Merge remote-tracking branches 'asoc/topic/max98373', 'asoc/topic/mtk', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105                                 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...)                            \
111         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121         return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126         struct r10conf *conf = data;
127         int size = offsetof(struct r10bio, devs[conf->copies]);
128
129         /* allocate a r10bio with room for raid_disks entries in the
130          * bios array */
131         return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136         kfree(r10_bio);
137 }
138
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156         struct r10conf *conf = data;
157         struct r10bio *r10_bio;
158         struct bio *bio;
159         int j;
160         int nalloc, nalloc_rp;
161         struct resync_pages *rps;
162
163         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164         if (!r10_bio)
165                 return NULL;
166
167         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169                 nalloc = conf->copies; /* resync */
170         else
171                 nalloc = 2; /* recovery */
172
173         /* allocate once for all bios */
174         if (!conf->have_replacement)
175                 nalloc_rp = nalloc;
176         else
177                 nalloc_rp = nalloc * 2;
178         rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
179         if (!rps)
180                 goto out_free_r10bio;
181
182         /*
183          * Allocate bios.
184          */
185         for (j = nalloc ; j-- ; ) {
186                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187                 if (!bio)
188                         goto out_free_bio;
189                 r10_bio->devs[j].bio = bio;
190                 if (!conf->have_replacement)
191                         continue;
192                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193                 if (!bio)
194                         goto out_free_bio;
195                 r10_bio->devs[j].repl_bio = bio;
196         }
197         /*
198          * Allocate RESYNC_PAGES data pages and attach them
199          * where needed.
200          */
201         for (j = 0; j < nalloc; j++) {
202                 struct bio *rbio = r10_bio->devs[j].repl_bio;
203                 struct resync_pages *rp, *rp_repl;
204
205                 rp = &rps[j];
206                 if (rbio)
207                         rp_repl = &rps[nalloc + j];
208
209                 bio = r10_bio->devs[j].bio;
210
211                 if (!j || test_bit(MD_RECOVERY_SYNC,
212                                    &conf->mddev->recovery)) {
213                         if (resync_alloc_pages(rp, gfp_flags))
214                                 goto out_free_pages;
215                 } else {
216                         memcpy(rp, &rps[0], sizeof(*rp));
217                         resync_get_all_pages(rp);
218                 }
219
220                 rp->raid_bio = r10_bio;
221                 bio->bi_private = rp;
222                 if (rbio) {
223                         memcpy(rp_repl, rp, sizeof(*rp));
224                         rbio->bi_private = rp_repl;
225                 }
226         }
227
228         return r10_bio;
229
230 out_free_pages:
231         while (--j >= 0)
232                 resync_free_pages(&rps[j * 2]);
233
234         j = 0;
235 out_free_bio:
236         for ( ; j < nalloc; j++) {
237                 if (r10_bio->devs[j].bio)
238                         bio_put(r10_bio->devs[j].bio);
239                 if (r10_bio->devs[j].repl_bio)
240                         bio_put(r10_bio->devs[j].repl_bio);
241         }
242         kfree(rps);
243 out_free_r10bio:
244         r10bio_pool_free(r10_bio, conf);
245         return NULL;
246 }
247
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250         struct r10conf *conf = data;
251         struct r10bio *r10bio = __r10_bio;
252         int j;
253         struct resync_pages *rp = NULL;
254
255         for (j = conf->copies; j--; ) {
256                 struct bio *bio = r10bio->devs[j].bio;
257
258                 rp = get_resync_pages(bio);
259                 resync_free_pages(rp);
260                 bio_put(bio);
261
262                 bio = r10bio->devs[j].repl_bio;
263                 if (bio)
264                         bio_put(bio);
265         }
266
267         /* resync pages array stored in the 1st bio's .bi_private */
268         kfree(rp);
269
270         r10bio_pool_free(r10bio, conf);
271 }
272
273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
274 {
275         int i;
276
277         for (i = 0; i < conf->copies; i++) {
278                 struct bio **bio = & r10_bio->devs[i].bio;
279                 if (!BIO_SPECIAL(*bio))
280                         bio_put(*bio);
281                 *bio = NULL;
282                 bio = &r10_bio->devs[i].repl_bio;
283                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
284                         bio_put(*bio);
285                 *bio = NULL;
286         }
287 }
288
289 static void free_r10bio(struct r10bio *r10_bio)
290 {
291         struct r10conf *conf = r10_bio->mddev->private;
292
293         put_all_bios(conf, r10_bio);
294         mempool_free(r10_bio, conf->r10bio_pool);
295 }
296
297 static void put_buf(struct r10bio *r10_bio)
298 {
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         mempool_free(r10_bio, conf->r10buf_pool);
302
303         lower_barrier(conf);
304 }
305
306 static void reschedule_retry(struct r10bio *r10_bio)
307 {
308         unsigned long flags;
309         struct mddev *mddev = r10_bio->mddev;
310         struct r10conf *conf = mddev->private;
311
312         spin_lock_irqsave(&conf->device_lock, flags);
313         list_add(&r10_bio->retry_list, &conf->retry_list);
314         conf->nr_queued ++;
315         spin_unlock_irqrestore(&conf->device_lock, flags);
316
317         /* wake up frozen array... */
318         wake_up(&conf->wait_barrier);
319
320         md_wakeup_thread(mddev->thread);
321 }
322
323 /*
324  * raid_end_bio_io() is called when we have finished servicing a mirrored
325  * operation and are ready to return a success/failure code to the buffer
326  * cache layer.
327  */
328 static void raid_end_bio_io(struct r10bio *r10_bio)
329 {
330         struct bio *bio = r10_bio->master_bio;
331         struct r10conf *conf = r10_bio->mddev->private;
332
333         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
334                 bio->bi_status = BLK_STS_IOERR;
335
336         bio_endio(bio);
337         /*
338          * Wake up any possible resync thread that waits for the device
339          * to go idle.
340          */
341         allow_barrier(conf);
342
343         free_r10bio(r10_bio);
344 }
345
346 /*
347  * Update disk head position estimator based on IRQ completion info.
348  */
349 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
350 {
351         struct r10conf *conf = r10_bio->mddev->private;
352
353         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
354                 r10_bio->devs[slot].addr + (r10_bio->sectors);
355 }
356
357 /*
358  * Find the disk number which triggered given bio
359  */
360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
361                          struct bio *bio, int *slotp, int *replp)
362 {
363         int slot;
364         int repl = 0;
365
366         for (slot = 0; slot < conf->copies; slot++) {
367                 if (r10_bio->devs[slot].bio == bio)
368                         break;
369                 if (r10_bio->devs[slot].repl_bio == bio) {
370                         repl = 1;
371                         break;
372                 }
373         }
374
375         BUG_ON(slot == conf->copies);
376         update_head_pos(slot, r10_bio);
377
378         if (slotp)
379                 *slotp = slot;
380         if (replp)
381                 *replp = repl;
382         return r10_bio->devs[slot].devnum;
383 }
384
385 static void raid10_end_read_request(struct bio *bio)
386 {
387         int uptodate = !bio->bi_status;
388         struct r10bio *r10_bio = bio->bi_private;
389         int slot;
390         struct md_rdev *rdev;
391         struct r10conf *conf = r10_bio->mddev->private;
392
393         slot = r10_bio->read_slot;
394         rdev = r10_bio->devs[slot].rdev;
395         /*
396          * this branch is our 'one mirror IO has finished' event handler:
397          */
398         update_head_pos(slot, r10_bio);
399
400         if (uptodate) {
401                 /*
402                  * Set R10BIO_Uptodate in our master bio, so that
403                  * we will return a good error code to the higher
404                  * levels even if IO on some other mirrored buffer fails.
405                  *
406                  * The 'master' represents the composite IO operation to
407                  * user-side. So if something waits for IO, then it will
408                  * wait for the 'master' bio.
409                  */
410                 set_bit(R10BIO_Uptodate, &r10_bio->state);
411         } else {
412                 /* If all other devices that store this block have
413                  * failed, we want to return the error upwards rather
414                  * than fail the last device.  Here we redefine
415                  * "uptodate" to mean "Don't want to retry"
416                  */
417                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
418                              rdev->raid_disk))
419                         uptodate = 1;
420         }
421         if (uptodate) {
422                 raid_end_bio_io(r10_bio);
423                 rdev_dec_pending(rdev, conf->mddev);
424         } else {
425                 /*
426                  * oops, read error - keep the refcount on the rdev
427                  */
428                 char b[BDEVNAME_SIZE];
429                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
430                                    mdname(conf->mddev),
431                                    bdevname(rdev->bdev, b),
432                                    (unsigned long long)r10_bio->sector);
433                 set_bit(R10BIO_ReadError, &r10_bio->state);
434                 reschedule_retry(r10_bio);
435         }
436 }
437
438 static void close_write(struct r10bio *r10_bio)
439 {
440         /* clear the bitmap if all writes complete successfully */
441         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
442                         r10_bio->sectors,
443                         !test_bit(R10BIO_Degraded, &r10_bio->state),
444                         0);
445         md_write_end(r10_bio->mddev);
446 }
447
448 static void one_write_done(struct r10bio *r10_bio)
449 {
450         if (atomic_dec_and_test(&r10_bio->remaining)) {
451                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
452                         reschedule_retry(r10_bio);
453                 else {
454                         close_write(r10_bio);
455                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
456                                 reschedule_retry(r10_bio);
457                         else
458                                 raid_end_bio_io(r10_bio);
459                 }
460         }
461 }
462
463 static void raid10_end_write_request(struct bio *bio)
464 {
465         struct r10bio *r10_bio = bio->bi_private;
466         int dev;
467         int dec_rdev = 1;
468         struct r10conf *conf = r10_bio->mddev->private;
469         int slot, repl;
470         struct md_rdev *rdev = NULL;
471         struct bio *to_put = NULL;
472         bool discard_error;
473
474         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
475
476         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
477
478         if (repl)
479                 rdev = conf->mirrors[dev].replacement;
480         if (!rdev) {
481                 smp_rmb();
482                 repl = 0;
483                 rdev = conf->mirrors[dev].rdev;
484         }
485         /*
486          * this branch is our 'one mirror IO has finished' event handler:
487          */
488         if (bio->bi_status && !discard_error) {
489                 if (repl)
490                         /* Never record new bad blocks to replacement,
491                          * just fail it.
492                          */
493                         md_error(rdev->mddev, rdev);
494                 else {
495                         set_bit(WriteErrorSeen, &rdev->flags);
496                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
497                                 set_bit(MD_RECOVERY_NEEDED,
498                                         &rdev->mddev->recovery);
499
500                         dec_rdev = 0;
501                         if (test_bit(FailFast, &rdev->flags) &&
502                             (bio->bi_opf & MD_FAILFAST)) {
503                                 md_error(rdev->mddev, rdev);
504                                 if (!test_bit(Faulty, &rdev->flags))
505                                         /* This is the only remaining device,
506                                          * We need to retry the write without
507                                          * FailFast
508                                          */
509                                         set_bit(R10BIO_WriteError, &r10_bio->state);
510                                 else {
511                                         r10_bio->devs[slot].bio = NULL;
512                                         to_put = bio;
513                                         dec_rdev = 1;
514                                 }
515                         } else
516                                 set_bit(R10BIO_WriteError, &r10_bio->state);
517                 }
518         } else {
519                 /*
520                  * Set R10BIO_Uptodate in our master bio, so that
521                  * we will return a good error code for to the higher
522                  * levels even if IO on some other mirrored buffer fails.
523                  *
524                  * The 'master' represents the composite IO operation to
525                  * user-side. So if something waits for IO, then it will
526                  * wait for the 'master' bio.
527                  */
528                 sector_t first_bad;
529                 int bad_sectors;
530
531                 /*
532                  * Do not set R10BIO_Uptodate if the current device is
533                  * rebuilding or Faulty. This is because we cannot use
534                  * such device for properly reading the data back (we could
535                  * potentially use it, if the current write would have felt
536                  * before rdev->recovery_offset, but for simplicity we don't
537                  * check this here.
538                  */
539                 if (test_bit(In_sync, &rdev->flags) &&
540                     !test_bit(Faulty, &rdev->flags))
541                         set_bit(R10BIO_Uptodate, &r10_bio->state);
542
543                 /* Maybe we can clear some bad blocks. */
544                 if (is_badblock(rdev,
545                                 r10_bio->devs[slot].addr,
546                                 r10_bio->sectors,
547                                 &first_bad, &bad_sectors) && !discard_error) {
548                         bio_put(bio);
549                         if (repl)
550                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
551                         else
552                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
553                         dec_rdev = 0;
554                         set_bit(R10BIO_MadeGood, &r10_bio->state);
555                 }
556         }
557
558         /*
559          *
560          * Let's see if all mirrored write operations have finished
561          * already.
562          */
563         one_write_done(r10_bio);
564         if (dec_rdev)
565                 rdev_dec_pending(rdev, conf->mddev);
566         if (to_put)
567                 bio_put(to_put);
568 }
569
570 /*
571  * RAID10 layout manager
572  * As well as the chunksize and raid_disks count, there are two
573  * parameters: near_copies and far_copies.
574  * near_copies * far_copies must be <= raid_disks.
575  * Normally one of these will be 1.
576  * If both are 1, we get raid0.
577  * If near_copies == raid_disks, we get raid1.
578  *
579  * Chunks are laid out in raid0 style with near_copies copies of the
580  * first chunk, followed by near_copies copies of the next chunk and
581  * so on.
582  * If far_copies > 1, then after 1/far_copies of the array has been assigned
583  * as described above, we start again with a device offset of near_copies.
584  * So we effectively have another copy of the whole array further down all
585  * the drives, but with blocks on different drives.
586  * With this layout, and block is never stored twice on the one device.
587  *
588  * raid10_find_phys finds the sector offset of a given virtual sector
589  * on each device that it is on.
590  *
591  * raid10_find_virt does the reverse mapping, from a device and a
592  * sector offset to a virtual address
593  */
594
595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
596 {
597         int n,f;
598         sector_t sector;
599         sector_t chunk;
600         sector_t stripe;
601         int dev;
602         int slot = 0;
603         int last_far_set_start, last_far_set_size;
604
605         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
606         last_far_set_start *= geo->far_set_size;
607
608         last_far_set_size = geo->far_set_size;
609         last_far_set_size += (geo->raid_disks % geo->far_set_size);
610
611         /* now calculate first sector/dev */
612         chunk = r10bio->sector >> geo->chunk_shift;
613         sector = r10bio->sector & geo->chunk_mask;
614
615         chunk *= geo->near_copies;
616         stripe = chunk;
617         dev = sector_div(stripe, geo->raid_disks);
618         if (geo->far_offset)
619                 stripe *= geo->far_copies;
620
621         sector += stripe << geo->chunk_shift;
622
623         /* and calculate all the others */
624         for (n = 0; n < geo->near_copies; n++) {
625                 int d = dev;
626                 int set;
627                 sector_t s = sector;
628                 r10bio->devs[slot].devnum = d;
629                 r10bio->devs[slot].addr = s;
630                 slot++;
631
632                 for (f = 1; f < geo->far_copies; f++) {
633                         set = d / geo->far_set_size;
634                         d += geo->near_copies;
635
636                         if ((geo->raid_disks % geo->far_set_size) &&
637                             (d > last_far_set_start)) {
638                                 d -= last_far_set_start;
639                                 d %= last_far_set_size;
640                                 d += last_far_set_start;
641                         } else {
642                                 d %= geo->far_set_size;
643                                 d += geo->far_set_size * set;
644                         }
645                         s += geo->stride;
646                         r10bio->devs[slot].devnum = d;
647                         r10bio->devs[slot].addr = s;
648                         slot++;
649                 }
650                 dev++;
651                 if (dev >= geo->raid_disks) {
652                         dev = 0;
653                         sector += (geo->chunk_mask + 1);
654                 }
655         }
656 }
657
658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
659 {
660         struct geom *geo = &conf->geo;
661
662         if (conf->reshape_progress != MaxSector &&
663             ((r10bio->sector >= conf->reshape_progress) !=
664              conf->mddev->reshape_backwards)) {
665                 set_bit(R10BIO_Previous, &r10bio->state);
666                 geo = &conf->prev;
667         } else
668                 clear_bit(R10BIO_Previous, &r10bio->state);
669
670         __raid10_find_phys(geo, r10bio);
671 }
672
673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
674 {
675         sector_t offset, chunk, vchunk;
676         /* Never use conf->prev as this is only called during resync
677          * or recovery, so reshape isn't happening
678          */
679         struct geom *geo = &conf->geo;
680         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
681         int far_set_size = geo->far_set_size;
682         int last_far_set_start;
683
684         if (geo->raid_disks % geo->far_set_size) {
685                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
686                 last_far_set_start *= geo->far_set_size;
687
688                 if (dev >= last_far_set_start) {
689                         far_set_size = geo->far_set_size;
690                         far_set_size += (geo->raid_disks % geo->far_set_size);
691                         far_set_start = last_far_set_start;
692                 }
693         }
694
695         offset = sector & geo->chunk_mask;
696         if (geo->far_offset) {
697                 int fc;
698                 chunk = sector >> geo->chunk_shift;
699                 fc = sector_div(chunk, geo->far_copies);
700                 dev -= fc * geo->near_copies;
701                 if (dev < far_set_start)
702                         dev += far_set_size;
703         } else {
704                 while (sector >= geo->stride) {
705                         sector -= geo->stride;
706                         if (dev < (geo->near_copies + far_set_start))
707                                 dev += far_set_size - geo->near_copies;
708                         else
709                                 dev -= geo->near_copies;
710                 }
711                 chunk = sector >> geo->chunk_shift;
712         }
713         vchunk = chunk * geo->raid_disks + dev;
714         sector_div(vchunk, geo->near_copies);
715         return (vchunk << geo->chunk_shift) + offset;
716 }
717
718 /*
719  * This routine returns the disk from which the requested read should
720  * be done. There is a per-array 'next expected sequential IO' sector
721  * number - if this matches on the next IO then we use the last disk.
722  * There is also a per-disk 'last know head position' sector that is
723  * maintained from IRQ contexts, both the normal and the resync IO
724  * completion handlers update this position correctly. If there is no
725  * perfect sequential match then we pick the disk whose head is closest.
726  *
727  * If there are 2 mirrors in the same 2 devices, performance degrades
728  * because position is mirror, not device based.
729  *
730  * The rdev for the device selected will have nr_pending incremented.
731  */
732
733 /*
734  * FIXME: possibly should rethink readbalancing and do it differently
735  * depending on near_copies / far_copies geometry.
736  */
737 static struct md_rdev *read_balance(struct r10conf *conf,
738                                     struct r10bio *r10_bio,
739                                     int *max_sectors)
740 {
741         const sector_t this_sector = r10_bio->sector;
742         int disk, slot;
743         int sectors = r10_bio->sectors;
744         int best_good_sectors;
745         sector_t new_distance, best_dist;
746         struct md_rdev *best_rdev, *rdev = NULL;
747         int do_balance;
748         int best_slot;
749         struct geom *geo = &conf->geo;
750
751         raid10_find_phys(conf, r10_bio);
752         rcu_read_lock();
753         best_slot = -1;
754         best_rdev = NULL;
755         best_dist = MaxSector;
756         best_good_sectors = 0;
757         do_balance = 1;
758         clear_bit(R10BIO_FailFast, &r10_bio->state);
759         /*
760          * Check if we can balance. We can balance on the whole
761          * device if no resync is going on (recovery is ok), or below
762          * the resync window. We take the first readable disk when
763          * above the resync window.
764          */
765         if ((conf->mddev->recovery_cp < MaxSector
766              && (this_sector + sectors >= conf->next_resync)) ||
767             (mddev_is_clustered(conf->mddev) &&
768              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
769                                             this_sector + sectors)))
770                 do_balance = 0;
771
772         for (slot = 0; slot < conf->copies ; slot++) {
773                 sector_t first_bad;
774                 int bad_sectors;
775                 sector_t dev_sector;
776
777                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
778                         continue;
779                 disk = r10_bio->devs[slot].devnum;
780                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
781                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
784                 if (rdev == NULL ||
785                     test_bit(Faulty, &rdev->flags))
786                         continue;
787                 if (!test_bit(In_sync, &rdev->flags) &&
788                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789                         continue;
790
791                 dev_sector = r10_bio->devs[slot].addr;
792                 if (is_badblock(rdev, dev_sector, sectors,
793                                 &first_bad, &bad_sectors)) {
794                         if (best_dist < MaxSector)
795                                 /* Already have a better slot */
796                                 continue;
797                         if (first_bad <= dev_sector) {
798                                 /* Cannot read here.  If this is the
799                                  * 'primary' device, then we must not read
800                                  * beyond 'bad_sectors' from another device.
801                                  */
802                                 bad_sectors -= (dev_sector - first_bad);
803                                 if (!do_balance && sectors > bad_sectors)
804                                         sectors = bad_sectors;
805                                 if (best_good_sectors > sectors)
806                                         best_good_sectors = sectors;
807                         } else {
808                                 sector_t good_sectors =
809                                         first_bad - dev_sector;
810                                 if (good_sectors > best_good_sectors) {
811                                         best_good_sectors = good_sectors;
812                                         best_slot = slot;
813                                         best_rdev = rdev;
814                                 }
815                                 if (!do_balance)
816                                         /* Must read from here */
817                                         break;
818                         }
819                         continue;
820                 } else
821                         best_good_sectors = sectors;
822
823                 if (!do_balance)
824                         break;
825
826                 if (best_slot >= 0)
827                         /* At least 2 disks to choose from so failfast is OK */
828                         set_bit(R10BIO_FailFast, &r10_bio->state);
829                 /* This optimisation is debatable, and completely destroys
830                  * sequential read speed for 'far copies' arrays.  So only
831                  * keep it for 'near' arrays, and review those later.
832                  */
833                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
834                         new_distance = 0;
835
836                 /* for far > 1 always use the lowest address */
837                 else if (geo->far_copies > 1)
838                         new_distance = r10_bio->devs[slot].addr;
839                 else
840                         new_distance = abs(r10_bio->devs[slot].addr -
841                                            conf->mirrors[disk].head_position);
842                 if (new_distance < best_dist) {
843                         best_dist = new_distance;
844                         best_slot = slot;
845                         best_rdev = rdev;
846                 }
847         }
848         if (slot >= conf->copies) {
849                 slot = best_slot;
850                 rdev = best_rdev;
851         }
852
853         if (slot >= 0) {
854                 atomic_inc(&rdev->nr_pending);
855                 r10_bio->read_slot = slot;
856         } else
857                 rdev = NULL;
858         rcu_read_unlock();
859         *max_sectors = best_good_sectors;
860
861         return rdev;
862 }
863
864 static int raid10_congested(struct mddev *mddev, int bits)
865 {
866         struct r10conf *conf = mddev->private;
867         int i, ret = 0;
868
869         if ((bits & (1 << WB_async_congested)) &&
870             conf->pending_count >= max_queued_requests)
871                 return 1;
872
873         rcu_read_lock();
874         for (i = 0;
875              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
876                      && ret == 0;
877              i++) {
878                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
879                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
880                         struct request_queue *q = bdev_get_queue(rdev->bdev);
881
882                         ret |= bdi_congested(q->backing_dev_info, bits);
883                 }
884         }
885         rcu_read_unlock();
886         return ret;
887 }
888
889 static void flush_pending_writes(struct r10conf *conf)
890 {
891         /* Any writes that have been queued but are awaiting
892          * bitmap updates get flushed here.
893          */
894         spin_lock_irq(&conf->device_lock);
895
896         if (conf->pending_bio_list.head) {
897                 struct blk_plug plug;
898                 struct bio *bio;
899
900                 bio = bio_list_get(&conf->pending_bio_list);
901                 conf->pending_count = 0;
902                 spin_unlock_irq(&conf->device_lock);
903                 blk_start_plug(&plug);
904                 /* flush any pending bitmap writes to disk
905                  * before proceeding w/ I/O */
906                 bitmap_unplug(conf->mddev->bitmap);
907                 wake_up(&conf->wait_barrier);
908
909                 while (bio) { /* submit pending writes */
910                         struct bio *next = bio->bi_next;
911                         struct md_rdev *rdev = (void*)bio->bi_disk;
912                         bio->bi_next = NULL;
913                         bio_set_dev(bio, rdev->bdev);
914                         if (test_bit(Faulty, &rdev->flags)) {
915                                 bio_io_error(bio);
916                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
917                                             !blk_queue_discard(bio->bi_disk->queue)))
918                                 /* Just ignore it */
919                                 bio_endio(bio);
920                         else
921                                 generic_make_request(bio);
922                         bio = next;
923                 }
924                 blk_finish_plug(&plug);
925         } else
926                 spin_unlock_irq(&conf->device_lock);
927 }
928
929 /* Barriers....
930  * Sometimes we need to suspend IO while we do something else,
931  * either some resync/recovery, or reconfigure the array.
932  * To do this we raise a 'barrier'.
933  * The 'barrier' is a counter that can be raised multiple times
934  * to count how many activities are happening which preclude
935  * normal IO.
936  * We can only raise the barrier if there is no pending IO.
937  * i.e. if nr_pending == 0.
938  * We choose only to raise the barrier if no-one is waiting for the
939  * barrier to go down.  This means that as soon as an IO request
940  * is ready, no other operations which require a barrier will start
941  * until the IO request has had a chance.
942  *
943  * So: regular IO calls 'wait_barrier'.  When that returns there
944  *    is no backgroup IO happening,  It must arrange to call
945  *    allow_barrier when it has finished its IO.
946  * backgroup IO calls must call raise_barrier.  Once that returns
947  *    there is no normal IO happeing.  It must arrange to call
948  *    lower_barrier when the particular background IO completes.
949  */
950
951 static void raise_barrier(struct r10conf *conf, int force)
952 {
953         BUG_ON(force && !conf->barrier);
954         spin_lock_irq(&conf->resync_lock);
955
956         /* Wait until no block IO is waiting (unless 'force') */
957         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
958                             conf->resync_lock);
959
960         /* block any new IO from starting */
961         conf->barrier++;
962
963         /* Now wait for all pending IO to complete */
964         wait_event_lock_irq(conf->wait_barrier,
965                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
966                             conf->resync_lock);
967
968         spin_unlock_irq(&conf->resync_lock);
969 }
970
971 static void lower_barrier(struct r10conf *conf)
972 {
973         unsigned long flags;
974         spin_lock_irqsave(&conf->resync_lock, flags);
975         conf->barrier--;
976         spin_unlock_irqrestore(&conf->resync_lock, flags);
977         wake_up(&conf->wait_barrier);
978 }
979
980 static void wait_barrier(struct r10conf *conf)
981 {
982         spin_lock_irq(&conf->resync_lock);
983         if (conf->barrier) {
984                 conf->nr_waiting++;
985                 /* Wait for the barrier to drop.
986                  * However if there are already pending
987                  * requests (preventing the barrier from
988                  * rising completely), and the
989                  * pre-process bio queue isn't empty,
990                  * then don't wait, as we need to empty
991                  * that queue to get the nr_pending
992                  * count down.
993                  */
994                 raid10_log(conf->mddev, "wait barrier");
995                 wait_event_lock_irq(conf->wait_barrier,
996                                     !conf->barrier ||
997                                     (atomic_read(&conf->nr_pending) &&
998                                      current->bio_list &&
999                                      (!bio_list_empty(&current->bio_list[0]) ||
1000                                       !bio_list_empty(&current->bio_list[1]))),
1001                                     conf->resync_lock);
1002                 conf->nr_waiting--;
1003                 if (!conf->nr_waiting)
1004                         wake_up(&conf->wait_barrier);
1005         }
1006         atomic_inc(&conf->nr_pending);
1007         spin_unlock_irq(&conf->resync_lock);
1008 }
1009
1010 static void allow_barrier(struct r10conf *conf)
1011 {
1012         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1013                         (conf->array_freeze_pending))
1014                 wake_up(&conf->wait_barrier);
1015 }
1016
1017 static void freeze_array(struct r10conf *conf, int extra)
1018 {
1019         /* stop syncio and normal IO and wait for everything to
1020          * go quiet.
1021          * We increment barrier and nr_waiting, and then
1022          * wait until nr_pending match nr_queued+extra
1023          * This is called in the context of one normal IO request
1024          * that has failed. Thus any sync request that might be pending
1025          * will be blocked by nr_pending, and we need to wait for
1026          * pending IO requests to complete or be queued for re-try.
1027          * Thus the number queued (nr_queued) plus this request (extra)
1028          * must match the number of pending IOs (nr_pending) before
1029          * we continue.
1030          */
1031         spin_lock_irq(&conf->resync_lock);
1032         conf->array_freeze_pending++;
1033         conf->barrier++;
1034         conf->nr_waiting++;
1035         wait_event_lock_irq_cmd(conf->wait_barrier,
1036                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1037                                 conf->resync_lock,
1038                                 flush_pending_writes(conf));
1039
1040         conf->array_freeze_pending--;
1041         spin_unlock_irq(&conf->resync_lock);
1042 }
1043
1044 static void unfreeze_array(struct r10conf *conf)
1045 {
1046         /* reverse the effect of the freeze */
1047         spin_lock_irq(&conf->resync_lock);
1048         conf->barrier--;
1049         conf->nr_waiting--;
1050         wake_up(&conf->wait_barrier);
1051         spin_unlock_irq(&conf->resync_lock);
1052 }
1053
1054 static sector_t choose_data_offset(struct r10bio *r10_bio,
1055                                    struct md_rdev *rdev)
1056 {
1057         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1058             test_bit(R10BIO_Previous, &r10_bio->state))
1059                 return rdev->data_offset;
1060         else
1061                 return rdev->new_data_offset;
1062 }
1063
1064 struct raid10_plug_cb {
1065         struct blk_plug_cb      cb;
1066         struct bio_list         pending;
1067         int                     pending_cnt;
1068 };
1069
1070 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1071 {
1072         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1073                                                    cb);
1074         struct mddev *mddev = plug->cb.data;
1075         struct r10conf *conf = mddev->private;
1076         struct bio *bio;
1077
1078         if (from_schedule || current->bio_list) {
1079                 spin_lock_irq(&conf->device_lock);
1080                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1081                 conf->pending_count += plug->pending_cnt;
1082                 spin_unlock_irq(&conf->device_lock);
1083                 wake_up(&conf->wait_barrier);
1084                 md_wakeup_thread(mddev->thread);
1085                 kfree(plug);
1086                 return;
1087         }
1088
1089         /* we aren't scheduling, so we can do the write-out directly. */
1090         bio = bio_list_get(&plug->pending);
1091         bitmap_unplug(mddev->bitmap);
1092         wake_up(&conf->wait_barrier);
1093
1094         while (bio) { /* submit pending writes */
1095                 struct bio *next = bio->bi_next;
1096                 struct md_rdev *rdev = (void*)bio->bi_disk;
1097                 bio->bi_next = NULL;
1098                 bio_set_dev(bio, rdev->bdev);
1099                 if (test_bit(Faulty, &rdev->flags)) {
1100                         bio_io_error(bio);
1101                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1102                                     !blk_queue_discard(bio->bi_disk->queue)))
1103                         /* Just ignore it */
1104                         bio_endio(bio);
1105                 else
1106                         generic_make_request(bio);
1107                 bio = next;
1108         }
1109         kfree(plug);
1110 }
1111
1112 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1113                                 struct r10bio *r10_bio)
1114 {
1115         struct r10conf *conf = mddev->private;
1116         struct bio *read_bio;
1117         const int op = bio_op(bio);
1118         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1119         int max_sectors;
1120         sector_t sectors;
1121         struct md_rdev *rdev;
1122         char b[BDEVNAME_SIZE];
1123         int slot = r10_bio->read_slot;
1124         struct md_rdev *err_rdev = NULL;
1125         gfp_t gfp = GFP_NOIO;
1126
1127         if (r10_bio->devs[slot].rdev) {
1128                 /*
1129                  * This is an error retry, but we cannot
1130                  * safely dereference the rdev in the r10_bio,
1131                  * we must use the one in conf.
1132                  * If it has already been disconnected (unlikely)
1133                  * we lose the device name in error messages.
1134                  */
1135                 int disk;
1136                 /*
1137                  * As we are blocking raid10, it is a little safer to
1138                  * use __GFP_HIGH.
1139                  */
1140                 gfp = GFP_NOIO | __GFP_HIGH;
1141
1142                 rcu_read_lock();
1143                 disk = r10_bio->devs[slot].devnum;
1144                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1145                 if (err_rdev)
1146                         bdevname(err_rdev->bdev, b);
1147                 else {
1148                         strcpy(b, "???");
1149                         /* This never gets dereferenced */
1150                         err_rdev = r10_bio->devs[slot].rdev;
1151                 }
1152                 rcu_read_unlock();
1153         }
1154         /*
1155          * Register the new request and wait if the reconstruction
1156          * thread has put up a bar for new requests.
1157          * Continue immediately if no resync is active currently.
1158          */
1159         wait_barrier(conf);
1160
1161         sectors = r10_bio->sectors;
1162         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1163             bio->bi_iter.bi_sector < conf->reshape_progress &&
1164             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1165                 /*
1166                  * IO spans the reshape position.  Need to wait for reshape to
1167                  * pass
1168                  */
1169                 raid10_log(conf->mddev, "wait reshape");
1170                 allow_barrier(conf);
1171                 wait_event(conf->wait_barrier,
1172                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1173                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1174                            sectors);
1175                 wait_barrier(conf);
1176         }
1177
1178         rdev = read_balance(conf, r10_bio, &max_sectors);
1179         if (!rdev) {
1180                 if (err_rdev) {
1181                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1182                                             mdname(mddev), b,
1183                                             (unsigned long long)r10_bio->sector);
1184                 }
1185                 raid_end_bio_io(r10_bio);
1186                 return;
1187         }
1188         if (err_rdev)
1189                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1190                                    mdname(mddev),
1191                                    bdevname(rdev->bdev, b),
1192                                    (unsigned long long)r10_bio->sector);
1193         if (max_sectors < bio_sectors(bio)) {
1194                 struct bio *split = bio_split(bio, max_sectors,
1195                                               gfp, conf->bio_split);
1196                 bio_chain(split, bio);
1197                 generic_make_request(bio);
1198                 bio = split;
1199                 r10_bio->master_bio = bio;
1200                 r10_bio->sectors = max_sectors;
1201         }
1202         slot = r10_bio->read_slot;
1203
1204         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1205
1206         r10_bio->devs[slot].bio = read_bio;
1207         r10_bio->devs[slot].rdev = rdev;
1208
1209         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1210                 choose_data_offset(r10_bio, rdev);
1211         bio_set_dev(read_bio, rdev->bdev);
1212         read_bio->bi_end_io = raid10_end_read_request;
1213         bio_set_op_attrs(read_bio, op, do_sync);
1214         if (test_bit(FailFast, &rdev->flags) &&
1215             test_bit(R10BIO_FailFast, &r10_bio->state))
1216                 read_bio->bi_opf |= MD_FAILFAST;
1217         read_bio->bi_private = r10_bio;
1218
1219         if (mddev->gendisk)
1220                 trace_block_bio_remap(read_bio->bi_disk->queue,
1221                                       read_bio, disk_devt(mddev->gendisk),
1222                                       r10_bio->sector);
1223         generic_make_request(read_bio);
1224         return;
1225 }
1226
1227 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1228                                   struct bio *bio, bool replacement,
1229                                   int n_copy)
1230 {
1231         const int op = bio_op(bio);
1232         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1233         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1234         unsigned long flags;
1235         struct blk_plug_cb *cb;
1236         struct raid10_plug_cb *plug = NULL;
1237         struct r10conf *conf = mddev->private;
1238         struct md_rdev *rdev;
1239         int devnum = r10_bio->devs[n_copy].devnum;
1240         struct bio *mbio;
1241
1242         if (replacement) {
1243                 rdev = conf->mirrors[devnum].replacement;
1244                 if (rdev == NULL) {
1245                         /* Replacement just got moved to main 'rdev' */
1246                         smp_mb();
1247                         rdev = conf->mirrors[devnum].rdev;
1248                 }
1249         } else
1250                 rdev = conf->mirrors[devnum].rdev;
1251
1252         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1253         if (replacement)
1254                 r10_bio->devs[n_copy].repl_bio = mbio;
1255         else
1256                 r10_bio->devs[n_copy].bio = mbio;
1257
1258         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1259                                    choose_data_offset(r10_bio, rdev));
1260         bio_set_dev(mbio, rdev->bdev);
1261         mbio->bi_end_io = raid10_end_write_request;
1262         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1263         if (!replacement && test_bit(FailFast,
1264                                      &conf->mirrors[devnum].rdev->flags)
1265                          && enough(conf, devnum))
1266                 mbio->bi_opf |= MD_FAILFAST;
1267         mbio->bi_private = r10_bio;
1268
1269         if (conf->mddev->gendisk)
1270                 trace_block_bio_remap(mbio->bi_disk->queue,
1271                                       mbio, disk_devt(conf->mddev->gendisk),
1272                                       r10_bio->sector);
1273         /* flush_pending_writes() needs access to the rdev so...*/
1274         mbio->bi_disk = (void *)rdev;
1275
1276         atomic_inc(&r10_bio->remaining);
1277
1278         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1279         if (cb)
1280                 plug = container_of(cb, struct raid10_plug_cb, cb);
1281         else
1282                 plug = NULL;
1283         if (plug) {
1284                 bio_list_add(&plug->pending, mbio);
1285                 plug->pending_cnt++;
1286         } else {
1287                 spin_lock_irqsave(&conf->device_lock, flags);
1288                 bio_list_add(&conf->pending_bio_list, mbio);
1289                 conf->pending_count++;
1290                 spin_unlock_irqrestore(&conf->device_lock, flags);
1291                 md_wakeup_thread(mddev->thread);
1292         }
1293 }
1294
1295 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1296                                  struct r10bio *r10_bio)
1297 {
1298         struct r10conf *conf = mddev->private;
1299         int i;
1300         struct md_rdev *blocked_rdev;
1301         sector_t sectors;
1302         int max_sectors;
1303
1304         if ((mddev_is_clustered(mddev) &&
1305              md_cluster_ops->area_resyncing(mddev, WRITE,
1306                                             bio->bi_iter.bi_sector,
1307                                             bio_end_sector(bio)))) {
1308                 DEFINE_WAIT(w);
1309                 for (;;) {
1310                         prepare_to_wait(&conf->wait_barrier,
1311                                         &w, TASK_IDLE);
1312                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1313                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1314                                 break;
1315                         schedule();
1316                 }
1317                 finish_wait(&conf->wait_barrier, &w);
1318         }
1319
1320         /*
1321          * Register the new request and wait if the reconstruction
1322          * thread has put up a bar for new requests.
1323          * Continue immediately if no resync is active currently.
1324          */
1325         wait_barrier(conf);
1326
1327         sectors = r10_bio->sectors;
1328         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1329             bio->bi_iter.bi_sector < conf->reshape_progress &&
1330             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1331                 /*
1332                  * IO spans the reshape position.  Need to wait for reshape to
1333                  * pass
1334                  */
1335                 raid10_log(conf->mddev, "wait reshape");
1336                 allow_barrier(conf);
1337                 wait_event(conf->wait_barrier,
1338                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1339                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1340                            sectors);
1341                 wait_barrier(conf);
1342         }
1343
1344         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1345             (mddev->reshape_backwards
1346              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1347                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1348              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1349                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1350                 /* Need to update reshape_position in metadata */
1351                 mddev->reshape_position = conf->reshape_progress;
1352                 set_mask_bits(&mddev->sb_flags, 0,
1353                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1354                 md_wakeup_thread(mddev->thread);
1355                 raid10_log(conf->mddev, "wait reshape metadata");
1356                 wait_event(mddev->sb_wait,
1357                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1358
1359                 conf->reshape_safe = mddev->reshape_position;
1360         }
1361
1362         if (conf->pending_count >= max_queued_requests) {
1363                 md_wakeup_thread(mddev->thread);
1364                 raid10_log(mddev, "wait queued");
1365                 wait_event(conf->wait_barrier,
1366                            conf->pending_count < max_queued_requests);
1367         }
1368         /* first select target devices under rcu_lock and
1369          * inc refcount on their rdev.  Record them by setting
1370          * bios[x] to bio
1371          * If there are known/acknowledged bad blocks on any device
1372          * on which we have seen a write error, we want to avoid
1373          * writing to those blocks.  This potentially requires several
1374          * writes to write around the bad blocks.  Each set of writes
1375          * gets its own r10_bio with a set of bios attached.
1376          */
1377
1378         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1379         raid10_find_phys(conf, r10_bio);
1380 retry_write:
1381         blocked_rdev = NULL;
1382         rcu_read_lock();
1383         max_sectors = r10_bio->sectors;
1384
1385         for (i = 0;  i < conf->copies; i++) {
1386                 int d = r10_bio->devs[i].devnum;
1387                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1388                 struct md_rdev *rrdev = rcu_dereference(
1389                         conf->mirrors[d].replacement);
1390                 if (rdev == rrdev)
1391                         rrdev = NULL;
1392                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1393                         atomic_inc(&rdev->nr_pending);
1394                         blocked_rdev = rdev;
1395                         break;
1396                 }
1397                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1398                         atomic_inc(&rrdev->nr_pending);
1399                         blocked_rdev = rrdev;
1400                         break;
1401                 }
1402                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1403                         rdev = NULL;
1404                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1405                         rrdev = NULL;
1406
1407                 r10_bio->devs[i].bio = NULL;
1408                 r10_bio->devs[i].repl_bio = NULL;
1409
1410                 if (!rdev && !rrdev) {
1411                         set_bit(R10BIO_Degraded, &r10_bio->state);
1412                         continue;
1413                 }
1414                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1415                         sector_t first_bad;
1416                         sector_t dev_sector = r10_bio->devs[i].addr;
1417                         int bad_sectors;
1418                         int is_bad;
1419
1420                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1421                                              &first_bad, &bad_sectors);
1422                         if (is_bad < 0) {
1423                                 /* Mustn't write here until the bad block
1424                                  * is acknowledged
1425                                  */
1426                                 atomic_inc(&rdev->nr_pending);
1427                                 set_bit(BlockedBadBlocks, &rdev->flags);
1428                                 blocked_rdev = rdev;
1429                                 break;
1430                         }
1431                         if (is_bad && first_bad <= dev_sector) {
1432                                 /* Cannot write here at all */
1433                                 bad_sectors -= (dev_sector - first_bad);
1434                                 if (bad_sectors < max_sectors)
1435                                         /* Mustn't write more than bad_sectors
1436                                          * to other devices yet
1437                                          */
1438                                         max_sectors = bad_sectors;
1439                                 /* We don't set R10BIO_Degraded as that
1440                                  * only applies if the disk is missing,
1441                                  * so it might be re-added, and we want to
1442                                  * know to recover this chunk.
1443                                  * In this case the device is here, and the
1444                                  * fact that this chunk is not in-sync is
1445                                  * recorded in the bad block log.
1446                                  */
1447                                 continue;
1448                         }
1449                         if (is_bad) {
1450                                 int good_sectors = first_bad - dev_sector;
1451                                 if (good_sectors < max_sectors)
1452                                         max_sectors = good_sectors;
1453                         }
1454                 }
1455                 if (rdev) {
1456                         r10_bio->devs[i].bio = bio;
1457                         atomic_inc(&rdev->nr_pending);
1458                 }
1459                 if (rrdev) {
1460                         r10_bio->devs[i].repl_bio = bio;
1461                         atomic_inc(&rrdev->nr_pending);
1462                 }
1463         }
1464         rcu_read_unlock();
1465
1466         if (unlikely(blocked_rdev)) {
1467                 /* Have to wait for this device to get unblocked, then retry */
1468                 int j;
1469                 int d;
1470
1471                 for (j = 0; j < i; j++) {
1472                         if (r10_bio->devs[j].bio) {
1473                                 d = r10_bio->devs[j].devnum;
1474                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1475                         }
1476                         if (r10_bio->devs[j].repl_bio) {
1477                                 struct md_rdev *rdev;
1478                                 d = r10_bio->devs[j].devnum;
1479                                 rdev = conf->mirrors[d].replacement;
1480                                 if (!rdev) {
1481                                         /* Race with remove_disk */
1482                                         smp_mb();
1483                                         rdev = conf->mirrors[d].rdev;
1484                                 }
1485                                 rdev_dec_pending(rdev, mddev);
1486                         }
1487                 }
1488                 allow_barrier(conf);
1489                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1490                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1491                 wait_barrier(conf);
1492                 goto retry_write;
1493         }
1494
1495         if (max_sectors < r10_bio->sectors)
1496                 r10_bio->sectors = max_sectors;
1497
1498         if (r10_bio->sectors < bio_sectors(bio)) {
1499                 struct bio *split = bio_split(bio, r10_bio->sectors,
1500                                               GFP_NOIO, conf->bio_split);
1501                 bio_chain(split, bio);
1502                 generic_make_request(bio);
1503                 bio = split;
1504                 r10_bio->master_bio = bio;
1505         }
1506
1507         atomic_set(&r10_bio->remaining, 1);
1508         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1509
1510         for (i = 0; i < conf->copies; i++) {
1511                 if (r10_bio->devs[i].bio)
1512                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1513                 if (r10_bio->devs[i].repl_bio)
1514                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1515         }
1516         one_write_done(r10_bio);
1517 }
1518
1519 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1520 {
1521         struct r10conf *conf = mddev->private;
1522         struct r10bio *r10_bio;
1523
1524         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1525
1526         r10_bio->master_bio = bio;
1527         r10_bio->sectors = sectors;
1528
1529         r10_bio->mddev = mddev;
1530         r10_bio->sector = bio->bi_iter.bi_sector;
1531         r10_bio->state = 0;
1532         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1533
1534         if (bio_data_dir(bio) == READ)
1535                 raid10_read_request(mddev, bio, r10_bio);
1536         else
1537                 raid10_write_request(mddev, bio, r10_bio);
1538 }
1539
1540 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1541 {
1542         struct r10conf *conf = mddev->private;
1543         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1544         int chunk_sects = chunk_mask + 1;
1545         int sectors = bio_sectors(bio);
1546
1547         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1548                 md_flush_request(mddev, bio);
1549                 return true;
1550         }
1551
1552         if (!md_write_start(mddev, bio))
1553                 return false;
1554
1555         /*
1556          * If this request crosses a chunk boundary, we need to split
1557          * it.
1558          */
1559         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1560                      sectors > chunk_sects
1561                      && (conf->geo.near_copies < conf->geo.raid_disks
1562                          || conf->prev.near_copies <
1563                          conf->prev.raid_disks)))
1564                 sectors = chunk_sects -
1565                         (bio->bi_iter.bi_sector &
1566                          (chunk_sects - 1));
1567         __make_request(mddev, bio, sectors);
1568
1569         /* In case raid10d snuck in to freeze_array */
1570         wake_up(&conf->wait_barrier);
1571         return true;
1572 }
1573
1574 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1575 {
1576         struct r10conf *conf = mddev->private;
1577         int i;
1578
1579         if (conf->geo.near_copies < conf->geo.raid_disks)
1580                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1581         if (conf->geo.near_copies > 1)
1582                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1583         if (conf->geo.far_copies > 1) {
1584                 if (conf->geo.far_offset)
1585                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1586                 else
1587                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1588                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1589                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1590         }
1591         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1592                                         conf->geo.raid_disks - mddev->degraded);
1593         rcu_read_lock();
1594         for (i = 0; i < conf->geo.raid_disks; i++) {
1595                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1596                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1597         }
1598         rcu_read_unlock();
1599         seq_printf(seq, "]");
1600 }
1601
1602 /* check if there are enough drives for
1603  * every block to appear on atleast one.
1604  * Don't consider the device numbered 'ignore'
1605  * as we might be about to remove it.
1606  */
1607 static int _enough(struct r10conf *conf, int previous, int ignore)
1608 {
1609         int first = 0;
1610         int has_enough = 0;
1611         int disks, ncopies;
1612         if (previous) {
1613                 disks = conf->prev.raid_disks;
1614                 ncopies = conf->prev.near_copies;
1615         } else {
1616                 disks = conf->geo.raid_disks;
1617                 ncopies = conf->geo.near_copies;
1618         }
1619
1620         rcu_read_lock();
1621         do {
1622                 int n = conf->copies;
1623                 int cnt = 0;
1624                 int this = first;
1625                 while (n--) {
1626                         struct md_rdev *rdev;
1627                         if (this != ignore &&
1628                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1629                             test_bit(In_sync, &rdev->flags))
1630                                 cnt++;
1631                         this = (this+1) % disks;
1632                 }
1633                 if (cnt == 0)
1634                         goto out;
1635                 first = (first + ncopies) % disks;
1636         } while (first != 0);
1637         has_enough = 1;
1638 out:
1639         rcu_read_unlock();
1640         return has_enough;
1641 }
1642
1643 static int enough(struct r10conf *conf, int ignore)
1644 {
1645         /* when calling 'enough', both 'prev' and 'geo' must
1646          * be stable.
1647          * This is ensured if ->reconfig_mutex or ->device_lock
1648          * is held.
1649          */
1650         return _enough(conf, 0, ignore) &&
1651                 _enough(conf, 1, ignore);
1652 }
1653
1654 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1655 {
1656         char b[BDEVNAME_SIZE];
1657         struct r10conf *conf = mddev->private;
1658         unsigned long flags;
1659
1660         /*
1661          * If it is not operational, then we have already marked it as dead
1662          * else if it is the last working disks, ignore the error, let the
1663          * next level up know.
1664          * else mark the drive as failed
1665          */
1666         spin_lock_irqsave(&conf->device_lock, flags);
1667         if (test_bit(In_sync, &rdev->flags)
1668             && !enough(conf, rdev->raid_disk)) {
1669                 /*
1670                  * Don't fail the drive, just return an IO error.
1671                  */
1672                 spin_unlock_irqrestore(&conf->device_lock, flags);
1673                 return;
1674         }
1675         if (test_and_clear_bit(In_sync, &rdev->flags))
1676                 mddev->degraded++;
1677         /*
1678          * If recovery is running, make sure it aborts.
1679          */
1680         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1681         set_bit(Blocked, &rdev->flags);
1682         set_bit(Faulty, &rdev->flags);
1683         set_mask_bits(&mddev->sb_flags, 0,
1684                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1685         spin_unlock_irqrestore(&conf->device_lock, flags);
1686         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1687                 "md/raid10:%s: Operation continuing on %d devices.\n",
1688                 mdname(mddev), bdevname(rdev->bdev, b),
1689                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1690 }
1691
1692 static void print_conf(struct r10conf *conf)
1693 {
1694         int i;
1695         struct md_rdev *rdev;
1696
1697         pr_debug("RAID10 conf printout:\n");
1698         if (!conf) {
1699                 pr_debug("(!conf)\n");
1700                 return;
1701         }
1702         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1703                  conf->geo.raid_disks);
1704
1705         /* This is only called with ->reconfix_mutex held, so
1706          * rcu protection of rdev is not needed */
1707         for (i = 0; i < conf->geo.raid_disks; i++) {
1708                 char b[BDEVNAME_SIZE];
1709                 rdev = conf->mirrors[i].rdev;
1710                 if (rdev)
1711                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1712                                  i, !test_bit(In_sync, &rdev->flags),
1713                                  !test_bit(Faulty, &rdev->flags),
1714                                  bdevname(rdev->bdev,b));
1715         }
1716 }
1717
1718 static void close_sync(struct r10conf *conf)
1719 {
1720         wait_barrier(conf);
1721         allow_barrier(conf);
1722
1723         mempool_destroy(conf->r10buf_pool);
1724         conf->r10buf_pool = NULL;
1725 }
1726
1727 static int raid10_spare_active(struct mddev *mddev)
1728 {
1729         int i;
1730         struct r10conf *conf = mddev->private;
1731         struct raid10_info *tmp;
1732         int count = 0;
1733         unsigned long flags;
1734
1735         /*
1736          * Find all non-in_sync disks within the RAID10 configuration
1737          * and mark them in_sync
1738          */
1739         for (i = 0; i < conf->geo.raid_disks; i++) {
1740                 tmp = conf->mirrors + i;
1741                 if (tmp->replacement
1742                     && tmp->replacement->recovery_offset == MaxSector
1743                     && !test_bit(Faulty, &tmp->replacement->flags)
1744                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1745                         /* Replacement has just become active */
1746                         if (!tmp->rdev
1747                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1748                                 count++;
1749                         if (tmp->rdev) {
1750                                 /* Replaced device not technically faulty,
1751                                  * but we need to be sure it gets removed
1752                                  * and never re-added.
1753                                  */
1754                                 set_bit(Faulty, &tmp->rdev->flags);
1755                                 sysfs_notify_dirent_safe(
1756                                         tmp->rdev->sysfs_state);
1757                         }
1758                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1759                 } else if (tmp->rdev
1760                            && tmp->rdev->recovery_offset == MaxSector
1761                            && !test_bit(Faulty, &tmp->rdev->flags)
1762                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1763                         count++;
1764                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1765                 }
1766         }
1767         spin_lock_irqsave(&conf->device_lock, flags);
1768         mddev->degraded -= count;
1769         spin_unlock_irqrestore(&conf->device_lock, flags);
1770
1771         print_conf(conf);
1772         return count;
1773 }
1774
1775 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1776 {
1777         struct r10conf *conf = mddev->private;
1778         int err = -EEXIST;
1779         int mirror;
1780         int first = 0;
1781         int last = conf->geo.raid_disks - 1;
1782
1783         if (mddev->recovery_cp < MaxSector)
1784                 /* only hot-add to in-sync arrays, as recovery is
1785                  * very different from resync
1786                  */
1787                 return -EBUSY;
1788         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1789                 return -EINVAL;
1790
1791         if (md_integrity_add_rdev(rdev, mddev))
1792                 return -ENXIO;
1793
1794         if (rdev->raid_disk >= 0)
1795                 first = last = rdev->raid_disk;
1796
1797         if (rdev->saved_raid_disk >= first &&
1798             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1799                 mirror = rdev->saved_raid_disk;
1800         else
1801                 mirror = first;
1802         for ( ; mirror <= last ; mirror++) {
1803                 struct raid10_info *p = &conf->mirrors[mirror];
1804                 if (p->recovery_disabled == mddev->recovery_disabled)
1805                         continue;
1806                 if (p->rdev) {
1807                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1808                             p->replacement != NULL)
1809                                 continue;
1810                         clear_bit(In_sync, &rdev->flags);
1811                         set_bit(Replacement, &rdev->flags);
1812                         rdev->raid_disk = mirror;
1813                         err = 0;
1814                         if (mddev->gendisk)
1815                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1816                                                   rdev->data_offset << 9);
1817                         conf->fullsync = 1;
1818                         rcu_assign_pointer(p->replacement, rdev);
1819                         break;
1820                 }
1821
1822                 if (mddev->gendisk)
1823                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1824                                           rdev->data_offset << 9);
1825
1826                 p->head_position = 0;
1827                 p->recovery_disabled = mddev->recovery_disabled - 1;
1828                 rdev->raid_disk = mirror;
1829                 err = 0;
1830                 if (rdev->saved_raid_disk != mirror)
1831                         conf->fullsync = 1;
1832                 rcu_assign_pointer(p->rdev, rdev);
1833                 break;
1834         }
1835         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1836                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1837
1838         print_conf(conf);
1839         return err;
1840 }
1841
1842 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1843 {
1844         struct r10conf *conf = mddev->private;
1845         int err = 0;
1846         int number = rdev->raid_disk;
1847         struct md_rdev **rdevp;
1848         struct raid10_info *p = conf->mirrors + number;
1849
1850         print_conf(conf);
1851         if (rdev == p->rdev)
1852                 rdevp = &p->rdev;
1853         else if (rdev == p->replacement)
1854                 rdevp = &p->replacement;
1855         else
1856                 return 0;
1857
1858         if (test_bit(In_sync, &rdev->flags) ||
1859             atomic_read(&rdev->nr_pending)) {
1860                 err = -EBUSY;
1861                 goto abort;
1862         }
1863         /* Only remove non-faulty devices if recovery
1864          * is not possible.
1865          */
1866         if (!test_bit(Faulty, &rdev->flags) &&
1867             mddev->recovery_disabled != p->recovery_disabled &&
1868             (!p->replacement || p->replacement == rdev) &&
1869             number < conf->geo.raid_disks &&
1870             enough(conf, -1)) {
1871                 err = -EBUSY;
1872                 goto abort;
1873         }
1874         *rdevp = NULL;
1875         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1876                 synchronize_rcu();
1877                 if (atomic_read(&rdev->nr_pending)) {
1878                         /* lost the race, try later */
1879                         err = -EBUSY;
1880                         *rdevp = rdev;
1881                         goto abort;
1882                 }
1883         }
1884         if (p->replacement) {
1885                 /* We must have just cleared 'rdev' */
1886                 p->rdev = p->replacement;
1887                 clear_bit(Replacement, &p->replacement->flags);
1888                 smp_mb(); /* Make sure other CPUs may see both as identical
1889                            * but will never see neither -- if they are careful.
1890                            */
1891                 p->replacement = NULL;
1892         }
1893
1894         clear_bit(WantReplacement, &rdev->flags);
1895         err = md_integrity_register(mddev);
1896
1897 abort:
1898
1899         print_conf(conf);
1900         return err;
1901 }
1902
1903 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1904 {
1905         struct r10conf *conf = r10_bio->mddev->private;
1906
1907         if (!bio->bi_status)
1908                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1909         else
1910                 /* The write handler will notice the lack of
1911                  * R10BIO_Uptodate and record any errors etc
1912                  */
1913                 atomic_add(r10_bio->sectors,
1914                            &conf->mirrors[d].rdev->corrected_errors);
1915
1916         /* for reconstruct, we always reschedule after a read.
1917          * for resync, only after all reads
1918          */
1919         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1920         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1921             atomic_dec_and_test(&r10_bio->remaining)) {
1922                 /* we have read all the blocks,
1923                  * do the comparison in process context in raid10d
1924                  */
1925                 reschedule_retry(r10_bio);
1926         }
1927 }
1928
1929 static void end_sync_read(struct bio *bio)
1930 {
1931         struct r10bio *r10_bio = get_resync_r10bio(bio);
1932         struct r10conf *conf = r10_bio->mddev->private;
1933         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1934
1935         __end_sync_read(r10_bio, bio, d);
1936 }
1937
1938 static void end_reshape_read(struct bio *bio)
1939 {
1940         /* reshape read bio isn't allocated from r10buf_pool */
1941         struct r10bio *r10_bio = bio->bi_private;
1942
1943         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1944 }
1945
1946 static void end_sync_request(struct r10bio *r10_bio)
1947 {
1948         struct mddev *mddev = r10_bio->mddev;
1949
1950         while (atomic_dec_and_test(&r10_bio->remaining)) {
1951                 if (r10_bio->master_bio == NULL) {
1952                         /* the primary of several recovery bios */
1953                         sector_t s = r10_bio->sectors;
1954                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1955                             test_bit(R10BIO_WriteError, &r10_bio->state))
1956                                 reschedule_retry(r10_bio);
1957                         else
1958                                 put_buf(r10_bio);
1959                         md_done_sync(mddev, s, 1);
1960                         break;
1961                 } else {
1962                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1963                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1964                             test_bit(R10BIO_WriteError, &r10_bio->state))
1965                                 reschedule_retry(r10_bio);
1966                         else
1967                                 put_buf(r10_bio);
1968                         r10_bio = r10_bio2;
1969                 }
1970         }
1971 }
1972
1973 static void end_sync_write(struct bio *bio)
1974 {
1975         struct r10bio *r10_bio = get_resync_r10bio(bio);
1976         struct mddev *mddev = r10_bio->mddev;
1977         struct r10conf *conf = mddev->private;
1978         int d;
1979         sector_t first_bad;
1980         int bad_sectors;
1981         int slot;
1982         int repl;
1983         struct md_rdev *rdev = NULL;
1984
1985         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1986         if (repl)
1987                 rdev = conf->mirrors[d].replacement;
1988         else
1989                 rdev = conf->mirrors[d].rdev;
1990
1991         if (bio->bi_status) {
1992                 if (repl)
1993                         md_error(mddev, rdev);
1994                 else {
1995                         set_bit(WriteErrorSeen, &rdev->flags);
1996                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1997                                 set_bit(MD_RECOVERY_NEEDED,
1998                                         &rdev->mddev->recovery);
1999                         set_bit(R10BIO_WriteError, &r10_bio->state);
2000                 }
2001         } else if (is_badblock(rdev,
2002                              r10_bio->devs[slot].addr,
2003                              r10_bio->sectors,
2004                              &first_bad, &bad_sectors))
2005                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2006
2007         rdev_dec_pending(rdev, mddev);
2008
2009         end_sync_request(r10_bio);
2010 }
2011
2012 /*
2013  * Note: sync and recover and handled very differently for raid10
2014  * This code is for resync.
2015  * For resync, we read through virtual addresses and read all blocks.
2016  * If there is any error, we schedule a write.  The lowest numbered
2017  * drive is authoritative.
2018  * However requests come for physical address, so we need to map.
2019  * For every physical address there are raid_disks/copies virtual addresses,
2020  * which is always are least one, but is not necessarly an integer.
2021  * This means that a physical address can span multiple chunks, so we may
2022  * have to submit multiple io requests for a single sync request.
2023  */
2024 /*
2025  * We check if all blocks are in-sync and only write to blocks that
2026  * aren't in sync
2027  */
2028 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2029 {
2030         struct r10conf *conf = mddev->private;
2031         int i, first;
2032         struct bio *tbio, *fbio;
2033         int vcnt;
2034         struct page **tpages, **fpages;
2035
2036         atomic_set(&r10_bio->remaining, 1);
2037
2038         /* find the first device with a block */
2039         for (i=0; i<conf->copies; i++)
2040                 if (!r10_bio->devs[i].bio->bi_status)
2041                         break;
2042
2043         if (i == conf->copies)
2044                 goto done;
2045
2046         first = i;
2047         fbio = r10_bio->devs[i].bio;
2048         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2049         fbio->bi_iter.bi_idx = 0;
2050         fpages = get_resync_pages(fbio)->pages;
2051
2052         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2053         /* now find blocks with errors */
2054         for (i=0 ; i < conf->copies ; i++) {
2055                 int  j, d;
2056                 struct md_rdev *rdev;
2057                 struct resync_pages *rp;
2058
2059                 tbio = r10_bio->devs[i].bio;
2060
2061                 if (tbio->bi_end_io != end_sync_read)
2062                         continue;
2063                 if (i == first)
2064                         continue;
2065
2066                 tpages = get_resync_pages(tbio)->pages;
2067                 d = r10_bio->devs[i].devnum;
2068                 rdev = conf->mirrors[d].rdev;
2069                 if (!r10_bio->devs[i].bio->bi_status) {
2070                         /* We know that the bi_io_vec layout is the same for
2071                          * both 'first' and 'i', so we just compare them.
2072                          * All vec entries are PAGE_SIZE;
2073                          */
2074                         int sectors = r10_bio->sectors;
2075                         for (j = 0; j < vcnt; j++) {
2076                                 int len = PAGE_SIZE;
2077                                 if (sectors < (len / 512))
2078                                         len = sectors * 512;
2079                                 if (memcmp(page_address(fpages[j]),
2080                                            page_address(tpages[j]),
2081                                            len))
2082                                         break;
2083                                 sectors -= len/512;
2084                         }
2085                         if (j == vcnt)
2086                                 continue;
2087                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2088                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2089                                 /* Don't fix anything. */
2090                                 continue;
2091                 } else if (test_bit(FailFast, &rdev->flags)) {
2092                         /* Just give up on this device */
2093                         md_error(rdev->mddev, rdev);
2094                         continue;
2095                 }
2096                 /* Ok, we need to write this bio, either to correct an
2097                  * inconsistency or to correct an unreadable block.
2098                  * First we need to fixup bv_offset, bv_len and
2099                  * bi_vecs, as the read request might have corrupted these
2100                  */
2101                 rp = get_resync_pages(tbio);
2102                 bio_reset(tbio);
2103
2104                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2105
2106                 rp->raid_bio = r10_bio;
2107                 tbio->bi_private = rp;
2108                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2109                 tbio->bi_end_io = end_sync_write;
2110                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2111
2112                 bio_copy_data(tbio, fbio);
2113
2114                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2115                 atomic_inc(&r10_bio->remaining);
2116                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2117
2118                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2119                         tbio->bi_opf |= MD_FAILFAST;
2120                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2121                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2122                 generic_make_request(tbio);
2123         }
2124
2125         /* Now write out to any replacement devices
2126          * that are active
2127          */
2128         for (i = 0; i < conf->copies; i++) {
2129                 int d;
2130
2131                 tbio = r10_bio->devs[i].repl_bio;
2132                 if (!tbio || !tbio->bi_end_io)
2133                         continue;
2134                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2135                     && r10_bio->devs[i].bio != fbio)
2136                         bio_copy_data(tbio, fbio);
2137                 d = r10_bio->devs[i].devnum;
2138                 atomic_inc(&r10_bio->remaining);
2139                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2140                              bio_sectors(tbio));
2141                 generic_make_request(tbio);
2142         }
2143
2144 done:
2145         if (atomic_dec_and_test(&r10_bio->remaining)) {
2146                 md_done_sync(mddev, r10_bio->sectors, 1);
2147                 put_buf(r10_bio);
2148         }
2149 }
2150
2151 /*
2152  * Now for the recovery code.
2153  * Recovery happens across physical sectors.
2154  * We recover all non-is_sync drives by finding the virtual address of
2155  * each, and then choose a working drive that also has that virt address.
2156  * There is a separate r10_bio for each non-in_sync drive.
2157  * Only the first two slots are in use. The first for reading,
2158  * The second for writing.
2159  *
2160  */
2161 static void fix_recovery_read_error(struct r10bio *r10_bio)
2162 {
2163         /* We got a read error during recovery.
2164          * We repeat the read in smaller page-sized sections.
2165          * If a read succeeds, write it to the new device or record
2166          * a bad block if we cannot.
2167          * If a read fails, record a bad block on both old and
2168          * new devices.
2169          */
2170         struct mddev *mddev = r10_bio->mddev;
2171         struct r10conf *conf = mddev->private;
2172         struct bio *bio = r10_bio->devs[0].bio;
2173         sector_t sect = 0;
2174         int sectors = r10_bio->sectors;
2175         int idx = 0;
2176         int dr = r10_bio->devs[0].devnum;
2177         int dw = r10_bio->devs[1].devnum;
2178         struct page **pages = get_resync_pages(bio)->pages;
2179
2180         while (sectors) {
2181                 int s = sectors;
2182                 struct md_rdev *rdev;
2183                 sector_t addr;
2184                 int ok;
2185
2186                 if (s > (PAGE_SIZE>>9))
2187                         s = PAGE_SIZE >> 9;
2188
2189                 rdev = conf->mirrors[dr].rdev;
2190                 addr = r10_bio->devs[0].addr + sect,
2191                 ok = sync_page_io(rdev,
2192                                   addr,
2193                                   s << 9,
2194                                   pages[idx],
2195                                   REQ_OP_READ, 0, false);
2196                 if (ok) {
2197                         rdev = conf->mirrors[dw].rdev;
2198                         addr = r10_bio->devs[1].addr + sect;
2199                         ok = sync_page_io(rdev,
2200                                           addr,
2201                                           s << 9,
2202                                           pages[idx],
2203                                           REQ_OP_WRITE, 0, false);
2204                         if (!ok) {
2205                                 set_bit(WriteErrorSeen, &rdev->flags);
2206                                 if (!test_and_set_bit(WantReplacement,
2207                                                       &rdev->flags))
2208                                         set_bit(MD_RECOVERY_NEEDED,
2209                                                 &rdev->mddev->recovery);
2210                         }
2211                 }
2212                 if (!ok) {
2213                         /* We don't worry if we cannot set a bad block -
2214                          * it really is bad so there is no loss in not
2215                          * recording it yet
2216                          */
2217                         rdev_set_badblocks(rdev, addr, s, 0);
2218
2219                         if (rdev != conf->mirrors[dw].rdev) {
2220                                 /* need bad block on destination too */
2221                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2222                                 addr = r10_bio->devs[1].addr + sect;
2223                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2224                                 if (!ok) {
2225                                         /* just abort the recovery */
2226                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2227                                                   mdname(mddev));
2228
2229                                         conf->mirrors[dw].recovery_disabled
2230                                                 = mddev->recovery_disabled;
2231                                         set_bit(MD_RECOVERY_INTR,
2232                                                 &mddev->recovery);
2233                                         break;
2234                                 }
2235                         }
2236                 }
2237
2238                 sectors -= s;
2239                 sect += s;
2240                 idx++;
2241         }
2242 }
2243
2244 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2245 {
2246         struct r10conf *conf = mddev->private;
2247         int d;
2248         struct bio *wbio, *wbio2;
2249
2250         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2251                 fix_recovery_read_error(r10_bio);
2252                 end_sync_request(r10_bio);
2253                 return;
2254         }
2255
2256         /*
2257          * share the pages with the first bio
2258          * and submit the write request
2259          */
2260         d = r10_bio->devs[1].devnum;
2261         wbio = r10_bio->devs[1].bio;
2262         wbio2 = r10_bio->devs[1].repl_bio;
2263         /* Need to test wbio2->bi_end_io before we call
2264          * generic_make_request as if the former is NULL,
2265          * the latter is free to free wbio2.
2266          */
2267         if (wbio2 && !wbio2->bi_end_io)
2268                 wbio2 = NULL;
2269         if (wbio->bi_end_io) {
2270                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2271                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2272                 generic_make_request(wbio);
2273         }
2274         if (wbio2) {
2275                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2276                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2277                              bio_sectors(wbio2));
2278                 generic_make_request(wbio2);
2279         }
2280 }
2281
2282 /*
2283  * Used by fix_read_error() to decay the per rdev read_errors.
2284  * We halve the read error count for every hour that has elapsed
2285  * since the last recorded read error.
2286  *
2287  */
2288 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2289 {
2290         long cur_time_mon;
2291         unsigned long hours_since_last;
2292         unsigned int read_errors = atomic_read(&rdev->read_errors);
2293
2294         cur_time_mon = ktime_get_seconds();
2295
2296         if (rdev->last_read_error == 0) {
2297                 /* first time we've seen a read error */
2298                 rdev->last_read_error = cur_time_mon;
2299                 return;
2300         }
2301
2302         hours_since_last = (long)(cur_time_mon -
2303                             rdev->last_read_error) / 3600;
2304
2305         rdev->last_read_error = cur_time_mon;
2306
2307         /*
2308          * if hours_since_last is > the number of bits in read_errors
2309          * just set read errors to 0. We do this to avoid
2310          * overflowing the shift of read_errors by hours_since_last.
2311          */
2312         if (hours_since_last >= 8 * sizeof(read_errors))
2313                 atomic_set(&rdev->read_errors, 0);
2314         else
2315                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2316 }
2317
2318 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2319                             int sectors, struct page *page, int rw)
2320 {
2321         sector_t first_bad;
2322         int bad_sectors;
2323
2324         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2325             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2326                 return -1;
2327         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2328                 /* success */
2329                 return 1;
2330         if (rw == WRITE) {
2331                 set_bit(WriteErrorSeen, &rdev->flags);
2332                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2333                         set_bit(MD_RECOVERY_NEEDED,
2334                                 &rdev->mddev->recovery);
2335         }
2336         /* need to record an error - either for the block or the device */
2337         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2338                 md_error(rdev->mddev, rdev);
2339         return 0;
2340 }
2341
2342 /*
2343  * This is a kernel thread which:
2344  *
2345  *      1.      Retries failed read operations on working mirrors.
2346  *      2.      Updates the raid superblock when problems encounter.
2347  *      3.      Performs writes following reads for array synchronising.
2348  */
2349
2350 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2351 {
2352         int sect = 0; /* Offset from r10_bio->sector */
2353         int sectors = r10_bio->sectors;
2354         struct md_rdev*rdev;
2355         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2356         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2357
2358         /* still own a reference to this rdev, so it cannot
2359          * have been cleared recently.
2360          */
2361         rdev = conf->mirrors[d].rdev;
2362
2363         if (test_bit(Faulty, &rdev->flags))
2364                 /* drive has already been failed, just ignore any
2365                    more fix_read_error() attempts */
2366                 return;
2367
2368         check_decay_read_errors(mddev, rdev);
2369         atomic_inc(&rdev->read_errors);
2370         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2371                 char b[BDEVNAME_SIZE];
2372                 bdevname(rdev->bdev, b);
2373
2374                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2375                           mdname(mddev), b,
2376                           atomic_read(&rdev->read_errors), max_read_errors);
2377                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2378                           mdname(mddev), b);
2379                 md_error(mddev, rdev);
2380                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2381                 return;
2382         }
2383
2384         while(sectors) {
2385                 int s = sectors;
2386                 int sl = r10_bio->read_slot;
2387                 int success = 0;
2388                 int start;
2389
2390                 if (s > (PAGE_SIZE>>9))
2391                         s = PAGE_SIZE >> 9;
2392
2393                 rcu_read_lock();
2394                 do {
2395                         sector_t first_bad;
2396                         int bad_sectors;
2397
2398                         d = r10_bio->devs[sl].devnum;
2399                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2400                         if (rdev &&
2401                             test_bit(In_sync, &rdev->flags) &&
2402                             !test_bit(Faulty, &rdev->flags) &&
2403                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2404                                         &first_bad, &bad_sectors) == 0) {
2405                                 atomic_inc(&rdev->nr_pending);
2406                                 rcu_read_unlock();
2407                                 success = sync_page_io(rdev,
2408                                                        r10_bio->devs[sl].addr +
2409                                                        sect,
2410                                                        s<<9,
2411                                                        conf->tmppage,
2412                                                        REQ_OP_READ, 0, false);
2413                                 rdev_dec_pending(rdev, mddev);
2414                                 rcu_read_lock();
2415                                 if (success)
2416                                         break;
2417                         }
2418                         sl++;
2419                         if (sl == conf->copies)
2420                                 sl = 0;
2421                 } while (!success && sl != r10_bio->read_slot);
2422                 rcu_read_unlock();
2423
2424                 if (!success) {
2425                         /* Cannot read from anywhere, just mark the block
2426                          * as bad on the first device to discourage future
2427                          * reads.
2428                          */
2429                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2430                         rdev = conf->mirrors[dn].rdev;
2431
2432                         if (!rdev_set_badblocks(
2433                                     rdev,
2434                                     r10_bio->devs[r10_bio->read_slot].addr
2435                                     + sect,
2436                                     s, 0)) {
2437                                 md_error(mddev, rdev);
2438                                 r10_bio->devs[r10_bio->read_slot].bio
2439                                         = IO_BLOCKED;
2440                         }
2441                         break;
2442                 }
2443
2444                 start = sl;
2445                 /* write it back and re-read */
2446                 rcu_read_lock();
2447                 while (sl != r10_bio->read_slot) {
2448                         char b[BDEVNAME_SIZE];
2449
2450                         if (sl==0)
2451                                 sl = conf->copies;
2452                         sl--;
2453                         d = r10_bio->devs[sl].devnum;
2454                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2455                         if (!rdev ||
2456                             test_bit(Faulty, &rdev->flags) ||
2457                             !test_bit(In_sync, &rdev->flags))
2458                                 continue;
2459
2460                         atomic_inc(&rdev->nr_pending);
2461                         rcu_read_unlock();
2462                         if (r10_sync_page_io(rdev,
2463                                              r10_bio->devs[sl].addr +
2464                                              sect,
2465                                              s, conf->tmppage, WRITE)
2466                             == 0) {
2467                                 /* Well, this device is dead */
2468                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2469                                           mdname(mddev), s,
2470                                           (unsigned long long)(
2471                                                   sect +
2472                                                   choose_data_offset(r10_bio,
2473                                                                      rdev)),
2474                                           bdevname(rdev->bdev, b));
2475                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2476                                           mdname(mddev),
2477                                           bdevname(rdev->bdev, b));
2478                         }
2479                         rdev_dec_pending(rdev, mddev);
2480                         rcu_read_lock();
2481                 }
2482                 sl = start;
2483                 while (sl != r10_bio->read_slot) {
2484                         char b[BDEVNAME_SIZE];
2485
2486                         if (sl==0)
2487                                 sl = conf->copies;
2488                         sl--;
2489                         d = r10_bio->devs[sl].devnum;
2490                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2491                         if (!rdev ||
2492                             test_bit(Faulty, &rdev->flags) ||
2493                             !test_bit(In_sync, &rdev->flags))
2494                                 continue;
2495
2496                         atomic_inc(&rdev->nr_pending);
2497                         rcu_read_unlock();
2498                         switch (r10_sync_page_io(rdev,
2499                                              r10_bio->devs[sl].addr +
2500                                              sect,
2501                                              s, conf->tmppage,
2502                                                  READ)) {
2503                         case 0:
2504                                 /* Well, this device is dead */
2505                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2506                                        mdname(mddev), s,
2507                                        (unsigned long long)(
2508                                                sect +
2509                                                choose_data_offset(r10_bio, rdev)),
2510                                        bdevname(rdev->bdev, b));
2511                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2512                                        mdname(mddev),
2513                                        bdevname(rdev->bdev, b));
2514                                 break;
2515                         case 1:
2516                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2517                                        mdname(mddev), s,
2518                                        (unsigned long long)(
2519                                                sect +
2520                                                choose_data_offset(r10_bio, rdev)),
2521                                        bdevname(rdev->bdev, b));
2522                                 atomic_add(s, &rdev->corrected_errors);
2523                         }
2524
2525                         rdev_dec_pending(rdev, mddev);
2526                         rcu_read_lock();
2527                 }
2528                 rcu_read_unlock();
2529
2530                 sectors -= s;
2531                 sect += s;
2532         }
2533 }
2534
2535 static int narrow_write_error(struct r10bio *r10_bio, int i)
2536 {
2537         struct bio *bio = r10_bio->master_bio;
2538         struct mddev *mddev = r10_bio->mddev;
2539         struct r10conf *conf = mddev->private;
2540         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2541         /* bio has the data to be written to slot 'i' where
2542          * we just recently had a write error.
2543          * We repeatedly clone the bio and trim down to one block,
2544          * then try the write.  Where the write fails we record
2545          * a bad block.
2546          * It is conceivable that the bio doesn't exactly align with
2547          * blocks.  We must handle this.
2548          *
2549          * We currently own a reference to the rdev.
2550          */
2551
2552         int block_sectors;
2553         sector_t sector;
2554         int sectors;
2555         int sect_to_write = r10_bio->sectors;
2556         int ok = 1;
2557
2558         if (rdev->badblocks.shift < 0)
2559                 return 0;
2560
2561         block_sectors = roundup(1 << rdev->badblocks.shift,
2562                                 bdev_logical_block_size(rdev->bdev) >> 9);
2563         sector = r10_bio->sector;
2564         sectors = ((r10_bio->sector + block_sectors)
2565                    & ~(sector_t)(block_sectors - 1))
2566                 - sector;
2567
2568         while (sect_to_write) {
2569                 struct bio *wbio;
2570                 sector_t wsector;
2571                 if (sectors > sect_to_write)
2572                         sectors = sect_to_write;
2573                 /* Write at 'sector' for 'sectors' */
2574                 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2575                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2576                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2577                 wbio->bi_iter.bi_sector = wsector +
2578                                    choose_data_offset(r10_bio, rdev);
2579                 bio_set_dev(wbio, rdev->bdev);
2580                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2581
2582                 if (submit_bio_wait(wbio) < 0)
2583                         /* Failure! */
2584                         ok = rdev_set_badblocks(rdev, wsector,
2585                                                 sectors, 0)
2586                                 && ok;
2587
2588                 bio_put(wbio);
2589                 sect_to_write -= sectors;
2590                 sector += sectors;
2591                 sectors = block_sectors;
2592         }
2593         return ok;
2594 }
2595
2596 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2597 {
2598         int slot = r10_bio->read_slot;
2599         struct bio *bio;
2600         struct r10conf *conf = mddev->private;
2601         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2602
2603         /* we got a read error. Maybe the drive is bad.  Maybe just
2604          * the block and we can fix it.
2605          * We freeze all other IO, and try reading the block from
2606          * other devices.  When we find one, we re-write
2607          * and check it that fixes the read error.
2608          * This is all done synchronously while the array is
2609          * frozen.
2610          */
2611         bio = r10_bio->devs[slot].bio;
2612         bio_put(bio);
2613         r10_bio->devs[slot].bio = NULL;
2614
2615         if (mddev->ro)
2616                 r10_bio->devs[slot].bio = IO_BLOCKED;
2617         else if (!test_bit(FailFast, &rdev->flags)) {
2618                 freeze_array(conf, 1);
2619                 fix_read_error(conf, mddev, r10_bio);
2620                 unfreeze_array(conf);
2621         } else
2622                 md_error(mddev, rdev);
2623
2624         rdev_dec_pending(rdev, mddev);
2625         allow_barrier(conf);
2626         r10_bio->state = 0;
2627         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2628 }
2629
2630 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2631 {
2632         /* Some sort of write request has finished and it
2633          * succeeded in writing where we thought there was a
2634          * bad block.  So forget the bad block.
2635          * Or possibly if failed and we need to record
2636          * a bad block.
2637          */
2638         int m;
2639         struct md_rdev *rdev;
2640
2641         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2642             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2643                 for (m = 0; m < conf->copies; m++) {
2644                         int dev = r10_bio->devs[m].devnum;
2645                         rdev = conf->mirrors[dev].rdev;
2646                         if (r10_bio->devs[m].bio == NULL)
2647                                 continue;
2648                         if (!r10_bio->devs[m].bio->bi_status) {
2649                                 rdev_clear_badblocks(
2650                                         rdev,
2651                                         r10_bio->devs[m].addr,
2652                                         r10_bio->sectors, 0);
2653                         } else {
2654                                 if (!rdev_set_badblocks(
2655                                             rdev,
2656                                             r10_bio->devs[m].addr,
2657                                             r10_bio->sectors, 0))
2658                                         md_error(conf->mddev, rdev);
2659                         }
2660                         rdev = conf->mirrors[dev].replacement;
2661                         if (r10_bio->devs[m].repl_bio == NULL)
2662                                 continue;
2663
2664                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2665                                 rdev_clear_badblocks(
2666                                         rdev,
2667                                         r10_bio->devs[m].addr,
2668                                         r10_bio->sectors, 0);
2669                         } else {
2670                                 if (!rdev_set_badblocks(
2671                                             rdev,
2672                                             r10_bio->devs[m].addr,
2673                                             r10_bio->sectors, 0))
2674                                         md_error(conf->mddev, rdev);
2675                         }
2676                 }
2677                 put_buf(r10_bio);
2678         } else {
2679                 bool fail = false;
2680                 for (m = 0; m < conf->copies; m++) {
2681                         int dev = r10_bio->devs[m].devnum;
2682                         struct bio *bio = r10_bio->devs[m].bio;
2683                         rdev = conf->mirrors[dev].rdev;
2684                         if (bio == IO_MADE_GOOD) {
2685                                 rdev_clear_badblocks(
2686                                         rdev,
2687                                         r10_bio->devs[m].addr,
2688                                         r10_bio->sectors, 0);
2689                                 rdev_dec_pending(rdev, conf->mddev);
2690                         } else if (bio != NULL && bio->bi_status) {
2691                                 fail = true;
2692                                 if (!narrow_write_error(r10_bio, m)) {
2693                                         md_error(conf->mddev, rdev);
2694                                         set_bit(R10BIO_Degraded,
2695                                                 &r10_bio->state);
2696                                 }
2697                                 rdev_dec_pending(rdev, conf->mddev);
2698                         }
2699                         bio = r10_bio->devs[m].repl_bio;
2700                         rdev = conf->mirrors[dev].replacement;
2701                         if (rdev && bio == IO_MADE_GOOD) {
2702                                 rdev_clear_badblocks(
2703                                         rdev,
2704                                         r10_bio->devs[m].addr,
2705                                         r10_bio->sectors, 0);
2706                                 rdev_dec_pending(rdev, conf->mddev);
2707                         }
2708                 }
2709                 if (fail) {
2710                         spin_lock_irq(&conf->device_lock);
2711                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2712                         conf->nr_queued++;
2713                         spin_unlock_irq(&conf->device_lock);
2714                         /*
2715                          * In case freeze_array() is waiting for condition
2716                          * nr_pending == nr_queued + extra to be true.
2717                          */
2718                         wake_up(&conf->wait_barrier);
2719                         md_wakeup_thread(conf->mddev->thread);
2720                 } else {
2721                         if (test_bit(R10BIO_WriteError,
2722                                      &r10_bio->state))
2723                                 close_write(r10_bio);
2724                         raid_end_bio_io(r10_bio);
2725                 }
2726         }
2727 }
2728
2729 static void raid10d(struct md_thread *thread)
2730 {
2731         struct mddev *mddev = thread->mddev;
2732         struct r10bio *r10_bio;
2733         unsigned long flags;
2734         struct r10conf *conf = mddev->private;
2735         struct list_head *head = &conf->retry_list;
2736         struct blk_plug plug;
2737
2738         md_check_recovery(mddev);
2739
2740         if (!list_empty_careful(&conf->bio_end_io_list) &&
2741             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2742                 LIST_HEAD(tmp);
2743                 spin_lock_irqsave(&conf->device_lock, flags);
2744                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2745                         while (!list_empty(&conf->bio_end_io_list)) {
2746                                 list_move(conf->bio_end_io_list.prev, &tmp);
2747                                 conf->nr_queued--;
2748                         }
2749                 }
2750                 spin_unlock_irqrestore(&conf->device_lock, flags);
2751                 while (!list_empty(&tmp)) {
2752                         r10_bio = list_first_entry(&tmp, struct r10bio,
2753                                                    retry_list);
2754                         list_del(&r10_bio->retry_list);
2755                         if (mddev->degraded)
2756                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2757
2758                         if (test_bit(R10BIO_WriteError,
2759                                      &r10_bio->state))
2760                                 close_write(r10_bio);
2761                         raid_end_bio_io(r10_bio);
2762                 }
2763         }
2764
2765         blk_start_plug(&plug);
2766         for (;;) {
2767
2768                 flush_pending_writes(conf);
2769
2770                 spin_lock_irqsave(&conf->device_lock, flags);
2771                 if (list_empty(head)) {
2772                         spin_unlock_irqrestore(&conf->device_lock, flags);
2773                         break;
2774                 }
2775                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2776                 list_del(head->prev);
2777                 conf->nr_queued--;
2778                 spin_unlock_irqrestore(&conf->device_lock, flags);
2779
2780                 mddev = r10_bio->mddev;
2781                 conf = mddev->private;
2782                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2783                     test_bit(R10BIO_WriteError, &r10_bio->state))
2784                         handle_write_completed(conf, r10_bio);
2785                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2786                         reshape_request_write(mddev, r10_bio);
2787                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2788                         sync_request_write(mddev, r10_bio);
2789                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2790                         recovery_request_write(mddev, r10_bio);
2791                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2792                         handle_read_error(mddev, r10_bio);
2793                 else
2794                         WARN_ON_ONCE(1);
2795
2796                 cond_resched();
2797                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2798                         md_check_recovery(mddev);
2799         }
2800         blk_finish_plug(&plug);
2801 }
2802
2803 static int init_resync(struct r10conf *conf)
2804 {
2805         int buffs;
2806         int i;
2807
2808         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2809         BUG_ON(conf->r10buf_pool);
2810         conf->have_replacement = 0;
2811         for (i = 0; i < conf->geo.raid_disks; i++)
2812                 if (conf->mirrors[i].replacement)
2813                         conf->have_replacement = 1;
2814         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2815         if (!conf->r10buf_pool)
2816                 return -ENOMEM;
2817         conf->next_resync = 0;
2818         return 0;
2819 }
2820
2821 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2822 {
2823         struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2824         struct rsync_pages *rp;
2825         struct bio *bio;
2826         int nalloc;
2827         int i;
2828
2829         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2830             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2831                 nalloc = conf->copies; /* resync */
2832         else
2833                 nalloc = 2; /* recovery */
2834
2835         for (i = 0; i < nalloc; i++) {
2836                 bio = r10bio->devs[i].bio;
2837                 rp = bio->bi_private;
2838                 bio_reset(bio);
2839                 bio->bi_private = rp;
2840                 bio = r10bio->devs[i].repl_bio;
2841                 if (bio) {
2842                         rp = bio->bi_private;
2843                         bio_reset(bio);
2844                         bio->bi_private = rp;
2845                 }
2846         }
2847         return r10bio;
2848 }
2849
2850 /*
2851  * Set cluster_sync_high since we need other nodes to add the
2852  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2853  */
2854 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2855 {
2856         sector_t window_size;
2857         int extra_chunk, chunks;
2858
2859         /*
2860          * First, here we define "stripe" as a unit which across
2861          * all member devices one time, so we get chunks by use
2862          * raid_disks / near_copies. Otherwise, if near_copies is
2863          * close to raid_disks, then resync window could increases
2864          * linearly with the increase of raid_disks, which means
2865          * we will suspend a really large IO window while it is not
2866          * necessary. If raid_disks is not divisible by near_copies,
2867          * an extra chunk is needed to ensure the whole "stripe" is
2868          * covered.
2869          */
2870
2871         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2872         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2873                 extra_chunk = 0;
2874         else
2875                 extra_chunk = 1;
2876         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2877
2878         /*
2879          * At least use a 32M window to align with raid1's resync window
2880          */
2881         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2882                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2883
2884         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2885 }
2886
2887 /*
2888  * perform a "sync" on one "block"
2889  *
2890  * We need to make sure that no normal I/O request - particularly write
2891  * requests - conflict with active sync requests.
2892  *
2893  * This is achieved by tracking pending requests and a 'barrier' concept
2894  * that can be installed to exclude normal IO requests.
2895  *
2896  * Resync and recovery are handled very differently.
2897  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2898  *
2899  * For resync, we iterate over virtual addresses, read all copies,
2900  * and update if there are differences.  If only one copy is live,
2901  * skip it.
2902  * For recovery, we iterate over physical addresses, read a good
2903  * value for each non-in_sync drive, and over-write.
2904  *
2905  * So, for recovery we may have several outstanding complex requests for a
2906  * given address, one for each out-of-sync device.  We model this by allocating
2907  * a number of r10_bio structures, one for each out-of-sync device.
2908  * As we setup these structures, we collect all bio's together into a list
2909  * which we then process collectively to add pages, and then process again
2910  * to pass to generic_make_request.
2911  *
2912  * The r10_bio structures are linked using a borrowed master_bio pointer.
2913  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2914  * has its remaining count decremented to 0, the whole complex operation
2915  * is complete.
2916  *
2917  */
2918
2919 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2920                              int *skipped)
2921 {
2922         struct r10conf *conf = mddev->private;
2923         struct r10bio *r10_bio;
2924         struct bio *biolist = NULL, *bio;
2925         sector_t max_sector, nr_sectors;
2926         int i;
2927         int max_sync;
2928         sector_t sync_blocks;
2929         sector_t sectors_skipped = 0;
2930         int chunks_skipped = 0;
2931         sector_t chunk_mask = conf->geo.chunk_mask;
2932         int page_idx = 0;
2933
2934         if (!conf->r10buf_pool)
2935                 if (init_resync(conf))
2936                         return 0;
2937
2938         /*
2939          * Allow skipping a full rebuild for incremental assembly
2940          * of a clean array, like RAID1 does.
2941          */
2942         if (mddev->bitmap == NULL &&
2943             mddev->recovery_cp == MaxSector &&
2944             mddev->reshape_position == MaxSector &&
2945             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2946             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2947             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2948             conf->fullsync == 0) {
2949                 *skipped = 1;
2950                 return mddev->dev_sectors - sector_nr;
2951         }
2952
2953  skipped:
2954         max_sector = mddev->dev_sectors;
2955         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2956             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2957                 max_sector = mddev->resync_max_sectors;
2958         if (sector_nr >= max_sector) {
2959                 conf->cluster_sync_low = 0;
2960                 conf->cluster_sync_high = 0;
2961
2962                 /* If we aborted, we need to abort the
2963                  * sync on the 'current' bitmap chucks (there can
2964                  * be several when recovering multiple devices).
2965                  * as we may have started syncing it but not finished.
2966                  * We can find the current address in
2967                  * mddev->curr_resync, but for recovery,
2968                  * we need to convert that to several
2969                  * virtual addresses.
2970                  */
2971                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2972                         end_reshape(conf);
2973                         close_sync(conf);
2974                         return 0;
2975                 }
2976
2977                 if (mddev->curr_resync < max_sector) { /* aborted */
2978                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2979                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2980                                                 &sync_blocks, 1);
2981                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2982                                 sector_t sect =
2983                                         raid10_find_virt(conf, mddev->curr_resync, i);
2984                                 bitmap_end_sync(mddev->bitmap, sect,
2985                                                 &sync_blocks, 1);
2986                         }
2987                 } else {
2988                         /* completed sync */
2989                         if ((!mddev->bitmap || conf->fullsync)
2990                             && conf->have_replacement
2991                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2992                                 /* Completed a full sync so the replacements
2993                                  * are now fully recovered.
2994                                  */
2995                                 rcu_read_lock();
2996                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2997                                         struct md_rdev *rdev =
2998                                                 rcu_dereference(conf->mirrors[i].replacement);
2999                                         if (rdev)
3000                                                 rdev->recovery_offset = MaxSector;
3001                                 }
3002                                 rcu_read_unlock();
3003                         }
3004                         conf->fullsync = 0;
3005                 }
3006                 bitmap_close_sync(mddev->bitmap);
3007                 close_sync(conf);
3008                 *skipped = 1;
3009                 return sectors_skipped;
3010         }
3011
3012         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3013                 return reshape_request(mddev, sector_nr, skipped);
3014
3015         if (chunks_skipped >= conf->geo.raid_disks) {
3016                 /* if there has been nothing to do on any drive,
3017                  * then there is nothing to do at all..
3018                  */
3019                 *skipped = 1;
3020                 return (max_sector - sector_nr) + sectors_skipped;
3021         }
3022
3023         if (max_sector > mddev->resync_max)
3024                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3025
3026         /* make sure whole request will fit in a chunk - if chunks
3027          * are meaningful
3028          */
3029         if (conf->geo.near_copies < conf->geo.raid_disks &&
3030             max_sector > (sector_nr | chunk_mask))
3031                 max_sector = (sector_nr | chunk_mask) + 1;
3032
3033         /*
3034          * If there is non-resync activity waiting for a turn, then let it
3035          * though before starting on this new sync request.
3036          */
3037         if (conf->nr_waiting)
3038                 schedule_timeout_uninterruptible(1);
3039
3040         /* Again, very different code for resync and recovery.
3041          * Both must result in an r10bio with a list of bios that
3042          * have bi_end_io, bi_sector, bi_disk set,
3043          * and bi_private set to the r10bio.
3044          * For recovery, we may actually create several r10bios
3045          * with 2 bios in each, that correspond to the bios in the main one.
3046          * In this case, the subordinate r10bios link back through a
3047          * borrowed master_bio pointer, and the counter in the master
3048          * includes a ref from each subordinate.
3049          */
3050         /* First, we decide what to do and set ->bi_end_io
3051          * To end_sync_read if we want to read, and
3052          * end_sync_write if we will want to write.
3053          */
3054
3055         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3056         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3057                 /* recovery... the complicated one */
3058                 int j;
3059                 r10_bio = NULL;
3060
3061                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3062                         int still_degraded;
3063                         struct r10bio *rb2;
3064                         sector_t sect;
3065                         int must_sync;
3066                         int any_working;
3067                         struct raid10_info *mirror = &conf->mirrors[i];
3068                         struct md_rdev *mrdev, *mreplace;
3069
3070                         rcu_read_lock();
3071                         mrdev = rcu_dereference(mirror->rdev);
3072                         mreplace = rcu_dereference(mirror->replacement);
3073
3074                         if ((mrdev == NULL ||
3075                              test_bit(Faulty, &mrdev->flags) ||
3076                              test_bit(In_sync, &mrdev->flags)) &&
3077                             (mreplace == NULL ||
3078                              test_bit(Faulty, &mreplace->flags))) {
3079                                 rcu_read_unlock();
3080                                 continue;
3081                         }
3082
3083                         still_degraded = 0;
3084                         /* want to reconstruct this device */
3085                         rb2 = r10_bio;
3086                         sect = raid10_find_virt(conf, sector_nr, i);
3087                         if (sect >= mddev->resync_max_sectors) {
3088                                 /* last stripe is not complete - don't
3089                                  * try to recover this sector.
3090                                  */
3091                                 rcu_read_unlock();
3092                                 continue;
3093                         }
3094                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3095                                 mreplace = NULL;
3096                         /* Unless we are doing a full sync, or a replacement
3097                          * we only need to recover the block if it is set in
3098                          * the bitmap
3099                          */
3100                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3101                                                       &sync_blocks, 1);
3102                         if (sync_blocks < max_sync)
3103                                 max_sync = sync_blocks;
3104                         if (!must_sync &&
3105                             mreplace == NULL &&
3106                             !conf->fullsync) {
3107                                 /* yep, skip the sync_blocks here, but don't assume
3108                                  * that there will never be anything to do here
3109                                  */
3110                                 chunks_skipped = -1;
3111                                 rcu_read_unlock();
3112                                 continue;
3113                         }
3114                         atomic_inc(&mrdev->nr_pending);
3115                         if (mreplace)
3116                                 atomic_inc(&mreplace->nr_pending);
3117                         rcu_read_unlock();
3118
3119                         r10_bio = raid10_alloc_init_r10buf(conf);
3120                         r10_bio->state = 0;
3121                         raise_barrier(conf, rb2 != NULL);
3122                         atomic_set(&r10_bio->remaining, 0);
3123
3124                         r10_bio->master_bio = (struct bio*)rb2;
3125                         if (rb2)
3126                                 atomic_inc(&rb2->remaining);
3127                         r10_bio->mddev = mddev;
3128                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3129                         r10_bio->sector = sect;
3130
3131                         raid10_find_phys(conf, r10_bio);
3132
3133                         /* Need to check if the array will still be
3134                          * degraded
3135                          */
3136                         rcu_read_lock();
3137                         for (j = 0; j < conf->geo.raid_disks; j++) {
3138                                 struct md_rdev *rdev = rcu_dereference(
3139                                         conf->mirrors[j].rdev);
3140                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3141                                         still_degraded = 1;
3142                                         break;
3143                                 }
3144                         }
3145
3146                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3147                                                       &sync_blocks, still_degraded);
3148
3149                         any_working = 0;
3150                         for (j=0; j<conf->copies;j++) {
3151                                 int k;
3152                                 int d = r10_bio->devs[j].devnum;
3153                                 sector_t from_addr, to_addr;
3154                                 struct md_rdev *rdev =
3155                                         rcu_dereference(conf->mirrors[d].rdev);
3156                                 sector_t sector, first_bad;
3157                                 int bad_sectors;
3158                                 if (!rdev ||
3159                                     !test_bit(In_sync, &rdev->flags))
3160                                         continue;
3161                                 /* This is where we read from */
3162                                 any_working = 1;
3163                                 sector = r10_bio->devs[j].addr;
3164
3165                                 if (is_badblock(rdev, sector, max_sync,
3166                                                 &first_bad, &bad_sectors)) {
3167                                         if (first_bad > sector)
3168                                                 max_sync = first_bad - sector;
3169                                         else {
3170                                                 bad_sectors -= (sector
3171                                                                 - first_bad);
3172                                                 if (max_sync > bad_sectors)
3173                                                         max_sync = bad_sectors;
3174                                                 continue;
3175                                         }
3176                                 }
3177                                 bio = r10_bio->devs[0].bio;
3178                                 bio->bi_next = biolist;
3179                                 biolist = bio;
3180                                 bio->bi_end_io = end_sync_read;
3181                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3182                                 if (test_bit(FailFast, &rdev->flags))
3183                                         bio->bi_opf |= MD_FAILFAST;
3184                                 from_addr = r10_bio->devs[j].addr;
3185                                 bio->bi_iter.bi_sector = from_addr +
3186                                         rdev->data_offset;
3187                                 bio_set_dev(bio, rdev->bdev);
3188                                 atomic_inc(&rdev->nr_pending);
3189                                 /* and we write to 'i' (if not in_sync) */
3190
3191                                 for (k=0; k<conf->copies; k++)
3192                                         if (r10_bio->devs[k].devnum == i)
3193                                                 break;
3194                                 BUG_ON(k == conf->copies);
3195                                 to_addr = r10_bio->devs[k].addr;
3196                                 r10_bio->devs[0].devnum = d;
3197                                 r10_bio->devs[0].addr = from_addr;
3198                                 r10_bio->devs[1].devnum = i;
3199                                 r10_bio->devs[1].addr = to_addr;
3200
3201                                 if (!test_bit(In_sync, &mrdev->flags)) {
3202                                         bio = r10_bio->devs[1].bio;
3203                                         bio->bi_next = biolist;
3204                                         biolist = bio;
3205                                         bio->bi_end_io = end_sync_write;
3206                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3207                                         bio->bi_iter.bi_sector = to_addr
3208                                                 + mrdev->data_offset;
3209                                         bio_set_dev(bio, mrdev->bdev);
3210                                         atomic_inc(&r10_bio->remaining);
3211                                 } else
3212                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3213
3214                                 /* and maybe write to replacement */
3215                                 bio = r10_bio->devs[1].repl_bio;
3216                                 if (bio)
3217                                         bio->bi_end_io = NULL;
3218                                 /* Note: if mreplace != NULL, then bio
3219                                  * cannot be NULL as r10buf_pool_alloc will
3220                                  * have allocated it.
3221                                  * So the second test here is pointless.
3222                                  * But it keeps semantic-checkers happy, and
3223                                  * this comment keeps human reviewers
3224                                  * happy.
3225                                  */
3226                                 if (mreplace == NULL || bio == NULL ||
3227                                     test_bit(Faulty, &mreplace->flags))
3228                                         break;
3229                                 bio->bi_next = biolist;
3230                                 biolist = bio;
3231                                 bio->bi_end_io = end_sync_write;
3232                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3233                                 bio->bi_iter.bi_sector = to_addr +
3234                                         mreplace->data_offset;
3235                                 bio_set_dev(bio, mreplace->bdev);
3236                                 atomic_inc(&r10_bio->remaining);
3237                                 break;
3238                         }
3239                         rcu_read_unlock();
3240                         if (j == conf->copies) {
3241                                 /* Cannot recover, so abort the recovery or
3242                                  * record a bad block */
3243                                 if (any_working) {
3244                                         /* problem is that there are bad blocks
3245                                          * on other device(s)
3246                                          */
3247                                         int k;
3248                                         for (k = 0; k < conf->copies; k++)
3249                                                 if (r10_bio->devs[k].devnum == i)
3250                                                         break;
3251                                         if (!test_bit(In_sync,
3252                                                       &mrdev->flags)
3253                                             && !rdev_set_badblocks(
3254                                                     mrdev,
3255                                                     r10_bio->devs[k].addr,
3256                                                     max_sync, 0))
3257                                                 any_working = 0;
3258                                         if (mreplace &&
3259                                             !rdev_set_badblocks(
3260                                                     mreplace,
3261                                                     r10_bio->devs[k].addr,
3262                                                     max_sync, 0))
3263                                                 any_working = 0;
3264                                 }
3265                                 if (!any_working)  {
3266                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3267                                                               &mddev->recovery))
3268                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3269                                                        mdname(mddev));
3270                                         mirror->recovery_disabled
3271                                                 = mddev->recovery_disabled;
3272                                 }
3273                                 put_buf(r10_bio);
3274                                 if (rb2)
3275                                         atomic_dec(&rb2->remaining);
3276                                 r10_bio = rb2;
3277                                 rdev_dec_pending(mrdev, mddev);
3278                                 if (mreplace)
3279                                         rdev_dec_pending(mreplace, mddev);
3280                                 break;
3281                         }
3282                         rdev_dec_pending(mrdev, mddev);
3283                         if (mreplace)
3284                                 rdev_dec_pending(mreplace, mddev);
3285                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3286                                 /* Only want this if there is elsewhere to
3287                                  * read from. 'j' is currently the first
3288                                  * readable copy.
3289                                  */
3290                                 int targets = 1;
3291                                 for (; j < conf->copies; j++) {
3292                                         int d = r10_bio->devs[j].devnum;
3293                                         if (conf->mirrors[d].rdev &&
3294                                             test_bit(In_sync,
3295                                                       &conf->mirrors[d].rdev->flags))
3296                                                 targets++;
3297                                 }
3298                                 if (targets == 1)
3299                                         r10_bio->devs[0].bio->bi_opf
3300                                                 &= ~MD_FAILFAST;
3301                         }
3302                 }
3303                 if (biolist == NULL) {
3304                         while (r10_bio) {
3305                                 struct r10bio *rb2 = r10_bio;
3306                                 r10_bio = (struct r10bio*) rb2->master_bio;
3307                                 rb2->master_bio = NULL;
3308                                 put_buf(rb2);
3309                         }
3310                         goto giveup;
3311                 }
3312         } else {
3313                 /* resync. Schedule a read for every block at this virt offset */
3314                 int count = 0;
3315
3316                 /*
3317                  * Since curr_resync_completed could probably not update in
3318                  * time, and we will set cluster_sync_low based on it.
3319                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3320                  * safety reason, which ensures curr_resync_completed is
3321                  * updated in bitmap_cond_end_sync.
3322                  */
3323                 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3324                                      mddev_is_clustered(mddev) &&
3325                                      (sector_nr + 2 * RESYNC_SECTORS >
3326                                       conf->cluster_sync_high));
3327
3328                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3329                                        &sync_blocks, mddev->degraded) &&
3330                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3331                                                  &mddev->recovery)) {
3332                         /* We can skip this block */
3333                         *skipped = 1;
3334                         return sync_blocks + sectors_skipped;
3335                 }
3336                 if (sync_blocks < max_sync)
3337                         max_sync = sync_blocks;
3338                 r10_bio = raid10_alloc_init_r10buf(conf);
3339                 r10_bio->state = 0;
3340
3341                 r10_bio->mddev = mddev;
3342                 atomic_set(&r10_bio->remaining, 0);
3343                 raise_barrier(conf, 0);
3344                 conf->next_resync = sector_nr;
3345
3346                 r10_bio->master_bio = NULL;
3347                 r10_bio->sector = sector_nr;
3348                 set_bit(R10BIO_IsSync, &r10_bio->state);
3349                 raid10_find_phys(conf, r10_bio);
3350                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3351
3352                 for (i = 0; i < conf->copies; i++) {
3353                         int d = r10_bio->devs[i].devnum;
3354                         sector_t first_bad, sector;
3355                         int bad_sectors;
3356                         struct md_rdev *rdev;
3357
3358                         if (r10_bio->devs[i].repl_bio)
3359                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3360
3361                         bio = r10_bio->devs[i].bio;
3362                         bio->bi_status = BLK_STS_IOERR;
3363                         rcu_read_lock();
3364                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3365                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3366                                 rcu_read_unlock();
3367                                 continue;
3368                         }
3369                         sector = r10_bio->devs[i].addr;
3370                         if (is_badblock(rdev, sector, max_sync,
3371                                         &first_bad, &bad_sectors)) {
3372                                 if (first_bad > sector)
3373                                         max_sync = first_bad - sector;
3374                                 else {
3375                                         bad_sectors -= (sector - first_bad);
3376                                         if (max_sync > bad_sectors)
3377                                                 max_sync = bad_sectors;
3378                                         rcu_read_unlock();
3379                                         continue;
3380                                 }
3381                         }
3382                         atomic_inc(&rdev->nr_pending);
3383                         atomic_inc(&r10_bio->remaining);
3384                         bio->bi_next = biolist;
3385                         biolist = bio;
3386                         bio->bi_end_io = end_sync_read;
3387                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3388                         if (test_bit(FailFast, &rdev->flags))
3389                                 bio->bi_opf |= MD_FAILFAST;
3390                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3391                         bio_set_dev(bio, rdev->bdev);
3392                         count++;
3393
3394                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3395                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3396                                 rcu_read_unlock();
3397                                 continue;
3398                         }
3399                         atomic_inc(&rdev->nr_pending);
3400
3401                         /* Need to set up for writing to the replacement */
3402                         bio = r10_bio->devs[i].repl_bio;
3403                         bio->bi_status = BLK_STS_IOERR;
3404
3405                         sector = r10_bio->devs[i].addr;
3406                         bio->bi_next = biolist;
3407                         biolist = bio;
3408                         bio->bi_end_io = end_sync_write;
3409                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3410                         if (test_bit(FailFast, &rdev->flags))
3411                                 bio->bi_opf |= MD_FAILFAST;
3412                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3413                         bio_set_dev(bio, rdev->bdev);
3414                         count++;
3415                         rcu_read_unlock();
3416                 }
3417
3418                 if (count < 2) {
3419                         for (i=0; i<conf->copies; i++) {
3420                                 int d = r10_bio->devs[i].devnum;
3421                                 if (r10_bio->devs[i].bio->bi_end_io)
3422                                         rdev_dec_pending(conf->mirrors[d].rdev,
3423                                                          mddev);
3424                                 if (r10_bio->devs[i].repl_bio &&
3425                                     r10_bio->devs[i].repl_bio->bi_end_io)
3426                                         rdev_dec_pending(
3427                                                 conf->mirrors[d].replacement,
3428                                                 mddev);
3429                         }
3430                         put_buf(r10_bio);
3431                         biolist = NULL;
3432                         goto giveup;
3433                 }
3434         }
3435
3436         nr_sectors = 0;
3437         if (sector_nr + max_sync < max_sector)
3438                 max_sector = sector_nr + max_sync;
3439         do {
3440                 struct page *page;
3441                 int len = PAGE_SIZE;
3442                 if (sector_nr + (len>>9) > max_sector)
3443                         len = (max_sector - sector_nr) << 9;
3444                 if (len == 0)
3445                         break;
3446                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3447                         struct resync_pages *rp = get_resync_pages(bio);
3448                         page = resync_fetch_page(rp, page_idx);
3449                         /*
3450                          * won't fail because the vec table is big enough
3451                          * to hold all these pages
3452                          */
3453                         bio_add_page(bio, page, len, 0);
3454                 }
3455                 nr_sectors += len>>9;
3456                 sector_nr += len>>9;
3457         } while (++page_idx < RESYNC_PAGES);
3458         r10_bio->sectors = nr_sectors;
3459
3460         if (mddev_is_clustered(mddev) &&
3461             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3462                 /* It is resync not recovery */
3463                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3464                         conf->cluster_sync_low = mddev->curr_resync_completed;
3465                         raid10_set_cluster_sync_high(conf);
3466                         /* Send resync message */
3467                         md_cluster_ops->resync_info_update(mddev,
3468                                                 conf->cluster_sync_low,
3469                                                 conf->cluster_sync_high);
3470                 }
3471         } else if (mddev_is_clustered(mddev)) {
3472                 /* This is recovery not resync */
3473                 sector_t sect_va1, sect_va2;
3474                 bool broadcast_msg = false;
3475
3476                 for (i = 0; i < conf->geo.raid_disks; i++) {
3477                         /*
3478                          * sector_nr is a device address for recovery, so we
3479                          * need translate it to array address before compare
3480                          * with cluster_sync_high.
3481                          */
3482                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3483
3484                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3485                                 broadcast_msg = true;
3486                                 /*
3487                                  * curr_resync_completed is similar as
3488                                  * sector_nr, so make the translation too.
3489                                  */
3490                                 sect_va2 = raid10_find_virt(conf,
3491                                         mddev->curr_resync_completed, i);
3492
3493                                 if (conf->cluster_sync_low == 0 ||
3494                                     conf->cluster_sync_low > sect_va2)
3495                                         conf->cluster_sync_low = sect_va2;
3496                         }
3497                 }
3498                 if (broadcast_msg) {
3499                         raid10_set_cluster_sync_high(conf);
3500                         md_cluster_ops->resync_info_update(mddev,
3501                                                 conf->cluster_sync_low,
3502                                                 conf->cluster_sync_high);
3503                 }
3504         }
3505
3506         while (biolist) {
3507                 bio = biolist;
3508                 biolist = biolist->bi_next;
3509
3510                 bio->bi_next = NULL;
3511                 r10_bio = get_resync_r10bio(bio);
3512                 r10_bio->sectors = nr_sectors;
3513
3514                 if (bio->bi_end_io == end_sync_read) {
3515                         md_sync_acct_bio(bio, nr_sectors);
3516                         bio->bi_status = 0;
3517                         generic_make_request(bio);
3518                 }
3519         }
3520
3521         if (sectors_skipped)
3522                 /* pretend they weren't skipped, it makes
3523                  * no important difference in this case
3524                  */
3525                 md_done_sync(mddev, sectors_skipped, 1);
3526
3527         return sectors_skipped + nr_sectors;
3528  giveup:
3529         /* There is nowhere to write, so all non-sync
3530          * drives must be failed or in resync, all drives
3531          * have a bad block, so try the next chunk...
3532          */
3533         if (sector_nr + max_sync < max_sector)
3534                 max_sector = sector_nr + max_sync;
3535
3536         sectors_skipped += (max_sector - sector_nr);
3537         chunks_skipped ++;
3538         sector_nr = max_sector;
3539         goto skipped;
3540 }
3541
3542 static sector_t
3543 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3544 {
3545         sector_t size;
3546         struct r10conf *conf = mddev->private;
3547
3548         if (!raid_disks)
3549                 raid_disks = min(conf->geo.raid_disks,
3550                                  conf->prev.raid_disks);
3551         if (!sectors)
3552                 sectors = conf->dev_sectors;
3553
3554         size = sectors >> conf->geo.chunk_shift;
3555         sector_div(size, conf->geo.far_copies);
3556         size = size * raid_disks;
3557         sector_div(size, conf->geo.near_copies);
3558
3559         return size << conf->geo.chunk_shift;
3560 }
3561
3562 static void calc_sectors(struct r10conf *conf, sector_t size)
3563 {
3564         /* Calculate the number of sectors-per-device that will
3565          * actually be used, and set conf->dev_sectors and
3566          * conf->stride
3567          */
3568
3569         size = size >> conf->geo.chunk_shift;
3570         sector_div(size, conf->geo.far_copies);
3571         size = size * conf->geo.raid_disks;
3572         sector_div(size, conf->geo.near_copies);
3573         /* 'size' is now the number of chunks in the array */
3574         /* calculate "used chunks per device" */
3575         size = size * conf->copies;
3576
3577         /* We need to round up when dividing by raid_disks to
3578          * get the stride size.
3579          */
3580         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3581
3582         conf->dev_sectors = size << conf->geo.chunk_shift;
3583
3584         if (conf->geo.far_offset)
3585                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3586         else {
3587                 sector_div(size, conf->geo.far_copies);
3588                 conf->geo.stride = size << conf->geo.chunk_shift;
3589         }
3590 }
3591
3592 enum geo_type {geo_new, geo_old, geo_start};
3593 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3594 {
3595         int nc, fc, fo;
3596         int layout, chunk, disks;
3597         switch (new) {
3598         case geo_old:
3599                 layout = mddev->layout;
3600                 chunk = mddev->chunk_sectors;
3601                 disks = mddev->raid_disks - mddev->delta_disks;
3602                 break;
3603         case geo_new:
3604                 layout = mddev->new_layout;
3605                 chunk = mddev->new_chunk_sectors;
3606                 disks = mddev->raid_disks;
3607                 break;
3608         default: /* avoid 'may be unused' warnings */
3609         case geo_start: /* new when starting reshape - raid_disks not
3610                          * updated yet. */
3611                 layout = mddev->new_layout;
3612                 chunk = mddev->new_chunk_sectors;
3613                 disks = mddev->raid_disks + mddev->delta_disks;
3614                 break;
3615         }
3616         if (layout >> 19)
3617                 return -1;
3618         if (chunk < (PAGE_SIZE >> 9) ||
3619             !is_power_of_2(chunk))
3620                 return -2;
3621         nc = layout & 255;
3622         fc = (layout >> 8) & 255;
3623         fo = layout & (1<<16);
3624         geo->raid_disks = disks;
3625         geo->near_copies = nc;
3626         geo->far_copies = fc;
3627         geo->far_offset = fo;
3628         switch (layout >> 17) {
3629         case 0: /* original layout.  simple but not always optimal */
3630                 geo->far_set_size = disks;
3631                 break;
3632         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3633                  * actually using this, but leave code here just in case.*/
3634                 geo->far_set_size = disks/fc;
3635                 WARN(geo->far_set_size < fc,
3636                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3637                 break;
3638         case 2: /* "improved" layout fixed to match documentation */
3639                 geo->far_set_size = fc * nc;
3640                 break;
3641         default: /* Not a valid layout */
3642                 return -1;
3643         }
3644         geo->chunk_mask = chunk - 1;
3645         geo->chunk_shift = ffz(~chunk);
3646         return nc*fc;
3647 }
3648
3649 static struct r10conf *setup_conf(struct mddev *mddev)
3650 {
3651         struct r10conf *conf = NULL;
3652         int err = -EINVAL;
3653         struct geom geo;
3654         int copies;
3655
3656         copies = setup_geo(&geo, mddev, geo_new);
3657
3658         if (copies == -2) {
3659                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3660                         mdname(mddev), PAGE_SIZE);
3661                 goto out;
3662         }
3663
3664         if (copies < 2 || copies > mddev->raid_disks) {
3665                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3666                         mdname(mddev), mddev->new_layout);
3667                 goto out;
3668         }
3669
3670         err = -ENOMEM;
3671         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3672         if (!conf)
3673                 goto out;
3674
3675         /* FIXME calc properly */
3676         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3677                                                             max(0,-mddev->delta_disks)),
3678                                 GFP_KERNEL);
3679         if (!conf->mirrors)
3680                 goto out;
3681
3682         conf->tmppage = alloc_page(GFP_KERNEL);
3683         if (!conf->tmppage)
3684                 goto out;
3685
3686         conf->geo = geo;
3687         conf->copies = copies;
3688         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3689                                            r10bio_pool_free, conf);
3690         if (!conf->r10bio_pool)
3691                 goto out;
3692
3693         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3694         if (!conf->bio_split)
3695                 goto out;
3696
3697         calc_sectors(conf, mddev->dev_sectors);
3698         if (mddev->reshape_position == MaxSector) {
3699                 conf->prev = conf->geo;
3700                 conf->reshape_progress = MaxSector;
3701         } else {
3702                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3703                         err = -EINVAL;
3704                         goto out;
3705                 }
3706                 conf->reshape_progress = mddev->reshape_position;
3707                 if (conf->prev.far_offset)
3708                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3709                 else
3710                         /* far_copies must be 1 */
3711                         conf->prev.stride = conf->dev_sectors;
3712         }
3713         conf->reshape_safe = conf->reshape_progress;
3714         spin_lock_init(&conf->device_lock);
3715         INIT_LIST_HEAD(&conf->retry_list);
3716         INIT_LIST_HEAD(&conf->bio_end_io_list);
3717
3718         spin_lock_init(&conf->resync_lock);
3719         init_waitqueue_head(&conf->wait_barrier);
3720         atomic_set(&conf->nr_pending, 0);
3721
3722         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3723         if (!conf->thread)
3724                 goto out;
3725
3726         conf->mddev = mddev;
3727         return conf;
3728
3729  out:
3730         if (conf) {
3731                 mempool_destroy(conf->r10bio_pool);
3732                 kfree(conf->mirrors);
3733                 safe_put_page(conf->tmppage);
3734                 if (conf->bio_split)
3735                         bioset_free(conf->bio_split);
3736                 kfree(conf);
3737         }
3738         return ERR_PTR(err);
3739 }
3740
3741 static int raid10_run(struct mddev *mddev)
3742 {
3743         struct r10conf *conf;
3744         int i, disk_idx, chunk_size;
3745         struct raid10_info *disk;
3746         struct md_rdev *rdev;
3747         sector_t size;
3748         sector_t min_offset_diff = 0;
3749         int first = 1;
3750         bool discard_supported = false;
3751
3752         if (mddev_init_writes_pending(mddev) < 0)
3753                 return -ENOMEM;
3754
3755         if (mddev->private == NULL) {
3756                 conf = setup_conf(mddev);
3757                 if (IS_ERR(conf))
3758                         return PTR_ERR(conf);
3759                 mddev->private = conf;
3760         }
3761         conf = mddev->private;
3762         if (!conf)
3763                 goto out;
3764
3765         if (mddev_is_clustered(conf->mddev)) {
3766                 int fc, fo;
3767
3768                 fc = (mddev->layout >> 8) & 255;
3769                 fo = mddev->layout & (1<<16);
3770                 if (fc > 1 || fo > 0) {
3771                         pr_err("only near layout is supported by clustered"
3772                                 " raid10\n");
3773                         goto out;
3774                 }
3775         }
3776
3777         mddev->thread = conf->thread;
3778         conf->thread = NULL;
3779
3780         chunk_size = mddev->chunk_sectors << 9;
3781         if (mddev->queue) {
3782                 blk_queue_max_discard_sectors(mddev->queue,
3783                                               mddev->chunk_sectors);
3784                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3785                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3786                 blk_queue_io_min(mddev->queue, chunk_size);
3787                 if (conf->geo.raid_disks % conf->geo.near_copies)
3788                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3789                 else
3790                         blk_queue_io_opt(mddev->queue, chunk_size *
3791                                          (conf->geo.raid_disks / conf->geo.near_copies));
3792         }
3793
3794         rdev_for_each(rdev, mddev) {
3795                 long long diff;
3796
3797                 disk_idx = rdev->raid_disk;
3798                 if (disk_idx < 0)
3799                         continue;
3800                 if (disk_idx >= conf->geo.raid_disks &&
3801                     disk_idx >= conf->prev.raid_disks)
3802                         continue;
3803                 disk = conf->mirrors + disk_idx;
3804
3805                 if (test_bit(Replacement, &rdev->flags)) {
3806                         if (disk->replacement)
3807                                 goto out_free_conf;
3808                         disk->replacement = rdev;
3809                 } else {
3810                         if (disk->rdev)
3811                                 goto out_free_conf;
3812                         disk->rdev = rdev;
3813                 }
3814                 diff = (rdev->new_data_offset - rdev->data_offset);
3815                 if (!mddev->reshape_backwards)
3816                         diff = -diff;
3817                 if (diff < 0)
3818                         diff = 0;
3819                 if (first || diff < min_offset_diff)
3820                         min_offset_diff = diff;
3821
3822                 if (mddev->gendisk)
3823                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3824                                           rdev->data_offset << 9);
3825
3826                 disk->head_position = 0;
3827
3828                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3829                         discard_supported = true;
3830                 first = 0;
3831         }
3832
3833         if (mddev->queue) {
3834                 if (discard_supported)
3835                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3836                                                 mddev->queue);
3837                 else
3838                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3839                                                   mddev->queue);
3840         }
3841         /* need to check that every block has at least one working mirror */
3842         if (!enough(conf, -1)) {
3843                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3844                        mdname(mddev));
3845                 goto out_free_conf;
3846         }
3847
3848         if (conf->reshape_progress != MaxSector) {
3849                 /* must ensure that shape change is supported */
3850                 if (conf->geo.far_copies != 1 &&
3851                     conf->geo.far_offset == 0)
3852                         goto out_free_conf;
3853                 if (conf->prev.far_copies != 1 &&
3854                     conf->prev.far_offset == 0)
3855                         goto out_free_conf;
3856         }
3857
3858         mddev->degraded = 0;
3859         for (i = 0;
3860              i < conf->geo.raid_disks
3861                      || i < conf->prev.raid_disks;
3862              i++) {
3863
3864                 disk = conf->mirrors + i;
3865
3866                 if (!disk->rdev && disk->replacement) {
3867                         /* The replacement is all we have - use it */
3868                         disk->rdev = disk->replacement;
3869                         disk->replacement = NULL;
3870                         clear_bit(Replacement, &disk->rdev->flags);
3871                 }
3872
3873                 if (!disk->rdev ||
3874                     !test_bit(In_sync, &disk->rdev->flags)) {
3875                         disk->head_position = 0;
3876                         mddev->degraded++;
3877                         if (disk->rdev &&
3878                             disk->rdev->saved_raid_disk < 0)
3879                                 conf->fullsync = 1;
3880                 }
3881                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3882         }
3883
3884         if (mddev->recovery_cp != MaxSector)
3885                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3886                           mdname(mddev));
3887         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3888                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3889                 conf->geo.raid_disks);
3890         /*
3891          * Ok, everything is just fine now
3892          */
3893         mddev->dev_sectors = conf->dev_sectors;
3894         size = raid10_size(mddev, 0, 0);
3895         md_set_array_sectors(mddev, size);
3896         mddev->resync_max_sectors = size;
3897         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3898
3899         if (mddev->queue) {
3900                 int stripe = conf->geo.raid_disks *
3901                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3902
3903                 /* Calculate max read-ahead size.
3904                  * We need to readahead at least twice a whole stripe....
3905                  * maybe...
3906                  */
3907                 stripe /= conf->geo.near_copies;
3908                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3909                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3910         }
3911
3912         if (md_integrity_register(mddev))
3913                 goto out_free_conf;
3914
3915         if (conf->reshape_progress != MaxSector) {
3916                 unsigned long before_length, after_length;
3917
3918                 before_length = ((1 << conf->prev.chunk_shift) *
3919                                  conf->prev.far_copies);
3920                 after_length = ((1 << conf->geo.chunk_shift) *
3921                                 conf->geo.far_copies);
3922
3923                 if (max(before_length, after_length) > min_offset_diff) {
3924                         /* This cannot work */
3925                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3926                         goto out_free_conf;
3927                 }
3928                 conf->offset_diff = min_offset_diff;
3929
3930                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3931                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3932                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3933                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3934                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3935                                                         "reshape");
3936         }
3937
3938         return 0;
3939
3940 out_free_conf:
3941         md_unregister_thread(&mddev->thread);
3942         mempool_destroy(conf->r10bio_pool);
3943         safe_put_page(conf->tmppage);
3944         kfree(conf->mirrors);
3945         kfree(conf);
3946         mddev->private = NULL;
3947 out:
3948         return -EIO;
3949 }
3950
3951 static void raid10_free(struct mddev *mddev, void *priv)
3952 {
3953         struct r10conf *conf = priv;
3954
3955         mempool_destroy(conf->r10bio_pool);
3956         safe_put_page(conf->tmppage);
3957         kfree(conf->mirrors);
3958         kfree(conf->mirrors_old);
3959         kfree(conf->mirrors_new);
3960         if (conf->bio_split)
3961                 bioset_free(conf->bio_split);
3962         kfree(conf);
3963 }
3964
3965 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3966 {
3967         struct r10conf *conf = mddev->private;
3968
3969         if (quiesce)
3970                 raise_barrier(conf, 0);
3971         else
3972                 lower_barrier(conf);
3973 }
3974
3975 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3976 {
3977         /* Resize of 'far' arrays is not supported.
3978          * For 'near' and 'offset' arrays we can set the
3979          * number of sectors used to be an appropriate multiple
3980          * of the chunk size.
3981          * For 'offset', this is far_copies*chunksize.
3982          * For 'near' the multiplier is the LCM of
3983          * near_copies and raid_disks.
3984          * So if far_copies > 1 && !far_offset, fail.
3985          * Else find LCM(raid_disks, near_copy)*far_copies and
3986          * multiply by chunk_size.  Then round to this number.
3987          * This is mostly done by raid10_size()
3988          */
3989         struct r10conf *conf = mddev->private;
3990         sector_t oldsize, size;
3991
3992         if (mddev->reshape_position != MaxSector)
3993                 return -EBUSY;
3994
3995         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3996                 return -EINVAL;
3997
3998         oldsize = raid10_size(mddev, 0, 0);
3999         size = raid10_size(mddev, sectors, 0);
4000         if (mddev->external_size &&
4001             mddev->array_sectors > size)
4002                 return -EINVAL;
4003         if (mddev->bitmap) {
4004                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4005                 if (ret)
4006                         return ret;
4007         }
4008         md_set_array_sectors(mddev, size);
4009         if (sectors > mddev->dev_sectors &&
4010             mddev->recovery_cp > oldsize) {
4011                 mddev->recovery_cp = oldsize;
4012                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4013         }
4014         calc_sectors(conf, sectors);
4015         mddev->dev_sectors = conf->dev_sectors;
4016         mddev->resync_max_sectors = size;
4017         return 0;
4018 }
4019
4020 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4021 {
4022         struct md_rdev *rdev;
4023         struct r10conf *conf;
4024
4025         if (mddev->degraded > 0) {
4026                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4027                         mdname(mddev));
4028                 return ERR_PTR(-EINVAL);
4029         }
4030         sector_div(size, devs);
4031
4032         /* Set new parameters */
4033         mddev->new_level = 10;
4034         /* new layout: far_copies = 1, near_copies = 2 */
4035         mddev->new_layout = (1<<8) + 2;
4036         mddev->new_chunk_sectors = mddev->chunk_sectors;
4037         mddev->delta_disks = mddev->raid_disks;
4038         mddev->raid_disks *= 2;
4039         /* make sure it will be not marked as dirty */
4040         mddev->recovery_cp = MaxSector;
4041         mddev->dev_sectors = size;
4042
4043         conf = setup_conf(mddev);
4044         if (!IS_ERR(conf)) {
4045                 rdev_for_each(rdev, mddev)
4046                         if (rdev->raid_disk >= 0) {
4047                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4048                                 rdev->sectors = size;
4049                         }
4050                 conf->barrier = 1;
4051         }
4052
4053         return conf;
4054 }
4055
4056 static void *raid10_takeover(struct mddev *mddev)
4057 {
4058         struct r0conf *raid0_conf;
4059
4060         /* raid10 can take over:
4061          *  raid0 - providing it has only two drives
4062          */
4063         if (mddev->level == 0) {
4064                 /* for raid0 takeover only one zone is supported */
4065                 raid0_conf = mddev->private;
4066                 if (raid0_conf->nr_strip_zones > 1) {
4067                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4068                                 mdname(mddev));
4069                         return ERR_PTR(-EINVAL);
4070                 }
4071                 return raid10_takeover_raid0(mddev,
4072                         raid0_conf->strip_zone->zone_end,
4073                         raid0_conf->strip_zone->nb_dev);
4074         }
4075         return ERR_PTR(-EINVAL);
4076 }
4077
4078 static int raid10_check_reshape(struct mddev *mddev)
4079 {
4080         /* Called when there is a request to change
4081          * - layout (to ->new_layout)
4082          * - chunk size (to ->new_chunk_sectors)
4083          * - raid_disks (by delta_disks)
4084          * or when trying to restart a reshape that was ongoing.
4085          *
4086          * We need to validate the request and possibly allocate
4087          * space if that might be an issue later.
4088          *
4089          * Currently we reject any reshape of a 'far' mode array,
4090          * allow chunk size to change if new is generally acceptable,
4091          * allow raid_disks to increase, and allow
4092          * a switch between 'near' mode and 'offset' mode.
4093          */
4094         struct r10conf *conf = mddev->private;
4095         struct geom geo;
4096
4097         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4098                 return -EINVAL;
4099
4100         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4101                 /* mustn't change number of copies */
4102                 return -EINVAL;
4103         if (geo.far_copies > 1 && !geo.far_offset)
4104                 /* Cannot switch to 'far' mode */
4105                 return -EINVAL;
4106
4107         if (mddev->array_sectors & geo.chunk_mask)
4108                         /* not factor of array size */
4109                         return -EINVAL;
4110
4111         if (!enough(conf, -1))
4112                 return -EINVAL;
4113
4114         kfree(conf->mirrors_new);
4115         conf->mirrors_new = NULL;
4116         if (mddev->delta_disks > 0) {
4117                 /* allocate new 'mirrors' list */
4118                 conf->mirrors_new = kzalloc(
4119                         sizeof(struct raid10_info)
4120                         *(mddev->raid_disks +
4121                           mddev->delta_disks),
4122                         GFP_KERNEL);
4123                 if (!conf->mirrors_new)
4124                         return -ENOMEM;
4125         }
4126         return 0;
4127 }
4128
4129 /*
4130  * Need to check if array has failed when deciding whether to:
4131  *  - start an array
4132  *  - remove non-faulty devices
4133  *  - add a spare
4134  *  - allow a reshape
4135  * This determination is simple when no reshape is happening.
4136  * However if there is a reshape, we need to carefully check
4137  * both the before and after sections.
4138  * This is because some failed devices may only affect one
4139  * of the two sections, and some non-in_sync devices may
4140  * be insync in the section most affected by failed devices.
4141  */
4142 static int calc_degraded(struct r10conf *conf)
4143 {
4144         int degraded, degraded2;
4145         int i;
4146
4147         rcu_read_lock();
4148         degraded = 0;
4149         /* 'prev' section first */
4150         for (i = 0; i < conf->prev.raid_disks; i++) {
4151                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4152                 if (!rdev || test_bit(Faulty, &rdev->flags))
4153                         degraded++;
4154                 else if (!test_bit(In_sync, &rdev->flags))
4155                         /* When we can reduce the number of devices in
4156                          * an array, this might not contribute to
4157                          * 'degraded'.  It does now.
4158                          */
4159                         degraded++;
4160         }
4161         rcu_read_unlock();
4162         if (conf->geo.raid_disks == conf->prev.raid_disks)
4163                 return degraded;
4164         rcu_read_lock();
4165         degraded2 = 0;
4166         for (i = 0; i < conf->geo.raid_disks; i++) {
4167                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4168                 if (!rdev || test_bit(Faulty, &rdev->flags))
4169                         degraded2++;
4170                 else if (!test_bit(In_sync, &rdev->flags)) {
4171                         /* If reshape is increasing the number of devices,
4172                          * this section has already been recovered, so
4173                          * it doesn't contribute to degraded.
4174                          * else it does.
4175                          */
4176                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4177                                 degraded2++;
4178                 }
4179         }
4180         rcu_read_unlock();
4181         if (degraded2 > degraded)
4182                 return degraded2;
4183         return degraded;
4184 }
4185
4186 static int raid10_start_reshape(struct mddev *mddev)
4187 {
4188         /* A 'reshape' has been requested. This commits
4189          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4190          * This also checks if there are enough spares and adds them
4191          * to the array.
4192          * We currently require enough spares to make the final
4193          * array non-degraded.  We also require that the difference
4194          * between old and new data_offset - on each device - is
4195          * enough that we never risk over-writing.
4196          */
4197
4198         unsigned long before_length, after_length;
4199         sector_t min_offset_diff = 0;
4200         int first = 1;
4201         struct geom new;
4202         struct r10conf *conf = mddev->private;
4203         struct md_rdev *rdev;
4204         int spares = 0;
4205         int ret;
4206
4207         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4208                 return -EBUSY;
4209
4210         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4211                 return -EINVAL;
4212
4213         before_length = ((1 << conf->prev.chunk_shift) *
4214                          conf->prev.far_copies);
4215         after_length = ((1 << conf->geo.chunk_shift) *
4216                         conf->geo.far_copies);
4217
4218         rdev_for_each(rdev, mddev) {
4219                 if (!test_bit(In_sync, &rdev->flags)
4220                     && !test_bit(Faulty, &rdev->flags))
4221                         spares++;
4222                 if (rdev->raid_disk >= 0) {
4223                         long long diff = (rdev->new_data_offset
4224                                           - rdev->data_offset);
4225                         if (!mddev->reshape_backwards)
4226                                 diff = -diff;
4227                         if (diff < 0)
4228                                 diff = 0;
4229                         if (first || diff < min_offset_diff)
4230                                 min_offset_diff = diff;
4231                         first = 0;
4232                 }
4233         }
4234
4235         if (max(before_length, after_length) > min_offset_diff)
4236                 return -EINVAL;
4237
4238         if (spares < mddev->delta_disks)
4239                 return -EINVAL;
4240
4241         conf->offset_diff = min_offset_diff;
4242         spin_lock_irq(&conf->device_lock);
4243         if (conf->mirrors_new) {
4244                 memcpy(conf->mirrors_new, conf->mirrors,
4245                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4246                 smp_mb();
4247                 kfree(conf->mirrors_old);
4248                 conf->mirrors_old = conf->mirrors;
4249                 conf->mirrors = conf->mirrors_new;
4250                 conf->mirrors_new = NULL;
4251         }
4252         setup_geo(&conf->geo, mddev, geo_start);
4253         smp_mb();
4254         if (mddev->reshape_backwards) {
4255                 sector_t size = raid10_size(mddev, 0, 0);
4256                 if (size < mddev->array_sectors) {
4257                         spin_unlock_irq(&conf->device_lock);
4258                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4259                                 mdname(mddev));
4260                         return -EINVAL;
4261                 }
4262                 mddev->resync_max_sectors = size;
4263                 conf->reshape_progress = size;
4264         } else
4265                 conf->reshape_progress = 0;
4266         conf->reshape_safe = conf->reshape_progress;
4267         spin_unlock_irq(&conf->device_lock);
4268
4269         if (mddev->delta_disks && mddev->bitmap) {
4270                 ret = bitmap_resize(mddev->bitmap,
4271                                     raid10_size(mddev, 0,
4272                                                 conf->geo.raid_disks),
4273                                     0, 0);
4274                 if (ret)
4275                         goto abort;
4276         }
4277         if (mddev->delta_disks > 0) {
4278                 rdev_for_each(rdev, mddev)
4279                         if (rdev->raid_disk < 0 &&
4280                             !test_bit(Faulty, &rdev->flags)) {
4281                                 if (raid10_add_disk(mddev, rdev) == 0) {
4282                                         if (rdev->raid_disk >=
4283                                             conf->prev.raid_disks)
4284                                                 set_bit(In_sync, &rdev->flags);
4285                                         else
4286                                                 rdev->recovery_offset = 0;
4287
4288                                         if (sysfs_link_rdev(mddev, rdev))
4289                                                 /* Failure here  is OK */;
4290                                 }
4291                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4292                                    && !test_bit(Faulty, &rdev->flags)) {
4293                                 /* This is a spare that was manually added */
4294                                 set_bit(In_sync, &rdev->flags);
4295                         }
4296         }
4297         /* When a reshape changes the number of devices,
4298          * ->degraded is measured against the larger of the
4299          * pre and  post numbers.
4300          */
4301         spin_lock_irq(&conf->device_lock);
4302         mddev->degraded = calc_degraded(conf);
4303         spin_unlock_irq(&conf->device_lock);
4304         mddev->raid_disks = conf->geo.raid_disks;
4305         mddev->reshape_position = conf->reshape_progress;
4306         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4307
4308         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4309         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4310         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4311         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4312         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4313
4314         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4315                                                 "reshape");
4316         if (!mddev->sync_thread) {
4317                 ret = -EAGAIN;
4318                 goto abort;
4319         }
4320         conf->reshape_checkpoint = jiffies;
4321         md_wakeup_thread(mddev->sync_thread);
4322         md_new_event(mddev);
4323         return 0;
4324
4325 abort:
4326         mddev->recovery = 0;
4327         spin_lock_irq(&conf->device_lock);
4328         conf->geo = conf->prev;
4329         mddev->raid_disks = conf->geo.raid_disks;
4330         rdev_for_each(rdev, mddev)
4331                 rdev->new_data_offset = rdev->data_offset;
4332         smp_wmb();
4333         conf->reshape_progress = MaxSector;
4334         conf->reshape_safe = MaxSector;
4335         mddev->reshape_position = MaxSector;
4336         spin_unlock_irq(&conf->device_lock);
4337         return ret;
4338 }
4339
4340 /* Calculate the last device-address that could contain
4341  * any block from the chunk that includes the array-address 's'
4342  * and report the next address.
4343  * i.e. the address returned will be chunk-aligned and after
4344  * any data that is in the chunk containing 's'.
4345  */
4346 static sector_t last_dev_address(sector_t s, struct geom *geo)
4347 {
4348         s = (s | geo->chunk_mask) + 1;
4349         s >>= geo->chunk_shift;
4350         s *= geo->near_copies;
4351         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4352         s *= geo->far_copies;
4353         s <<= geo->chunk_shift;
4354         return s;
4355 }
4356
4357 /* Calculate the first device-address that could contain
4358  * any block from the chunk that includes the array-address 's'.
4359  * This too will be the start of a chunk
4360  */
4361 static sector_t first_dev_address(sector_t s, struct geom *geo)
4362 {
4363         s >>= geo->chunk_shift;
4364         s *= geo->near_copies;
4365         sector_div(s, geo->raid_disks);
4366         s *= geo->far_copies;
4367         s <<= geo->chunk_shift;
4368         return s;
4369 }
4370
4371 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4372                                 int *skipped)
4373 {
4374         /* We simply copy at most one chunk (smallest of old and new)
4375          * at a time, possibly less if that exceeds RESYNC_PAGES,
4376          * or we hit a bad block or something.
4377          * This might mean we pause for normal IO in the middle of
4378          * a chunk, but that is not a problem as mddev->reshape_position
4379          * can record any location.
4380          *
4381          * If we will want to write to a location that isn't
4382          * yet recorded as 'safe' (i.e. in metadata on disk) then
4383          * we need to flush all reshape requests and update the metadata.
4384          *
4385          * When reshaping forwards (e.g. to more devices), we interpret
4386          * 'safe' as the earliest block which might not have been copied
4387          * down yet.  We divide this by previous stripe size and multiply
4388          * by previous stripe length to get lowest device offset that we
4389          * cannot write to yet.
4390          * We interpret 'sector_nr' as an address that we want to write to.
4391          * From this we use last_device_address() to find where we might
4392          * write to, and first_device_address on the  'safe' position.
4393          * If this 'next' write position is after the 'safe' position,
4394          * we must update the metadata to increase the 'safe' position.
4395          *
4396          * When reshaping backwards, we round in the opposite direction
4397          * and perform the reverse test:  next write position must not be
4398          * less than current safe position.
4399          *
4400          * In all this the minimum difference in data offsets
4401          * (conf->offset_diff - always positive) allows a bit of slack,
4402          * so next can be after 'safe', but not by more than offset_diff
4403          *
4404          * We need to prepare all the bios here before we start any IO
4405          * to ensure the size we choose is acceptable to all devices.
4406          * The means one for each copy for write-out and an extra one for
4407          * read-in.
4408          * We store the read-in bio in ->master_bio and the others in
4409          * ->devs[x].bio and ->devs[x].repl_bio.
4410          */
4411         struct r10conf *conf = mddev->private;
4412         struct r10bio *r10_bio;
4413         sector_t next, safe, last;
4414         int max_sectors;
4415         int nr_sectors;
4416         int s;
4417         struct md_rdev *rdev;
4418         int need_flush = 0;
4419         struct bio *blist;
4420         struct bio *bio, *read_bio;
4421         int sectors_done = 0;
4422         struct page **pages;
4423
4424         if (sector_nr == 0) {
4425                 /* If restarting in the middle, skip the initial sectors */
4426                 if (mddev->reshape_backwards &&
4427                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4428                         sector_nr = (raid10_size(mddev, 0, 0)
4429                                      - conf->reshape_progress);
4430                 } else if (!mddev->reshape_backwards &&
4431                            conf->reshape_progress > 0)
4432                         sector_nr = conf->reshape_progress;
4433                 if (sector_nr) {
4434                         mddev->curr_resync_completed = sector_nr;
4435                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4436                         *skipped = 1;
4437                         return sector_nr;
4438                 }
4439         }
4440
4441         /* We don't use sector_nr to track where we are up to
4442          * as that doesn't work well for ->reshape_backwards.
4443          * So just use ->reshape_progress.
4444          */
4445         if (mddev->reshape_backwards) {
4446                 /* 'next' is the earliest device address that we might
4447                  * write to for this chunk in the new layout
4448                  */
4449                 next = first_dev_address(conf->reshape_progress - 1,
4450                                          &conf->geo);
4451
4452                 /* 'safe' is the last device address that we might read from
4453                  * in the old layout after a restart
4454                  */
4455                 safe = last_dev_address(conf->reshape_safe - 1,
4456                                         &conf->prev);
4457
4458                 if (next + conf->offset_diff < safe)
4459                         need_flush = 1;
4460
4461                 last = conf->reshape_progress - 1;
4462                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4463                                                & conf->prev.chunk_mask);
4464                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4465                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4466         } else {
4467                 /* 'next' is after the last device address that we
4468                  * might write to for this chunk in the new layout
4469                  */
4470                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4471
4472                 /* 'safe' is the earliest device address that we might
4473                  * read from in the old layout after a restart
4474                  */
4475                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4476
4477                 /* Need to update metadata if 'next' might be beyond 'safe'
4478                  * as that would possibly corrupt data
4479                  */
4480                 if (next > safe + conf->offset_diff)
4481                         need_flush = 1;
4482
4483                 sector_nr = conf->reshape_progress;
4484                 last  = sector_nr | (conf->geo.chunk_mask
4485                                      & conf->prev.chunk_mask);
4486
4487                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4488                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4489         }
4490
4491         if (need_flush ||
4492             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4493                 /* Need to update reshape_position in metadata */
4494                 wait_barrier(conf);
4495                 mddev->reshape_position = conf->reshape_progress;
4496                 if (mddev->reshape_backwards)
4497                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4498                                 - conf->reshape_progress;
4499                 else
4500                         mddev->curr_resync_completed = conf->reshape_progress;
4501                 conf->reshape_checkpoint = jiffies;
4502                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4503                 md_wakeup_thread(mddev->thread);
4504                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4505                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4506                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4507                         allow_barrier(conf);
4508                         return sectors_done;
4509                 }
4510                 conf->reshape_safe = mddev->reshape_position;
4511                 allow_barrier(conf);
4512         }
4513
4514 read_more:
4515         /* Now schedule reads for blocks from sector_nr to last */
4516         r10_bio = raid10_alloc_init_r10buf(conf);
4517         r10_bio->state = 0;
4518         raise_barrier(conf, sectors_done != 0);
4519         atomic_set(&r10_bio->remaining, 0);
4520         r10_bio->mddev = mddev;
4521         r10_bio->sector = sector_nr;
4522         set_bit(R10BIO_IsReshape, &r10_bio->state);
4523         r10_bio->sectors = last - sector_nr + 1;
4524         rdev = read_balance(conf, r10_bio, &max_sectors);
4525         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4526
4527         if (!rdev) {
4528                 /* Cannot read from here, so need to record bad blocks
4529                  * on all the target devices.
4530                  */
4531                 // FIXME
4532                 mempool_free(r10_bio, conf->r10buf_pool);
4533                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4534                 return sectors_done;
4535         }
4536
4537         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4538
4539         bio_set_dev(read_bio, rdev->bdev);
4540         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4541                                + rdev->data_offset);
4542         read_bio->bi_private = r10_bio;
4543         read_bio->bi_end_io = end_reshape_read;
4544         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4545         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4546         read_bio->bi_status = 0;
4547         read_bio->bi_vcnt = 0;
4548         read_bio->bi_iter.bi_size = 0;
4549         r10_bio->master_bio = read_bio;
4550         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4551
4552         /* Now find the locations in the new layout */
4553         __raid10_find_phys(&conf->geo, r10_bio);
4554
4555         blist = read_bio;
4556         read_bio->bi_next = NULL;
4557
4558         rcu_read_lock();
4559         for (s = 0; s < conf->copies*2; s++) {
4560                 struct bio *b;
4561                 int d = r10_bio->devs[s/2].devnum;
4562                 struct md_rdev *rdev2;
4563                 if (s&1) {
4564                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4565                         b = r10_bio->devs[s/2].repl_bio;
4566                 } else {
4567                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4568                         b = r10_bio->devs[s/2].bio;
4569                 }
4570                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4571                         continue;
4572
4573                 bio_set_dev(b, rdev2->bdev);
4574                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4575                         rdev2->new_data_offset;
4576                 b->bi_end_io = end_reshape_write;
4577                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4578                 b->bi_next = blist;
4579                 blist = b;
4580         }
4581
4582         /* Now add as many pages as possible to all of these bios. */
4583
4584         nr_sectors = 0;
4585         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4586         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4587                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4588                 int len = (max_sectors - s) << 9;
4589                 if (len > PAGE_SIZE)
4590                         len = PAGE_SIZE;
4591                 for (bio = blist; bio ; bio = bio->bi_next) {
4592                         /*
4593                          * won't fail because the vec table is big enough
4594                          * to hold all these pages
4595                          */
4596                         bio_add_page(bio, page, len, 0);
4597                 }
4598                 sector_nr += len >> 9;
4599                 nr_sectors += len >> 9;
4600         }
4601         rcu_read_unlock();
4602         r10_bio->sectors = nr_sectors;
4603
4604         /* Now submit the read */
4605         md_sync_acct_bio(read_bio, r10_bio->sectors);
4606         atomic_inc(&r10_bio->remaining);
4607         read_bio->bi_next = NULL;
4608         generic_make_request(read_bio);
4609         sector_nr += nr_sectors;
4610         sectors_done += nr_sectors;
4611         if (sector_nr <= last)
4612                 goto read_more;
4613
4614         /* Now that we have done the whole section we can
4615          * update reshape_progress
4616          */
4617         if (mddev->reshape_backwards)
4618                 conf->reshape_progress -= sectors_done;
4619         else
4620                 conf->reshape_progress += sectors_done;
4621
4622         return sectors_done;
4623 }
4624
4625 static void end_reshape_request(struct r10bio *r10_bio);
4626 static int handle_reshape_read_error(struct mddev *mddev,
4627                                      struct r10bio *r10_bio);
4628 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4629 {
4630         /* Reshape read completed.  Hopefully we have a block
4631          * to write out.
4632          * If we got a read error then we do sync 1-page reads from
4633          * elsewhere until we find the data - or give up.
4634          */
4635         struct r10conf *conf = mddev->private;
4636         int s;
4637
4638         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4639                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4640                         /* Reshape has been aborted */
4641                         md_done_sync(mddev, r10_bio->sectors, 0);
4642                         return;
4643                 }
4644
4645         /* We definitely have the data in the pages, schedule the
4646          * writes.
4647          */
4648         atomic_set(&r10_bio->remaining, 1);
4649         for (s = 0; s < conf->copies*2; s++) {
4650                 struct bio *b;
4651                 int d = r10_bio->devs[s/2].devnum;
4652                 struct md_rdev *rdev;
4653                 rcu_read_lock();
4654                 if (s&1) {
4655                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4656                         b = r10_bio->devs[s/2].repl_bio;
4657                 } else {
4658                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4659                         b = r10_bio->devs[s/2].bio;
4660                 }
4661                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4662                         rcu_read_unlock();
4663                         continue;
4664                 }
4665                 atomic_inc(&rdev->nr_pending);
4666                 rcu_read_unlock();
4667                 md_sync_acct_bio(b, r10_bio->sectors);
4668                 atomic_inc(&r10_bio->remaining);
4669                 b->bi_next = NULL;
4670                 generic_make_request(b);
4671         }
4672         end_reshape_request(r10_bio);
4673 }
4674
4675 static void end_reshape(struct r10conf *conf)
4676 {
4677         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4678                 return;
4679
4680         spin_lock_irq(&conf->device_lock);
4681         conf->prev = conf->geo;
4682         md_finish_reshape(conf->mddev);
4683         smp_wmb();
4684         conf->reshape_progress = MaxSector;
4685         conf->reshape_safe = MaxSector;
4686         spin_unlock_irq(&conf->device_lock);
4687
4688         /* read-ahead size must cover two whole stripes, which is
4689          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4690          */
4691         if (conf->mddev->queue) {
4692                 int stripe = conf->geo.raid_disks *
4693                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4694                 stripe /= conf->geo.near_copies;
4695                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4696                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4697         }
4698         conf->fullsync = 0;
4699 }
4700
4701 static int handle_reshape_read_error(struct mddev *mddev,
4702                                      struct r10bio *r10_bio)
4703 {
4704         /* Use sync reads to get the blocks from somewhere else */
4705         int sectors = r10_bio->sectors;
4706         struct r10conf *conf = mddev->private;
4707         struct r10bio *r10b;
4708         int slot = 0;
4709         int idx = 0;
4710         struct page **pages;
4711
4712         r10b = kmalloc(sizeof(*r10b) +
4713                sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4714         if (!r10b) {
4715                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4716                 return -ENOMEM;
4717         }
4718
4719         /* reshape IOs share pages from .devs[0].bio */
4720         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4721
4722         r10b->sector = r10_bio->sector;
4723         __raid10_find_phys(&conf->prev, r10b);
4724
4725         while (sectors) {
4726                 int s = sectors;
4727                 int success = 0;
4728                 int first_slot = slot;
4729
4730                 if (s > (PAGE_SIZE >> 9))
4731                         s = PAGE_SIZE >> 9;
4732
4733                 rcu_read_lock();
4734                 while (!success) {
4735                         int d = r10b->devs[slot].devnum;
4736                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4737                         sector_t addr;
4738                         if (rdev == NULL ||
4739                             test_bit(Faulty, &rdev->flags) ||
4740                             !test_bit(In_sync, &rdev->flags))
4741                                 goto failed;
4742
4743                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4744                         atomic_inc(&rdev->nr_pending);
4745                         rcu_read_unlock();
4746                         success = sync_page_io(rdev,
4747                                                addr,
4748                                                s << 9,
4749                                                pages[idx],
4750                                                REQ_OP_READ, 0, false);
4751                         rdev_dec_pending(rdev, mddev);
4752                         rcu_read_lock();
4753                         if (success)
4754                                 break;
4755                 failed:
4756                         slot++;
4757                         if (slot >= conf->copies)
4758                                 slot = 0;
4759                         if (slot == first_slot)
4760                                 break;
4761                 }
4762                 rcu_read_unlock();
4763                 if (!success) {
4764                         /* couldn't read this block, must give up */
4765                         set_bit(MD_RECOVERY_INTR,
4766                                 &mddev->recovery);
4767                         kfree(r10b);
4768                         return -EIO;
4769                 }
4770                 sectors -= s;
4771                 idx++;
4772         }
4773         kfree(r10b);
4774         return 0;
4775 }
4776
4777 static void end_reshape_write(struct bio *bio)
4778 {
4779         struct r10bio *r10_bio = get_resync_r10bio(bio);
4780         struct mddev *mddev = r10_bio->mddev;
4781         struct r10conf *conf = mddev->private;
4782         int d;
4783         int slot;
4784         int repl;
4785         struct md_rdev *rdev = NULL;
4786
4787         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4788         if (repl)
4789                 rdev = conf->mirrors[d].replacement;
4790         if (!rdev) {
4791                 smp_mb();
4792                 rdev = conf->mirrors[d].rdev;
4793         }
4794
4795         if (bio->bi_status) {
4796                 /* FIXME should record badblock */
4797                 md_error(mddev, rdev);
4798         }
4799
4800         rdev_dec_pending(rdev, mddev);
4801         end_reshape_request(r10_bio);
4802 }
4803
4804 static void end_reshape_request(struct r10bio *r10_bio)
4805 {
4806         if (!atomic_dec_and_test(&r10_bio->remaining))
4807                 return;
4808         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4809         bio_put(r10_bio->master_bio);
4810         put_buf(r10_bio);
4811 }
4812
4813 static void raid10_finish_reshape(struct mddev *mddev)
4814 {
4815         struct r10conf *conf = mddev->private;
4816
4817         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4818                 return;
4819
4820         if (mddev->delta_disks > 0) {
4821                 sector_t size = raid10_size(mddev, 0, 0);
4822                 md_set_array_sectors(mddev, size);
4823                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4824                         mddev->recovery_cp = mddev->resync_max_sectors;
4825                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4826                 }
4827                 mddev->resync_max_sectors = size;
4828                 if (mddev->queue) {
4829                         set_capacity(mddev->gendisk, mddev->array_sectors);
4830                         revalidate_disk(mddev->gendisk);
4831                 }
4832         } else {
4833                 int d;
4834                 rcu_read_lock();
4835                 for (d = conf->geo.raid_disks ;
4836                      d < conf->geo.raid_disks - mddev->delta_disks;
4837                      d++) {
4838                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4839                         if (rdev)
4840                                 clear_bit(In_sync, &rdev->flags);
4841                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4842                         if (rdev)
4843                                 clear_bit(In_sync, &rdev->flags);
4844                 }
4845                 rcu_read_unlock();
4846         }
4847         mddev->layout = mddev->new_layout;
4848         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4849         mddev->reshape_position = MaxSector;
4850         mddev->delta_disks = 0;
4851         mddev->reshape_backwards = 0;
4852 }
4853
4854 static struct md_personality raid10_personality =
4855 {
4856         .name           = "raid10",
4857         .level          = 10,
4858         .owner          = THIS_MODULE,
4859         .make_request   = raid10_make_request,
4860         .run            = raid10_run,
4861         .free           = raid10_free,
4862         .status         = raid10_status,
4863         .error_handler  = raid10_error,
4864         .hot_add_disk   = raid10_add_disk,
4865         .hot_remove_disk= raid10_remove_disk,
4866         .spare_active   = raid10_spare_active,
4867         .sync_request   = raid10_sync_request,
4868         .quiesce        = raid10_quiesce,
4869         .size           = raid10_size,
4870         .resize         = raid10_resize,
4871         .takeover       = raid10_takeover,
4872         .check_reshape  = raid10_check_reshape,
4873         .start_reshape  = raid10_start_reshape,
4874         .finish_reshape = raid10_finish_reshape,
4875         .congested      = raid10_congested,
4876 };
4877
4878 static int __init raid_init(void)
4879 {
4880         return register_md_personality(&raid10_personality);
4881 }
4882
4883 static void raid_exit(void)
4884 {
4885         unregister_md_personality(&raid10_personality);
4886 }
4887
4888 module_init(raid_init);
4889 module_exit(raid_exit);
4890 MODULE_LICENSE("GPL");
4891 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4892 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4893 MODULE_ALIAS("md-raid10");
4894 MODULE_ALIAS("md-level-10");
4895
4896 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);