state);
3946                         set_bit(STRIPE_HANDLE, &sh->state);
3947                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3948                                               &sh_src->state))
3949                                 atomic_inc(&conf->preread_active_stripes);
3950                         release_stripe(sh_src);
3951                         goto finish;
3952                 }
3953                 if (sh_src)
3954                         release_stripe(sh_src);
3955
3956                 sh->reconstruct_state = reconstruct_state_idle;
3957                 clear_bit(STRIPE_EXPANDING, &sh->state);
3958                 for (i = conf->raid_disks; i--; ) {
3959                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3960                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3961                         s.locked++;
3962                 }
3963         }
3964
3965         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3966             !sh->reconstruct_state) {
3967                 /* Need to write out all blocks after computing parity */
3968                 sh->disks = conf->raid_disks;
3969                 stripe_set_idx(sh->sector, conf, 0, sh);
3970                 schedule_reconstruction(sh, &s, 1, 1);
3971         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3972                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3973                 atomic_dec(&conf->reshape_stripes);
3974                 wake_up(&conf->wait_for_overlap);
3975                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3976         }
3977
3978         if (s.expanding && s.locked == 0 &&
3979             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3980                 handle_stripe_expansion(conf, sh);
3981
3982 finish:
3983         /* wait for this device to become unblocked */
3984         if (unlikely(s.blocked_rdev)) {
3985                 if (conf->mddev->external)
3986                         md_wait_for_blocked_rdev(s.blocked_rdev,
3987                                                  conf->mddev);
3988                 else
3989                         /* Internal metadata will immediately
3990                          * be written by raid5d, so we don't
3991                          * need to wait here.
3992                          */
3993                         rdev_dec_pending(s.blocked_rdev,
3994                                          conf->mddev);
3995         }
3996
3997         if (s.handle_bad_blocks)
3998                 for (i = disks; i--; ) {
3999                         struct md_rdev *rdev;
4000                         struct r5dev *dev = &sh->dev[i];
4001                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4002                                 /* We own a safe reference to the rdev */
4003                                 rdev = conf->disks[i].rdev;
4004                                 if (!rdev_set_badblocks(rdev, sh->sector,
4005                                                         STRIPE_SECTORS, 0))
4006                                         md_error(conf->mddev, rdev);
4007                                 rdev_dec_pending(rdev, conf->mddev);
4008                         }
4009                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4010                                 rdev = conf->disks[i].rdev;
4011                                 rdev_clear_badblocks(rdev, sh->sector,
4012                                                      STRIPE_SECTORS, 0);
4013                                 rdev_dec_pending(rdev, conf->mddev);
4014                         }
4015                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4016                                 rdev = conf->disks[i].replacement;
4017                                 if (!rdev)
4018                                         /* rdev have been moved down */
4019                                         rdev = conf->disks[i].rdev;
4020                                 rdev_clear_badblocks(rdev, sh->sector,
4021                                                      STRIPE_SECTORS, 0);
4022                                 rdev_dec_pending(rdev, conf->mddev);
4023                         }
4024                 }
4025
4026         if (s.ops_request)
4027                 raid_run_ops(sh, s.ops_request);
4028
4029         ops_run_io(sh, &s);
4030
4031         if (s.dec_preread_active) {
4032                 /* We delay this until after ops_run_io so that if make_request
4033                  * is waiting on a flush, it won't continue until the writes
4034                  * have actually been submitted.
4035                  */
4036                 atomic_dec(&conf->preread_active_stripes);
4037                 if (atomic_read(&conf->preread_active_stripes) <
4038                     IO_THRESHOLD)
4039                         md_wakeup_thread(conf->mddev->thread);
4040         }
4041
4042         return_io(s.return_bi);
4043
4044         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4045 }
4046
4047 static void raid5_activate_delayed(struct r5conf *conf)
4048 {
4049         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4050                 while (!list_empty(&conf->delayed_list)) {
4051                         struct list_head *l = conf->delayed_list.next;
4052                         struct stripe_head *sh;
4053                         sh = list_entry(l, struct stripe_head, lru);
4054                         list_del_init(l);
4055                         clear_bit(STRIPE_DELAYED, &sh->state);
4056                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4057                                 atomic_inc(&conf->preread_active_stripes);
4058                         list_add_tail(&sh->lru, &conf->hold_list);
4059                         raid5_wakeup_stripe_thread(sh);
4060                 }
4061         }
4062 }
4063
4064 static void activate_bit_delay(struct r5conf *conf,
4065         struct list_head *temp_inactive_list)
4066 {
4067         /* device_lock is held */
4068         struct list_head head;
4069         list_add(&head, &conf->bitmap_list);
4070         list_del_init(&conf->bitmap_list);
4071         while (!list_empty(&head)) {
4072                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4073                 int hash;
4074                 list_del_init(&sh->lru);
4075                 atomic_inc(&sh->count);
4076                 hash = sh->hash_lock_index;
4077                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4078         }
4079 }
4080
4081 int md_raid5_congested(struct mddev *mddev, int bits)
4082 {
4083         struct r5conf *conf = mddev->private;
4084
4085         /* No difference between reads and writes.  Just check
4086          * how busy the stripe_cache is
4087          */
4088
4089         if (conf->inactive_blocked)
4090                 return 1;
4091         if (conf->quiesce)
4092                 return 1;
4093         if (atomic_read(&conf->empty_inactive_list_nr))
4094                 return 1;
4095
4096         return 0;
4097 }
4098 EXPORT_SYMBOL_GPL(md_raid5_congested);
4099
4100 static int raid5_congested(void *data, int bits)
4101 {
4102         struct mddev *mddev = data;
4103
4104         return mddev_congested(mddev, bits) ||
4105                 md_raid5_congested(mddev, bits);
4106 }
4107
4108 /* We want read requests to align with chunks where possible,
4109  * but write requests don't need to.
4110  */
4111 static int raid5_mergeable_bvec(struct request_queue *q,
4112                                 struct bvec_merge_data *bvm,
4113                                 struct bio_vec *biovec)
4114 {
4115         struct mddev *mddev = q->queuedata;
4116         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4117         int max;
4118         unsigned int chunk_sectors = mddev->chunk_sectors;
4119         unsigned int bio_sectors = bvm->bi_size >> 9;
4120
4121         if ((bvm->bi_rw & 1) == WRITE)
4122                 return biovec->bv_len; /* always allow writes to be mergeable */
4123
4124         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4125                 chunk_sectors = mddev->new_chunk_sectors;
4126         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4127         if (max < 0) max = 0;
4128         if (max <= biovec->bv_len && bio_sectors == 0)
4129                 return biovec->bv_len;
4130         else
4131                 return max;
4132 }
4133
4134
4135 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4136 {
4137         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4138         unsigned int chunk_sectors = mddev->chunk_sectors;
4139         unsigned int bio_sectors = bio_sectors(bio);
4140
4141         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4142                 chunk_sectors = mddev->new_chunk_sectors;
4143         return  chunk_sectors >=
4144                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4145 }
4146
4147 /*
4148  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4149  *  later sampled by raid5d.
4150  */
4151 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4152 {
4153         unsigned long flags;
4154
4155         spin_lock_irqsave(&conf->device_lock, flags);
4156
4157         bi->bi_next = conf->retry_read_aligned_list;
4158         conf->retry_read_aligned_list = bi;
4159
4160         spin_unlock_irqrestore(&conf->device_lock, flags);
4161         md_wakeup_thread(conf->mddev->thread);
4162 }
4163
4164
4165 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4166 {
4167         struct bio *bi;
4168
4169         bi = conf->retry_read_aligned;
4170         if (bi) {
4171                 conf->retry_read_aligned = NULL;
4172                 return bi;
4173         }
4174         bi = conf->retry_read_aligned_list;
4175         if(bi) {
4176                 conf->retry_read_aligned_list = bi->bi_next;
4177                 bi->bi_next = NULL;
4178                 /*
4179                  * this sets the active strip count to 1 and the processed
4180                  * strip count to zero (upper 8 bits)
4181                  */
4182                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4183         }
4184
4185         return bi;
4186 }
4187
4188
4189 /*
4190  *  The "raid5_align_endio" should check if the read succeeded and if it
4191  *  did, call bio_endio on the original bio (having bio_put the new bio
4192  *  first).
4193  *  If the read failed..
4194  */
4195 static void raid5_align_endio(struct bio *bi, int error)
4196 {
4197         struct bio* raid_bi  = bi->bi_private;
4198         struct mddev *mddev;
4199         struct r5conf *conf;
4200         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4201         struct md_rdev *rdev;
4202
4203         bio_put(bi);
4204
4205         rdev = (void*)raid_bi->bi_next;
4206         raid_bi->bi_next = NULL;
4207         mddev = rdev->mddev;
4208         conf = mddev->private;
4209
4210         rdev_dec_pending(rdev, conf->mddev);
4211
4212         if (!error && uptodate) {
4213                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4214                                          raid_bi, 0);
4215                 bio_endio(raid_bi, 0);
4216                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4217                         wake_up(&conf->wait_for_stripe);
4218                 return;
4219         }
4220
4221
4222         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4223
4224         add_bio_to_retry(raid_bi, conf);
4225 }
4226
4227 static int bio_fits_rdev(struct bio *bi)
4228 {
4229         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4230
4231         if (bio_sectors(bi) > queue_max_sectors(q))
4232                 return 0;
4233         blk_recount_segments(q, bi);
4234         if (bi->bi_phys_segments > queue_max_segments(q))
4235                 return 0;
4236
4237         if (q->merge_bvec_fn)
4238                 /* it's too hard to apply the merge_bvec_fn at this stage,
4239                  * just just give up
4240                  */
4241                 return 0;
4242
4243         return 1;
4244 }
4245
4246
4247 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4248 {
4249         struct r5conf *conf = mddev->private;
4250         int dd_idx;
4251         struct bio* align_bi;
4252         struct md_rdev *rdev;
4253         sector_t end_sector;
4254
4255         if (!in_chunk_boundary(mddev, raid_bio)) {
4256                 pr_debug("chunk_aligned_read : non aligned\n");
4257                 return 0;
4258         }
4259         /*
4260          * use bio_clone_mddev to make a copy of the bio
4261          */
4262         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4263         if (!align_bi)
4264                 return 0;
4265         /*
4266          *   set bi_end_io to a new function, and set bi_private to the
4267          *     original bio.
4268          */
4269         align_bi->bi_end_io  = raid5_align_endio;
4270         align_bi->bi_private = raid_bio;
4271         /*
4272          *      compute position
4273          */
4274         align_bi->bi_iter.bi_sector =
4275                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4276                                      0, &dd_idx, NULL);
4277
4278         end_sector = bio_end_sector(align_bi);
4279         rcu_read_lock();
4280         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4281         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4282             rdev->recovery_offset < end_sector) {
4283                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4284                 if (rdev &&
4285                     (test_bit(Faulty, &rdev->flags) ||
4286                     !(test_bit(In_sync, &rdev->flags) ||
4287                       rdev->recovery_offset >= end_sector)))
4288                         rdev = NULL;
4289         }
4290         if (rdev) {
4291                 sector_t first_bad;
4292                 int bad_sectors;
4293
4294                 atomic_inc(&rdev->nr_pending);
4295                 rcu_read_unlock();
4296                 raid_bio->bi_next = (void*)rdev;
4297                 align_bi->bi_bdev =  rdev->bdev;
4298                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4299
4300                 if (!bio_fits_rdev(align_bi) ||
4301                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4302                                 bio_sectors(align_bi),
4303                                 &first_bad, &bad_sectors)) {
4304                         /* too big in some way, or has a known bad block */
4305                         bio_put(align_bi);
4306                         rdev_dec_pending(rdev, mddev);
4307                         return 0;
4308                 }
4309
4310                 /* No reshape active, so we can trust rdev->data_offset */
4311                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4312
4313                 spin_lock_irq(&conf->device_lock);
4314                 wait_event_lock_irq(conf->wait_for_stripe,
4315                                     conf->quiesce == 0,
4316                                     conf->device_lock);
4317                 atomic_inc(&conf->active_aligned_reads);
4318                 spin_unlock_irq(&conf->device_lock);
4319
4320                 if (mddev->gendisk)
4321                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4322                                               align_bi, disk_devt(mddev->gendisk),
4323                                               raid_bio->bi_iter.bi_sector);
4324                 generic_make_request(align_bi);
4325                 return 1;
4326         } else {
4327                 rcu_read_unlock();
4328                 bio_put(align_bi);
4329                 return 0;
4330         }
4331 }
4332
4333 /* __get_priority_stripe - get the next stripe to process
4334  *
4335  * Full stripe writes are allowed to pass preread active stripes up until
4336  * the bypass_threshold is exceeded.  In general the bypass_count
4337  * increments when the handle_list is handled before the hold_list; however, it
4338  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4339  * stripe with in flight i/o.  The bypass_count will be reset when the
4340  * head of the hold_list has changed, i.e. the head was promoted to the
4341  * handle_list.
4342  */
4343 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4344 {
4345         struct stripe_head *sh = NULL, *tmp;
4346         struct list_head *handle_list = NULL;
4347         struct r5worker_group *wg = NULL;
4348
4349         if (conf->worker_cnt_per_group == 0) {
4350                 handle_list = &conf->handle_list;
4351         } else if (group != ANY_GROUP) {
4352                 handle_list = &conf->worker_groups[group].handle_list;
4353                 wg = &conf->worker_groups[group];
4354         } else {
4355                 int i;
4356                 for (i = 0; i < conf->group_cnt; i++) {
4357                         handle_list = &conf->worker_groups[i].handle_list;
4358                         wg = &conf->worker_groups[i];
4359                         if (!list_empty(handle_list))
4360                                 break;
4361                 }
4362         }
4363
4364         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4365                   __func__,
4366                   list_empty(handle_list) ? "empty" : "busy",
4367                   list_empty(&conf->hold_list) ? "empty" : "busy",
4368                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4369
4370         if (!list_empty(handle_list)) {
4371                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4372
4373                 if (list_empty(&conf->hold_list))
4374                         conf->bypass_count = 0;
4375                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4376                         if (conf->hold_list.next == conf->last_hold)
4377                                 conf->bypass_count++;
4378                         else {
4379                                 conf->last_hold = conf->hold_list.next;
4380                                 conf->bypass_count -= conf->bypass_threshold;
4381                                 if (conf->bypass_count < 0)
4382                                         conf->bypass_count = 0;
4383                         }
4384                 }
4385         } else if (!list_empty(&conf->hold_list) &&
4386                    ((conf->bypass_threshold &&
4387                      conf->bypass_count > conf->bypass_threshold) ||
4388                     atomic_read(&conf->pending_full_writes) == 0)) {
4389
4390                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4391                         if (conf->worker_cnt_per_group == 0 ||
4392                             group == ANY_GROUP ||
4393                             !cpu_online(tmp->cpu) ||
4394                             cpu_to_group(tmp->cpu) == group) {
4395                                 sh = tmp;
4396                                 break;
4397                         }
4398                 }
4399
4400                 if (sh) {
4401                         conf->bypass_count -= conf->bypass_threshold;
4402                         if (conf->bypass_count < 0)
4403                                 conf->bypass_count = 0;
4404                 }
4405                 wg = NULL;
4406         }
4407
4408         if (!sh)
4409                 return NULL;
4410
4411         if (wg) {
4412                 wg->stripes_cnt--;
4413                 sh->group = NULL;
4414         }
4415         list_del_init(&sh->lru);
4416         BUG_ON(atomic_inc_return(&sh->count) != 1);
4417         return sh;
4418 }
4419
4420 struct raid5_plug_cb {
4421         struct blk_plug_cb      cb;
4422         struct list_head        list;
4423         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4424 };
4425
4426 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4427 {
4428         struct raid5_plug_cb *cb = container_of(
4429                 blk_cb, struct raid5_plug_cb, cb);
4430         struct stripe_head *sh;
4431         struct mddev *mddev = cb->cb.data;
4432         struct r5conf *conf = mddev->private;
4433         int cnt = 0;
4434         int hash;
4435
4436         if (cb->list.next && !list_empty(&cb->list)) {
4437                 spin_lock_irq(&conf->device_lock);
4438                 while (!list_empty(&cb->list)) {
4439                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4440                         list_del_init(&sh->lru);
4441                         /*
4442                          * avoid race release_stripe_plug() sees
4443                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4444                          * is still in our list
4445                          */
4446                         smp_mb__before_atomic();
4447                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4448                         /*
4449                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4450                          * case, the count is always > 1 here
4451                          */
4452                         hash = sh->hash_lock_index;
4453                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4454                         cnt++;
4455                 }
4456                 spin_unlock_irq(&conf->device_lock);
4457         }
4458         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4459                                      NR_STRIPE_HASH_LOCKS);
4460         if (mddev->queue)
4461                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4462         kfree(cb);
4463 }
4464
4465 static void release_stripe_plug(struct mddev *mddev,
4466                                 struct stripe_head *sh)
4467 {
4468         struct blk_plug_cb *blk_cb = blk_check_plugged(
4469                 raid5_unplug, mddev,
4470                 sizeof(struct raid5_plug_cb));
4471         struct raid5_plug_cb *cb;
4472
4473         if (!blk_cb) {
4474                 release_stripe(sh);
4475                 return;
4476         }
4477
4478         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4479
4480         if (cb->list.next == NULL) {
4481                 int i;
4482                 INIT_LIST_HEAD(&cb->list);
4483                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4484                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4485         }
4486
4487         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4488                 list_add_tail(&sh->lru, &cb->list);
4489         else
4490                 release_stripe(sh);
4491 }
4492
4493 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4494 {
4495         struct r5conf *conf = mddev->private;
4496         sector_t logical_sector, last_sector;
4497         struct stripe_head *sh;
4498         int remaining;
4499         int stripe_sectors;
4500
4501         if (mddev->reshape_position != MaxSector)
4502                 /* Skip discard while reshape is happening */
4503                 return;
4504
4505         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4506         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4507
4508         bi->bi_next = NULL;
4509         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4510
4511         stripe_sectors = conf->chunk_sectors *
4512                 (conf->raid_disks - conf->max_degraded);
4513         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4514                                                stripe_sectors);
4515         sector_div(last_sector, stripe_sectors);
4516
4517         logical_sector *= conf->chunk_sectors;
4518         last_sector *= conf->chunk_sectors;
4519
4520         for (; logical_sector < last_sector;
4521              logical_sector += STRIPE_SECTORS) {
4522                 DEFINE_WAIT(w);
4523                 int d;
4524         again:
4525                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4526                 prepare_to_wait(&conf->wait_for_overlap, &w,
4527                                 TASK_UNINTERRUPTIBLE);
4528                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4529                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4530                         release_stripe(sh);
4531                         schedule();
4532                         goto again;
4533                 }
4534                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4535                 spin_lock_irq(&sh->stripe_lock);
4536                 for (d = 0; d < conf->raid_disks; d++) {
4537                         if (d == sh->pd_idx || d == sh->qd_idx)
4538                                 continue;
4539                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4540                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4541                                 spin_unlock_irq(&sh->stripe_lock);
4542                                 release_stripe(sh);
4543                                 schedule();
4544                                 goto again;
4545                         }
4546                 }
4547                 set_bit(STRIPE_DISCARD, &sh->state);
4548                 finish_wait(&conf->wait_for_overlap, &w);
4549                 for (d = 0; d < conf->raid_disks; d++) {
4550                         if (d == sh->pd_idx || d == sh->qd_idx)
4551                                 continue;
4552                         sh->dev[d].towrite = bi;
4553                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4554                         raid5_inc_bi_active_stripes(bi);
4555                 }
4556                 spin_unlock_irq(&sh->stripe_lock);
4557                 if (conf->mddev->bitmap) {
4558                         for (d = 0;
4559                              d < conf->raid_disks - conf->max_degraded;
4560                              d++)
4561                                 bitmap_startwrite(mddev->bitmap,
4562                                                   sh->sector,
4563                                                   STRIPE_SECTORS,
4564                                                   0);
4565                         sh->bm_seq = conf->seq_flush + 1;
4566                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4567                 }
4568
4569                 set_bit(STRIPE_HANDLE, &sh->state);
4570                 clear_bit(STRIPE_DELAYED, &sh->state);
4571                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4572                         atomic_inc(&conf->preread_active_stripes);
4573                 release_stripe_plug(mddev, sh);
4574         }
4575
4576         remaining = raid5_dec_bi_active_stripes(bi);
4577         if (remaining == 0) {
4578                 md_write_end(mddev);
4579                 bio_endio(bi, 0);
4580         }
4581 }
4582
4583 static void make_request(struct mddev *mddev, struct bio * bi)
4584 {
4585         struct r5conf *conf = mddev->private;
4586         int dd_idx;
4587         sector_t new_sector;
4588         sector_t logical_sector, last_sector;
4589         struct stripe_head *sh;
4590         const int rw = bio_data_dir(bi);
4591         int remaining;
4592         DEFINE_WAIT(w);
4593         bool do_prepare;
4594
4595         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4596                 md_flush_request(mddev, bi);
4597                 return;
4598         }
4599
4600         md_write_start(mddev, bi);
4601
4602         if (rw == READ &&
4603              mddev->reshape_position == MaxSector &&
4604              chunk_aligned_read(mddev,bi))
4605                 return;
4606
4607         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4608                 make_discard_request(mddev, bi);
4609                 return;
4610         }
4611
4612         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4613         last_sector = bio_end_sector(bi);
4614         bi->bi_next = NULL;
4615         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4616
4617         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4618         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4619                 int previous;
4620                 int seq;
4621
4622                 do_prepare = false;
4623         retry:
4624                 seq = read_seqcount_begin(&conf->gen_lock);
4625                 previous = 0;
4626                 if (do_prepare)
4627                         prepare_to_wait(&conf->wait_for_overlap, &w,
4628                                 TASK_UNINTERRUPTIBLE);
4629                 if (unlikely(conf->reshape_progress != MaxSector)) {
4630                         /* spinlock is needed as reshape_progress may be
4631                          * 64bit on a 32bit platform, and so it might be
4632                          * possible to see a half-updated value
4633                          * Of course reshape_progress could change after
4634                          * the lock is dropped, so once we get a reference
4635                          * to the stripe that we think it is, we will have
4636                          * to check again.
4637                          */
4638                         spin_lock_irq(&conf->device_lock);
4639                         if (mddev->reshape_backwards
4640                             ? logical_sector < conf->reshape_progress
4641                             : logical_sector >= conf->reshape_progress) {
4642                                 previous = 1;
4643                         } else {
4644                                 if (mddev->reshape_backwards
4645                                     ? logical_sector < conf->reshape_safe
4646                                     : logical_sector >= conf->reshape_safe) {
4647                                         spin_unlock_irq(&conf->device_lock);
4648                                         schedule();
4649                                         do_prepare = true;
4650                                         goto retry;
4651                                 }
4652                         }
4653                         spin_unlock_irq(&conf->device_lock);
4654                 }
4655
4656                 new_sector = raid5_compute_sector(conf, logical_sector,
4657                                                   previous,
4658                                                   &dd_idx, NULL);
4659                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4660                         (unsigned long long)new_sector,
4661                         (unsigned long long)logical_sector);
4662
4663                 sh = get_active_stripe(conf, new_sector, previous,
4664                                        (bi->bi_rw&RWA_MASK), 0);
4665                 if (sh) {
4666                         if (unlikely(previous)) {
4667                                 /* expansion might have moved on while waiting for a
4668                                  * stripe, so we must do the range check again.
4669                                  * Expansion could still move past after this
4670                                  * test, but as we are holding a reference to
4671                                  * 'sh', we know that if that happens,
4672                                  *  STRIPE_EXPANDING will get set and the expansion
4673                                  * won't proceed until we finish with the stripe.
4674                                  */
4675                                 int must_retry = 0;
4676                                 spin_lock_irq(&conf->device_lock);
4677                                 if (mddev->reshape_backwards
4678                                     ? logical_sector >= conf->reshape_progress
4679                                     : logical_sector < conf->reshape_progress)
4680                                         /* mismatch, need to try again */
4681                                         must_retry = 1;
4682                                 spin_unlock_irq(&conf->device_lock);
4683                                 if (must_retry) {
4684                                         release_stripe(sh);
4685                                         schedule();
4686                                         do_prepare = true;
4687                                         goto retry;
4688                                 }
4689                         }
4690                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4691                                 /* Might have got the wrong stripe_head
4692                                  * by accident
4693                                  */
4694                                 release_stripe(sh);
4695                                 goto retry;
4696                         }
4697
4698                         if (rw == WRITE &&
4699                             logical_sector >= mddev->suspend_lo &&
4700                             logical_sector < mddev->suspend_hi) {
4701                                 release_stripe(sh);
4702                                 /* As the suspend_* range is controlled by
4703                                  * userspace, we want an interruptible
4704                                  * wait.
4705                                  */
4706                                 flush_signals(current);
4707                                 prepare_to_wait(&conf->wait_for_overlap,
4708                                                 &w, TASK_INTERRUPTIBLE);
4709                                 if (logical_sector >= mddev->suspend_lo &&
4710                                     logical_sector < mddev->suspend_hi) {
4711                                         schedule();
4712                                         do_prepare = true;
4713                                 }
4714                                 goto retry;
4715                         }
4716
4717                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4718                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4719                                 /* Stripe is busy expanding or
4720                                  * add failed due to overlap.  Flush everything
4721                                  * and wait a while
4722                                  */
4723                                 md_wakeup_thread(mddev->thread);
4724                                 release_stripe(sh);
4725                                 schedule();
4726                                 do_prepare = true;
4727                                 goto retry;
4728                         }
4729                         set_bit(STRIPE_HANDLE, &sh->state);
4730                         clear_bit(STRIPE_DELAYED, &sh->state);
4731                         if ((bi->bi_rw & REQ_SYNC) &&
4732                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4733                                 atomic_inc(&conf->preread_active_stripes);
4734                         release_stripe_plug(mddev, sh);
4735                 } else {
4736                         /* cannot get stripe for read-ahead, just give-up */
4737                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4738                         break;
4739                 }
4740         }
4741         finish_wait(&conf->wait_for_overlap, &w);
4742
4743         remaining = raid5_dec_bi_active_stripes(bi);
4744         if (remaining == 0) {
4745
4746                 if ( rw == WRITE )
4747                         md_write_end(mddev);
4748
4749                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4750                                          bi, 0);
4751                 bio_endio(bi, 0);
4752         }
4753 }
4754
4755 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4756
4757 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4758 {
4759         /* reshaping is quite different to recovery/resync so it is
4760          * handled quite separately ... here.
4761          *
4762          * On each call to sync_request, we gather one chunk worth of
4763          * destination stripes and flag them as expanding.
4764          * Then we find all the source stripes and request reads.
4765          * As the reads complete, handle_stripe will copy the data
4766          * into the destination stripe and release that stripe.
4767          */
4768         struct r5conf *conf = mddev->private;
4769         struct stripe_head *sh;
4770         sector_t first_sector, last_sector;
4771         int raid_disks = conf->previous_raid_disks;
4772         int data_disks = raid_disks - conf->max_degraded;
4773         int new_data_disks = conf->raid_disks - conf->max_degraded;
4774         int i;
4775         int dd_idx;
4776         sector_t writepos, readpos, safepos;
4777         sector_t stripe_addr;
4778         int reshape_sectors;
4779         struct list_head stripes;
4780
4781         if (sector_nr == 0) {
4782                 /* If restarting in the middle, skip the initial sectors */
4783                 if (mddev->reshape_backwards &&
4784                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4785                         sector_nr = raid5_size(mddev, 0, 0)
4786                                 - conf->reshape_progress;
4787                 } else if (!mddev->reshape_backwards &&
4788                            conf->reshape_progress > 0)
4789                         sector_nr = conf->reshape_progress;
4790                 sector_div(sector_nr, new_data_disks);
4791                 if (sector_nr) {
4792                         mddev->curr_resync_completed = sector_nr;
4793                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4794                         *skipped = 1;
4795                         return sector_nr;
4796                 }
4797         }
4798
4799         /* We need to process a full chunk at a time.
4800          * If old and new chunk sizes differ, we need to process the
4801          * largest of these
4802          */
4803         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4804                 reshape_sectors = mddev->new_chunk_sectors;
4805         else
4806                 reshape_sectors = mddev->chunk_sectors;
4807
4808         /* We update the metadata at least every 10 seconds, or when
4809          * the data about to be copied would over-write the source of
4810          * the data at the front of the range.  i.e. one new_stripe
4811          * along from reshape_progress new_maps to after where
4812          * reshape_safe old_maps to
4813          */
4814         writepos = conf->reshape_progress;
4815         sector_div(writepos, new_data_disks);
4816         readpos = conf->reshape_progress;
4817         sector_div(readpos, data_disks);
4818         safepos = conf->reshape_safe;
4819         sector_div(safepos, data_disks);
4820         if (mddev->reshape_backwards) {
4821                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4822                 readpos += reshape_sectors;
4823                 safepos += reshape_sectors;
4824         } else {
4825                 writepos += reshape_sectors;
4826                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4827                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4828         }
4829
4830         /* Having calculated the 'writepos' possibly use it
4831          * to set 'stripe_addr' which is where we will write to.
4832          */
4833         if (mddev->reshape_backwards) {
4834                 BUG_ON(conf->reshape_progress == 0);
4835                 stripe_addr = writepos;
4836                 BUG_ON((mddev->dev_sectors &
4837                         ~((sector_t)reshape_sectors - 1))
4838                        - reshape_sectors - stripe_addr
4839                        != sector_nr);
4840         } else {
4841                 BUG_ON(writepos != sector_nr + reshape_sectors);
4842                 stripe_addr = sector_nr;
4843         }
4844
4845         /* 'writepos' is the most advanced device address we might write.
4846          * 'readpos' is the least advanced device address we might read.
4847          * 'safepos' is the least address recorded in the metadata as having
4848          *     been reshaped.
4849          * If there is a min_offset_diff, these are adjusted either by
4850          * increasing the safepos/readpos if diff is negative, or
4851          * increasing writepos if diff is positive.
4852          * If 'readpos' is then behind 'writepos', there is no way that we can
4853          * ensure safety in the face of a crash - that must be done by userspace
4854          * making a backup of the data.  So in that case there is no particular
4855          * rush to update metadata.
4856          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4857          * update the metadata to advance 'safepos' to match 'readpos' so that
4858          * we can be safe in the event of a crash.
4859          * So we insist on updating metadata if safepos is behind writepos and
4860          * readpos is beyond writepos.
4861          * In any case, update the metadata every 10 seconds.
4862          * Maybe that number should be configurable, but I'm not sure it is
4863          * worth it.... maybe it could be a multiple of safemode_delay???
4864          */
4865         if (conf->min_offset_diff < 0) {
4866                 safepos += -conf->min_offset_diff;
4867                 readpos += -conf->min_offset_diff;
4868         } else
4869                 writepos += conf->min_offset_diff;
4870
4871         if ((mddev->reshape_backwards
4872              ? (safepos > writepos && readpos < writepos)
4873              : (safepos < writepos && readpos > writepos)) ||
4874             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4875                 /* Cannot proceed until we've updated the superblock... */
4876                 wait_event(conf->wait_for_overlap,
4877                            atomic_read(&conf->reshape_stripes)==0
4878                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4879                 if (atomic_read(&conf->reshape_stripes) != 0)
4880                         return 0;
4881                 mddev->reshape_position = conf->reshape_progress;
4882                 mddev->curr_resync_completed = sector_nr;
4883                 conf->reshape_checkpoint = jiffies;
4884                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4885                 md_wakeup_thread(mddev->thread);
4886                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4887                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4888                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4889                         return 0;
4890                 spin_lock_irq(&conf->device_lock);
4891                 conf->reshape_safe = mddev->reshape_position;
4892                 spin_unlock_irq(&conf->device_lock);
4893                 wake_up(&conf->wait_for_overlap);
4894                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4895         }
4896
4897         INIT_LIST_HEAD(&stripes);
4898         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4899                 int j;
4900                 int skipped_disk = 0;
4901                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4902                 set_bit(STRIPE_EXPANDING, &sh->state);
4903                 atomic_inc(&conf->reshape_stripes);
4904                 /* If any of this stripe is beyond the end of the old
4905                  * array, then we need to zero those blocks
4906                  */
4907                 for (j=sh->disks; j--;) {
4908                         sector_t s;
4909                         if (j == sh->pd_idx)
4910                                 continue;
4911                         if (conf->level == 6 &&
4912                             j == sh->qd_idx)
4913                                 continue;
4914                         s = compute_blocknr(sh, j, 0);
4915                         if (s < raid5_size(mddev, 0, 0)) {
4916                                 skipped_disk = 1;
4917                                 continue;
4918                         }
4919                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4920                         set_bit(R5_Expanded, &sh->dev[j].flags);
4921                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4922                 }
4923                 if (!skipped_disk) {
4924                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4925                         set_bit(STRIPE_HANDLE, &sh->state);
4926                 }
4927                 list_add(&sh->lru, &stripes);
4928         }
4929         spin_lock_irq(&conf->device_lock);
4930         if (mddev->reshape_backwards)
4931                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4932         else
4933                 conf->reshape_progress += reshape_sectors * new_data_disks;
4934         spin_unlock_irq(&conf->device_lock);
4935         /* Ok, those stripe are ready. We can start scheduling
4936          * reads on the source stripes.
4937          * The source stripes are determined by mapping the first and last
4938          * block on the destination stripes.
4939          */
4940         first_sector =
4941                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4942                                      1, &dd_idx, NULL);
4943         last_sector =
4944                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4945                                             * new_data_disks - 1),
4946                                      1, &dd_idx, NULL);
4947         if (last_sector >= mddev->dev_sectors)
4948                 last_sector = mddev->dev_sectors - 1;
4949         while (first_sector <= last_sector) {
4950                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4951                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4952                 set_bit(STRIPE_HANDLE, &sh->state);
4953                 release_stripe(sh);
4954                 first_sector += STRIPE_SECTORS;
4955         }
4956         /* Now that the sources are clearly marked, we can release
4957          * the destination stripes
4958          */
4959         while (!list_empty(&stripes)) {
4960                 sh = list_entry(stripes.next, struct stripe_head, lru);
4961                 list_del_init(&sh->lru);
4962                 release_stripe(sh);
4963         }
4964         /* If this takes us to the resync_max point where we have to pause,
4965          * then we need to write out the superblock.
4966          */
4967         sector_nr += reshape_sectors;
4968         if ((sector_nr - mddev->curr_resync_completed) * 2
4969             >= mddev->resync_max - mddev->curr_resync_completed) {
4970                 /* Cannot proceed until we've updated the superblock... */
4971                 wait_event(conf->wait_for_overlap,
4972                            atomic_read(&conf->reshape_stripes) == 0
4973                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4974                 if (atomic_read(&conf->reshape_stripes) != 0)
4975                         goto ret;
4976                 mddev->reshape_position = conf->reshape_progress;
4977                 mddev->curr_resync_completed = sector_nr;
4978                 conf->reshape_checkpoint = jiffies;
4979                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4980                 md_wakeup_thread(mddev->thread);
4981                 wait_event(mddev->sb_wait,
4982                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4983                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4984                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4985                         goto ret;
4986                 spin_lock_irq(&conf->device_lock);
4987                 conf->reshape_safe = mddev->reshape_position;
4988                 spin_unlock_irq(&conf->device_lock);
4989                 wake_up(&conf->wait_for_overlap);
4990                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4991         }
4992 ret:
4993         return reshape_sectors;
4994 }
4995
4996 /* FIXME go_faster isn't used */
4997 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4998 {
4999         struct r5conf *conf = mddev->private;
5000         struct stripe_head *sh;
5001         sector_t max_sector = mddev->dev_sectors;
5002         sector_t sync_blocks;
5003         int still_degraded = 0;
5004         int i;
5005
5006         if (sector_nr >= max_sector) {
5007                 /* just being told to finish up .. nothing much to do */
5008
5009                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5010                         end_reshape(conf);
5011                         return 0;
5012                 }
5013
5014                 if (mddev->curr_resync < max_sector) /* aborted */
5015                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5016                                         &sync_blocks, 1);
5017                 else /* completed sync */
5018                         conf->fullsync = 0;
5019                 bitmap_close_sync(mddev->bitmap);
5020
5021                 return 0;
5022         }
5023
5024         /* Allow raid5_quiesce to complete */
5025         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5026
5027         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5028                 return reshape_request(mddev, sector_nr, skipped);
5029
5030         /* No need to check resync_max as we never do more than one
5031          * stripe, and as resync_max will always be on a chunk boundary,
5032          * if the check in md_do_sync didn't fire, there is no chance
5033          * of overstepping resync_max here
5034          */
5035
5036         /* if there is too many failed drives and we are trying
5037          * to resync, then assert that we are finished, because there is
5038          * nothing we can do.
5039          */
5040         if (mddev->degraded >= conf->max_degraded &&
5041             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5042                 sector_t rv = mddev->dev_sectors - sector_nr;
5043                 *skipped = 1;
5044                 return rv;
5045         }
5046         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5047             !conf->fullsync &&
5048             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5049             sync_blocks >= STRIPE_SECTORS) {
5050                 /* we can skip this block, and probably more */
5051                 sync_blocks /= STRIPE_SECTORS;
5052                 *skipped = 1;
5053                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5054         }
5055
5056         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5057
5058         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5059         if (sh == NULL) {
5060                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5061                 /* make sure we don't swamp the stripe cache if someone else
5062                  * is trying to get access
5063                  */
5064                 schedule_timeout_uninterruptible(1);
5065         }
5066         /* Need to check if array will still be degraded after recovery/resync
5067          * We don't need to check the 'failed' flag as when that gets set,
5068          * recovery aborts.
5069          */
5070         for (i = 0; i < conf->raid_disks; i++)
5071                 if (conf->disks[i].rdev == NULL)
5072                         still_degraded = 1;
5073
5074         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5075
5076         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5077         set_bit(STRIPE_HANDLE, &sh->state);
5078
5079         release_stripe(sh);
5080
5081         return STRIPE_SECTORS;
5082 }
5083
5084 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5085 {
5086         /* We may not be able to submit a whole bio at once as there
5087          * may not be enough stripe_heads available.
5088          * We cannot pre-allocate enough stripe_heads as we may need
5089          * more than exist in the cache (if we allow ever large chunks).
5090          * So we do one stripe head at a time and record in
5091          * ->bi_hw_segments how many have been done.
5092          *
5093          * We *know* that this entire raid_bio is in one chunk, so
5094          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5095          */
5096         struct stripe_head *sh;
5097         int dd_idx;
5098         sector_t sector, logical_sector, last_sector;
5099         int scnt = 0;
5100         int remaining;
5101         int handled = 0;
5102
5103         logical_sector = raid_bio->bi_iter.bi_sector &
5104                 ~((sector_t)STRIPE_SECTORS-1);
5105         sector = raid5_compute_sector(conf, logical_sector,
5106                                       0, &dd_idx, NULL);
5107         last_sector = bio_end_sector(raid_bio);
5108
5109         for (; logical_sector < last_sector;
5110              logical_sector += STRIPE_SECTORS,
5111                      sector += STRIPE_SECTORS,
5112                      scnt++) {
5113
5114                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5115                         /* already done this stripe */
5116                         continue;
5117
5118                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5119
5120                 if (!sh) {
5121                         /* failed to get a stripe - must wait */
5122                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5123                         conf->retry_read_aligned = raid_bio;
5124                         return handled;
5125                 }
5126
5127                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5128                         release_stripe(sh);
5129                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5130                         conf->retry_read_aligned = raid_bio;
5131                         return handled;
5132                 }
5133
5134                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5135                 handle_stripe(sh);
5136                 release_stripe(sh);
5137                 handled++;
5138         }
5139         remaining = raid5_dec_bi_active_stripes(raid_bio);
5140         if (remaining == 0) {
5141                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5142                                          raid_bio, 0);
5143                 bio_endio(raid_bio, 0);
5144         }
5145         if (atomic_dec_and_test(&conf->active_aligned_reads))
5146                 wake_up(&conf->wait_for_stripe);
5147         return handled;
5148 }
5149
5150 static int handle_active_stripes(struct r5conf *conf, int group,
5151                                  struct r5worker *worker,
5152                                  struct list_head *temp_inactive_list)
5153 {
5154         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5155         int i, batch_size = 0, hash;
5156         bool release_inactive = false;
5157
5158         while (batch_size < MAX_STRIPE_BATCH &&
5159                         (sh = __get_priority_stripe(conf, group)) != NULL)
5160                 batch[batch_size++] = sh;
5161
5162         if (batch_size == 0) {
5163                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5164                         if (!list_empty(temp_inactive_list + i))
5165                                 break;
5166                 if (i == NR_STRIPE_HASH_LOCKS)
5167                         return batch_size;
5168                 release_inactive = true;
5169         }
5170         spin_unlock_irq(&conf->device_lock);
5171
5172         release_inactive_stripe_list(conf, temp_inactive_list,
5173                                      NR_STRIPE_HASH_LOCKS);
5174
5175         if (release_inactive) {
5176                 spin_lock_irq(&conf->device_lock);
5177                 return 0;
5178         }
5179
5180         for (i = 0; i < batch_size; i++)
5181                 handle_stripe(batch[i]);
5182
5183         cond_resched();
5184
5185         spin_lock_irq(&conf->device_lock);
5186         for (i = 0; i < batch_size; i++) {
5187                 hash = batch[i]->hash_lock_index;
5188                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5189         }
5190         return batch_size;
5191 }
5192
5193 static void raid5_do_work(struct work_struct *work)
5194 {
5195         struct r5worker *worker = container_of(work, struct r5worker, work);
5196         struct r5worker_group *group = worker->group;
5197         struct r5conf *conf = group->conf;
5198         int group_id = group - conf->worker_groups;
5199         int handled;
5200         struct blk_plug plug;
5201
5202         pr_debug("+++ raid5worker active\n");
5203
5204         blk_start_plug(&plug);
5205         handled = 0;
5206         spin_lock_irq(&conf->device_lock);
5207         while (1) {
5208                 int batch_size, released;
5209
5210                 released = release_stripe_list(conf, worker->temp_inactive_list);
5211
5212                 batch_size = handle_active_stripes(conf, group_id, worker,
5213                                                    worker->temp_inactive_list);
5214                 worker->working = false;
5215                 if (!batch_size && !released)
5216                         break;
5217                 handled += batch_size;
5218         }
5219         pr_debug("%d stripes handled\n", handled);
5220
5221         spin_unlock_irq(&conf->device_lock);
5222         blk_finish_plug(&plug);
5223
5224         pr_debug("--- raid5worker inactive\n");
5225 }
5226
5227 /*
5228  * This is our raid5 kernel thread.
5229  *
5230  * We scan the hash table for stripes which can be handled now.
5231  * During the scan, completed stripes are saved for us by the interrupt
5232  * handler, so that they will not have to wait for our next wakeup.
5233  */
5234 static void raid5d(struct md_thread *thread)
5235 {
5236         struct mddev *mddev = thread->mddev;
5237         struct r5conf *conf = mddev->private;
5238         int handled;
5239         struct blk_plug plug;
5240
5241         pr_debug("+++ raid5d active\n");
5242
5243         md_check_recovery(mddev);
5244
5245         blk_start_plug(&plug);
5246         handled = 0;
5247         spin_lock_irq(&conf->device_lock);
5248         while (1) {
5249                 struct bio *bio;
5250                 int batch_size, released;
5251
5252                 released = release_stripe_list(conf, conf->temp_inactive_list);
5253
5254                 if (
5255                     !list_empty(&conf->bitmap_list)) {
5256                         /* Now is a good time to flush some bitmap updates */
5257                         conf->seq_flush++;
5258                         spin_unlock_irq(&conf->device_lock);
5259                         bitmap_unplug(mddev->bitmap);
5260                         spin_lock_irq(&conf->device_lock);
5261                         conf->seq_write = conf->seq_flush;
5262                         activate_bit_delay(conf, conf->temp_inactive_list);
5263                 }
5264                 raid5_activate_delayed(conf);
5265
5266                 while ((bio = remove_bio_from_retry(conf))) {
5267                         int ok;
5268                         spin_unlock_irq(&conf->device_lock);
5269                         ok = retry_aligned_read(conf, bio);
5270                         spin_lock_irq(&conf->device_lock);
5271                         if (!ok)
5272                                 break;
5273                         handled++;
5274                 }
5275
5276                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5277                                                    conf->temp_inactive_list);
5278                 if (!batch_size && !released)
5279                         break;
5280                 handled += batch_size;
5281
5282                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5283                         spin_unlock_irq(&conf->device_lock);
5284                         md_check_recovery(mddev);
5285                         spin_lock_irq(&conf->device_lock);
5286                 }
5287         }
5288         pr_debug("%d stripes handled\n", handled);
5289
5290         spin_unlock_irq(&conf->device_lock);
5291
5292         async_tx_issue_pending_all();
5293         blk_finish_plug(&plug);
5294
5295         pr_debug("--- raid5d inactive\n");
5296 }
5297
5298 static ssize_t
5299 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5300 {
5301         struct r5conf *conf = mddev->private;
5302         if (conf)
5303                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5304         else
5305                 return 0;
5306 }
5307
5308 int
5309 raid5_set_cache_size(struct mddev *mddev, int size)
5310 {
5311         struct r5conf *conf = mddev->private;
5312         int err;
5313         int hash;
5314
5315         if (size <= 16 || size > 32768)
5316                 return -EINVAL;
5317         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5318         while (size < conf->max_nr_stripes) {
5319                 if (drop_one_stripe(conf, hash))
5320                         conf->max_nr_stripes--;
5321                 else
5322                         break;
5323                 hash--;
5324                 if (hash < 0)
5325                         hash = NR_STRIPE_HASH_LOCKS - 1;
5326         }
5327         err = md_allow_write(mddev);
5328         if (err)
5329                 return err;
5330         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5331         while (size > conf->max_nr_stripes) {
5332                 if (grow_one_stripe(conf, hash))
5333                         conf->max_nr_stripes++;
5334                 else break;
5335                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5336         }
5337         return 0;
5338 }
5339 EXPORT_SYMBOL(raid5_set_cache_size);
5340
5341 static ssize_t
5342 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5343 {
5344         struct r5conf *conf = mddev->private;
5345         unsigned long new;
5346         int err;
5347
5348         if (len >= PAGE_SIZE)
5349                 return -EINVAL;
5350         if (!conf)
5351                 return -ENODEV;
5352
5353         if (kstrtoul(page, 10, &new))
5354                 return -EINVAL;
5355         err = raid5_set_cache_size(mddev, new);
5356         if (err)
5357                 return err;
5358         return len;
5359 }
5360
5361 static struct md_sysfs_entry
5362 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5363                                 raid5_show_stripe_cache_size,
5364                                 raid5_store_stripe_cache_size);
5365
5366 static ssize_t
5367 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5368 {
5369         struct r5conf *conf = mddev->private;
5370         if (conf)
5371                 return sprintf(page, "%d\n", conf->bypass_threshold);
5372         else
5373                 return 0;
5374 }
5375
5376 static ssize_t
5377 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5378 {
5379         struct r5conf *conf = mddev->private;
5380         unsigned long new;
5381         if (len >= PAGE_SIZE)
5382                 return -EINVAL;
5383         if (!conf)
5384                 return -ENODEV;
5385
5386         if (kstrtoul(page, 10, &new))
5387                 return -EINVAL;
5388         if (new > conf->max_nr_stripes)
5389                 return -EINVAL;
5390         conf->bypass_threshold = new;
5391         return len;
5392 }
5393
5394 static struct md_sysfs_entry
5395 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5396                                         S_IRUGO | S_IWUSR,
5397                                         raid5_show_preread_threshold,
5398                                         raid5_store_preread_threshold);
5399
5400 static ssize_t
5401 raid5_show_skip_copy(struct mddev *mddev, char *page)
5402 {
5403         struct r5conf *conf = mddev->private;
5404         if (conf)
5405                 return sprintf(page, "%d\n", conf->skip_copy);
5406         else
5407                 return 0;
5408 }
5409
5410 static ssize_t
5411 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5412 {
5413         struct r5conf *conf = mddev->private;
5414         unsigned long new;
5415         if (len >= PAGE_SIZE)
5416                 return -EINVAL;
5417         if (!conf)
5418                 return -ENODEV;
5419
5420         if (kstrtoul(page, 10, &new))
5421                 return -EINVAL;
5422         new = !!new;
5423         if (new == conf->skip_copy)
5424                 return len;
5425
5426         mddev_suspend(mddev);
5427         conf->skip_copy = new;
5428         if (new)
5429                 mddev->queue->backing_dev_info.capabilities |=
5430                                                 BDI_CAP_STABLE_WRITES;
5431         else
5432                 mddev->queue->backing_dev_info.capabilities &=
5433                                                 ~BDI_CAP_STABLE_WRITES;
5434         mddev_resume(mddev);
5435         return len;
5436 }
5437
5438 static struct md_sysfs_entry
5439 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5440                                         raid5_show_skip_copy,
5441                                         raid5_store_skip_copy);
5442
5443
5444 static ssize_t
5445 stripe_cache_active_show(struct mddev *mddev, char *page)
5446 {
5447         struct r5conf *conf = mddev->private;
5448         if (conf)
5449                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5450         else
5451                 return 0;
5452 }
5453
5454 static struct md_sysfs_entry
5455 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5456
5457 static ssize_t
5458 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5459 {
5460         struct r5conf *conf = mddev->private;
5461         if (conf)
5462                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5463         else
5464                 return 0;
5465 }
5466
5467 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5468                                int *group_cnt,
5469                                int *worker_cnt_per_group,
5470                                struct r5worker_group **worker_groups);
5471 static ssize_t
5472 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5473 {
5474         struct r5conf *conf = mddev->private;
5475         unsigned long new;
5476         int err;
5477         struct r5worker_group *new_groups, *old_groups;
5478         int group_cnt, worker_cnt_per_group;
5479
5480         if (len >= PAGE_SIZE)
5481                 return -EINVAL;
5482         if (!conf)
5483                 return -ENODEV;
5484
5485         if (kstrtoul(page, 10, &new))
5486                 return -EINVAL;
5487
5488         if (new == conf->worker_cnt_per_group)
5489                 return len;
5490
5491         mddev_suspend(mddev);
5492
5493         old_groups = conf->worker_groups;
5494         if (old_groups)
5495                 flush_workqueue(raid5_wq);
5496
5497         err = alloc_thread_groups(conf, new,
5498                                   &group_cnt, &worker_cnt_per_group,
5499                                   &new_groups);
5500         if (!err) {
5501                 spin_lock_irq(&conf->device_lock);
5502                 conf->group_cnt = group_cnt;
5503                 conf->worker_cnt_per_group = worker_cnt_per_group;
5504                 conf->worker_groups = new_groups;
5505                 spin_unlock_irq(&conf->device_lock);
5506
5507                 if (old_groups)
5508                         kfree(old_groups[0].workers);
5509                 kfree(old_groups);
5510         }
5511
5512         mddev_resume(mddev);
5513
5514         if (err)
5515                 return err;
5516         return len;
5517 }
5518
5519 static struct md_sysfs_entry
5520 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5521                                 raid5_show_group_thread_cnt,
5522                                 raid5_store_group_thread_cnt);
5523
5524 static struct attribute *raid5_attrs[] =  {
5525         &raid5_stripecache_size.attr,
5526         &raid5_stripecache_active.attr,
5527         &raid5_preread_bypass_threshold.attr,
5528         &raid5_group_thread_cnt.attr,
5529         &raid5_skip_copy.attr,
5530         NULL,
5531 };
5532 static struct attribute_group raid5_attrs_group = {
5533         .name = NULL,
5534         .attrs = raid5_attrs,
5535 };
5536
5537 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5538                                int *group_cnt,
5539                                int *worker_cnt_per_group,
5540                                struct r5worker_group **worker_groups)
5541 {
5542         int i, j, k;
5543         ssize_t size;
5544         struct r5worker *workers;
5545
5546         *worker_cnt_per_group = cnt;
5547         if (cnt == 0) {
5548                 *group_cnt = 0;
5549                 *worker_groups = NULL;
5550                 return 0;
5551         }
5552         *group_cnt = num_possible_nodes();
5553         size = sizeof(struct r5worker) * cnt;
5554         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5555         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5556                                 *group_cnt, GFP_NOIO);
5557         if (!*worker_groups || !workers) {
5558                 kfree(workers);
5559                 kfree(*worker_groups);
5560                 return -ENOMEM;
5561         }
5562
5563         for (i = 0; i < *group_cnt; i++) {
5564                 struct r5worker_group *group;
5565
5566                 group = &(*worker_groups)[i];
5567                 INIT_LIST_HEAD(&group->handle_list);
5568                 group->conf = conf;
5569                 group->workers = workers + i * cnt;
5570
5571                 for (j = 0; j < cnt; j++) {
5572                         struct r5worker *worker = group->workers + j;
5573                         worker->group = group;
5574                         INIT_WORK(&worker->work, raid5_do_work);
5575
5576                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5577                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5578                 }
5579         }
5580
5581         return 0;
5582 }
5583
5584 static void free_thread_groups(struct r5conf *conf)
5585 {
5586         if (conf->worker_groups)
5587                 kfree(conf->worker_groups[0].workers);
5588         kfree(conf->worker_groups);
5589         conf->worker_groups = NULL;
5590 }
5591
5592 static sector_t
5593 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5594 {
5595         struct r5conf *conf = mddev->private;
5596
5597         if (!sectors)
5598                 sectors = mddev->dev_sectors;
5599         if (!raid_disks)
5600                 /* size is defined by the smallest of previous and new size */
5601                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5602
5603         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5604         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5605         return sectors * (raid_disks - conf->max_degraded);
5606 }
5607
5608 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5609 {
5610         safe_put_page(percpu->spare_page);
5611         kfree(percpu->scribble);
5612         percpu->spare_page = NULL;
5613         percpu->scribble = NULL;
5614 }
5615
5616 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5617 {
5618         if (conf->level == 6 && !percpu->spare_page)
5619                 percpu->spare_page = alloc_page(GFP_KERNEL);
5620         if (!percpu->scribble)
5621                 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5622
5623         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5624                 free_scratch_buffer(conf, percpu);
5625                 return -ENOMEM;
5626         }
5627
5628         return 0;
5629 }
5630
5631 static void raid5_free_percpu(struct r5conf *conf)
5632 {
5633         unsigned long cpu;
5634
5635         if (!conf->percpu)
5636                 return;
5637
5638 #ifdef CONFIG_HOTPLUG_CPU
5639         unregister_cpu_notifier(&conf->cpu_notify);
5640 #endif
5641
5642         get_online_cpus();
5643         for_each_possible_cpu(cpu)
5644                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5645         put_online_cpus();
5646
5647         free_percpu(conf->percpu);
5648 }
5649
5650 static void free_conf(struct r5conf *conf)
5651 {
5652         free_thread_groups(conf);
5653         shrink_stripes(conf);
5654         raid5_free_percpu(conf);
5655         kfree(conf->disks);
5656         kfree(conf->stripe_hashtbl);
5657         kfree(conf);
5658 }
5659
5660 #ifdef CONFIG_HOTPLUG_CPU
5661 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5662                               void *hcpu)
5663 {
5664         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5665         long cpu = (long)hcpu;
5666         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5667
5668         switch (action) {
5669         case CPU_UP_PREPARE:
5670         case CPU_UP_PREPARE_FROZEN:
5671                 if (alloc_scratch_buffer(conf, percpu)) {
5672                         pr_err("%s: failed memory allocation for cpu%ld\n",
5673                                __func__, cpu);
5674                         return notifier_from_errno(-ENOMEM);
5675                 }
5676                 break;
5677         case CPU_DEAD:
5678         case CPU_DEAD_FROZEN:
5679                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5680                 break;
5681         default:
5682                 break;
5683         }
5684         return NOTIFY_OK;
5685 }
5686 #endif
5687
5688 static int raid5_alloc_percpu(struct r5conf *conf)
5689 {
5690         unsigned long cpu;
5691         int err = 0;
5692
5693         conf->percpu = alloc_percpu(struct raid5_percpu);
5694         if (!conf->percpu)
5695                 return -ENOMEM;
5696
5697 #ifdef CONFIG_HOTPLUG_CPU
5698         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5699         conf->cpu_notify.priority = 0;
5700         err = register_cpu_notifier(&conf->cpu_notify);
5701         if (err)
5702                 return err;
5703 #endif
5704
5705         get_online_cpus();
5706         for_each_present_cpu(cpu) {
5707                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5708                 if (err) {
5709                         pr_err("%s: failed memory allocation for cpu%ld\n",
5710                                __func__, cpu);
5711                         break;
5712                 }
5713         }
5714         put_online_cpus();
5715
5716         return err;
5717 }
5718
5719 static struct r5conf *setup_conf(struct mddev *mddev)
5720 {
5721         struct r5conf *conf;
5722         int raid_disk, memory, max_disks;
5723         struct md_rdev *rdev;
5724         struct disk_info *disk;
5725         char pers_name[6];
5726         int i;
5727         int group_cnt, worker_cnt_per_group;
5728         struct r5worker_group *new_group;
5729
5730         if (mddev->new_level != 5
5731             && mddev->new_level != 4
5732             && mddev->new_level != 6) {
5733                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5734                        mdname(mddev), mddev->new_level);
5735                 return ERR_PTR(-EIO);
5736         }
5737         if ((mddev->new_level == 5
5738              && !algorithm_valid_raid5(mddev->new_layout)) ||
5739             (mddev->new_level == 6
5740              && !algorithm_valid_raid6(mddev->new_layout))) {
5741                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5742                        mdname(mddev), mddev->new_layout);
5743                 return ERR_PTR(-EIO);
5744         }
5745         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5746                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5747                        mdname(mddev), mddev->raid_disks);
5748                 return ERR_PTR(-EINVAL);
5749         }
5750
5751         if (!mddev->new_chunk_sectors ||
5752             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5753             !is_power_of_2(mddev->new_chunk_sectors)) {
5754                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5755                        mdname(mddev), mddev->new_chunk_sectors << 9);
5756                 return ERR_PTR(-EINVAL);
5757         }
5758
5759         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5760         if (conf == NULL)
5761                 goto abort;
5762         /* Don't enable multi-threading by default*/
5763         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5764                                  &new_group)) {
5765                 conf->group_cnt = group_cnt;
5766                 conf->worker_cnt_per_group = worker_cnt_per_group;
5767                 conf->worker_groups = new_group;
5768         } else
5769                 goto abort;
5770         spin_lock_init(&conf->device_lock);
5771         seqcount_init(&conf->gen_lock);
5772         init_waitqueue_head(&conf->wait_for_stripe);
5773         init_waitqueue_head(&conf->wait_for_overlap);
5774         INIT_LIST_HEAD(&conf->handle_list);
5775         INIT_LIST_HEAD(&conf->hold_list);
5776         INIT_LIST_HEAD(&conf->delayed_list);
5777         INIT_LIST_HEAD(&conf->bitmap_list);
5778         init_llist_head(&conf->released_stripes);
5779         atomic_set(&conf->active_stripes, 0);
5780         atomic_set(&conf->preread_active_stripes, 0);
5781         atomic_set(&conf->active_aligned_reads, 0);
5782         conf->bypass_threshold = BYPASS_THRESHOLD;
5783         conf->recovery_disabled = mddev->recovery_disabled - 1;
5784
5785         conf->raid_disks = mddev->raid_disks;
5786         if (mddev->reshape_position == MaxSector)
5787                 conf->previous_raid_disks = mddev->raid_disks;
5788         else
5789                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5790         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5791         conf->scribble_len = scribble_len(max_disks);
5792
5793         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5794                               GFP_KERNEL);
5795         if (!conf->disks)
5796                 goto abort;
5797
5798         conf->mddev = mddev;
5799
5800         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5801                 goto abort;
5802
5803         /* We init hash_locks[0] separately to that it can be used
5804          * as the reference lock in the spin_lock_nest_lock() call
5805          * in lock_all_device_hash_locks_irq in order to convince
5806          * lockdep that we know what we are doing.
5807          */
5808         spin_lock_init(conf->hash_locks);
5809         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5810                 spin_lock_init(conf->hash_locks + i);
5811
5812         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5813                 INIT_LIST_HEAD(conf->inactive_list + i);
5814
5815         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5816                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5817
5818         conf->level = mddev->new_level;
5819         if (raid5_alloc_percpu(conf) != 0)
5820                 goto abort;
5821
5822         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5823
5824         rdev_for_each(rdev, mddev) {
5825                 raid_disk = rdev->raid_disk;
5826                 if (raid_disk >= max_disks
5827                     || raid_disk < 0)
5828                         continue;
5829                 disk = conf->disks + raid_disk;
5830
5831                 if (test_bit(Replacement, &rdev->flags)) {
5832                         if (disk->replacement)
5833                                 goto abort;
5834                         disk->replacement = rdev;
5835                 } else {
5836                         if (disk->rdev)
5837                                 goto abort;
5838                         disk->rdev = rdev;
5839                 }
5840
5841                 if (test_bit(In_sync, &rdev->flags)) {
5842                         char b[BDEVNAME_SIZE];
5843                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5844                                " disk %d\n",
5845                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5846                 } else if (rdev->saved_raid_disk != raid_disk)
5847                         /* Cannot rely on bitmap to complete recovery */
5848                         conf->fullsync = 1;
5849         }
5850
5851         conf->chunk_sectors = mddev->new_chunk_sectors;
5852         conf->level = mddev->new_level;
5853         if (conf->level == 6)
5854                 conf->max_degraded = 2;
5855         else
5856                 conf->max_degraded = 1;
5857         conf->algorithm = mddev->new_layout;
5858         conf->reshape_progress = mddev->reshape_position;
5859         if (conf->reshape_progress != MaxSector) {
5860                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5861                 conf->prev_algo = mddev->layout;
5862         }
5863
5864         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5865                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5866         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5867         if (grow_stripes(conf, NR_STRIPES)) {
5868                 printk(KERN_ERR
5869                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5870                        mdname(mddev), memory);
5871                 goto abort;
5872         } else
5873                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5874                        mdname(mddev), memory);
5875
5876         sprintf(pers_name, "raid%d", mddev->new_level);
5877         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5878         if (!conf->thread) {
5879                 printk(KERN_ERR
5880                        "md/raid:%s: couldn't allocate thread.\n",
5881                        mdname(mddev));
5882                 goto abort;
5883         }
5884
5885         return conf;
5886
5887  abort:
5888         if (conf) {
5889                 free_conf(conf);
5890                 return ERR_PTR(-EIO);
5891         } else
5892                 return ERR_PTR(-ENOMEM);
5893 }
5894
5895
5896 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5897 {
5898         switch (algo) {
5899         case ALGORITHM_PARITY_0:
5900                 if (raid_disk < max_degraded)
5901                         return 1;
5902                 break;
5903         case ALGORITHM_PARITY_N:
5904                 if (raid_disk >= raid_disks - max_degraded)
5905                         return 1;
5906                 break;
5907         case ALGORITHM_PARITY_0_6:
5908                 if (raid_disk == 0 || 
5909                     raid_disk == raid_disks - 1)
5910                         return 1;
5911                 break;
5912         case ALGORITHM_LEFT_ASYMMETRIC_6:
5913         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5914         case ALGORITHM_LEFT_SYMMETRIC_6:
5915         case ALGORITHM_RIGHT_SYMMETRIC_6:
5916                 if (raid_disk == raid_disks - 1)
5917                         return 1;
5918         }
5919         return 0;
5920 }
5921
5922 static int run(struct mddev *mddev)
5923 {
5924         struct r5conf *conf;
5925         int working_disks = 0;
5926         int dirty_parity_disks = 0;
5927         struct md_rdev *rdev;
5928         sector_t reshape_offset = 0;
5929         int i;
5930         long long min_offset_diff = 0;
5931         int first = 1;
5932
5933         if (mddev->recovery_cp != MaxSector)
5934                 printk(KERN_NOTICE "md/raid:%s: not clean"
5935                        " -- starting background reconstruction\n",
5936                        mdname(mddev));
5937
5938         rdev_for_each(rdev, mddev) {
5939                 long long diff;
5940                 if (rdev->raid_disk < 0)
5941                         continue;
5942                 diff = (rdev->new_data_offset - rdev->data_offset);
5943                 if (first) {
5944                         min_offset_diff = diff;
5945                         first = 0;
5946                 } else if (mddev->reshape_backwards &&
5947                          diff < min_offset_diff)
5948                         min_offset_diff = diff;
5949                 else if (!mddev->reshape_backwards &&
5950                          diff > min_offset_diff)
5951                         min_offset_diff = diff;
5952         }
5953
5954         if (mddev->reshape_position != MaxSector) {
5955                 /* Check that we can continue the reshape.
5956                  * Difficulties arise if the stripe we would write to
5957                  * next is at or after the stripe we would read from next.
5958                  * For a reshape that changes the number of devices, this
5959                  * is only possible for a very short time, and mdadm makes
5960                  * sure that time appears to have past before assembling
5961                  * the array.  So we fail if that time hasn't passed.
5962                  * For a reshape that keeps the number of devices the same
5963                  * mdadm must be monitoring the reshape can keeping the
5964                  * critical areas read-only and backed up.  It will start
5965                  * the array in read-only mode, so we check for that.
5966                  */
5967                 sector_t here_new, here_old;
5968                 int old_disks;
5969                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5970
5971                 if (mddev->new_level != mddev->level) {
5972                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5973                                "required - aborting.\n",
5974                                mdname(mddev));
5975                         return -EINVAL;
5976                 }
5977                 old_disks = mddev->raid_disks - mddev->delta_disks;
5978                 /* reshape_position must be on a new-stripe boundary, and one
5979                  * further up in new geometry must map after here in old
5980                  * geometry.
5981                  */
5982                 here_new = mddev->reshape_position;
5983                 if (sector_div(here_new, mddev->new_chunk_sectors *
5984                                (mddev->raid_disks - max_degraded))) {
5985                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5986                                "on a stripe boundary\n", mdname(mddev));
5987                         return -EINVAL;
5988                 }
5989                 reshape_offset = here_new * mddev->new_chunk_sectors;
5990                 /* here_new is the stripe we will write to */
5991                 here_old = mddev->reshape_position;
5992                 sector_div(here_old, mddev->chunk_sectors *
5993                            (old_disks-max_degraded));
5994                 /* here_old is the first stripe that we might need to read
5995                  * from */
5996                 if (mddev->delta_disks == 0) {
5997                         if ((here_new * mddev->new_chunk_sectors !=
5998                              here_old * mddev->chunk_sectors)) {
5999                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6000                                        " confused - aborting\n", mdname(mddev));
6001                                 return -EINVAL;
6002                         }
6003                         /* We cannot be sure it is safe to start an in-place
6004                          * reshape.  It is only safe if user-space is monitoring
6005                          * and taking constant backups.
6006                          * mdadm always starts a situation like this in
6007                          * readonly mode so it can take control before
6008                          * allowing any writes.  So just check for that.
6009                          */
6010                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6011                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6012                                 /* not really in-place - so OK */;
6013                         else if (mddev->ro == 0) {
6014                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6015                                        "must be started in read-only mode "
6016                                        "- aborting\n",
6017                                        mdname(mddev));
6018                                 return -EINVAL;
6019                         }
6020                 } else if (mddev->reshape_backwards
6021                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6022                        here_old * mddev->chunk_sectors)
6023                     : (here_new * mddev->new_chunk_sectors >=
6024                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6025                         /* Reading from the same stripe as writing to - bad */
6026                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6027                                "auto-recovery - aborting.\n",
6028                                mdname(mddev));
6029                         return -EINVAL;
6030                 }
6031                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6032                        mdname(mddev));
6033                 /* OK, we should be able to continue; */
6034         } else {
6035                 BUG_ON(mddev->level != mddev->new_level);
6036                 BUG_ON(mddev->layout != mddev->new_layout);
6037                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6038                 BUG_ON(mddev->delta_disks != 0);
6039         }
6040
6041         if (mddev->private == NULL)
6042                 conf = setup_conf(mddev);
6043         else
6044                 conf = mddev->private;
6045
6046         if (IS_ERR(conf))
6047                 return PTR_ERR(conf);
6048
6049         conf->min_offset_diff = min_offset_diff;
6050         mddev->thread = conf->thread;
6051         conf->thread = NULL;
6052         mddev->private = conf;
6053
6054         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6055              i++) {
6056                 rdev = conf->disks[i].rdev;
6057                 if (!rdev && conf->disks[i].replacement) {
6058                         /* The replacement is all we have yet */
6059                         rdev = conf->disks[i].replacement;
6060                         conf->disks[i].replacement = NULL;
6061                         clear_bit(Replacement, &rdev->flags);
6062                         conf->disks[i].rdev = rdev;
6063                 }
6064                 if (!rdev)
6065                         continue;
6066                 if (conf->disks[i].replacement &&
6067                     conf->reshape_progress != MaxSector) {
6068                         /* replacements and reshape simply do not mix. */
6069                         printk(KERN_ERR "md: cannot handle concurrent "
6070                                "replacement and reshape.\n");
6071                         goto abort;
6072                 }
6073                 if (test_bit(In_sync, &rdev->flags)) {
6074                         working_disks++;
6075                         continue;
6076                 }
6077                 /* This disc is not fully in-sync.  However if it
6078                  * just stored parity (beyond the recovery_offset),
6079                  * when we don't need to be concerned about the
6080                  * array being dirty.
6081                  * When reshape goes 'backwards', we never have
6082                  * partially completed devices, so we only need
6083                  * to worry about reshape going forwards.
6084                  */
6085                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6086                 if (mddev->major_version == 0 &&
6087                     mddev->minor_version > 90)
6088                         rdev->recovery_offset = reshape_offset;
6089
6090                 if (rdev->recovery_offset < reshape_offset) {
6091                         /* We need to check old and new layout */
6092                         if (!only_parity(rdev->raid_disk,
6093                                          conf->algorithm,
6094                                          conf->raid_disks,
6095                                          conf->max_degraded))
6096                                 continue;
6097                 }
6098                 if (!only_parity(rdev->raid_disk,
6099                                  conf->prev_algo,
6100                                  conf->previous_raid_disks,
6101                                  conf->max_degraded))
6102                         continue;
6103                 dirty_parity_disks++;
6104         }
6105
6106         /*
6107          * 0 for a fully functional array, 1 or 2 for a degraded array.
6108          */
6109         mddev->degraded = calc_degraded(conf);
6110
6111         if (has_failed(conf)) {
6112                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6113                         " (%d/%d failed)\n",
6114                         mdname(mddev), mddev->degraded, conf->raid_disks);
6115                 goto abort;
6116         }
6117
6118         /* device size must be a multiple of chunk size */
6119         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6120         mddev->resync_max_sectors = mddev->dev_sectors;
6121
6122         if (mddev->degraded > dirty_parity_disks &&
6123             mddev->recovery_cp != MaxSector) {
6124                 if (mddev->ok_start_degraded)
6125                         printk(KERN_WARNING
6126                                "md/raid:%s: starting dirty degraded array"
6127                                " - data corruption possible.\n",
6128                                mdname(mddev));
6129                 else {
6130                         printk(KERN_ERR
6131                                "md/raid:%s: cannot start dirty degraded array.\n",
6132                                mdname(mddev));
6133                         goto abort;
6134                 }
6135         }
6136
6137         if (mddev->degraded == 0)
6138                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6139                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6140                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6141                        mddev->new_layout);
6142         else
6143                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6144                        " out of %d devices, algorithm %d\n",
6145                        mdname(mddev), conf->level,
6146                        mddev->raid_disks - mddev->degraded,
6147                        mddev->raid_disks, mddev->new_layout);
6148
6149         print_raid5_conf(conf);
6150
6151         if (conf->reshape_progress != MaxSector) {
6152                 conf->reshape_safe = conf->reshape_progress;
6153                 atomic_set(&conf->reshape_stripes, 0);
6154                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6155                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6156                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6157                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6158                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6159                                                         "reshape");
6160         }
6161
6162
6163         /* Ok, everything is just fine now */
6164         if (mddev->to_remove == &raid5_attrs_group)
6165                 mddev->to_remove = NULL;
6166         else if (mddev->kobj.sd &&
6167             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6168                 printk(KERN_WARNING
6169                        "raid5: failed to create sysfs attributes for %s\n",
6170                        mdname(mddev));
6171         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6172
6173         if (mddev->queue) {
6174                 int chunk_size;
6175                 bool discard_supported = true;
6176                 /* read-ahead size must cover two whole stripes, which
6177                  * is 2 * (datadisks) * chunksize where 'n' is the
6178                  * number of raid devices
6179                  */
6180                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6181                 int stripe = data_disks *
6182                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6183                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6184                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6185
6186                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6187
6188                 mddev->queue->backing_dev_info.congested_data = mddev;
6189                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6190
6191                 chunk_size = mddev->chunk_sectors << 9;
6192                 blk_queue_io_min(mddev->queue, chunk_size);
6193                 blk_queue_io_opt(mddev->queue, chunk_size *
6194                                  (conf->raid_disks - conf->max_degraded));
6195                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6196                 /*
6197                  * We can only discard a whole stripe. It doesn't make sense to
6198                  * discard data disk but write parity disk
6199                  */
6200                 stripe = stripe * PAGE_SIZE;
6201                 /* Round up to power of 2, as discard handling
6202                  * currently assumes that */
6203                 while ((stripe-1) & stripe)
6204                         stripe = (stripe | (stripe-1)) + 1;
6205                 mddev->queue->limits.discard_alignment = stripe;
6206                 mddev->queue->limits.discard_granularity = stripe;
6207                 /*
6208                  * unaligned part of discard request will be ignored, so can't
6209                  * guarantee discard_zerors_data
6210                  */
6211                 mddev->queue->limits.discard_zeroes_data = 0;
6212
6213                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6214
6215                 rdev_for_each(rdev, mddev) {
6216                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6217                                           rdev->data_offset << 9);
6218                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6219                                           rdev->new_data_offset << 9);
6220                         /*
6221                          * discard_zeroes_data is required, otherwise data
6222                          * could be lost. Consider a scenario: discard a stripe
6223                          * (the stripe could be inconsistent if
6224                          * discard_zeroes_data is 0); write one disk of the
6225                          * stripe (the stripe could be inconsistent again
6226                          * depending on which disks are used to calculate
6227                          * parity); the disk is broken; The stripe data of this
6228                          * disk is lost.
6229                          */
6230                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6231                             !bdev_get_queue(rdev->bdev)->
6232                                                 limits.discard_zeroes_data)
6233                                 discard_supported = false;
6234                 }
6235
6236                 if (discard_supported &&
6237                    mddev->queue->limits.max_discard_sectors >= stripe &&
6238                    mddev->queue->limits.discard_granularity >= stripe)
6239                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6240                                                 mddev->queue);
6241                 else
6242                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6243                                                 mddev->queue);
6244         }
6245
6246         return 0;
6247 abort:
6248         md_unregister_thread(&mddev->thread);
6249         print_raid5_conf(conf);
6250         free_conf(conf);
6251         mddev->private = NULL;
6252         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6253         return -EIO;
6254 }
6255
6256 static int stop(struct mddev *mddev)
6257 {
6258         struct r5conf *conf = mddev->private;
6259
6260         md_unregister_thread(&mddev->thread);
6261         if (mddev->queue)
6262                 mddev->queue->backing_dev_info.congested_fn = NULL;
6263         free_conf(conf);
6264         mddev->private = NULL;
6265         mddev->to_remove = &raid5_attrs_group;
6266         return 0;
6267 }
6268
6269 static void status(struct seq_file *seq, struct mddev *mddev)
6270 {
6271         struct r5conf *conf = mddev->private;
6272         int i;
6273
6274         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6275                 mddev->chunk_sectors / 2, mddev->layout);
6276         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6277         for (i = 0; i < conf->raid_disks; i++)
6278                 seq_printf (seq, "%s",
6279                                conf->disks[i].rdev &&
6280                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6281         seq_printf (seq, "]");
6282 }
6283
6284 static void print_raid5_conf (struct r5conf *conf)
6285 {
6286         int i;
6287         struct disk_info *tmp;
6288
6289         printk(KERN_DEBUG "RAID conf printout:\n");
6290         if (!conf) {
6291                 printk("(conf==NULL)\n");
6292                 return;
6293         }
6294         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6295                conf->raid_disks,
6296                conf->raid_disks - conf->mddev->degraded);
6297
6298         for (i = 0; i < conf->raid_disks; i++) {
6299                 char b[BDEVNAME_SIZE];
6300                 tmp = conf->disks + i;
6301                 if (tmp->rdev)
6302                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6303                                i, !test_bit(Faulty, &tmp->rdev->flags),
6304                                bdevname(tmp->rdev->bdev, b));
6305         }
6306 }
6307
6308 static int raid5_spare_active(struct mddev *mddev)
6309 {
6310         int i;
6311         struct r5conf *conf = mddev->private;
6312         struct disk_info *tmp;
6313         int count = 0;
6314         unsigned long flags;
6315
6316         for (i = 0; i < conf->raid_disks; i++) {
6317                 tmp = conf->disks + i;
6318                 if (tmp->replacement
6319                     && tmp->replacement->recovery_offset == MaxSector
6320                     && !test_bit(Faulty, &tmp->replacement->flags)
6321                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6322                         /* Replacement has just become active. */
6323                         if (!tmp->rdev
6324                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6325                                 count++;
6326                         if (tmp->rdev) {
6327                                 /* Replaced device not technically faulty,
6328                                  * but we need to be sure it gets removed
6329                                  * and never re-added.
6330                                  */
6331                                 set_bit(Faulty, &tmp->rdev->flags);
6332                                 sysfs_notify_dirent_safe(
6333                                         tmp->rdev->sysfs_state);
6334                         }
6335                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6336                 } else if (tmp->rdev
6337                     && tmp->rdev->recovery_offset == MaxSector
6338                     && !test_bit(Faulty, &tmp->rdev->flags)
6339                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6340                         count++;
6341                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6342                 }
6343         }
6344         spin_lock_irqsave(&conf->device_lock, flags);
6345         mddev->degraded = calc_degraded(conf);
6346         spin_unlock_irqrestore(&conf->device_lock, flags);
6347         print_raid5_conf(conf);
6348         return count;
6349 }
6350
6351 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6352 {
6353         struct r5conf *conf = mddev->private;
6354         int err = 0;
6355         int number = rdev->raid_disk;
6356         struct md_rdev **rdevp;
6357         struct disk_info *p = conf->disks + number;
6358
6359         print_raid5_conf(conf);
6360         if (rdev == p->rdev)
6361                 rdevp = &p->rdev;
6362         else if (rdev == p->replacement)
6363                 rdevp = &p->replacement;
6364         else
6365                 return 0;
6366
6367         if (number >= conf->raid_disks &&
6368             conf->reshape_progress == MaxSector)
6369                 clear_bit(In_sync, &rdev->flags);
6370
6371         if (test_bit(In_sync, &rdev->flags) ||
6372             atomic_read(&rdev->nr_pending)) {
6373                 err = -EBUSY;
6374                 goto abort;
6375         }
6376         /* Only remove non-faulty devices if recovery
6377          * isn't possible.
6378          */
6379         if (!test_bit(Faulty, &rdev->flags) &&
6380             mddev->recovery_disabled != conf->recovery_disabled &&
6381             !has_failed(conf) &&
6382             (!p->replacement || p->replacement == rdev) &&
6383             number < conf->raid_disks) {
6384                 err = -EBUSY;
6385                 goto abort;
6386         }
6387         *rdevp = NULL;
6388         synchronize_rcu();
6389         if (atomic_read(&rdev->nr_pending)) {
6390                 /* lost the race, try later */
6391                 err = -EBUSY;
6392                 *rdevp = rdev;
6393         } else if (p->replacement) {
6394                 /* We must have just cleared 'rdev' */
6395                 p->rdev = p->replacement;
6396                 clear_bit(Replacement, &p->replacement->flags);
6397                 smp_mb(); /* Make sure other CPUs may see both as identical
6398                            * but will never see neither - if they are careful
6399                            */
6400                 p->replacement = NULL;
6401                 clear_bit(WantReplacement, &rdev->flags);
6402         } else
6403                 /* We might have just removed the Replacement as faulty-
6404                  * clear the bit just in case
6405                  */
6406                 clear_bit(WantReplacement, &rdev->flags);
6407 abort:
6408
6409         print_raid5_conf(conf);
6410         return err;
6411 }
6412
6413 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6414 {
6415         struct r5conf *conf = mddev->private;
6416         int err = -EEXIST;
6417         int disk;
6418         struct disk_info *p;
6419         int first = 0;
6420         int last = conf->raid_disks - 1;
6421
6422         if (mddev->recovery_disabled == conf->recovery_disabled)
6423                 return -EBUSY;
6424
6425         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6426                 /* no point adding a device */
6427                 return -EINVAL;
6428
6429         if (rdev->raid_disk >= 0)
6430                 first = last = rdev->raid_disk;
6431
6432         /*
6433          * find the disk ... but prefer rdev->saved_raid_disk
6434          * if possible.
6435          */
6436         if (rdev->saved_raid_disk >= 0 &&
6437             rdev->saved_raid_disk >= first &&
6438             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6439                 first = rdev->saved_raid_disk;
6440
6441         for (disk = first; disk <= last; disk++) {
6442                 p = conf->disks + disk;
6443                 if (p->rdev == NULL) {
6444                         clear_bit(In_sync, &rdev->flags);
6445                         rdev->raid_disk = disk;
6446                         err = 0;
6447                         if (rdev->saved_raid_disk != disk)
6448                                 conf->fullsync = 1;
6449                         rcu_assign_pointer(p->rdev, rdev);
6450                         goto out;
6451                 }
6452         }
6453         for (disk = first; disk <= last; disk++) {
6454                 p = conf->disks + disk;
6455                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6456                     p->replacement == NULL) {
6457                         clear_bit(In_sync, &rdev->flags);
6458                         set_bit(Replacement, &rdev->flags);
6459                         rdev->raid_disk = disk;
6460                         err = 0;
6461                         conf->fullsync = 1;
6462                         rcu_assign_pointer(p->replacement, rdev);
6463                         break;
6464                 }
6465         }
6466 out:
6467         print_raid5_conf(conf);
6468         return err;
6469 }
6470
6471 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6472 {
6473         /* no resync is happening, and there is enough space
6474          * on all devices, so we can resize.
6475          * We need to make sure resync covers any new space.
6476          * If the array is shrinking we should possibly wait until
6477          * any io in the removed space completes, but it hardly seems
6478          * worth it.
6479          */
6480         sector_t newsize;
6481         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6482         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6483         if (mddev->external_size &&
6484             mddev->array_sectors > newsize)
6485                 return -EINVAL;
6486         if (mddev->bitmap) {
6487                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6488                 if (ret)
6489                         return ret;
6490         }
6491         md_set_array_sectors(mddev, newsize);
6492         set_capacity(mddev->gendisk, mddev->array_sectors);
6493         revalidate_disk(mddev->gendisk);
6494         if (sectors > mddev->dev_sectors &&
6495             mddev->recovery_cp > mddev->dev_sectors) {
6496                 mddev->recovery_cp = mddev->dev_sectors;
6497                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6498         }
6499         mddev->dev_sectors = sectors;
6500         mddev->resync_max_sectors = sectors;
6501         return 0;
6502 }
6503
6504 static int check_stripe_cache(struct mddev *mddev)
6505 {
6506         /* Can only proceed if there are plenty of stripe_heads.
6507          * We need a minimum of one full stripe,, and for sensible progress
6508          * it is best to have about 4 times that.
6509          * If we require 4 times, then the default 256 4K stripe_heads will
6510          * allow for chunk sizes up to 256K, which is probably OK.
6511          * If the chunk size is greater, user-space should request more
6512          * stripe_heads first.
6513          */
6514         struct r5conf *conf = mddev->private;
6515         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6516             > conf->max_nr_stripes ||
6517             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6518             > conf->max_nr_stripes) {
6519                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6520                        mdname(mddev),
6521                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6522                         / STRIPE_SIZE)*4);
6523                 return 0;
6524         }
6525         return 1;
6526 }
6527
6528 static int check_reshape(struct mddev *mddev)
6529 {
6530         struct r5conf *conf = mddev->private;
6531
6532         if (mddev->delta_disks == 0 &&
6533             mddev->new_layout == mddev->layout &&
6534             mddev->new_chunk_sectors == mddev->chunk_sectors)
6535                 return 0; /* nothing to do */
6536         if (has_failed(conf))
6537                 return -EINVAL;
6538         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6539                 /* We might be able to shrink, but the devices must
6540                  * be made bigger first.
6541                  * For raid6, 4 is the minimum size.
6542                  * Otherwise 2 is the minimum
6543                  */
6544                 int min = 2;
6545                 if (mddev->level == 6)
6546                         min = 4;
6547                 if (mddev->raid_disks + mddev->delta_disks < min)
6548                         return -EINVAL;
6549         }
6550
6551         if (!check_stripe_cache(mddev))
6552                 return -ENOSPC;
6553
6554         return resize_stripes(conf, (conf->previous_raid_disks
6555                                      + mddev->delta_disks));
6556 }
6557
6558 static int raid5_start_reshape(struct mddev *mddev)
6559 {
6560         struct r5conf *conf = mddev->private;
6561         struct md_rdev *rdev;
6562         int spares = 0;
6563         unsigned long flags;
6564
6565         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6566                 return -EBUSY;
6567
6568         if (!check_stripe_cache(mddev))
6569                 return -ENOSPC;
6570
6571         if (has_failed(conf))
6572                 return -EINVAL;
6573
6574         rdev_for_each(rdev, mddev) {
6575                 if (!test_bit(In_sync, &rdev->flags)
6576                     && !test_bit(Faulty, &rdev->flags))
6577                         spares++;
6578         }
6579
6580         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6581                 /* Not enough devices even to make a degraded array
6582                  * of that size
6583                  */
6584                 return -EINVAL;
6585
6586         /* Refuse to reduce size of the array.  Any reductions in
6587          * array size must be through explicit setting of array_size
6588          * attribute.
6589          */
6590         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6591             < mddev->array_sectors) {
6592                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6593                        "before number of disks\n", mdname(mddev));
6594                 return -EINVAL;
6595         }
6596
6597         atomic_set(&conf->reshape_stripes, 0);
6598         spin_lock_irq(&conf->device_lock);
6599         write_seqcount_begin(&conf->gen_lock);
6600         conf->previous_raid_disks = conf->raid_disks;
6601         conf->raid_disks += mddev->delta_disks;
6602         conf->prev_chunk_sectors = conf->chunk_sectors;
6603         conf->chunk_sectors = mddev->new_chunk_sectors;
6604         conf->prev_algo = conf->algorithm;
6605         conf->algorithm = mddev->new_layout;
6606         conf->generation++;
6607         /* Code that selects data_offset needs to see the generation update
6608          * if reshape_progress has been set - so a memory barrier needed.
6609          */
6610         smp_mb();
6611         if (mddev->reshape_backwards)
6612                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6613         else
6614                 conf->reshape_progress = 0;
6615         conf->reshape_safe = conf->reshape_progress;
6616         write_seqcount_end(&conf->gen_lock);
6617         spin_unlock_irq(&conf->device_lock);
6618
6619         /* Now make sure any requests that proceeded on the assumption
6620          * the reshape wasn't running - like Discard or Read - have
6621          * completed.
6622          */
6623         mddev_suspend(mddev);
6624         mddev_resume(mddev);
6625
6626         /* Add some new drives, as many as will fit.
6627          * We know there are enough to make the newly sized array work.
6628          * Don't add devices if we are reducing the number of
6629          * devices in the array.  This is because it is not possible
6630          * to correctly record the "partially reconstructed" state of
6631          * such devices during the reshape and confusion could result.
6632          */
6633         if (mddev->delta_disks >= 0) {
6634                 rdev_for_each(rdev, mddev)
6635                         if (rdev->raid_disk < 0 &&
6636                             !test_bit(Faulty, &rdev->flags)) {
6637                                 if (raid5_add_disk(mddev, rdev) == 0) {
6638                                         if (rdev->raid_disk
6639                                             >= conf->previous_raid_disks)
6640                                                 set_bit(In_sync, &rdev->flags);
6641                                         else
6642                                                 rdev->recovery_offset = 0;
6643
6644                                         if (sysfs_link_rdev(mddev, rdev))
6645                                                 /* Failure here is OK */;
6646                                 }
6647                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6648                                    && !test_bit(Faulty, &rdev->flags)) {
6649                                 /* This is a spare that was manually added */
6650                                 set_bit(In_sync, &rdev->flags);
6651                         }
6652
6653                 /* When a reshape changes the number of devices,
6654                  * ->degraded is measured against the larger of the
6655                  * pre and post number of devices.
6656                  */
6657                 spin_lock_irqsave(&conf->device_lock, flags);
6658                 mddev->degraded = calc_degraded(conf);
6659                 spin_unlock_irqrestore(&conf->device_lock, flags);
6660         }
6661         mddev->raid_disks = conf->raid_disks;
6662         mddev->reshape_position = conf->reshape_progress;
6663         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6664
6665         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6666         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6667         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6668         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6669         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6670                                                 "reshape");
6671         if (!mddev->sync_thread) {
6672                 mddev->recovery = 0;
6673                 spin_lock_irq(&conf->device_lock);
6674                 write_seqcount_begin(&conf->gen_lock);
6675                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6676                 mddev->new_chunk_sectors =
6677                         conf->chunk_sectors = conf->prev_chunk_sectors;
6678                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6679                 rdev_for_each(rdev, mddev)
6680                         rdev->new_data_offset = rdev->data_offset;
6681                 smp_wmb();
6682                 conf->generation --;
6683                 conf->reshape_progress = MaxSector;
6684                 mddev->reshape_position = MaxSector;
6685                 write_seqcount_end(&conf->gen_lock);
6686                 spin_unlock_irq(&conf->device_lock);
6687                 return -EAGAIN;
6688         }
6689         conf->reshape_checkpoint = jiffies;
6690         md_wakeup_thread(mddev->sync_thread);
6691         md_new_event(mddev);
6692         return 0;
6693 }
6694
6695 /* This is called from the reshape thread and should make any
6696  * changes needed in 'conf'
6697  */
6698 static void end_reshape(struct r5conf *conf)
6699 {
6700
6701         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6702                 struct md_rdev *rdev;
6703
6704                 spin_lock_irq(&conf->device_lock);
6705                 conf->previous_raid_disks = conf->raid_disks;
6706                 rdev_for_each(rdev, conf->mddev)
6707                         rdev->data_offset = rdev->new_data_offset;
6708                 smp_wmb();
6709                 conf->reshape_progress = MaxSector;
6710                 spin_unlock_irq(&conf->device_lock);
6711                 wake_up(&conf->wait_for_overlap);
6712
6713                 /* read-ahead size must cover two whole stripes, which is
6714                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6715                  */
6716                 if (conf->mddev->queue) {
6717                         int data_disks = conf->raid_disks - conf->max_degraded;
6718                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6719                                                    / PAGE_SIZE);
6720                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6721                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6722                 }
6723         }
6724 }
6725
6726 /* This is called from the raid5d thread with mddev_lock held.
6727  * It makes config changes to the device.
6728  */
6729 static void raid5_finish_reshape(struct mddev *mddev)
6730 {
6731         struct r5conf *conf = mddev->private;
6732
6733         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6734
6735                 if (mddev->delta_disks > 0) {
6736                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6737                         set_capacity(mddev->gendisk, mddev->array_sectors);
6738                         revalidate_disk(mddev->gendisk);
6739                 } else {
6740                         int d;
6741                         spin_lock_irq(&conf->device_lock);
6742                         mddev->degraded = calc_degraded(conf);
6743                         spin_unlock_irq(&conf->device_lock);
6744                         for (d = conf->raid_disks ;
6745                              d < conf->raid_disks - mddev->delta_disks;
6746                              d++) {
6747                                 struct md_rdev *rdev = conf->disks[d].rdev;
6748                                 if (rdev)
6749                                         clear_bit(In_sync, &rdev->flags);
6750                                 rdev = conf->disks[d].replacement;
6751                                 if (rdev)
6752                                         clear_bit(In_sync, &rdev->flags);
6753                         }
6754                 }
6755                 mddev->layout = conf->algorithm;
6756                 mddev->chunk_sectors = conf->chunk_sectors;
6757                 mddev->reshape_position = MaxSector;
6758                 mddev->delta_disks = 0;
6759                 mddev->reshape_backwards = 0;
6760         }
6761 }
6762
6763 static void raid5_quiesce(struct mddev *mddev, int state)
6764 {
6765         struct r5conf *conf = mddev->private;
6766
6767         switch(state) {
6768         case 2: /* resume for a suspend */
6769                 wake_up(&conf->wait_for_overlap);
6770                 break;
6771
6772         case 1: /* stop all writes */
6773                 lock_all_device_hash_locks_irq(conf);
6774                 /* '2' tells resync/reshape to pause so that all
6775                  * active stripes can drain
6776                  */
6777                 conf->quiesce = 2;
6778                 wait_event_cmd(conf->wait_for_stripe,
6779                                     atomic_read(&conf->active_stripes) == 0 &&
6780                                     atomic_read(&conf->active_aligned_reads) == 0,
6781                                     unlock_all_device_hash_locks_irq(conf),
6782                                     lock_all_device_hash_locks_irq(conf));
6783                 conf->quiesce = 1;
6784                 unlock_all_device_hash_locks_irq(conf);
6785                 /* allow reshape to continue */
6786                 wake_up(&conf->wait_for_overlap);
6787                 break;
6788
6789         case 0: /* re-enable writes */
6790                 lock_all_device_hash_locks_irq(conf);
6791                 conf->quiesce = 0;
6792                 wake_up(&conf->wait_for_stripe);
6793                 wake_up(&conf->wait_for_overlap);
6794                 unlock_all_device_hash_locks_irq(conf);
6795                 break;
6796         }
6797 }
6798
6799
6800 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6801 {
6802         struct r0conf *raid0_conf = mddev->private;
6803         sector_t sectors;
6804
6805         /* for raid0 takeover only one zone is supported */
6806         if (raid0_conf->nr_strip_zones > 1) {
6807                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6808                        mdname(mddev));
6809                 return ERR_PTR(-EINVAL);
6810         }
6811
6812         sectors = raid0_conf->strip_zone[0].zone_end;
6813         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6814         mddev->dev_sectors = sectors;
6815         mddev->new_level = level;
6816         mddev->new_layout = ALGORITHM_PARITY_N;
6817         mddev->new_chunk_sectors = mddev->chunk_sectors;
6818         mddev->raid_disks += 1;
6819         mddev->delta_disks = 1;
6820         /* make sure it will be not marked as dirty */
6821         mddev->recovery_cp = MaxSector;
6822
6823         return setup_conf(mddev);
6824 }
6825
6826
6827 static void *raid5_takeover_raid1(struct mddev *mddev)
6828 {
6829         int chunksect;
6830
6831         if (mddev->raid_disks != 2 ||
6832             mddev->degraded > 1)
6833                 return ERR_PTR(-EINVAL);
6834
6835         /* Should check if there are write-behind devices? */
6836
6837         chunksect = 64*2; /* 64K by default */
6838
6839         /* The array must be an exact multiple of chunksize */
6840         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6841                 chunksect >>= 1;
6842
6843         if ((chunksect<<9) < STRIPE_SIZE)
6844                 /* array size does not allow a suitable chunk size */
6845                 return ERR_PTR(-EINVAL);
6846
6847         mddev->new_level = 5;
6848         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6849         mddev->new_chunk_sectors = chunksect;
6850
6851         return setup_conf(mddev);
6852 }
6853
6854 static void *raid5_takeover_raid6(struct mddev *mddev)
6855 {
6856         int new_layout;
6857
6858         switch (mddev->layout) {
6859         case ALGORITHM_LEFT_ASYMMETRIC_6:
6860                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6861                 break;
6862         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6863                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6864                 break;
6865         case ALGORITHM_LEFT_SYMMETRIC_6:
6866                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6867                 break;
6868         case ALGORITHM_RIGHT_SYMMETRIC_6:
6869                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6870                 break;
6871         case ALGORITHM_PARITY_0_6:
6872                 new_layout = ALGORITHM_PARITY_0;
6873                 break;
6874         case ALGORITHM_PARITY_N:
6875                 new_layout = ALGORITHM_PARITY_N;
6876                 break;
6877         default:
6878                 return ERR_PTR(-EINVAL);
6879         }
6880         mddev->new_level = 5;
6881         mddev->new_layout = new_layout;
6882         mddev->delta_disks = -1;
6883         mddev->raid_disks -= 1;
6884         return setup_conf(mddev);
6885 }
6886
6887
6888 static int raid5_check_reshape(struct mddev *mddev)
6889 {
6890         /* For a 2-drive array, the layout and chunk size can be changed
6891          * immediately as not restriping is needed.
6892          * For larger arrays we record the new value - after validation
6893          * to be used by a reshape pass.
6894          */
6895         struct r5conf *conf = mddev->private;
6896         int new_chunk = mddev->new_chunk_sectors;
6897
6898         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6899                 return -EINVAL;
6900         if (new_chunk > 0) {
6901                 if (!is_power_of_2(new_chunk))
6902                         return -EINVAL;
6903                 if (new_chunk < (PAGE_SIZE>>9))
6904                         return -EINVAL;
6905                 if (mddev->array_sectors & (new_chunk-1))
6906                         /* not factor of array size */
6907                         return -EINVAL;
6908         }
6909
6910         /* They look valid */
6911
6912         if (mddev->raid_disks == 2) {
6913                 /* can make the change immediately */
6914                 if (mddev->new_layout >= 0) {
6915                         conf->algorithm = mddev->new_layout;
6916                         mddev->layout = mddev->new_layout;
6917                 }
6918                 if (new_chunk > 0) {
6919                         conf->chunk_sectors = new_chunk ;
6920                         mddev->chunk_sectors = new_chunk;
6921                 }
6922                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6923                 md_wakeup_thread(mddev->thread);
6924         }
6925         return check_reshape(mddev);
6926 }
6927
6928 static int raid6_check_reshape(struct mddev *mddev)
6929 {
6930         int new_chunk = mddev->new_chunk_sectors;
6931
6932         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6933                 return -EINVAL;
6934         if (new_chunk > 0) {
6935                 if (!is_power_of_2(new_chunk))
6936                         return -EINVAL;
6937                 if (new_chunk < (PAGE_SIZE >> 9))
6938                         return -EINVAL;
6939                 if (mddev->array_sectors & (new_chunk-1))
6940                         /* not factor of array size */
6941                         return -EINVAL;
6942         }
6943
6944         /* They look valid */
6945         return check_reshape(mddev);
6946 }
6947
6948 static void *raid5_takeover(struct mddev *mddev)
6949 {
6950         /* raid5 can take over:
6951          *  raid0 - if there is only one strip zone - make it a raid4 layout
6952          *  raid1 - if there are two drives.  We need to know the chunk size
6953          *  raid4 - trivial - just use a raid4 layout.
6954          *  raid6 - Providing it is a *_6 layout
6955          */
6956         if (mddev->level == 0)
6957                 return raid45_takeover_raid0(mddev, 5);
6958         if (mddev->level == 1)
6959                 return raid5_takeover_raid1(mddev);
6960         if (mddev->level == 4) {
6961                 mddev->new_layout = ALGORITHM_PARITY_N;
6962                 mddev->new_level = 5;
6963                 return setup_conf(mddev);
6964         }
6965         if (mddev->level == 6)
6966                 return raid5_takeover_raid6(mddev);
6967
6968         return ERR_PTR(-EINVAL);
6969 }
6970
6971 static void *raid4_takeover(struct mddev *mddev)
6972 {
6973         /* raid4 can take over:
6974          *  raid0 - if there is only one strip zone
6975          *  raid5 - if layout is right
6976          */
6977         if (mddev->level == 0)
6978                 return raid45_takeover_raid0(mddev, 4);
6979         if (mddev->level == 5 &&
6980             mddev->layout == ALGORITHM_PARITY_N) {
6981                 mddev->new_layout = 0;
6982                 mddev->new_level = 4;
6983                 return setup_conf(mddev);
6984         }
6985         return ERR_PTR(-EINVAL);
6986 }
6987
6988 static struct md_personality raid5_personality;
6989
6990 static void *raid6_takeover(struct mddev *mddev)
6991 {
6992         /* Currently can only take over a raid5.  We map the
6993          * personality to an equivalent raid6 personality
6994          * with the Q block at the end.
6995          */
6996         int new_layout;
6997
6998         if (mddev->pers != &raid5_personality)
6999                 return ERR_PTR(-EINVAL);
7000         if (mddev->degraded > 1)
7001                 return ERR_PTR(-EINVAL);
7002         if (mddev->raid_disks > 253)
7003                 return ERR_PTR(-EINVAL);
7004         if (mddev->raid_disks < 3)
7005                 return ERR_PTR(-EINVAL);
7006
7007         switch (mddev->layout) {
7008         case ALGORITHM_LEFT_ASYMMETRIC:
7009                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7010                 break;
7011         case ALGORITHM_RIGHT_ASYMMETRIC:
7012                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7013                 break;
7014         case ALGORITHM_LEFT_SYMMETRIC:
7015                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7016                 break;
7017         case ALGORITHM_RIGHT_SYMMETRIC:
7018                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7019                 break;
7020         case ALGORITHM_PARITY_0:
7021                 new_layout = ALGORITHM_PARITY_0_6;
7022                 break;
7023         case ALGORITHM_PARITY_N:
7024                 new_layout = ALGORITHM_PARITY_N;
7025                 break;
7026         default:
7027                 return ERR_PTR(-EINVAL);
7028         }
7029         mddev->new_level = 6;
7030         mddev->new_layout = new_layout;
7031         mddev->delta_disks = 1;
7032         mddev->raid_disks += 1;
7033         return setup_conf(mddev);
7034 }
7035
7036
7037 static struct md_personality raid6_personality =
7038 {
7039         .name           = "raid6",
7040         .level          = 6,
7041         .owner          = THIS_MODULE,
7042         .make_request   = make_request,
7043         .run            = run,
7044         .stop           = stop,
7045         .status         = status,
7046         .error_handler  = error,
7047         .hot_add_disk   = raid5_add_disk,
7048         .hot_remove_disk= raid5_remove_disk,
7049         .spare_active   = raid5_spare_active,
7050         .sync_request   = sync_request,
7051         .resize         = raid5_resize,
7052         .size           = raid5_size,
7053         .check_reshape  = raid6_check_reshape,
7054         .start_reshape  = raid5_start_reshape,
7055         .finish_reshape = raid5_finish_reshape,
7056         .quiesce        = raid5_quiesce,
7057         .takeover       = raid6_takeover,
7058 };
7059 static struct md_personality raid5_personality =
7060 {
7061         .name           = "raid5",
7062         .level          = 5,
7063         .owner          = THIS_MODULE,
7064         .make_request   = make_request,
7065         .run            = run,
7066         .stop           = stop,
7067         .status         = status,
7068         .error_handler  = error,
7069         .hot_add_disk   = raid5_add_disk,
7070         .hot_remove_disk= raid5_remove_disk,
7071         .spare_active   = raid5_spare_active,
7072         .sync_request   = sync_request,
7073         .resize         = raid5_resize,
7074         .size           = raid5_size,
7075         .check_reshape  = raid5_check_reshape,
7076         .start_reshape  = raid5_start_reshape,
7077         .finish_reshape = raid5_finish_reshape,
7078         .quiesce        = raid5_quiesce,
7079         .takeover       = raid5_takeover,
7080 };
7081
7082 static struct md_personality raid4_personality =
7083 {
7084         .name           = "raid4",
7085         .level          = 4,
7086         .owner          = THIS_MODULE,
7087         .make_request   = make_request,
7088         .run            = run,
7089         .stop           = stop,
7090         .status         = status,
7091         .error_handler  = error,
7092         .hot_add_disk   = raid5_add_disk,
7093         .hot_remove_disk= raid5_remove_disk,
7094         .spare_active   = raid5_spare_active,
7095         .sync_request   = sync_request,
7096         .resize         = raid5_resize,
7097         .size           = raid5_size,
7098         .check_reshape  = raid5_check_reshape,
7099         .start_reshape  = raid5_start_reshape,
7100         .finish_reshape = raid5_finish_reshape,
7101         .quiesce        = raid5_quiesce,
7102         .takeover       = raid4_takeover,
7103 };
7104
7105 static int __init raid5_init(void)
7106 {
7107         raid5_wq = alloc_workqueue("raid5wq",
7108                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7109         if (!raid5_wq)
7110                 return -ENOMEM;
7111         register_md_personality(&raid6_personality);
7112         register_md_personality(&raid5_personality);
7113         register_md_personality(&raid4_personality);
7114         return 0;
7115 }
7116
7117 static void raid5_exit(void)
7118 {
7119         unregister_md_personality(&raid6_personality);
7120         unregister_md_personality(&raid5_personality);
7121         unregister_md_personality(&raid4_personality);
7122         destroy_workqueue(raid5_wq);
7123 }
7124
7125 module_init(raid5_init);
7126 module_exit(raid5_exit);
7127 MODULE_LICENSE("GPL");
7128 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7129 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7130 MODULE_ALIAS("md-raid5");
7131 MODULE_ALIAS("md-raid4");
7132 MODULE_ALIAS("md-level-5");
7133 MODULE_ALIAS("md-level-4");
7134 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7135 MODULE_ALIAS("md-raid6");
7136 MODULE_ALIAS("md-level-6");
7137
7138 /* This used to be two separate modules, they were: */
7139 MODULE_ALIAS("raid5");
7140 MODULE_ALIAS("raid6");